Verspui, Remko; Gray, John R
2009-10-01
Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.
Beyond the cockpit: The visual world as a flight instrument
NASA Technical Reports Server (NTRS)
Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.
1992-01-01
The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).
Pilot/vehicle model analysis of visually guided flight
NASA Technical Reports Server (NTRS)
Zacharias, Greg L.
1991-01-01
Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.
User's Guide for Flight Simulation Data Visualization Workstation
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.
1996-01-01
Today's modern flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format. Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. This document is intended as an end user's guide.
High contrast sensitivity for visually guided flight control in bumblebees.
Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie
2017-12-01
Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A
2004-01-01
The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.
Flight performance in night-flying sweat bees suffers at low light levels.
Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J
2007-11-01
The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.
Comparison of Visually Guided Flight in Insects and Birds.
Altshuler, Douglas L; Srinivasan, Mandyam V
2018-01-01
Over the last half century, work with flies, bees, and moths have revealed a number of visual guidance strategies for controlling different aspects of flight. Some algorithms, such as the use of pattern velocity in forward flight, are employed by all insects studied so far, and are used to control multiple flight tasks such as regulation of speed, measurement of distance, and positioning through narrow passages. Although much attention has been devoted to long-range navigation and homing in birds, until recently, very little was known about how birds control flight in a moment-to-moment fashion. A bird that flies rapidly through dense foliage to land on a branch-as birds often do-engages in a veritable three-dimensional slalom, in which it has to continually dodge branches and leaves, and find, and possibly even plan a collision-free path to the goal in real time. Each mode of flight from take-off to goal could potentially involve a different visual guidance algorithm. Here, we briefly review strategies for visual guidance of flight in insects, synthesize recent work from short-range visual guidance in birds, and offer a general comparison between the two groups of organisms.
Neural basis of forward flight control and landing in honeybees.
Ibbotson, M R; Hung, Y-S; Meffin, H; Boeddeker, N; Srinivasan, M V
2017-11-06
The impressive repertoire of honeybee visually guided behaviors, and their ability to learn has made them an important tool for elucidating the visual basis of behavior. Like other insects, bees perform optomotor course correction to optic flow, a response that is dependent on the spatial structure of the visual environment. However, bees can also distinguish the speed of image motion during forward flight and landing, as well as estimate flight distances (odometry), irrespective of the visual scene. The neural pathways underlying these abilities are unknown. Here we report on a cluster of descending neurons (DNIIIs) that are shown to have the directional tuning properties necessary for detecting image motion during forward flight and landing on vertical surfaces. They have stable firing rates during prolonged periods of stimulation and respond to a wide range of image speeds, making them suitable to detect image flow during flight behaviors. While their responses are not strictly speed tuned, the shape and amplitudes of their speed tuning functions are resistant to large changes in spatial frequency. These cells are prime candidates not only for the control of flight speed and landing, but also the basis of a neural 'front end' of the honeybee's visual odometer.
Visual flight control in naturalistic and artificial environments.
Baird, Emily; Dacke, Marie
2012-12-01
Although the visual flight control strategies of flying insects have evolved to cope with the complexity of the natural world, studies investigating this behaviour have typically been performed indoors using simplified two-dimensional artificial visual stimuli. How well do the results from these studies reflect the natural behaviour of flying insects considering the radical differences in contrast, spatial composition, colour and dimensionality between these visual environments? Here, we aim to answer this question by investigating the effect of three- and two-dimensional naturalistic and artificial scenes on bumblebee flight control in an outdoor setting and compare the results with those of similar experiments performed in an indoor setting. In particular, we focus on investigating the effect of axial (front-to-back) visual motion cues on ground speed and centring behaviour. Our results suggest that, in general, ground speed control and centring behaviour in bumblebees is not affected by whether the visual scene is two- or three dimensional, naturalistic or artificial, or whether the experiment is conducted indoors or outdoors. The only effect that we observe between naturalistic and artificial scenes on flight control is that when the visual scene is three-dimensional and the visual information on the floor is minimised, bumblebees fly further from the midline of the tunnel. The findings presented here have implications not only for understanding the mechanisms of visual flight control in bumblebees, but also for the results of past and future investigations into visually guided flight control in other insects.
Development of a Flight Simulation Data Visualization Workstation
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.
1996-01-01
Today's moderm flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format . Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper traces the design, development and implementation of the SimGraph program, and is intended to be a programmer's reference guide.
Dynamic Echo Information Guides Flight in the Big Brown Bat
Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.
2016-01-01
Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690
Through the eyes of a bird: modelling visually guided obstacle flight
Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.
2014-01-01
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052
Through the eyes of a bird: modelling visually guided obstacle flight.
Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A
2014-07-06
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.
Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Allison, Craig K
2017-12-15
Flight within degraded visual conditions is a great challenge to pilots of rotary-wing craft. Environmental cues typically used to guide interpretation of speed, location and approach can become obscured, forcing the pilots to rely on data available from in-cockpit instrumentation. To ease the task of flight during degraded visual conditions, pilots require easy access to flight critical information. The current study examined the effect of 'Highways in the Sky' symbology and a conformal virtual pad for landing presented using a Head Up Display (HUD) on pilots' workload and situation awareness for both clear and degraded conditions across a series of simulated rotary-wing approach and landings. Results suggest that access to the HUD lead to significant improvements to pilots' situation awareness, especially within degraded visual conditions. Importantly, access to the HUD facilitated pilot awareness in all conditions. Results are discussed in terms of future HUD development. Practitioner Summary: This paper explores the use of a novel Heads Up Display, to facilitate rotary-wing pilots' situation awareness and workload for simulated flights in both clear and degraded visual conditions. Results suggest that access to HUD facilitated pilots' situation awareness, especially when flying in degraded conditions.
Visual control of robots using range images.
Pomares, Jorge; Gil, Pablo; Torres, Fernando
2010-01-01
In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.
NASA Technical Reports Server (NTRS)
Roark, J. H.; Masuoka, C. M.; Frey, H. V.; Keller, J.; Williams, S.
2005-01-01
The Planetary Geodynamics Laboratory (http://geodynamics.gsfc.nasa.gov) of NASA s Goddard Space Flight Center designed, produced and recently delivered a "museum-friendly" version of GRIDVIEW, a grid visualization and analysis application, to the Smithsonian's National Air and Space Museum where it will be used in a guided comparative planetology education exhibit. The software was designed to enable museum visitors to interact with the same Earth and Mars topographic data and tools typically used by planetary scientists, and experience the thrill of discovery while learning about the geologic differences between Earth and Mars.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Srinivasan, Mandyam V
2011-04-01
Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.
Guidance for Development of a Flight Simulator Specification
2007-05-01
the simulated line of sight to the moon is less than one degree, and that the moon appears to move smoothly across the visual scene. The phase of the...Agencies have adopted the definition used by Optics Companies (this definition has also been adopted in this revision of the Air Force Guide...simulators that require tracking the target as it slues across the displayed scene, such as with air -to-ground or air -to- air combat tasks. Visual systems
Four-dimensional in vivo X-ray microscopy with projection-guided gating
NASA Astrophysics Data System (ADS)
Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.
2015-03-01
Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.
Optic flow cues guide flight in birds.
Bhagavatula, Partha S; Claudianos, Charles; Ibbotson, Michael R; Srinivasan, Mandyam V
2011-11-08
Although considerable effort has been devoted to investigating how birds migrate over large distances, surprisingly little is known about how they tackle so successfully the moment-to-moment challenges of rapid flight through cluttered environments [1]. It has been suggested that birds detect and avoid obstacles [2] and control landing maneuvers [3-5] by using cues derived from the image motion that is generated in the eyes during flight. Here we investigate the ability of budgerigars to fly through narrow passages in a collision-free manner, by filming their trajectories during flight in a corridor where the walls are decorated with various visual patterns. The results demonstrate, unequivocally and for the first time, that birds negotiate narrow gaps safely by balancing the speeds of image motion that are experienced by the two eyes and that the speed of flight is regulated by monitoring the speed of image motion that is experienced by the two eyes. These findings have close parallels with those previously reported for flying insects [6-13], suggesting that some principles of visual guidance may be shared by all diurnal, flying animals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)
NASA Technical Reports Server (NTRS)
Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.
1977-01-01
Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.
Galileo attitude and articulation control subsystem closed loop testing
NASA Technical Reports Server (NTRS)
Lembeck, M. F.; Pignatano, N. D.
1983-01-01
In order to ensure the reliable operation of the Attitude and Articulation Control Subsystem (AACS) which will guide the Galileo spacecraft on its two and one-half year journey to Jupiter, the AACS is being rigorously tested. The primary objectives of the test program are the verification of the AACS's form, fit, and function, especially with regard to subsystem external interfaces and the functional operation of the flight software. Attention is presently given to the Galileo Closed Loop Test System, which simulates the dynamic and 'visual' flight environment for AACS components in the laboratory.
Prentiss, Emily K; Schneider, Colleen L; Williams, Zoë R; Sahin, Bogachan; Mahon, Bradford Z
2018-03-15
The division of labour between the dorsal and ventral visual pathways is well established. The ventral stream supports object identification, while the dorsal stream supports online processing of visual information in the service of visually guided actions. Here, we report a case of an individual with a right inferior quadrantanopia who exhibited accurate spontaneous rotation of his wrist when grasping a target object in his blind visual field. His accurate wrist orientation was observed despite the fact that he exhibited no sensitivity to the orientation of the handle in a perceptual matching task. These findings indicate that non-geniculostriate visual pathways process basic volumetric information relevant to grasping, and reinforce the observation that phenomenal awareness is not necessary for an object's volumetric properties to influence visuomotor performance.
Terminal configured vehicle program: Test facilities guide
NASA Technical Reports Server (NTRS)
1980-01-01
The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.
Egelhaaf, Martin; Kern, Roland
2002-12-01
Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird, Emily; Kornfeldt, Torill; Dacke, Marie
2010-05-01
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
Helicopter flight simulation motion platform requirements
NASA Astrophysics Data System (ADS)
Schroeder, Jeffery Allyn
Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
Sensor fusion for synthetic vision
NASA Technical Reports Server (NTRS)
Pavel, M.; Larimer, J.; Ahumada, A.
1991-01-01
Display methodologies are explored for fusing images gathered by millimeter wave sensors with images rendered from an on-board terrain data base to facilitate visually guided flight and ground operations in low visibility conditions. An approach to fusion based on multiresolution image representation and processing is described which facilitates fusion of images differing in resolution within and between images. To investigate possible fusion methods, a workstation-based simulation environment is being developed.
Ghose, Kaushik; Moss, Cynthia F
2006-02-08
Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.
Visually guided control of movement in the context of multimodal stimulation
NASA Technical Reports Server (NTRS)
Riccio, Gary E.
1991-01-01
Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual...-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator Knowledge Test Guide
DOT National Transportation Integrated Search
1995-01-01
The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help applicants meet the knowledge requirements for airline transport pilot, aircraft dispatcher, and flight navigator certification. This guide con...
NASA Astrophysics Data System (ADS)
Doyon-Poulin, Philippe
Flight deck of 21st century commercial aircrafts does not look like the one the Wright brothers used for their first flight. The rapid growth of civilian aviation resulted in an increase in the number of flight deck instruments and of their complexity, in order to complete a safe and ontime flight. However, presenting an abundance of visual information using visually cluttered flight instruments might reduce the pilot's flight performance. Visual clutter has received an increased interest by the aerospace community to understand the effects of visual density and information overload on pilots' performance. Aerospace regulations demand to minimize visual clutter of flight deck displays. Past studies found a mixed effect of visual clutter of the primary flight display on pilots' technical flight performance. More research is needed to better understand this subject. In this thesis, we did an experimental study in a flight simulator to test the effects of visual clutter of the primary flight display on the pilot's technical flight performance, mental workload and gaze pattern. First, we identified a gap in existing definitions of visual clutter and we proposed a new definition relevant to the aerospace community that takes into account the context of use of the display. Then, we showed that past research on the effects of visual clutter of the primary flight display on pilots' performance did not manipulate the variable of visual clutter in a similar manner. Past research changed visual clutter at the same time than the flight guidance function. Using a different flight guidance function between displays might have masked the effect of visual clutter on pilots' performance. To solve this issue, we proposed three requirements that all tested displays must satisfy to assure that only the variable of visual clutter is changed during study while leaving other variables unaffected. Then, we designed three primary flight displays with a different visual clutter level (low, medium, high) but with the same flight guidance function, by respecting the previous requirements. Twelve pilots, with a mean experience of over 4000 total flight hours, completed an instrument landing in a flight simulator using all three displays for a total of nine repetitions. Our results showed that pilots reported lower workload level and had better lateral precision during the approach using the medium-clutter display compared to the low- and high-clutter displays. Also, pilots reported that the medium-clutter display was the most useful for the flight task compared to the two other displays. Eye tracker results showed that pilots' gaze pattern was less efficient for the high-clutter display compared to the low- and medium-clutter displays. Overall, these new experimental results emphasize the importance of optimizing visual clutter of flight displays as it affects both objective and subjective performance of experienced pilots in their flying task. This thesis ends with practical recommendations to help designers optimize visual clutter of displays used for man-machine interface.
NASA Technical Reports Server (NTRS)
Laue, Jay H.
1998-01-01
The X-33 flight visualization effort has resulted in the integration of high-resolution terrain data with vehicle position and attitude data for planned flights of the X-33 vehicle from its launch site at Edwards AFB, California, to landings at Michael Army Air Field, Utah, and Maelstrom AFB, Montana. Video and Web Site representations of these flight visualizations were produced. In addition, a totally new module was developed to control viewpoints in real-time using a joystick input. Efforts have been initiated, and are presently being continued, for real-time flight coverage visualizations using the data streams from the X-33 vehicle flights. The flight visualizations that have resulted thus far give convincing support to the expectation that the flights of the X-33 will be exciting and significant space flight milestones... flights of this nation's one-half scale predecessor to its first single-stage-to-orbit, fully-reusable launch vehicle system.
Remote Infrared Thermography for In-Flight Flow Diagnostics
NASA Technical Reports Server (NTRS)
Shiu, H. J.; vanDam, C. P.
1999-01-01
The feasibility of remote in-flight boundary layer visualization via infrared in incompressible flow was established in earlier flight experiments. The past year's efforts focused on refining and determining the extent and accuracy of this technique of remote in-flight flow visualization via infrared. Investigations were made into flow separation visualization, visualization at transonic conditions, shock visualization, post-processing to mitigate banding noise in the NITE Hawk's thermograms, and a numeric model to predict surface temperature distributions. Although further flight tests are recommended, this technique continues to be promising.
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Gall, P. D.; Croom, C. C.; Manuel, G. S.; Kelliher, W. C.
1986-01-01
The visualization of laminar to turbulent boundary layer transition plays an important role in flight and wind-tunnel aerodynamic testing of aircraft wing and body surfaces. Visualization can help provide a more complete understanding of both transition location as well as transition modes; without visualization, the transition process can be very difficult to understand. In the past, the most valuable transition visualization methods for flight applications included sublimating chemicals and oil flows. Each method has advantages and limitations. In particular, sublimating chemicals are impractical to use in subsonic applications much above 20,000 feet because of the greatly reduced rates of sublimation at lower temperatures (less than -4 degrees Farenheit). Both oil flow and sublimating chemicals have the disadvantage of providing only one good data point per flight. Thus, for many important flight conditions, transition visualization has not been readily available. This paper discusses a new method for visualizing transition in flight by the use of liquid crystals. The new method overcomes the limitations of past techniques, and provides transition visualization capability throughout almost the entire altitude and speed ranges of virtually all subsonic aircraft flight envelopes. The method also has wide applicability for supersonic transition visualization in flight and for general use in wind tunnel research over wide subsonic and supersonic speed ranges.
Time delays in flight simulator visual displays
NASA Technical Reports Server (NTRS)
Crane, D. F.
1980-01-01
It is pointed out that the effects of delays of less than 100 msec in visual displays on pilot dynamic response and system performance are of particular interest at this time because improvements in the latest computer-generated imagery (CGI) systems are expected to reduce CGI displays delays to this range. Attention is given to data which quantify the effects of display delays in the range of 0-100 msec on system stability and performance, and pilot dynamic response for a particular choice of aircraft dynamics, display, controller, and task. The conventional control system design methods are reviewed, the pilot response data presented, and data for long delays, all suggest lead filter compensation of display delay. Pilot-aircraft system crossover frequency information guides compensation filter specification.
Visual and flight performance recovery after PRK or LASIK in helicopter pilots.
Van de Pol, Corina; Greig, Joanna L; Estrada, Art; Bissette, Gina M; Bower, Kraig S
2007-06-01
Refractive surgery, specifically photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK), is becoming more accepted in the military environment. Determination of the impact on visual performance in the more demanding aviation environment was the impetus for this study. A prospective evaluation of 20 Black Hawk pilots pre-surgically and at 1 wk, 1 mo, and 6 mo postsurgery was conducted to assess both PRK and LASIK visual and flight performance outcomes on the return of aviators to duty. Of 20 pilots, 19 returned to flight status at 1 mo after surgery; 1 PRK subject was delayed due to corneal haze and subjective visual symptoms. Improvements were seen under simulator night and night vision goggle flight after LASIK; no significant changes in flight performance were measured in the aircraft. Results indicated a significantly faster recovery of all visual performance outcomes 1 wk after LASIK vs. PRK, with no difference between procedures at 1 and 6 mo. Low contrast acuity and contrast sensitivity only weakly correlated to flight performance in the early post-operative period. Overall flight performance assessed in this study after PRK and LASIK was stable or improved from baseline, indicating a resilience of performance despite measured decrements in visual performance, especially in PRK. More visually demanding flight tasks may be impacted by subtle changes in visual performance. Contrast tests are more sensitive to the effects of refractive surgical intervention and may prove to be a better indicator of visual recovery for return to flight status.
Flight Instructor: Airplane. Written Test Guide.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The Flight Standards Service of the Federal Aviation Administration developed the guide to assist applicants who are preparing for the Flight Instructor Certificate with Airplane Rating. The guide contains comprehensive study outlines and a list of recommended study materials and tells how to obtain those publications. It also includes sample test…
[Review of visual display system in flight simulator].
Xie, Guang-hui; Wei, Shao-ning
2003-06-01
Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed.
Flow visualization techniques for flight research
NASA Technical Reports Server (NTRS)
Fisher, David F.; Meyer, Robert R., Jr.
1989-01-01
In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids were obtained. Off-surface flow visualization of vortical flow was obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.
Flow Visualization Techniques for Flight Research
NASA Technical Reports Server (NTRS)
Fisher, David F.; Meyer, Robert R., Jr.
1988-01-01
In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids have been obtained. Off-surface flow visualization of vortical flow has been obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.
HyperPASS, a New Aeroassist Tool
NASA Technical Reports Server (NTRS)
Gates, Kristin; McRonald, Angus; Nock, Kerry
2005-01-01
A new software tool designed to perform aeroassist studies has been developed by Global Aerospace Corporation (GAC). The Hypersonic Planetary Aeroassist Simulation System (HyperPASS) [1] enables users to perform guided aerocapture, guided ballute aerocapture, aerobraking, orbit decay, or unguided entry simulations at any of six target bodies (Venus, Earth, Mars, Jupiter, Titan, or Neptune). HyperPASS is currently being used for trade studies to investigate (1) aerocapture performance with alternate aeroshell types, varying flight path angle and entry velocity, different gload and heating limits, and angle of attack and angle of bank variations; (2) variable, attached ballute geometry; (3) railgun launched projectile trajectories, and (4) preliminary orbit decay evolution. After completing a simulation, there are numerous visualization options in which data can be plotted, saved, or exported to various formats. Several analysis examples will be described.
1986-12-26
NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight
Glider Flight Instructor Written Test Guide.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The purposes of the test guide are threefold. First, it is intended to outline the scope of the basic aeronautical knowledge requirements for a glider flight instructor. This includes fundamentals of flight instruction and performance and analysis of flight training maneuvers. Secondly, it is intended to acquaint the applicant with source material…
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Code of Federal Regulations, 2011 CFR
2011-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Space Flight. Teacher Resources.
ERIC Educational Resources Information Center
2001
This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…
Magellan attitude and articulation control subsystem closed loop testing
NASA Technical Reports Server (NTRS)
Olschansky, David G.
1987-01-01
In the spring of 1989, the Magellan spacecraft will embark on a two-year mission to map the surface of the planet Venus. Guiding it there will be the Attitude and Articulation Control Subsystem (AACS). To ensure reliable operations the AACS is being put through a rigorous test program at Martin Marietta Denver Aerospace. Before Magellan ever leaves the Space Shuttle bay from which it is to be launched, its components will have flown a simulated spaceflight in a ground-based lab. The primary objectives of the test program are to verify form, fit, and function of the AACS, particularly subsystem external interfaces and functional operation of the flight software. This paper discusses the Magellan Closed Loop Test Systems which makes realistic tests possible by simulating the dynamic and 'visual' flight environment for AACS components in the lab.
NASA Technical Reports Server (NTRS)
1993-01-01
MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.
Evidence for discrete landmark use by pigeons during homing.
Mora, Cordula V; Ross, Jeremy D; Gorsevski, Peter V; Chowdhury, Budhaditya; Bingman, Verner P
2012-10-01
Considerable efforts have been made to investigate how homing pigeons (Columba livia f. domestica) are able to return to their loft from distant, unfamiliar sites while the mechanisms underlying navigation in familiar territory have received less attention. With the recent advent of global positioning system (GPS) data loggers small enough to be carried by pigeons, the role of visual environmental features in guiding navigation over familiar areas is beginning to be understood, yet, surprisingly, we still know very little about whether homing pigeons can rely on discrete, visual landmarks to guide navigation. To assess a possible role of discrete, visual landmarks in navigation, homing pigeons were first trained to home from a site with four wind turbines as salient landmarks as well as from a control site without any distinctive, discrete landmark features. The GPS-recorded flight paths of the pigeons on the last training release were straighter and more similar among birds from the turbine site compared with those from the control site. The pigeons were then released from both sites following a clock-shift manipulation. Vanishing bearings from the turbine site continued to be homeward oriented as 13 of 14 pigeons returned home. By contrast, at the control site the vanishing bearings were deflected in the expected clock-shift direction and only 5 of 13 pigeons returned home. Taken together, our results offer the first strong evidence that discrete, visual landmarks are one source of spatial information homing pigeons can utilize to navigate when flying over a familiar area.
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli
Chan, R. WM.; Gabbiani, F.
2013-01-01
SUMMARY Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from – but also towards – the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight. PMID:23364572
Helicopter Flight Simulation Motion Platform Requirements
NASA Technical Reports Server (NTRS)
Schroeder, Jeffery Allyn
1999-01-01
To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Kaiser, Mary K.
2003-01-01
Perspective synthetic displays that supplement, or supplant, the optical windows traditionally used for guidance and control of aircraft are accompanied by potentially significant human factors problems related to the optical geometric conformality of the display. Such geometric conformality is broken when optical features are not in the location they would be if directly viewed through a window. This often occurs when the scene is relayed or generated from a location different from the pilot s eyepoint. However, assuming no large visual/vestibular effects, a pilot cad often learn to use such a display very effectively. Important problems may arise, however, when display accuracy or consistency is compromised, and this can usually be related to geometrical discrepancies between how the synthetic visual scene behaves and how the visual scene through a window behaves. In addition to these issues, this paper examines the potentially critical problem of the disorientation that can arise when both a synthetic display and a real window are present in a flight deck, and no consistent visual interpretation is available.
Fear of Flying in Airplanes: Effects of Minimal Therapist Guided Stress Inoculation Training.
ERIC Educational Resources Information Center
Beckham, Jean C.; And Others
Flight phobia is an area which has received little controlled investigation, even though between 10 and 20 percent of flight passengers report a fear of flying in airplanes. A study was conducted to examine the efectiveness of a minimal therapist guided form of stress inoculation training (SIT) for flight phobia. Flight phobic volunteers (N=28)…
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…
User's guide for the Flight Design System (FDS)
NASA Technical Reports Server (NTRS)
Ramsey, H. R.; Atwood, M. E.; Frisius, W. G.; Turner, A. A.; Willoughby, J. K.
1980-01-01
Information about the Flight Design System (FDS) in the context of flight design is presented. The guide introduces the FDS user to the structure of FDS and to constructs within FDS (such as files of information or the part of FDS which interacts directly with the user). A guide to the commands available to FDS users is presented. A glossary of important terms, an index to terms, and a quick reference to the commands of FDS are included.
Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.
1999-01-01
This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.
A New Definition for Ground Control
NASA Technical Reports Server (NTRS)
2002-01-01
LandForm(R) VisualFlight(R) blends the power of a geographic information system with the speed of a flight simulator to transform a user's desktop computer into a "virtual cockpit." The software product, which is fully compatible with all Microsoft(R) Windows(R) operating systems, provides distributed, real-time three-dimensional flight visualization over a host of networks. From a desktop, a user can immediately obtain a cockpit view, a chase-plane view, or an airborne tracker view. A customizable display also allows the user to overlay various flight parameters, including latitude, longitude, altitude, pitch, roll, and heading information. Rapid Imaging Software sought assistance from NASA, and the VisualFlight technology came to fruition under a Phase II SBIR contract with Johnson Space Center in 1998. Three years later, on December 13, 2001, Ken Ham successfully flew NASA's X-38 spacecraft from a remote, ground-based cockpit using LandForm VisualFlight as part of his primary situation awareness display in a flight test at Edwards Air Force Base, California.
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Brighton, Caroline H.; Thomas, Adrian L. R.
2017-01-01
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660
Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K
2017-12-19
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.
Private and Commercial Pilot; Heliocoptor. Flight Test Guide, Part 61 Revised, AC 61-59.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Rotocraft Certificate with Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required…
Flight Test Guide (Part 61 Revised); Private Pilot Airplane.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This guide provides an outline of the skills required to pass the flight test for a Private Pilot Certificate with Airplane Rating under part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: preflight operations, airport and traffic pattern operations,…
Private and Commercial Pilot: Free Balloon: Flight Test Guide (Part 61 Revised).
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The flight test guide has been prepared to assist the applicant and his instructor in preparing for the private pilot or commercial pilot certificate with a lighter-than-air category and free balloon class rating. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test: layout and…
Private and Commercial Pilot: Ligher-Than-Air Airship. Flight Test Guide. (Part 61 Revised).
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The flight test guide assists the applicant and his instructor in preparing for the flight test for the Private or Commercial Pilot Certificate with a Lighter-Than-Air Category and Airship Class Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning pilot operations, procedures, and…
Private and Commercial Pilot: Glider. Flight Test Guide, Part 61 Revised, AC 61-61.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Certificate with Glider Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required for that…
Code of Federal Regulations, 2010 CFR
2010-01-01
... means, for the purposes of this subpart, a communications facility where flight plans or position... which the control of aircraft is required for reasons of national security. Defense visual flight rules... (except for Department of Defense and law enforcement aircraft) in accordance with visual flight rules in...
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.
Validating Visual Cues In Flight Simulator Visual Displays
NASA Astrophysics Data System (ADS)
Aronson, Moses
1987-09-01
Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.
Shade determination using camouflaged visual shade guides and an electronic spectrophotometer.
Kvalheim, S F; Øilo, M
2014-03-01
The aim of the present study was to compare a camouflaged visual shade guide to a spectrophotometer designed for restorative dentistry. Two operators performed analyses of 66 subjects. One central upper incisor was measured four times by each operator; twice with a camouflaged visual shade guide and twice with a spectrophotometer Both methods had acceptable repeatability rates, but the electronic shade determination showed higher repeatability. In general, the electronically determined shades were darker than the visually determined shades. The use of a camouflaged visual shade guide seems to be an adequate method to reduce operator bias.
Visual control of flight speed in Drosophila melanogaster.
Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H
2009-04-01
Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.
Parameswaran, Vidhya; Anilkumar, S; Lylajam, S; Rajesh, C; Narayan, Vivek
2016-01-01
This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome.
Visual Target Tracking on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Kim, Won S.; Biesiadecki, Jeffrey J.; Ali, Khaled S.
2008-01-01
Visual Target Tracking (VTT) has been implemented in the new Mars Exploration Rover (MER) Flight Software (FSW) R9.2 release, which is now running on both Spirit and Opportunity rovers. Applying the normalized cross-correlation (NCC) algorithm with template image magnification and roll compensation on MER Navcam images, VTT tracks the target and enables the rover to approach the target within a few cm over a 10 m traverse. Each VTT update takes 1/2 to 1 minute on the rovers, 2-3 times faster than one Visual Odometry (Visodom) update. VTT is a key element to achieve a target approach and instrument placement over a 10-m run in a single sol in contrast to the original baseline of 3 sols. VTT has been integrated into the MER FSW so that it can operate with any combination of blind driving, Autonomous Navigation (Autonav) with hazard avoidance, and Visodom. VTT can either guide the rover towards the target or simply image the target as the rover drives by. Three recent VTT operational checkouts on Opportunity were all successful, tracking the selected target reliably within a few pixels.
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
Whitwell, Robert L; Goodale, Melvyn A; Merritt, Kate E; Enns, James T
2018-01-01
The two visual systems hypothesis proposes that human vision is supported by an occipito-temporal network for the conscious visual perception of the world and a fronto-parietal network for visually-guided, object-directed actions. Two specific claims about the fronto-parietal network's role in sensorimotor control have generated much data and controversy: (1) the network relies primarily on the absolute metrics of target objects, which it rapidly transforms into effector-specific frames of reference to guide the fingers, hands, and limbs, and (2) the network is largely unaffected by scene-based information extracted by the occipito-temporal network for those same targets. These two claims lead to the counter-intuitive prediction that in-flight anticipatory configuration of the fingers during object-directed grasping will resist the influence of pictorial illusions. The research confirming this prediction has been criticized for confounding the difference between grasping and explicit estimates of object size with differences in attention, sensory feedback, obstacle avoidance, metric sensitivity, and priming. Here, we address and eliminate each of these confounds. We asked participants to reach out and pick up 3D target bars resting on a picture of the Sander Parallelogram illusion and to make explicit estimates of the length of those bars. Participants performed their grasps without visual feedback, and were permitted to grasp the targets after making their size-estimates to afford them an opportunity to reduce illusory error with haptic feedback. The results show unequivocally that the effect of the illusion is stronger on perceptual judgments than on grasping. Our findings from the normally-sighted population provide strong support for the proposal that human vision is comprised of functionally and anatomically dissociable systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plastic Bags and Environmental Pollution
ERIC Educational Resources Information Center
Sang, Anita Ng Heung
2010-01-01
The "Hong Kong Visual Arts Curriculum Guide," covering Primary 1 to Secondary 3 grades (Curriculum Development Committee, 2003), points to three domains of learning in visual arts: (1) visual arts knowledge; (2) visual arts appreciation and criticism; and (3) visual arts making. The "Guide" suggests learning should develop…
NASA Technical Reports Server (NTRS)
1979-01-01
The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.
Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.
ERIC Educational Resources Information Center
Chun, Marvin M.; Jiang, Yuhong
1998-01-01
Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)
Threat captures attention but does not affect learning of contextual regularities.
Yamaguchi, Motonori; Harwood, Sarah L
2017-04-01
Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.
Developing Tests of Visual Dependency
NASA Technical Reports Server (NTRS)
Kindrat, Alexandra N.
2011-01-01
Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.
What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.
Martin, Graham R
2017-01-01
Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as "a bill guided by an eye" and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control.
What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight
Martin, Graham R.
2017-01-01
Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as “a bill guided by an eye” and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control. PMID:29163020
Developments in flow visualization methods for flight research
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Obara, Clifford J.; Manuel, Gregory S.; Lee, Cynthia C.
1990-01-01
With the introduction of modern airplanes utilizing laminar flow, flow visualization has become an important diagnostic tool in determining aerodynamic characteristics such as surface flow direction and boundary-layer state. A refinement of the sublimating chemical technique has been developed to define both the boundary-layer transition location and the transition mode. In response to the need for flow visualization at subsonic and transonic speeds and altitudes above 20,000 feet, the liquid crystal technique has been developed. A third flow visualization technique that has been used is infrared imaging, which offers non-intrusive testing over a wide range of test conditions. A review of these flow visualization methods and recent flight results is presented for a variety of modern aircraft and flight conditions.
HAL/S programmer's guide. [space shuttle flight software language
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.
Modeling of pilot's visual behavior for low-level flight
NASA Astrophysics Data System (ADS)
Schulte, Axel; Onken, Reiner
1995-06-01
Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.
Use of nontraditional flight displays for the reduction of central visual overload in the cockpit
NASA Technical Reports Server (NTRS)
Weinstein, Lisa F.; Wickens, Christopher D.
1992-01-01
The use of nontraditional flight displays to reduce visual overload in the cockpit was investigated in a dual-task paradigm. Three flight displays (central, peripheral, and ecological) were used between subjects for the primary tasks, and the type of secondary task (object identification or motion judgment) and the presentation of the location of the task in the visual field (central or peripheral) were manipulated with groups. The two visual-spatial tasks were time-shared to study the possibility of a compatibility mapping between task type and task location. The ecological display was found to allow for the most efficient time-sharing.
Flight simulator with spaced visuals
NASA Technical Reports Server (NTRS)
Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)
1980-01-01
A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.
Parameswaran, Vidhya; Anilkumar, S.; Lylajam, S.; Rajesh, C.; Narayan, Vivek
2016-01-01
Background and Objectives: This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. Methods: In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results: Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. Conclusion: This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome. PMID:27746599
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Background: Preflight Screening, In-flight Capabilities, and Postflight Testing
NASA Technical Reports Server (NTRS)
Gibson, Charles Robert; Duncan, James
2009-01-01
Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):
Cognitive Control Network Contributions to Memory-Guided Visual Attention
Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.
2016-01-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253
A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology
2008-07-01
paper: SDW PS DCO. References 1. Wagner H (1986) Flight performance and visual control of flight of the free- flying housefly (Musca domestica L) 3...differences in the chasing behaviour of houseflies (musca). Biol Cybern 32: 239–241. 3. Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42: 147
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.
The Role of Visual Occlusion in Altitude Maintenance during Simulated Flight
ERIC Educational Resources Information Center
Gray, R.; Geri, G. A.; Akhtar, S. C.; Covas, C. M.
2008-01-01
The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an…
Effect of microgravity on several visual functions during STS shuttle missions
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Changes in the acuity of astronaut vision during flight are discussed. Parameters such as critical flicker vision, stereopsis to 10 seconds of arc, visual acuity in small steps to 20/7.7, cyclophoria, lateral and vertical phoria and retinal rivalry were tested using a visual function tester. Twenty-three Space Transportation System (STS) astronauts participated in the experiments. Their vision was assessed twice before launch and after landing, and three to four times while on-orbit and landing. No significant differences during space flight were observed for any of the visual parameters tested. In some cases, slight changes in acuity and stereopsis were observed with a subsequent return to normal vision after flight.
[Cortical potentials evoked to response to a signal to make a memory-guided saccade].
Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V
2010-01-01
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.
Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Long, Kurtis R.
2005-01-01
Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.
Users guide to high altitude imagery of Michigan
NASA Technical Reports Server (NTRS)
1973-01-01
A guide to the high altitude imagery of Michigan outlines the areas of the state covered by selected recent high altitude aircraft and Earth Resources Technology Satellite flights. The types of remote sensing used are described. Maps of the flight coverage areas are included along with price lists of available imagery.
5. PRELIMINARY SKETCH OF THE GUIDED MISSILE TEST FACILITIES FOR ...
5. PRELIMINARY SKETCH OF THE GUIDED MISSILE TEST FACILITIES FOR TEST AREA NUMBER 2. TODAY IR IS KNOWN AS MARSHALL SPACE FLIGHT CENTER'S EAST TEST AREA. HANNES LUEHRSEN COLLECTION, MSFC MASTER PLANNING OFFICE. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
A survey of selected aviators' perceptions regarding Army crew endurance guidelines.
Caldwell, J A; Caldwell, J L; Hartnett, T C
1995-01-01
A 59-item questionnaire was administered to Army helicopter pilots from a variety of Army units to assess crew endurance issues. Analysis of 653 completed questionnaires indicated that respondents felt that the maintenance of aviator proficiency was more important than the fulfillment of only currency requirements in improving flight endurance. Approximately three-quarters of the respondents said that physical training was important to them personally, and 63% said that improved physical fitness reduces flight-related fatigue. With regard to the current crew endurance guide, only 1% of the respondents thought that the guide was exceptional and 65% said that they thought it should be rewritten. Adjustments were suggested for some of the recommended flight time limitations, to include liberalizing the factor associated with night-vision device flight. A majority of respondents indicated that data from either in-flight endurance evaluations or questionnaires administered to personnel in the field should be used to develop a new guide. Most respondents did not feel comfortable delegating responsibility for total crew endurance planning to unit commanders.
Perception and control of rotorcraft flight
NASA Technical Reports Server (NTRS)
Owen, Dean H.
1991-01-01
Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.
The role of experience in flight behaviour of Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2009-10-01
Experience plays a key role in the acquisition of complex motor skills in running and flight of many vertebrates. To evaluate the significance of previous experience for the efficiency of motor behaviour in an insect, we investigated the flight behaviour of the fruit fly Drosophila. We reared flies in chambers in which the animals could freely walk and extend their wings, but could not gain any flight experience. These naive animals were compared with control flies under both open- and closed-loop tethered flight conditions in a flight simulator as well as in a free-flight arena. The data suggest that the overall flight behaviour in Drosophila seems to be predetermined because both groups exhibited similar mean stroke amplitude and stroke frequency, similar open-loop responses to visual stimulation and the immediate ability to track visual objects under closed-loop feedback conditions. In short free flight bouts, peak saccadic turning rate, angular acceleration, peak horizontal speed and flight altitude were also similar in naive and control flies. However, we found significant changes in other key parameters in naive animals such as a reduction in mean horizontal speed (-23%) and subtle changes in mean turning rate (-48%). Naive flies produced 25% less yaw torque-equivalent stroke amplitudes than the controls in response to a visual stripe rotating in open loop around the tethered animal, potentially suggesting a flight-dependent adaptation of the visuo-motor gain in the control group. This change ceased after the animals experienced visual closed-loop feedback. During closed-loop flight conditions, naive flies had 53% larger differences in left and right stroke amplitude when fixating a visual object, thus steering control was less precise. We discuss two alternative hypotheses to explain our results: the ;neuronal experience' hypothesis, suggesting that there are some elements of learning and fine-tuning involved during the first flight experiences in Drosophila and the ;muscular exercise' hypothesis. Our experiments support the first hypothesis because maximum locomotor capacity seems not to be significantly impaired in the naive group. Although this study primarily confirms the genetic pre-disposition for flight in Drosophila, previous experience may apparently adjust locomotor fine control and aerial performance, although this effect seems to be small compared with vertebrates.
Visual Arts: A Guide to Curriculum Development in the Arts.
ERIC Educational Resources Information Center
Iowa State Dept. of Public Instruction, Des Moines.
This visual arts curriculum guide was developed as a subset of a model curriculum for the arts as mandated by the Iowa legislature. It is designed to be used in conjunction with the Visual Arts in Iowa Schools (VAIS). The guide is divided into six sections: Sections one and two contain the preface, acknowledgements, and a list of members of the…
The Role of Target-Distractor Relationships in Guiding Attention and the Eyes in Visual Search
ERIC Educational Resources Information Center
Becker, Stefanie I.
2010-01-01
Current models of visual search assume that visual attention can be guided by tuning attention toward specific feature values (e.g., particular size, color) or by inhibiting the features of the irrelevant nontargets. The present study demonstrates that attention and eye movements can also be guided by a relational specification of how the target…
NASA Technical Reports Server (NTRS)
Sitterley, T. E.; Zaitzeff, L. P.; Berge, W. A.
1972-01-01
Flight control and procedural task skill degradation, and the effectiveness of retraining methods were evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Fifteen experienced pilots were trained and then tested after 4 months either without the benefits of practice or with static rehearsal, dynamic rehearsal or with dynamic warmup practice. Performance on both the flight control and procedure tasks degraded significantly after 4 months. The rehearsal methods effectively countered procedure task skill degradation, while dynamic rehearsal or a combination of static rehearsal and dynamic warmup practice was required for the flight control tasks. The quality of the retraining methods appeared to be primarily dependent on the efficiency of visual cue reinforcement.
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.
Research on flight stability performance of rotor aircraft based on visual servo control method
NASA Astrophysics Data System (ADS)
Yu, Yanan; Chen, Jing
2016-11-01
control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.
Functional divisions for visual processing in the central brain of flying Drosophila
Weir, Peter T.; Dickinson, Michael H.
2015-01-01
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910
Functional divisions for visual processing in the central brain of flying Drosophila.
Weir, Peter T; Dickinson, Michael H
2015-10-06
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.
Contextual specificity in perception and action
NASA Technical Reports Server (NTRS)
Proffitt, Dennis R.
1991-01-01
The visually guided control of helicopter flight is a human achievement, and, thus, understanding this skill is, in part, a psychological problem. The abilities of skilled pilots are impressive, and yet it is of concern that pilots' performance is less than ideal: they suffer from workload constraints, make occasional errors, and are subject to such debilities as simulator sickness. Remedying such deficiencies is both an engineering and a psychological problem. When studying the psychological aspects of this problem, it is desirable to simplify the problem as much as possible, and thereby, sidestep as many intractable psychological issues as possible. Simply stated, we do not want to have to resolve such polemics as the mind-body problem in order to contribute to the design of more effective helicopter systems. On the other hand, the study of human behavior is a psychological endeavor and certain problems cannot be evaded. Four related issues that are of psychological significance in understanding the visually guided control of helicopter flight are discussed. First, a selected discussion of the nature of descriptive levels in analyzing human perception and performance is presented. It is argued that the appropriate level of description for perception is kinematical, and for performance, it is procedural. Second, it is argued that investigations into pilot performance cannot ignore the nature of pilots' phenomenal experience. The conscious control of actions is not based upon environmental states of affairs, nor upon the optical information that specifies them. Actions are coupled to perceptions. Third, the acquisition of skilled actions in the context of inherent misperceptions is discussed. Such skills may be error prone in some situations, but not in others. Finally, I discuss the contextual relativity of human errors. Each of these four issues relates to a common theme: the control of action is mediated by phenomenal experience, the veracity of which is context specific.
NASA Technical Reports Server (NTRS)
Biggs, Pat (Editor); Huetter, Ted (Editor)
1998-01-01
Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.
Visual Outcomes After LASIK Using Topography-Guided vs Wavefront-Guided Customized Ablation Systems.
Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Tsubota, Kazuo
2016-11-01
To evaluate the visual performance of two customized ablation systems (wavefront-guided ablation and topography-guided ablation) in LASIK. In this prospective, randomized clinical study, 68 eyes of 35 patients undergoing LASIK were enrolled. Patients were randomly assigned to wavefront-guided ablation using the iDesign aberrometer and STAR S4 IR Excimer Laser system (Abbott Medical Optics, Inc., Santa Ana, CA) (wavefront-guided group; 32 eyes of 16 patients; age: 29.0 ± 7.3 years) or topography-guided ablation using the OPD-Scan aberrometer and EC-5000 CXII excimer laser system (NIDEK, Tokyo, Japan) (topography-guided group; 36 eyes of 19 patients; age: 36.1 ± 9.6 years). Preoperative manifest refraction was -4.92 ± 1.95 diopters (D) in the wavefront-guided group and -4.44 ± 1.98 D in the topography-guided group. Visual function and subjective symptoms were compared between groups before and 1 and 3 months after LASIK. Of seven subjective symptoms evaluated, four were significantly milder in the wavefront-guided group at 3 months. Contrast sensitivity with glare off at low spatial frequencies (6.3° and 4°) was significantly higher in the wavefront-guided group. Uncorrected and corrected distance visual acuity, manifest refraction, and higher order aberrations measured by OPD-Scan and iDesign were not significantly different between the two groups at 1 and 3 months after LASIK. Both customized ablation systems used in LASIK achieved excellent results in predictability and visual function. The wavefront-guided ablation system may have some advantages in the quality of vision. It may be important to select the appropriate system depending on eye conditions such as the pattern of total and corneal higher order aberrations. [J Refract Surg. 2016;32(11):727-732.]. Copyright 2016, SLACK Incorporated.
Ros, Ivo G; Biewener, Andrew A
2017-01-01
Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.
Ros, Ivo G.; Biewener, Andrew A.
2017-01-01
Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles. PMID:29249929
Visual Spatial Disorientation: Re-Visiting the Black Hole Illusion
2007-01-24
National Transportation Safety Board. Controlled Flight into Terrain, Korean Air Flight 801 , Nimitz Hill, Guam; 1997. 50. National Transportation Safety...According to a Boeing study of worldwide commercial airline accidents, the approach and landing phase of flying, although only accounting for 4% of the...VISUAL SPATIAL DISORIENTATION Kraft (31) described four night visual, landing airline accidents. Black Hole Illusion 5 1. In 1965, a United Airlines
Baird, Emily; Fernandez, Diana C; Wcislo, William T; Warrant, Eric J
2015-01-01
Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.
Baird, Emily; Fernandez, Diana C.; Wcislo, William T.; Warrant, Eric J.
2015-01-01
Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion—a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus. PMID:26578977
Pre-flight sensorimotor adaptation protocols for suborbital flight.
Shelhamer, Mark; Beaton, Kara
2012-01-01
Commercial suborbital flights, which include 3-5 minutes of 0 g between hyper-g launch and landing phases, will present suborbital passengers with a challenging sensorimotor experience. Based on the results of neurovestibular research in parabolic and orbital flight, and the anticipated wide range of fitness and experience levels of suborbital passengers, neurovestibular disturbances are likely to be problematic in this environment. Pre-flight adaptation protocols might alleviate some of these issues. Therefore, we describe a set of sensorimotor tests to evaluate passengers before suborbital flight, including assessment of the angular vestibulo-ocular reflex (VOR), ocular skew and disconjugate torsion, subjective visual vertical, and roll vection. Performance on these tests can be examined for correlations with in-flight experience, such as motion sickness, disorientation, and visual disturbances, based on questionnaires and cabin video recordings. Through an understanding of sensorimotor adaptation to parabolic and orbital flight, obtained from many previous studies, we can then suggest appropriate pre-flight adaptation procedures.
A review of flight simulation techniques
NASA Astrophysics Data System (ADS)
Baarspul, Max
After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.
2011-01-01
A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.
Performance, physiological, and oculometer evaluation of VTOL landing displays
NASA Technical Reports Server (NTRS)
North, R. A.; Stackhouse, S. P.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Physiological, visual response, and conventional flight performance measures were recorded for landing approaches performed in the NASA Visual Motion Simulator (VMS). Three displays (two computer graphic and a conventional flight director), three crosswind amplitudes, and two motion base conditions (fixed vs. moving base) were tested in a factorial design. Multivariate discriminant functions were formed from flight performance and/or visual response variables. The flight performance variable discriminant showed maximum differentation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus represent higher workload levels.
APMS 3.0 Flight Analyst Guide: Aviation Performance Measuring System
NASA Technical Reports Server (NTRS)
Jay, Griff; Prothero, Gary; Romanowski, Timothy; Lynch, Robert; Lawrence, Robert; Rosenthal, Loren
2004-01-01
The Aviation Performance Measuring System (APMS) is a method-embodied in software-that uses mathematical algorithms and related procedures to analyze digital flight data extracted from aircraft flight data recorders. APMS consists of an integrated set of tools used to perform two primary functions: a) Flight Data Importation b) Flight Data Analysis.
Research and analysis of head-directed area-of-interest visual system concepts
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1983-01-01
An analysis and survey with conjecture supporting a preliminary data base design is presented. The data base is intended for use in a Computer Image Generator visual subsystem for a rotorcraft flight simulator that is used for rotorcraft systems development, not training. The approach taken was to attempt to identify the visual perception strategies used during terrain flight, survey environmental and image generation factors, and meld these into a preliminary data base design. This design is directed at Data Base developers, and hopefully will stimulate and aid their efforts to evolve such a Base that will support simulation of terrain flight operations.
Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.
2015-01-01
The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526
Parachute Rigger Knowledge Test Guide
DOT National Transportation Integrated Search
1995-01-01
The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help : applicants meet the knowledge requirements for parachute rigger certification. : This guide contains information about eligibility requiremen...
Cognitive Control Network Contributions to Memory-Guided Visual Attention.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2016-05-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Flight Engineer Knowledge Test Guide
DOT National Transportation Integrated Search
1995-01-01
At one time, the flight engineer functioned as an inflight maintenance person. Today, the flight engineer is a technical expert, who must be thoroughly familiar with the operation and function of various airplane : components. The principal function ...
General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.
2014-01-01
A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.
Visual short-term memory guides infants' visual attention.
Mitsven, Samantha G; Cantrell, Lisa M; Luck, Steven J; Oakes, Lisa M
2018-08-01
Adults' visual attention is guided by the contents of visual short-term memory (VSTM). Here we asked whether 10-month-old infants' (N = 41) visual attention is also guided by the information stored in VSTM. In two experiments, we modified the one-shot change detection task (Oakes, Baumgartner, Barrett, Messenger, & Luck, 2013) to create a simplified cued visual search task to ask how information stored in VSTM influences where infants look. A single sample item (e.g., a colored circle) was presented at fixation for 500 ms, followed by a brief (300 ms) retention interval and then a test array consisting of two items, one on each side of fixation. One item in the test array matched the sample stimulus and the other did not. Infants were more likely to look at the non-matching item than at the matching item, demonstrating that the information stored rapidly in VSTM guided subsequent looking behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
B-1 AFT Nacelle Flow Visualization Study
NASA Technical Reports Server (NTRS)
Celniker, Robert
1975-01-01
A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.
NASA Technical Reports Server (NTRS)
Young, L. R.
1975-01-01
Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.
Flight crew exposure to ozone concentrations affecting the visual system.
Daubs, J
1980-02-01
To estimate the potential for ozone (O3) effects on the human visual system in flight, O3 concentrations in Boeing 747-100 cockpits were measured during routine flights between London and the United States. From a review of previous reports, it appears that O3 may have both beneficial and harmful effects but that further studies of the visual system responses to O3 are needed before the present findings of 0.030 parts per million (ppm) mean O3, 0.200 ppm maximum O3, and 0.261 ppm-hours average cumulative O3 exposure can be effectively evaluated. Unexpectedly high O3 concentrations were encountered at altitudes below 18,000 feet and, at times, the O3 concentration was observed to decrease as flight level was increased. The clinical, operational, and policy implications of these findings are discussed.
Improving ETMS Default Route Assignment
DOT National Transportation Integrated Search
2005-01-01
Twenty-four hours before a scheduled flight departs, data on this flight from the Official Airline Guide (OAG) is loaded into the Enhanced Traffic Management System (ETMS). This flight is then included in the Monitor/Alert demand predictions that ETM...
An Analysis of Helicopter Pilot Scan Techniques While Flying at Low Altitudes and High Speed
2012-09-01
Manager SV Synthetic Vision TFH Total Flight Hours TOFT Tactical Operational Flight Trainer VFR Visual Flight Rules VMC Visual Meteorological...Crognale, 2008). Recently, the use of synthetic vision (SV) and a heads-up- display (HUD) have been a topic of discussion in the aviation community... Synthetic vision uses external cameras to provide the pilot with an enhanced view of the outside world, usually with the assistance of night vision
Characteristics of Flight Simulator Visual Systems
1981-05-01
0 . C,...)l .l.Li J ; I a= c I 0 a= c ~ LEVEL1r AGARD ADVISORY REPORT No.164 Characteristics of Flight Simulator Visual Systems...OT\\g . E L E C l ·: .. ;. . . . . , .. , • I ,t l• • ’f) . JIJL 1 6 \\98\\ .. ~ DISTRIBUTION AND AVAILABILITY ON BACK COVER 1 NORTH ATLANTIC...Printed by Technical Editing and Reproduchton Ltd Harford House, 7-9 Charlotte St. London, WIP )HD I PREFACE The Flight Mechanics Panel (FMP) of the
Goyret, Joaquín; Kelber, Almut
2012-01-01
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.
NASA Astrophysics Data System (ADS)
Ohnishi, T.; Ohnishi, K.; Okamoto, N.; Yamamoto, T.; Hosoi, H.; Takahashi, A.; Kawai, H.
A kind of catfish, Synodontis nigriventris, has a unique habit of maintaining an upside-down posture under normal gravity conditions (1 G). We exposed S. nigriventris to a microgravity environment provided by the parabolic flights of an aircraft and observed the dorsal light reflex (DLR), which is well known to be an important visually guided postural reaction in fish. In general, fish directs its back to an illuminated direction, depending on DLR: DLR is observed more clearly under microgravity as compared with 1 G. Interestingly, S. nigriventris exhibited no DLR response even under microgravity. In contrast, clear DLR was observed under microgravity in two other species, which have an upside-up swimming habit, Synodontis multipunctatus, belonging to the same Synodontis family, and Corydoras paleatus, belonging to a different catfish family. Our parabolic flight experiments have confirmed for the first time that S. nigriventris has a novel balance sensation which does not induce DLR. This allows us to address a new and attractive strategy for the analysis of the postural control mechanism of vertebrate.
An evaluation of unisensory and multisensory adaptive flight-path navigation displays
NASA Astrophysics Data System (ADS)
Moroney, Brian W.
1999-11-01
The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Delene, D. J.
2014-12-01
Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.
Impairments in Tactile Search Following Superior Parietal Damage
ERIC Educational Resources Information Center
Skakoon-Sparling, Shayna P.; Vasquez, Brandon P.; Hano, Kate; Danckert, James
2011-01-01
The superior parietal cortex is critical for the control of visually guided actions. Research suggests that visual stimuli relevant to actions are preferentially processed when they are in peripersonal space. One recent study demonstrated that visually guided movements towards the body were more impaired in a patient with damage to superior…
Automated vision occlusion-timing instrument for perception-action research.
Brenton, John; Müller, Sean; Rhodes, Robbie; Finch, Brad
2018-02-01
Vision occlusion spectacles are a highly valuable instrument for visual-perception-action research in a variety of disciplines. In sports, occlusion spectacles have enabled invaluable knowledge to be obtained about the superior capability of experts to use visual information to guide actions within in-situ settings. Triggering the spectacles to occlude a performer's vision at a precise time in an opponent's action or object flight has been problematic, due to experimenter error in using a manual buttonpress approach. This article describes a new laser curtain wireless trigger for vision occlusion spectacles that is portable and fast in terms of its transmission time. The laser curtain can be positioned in a variety of orientations to accept a motion trigger, such as a cricket bowler's arm that distorts the lasers, which then activates a wireless signal for the occlusion spectacles to change from transparent to opaque, which occurs in only 8 ms. Results are reported from calculations done in an electronics laboratory, as well as from tests in a performance laboratory with a cricket bowler and a baseball pitcher, which verified this short time delay before vision occlusion. In addition, our results show that occlusion consistently occurred when it was intended-that is, near ball release and during mid-ball-flight. Only 8% of the collected data trials were unusable. The laser curtain improves upon the limitations of existing vision occlusion spectacle triggers, indicating that it is a valuable instrument for perception-action research in a variety of disciplines.
Scene perception and the visual control of travel direction in navigating wood ants
Collett, Thomas S.; Lent, David D.; Graham, Paul
2014-01-01
This review reflects a few of Mike Land's many and varied contributions to visual science. In it, we show for wood ants, as Mike has done for a variety of animals, including readers of this piece, what can be learnt from a detailed analysis of an animal's visually guided eye, head or body movements. In the case of wood ants, close examination of their body movements, as they follow visually guided routes, is starting to reveal how they perceive and respond to their visual world and negotiate a path within it. We describe first some of the mechanisms that underlie the visual control of their paths, emphasizing that vision is not the ant's only sense. In the second part, we discuss how remembered local shape-dependent and global shape-independent features of a visual scene may interact in guiding the ant's path. PMID:24395962
Characteristics of flight simulator visual systems
NASA Technical Reports Server (NTRS)
Statler, I. C. (Editor)
1981-01-01
The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.
Dissociation of visual associative and motor learning in Drosophila at the flight simulator.
Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike
2003-08-29
Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.
The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.
Budick, Seth A; Reiser, Michael B; Dickinson, Michael H
2007-12-01
It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight.
Recreational Pilot and Private Pilot Knowledge Test Guide
DOT National Transportation Integrated Search
1995-01-01
The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help : applicants meet the knowledge requirements for recreational pilot and private pilot certification. : This guide contains information about el...
Anderson, Joe; Bingham, Geoffrey P
2010-09-01
We provide a solution to a major problem in visually guided reaching. Research has shown that binocular vision plays an important role in the online visual guidance of reaching, but the visual information and strategy used to guide a reach remains unknown. We propose a new theory of visual guidance of reaching including a new information variable, tau(alpha) (relative disparity tau), and a novel control strategy that allows actors to guide their reach trajectories visually by maintaining a constant proportion between tau(alpha) and its rate of change. The dynamical model couples the information to the reaching movement to generate trajectories characteristic of human reaching. We tested the theory in two experiments in which participants reached under conditions of darkness to guide a visible point either on a sliding apparatus or on their finger to a point-light target in depth. Slider apparatus controlled for a simple mapping from visual to proprioceptive space. When reaching with their finger, participants were forced, by perturbation of visual information used for feedforward control, to use online control with only binocular disparity-based information for guidance. Statistical analyses of trajectories strongly supported the theory. Simulations of the model were compared statistically to actual reaching trajectories. The results supported the theory, showing that tau(alpha) provides a source of information for the control of visually guided reaching and that participants use this information in a proportional rate control strategy.
1997-08-01
have difficulties dealing with the stress of the flight training environment. The DMT presents subjects with repeated subliminal exposure to a...ability (i.e., visual and auditory ) and flight training performance. Also, there have been some reports of success for using a variety of tests (e.g...has reported moderate correlations (.22 to .54) between a measure of dual-tasking ability (i.e., visual and auditory ) and flight training performance
Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu
2018-04-10
Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.
Space flight visual simulation.
Xu, L
1985-01-01
In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed.
Moving Stimuli Facilitate Synchronization But Not Temporal Perception
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap. PMID:27909419
Moving Stimuli Facilitate Synchronization But Not Temporal Perception.
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.
AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING.
ERIC Educational Resources Information Center
Illuminating Engineering Society, New York, NY.
THIS IS A GUIDE FOR SCHOOL LIGHTING, DESIGNED FOR EDUCATORS AS WELL AS ARCHITECTS. IT MAKES USE OF RECENT RESEARCH, NOTABLY THE BLACKWELL REPORT ON EVALUATION OF VISUAL TASKS. THE GUIDE BEGINS WITH AN OVERVIEW OF CHANGING GOALS AND NEEDS OF SCHOOL LIGHTING, AND A TABULATION OF COMMON CLASSROOM VISUAL TASKS THAT REQUIRE VARIATIONS IN LIGHTING.…
Sensor-enhanced 3D conformal cueing for safe and reliable HC operation in DVE in all flight phases
NASA Astrophysics Data System (ADS)
Münsterer, Thomas; Schafhitzel, Tobias; Strobel, Michael; Völschow, Philipp; Klasen, Stephanus; Eisenkeil, Ferdinand
2014-06-01
Low level helicopter operations in Degraded Visual Environment (DVE) still are a major challenge and bear the risk of potentially fatal accidents. DVE generally encompasses all degradations to the visual perception of the pilot ranging from night conditions via rain and snowfall to fog and maybe even blinding sunlight or unstructured outside scenery. Each of these conditions reduce the pilots' ability to perceive visual cues in the outside world reducing his performance and finally increasing risk of mission failure and accidents, like for example Controlled Flight Into Terrain (CFIT). The basis for the presented solution is a fusion of processed and classified high resolution ladar data with database information having a potential to also include other sensor data like forward looking or 360° radar data. This paper reports on a pilot assistance system aiming at giving back the essential visual cues to the pilot by means of displaying 3D conformal cues and symbols in a head-tracked Helmet Mounted Display (HMD) and a combination with synthetic view on a head-down Multi-Function Display (MFD). Each flight phase and each flight envelope requires different symbology sets and different possibilities for the pilots to select specific support functions. Several functionalities have been implemented and tested in a simulator as well as in flight. The symbology ranges from obstacle warning symbology via terrain enhancements through grids or ridge lines to different waypoint symbols supporting navigation. While some adaptations can be automated it emerged as essential that symbology characteristics and completeness can be selected by the pilot to match the relevant flight envelope and outside visual conditions.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1985-01-01
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1980-01-01
This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization
Kress, Daniel; van Bokhorst, Evelien; Lentink, David
2015-01-01
Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones. PMID:26107413
Visual suppression of the vestibulo-ocular reflex during space flight
NASA Technical Reports Server (NTRS)
Uri, John J.; Thornton, William E.; Moore, Thomas P.; Pool, Sam L.
1989-01-01
Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight.
Top-down contextual knowledge guides visual attention in infancy.
Tummeltshammer, Kristen; Amso, Dima
2017-10-26
The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.
Memory-guided saccade processing in visual form agnosia (patient DF).
Rossit, Stéphanie; Szymanek, Larissa; Butler, Stephen H; Harvey, Monika
2010-01-01
According to Milner and Goodale's model (The visual brain in action, Oxford University Press, Oxford, 2006) areas in the ventral visual stream mediate visual perception and oV-line actions, whilst regions in the dorsal visual stream mediate the on-line visual control of action. Strong evidence for this model comes from a patient (DF), who suffers from visual form agnosia after bilateral damage to the ventro-lateral occipital region, sparing V1. It has been reported that she is normal in immediate reaching and grasping, yet severely impaired when asked to perform delayed actions. Here we investigated whether this dissociation would extend to saccade execution. Neurophysiological studies and TMS work in humans have shown that the posterior parietal cortex (PPC), on the right in particular (supposedly spared in DF), is involved in the control of memory-guided saccades. Surprisingly though, we found that, just as reported for reaching and grasping, DF's saccadic accuracy was much reduced in the memory compared to the stimulus-guided condition. These data support the idea of a tight coupling of eye and hand movements and further suggest that dorsal stream structures may not be sufficient to drive memory-guided saccadic performance.
Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions
NASA Technical Reports Server (NTRS)
Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.
2012-01-01
Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.
Animal Preparations to Assess Neurophysiological Effects of Bio-Dynamic Environments.
1980-07-17
deprivation in preventing the acquisition of visually-guided behaviors. The next study examined acquisition of visually-guided behaviors in six animals...Maffei, L. and Bisti, S. Binocular interaction in strabismic kittens deprived of vision. Science, 191, 579-580, 1976. Matin, L. A possible hybrid...function in cat visual cortex following prolonged deprivation . Exp. Brain Res., 25 (1976) 139-156. Hein, A. Visually controlled components of movement
Stimulation of the substantia nigra influences the specification of memory-guided saccades
Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel
2013-01-01
In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects occurred with manipulation of nigral activity well before the initiation of saccades and in trials in which the visual stimulus was absent, we conclude that information from the basal ganglia influences the specification of an action as it is evolving primarily during performance of memory-guided saccades. When visual information is available to guide the specification of the saccade, as occurs during visually guided saccades, basal ganglia information is less influential. PMID:24259551
New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George
2006-01-01
A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.
Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn
2009-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.
Jolij, Jacob; Scholte, H Steven; van Gaal, Simon; Hodgson, Timothy L; Lamme, Victor A F
2011-12-01
Humans largely guide their behavior by their visual representation of the world. Recent studies have shown that visual information can trigger behavior within 150 msec, suggesting that visually guided responses to external events, in fact, precede conscious awareness of those events. However, is such a view correct? By using a texture discrimination task, we show that the brain relies on long-latency visual processing in order to guide perceptual decisions. Decreasing stimulus saliency leads to selective changes in long-latency visually evoked potential components reflecting scene segmentation. These latency changes are accompanied by almost equal changes in simple RTs and points of subjective simultaneity. Furthermore, we find a strong correlation between individual RTs and the latencies of scene segmentation related components in the visually evoked potentials, showing that the processes underlying these late brain potentials are critical in triggering a response. However, using the same texture stimuli in an antisaccade task, we found that reflexive, but erroneous, prosaccades, but not antisaccades, can be triggered by earlier visual processes. In other words: The brain can act quickly, but decides late. Differences between our study and earlier findings suggesting that action precedes conscious awareness can be explained by assuming that task demands determine whether a fast and unconscious, or a slower and conscious, representation is used to initiate a visually guided response.
The effect of different brightness conditions on visually and memory guided saccades.
Felßberg, Anna-Maria; Dombrowe, Isabel
2018-01-01
It is commonly assumed that saccades in the dark are slower than saccades in a lit room. Early studies that investigated this issue using electrooculography (EOG) often compared memory guided saccades in darkness to visually guided saccades in an illuminated room. However, later studies showed that memory guided saccades are generally slower than visually guided saccades. Research on this topic is further complicated by the fact that the different existing eyetracking methods do not necessarily lead to consistent measurements. In the present study, we independently manipulated task (memory guided/visually guided) and screen brightness (dark, medium and light) in an otherwise completely dark room, and measured the peak velocity and the duration of the participant's saccades using a popular pupil-cornea reflection (p-cr) eyetracker (Eyelink 1000). Based on a critical reading of the literature, including a recent study using cornea-reflection (cr) eye tracking, we did not expect any velocity or duration differences between the three brightness conditions. We found that memory guided saccades were generally slower than visually guided saccades. In both tasks, eye movements on a medium and light background were equally fast and had similar durations. However, saccades on the dark background were slower and had shorter durations, even after we corrected for the effect of pupil size changes. This means that this is most likely an artifact of current pupil-based eye tracking. We conclude that the common assumption that saccades in the dark are slower than in the light is probably not true, however pupil-based eyetrackers tend to underestimate the peak velocity of saccades on very dark backgrounds, creating the impression that this might be the case. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.
1984-01-01
Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.
32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... weather minimums as follows: (1) Visual Flight Operations shall be conducted in accordance with Federal Aviation Regulations (FAR), § 91.105 of this title. If more stringent visual flight rules minimums have... must be noted in § 766.5 of the license application. If a narrative report from the pilot is available...
32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weather minimums as follows: (1) Visual Flight Operations shall be conducted in accordance with Federal Aviation Regulations (FAR), § 91.105 of this title. If more stringent visual flight rules minimums have... must be noted in § 766.5 of the license application. If a narrative report from the pilot is available...
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Williams, B. A.
1977-01-01
Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
NASA CONNECT is an annual series of integrated mathematics, science, and technology instructional distance learning programs for students in grades 6-8. This program is designed for students to learn about the evolution of flight. The program has three components--television broadcast, Web activity, and lesson guide--which are designed as an…
Focus on Hinduism: Audio-Visual Resources for Teaching Religion. Occasional Publication No. 23.
ERIC Educational Resources Information Center
Dell, David; And Others
The guide presents annotated lists of audio and visual materials about the Hindu religion. The authors point out that Hinduism cannot be comprehended totally by reading books; thus the resources identified in this guide will enhance understanding based on reading. The guide is intended for use by high school and college students, teachers,…
Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study.
Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Brkic, Amir; Semmler, Verena; Lennerz, Carsten; Kaess, Bernhard; Kottmaier, Marc; Kolb, Christof; Deisenhofer, Isabel; Hessling, Gabriele
2015-10-01
Data about localization reproducibility as well as spatial and visual accuracy of the new MediGuide® sensor-based electroanatomic navigation technology are scarce. We therefore sought to quantify these parameters based on phantom experiments. A realistic heart phantom was generated in a 3D-Printer. A CT scan was performed on the phantom. The phantom itself served as ground-truth reference to ensure exact and reproducible catheter placement. A MediGuide® catheter was repeatedly tagged at selected positions to assess accuracy of point localization. The catheter was also used to acquire a MediGuide®-scaled geometry in the EnSite Velocity® electroanatomic mapping system. The acquired geometries (MediGuide®-scaled and EnSite Velocity®-scaled) were compared to a CT segmentation of the phantom to quantify concordance. Distances between landmarks were measured in the EnSite Velocity®- and MediGuide®-scaled geometry and the CT dataset for Bland-Altman comparison. The visualization of virtual MediGuide® catheter tips was compared to their corresponding representation on fluoroscopic cine-loops. Point localization accuracy was 0.5 ± 0.3 mm for MediGuide® and 1.4 ± 0.7 mm for EnSite Velocity®. The 3D accuracy of the geometries was 1.1 ± 1.4 mm (MediGuide®-scaled) and 3.2 ± 1.6 mm (not MediGuide®-scaled). The offset between virtual MediGuide® catheter visualization and catheter representation on corresponding fluoroscopic cine-loops was 0.4 ± 0.1 mm. The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold. © 2015 Wiley Periodicals, Inc.
Modeling the role of parallel processing in visual search.
Cave, K R; Wolfe, J M
1990-04-01
Treisman's Feature Integration Theory and Julesz's Texton Theory explain many aspects of visual search. However, these theories require that parallel processing mechanisms not be used in many visual searches for which they would be useful, and they imply that visual processing should be much slower than it is. Most importantly, they cannot account for recent data showing that some subjects can perform some conjunction searches very efficiently. Feature Integration Theory can be modified so that it accounts for these data and helps to answer these questions. In this new theory, which we call Guided Search, the parallel stage guides the serial stage as it chooses display elements to process. A computer simulation of Guided Search produces the same general patterns as human subjects in a number of different types of visual search.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-flight rules (day). For VFR flight during the day, the following instruments and equipment are required... chapter in effect on September 16, 1991. (c) Visual flight rules (night). For VFR flight at night, the... paragraph (b) of this section, and, for night flight, instruments and equipment specified in paragraph (c...
Consumer Control Points: Creating a Visual Food Safety Education Model for Consumers.
ERIC Educational Resources Information Center
Schiffman, Carole B.
Consumer education has always been a primary consideration in the prevention of food-borne illness. Using nutrition education and the new food guide as a model, this paper develops suggestions for a framework of microbiological food safety principles and a compatible visual model for communicating key concepts. Historically, visual food guides in…
Colorado Multicultural Resources for Arts Education: Dance, Music, Theatre, and Visual Art.
ERIC Educational Resources Information Center
Cassio, Charles J., Ed.
This Colorado resource guide is based on the premise that the arts (dance, music, theatre, and visual art) provide a natural arena for teaching multiculturalism to students of all ages. The guide provides information to Colorado schools about printed, disc, video, and audio tape visual prints, as well as about individuals and organizations that…
A bio-inspired flying robot sheds light on insect piloting abilities.
Franceschini, Nicolas; Ruffier, Franck; Serres, Julien
2007-02-20
When insects are flying forward, the image of the ground sweeps backward across their ventral viewfield and forms an "optic flow," which depends on both the groundspeed and the groundheight. To explain how these animals manage to avoid the ground by using this visual motion cue, we suggest that insect navigation hinges on a visual-feedback loop we have called the optic-flow regulator, which controls the vertical lift. To test this idea, we built a micro-helicopter equipped with an optic-flow regulator and a bio-inspired optic-flow sensor. This fly-by-sight micro-robot can perform exacting tasks such as take-off, level flight, and landing. Our control scheme accounts for many hitherto unexplained findings published during the last 70 years on insects' visually guided performances; for example, it accounts for the fact that honeybees descend in a headwind, land with a constant slope, and drown when travelling over mirror-smooth water. Our control scheme explains how insects manage to fly safely without any of the instruments used onboard aircraft to measure the groundheight, groundspeed, and descent speed. An optic-flow regulator is quite simple in terms of its neural implementation and just as appropriate for insects as it would be for aircraft.
NASA Technical Reports Server (NTRS)
Lancaster, Jeff; Dillard, Michael; Alves, Erin; Olofinboba, Olu
2014-01-01
The User Guide details the Access Database provided with the Flight Deck Interval Management (FIM) Display Elements, Information, & Annunciations program. The goal of this User Guide is to support ease of use and the ability to quickly retrieve and select items of interest from the Database. The Database includes FIM Concepts identified in a literature review preceding the publication of this document. Only items that are directly related to FIM (e.g., spacing indicators), which change or enable FIM (e.g., menu with control buttons), or which are affected by FIM (e.g., altitude reading) are included in the database. The guide has been expanded from previous versions to cover database structure, content, and search features with voiced explanations.
Visual control of prey-capture flight in dragonflies.
Olberg, Robert M
2012-04-01
Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
Visual Elements in Flight Simulation
1975-07-01
control. In consequence, current efforts tc create appropriate visual simulations run the gamut from efforts toward almost complete replication of the...create appropriate visual simulations run the gamut from efforts to create appropriate visual simulations run the gamut from efforts toward almost
Wiegmann, Douglas A; Goh, Juliana; O'Hare, David
2002-01-01
Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.
New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.
2007-01-01
The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.
Rogers, Donna R B; Ei, Sue; Rogers, Kim R; Cross, Chad L
2007-05-01
This pilot study examines the use of guided visualizations that incorporate both cognitive and behavioral techniques with vibroacoustic therapy and cranial electrotherapy stimulation to form a multi-component therapeutic approach. This multi-component approach to cognitive-behavioral therapy (CBT) was used to treat patients presenting with a range of symptoms including anxiety, depression, and relationship difficulties. Clients completed a pre- and post-session symptom severity scale and CBT skills practice survey. The program consisted of 16 guided visualizations incorporating CBT techniques that were accompanied by vibroacoustic therapy and cranial electrotherapy stimulation. Significant reduction in symptom severity was observed in pre- and post-session scores for anxiety symptoms, relationship difficulties, and depressive symptoms. The majority of the clients (88%) reported use of CBT techniques learned in the guided visualizations at least once per week outside of the sessions.
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Wylie, Douglas R; Gutiérrez-Ibáñez, Cristián; Gaede, Andrea H; Altshuler, Douglas L; Iwaniuk, Andrew N
2018-01-01
In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.
Computer graphic visualization of orbiter lower surface boundary-layer transition
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Hartung, L. C.
1984-01-01
Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.
Nocturnal insects use optic flow for flight control
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-01-01
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047
Flight. Science Series Grades 4, 5, 6.
ERIC Educational Resources Information Center
Frensch, Helen
The activities in this book are designed to reinforce the elementary concepts of flight. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: hot air balloons, the physics of flight, air resistance, airplane…
ERIC Educational Resources Information Center
Department of Justice, Washington, DC. Civil Rights Div.
This item consists of three separate "Technical Assistance Guides" combined into one document because they all are concerned with improving access to information for handicapped people. Specifically, the three guides provide: (1) information to enable hearing impaired, visually impaired, and mobility impaired persons to have access to public…
Helicopter pilot scan techniques during low-altitude high-speed flight.
Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun
2014-07-01
This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.
SimGraph: A Flight Simulation Data Visualization Workstation
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Kenney, Patrick S.
1997-01-01
Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.
Visual and motion cueing in helicopter simulation
NASA Technical Reports Server (NTRS)
Bray, R. S.
1985-01-01
Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.
Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.
2014-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.
AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research
NASA Technical Reports Server (NTRS)
Laughter, Sean; Cox, David
2016-01-01
The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.
Barron, Andrew; Srinivasan, Mandyam V
2006-03-01
There is now increasing evidence that honey bees regulate their ground speed in flight by holding constant the speed at which the image of the environment moves across the eye (optic flow). We have investigated the extent to which ground speed is affected by headwinds. Honey bees were trained to enter a tunnel to forage at a sucrose feeder placed at its far end. Ground speeds in the tunnel were recorded while systematically varying the visual texture of the tunnel, and the strength of headwinds experienced by the flying bees. We found that in a flight tunnel bees used visual cues to maintain their ground speed, and adjusted their air speed to maintain a constant rate of optic flow, even against headwinds which were, at their strongest, 50% of a bee's maximum recorded forward velocity. Manipulation of the visual texture revealed that headwind is compensated almost fully even when the optic flow cues are very sparse and subtle, demonstrating the robustness of this visual flight control system. We discuss these findings in the context of field observations of flying bees.
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
When the Wheels Touch Earth and the Flight is Through, Pilots Find One Eye is Better Than Two?
NASA Technical Reports Server (NTRS)
Valimont, Brian; Wise, John A.; Nichols, Troy; Best, Carl; Suddreth, John; Cupero, Frank
2009-01-01
This study investigated the impact of near to eye displays on both operational and visual performance by employing a human-in-the-loop simulation of straight-in ILS approaches while using a near to eye (NTE) display. The approaches were flown in simulated visual and instrument conditions while using either a biocular NTE or a monocular NTE display on either the dominant or non dominant eye. The pilot s flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested.
Flight Deck Interval Management Flight Test Final Report
NASA Technical Reports Server (NTRS)
Tulder, Paul V.
2017-01-01
This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.
Russo, Marta; Cesqui, Benedetta; La Scaleia, Barbara; Ceccarelli, Francesca; Maselli, Antonella; Moscatelli, Alessandro; Zago, Myrka; Lacquaniti, Francesco; d'Avella, Andrea
2017-10-01
To accurately time motor responses when intercepting falling balls we rely on an internal model of gravity. However, whether and how such a model is also used to estimate the spatial location of interception is still an open question. Here we addressed this issue by asking 25 participants to intercept balls projected from a fixed location 6 m in front of them and approaching along trajectories with different arrival locations, flight durations, and gravity accelerations (0 g and 1 g ). The trajectories were displayed in an immersive virtual reality system with a wide field of view. Participants intercepted approaching balls with a racket, and they were free to choose the time and place of interception. We found that participants often achieved a better performance with 1 g than 0 g balls. Moreover, the interception points were distributed along the direction of a 1 g path for both 1 g and 0 g balls. In the latter case, interceptions tended to cluster on the upper half of the racket, indicating that participants aimed at a lower position than the actual 0 g path. These results suggest that an internal model of gravity was probably used in predicting the interception locations. However, we found that the difference in performance between 1 g and 0 g balls was modulated by flight duration, the difference being larger for faster balls. In addition, the number of peaks in the hand speed profiles increased with flight duration, suggesting that visual information was used to adjust the motor response, correcting the prediction to some extent. NEW & NOTEWORTHY Here we show that an internal model of gravity plays a key role in predicting where to intercept a fast-moving target. Participants also assumed an accelerated motion when intercepting balls approaching in a virtual environment at constant velocity. We also show that the role of visual information in guiding interceptive movement increases when more time is available. Copyright © 2017 the American Physiological Society.
Human Factors Assessment of Vibration Effects on Visual Performance During Launch
NASA Technical Reports Server (NTRS)
Holden, Kritina
2009-01-01
The Human Factors Assessment of Vibration Effects on Visual Performance During Launch (Visual Performance) investigation will determine visual performance limits during operational vibration and g-loads on the Space Shuttle, specifically through the determination of minimum readable font size during ascent using planned Orion display formats. Research Summary: The aim of the Human Factors Assessment of Vibration Effects on Visual Performance during Launch (Visual Performance) investigation is to provide supplementary data to that collected by the Thrust Oscillation Seat Detailed Technical Objective (DTO) 695 (Crew Seat DTO) which will measure seat acceleration and vibration from one flight deck and two middeck seats during ascent. While the Crew Seat DTO data alone are important in terms of providing a measure of vibration and g-loading, human performance data are required to fully interpret the operational consequences of the vibration values collected during Space Shuttle ascent. During launch, crewmembers will be requested to view placards with varying font sizes and indicate the minimum readable size. In combination with the Crew Seat DTO, the Visual Performance investigation will: Provide flight-validated evidence that will be used to establish vibration limits for visual performance during combined vibration and linear g-loading. o Provide flight data as inputs to ongoing ground-based simulations, which will further validate crew visual performance under vibration loading in a controlled environment. o Provide vibration and performance metrics to help validate procedures for ground tests and analyses of seats, suits, displays and controls, and human-in-the-loop performance.
A new neural framework for visuospatial processing.
Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer
2011-04-01
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.
Visually Impaired: Curriculum Guide.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton.
The curriculum guide provides guidelines for developing academic and living vocational skills in visually handicapped students from preschool to adolescence. The document, divided into two sections, outlines objectives, teaching strategies, and materials for each skill area. Section 1 covers the following academic skills: communication,…
Flight Performance of a Man Portable Guided Projectile Concept
2014-02-01
include precision guided technologies. The focus of this study is maneuvering projectiles launched from man portable weapon systems . A novel guided...5 Figure 5. Body-fixed coordinate system and aerodynamic angles...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24
Toward Head-Up and Head-Worn Displays for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Arthur, Jarvis J.; Bailey, Randall E.; Shelton, Kevin J.; Kramer, Lynda J.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.; Ellis, Kyle K.
2015-01-01
A key capability envisioned for the future air transportation system is the concept of equivalent visual operations (EVO). EVO is the capability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. Enhanced Flight Vision Systems (EFVS) offer a path to achieve EVO. NASA has successfully tested EFVS for commercial flight operations that has helped establish the technical merits of EFVS, without reliance on natural vision, to runways without category II/III ground-based navigation and lighting requirements. The research has tested EFVS for operations with both Head-Up Displays (HUDs) and "HUD equivalent" Head-Worn Displays (HWDs). The paper describes the EVO concept and representative NASA EFVS research that demonstrate the potential of these technologies to safely conduct operations in visibilities as low as 1000 feet Runway Visual Range (RVR). Future directions are described including efforts to enable low-visibility approach, landing, and roll-outs using EFVS under conditions as low as 300 feet RVR.
Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.
Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie
2015-05-01
To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. © 2015. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Hill, Michael A.; Haering, Edward A., Jr.
2017-01-01
The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.
Philippides, Andrew; de Ibarra, Natalie Hempel; Riabinina, Olena; Collett, Thomas S
2013-03-15
Many wasps and bees learn the position of their nest relative to nearby visual features during elaborate 'learning' flights that they perform on leaving the nest. Return flights to the nest are thought to be patterned so that insects can reach their nest by matching their current view to views of their surroundings stored during learning flights. To understand how ground-nesting bumblebees might implement such a matching process, we have video-recorded the bees' learning and return flights and analysed the similarities and differences between the principal motifs of their flights. Loops that take bees away from and bring them back towards the nest are common during learning flights and less so in return flights. Zigzags are more prominent on return flights. Both motifs tend to be nest based. Bees often both fly towards and face the nest in the middle of loops and at the turns of zigzags. Before and after flight direction and body orientation are aligned, the two diverge from each other so that the nest is held within the bees' fronto-lateral visual field while flight direction relative to the nest can fluctuate more widely. These and other parallels between loops and zigzags suggest that they are stable variations of an underlying pattern, which enable bees to store and reacquire similar nest-focused views during learning and return flights.
Helmet-mounted display systems for flight simulation
NASA Technical Reports Server (NTRS)
Haworth, Loren A.; Bucher, Nancy M.
1989-01-01
Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.
In-flight response to a new non-gyroscopic blind flight instrument.
DOT National Transportation Integrated Search
1966-09-01
A new device which is small, completely self-contained, and which is not susceptible to tumbling, is evaluated. The results indicate that it will enable controlled flight under complete loss of outside visual reference (IFR) conditions. Since no elec...
DOT National Transportation Integrated Search
2009-04-27
Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...
Grasping with the eyes of your hands: hapsis and vision modulate hand preference.
Stone, Kayla D; Gonzalez, Claudia L R
2014-02-01
Right-hand preference has been demonstrated for visually guided reaching and grasping. Grasping, however, requires the integration of both visual and haptic cues. To what extent does vision influence hand preference for grasping? Is there a hand preference for haptically guided grasping? Two experiments were designed to address these questions. In Experiment 1, individuals were tested in a reaching-to-grasp task with vision (sighted condition) and with hapsis (blindfolded condition). Participants were asked to put together 3D models using building blocks scattered on a tabletop. The models were simple, composed of ten blocks of three different shapes. Starting condition (Vision-First or Hapsis-First) was counterbalanced among participants. Right-hand preference was greater in visually guided grasping but only in the Vision-First group. Participants who initially built the models while blindfolded (Hapsis-First group) used their right hand significantly less for the visually guided portion of the task. To investigate whether grasping using hapsis modifies subsequent hand preference, participants received an additional haptic experience in a follow-up experiment. While blindfolded, participants manipulated the blocks in a container for 5 min prior to the task. This additional experience did not affect right-hand use on visually guided grasping but had a robust effect on haptically guided grasping. Together, the results demonstrate first that hand preference for grasping is influenced by both vision and hapsis, and second, they highlight how flexible this preference could be when modulated by hapsis.
Moth tails divert bat attack: evolution of acoustic deflection.
Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y
2015-03-03
Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.
Improving PET spatial resolution and detectability for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.
2014-08-01
Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.
Cha, Dong H; Hesler, Stephen P; Linn, Charles E; Zhang, Aijun; Teal, Peter E A; Knight, Alan L; Roelofs, Wendell L; Loeb, Gregory M
2013-02-01
Oil-coated clear panel traps baited with a host plant-based kairomone lure have successfully been used for monitoring female grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), but low capture rates as well as difficulty in servicing these traps makes them unsuitable for commercial use. We compared the performance of different trap designs in a flight tunnel and in a vineyard by using a 7-component synthetic kairomone blend, with a focus on trap visual cues. In flight tunnel experiments, a clear delta trap performed better than other traps. When we tested clear delta, green delta, or clear wing traps baited with a cut grape shoot, >50% of female grape berry moths made complete upwind flights. However, the clear delta trap was the only design that resulted in female moths entering the trap. Similar results were observed when females were tested with different traps (clear delta, green delta, white delta, clear wing, or green wing traps) baited with the kairomone lure. Adding a visual pattern that mimicked grape shoots to the outside surface of the clear delta trap resulted in 66% of the females that made upwind flights entering the trap. However, the positive effect of adding a visual pattern to the trap was not observed in a vineyard setting, where clear delta traps with or without a visual pattern caught similar numbers of females. Still, the number of male and female grape berry moths captured in clear delta traps with or without a visual pattern was not significantly different from the number of male and female grape berry moths captured in panel traps, suggesting that the use of these delta traps could be a less cumbersome alternative to oil-coated panel traps for monitoring female grape berry moth.
Hawkes, Frances; Gibson, Gabriella
2016-06-03
The immediate aim of our study was to analyse the behaviour of the malarial mosquito Anopheles coluzzii (An. gambiae species complex) near a human host with the ultimate aim of contributing to our fundamental understanding of mosquito host-seeking behaviour and the overall aim of identifying behaviours that could be exploited to enhance sampling and control strategies. Based on 3D video recordings of individual host-seeking females in a laboratory wind-tunnel, we found that despite being a nocturnal species, An. coluzzii is highly responsive to a visually conspicuous object, but only in the presence of host-odour. Female mosquitoes approached and abruptly veered away from a dark object, which suggests attraction to visual cues plays a role in bringing mosquitoes to the source of host odour. It is worth noting that the majority of our recorded flight tracks consisted of highly stereotyped 'dipping' sequences near the ground, which have been mentioned in the literature, but never before quantified. Our quantitative analysis of female mosquito flight patterns within ~1.5 m of a host has revealed highly relevant information about responsiveness to visual objects and flight height that could revolutionise the efficacy of sampling traps; the capturing device of a trap should be visually conspicuous and positioned near the ground where the density of host-seeking mosquitoes would be greatest. These characteristics are not universally present in current traps for malarial mosquitoes. The characterisation of a new type of flight pattern that is prevalent in mosquitoes suggests that there is still much that is not fully understood about mosquito flight behaviour.
NASA Technical Reports Server (NTRS)
Krauzlis, R. J.; Stone, L. S.
1999-01-01
The two components of voluntary tracking eye-movements in primates, pursuit and saccades, are generally viewed as relatively independent oculomotor subsystems that move the eyes in different ways using independent visual information. Although saccades have long been known to be guided by visual processes related to perception and cognition, only recently have psychophysical and physiological studies provided compelling evidence that pursuit is also guided by such higher-order visual processes, rather than by the raw retinal stimulus. Pursuit and saccades also do not appear to be entirely independent anatomical systems, but involve overlapping neural mechanisms that might be important for coordinating these two types of eye movement during the tracking of a selected visual object. Given that the recovery of objects from real-world images is inherently ambiguous, guiding both pursuit and saccades with perception could represent an explicit strategy for ensuring that these two motor actions are driven by a single visual interpretation.
Memory-guided reaching in a patient with visual hemiagnosia.
Cornelsen, Sonja; Rennig, Johannes; Himmelbach, Marc
2016-06-01
The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nocturnal insects use optic flow for flight control.
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-08-23
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society
Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes
NASA Technical Reports Server (NTRS)
Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James
2017-01-01
Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.
Shade matching assisted by digital photography and computer software.
Schropp, Lars
2009-04-01
To evaluate the efficacy of digital photographs and graphic computer software for color matching compared to conventional visual matching. The shade of a tab from a shade guide (Vita 3D-Master Guide) placed in a phantom head was matched to a second guide of the same type by nine observers. This was done for twelve selected shade tabs (tests). The shade-matching procedure was performed visually in a simulated clinic environment and with digital photographs, and the time spent for both procedures was recorded. An alternative arrangement of the shade tabs was used in the digital photographs. In addition, a graphic software program was used for color analysis. Hue, chroma, and lightness values of the test tab and all tabs of the second guide were derived from the digital photographs. According to the CIE L*C*h* color system, the color differences between the test tab and tabs of the second guide were calculated. The shade guide tab that deviated least from the test tab was determined to be the match. Shade matching performance by means of graphic software was compared with the two visual methods and tested by Chi-square tests (alpha= 0.05). Eight of twelve test tabs (67%) were matched correctly by the computer software method. This was significantly better (p < 0.02) than the performance of the visual shade matching methods conducted in the simulated clinic (32% correct match) and with photographs (28% correct match). No correlation between time consumption for the visual shade matching methods and frequency of correct match was observed. Shade matching assisted by digital photographs and computer software was significantly more reliable than by conventional visual methods.
NASA Technical Reports Server (NTRS)
Mendez, C. M.; Foy, M.; Mason, S.; Wear, M. L.; Meyers, V.; Law, J.; Alexander, D.; Van Baalen, M.
2014-01-01
Understanding the nuances in clinical data is critical in developing a successful data analysis plan. Carbon dioxide (CO2) data are collected on board the International Space Station (ISS) in a continuous stream. Clinical data on ISS are primarily collected via conversations between individual crewmembers and NASA Flight Surgeons during weekly Private Medical Conferences (PMC). Law, et.al, 20141 demonstrated a statistically significant association between weekly average CO2 levels on ISS and self-reported headaches over the reporting period from March 14, 2001 to May 31, 2012. The purpose of this analysis is to describe the evaluation of a possible association between visual changes and CO2 levels on ISS and to discuss challenges in developing an appropriate analysis plan. METHODS & PRELIMINARY RESULTS: A first analysis was conducted following the same study design as the published work on CO2 and self-reported headaches1; substituting self-reported changes in visual acuity in place of self-reported headaches. The analysis demonstrated no statistically significant association between visual impairment characterized by vision symptoms self-reported during PMCs and ISS average CO2 levels over ISS missions. Closer review of the PMC records showed that vision outcomes are not well-documented in terms of clinical severity, timing of onset, or timing of resolution, perhaps due to the incipient nature of vision changes. Vision has been monitored in ISS crewmembers, pre- and post-flight, using standard optometry evaluations. In-flight visual assessments were limited early in the ISS program, primarily consisting of self-perceived changes reported by crewmembers. Recently, on-orbit capabilities have greatly improved. Vision data ranges from self-reported post-flight changes in visual acuity, pre- to postflight changes identified during fundoscopic examination, and in-flight progression measured by advanced on-orbit clinical imaging capabilities at predetermined testing intervals. In contrast, CO2 data are recorded in a continuous stream over time; however, for the initial analysis this data was categorized into weekly averages.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...
Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil
2011-01-01
Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934
Formulation of consumables management models. Volume 2: Mission planning processor user guide
NASA Technical Reports Server (NTRS)
Daly, J. K.; Torian, J. G.
1978-01-01
A user guide for the MPP (Mission Planning Processor) is presented. The MPP is used in the evaluation of particular missions, with appropriate display and storage of related consumables data. Design goals are accomplished by the use of an on-line/demand mode computer terminal Cathode Ray Tube Display. The process is such that the user merely adds specific mission/flight functions to a skeleton flight and/or alters the skeleton. The skeleton flight includes operational aspects from prelaunch through ground support equipment connect after rollout as required to place the STS (Space Transportation System) in a parking orbit, maintain the spacecraft and crew for the stated on-orbit period and return.
Helicopter pilot estimation of self-altitude in a degraded visual environment
NASA Astrophysics Data System (ADS)
Crowley, John S.; Haworth, Loran A.; Szoboszlay, Zoltan P.; Lee, Alan G.
2000-06-01
The effect of night vision devices and degraded visual imagery on self-attitude perception is unknown. Thirteen Army aviators with normal vision flew five flights under various visual conditions in a modified AH-1 (Cobra) helicopter. Subjects estimated their altitude or flew to specified altitudes while flying a series of maneuvers. The results showed that subjects were better at detecting and controlling changes in altitude than they were at flying to or naming a specific altitude. In cruise flight and descent, the subjects tended to fly above the desired altitude, an error in the safe direction. While hovering, the direction of error was less predictable. In the low-level cruise flight scenario tested in this study, altitude perception was affected more by changes in image resolution than by changes in FOV or ocularity.
Patterns in the sky: Natural visualization of aircraft flow fields
NASA Technical Reports Server (NTRS)
Campbell, James F.; Chambers, Joseph R.
1994-01-01
The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.
Linander, Nellie; Dacke, Marie; Baird, Emily
2015-04-01
When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. © 2015. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Kiteley, G. W.; Harris, R. L., Sr.
1978-01-01
Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.
Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.
2016-01-01
Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.
Pilots' visual scan patterns and situation awareness in flight operations.
Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham
2014-07-01
Situation awareness (SA) is considered an essential prerequisite for safe flying. If the impact of visual scanning patterns on a pilot's situation awareness could be identified in flight operations, then eye-tracking tools could be integrated with flight simulators to improve training efficiency. Participating in this research were 18 qualified, mission-ready fighter pilots. The equipment included high-fidelity and fixed-base type flight simulators and mobile head-mounted eye-tracking devices to record a subject's eye movements and SA while performing air-to-surface tasks. There were significant differences in pilots' percentage of fixation in three operating phases: preparation (M = 46.09, SD = 14.79), aiming (M = 24.24, SD = 11.03), and release and break-away (M = 33.98, SD = 14.46). Also, there were significant differences in pilots' pupil sizes, which were largest in the aiming phase (M = 27,621, SD = 6390.8), followed by release and break-away (M = 27,173, SD = 5830.46), then preparation (M = 25,710, SD = 6078.79), which was the smallest. Furthermore, pilots with better SA performance showed lower perceived workload (M = 30.60, SD = 17.86), and pilots with poor SA performance showed higher perceived workload (M = 60.77, SD = 12.72). Pilots' percentage of fixation and average fixation duration among five different areas of interest showed significant differences as well. Eye-tracking devices can aid in capturing pilots' visual scan patterns and SA performance, unlike traditional flight simulators. Therefore, integrating eye-tracking devices into the simulator may be a useful method for promoting SA training in flight operations, and can provide in-depth understanding of the mechanism of visual scan patterns and information processing to improve training effectiveness in aviation.
NASA Astrophysics Data System (ADS)
Maskey, M.; Conover, H.; Ramachandran, R.; Kulkarni, A.; Mceniry, M.; Stone, B.
2015-12-01
The Global Hydrology Resource Center (GHRC) is developing an enterprise information system to manage and better serve data for Hurricane and Severe Storm Sentinel (HS3), a NASA airborne field campaign. HS3 is a multiyear campaign aimed at helping scientists understand the physical processes that contribute to hurricane intensification. For in-depth analysis, HS3 encompasses not only airborne data but also variety of in-situ, satellite, simulation, and flight report data. Thus, HS3 provides a unique challenge in information system design. The GHRC team is experienced with previous airborne campaigns to handle such challenge. Many supplementary information and reports collected during the mission include information rich contents that provide mission snapshots. In particular, flight information, instrument status, weather reports, and summary statistics offer vital knowledge about the corresponding science data. Furthermore, such information help narrow the science data of interest. Therefore, the GHRC team is building HS3 information system that augments the current GHRC data management framework to support search and discover of airborne science data with interactive visual exploration. Specifically, the HS3 information system is developing a tool to visually playback mission flights along with other traditional search and discover interfaces. This playback capability allows the users to follow the flight in time and visualize collected data. The flight summary and analyzed information are also presented during the playback. If the observed data is of interest, then they can order the data from GHRC using the interface. The users will be able to order just the data for the part of the flight that they are interested in. This presentation will demonstrate use of visual exploration to data download along with other components that comprise the HS3 information system.
NASA Technical Reports Server (NTRS)
Benson, T.; Galica, C.; McCredie, P.; Storm, R.
2003-01-01
This guide was produced by the NASA Glenn Research Center Office of Educational Programs in Cleveland, OH, and the NASA Aerospace Educational Coordinating Committee. It includes activity modules for students, including the history of the Wright Brothers and their family in Dayton, Ohio and flight experimentation in Kitty Hawk, North Carolina. Student activities such as building models of the Wright Brothers glider and writing press releases of the initial flight are included.
A new neural framework for visuospatial processing
Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer
2012-01-01
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848
NASA Technical Reports Server (NTRS)
Sitterley, T. E.
1974-01-01
The effectivess of an improved static retraining method was evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Experienced pilots were trained and then tested after 4 months without flying to compare their performance using the improved method with three methods previously evaluated. Use of the improved static retraining method resulted in no practical or significant skill degradation and was found to be even more effective than methods using a dynamic presentation of visual cues. The results suggested that properly structured open loop methods of flight control task retraining are feasible.
Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2011-01-01
To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role.
Kastberger, G; Kranner, G
2000-02-01
Viscovery SOMine is a software tool for advanced analysis and monitoring of numerical data sets. It was developed for professional use in business, industry, and science and to support dependency analysis, deviation detection, unsupervised clustering, nonlinear regression, data association, pattern recognition, and animated monitoring. Based on the concept of self-organizing maps (SOMs), it employs a robust variant of unsupervised neural networks--namely, Kohonen's Batch-SOM, which is further enhanced with a new scaling technique for speeding up the learning process. This tool provides a powerful means by which to analyze complex data sets without prior statistical knowledge. The data representation contained in the trained SOM is systematically converted to be used in a spectrum of visualization techniques, such as evaluating dependencies between components, investigating geometric properties of the data distribution, searching for clusters, or monitoring new data. We have used this software tool to analyze and visualize multiple influences of the ocellar system on free-flight behavior in giant honeybees. Occlusion of ocelli will affect orienting reactivities in relation to flight target, level of disturbance, and position of the bee in the flight chamber; it will induce phototaxis and make orienting imprecise and dependent on motivational settings. Ocelli permit the adjustment of orienting strategies to environmental demands by enforcing abilities such as centering or flight kinetics and by providing independent control of posture and flight course.
Flow-visualization study of the X-29A aircraft at high angles of attack using a 1/48-scale model
NASA Technical Reports Server (NTRS)
Cotton, Stacey J.; Bjarke, Lisa J.
1994-01-01
A water-tunnel study on a 1/48-scale model of the X-29A aircraft was performed at the NASA Dryden Flow Visualization Facility. The water-tunnel test enhanced the results of the X-29A flight tests by providing flow-visualization data for comparison and insights into the aerodynamic characteristics of the aircraft. The model was placed in the water tunnel at angles of attack of 20 to 55 deg. and with angles of sideslip from 0 to 5 deg. In general, flow-visualization techniques provided useful information on vortex formation, separation, and breakdown and their role in yaw asymmetries and tail buffeting. Asymmetric forebody vortices were observed at angles of attack greater than 30 deg. with 0 deg. sideslip and greater than 20 deg. with 5 deg. sideslip. While the asymmetric flows observed in the water tunnel did not agree fully with the flight data, they did show some of the same trends. In addition, the flow visualization indicated that the interaction of forebody vortices and the wing wake at angles of attack between 20 and 35 deg. may cause vertical-tail buffeting observed in flight.
Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness.
Cevette, Michael J; Stepanek, Jan; Cocco, Daniela; Galea, Anna M; Pradhan, Gaurav N; Wagner, Linsey S; Oakley, Sarah R; Smith, Benn E; Zapala, David A; Brookler, Kenneth H
2012-06-01
Despite improvement in the computational capabilities of visual displays in flight simulators, intersensory visual-vestibular conflict remains the leading cause of simulator sickness (SS). By using galvanic vestibular stimulation (GVS), the vestibular system can be synchronized with a moving visual field in order to lessen the mismatch of sensory inputs thought to result in SS. A multisite electrode array was used to deliver combinations of GVS in 21 normal subjects. Optimal electrode combinations were identified and used to establish GVS dose-response predictions for the perception of roll, pitch, and yaw. Based on these data, an algorithm was then implemented in flight simulator hardware in order to synchronize visual and GVS-induced vestibular sensations (oculo-vestibular-recoupled or OVR simulation). Subjects were then randomly exposed to flight simulation either with or without OVR simulation. A self-report SS checklist was administered to all subjects after each session. An overall SS score was calculated for each category of symptoms for both groups. The analysis of GVS stimulation data yielded six unique combinations of electrode positions inducing motion perceptions in the three rotational axes. This provided the algorithm used for OVR simulation. The overall SS scores for gastrointestinal, central, and peripheral categories were 17%, 22.4%, and 20% for the Control group and 6.3%, 20%, and 8% for the OVR group, respectively. When virtual head signals produced by GVS are synchronized to the speed and direction of a moving visual field, manifestations of induced SS in a cockpit flight simulator are significantly reduced.
Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.
Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta
2013-07-01
Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.
Aviation spatial orientation in relationship to head position and attitude interpretation.
Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P
1997-06-01
Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.
Commercial Art I and Commercial Art II: An Instructional Guide.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
A teacher's guide for two sequential one-year commercial art courses for high school students is presented. Commercial Art I contains three units: visual communication, product design, and environmental design. Students study visual communication by analyzing advertising techniques, practicing fundamental drawing and layout techniques, creating…
NASA Technical Reports Server (NTRS)
Khan, M. Javed; Rossi, Marcia; Heath, Bruce; Ali, Syed F.; Ward, Marcus
2006-01-01
The effects of out-of-the-window cues on learning a straight-in landing approach and a level 360deg turn by novice pilots on a flight simulator have been investigated. The treatments consisted of training with and without visual cues as well as density of visual cues. The performance of the participants was then evaluated through similar but more challenging tasks. It was observed that the participants in the landing study who trained with visual cues performed poorly than those who trained without the cues. However the performance of those who trained with a faded-cues sequence performed slightly better than those who trained without visual cues. In the level turn study it was observed that those who trained with the visual cues performed better than those who trained without visual cues. The study also showed that those participants who trained with a lower density of cues performed better than those who trained with a higher density of visual cues.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
Camachon, Cyril; Montagne, Gilles
2018-01-01
The present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing. Each participant performed 40 approaches to the runway. During 8 of the approaches, the point of view that the flight simulator used to compute the visual scene was slowly raised or lowered with 4 cm with respect to the cockpit, hence moving the projection of the visible part of the cockpit down or up in the visible scene in a hardly noticeable manner. The increases and decreases in the simulated eye height led to increases and decreases in the altitude of the approach trajectories, for all three groups of participants. On the basis of these results, it is argued that the eye position of pilots during visual approaches is a factor that contributes to the risk of black hole accidents. PMID:29795618
NASA Technical Reports Server (NTRS)
Groce, J. L.; Boucek, G. P.
1988-01-01
This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features.
Live Aircraft Encounter Visualization at FutureFlight Central
NASA Technical Reports Server (NTRS)
Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John
2018-01-01
Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.
Aviation Pilot Training I & II. Flight Syllabus. Field Review Copy.
ERIC Educational Resources Information Center
Upchurch, Richard
This guide for aviation pilot training I and II begins with a course description, resource information, and a course outline. The syllabus is designed to be used concurrently with the ground school program. A minimum of 29 flights are scheduled with a minimum of 40 hours total flight time. Tasks/competencies are categorized into five concept/duty…
Experiments using electronic display information in the NASA terminal configured vehicle
NASA Technical Reports Server (NTRS)
Morello, S. A.
1980-01-01
The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.
Creating Visuals for TV; A Guide for Educators.
ERIC Educational Resources Information Center
Spear, James
There are countless ways educators can improve the quality of their educational television offerings. The Guide, planned especially for the television teacher or audiovisual director, particularly those approaching the television medium for the first time, is designed to acquaint the reader with production techniques for effective visuals to…
City: Images of America. Elementary Version.
ERIC Educational Resources Information Center
Franklin, Edward; And Others
Designed to accompany an audiovisual filmstrip series devoted to presenting a visual history of life in America, this guide contains an elementary social studies (grades 2-6) unit on the American city over the last century. Using authentic visuals including paintings, posters, advertising, documentary photography, and cartoons, the guide offers…
Learning to Verbally & Visually Communicate the Metalworking Way.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Div. of Vocational Education.
This curriculum guide, one of 15 volumes written for field test use with educationally disadvantaged industrial education students needing additional instruction in the basic skill areas, deals with helping students develop basic verbal and visual communication skills while studying metalworking. Addressed in the individual units of the guide are…
Coronary angioscopy: a monorail angioscope with movable guide wire.
Nanto, S; Ohara, T; Mishima, M; Hirayama, A; Komamura, K; Matsumura, Y; Kodama, K
1991-03-01
A new angioscope was devised for easier visualization of the coronary artery. In its tip, the angioscope (Olympus) with an outer diameter of 0.8 mm had a metal lumen, through which a 0.014-in steerable guide wire passed. Using a 8F guiding catheter and a guide wire, it was introduced into the distal coronary artery. With injection of warmed saline through the guiding catheter, the coronary segments were visualized. In the attempted 70 vessels (32 left anterior descending [LAD], 10 right coronary [RCA], 28 left circumflex [LCX]) from 48 patients, 60 vessels (86%) were successfully examined. Twenty-two patients who underwent attempted examination of both LAD and LCX; both coronary arteries were visualized in 19 patients (86%). In the proximal site of the lesion, 40 patients have the diagonal branch or the obtuse marginal branch. In 34 patients (85%) the angioscope was inserted beyond these branches. In 12 very tortuous vessels, eight vessels (67%) were examined. In conclusion, the new monorail coronary angioscope with movable guide wire is useful to examine the stenotic lesions of the coronary artery.
Intraoperative positioning of the hindfoot with the hindfoot alignment guide: a pilot study.
Frigg, Arno; Jud, Lukas; Valderrabano, Victor
2014-01-01
In a previous study, intraoperative positioning of the hindfoot by visual means resulted in the wrong varus/valgus position by 8 degrees and a relatively large standard deviation of 8 degrees. Thus, new intraoperative means are needed to improve the precision of hindfoot surgery. We therefore sought a hindfoot alignment guide that would be as simple as the alignment guides used in total knee arthroplasty. A novel hindfoot alignment guide (HA guide) has been developed that projects the mechanical axis from the tibia down to the heel. The HA guide enables the positioning of the hindfoot in the desired varus/valgus position and in plantigrade position in the lateral plane. The HA guide was used intraoperatively from May through November 2011 in 11 complex patients with simultaneous correction of the supramalleolar, tibiotalar, and inframalleolar alignment. Pre- and postoperative Saltzman views were taken and the position was measured. The HA guide significantly improved the intraoperative positioning compared with visual means: The accuracy with the HA guide was 4.5 ± 5.1 degrees (mean ± standard deviation) and without the HA guide 9.4 ± 5.5 degrees (P < .05). In 7 of 11 patients, the preoperative plan was changed because of the HA guide (2 avoided osteotomies, 5 additional osteotomies). The HA guide helped to position the hindfoot intraoperatively with greater precision than visual means. The HA guide was especially useful for multilevel corrections in which the need for and the amount of a simultaneous osteotomy had to be evaluated intraoperatively. Level IV, case series.
NASA Technical Reports Server (NTRS)
Carr, Peter C.; Mckissick, Burnell T.
1988-01-01
A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.
Insect vision: a few tricks to regulate flight altitude.
Floreano, Dario; Zufferey, Jean-Christophe
2010-10-12
A recent study sheds new light on the visual cues used by Drosophila to regulate flight altitude. The striking similarity with previously identified steering mechanisms provides a coherent basis for novel models of vision-based flight control in insects and robots. Copyright © 2010 Elsevier Ltd. All rights reserved.
78 FR 15876 - Activation of Ice Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (2) Visual cues... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (3) If the... operating rules for flight in icing conditions. This document corrects an error in the amendatory language...
Visual evaluation of smoke-protective devices.
DOT National Transportation Integrated Search
1976-05-01
This study was designed to determine the visual characteristics of smoke-protective devices for flight deck crews. Visual measurements were made on five male subjects, who ranged in age from 35 to 54, while they were wearing each of the 26 devices te...
Federal Aviation Administration Aviation Education Teacher's Guide, [Grades] 4-6.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC.
This guide is one in a series of four resource guides specifically designed for those interested in aviation education. Activities and lessons that can be used in a variety of content areas and grade levels are featured. Grades 4-6 are the focus of this guide, which is organized under the broad topics of properties of air, lighter than air flight,…
Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.
2013-01-01
Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512
NASA Astrophysics Data System (ADS)
Cross, Jack; Schneider, John; Cariani, Pete
2013-05-01
Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.
Visual cortex activation in kinesthetic guidance of reaching.
Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J
2007-06-01
The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.
Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.
ERIC Educational Resources Information Center
Anderson, Charles; Biggs, Pat; Brown, Deborah; Culivan, Steve; Ellis, Sue; Gerard, James; Hardwick, Ellen; Poff, Norm; Rosenberg, Carla; Shearer, Deborah; Tripp, Octavia; Ernst, Ron
This educator's guide explains basic aeronautical concepts and provides a background in the history of aviation within the context of flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They were developed by NASA Aerospace Education Services Program specialists who have…
Flow visualization of mast-mounted-sight/main rotor aerodynamic interactions
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1993-01-01
Flow visualization tests were conducted on a 27 percent-scale AH-64 attack helicopter model fitted with various mast-mounted-sight configurations in an attempt to identify the cause of adverse vibration encountered during full-scale flight tests of an Apache/Longbow configuration. The tests were conducted at the NASA Langley Research Center in the 14- by 22-Foot Subsonic Tunnel. A symmetric and an asymmetric mast-mounted-sight oriented at several skew angles were tested at forward and rearward flight speeds of 30 and 45 knots. A laser light sheet seeded with vaporized propylene glycol was used to visualize the wake of the sight in planes parallel and perpendicular to the freestream flow. Analysis of the flow visualization data identified the frequency of the wake shed from the sight, the angle-of-attack at the sight, and the location where the sight wake crossed the rotor plane. Differences in wake structure were observed between the various sight configurations and slew angles. Postulations into the cause of the adverse vibration found in flight test are given along with considerations for future tests.
How does visual manipulation affect obstacle avoidance strategies used by athletes?
Bijman, M P; Fisher, J J; Vallis, L A
2016-01-01
Research examining our ability to avoid obstacles in our path has stressed the importance of visual input. The aim of this study was to determine if athletes playing varsity-level field sports, who rely on visual input to guide motor behaviour, are more able to guide their foot over obstacles compared to recreational individuals. While wearing kinematic markers, eight varsity athletes and eight age-matched controls (aged 18-25) walked along a walkway and stepped over stationary obstacles (180° motion arc). Visual input was manipulated using PLATO visual goggles three or two steps pre-obstacle crossing and compared to trials where vision was given throughout. A main effect between groups for peak trail toe elevation was shown with greater values generated by the controls for all crossing conditions during full vision trials only. This may be interpreted as athletes not perceiving this obstacle as an increased threat to their postural stability. Collectively, findings suggest the athletic group is able to transfer their abilities to non-specific conditions during full vision trials; however, varsity-level athletes were equally reliant on visual cues for these visually guided stepping tasks as their performance was similar to the controls when vision is removed.
What and where information in the caudate tail guides saccades to visual objects
Yamamoto, Shinya; Monosov, Ilya E.; Yasuda, Masaharu; Hikosaka, Okihide
2012-01-01
We understand the world by making saccadic eye movements to various objects. However, it is unclear how a saccade can be aimed at a particular object, because two kinds of visual information, what the object is and where it is, are processed separately in the dorsal and ventral visual cortical pathways. Here we provide evidence suggesting that a basal ganglia circuit through the tail of the monkey caudate nucleus (CDt) guides such object-directed saccades. First, many CDt neurons responded to visual objects depending on where and what the objects were. Second, electrical stimulation in the CDt induced saccades whose directions matched the preferred directions of neurons at the stimulation site. Third, many CDt neurons increased their activity before saccades directed to the neurons’ preferred objects and directions in a free-viewing condition. Our results suggest that CDt neurons receive both ‘what’ and ‘where’ information and guide saccades to visual objects. PMID:22875934
ERIC Educational Resources Information Center
Rossetto, Marietta; Chiera-Macchia, Antonella
2011-01-01
This study investigated the use of comics (Cary, 2004) in a guided writing experience in secondary school Italian language learning. The main focus of the peer group interaction task included the exploration of visual sequencing and visual integration (Bailey, O'Grady-Jones, & McGown, 1995) using image and text to create a comic strip narrative in…
AWE: Aviation Weather Data Visualization
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.
2001-01-01
The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.
Kress, Daniel; Egelhaaf, Martin
2014-01-01
During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed. PMID:25309362
ERIC Educational Resources Information Center
Umansky, Warren; And Others
The guide offers a means for evaluating specific learning characteristics of visually impaired children at three levels: prereadiness (prekindergarten), readiness (kindergarten), and academic (primary grades). Items are designed to be administered by informal observation and structured testing. Score sheets contain space for reporting two testing…
Food: Images of America. Social Studies Unit, Elementary Grades 2-6.
ERIC Educational Resources Information Center
Franklin, Edward; And Others
Designed to accompany an audiovisual filmstrip series devoted to presenting a visual history of life in America, this guide contains an elementary school (grades 2-6) unit on American food over the last century. Using authentic visuals including paintings, advertising, label art, documentary photography, and a movie still, the guide offers…
An Annotated Guide to Audio-Visual Materials for Teaching Shakespeare.
ERIC Educational Resources Information Center
Albert, Richard N.
Audio-visual materials, found in a variety of periodicals, catalogs, and reference works, are listed in this guide to expedite the process of finding appropriate classroom materials for a study of William Shakespeare in the classroom. Separate listings of films, filmstrips, and recordings are provided, with subdivisions for "The Plays"…
The Computer: An Art Tool for the Visually Gifted. A Curriculum Guide.
ERIC Educational Resources Information Center
Suter, Thomas E.; Bibbey, Melissa R.
This curriculum guide, developed and used in Wheelersburg (Ohio) with visually talented students, shows how such students can be taught to utilize computers as an art medium and tool. An initial section covers program implementation including setup, class structure and scheduling, teaching strategies, and housecleaning and maintenance. Seventeen…
NASA Dryden flow visualization facility
NASA Technical Reports Server (NTRS)
Delfrate, John H.
1995-01-01
This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.
Sáles, Christopher S; Manche, Edward E
2014-01-01
Background To compare wavefront (WF)-guided and WF-optimized laser in situ keratomileusis (LASIK) in hyperopes with respect to the parameters of safety, efficacy, predictability, refractive error, uncorrected distance visual acuity, corrected distance visual acuity, contrast sensitivity, and higher order aberrations. Methods Twenty-two eyes of eleven participants with hyperopia with or without astigmatism were prospectively randomized to receive WF-guided LASIK with the VISX CustomVue S4 IR or WF-optimized LASIK with the WaveLight Allegretto Eye-Q 400 Hz. LASIK flaps were created using the 150-kHz IntraLase iFS. Evaluations included measurement of uncorrected distance visual acuity, corrected distance visual acuity, <5% and <25% contrast sensitivity, and WF aberrometry. Patients also completed a questionnaire detailing symptoms on a quantitative grading scale. Results There were no statistically significant differences between the groups for any of the variables studied after 12 months of follow-up (all P>0.05). Conclusion This comparative case series of 11 subjects with hyperopia showed that WF-guided and WF-optimized LASIK had similar clinical outcomes at 12 months. PMID:25419115
G-Induced Visual Symptoms in a Military Helicopter Pilot.
McMahon, Terry W; Newman, David G
2016-11-01
Military helicopters are increasingly agile and capable of producing significant G forces experienced in the longitudinal (z) axis of the body in a head-to-foot direction (+Gz). Dehydration and fatigue can adversely affect a pilot's +Gz tolerance, leading to +Gz-induced symptomatology occurring at lower +Gz levels than expected. The potential for adverse consequences of +Gz exposure to affect flight safety in military helicopter operations needs to be recognized. This case report describes a helicopter pilot who experienced +Gz-induced visual impairment during low-level flight. The incident occurred during a tropical training exercise, with an ambient temperature of around 35°C (95°F). As a result of the operational tempo and the environmental conditions, aircrew were generally fatigued and dehydrated. During a low-level steep turn, a Blackhawk pilot experienced significant visual deterioration. The +Gz level was estimated at +2.5 Gz. After completing the turn, the pilot's vision returned to normal, and the flight concluded without further incident. This case highlights the potential dangers of +Gz exposure in tactical helicopters. Although the +Gz level was moderate, the pilot's +Gz tolerance was reduced by the combined effects of dehydration and fatigue. The dangers of such +Gz-induced visual impairment during low-level flight are clear. More awareness of +Gz physiology and +Gz tolerance-reducing factors in helicopter operations is needed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Exploratory flow visualization investigation of mast-mounted sights in presence of a rotor
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1995-01-01
A flow visualization investigation with a laser light sheet system was conducted on a 27-percent-scale AH-64 attack helicopter model fitted with two mast-mounted sights in the langley 14- by 22-foot subsonic tunnel. The investigation was conducted to identify aerodynamic phenomena that may have contributed to adverse vibration encountered during full-scale flight of the AH-64D apache/longbow helicopter with an asymmetric mast-mounted sight. Symmetric and asymmetric mast-mounted sights oriented at several skew angles were tested at simulated forward and rearward flight speeds of 30 and 45 knots. A laser light sheet system was used to visualize the flow in planes parallel to and perpendicular to the free-stream flow. Analysis of these flow visualization data identified frequencies of flow patterns in the wake shed from the sight, the streamline angle at the sight, and the location where the shed wake crossed the rotor plane. Differences in wake structure were observed between the sight configurations and various skew angles. Analysis of lateral light sheet plane data implied significant vortex structure in the wake of the asymmetric mast-mounted sight in the configuration that produced maximum in-flight vibration. The data showed no significant vortex structure in the wake of the asymmetric and symmetric configurations that produced no increase in in-flight adverse vibration.
Animal behavior: fly flight moves forward.
Fox, Jessica L; Frye, Mark
2013-04-08
A new study has resolved the paradox of how flies maintain reflexive aversion to your approaching swatter, whilst tolerating similar visual signals during normal forward flight. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aircrew laser eye protection: visual consequences and mission performance.
Thomas, S R
1994-05-01
Battlefield laser proliferation poses a mounting risk to aircrew and ground personnel. Laser eye protection (LEP) based on current mature, mass-producible technologies absorbs visible light and can impact visual performance and color identification. These visual consequences account for many of the mission incompatibilities associated with LEP. Laboratory experiments and field investigations that examined the effects of LEP on visual performance and mission compatibility are reviewed. Laboratory experiments assessed the ability of subjects to correctly read and identify the color of head-down display symbology and tactical pilotage charts (TPC's) with three prototype LEP visors. Field investigations included Weapons Systems Trainer (WST), ground, and flight tests of the LEP visors. Recommendations for modifying aviation lighting systems to improve LEP compatibility are proposed. Issues concerning flight safety when using LEP during air operation are discussed.
Visual field information in Nap-of-the-Earth flight by teleoperated Helmet-Mounted displays
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.; Merhav, S. J.
1991-01-01
The human ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays originates from a Forward Looking Infrared Radiation Camera, gimbal-mounted at the front of the aircraft and slaved to the pilot's line-of-sight, to obtain wide-angle visual coverage. Although these displays are proved to be effective in Apache and Cobra helicopter night operations, they demand very high pilot proficiency and work load. Experimental work presented in the paper has shown that part of the difficulties encountered in vehicular control by means of these displays can be attributed to the narrow viewing aperture and head/camera slaving system phase lags. Both these shortcomings will impair visuo-vestibular coordination, when voluntary head rotation is present. This might result in errors in estimating the Control-Oriented Visual Field Information vital in vehicular control, such as the vehicle yaw rate or the anticipated flight path, or might even lead to visuo-vestibular conflicts (motion sickness). Since, under these conditions, the pilot will tend to minimize head rotation, the full wide-angle coverage of the Helmet-Mounted Display, provided by the line-of-sight slaving system, is not always fully utilized.
Transient visual pathway critical for normal development of primate grasping behavior.
Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A
2018-02-06
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
Helicopter human factors research
NASA Technical Reports Server (NTRS)
Nagel, David C.; Hart, Sandra G.
1988-01-01
Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Oliver, Michael J.
2016-01-01
Preliminary results from the Heavily Instrumented ALF503R-5 Engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory will be discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This model engine, serial number LF01, was used during the inaugural icing test in the PSL facility. The reduction of thrust (rollback) events experienced by this engine in flight were replicated in the facility. Limited instrumentation was used to detect icing. Metal temperature on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect characterize ice accretion, and visualize the ice accretion in the region of interest.
Tunable Light-Guide Image Processing Snapshot Spectrometer (TuLIPSS) for Earth and Moon Observations
NASA Astrophysics Data System (ADS)
Tkaczyk, T. S.; Alexander, D.; Luvall, J. C.; Wang, Y.; Dwight, J. G.; Pawlowsk, M. E.; Howell, B.; Tatum, P. F.; Stoian, R.-I.; Cheng, S.; Daou, A.
2018-02-01
A tunable light-guide image processing snapshot spectrometer (TuLIPSS) for Earth science research and observation is being developed through a NASA instrument incubator project with Rice University and Marshall Space Flight Center.
A closer look at visually guided saccades in autism and Asperger’s disorder
Johnson, Beth P.; Rinehart, Nicole J.; Papadopoulos, Nicole; Tonge, Bruce; Millist, Lynette; White, Owen; Fielding, Joanne
2012-01-01
Motor impairments have been found to be a significant clinical feature associated with autism and Asperger’s disorder (AD) in addition to core symptoms of communication and social cognition deficits. Motor deficits in high-functioning autism (HFA) and AD may differentiate these disorders, particularly with respect to the role of the cerebellum in motor functioning. Current neuroimaging and behavioral evidence suggests greater disruption of the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously been used in clinical populations to assess the integrity of the cerebellar networks, through examination of saccade accuracy and the integrity of saccade dynamics. Previous investigations of visually guided saccades in HFA and AD have only assessed basic saccade metrics, such as latency, amplitude, and gain, as well as peak velocity. We used a simple visually guided saccade paradigm to further characterize the profile of visually guided saccade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD, were more inaccurate across both small (5°) and large (10°) target amplitudes, and final eye position was hypometric at 10°. These findings suggest greater functional disturbance of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error monitoring in HFA. PMID:23162442
Visually Guided Control of Movement
NASA Technical Reports Server (NTRS)
Johnson, Walter W. (Editor); Kaiser, Mary K. (Editor)
1991-01-01
The papers given at an intensive, three-week workshop on visually guided control of movement are presented. The participants were researchers from academia, industry, and government, with backgrounds in visual perception, control theory, and rotorcraft operations. The papers included invited lectures and preliminary reports of research initiated during the workshop. Three major topics are addressed: extraction of environmental structure from motion; perception and control of self motion; and spatial orientation. Each topic is considered from both theoretical and applied perspectives. Implications for control and display are suggested.
Ocular Coherence Tomography in the Evaluation of Anterior Eye Injuries in Space Flight
NASA Technical Reports Server (NTRS)
Fer, Dan M.; Law, Jennifer; Wells, Julia
2017-01-01
While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.
Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit Ms
2018-01-01
To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p =0.005). Postoperative refractive cylinder was -0.89±0.35 D in group I and -0.64±0.36 D in group II ( p =0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio ( p <0.05) and modulation transfer function (MTF) ( p <0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) ( p <0.05). Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment.
Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit MS
2018-01-01
Purpose To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. Patients and methods This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Results Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p=0.005). Postoperative refractive cylinder was −0.89±0.35 D in group I and −0.64±0.36 D in group II (p=0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio (p<0.05) and modulation transfer function (MTF) (p<0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) (p<0.05). Conclusion Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment. PMID:29731603
2017-08-30
as being three-fold: 1) a measurement of the integrity of both the central and peripheral visual processing centers; 2) an indicator of detail...visual assessment task 12 integral to the Army’s Class 1 Flight Physical (Ginsburg, 1981 and 1984; Bachman & Behar, 1986). During a Class 1 flight...systems. Meta-analysis has been defined as the statistical analysis of a collection of analytical results for the purpose of integrating the findings
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
ARTIFICIAL LIGHTING FOR MODERN SCHOOLS, A GUIDE FOR ADMINISTRATIVE USE.
ERIC Educational Resources Information Center
REIDA, GEORGE W.; AND OTHERS
THE DEVELOPMENT OF GOOD VISUAL ENVIRONMENT AND ECONOMICALLY FEASIBLE LIGHTING INSTALLATIONS IN SCHOOLS IS DISCUSSED IN THIS GUIDE. EIGHTY PERCENT OF ALL SCHOOL LEARNING IS GAINED THROUGH THE EYES AS ESTIMATED BY THE U.S. OFFICE OF EDUCATION. GOOD SCHOOL LIGHTING IS COMFORTABLE, GLAREFREE AND ADEQUATE FOR THE VISUAL TASK. EYE STRAIN AND UNNECESSARY…
The Role of Clarity and Blur in Guiding Visual Attention in Photographs
ERIC Educational Resources Information Center
Enns, James T.; MacDonald, Sarah C.
2013-01-01
Visual artists and photographers believe that a viewer's gaze can be guided by selective use of image clarity and blur, but there is little systematic research. In this study, participants performed several eye-tracking tasks with the same naturalistic photographs, including recognition memory for the entire photo, as well as recognition memory…
Self-Study and Evaluation Guide/1979 Edition. Section D-16: Other Service Program.
ERIC Educational Resources Information Center
National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.
The self evaluation guide is explained to be designed for accreditation of services to blind and visually handicapped students in service programs for which the NAC (National Accreditation Council for Agencies Serving the Blind and Visually Handicapped) does not have specific program standards (such as radio reading services and library services).…
ERIC Educational Resources Information Center
Byun, Tara McAllister; Hitchcock, Elaine R.; Ferron, John
2017-01-01
Purpose: Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of…
Wisconsin School for the Visually Handicapped. A Curriculum Guide for Students. Bulletin No. 7393.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison. Div. for Handicapped Children and Pupil Services.
The curriculum guide sets forth the course of study at the Wisconsin School for the Visually Handicapped. An initial section presents the school's philosophy regarding the need for specialty skills to be incorporated into regular academic instruction. The content of the primary and elementary programs (kindergarten through grade 6) is reviewed in…
K9 Buddies: A Program of Guide Dogs for the Blind
ERIC Educational Resources Information Center
Ritter, Joanne
2007-01-01
Today, exceptional dogs that have been specially bred and socialized are paired with children who are blind or visually impaired. These dogs, called "K9 Buddies," are from Guide Dogs for the Blind, a national nonprofit organization with a mission to offer skilled mobility dogs and training free-of-charge to adults with visual impairments…
1985-12-19
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the "Water Tunnel" more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow vi
NASA Astrophysics Data System (ADS)
Rattenborg, Niels C.
2006-09-01
The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.
Data systems and computer science programs: Overview
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Hunter, Paul
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.
NASA Technical Reports Server (NTRS)
Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.
1973-01-01
A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bridgman, William T.; Shirah, Greg W.; Mitchell, Horace G.
2008-01-01
Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.
General visual robot controller networks via artificial evolution
NASA Astrophysics Data System (ADS)
Cliff, David; Harvey, Inman; Husbands, Philip
1993-08-01
We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.
Single pilot scanning behavior in simulated instrument flight
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1979-01-01
A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.
2014-12-01
Local Economic Impact of UH-72A Manufacture ................42 viii e. EADS’ (Now Airbus Group’s) Suppliers and Subcontractors...Headquarters, Department of the Army IFR instrument flight rules IOTE initial operational test and evaluation IR infrared KO contracting officer kt...instrument flight rules ( IFR ) and visual flight rules (VFR) capabilities, thereby allowing flight at night and under low visibility weather
Flexible strategies for flight control: an active role for the abdomen.
Dyhr, Jonathan P; Morgansen, Kristi A; Daniel, Thomas L; Cowan, Noah J
2013-05-01
Moving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces. However, other actuators that may impact flight performance are reflexively activated during flight. We investigated the visual-abdominal reflex displayed by the hawkmoth Manduca sexta to determine its role in flight control. We measured the open-loop stimulus-response characteristics (measured as a transfer function) between the visual stimulus and abdominal response in tethered moths. The transfer function reveals a 41 ms delay and a high-pass filter behavior with a pass band starting at ~0.5 Hz. We also developed a simplified mathematical model of hovering flight wherein articulation of the thoracic-abdominal joint redirects an average lift force provided by the wings. We show that control of the joint, subject to a high-pass filter, is sufficient to maintain stable hovering, but with a slim stability margin. Our experiments and models suggest a novel mechanism by which articulation of the body or 'airframe' of an animal can be used to redirect lift forces for effective flight control. Furthermore, the small stability margin may increase flight agility by easing the transition from stable flight to a more maneuverable, unstable regime.
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, Silvia
1993-01-01
The pilot's ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays, commonly used in Apache and Cobra helicopter night operations, originates from a relatively narrow field-of-view Forward Looking Infrared Radiation Camera, gimbal-mounted at the nose of the aircraft and slaved to the pilot's line-of-sight, in order to obtain a wide-angle field-of-regard. Pilots have encountered considerable difficulties in controlling the aircraft by these devices. Experimental simulator results presented here indicate that part of these difficulties can be attributed to head/camera slaving system phase lags and errors. In the presence of voluntary head rotation, these slaving system imperfections are shown to impair the Control-Oriented Visual Field Information vital in vehicular control, such as the perception of the anticipated flight path or the vehicle yaw rate. Since, in the presence of slaving system imperfections, the pilot will tend to minimize head rotation, the full wide-angle field-of-regard of the line-of-sight slaved Helmet-Mounted Display, is not always fully utilized.
[Clarity of flight information in the cockpit of the new aircraft generation].
Stern, C; Schwartz, R; Groenhoff, S; Draeger, J; Hüttig, G; Bernhard, H
1994-08-01
Fundamental changes of cockpit design in recent years, especially the transition from analogue to digital flight information systems and the use of colour-coded displays, lead to new demands on the visual system of the pilot. Twenty experienced pilots each participated in four 15-min sessions with a simulator program in the new Airbus 340 Simulator of the Technical University of Berlin. The pilots were confronted with various flight situations and events. The simulation program was carried out with visual acuity of 1.0 or better, with acuity reduced to 0.5 and with red and green filters. The time between the display of information and the pilot's reaction was determined. The probands were classified into two groups according to their age (< or = 45 years, > or = 45 years). In both age groups a significant difference was found only with green filters. There was no difference with reduced visual acuity or with red filters, and no differences were seen between the two age groups.
Optic flow-based collision-free strategies: From insects to robots.
Serres, Julien R; Ruffier, Franck
2017-09-01
Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2007-12-01
Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.
NASA Astrophysics Data System (ADS)
Viertler, Franz; Hajek, Manfred
2015-05-01
To overcome the challenge of helicopter flight in degraded visual environments, current research considers headmounted displays with 3D-conformal (scene-linked) visual cues as most promising display technology. For pilot-in-theloop simulations with HMDs, a highly accurate registration of the augmented visual system is required. In rotorcraft flight simulators the outside visual cues are usually provided by a dome projection system, since a wide field-of-view (e.g. horizontally > 200° and vertically > 80°) is required, which can hardly be achieved with collimated viewing systems. But optical see-through HMDs do mostly not have an equivalent focus compared to the distance of the pilot's eye-point position to the curved screen, which is also dependant on head motion. Hence, a dynamic vergence correction has been implemented to avoid binocular disparity. In addition, the parallax error induced by even small translational head motions is corrected with a head-tracking system to be adjusted onto the projected screen. For this purpose, two options are presented. The correction can be achieved by rendering the view with yaw and pitch offset angles dependent on the deviating head position from the design eye-point of the spherical projection system. Furthermore, it can be solved by implementing a dynamic eye-point in the multi-channel projection system for the outside visual cues. Both options have been investigated for the integration of a binocular HMD into the Rotorcraft Simulation Environment (ROSIE) at the Technische Universitaet Muenchen. Pros and cons of both possibilities with regard on integration issues and usability in flight simulations will be discussed.
Cassini Attitude Control Flight Software: from Development to In-Flight Operation
NASA Technical Reports Server (NTRS)
Brown, Jay
2008-01-01
The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.
Schomaker, Judith; Walper, Daniel; Wittmann, Bianca C; Einhäuser, Wolfgang
2017-04-01
In addition to low-level stimulus characteristics and current goals, our previous experience with stimuli can also guide attentional deployment. It remains unclear, however, if such effects act independently or whether they interact in guiding attention. In the current study, we presented natural scenes including every-day objects that differed in affective-motivational impact. In the first free-viewing experiment, we presented visually-matched triads of scenes in which one critical object was replaced that varied mainly in terms of motivational value, but also in terms of valence and arousal, as confirmed by ratings by a large set of observers. Treating motivation as a categorical factor, we found that it affected gaze. A linear-effect model showed that arousal, valence, and motivation predicted fixations above and beyond visual characteristics, like object size, eccentricity, or visual salience. In a second experiment, we experimentally investigated whether the effects of emotion and motivation could be modulated by visual salience. In a medium-salience condition, we presented the same unmodified scenes as in the first experiment. In a high-salience condition, we retained the saturation of the critical object in the scene, and decreased the saturation of the background, and in a low-salience condition, we desaturated the critical object while retaining the original saturation of the background. We found that highly salient objects guided gaze, but still found additional additive effects of arousal, valence and motivation, confirming that higher-level factors can also guide attention, as measured by fixations towards objects in natural scenes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stenger, M.; Lee, S.; Platts, S.; Macias, B.; Lui, J.; Ebert, D.; Sargsyan, A.; Dulchavsky, S.; Alferova, I.; Yarmanova, E.;
2013-01-01
With the conclusion of the Space Shuttle program, NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed in Space Shuttle crewmembers after their short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound changes in vision, some with objective structural and functional findings such as papilledema and choroidal folds on ophthalmologic examination. Globe flattening, optic nerve sheath dilatation, optic nerve tortuosity, and other findings have been noted in imaging studies. This pattern is referred to as visual impairment and intracranial pressure (VIIP) syndrome. The VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) is associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been systematically tested. The purpose of this study is to objectively characterize the fluid distribution and compartmentalization associated with long-duration space flight, and to correlate the findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, can be predicted by crewmember baseline data and responses to acute hemodynamic manipulations (such as head-down tilt tests) obtained before flight. Lastly, we will evaluate the patterns of fluid distribution in astronaut subjects on the ISS during the use of lower body negative pressure (LBNP) and respiratory maneuvers to characterize and explain general and individual responses during space flight.
Guide to the BATS Resource Trunk.
ERIC Educational Resources Information Center
Arizona Game and Fish Dept., Phoenix.
This guide provides detailed information, resources, and activities to teach students about the bats of Arizona. Chapters include: (1) "What is a Bat?"; (2) "Megabat or Microbat?"; (3) "Bat Anatomy"; (4) Diet and Feeding"; (5) Echolocation"; (6) Reproduction and Lifespan"; (7) "Flight"; (8)…
ERIC Educational Resources Information Center
Gaver, Wayne
Presented is an industrial arts curriculum guide for woodworking which developed out of a 3 year program designed to meet the unmet vocational education needs of visually impaired students enrolled in junior high, secondary, and community colleges in a five county region of California, and to provide inservice training to regular vocational…
Enhancing visual search abilities of people with intellectual disabilities.
Li-Tsang, Cecilia W P; Wong, Jackson K K
2009-01-01
This study aimed to evaluate the effects of cueing in visual search paradigm for people with and without intellectual disabilities (ID). A total of 36 subjects (18 persons with ID and 18 persons with normal intelligence) were recruited using convenient sampling method. A series of experiments were conducted to compare guided cue strategies using either motion contrast or additional cue to basic search task. Repeated measure ANOVA and post hoc multiple comparison tests were used to compare each cue strategy. Results showed that the use of guided strategies was able to capture focal attention in an autonomic manner in the ID group (Pillai's Trace=5.99, p<0.0001). Both guided cue and guided motion search tasks demonstrated functionally similar effects that confirmed the non-specific character of salience. These findings suggested that the visual search efficiency of people with ID was greatly improved if the target was made salient using cueing effect when the complexity of the display increased (i.e. set size increased). This study could have an important implication for the design of the visual searching format of any computerized programs developed for people with ID in learning new tasks.
Chief of Naval Air Training Automated Management Information System (CAMIS). User’s Guide.
1982-04-01
display. This display allows the user to insert, update, delete , or analyze various data elements, or generate reports. The Flight Schedule Input...instructor, student, and aircraft utiliza- tion. Additionally, it provides a means to delete any erroneous sortie information previously entered. 5...appear: 10 Technical Report 121 VT-## FLIGHT SCHEDULE PROGRAM 1. ADD NEW FLIGHT SCHEDULE DATA 2. DELETE ERRONEOUS SORTIES PREVIOUSLY ENTERED KEY IN
2000-12-08
Ground crewmen help guide the alignment of the X-40 technology demonstrator as the experimental craft is gently lowered to the ground by a U.S. Army CH-47 Chinook cargo helicopter following a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. The X-37 will be carried into space aboard a space shuttle and then released to perform various maneuvers and a controlled re-entry through the Earth's atmosphere to an airplane-style landing on a runway, controlled entirely by pre-programmed computer software. Following a series of captive-carry flights, the X-40 made several free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The captive carry flights helped verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether.
Human Requirements of Flight. Aerospace Education III. Instructional Unit IV.
ERIC Educational Resources Information Center
Hall, Arthur D.
This curriculum guide is prepared for the Aerospace Education III series publication entitled "Human Requirements of Flight." It provides specific guidelines for teachers using the textbook. The guidelines for each chapter are organized according to objectives (traditional and behavioral), suggested outline, orientation, suggested key…
Private Pilot Ground School Course. Instructor's Guide.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual consists of 10 lesson plans for use by instructors teaching a private pilot ground school course. Addressed in the individual lesson plans are the following topics: aerodynamics and principles of flight, flight instruments and systems, operational publications, regulations, airplane operations, engine operations, radio communications,…
Aviation medicine translations : annotated bibliography of recently translated material, V .
DOT National Transportation Integrated Search
1968-04-01
An annotated bibliography of translations of foreign-language articles is presented. The 24 entries are concerned with studies in aviation medicine, vestibular function, hearing, intercontinental flight, visual illusions, aviation visual aids, body t...
Effects of vibration on the readability of an electronic flight instrument display
NASA Astrophysics Data System (ADS)
Viveash, Jacqueline P.; Cable, A. N.; King, S. K.; Stott, J. R.; Wright, R.
1993-12-01
An in-flight icing incident involving a BAe advanced turboprop (ATP) aircraft led to severe vibration of the airframe and a loss of aerodynamic control. During the period of vibration the pilot reported a specific pattern of image break up on the electronic flight instrument system (EFIS). Three experiments to investigate this visual effect are reported.
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2010 CFR
2010-01-01
... freedom of motion system; (4) Use a visual system that provides at least a 45-degree horizontal field of view and a 30-degree vertical field of view simultaneously for each pilot; and (5) Have been evaluated... aircraft, or set of aircraft, in an open flight deck area or in an enclosed cockpit, including the hardware...
Advanced boundary layer transition measurement methods for flight applications
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.
1986-01-01
In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.
FlyAR: augmented reality supported micro aerial vehicle navigation.
Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard
2014-04-01
Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicles position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the users view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.
A Closer Look at Visual Manuals.
ERIC Educational Resources Information Center
van der Meij, Hans
1996-01-01
Examines the visual manual genre, discussing main forms and functions of step-by-step and guided tour manuals in detail. Examines whether a visual manual helps computer users realize tasks faster and more accurately than a non-visual manual. Finds no effects on accuracy, but speedier task execution by 35% for visual manuals. Concludes there is no…
Teaching Students with Visual Impairments. Programming for Students with Special Needs. No. 5.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Special Education Branch.
This resource guide offers suggestions and resources to help provide successful school experiences for students who are blind or visually impaired. Individual sections address: (1) the nature of visual impairment, the specific needs and expectations of students with visual impairment, and the educational implications of visual impairment; (2)…
Advanced Video Data-Acquisition System For Flight Research
NASA Technical Reports Server (NTRS)
Miller, Geoffrey; Richwine, David M.; Hass, Neal E.
1996-01-01
Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.
Visual analytics of anomaly detection in large data streams
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Sharma, Ratnesh K.; Mehta, Abhay
2009-01-01
Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production operations. Many analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining results are quickly presented in graphical representations (i.e., tooltip) for the user to zoom into the problem regions. Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have successfully applied this technique to detect data stream anomalies in large real-world enterprise server performance and data center energy management.
NASA Astrophysics Data System (ADS)
Liu, Chen; Tang, Guang-Rui; Jiang, Ming; Dong, Yu-Ming
2017-09-01
According to the practical situation of stringing construction for Ultra High Voltage (UHV) overhead transmission line, construction technology standardization of primary guide rope laying by multi-rotor aircraft is studied. This paper mainly focuses on the construction preparation, test flight and technology of laying primary guide rope. The summary of the construction technology standardization of primary guide rope laying by multi-rotor aircraft in stringing construction are useful in further guiding practical construction of transmission line.
NASA Technical Reports Server (NTRS)
Doland, Jerry; Valett, Jon
1994-01-01
This document discusses recommended practices and style for programmers using the C language in the Flight Dynamics Division environment. Guidelines are based on generally recommended software engineering techniques, industry resources, and local convention. The Guide offers preferred solutions to common C programming issues and illustrates through examples of C Code.
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.
1990-01-01
In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.
Asymmetries in the Control of Saccadic Eye Movements to Bifurcating Targets.
ERIC Educational Resources Information Center
Zeevi, Yehoshua Y.; And Others
The examination of saccadic eye movements--rapid shifts in gaze from one visual area of interest to another--is useful in studying pilot's visual learning in flight simulator training. Saccadic eye movements are the basic oculomotor response associated with the acquisition of visual information and provide an objective measure of higher perceptual…
Ground crewmen help guide the alignment of the X-40A as the experimental craft is gently lowered to
NASA Technical Reports Server (NTRS)
2000-01-01
Ground crewmen help guide the alignment of the X-40 technology demonstrator as the experimental craft is gently lowered to the ground by a U.S. Army CH-47 Chinook cargo helicopter following a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. The X-37 will be carried into space aboard a space shuttle and then released to perform various maneuvers and a controlled re-entry through the Earth's atmosphere to an airplane-style landing on a runway, controlled entirely by pre-programmed computer software. Following a series of captive-carry flights, the X-40 made several free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The captive carry flights helped verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether.
NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II
DOT National Transportation Integrated Search
2015-07-01
Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...
14 CFR 234.4 - Reporting of on-time performance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reportable flights held out in the Official Airline Guide (OAG), in the computer reservations systems (CRS... Director, Office of Airline Statistics, and shall contain the following information: (1) Carrier and flight... aviation system, if any. (20) Minutes of delay attributed to security, if any. (21) Minutes of delay...
14 CFR 234.4 - Reporting of on-time performance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... reportable flights held out in the Official Airline Guide (OAG), in the computer reservations systems (CRS... Director, Office of Airline Statistics, and shall contain the following information: (1) Carrier and flight... aviation system, if any. (20) Minutes of delay attributed to security, if any. (21) Minutes of delay...
14 CFR 234.4 - Reporting of on-time performance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reportable flights held out in the Official Airline Guide (OAG), in the computer reservations systems (CRS... Director, Office of Airline Statistics, and shall contain the following information: (1) Carrier and flight... aviation system, if any. (20) Minutes of delay attributed to security, if any. (21) Minutes of delay...
14 CFR 234.4 - Reporting of on-time performance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... reportable flights held out in the Official Airline Guide (OAG), in the computer reservations systems (CRS... Director, Office of Airline Statistics, and shall contain the following information: (1) Carrier and flight... aviation system, if any. (20) Minutes of delay attributed to security, if any. (21) Minutes of delay...
Korneeva, E V; Tiunova, A A; Aleksandrov, L I; Golubeva, T B; Anokhin, K V
2014-01-01
The present study analyzed expression of transcriptional factors c-Fos and ZENK in 9-day-old pied flycatcher nestlings' (Ficedula hypoleuca) telencephalic auditory centers (field L, caudomedial nidopallium and caudomedial mesopallium) involved in the acoustically-guided defense behavior. Species-typical alarm call was presented to the young in three groups: 1--intact group (sighted control), 2--nestlings visually deprived just before the experiment for a short time (unsighted control) 3--nestlings visually deprived right after hatching (experimental deprivation). Induction of c-Fos as well as ZENK in nestlings from the experimental deprivation group was decreased in both hemispheres as compared with intact group. In the group of unsighted control, only the decrease of c-Fos induction was observed exclusively in the right hemisphere. These findings suggest that limitation of visual input changes the population of neurons involved into the acoustically-guided behavior, the effect being dependant from the duration of deprivation.
A novel computational model to probe visual search deficits during motor performance
Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy
2016-01-01
Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596
Rotary-wing flight test methods used for the evaluation of night vision devices
NASA Astrophysics Data System (ADS)
Haworth, Loran A.; Blanken, Christopher J.; Szoboszlay, Zoltan P.
2001-08-01
The U.S. Army Aviation mission includes flying helicopters at low altitude, at night, and in adverse weather. Night Vision Devices (NVDs) are used to supplement the pilot's visual cues for night flying. As the military requirement to conduct night helicopter operations has increased, the impact of helicopter flight operations with NVD technology in the Degraded Visual Environment (DVE) became increasingly important to quantify. Aeronautical Design Standard-33 (ADS- 33) was introduced to update rotorcraft handling qualities requirements and to quantify the impact of the NVDs in the DVE. As reported in this paper, flight test methodology in ADS-33 has been used by the handling qualities community to measure the impact of NVDs on task performance in the DVE. This paper provides the background and rationale behind the development of ADS-33 flight test methodology for handling qualities in the DVE, as well as the test methodology developed for human factor assessment of NVDs in the DVE. Lessons learned, shortcomings and recommendations for NVD flight test methodology are provided in this paper.
Visual control of navigation in insects and its relevance for robotics.
Srinivasan, Mandyam V
2011-08-01
Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.
The determination of some requirements for a helicopter flight research simulation facility
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1977-01-01
Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.
An airborne system for vortex flow visualization on the F-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Richwine, David M.
1988-01-01
A flow visualization system for the F-18 high-alpha research vehicle is described which allows direct observation of the separated vortex flows over a wide range of flight conditions. The system consists of a smoke generator system, on-board photographic and video systems, and instrumentation. In the present concept, smoke is entrained into the low-pressure vortex core, and vortice breakdown is indicated by a rapid diffusion of the smoke. The resulting pattern is observed using photographic and video images and is correlated with measured flight conditions.
Use of the flight simulator in the design of a STOL research aircraft.
NASA Technical Reports Server (NTRS)
Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.
1972-01-01
Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.
Using Visual Imagery in the Classroom.
ERIC Educational Resources Information Center
Grabow, Beverly
1981-01-01
The use of visual imagery, visualization, and guided and unguided fantasy has potential as a teaching tool for use with learning disabled children. Visualization utilized in a gamelike atmosphere can help the student learn new concepts, can positively effect social behaviors, and can help with emotional control. (SB)
Investigation of outside visual cues required for low speed and hover
NASA Technical Reports Server (NTRS)
Hoh, R. H.
1985-01-01
Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.
RICA: a reliable and image configurable arena for cyborg bumblebee based on CAN bus.
Gong, Fan; Zheng, Nenggan; Xue, Lei; Xu, Kedi; Zheng, Xiaoxiang
2014-01-01
In this paper, we designed a reliable and image configurable flight arena, RICA, for developing cyborg bumblebees. To meet the spatial and temporal requirements of bumblebees, the Controller Area Network (CAN) bus is adopted to interconnect the LED display modules to ensure the reliability and real-time performance of the arena system. Easily-configurable interfaces on a desktop computer implemented by python scripts are provided to transmit the visual patterns to the LED distributor online and configure RICA dynamically. The new arena system will be a power tool to investigate the quantitative relationship between the visual inputs and induced flight behaviors and also will be helpful to the visual-motor research in other related fields.
Perceived orientation in free-fall dependson visual, postural, and architectural factors
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1983-01-01
In orbital flight and in the free-fall phase of parabolic flight, feelings of inversion of self and spacecraft, or aircraft, are often experienced. It is shown here that perceived orientation in free-fall is dependent on the position of one's body in relation to the aircraft, the architectural features of the aircraft, and one's visual appreciation of the relative configurations of his body and the aircraft. Compelling changes in the apparent orientation of one's body and of the aircraft can be reliably and systematically induced by manipulating this relationship. Moreover, while free-floating in the absence of visual, touch, and pressure stimulation, all sense of orientation to the surroundings may be lost with only an awareness of the relative configuration of the body preserved. The absences of falling sensations during weightlessness points to the importance of visual and cognitive factors in eliciting such sensations.
Quantifying Pilot Visual Attention in Low Visibility Terminal Operations
NASA Technical Reports Server (NTRS)
Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.
2012-01-01
Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation
ERIC Educational Resources Information Center
Cangemi, Sam
This guide describes and illustrates 50 perceptual games for preschool children which may be constructed by teachers. Inexpensive, easily obtained game materials are suggested. The use of tactile and visual perceptual games gives children opportunities to make choices and discriminations, and provides reading readiness experiences. Games depicted…
Creative Visualization Activities.
ERIC Educational Resources Information Center
Fugitt, Eva D.
1986-01-01
Presents a series of classroom exercises and activities that stimulate children's creativity through the use of visualization. Discusses procedures for guided imagery and offers some examples of "trips" to imaginary places. Proposes visualization as a warm-up exercise before art lessons. (DR)
Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.
2016-01-01
Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.
Your Travel Dollar. Money Management.
ERIC Educational Resources Information Center
Baran, Nancy H., Ed.
This illustrated guide was designed to familiarize consumers with planning a vacation trip, whether domestic or abroad. The guide covers setting up a budget; package tours; cruises and charter flights; travel agencies and clubs; and arranging stays in hotels/motels, rental condominiums, bed-and-breakfasts, hostels, campsites, and private…
Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data
Zhaoping, Li; Zhe, Li
2015-01-01
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341
Acceptance of Dog Guides and Daily Stress Levels of Dog Guide Users and Nonusers
ERIC Educational Resources Information Center
Matsunaka, Kumiko; Koda, Naoko
2008-01-01
The degree of acceptance of dog guides at public facilities, which is required by law in Japan, was investigated, and evidence of rejection was found. Japanese people with visual impairments who used dog guides reported higher daily stress levels than did those who did not use dog guides. (Contains 3 tables and 1 figure.)
ERIC Educational Resources Information Center
National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.
This self-study and evaluation guide on orientation and mobility services (dog guide program emphasis) is one of 28 guides designed for organizations undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of…
Visual cues to geographical orientation during low-level flight
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Delzell, Suzanne
1991-01-01
A field study of an operational Emergency Medical Service (EMS) unit was conducted to investigate the relationships among geographical orientation, pilot decision making, and workload in EMS flights. The map data collected during this study were compared to protocols gathered in the laboratory, where pilots viewed a simulated flight over different types of unfamiliar terrain and verbally identified the features utilized to maintain geographical orientation. The EMS pilot's questionnaire data were compared with data from non-EMS helicopter pilots with comparable flight experience.
Navigation Operational Concept,
1991-08-01
Area Control Facility AFSS Automated Flight Service Station AGL Above Ground Level ALSF-2 Approach Light System with Sequence Flasher Model 2 ATC Air...equipment contributes less than 0.30 NM error at the missed approach point. This total system use accuracy allows for flight technical error of up to...means for transition from instrument to visual flight . This function is provided by a series of standard lighting systems : the Approach Lighting
1986-09-01
TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCILN This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California
X-45A in flight with F-18 #846 chase aircraft, during first GPS-guided weapon demonstration flight
2002-12-19
The first X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its sixth flight on Dec. 19, 2002, raising its landing gear in flight for the first time. The X-45A flew for 40 minutes and reached an airspeed of 195 knots and an altitude of 7,500 feet. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Clothing Construction: An Instructional Package with Adaptations for Visually Impaired Individuals.
ERIC Educational Resources Information Center
Crawford, Glinda B.; And Others
Developed for the home economics teacher of mainstreamed visually impaired students, this guide provides clothing instruction lesson plans for the junior high level. First, teacher guidelines are given, including characteristics of the visually impaired, orienting such students to the classroom, orienting class members to the visually impaired,…
Wide-field motion tuning in nocturnal hawkmoths
Theobald, Jamie C.; Warrant, Eric J.; O'Carroll, David C.
2010-01-01
Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion. PMID:19906663
NASA Technical Reports Server (NTRS)
Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.
1992-01-01
This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.
The Mission Planning Lab: A Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Daugherty, Sarah C.; Cervantes, Benjamin W.
2009-01-01
Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).
NextGen flight deck data comm: auxiliary synthetic speech - phase I
DOT National Transportation Integrated Search
2012-10-22
Data Comma digital, text-based controller-pilot communication systemis critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Although Data Comm brings many advantages, interacting with a visual display may ...
14 CFR 15.101 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... (b) Aeronautical data that— (1) Is visually displayed in the cockpit of an aircraft; and (2) When visually displayed, accurately depicts a defective or deficient flight procedure or airway promulgated by...
ERIC Educational Resources Information Center
Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2009-01-01
The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…
Simple Smartphone-Based Guiding System for Visually Impaired People
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-01-01
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811
Simple Smartphone-Based Guiding System for Visually Impaired People.
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-06-13
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.
NOVA: Spring 2003 Teacher's Guide. Battle of the X-Planes.
ERIC Educational Resources Information Center
WGBH Educational Foundation, Boston, MA.
This teacher's guide contains supplemental activities to go along with the NOVA television program on PBS. Activities include: (1) "Last Flight of Bomber 31"; (2) "Ancient Creature of the Deep"; (3) "Battle of the X-Planes"; (4) "Mountain of Ice"; (5) "Lost Treasures of Tibet"; and (6)…
Terminal area air traffic control simulation
NASA Technical Reports Server (NTRS)
1977-01-01
To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.
The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization
NASA Astrophysics Data System (ADS)
Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.
2003-12-01
The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.
Hongzhang, Hong; Xiaojuan, Qin; Shengwei, Zhang; Feixiang, Xiang; Yujie, Xu; Haibing, Xiao; Gallina, Kazobinka; Wen, Ju; Fuqing, Zeng; Xiaoping, Zhang; Mingyue, Ding; Huageng, Liang; Xuming, Zhang
2018-05-17
To evaluate the effect of real-time three-dimensional (3D) ultrasonography (US) in guiding percutaneous nephrostomy (PCN). A hydronephrosis model was devised in which the ureters of 16 beagles were obstructed. The beagles were divided equally into groups 1 and 2. In group 1, the PCN was performed using real-time 3D US guidance, while in group 2 the PCN was guided using two-dimensional (2D) US. Visualization of the needle tract, length of puncture time and number of puncture times were recorded for the two groups. In group 1, score for visualization of the needle tract, length of puncture time and number of puncture times were 3, 7.3 ± 3.1 s and one time, respectively. In group 2, the respective results were 1.4 ± 0.5, 21.4 ± 5.8 s and 2.1 ± 0.6 times. The visualization of needle tract in group 1 was superior to that in group 2, and length of puncture time and number of puncture times were both lower in group 1 than in group 2. Real-time 3D US-guided PCN is superior to 2D US-guided PCN in terms of visualization of needle tract and the targeted pelvicalyceal system, leading to quick puncture. Real-time 3D US-guided puncture of the kidney holds great promise for clinical implementation in PCN. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
Enhanced Lesion Visualization in Image-Guided Noninvasive Surgery With Ultrasound Phased Arrays
2001-10-25
81, 1995. [4] N. Sanghvi et al., “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound ,” IEEE Trans. UFFC, vol. 43, no. 6, pp...ENHANCED LESION VISUALIZATION IN IMAGE-GUIDED NONINVASIVE SURGERY WITH ULTRASOUND PHASED ARRAYS Hui Yao, Pornchai Phukpattaranont and Emad S. Ebbini...Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 Abstract- We describe dual-mode ultrasound phased
ERIC Educational Resources Information Center
Jax, Steven A.; Rosenbaum, David A.
2007-01-01
According to a prominent theory of human perception and performance (M. A. Goodale & A. D. Milner, 1992), the dorsal, action-related stream only controls visually guided actions in real time. Such a system would be predicted to show little or no action priming from previous experience. The 3 experiments reported here were designed to determine…
Supervised guiding long-short term memory for image caption generation based on object classes
NASA Astrophysics Data System (ADS)
Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan
2018-03-01
The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.
ATM Technology Demonstration 1 (ATD-1): EcoDemonstrator ASTAR Guided Arrival Research (EAGAR)
NASA Technical Reports Server (NTRS)
Roper, Roy
2015-01-01
In Spring 2013, high level NASA and Boeing management were seeking opportunities to collaborate on a flight test activity involving the ecoDemonstrator. The Airspace Systems Program Office identified FIM as a viable candidate. ATD-1 accepted the challenge. Work began in July for a December 2013 flight test.
Wiggins, Mark; O'Hare, David
2003-01-01
Inappropriate and ineffective weather-related decision making continues to account for a significant proportion of general aviation fatalities in the United States and elsewhere. This study details the evaluation of a computer-based training system that was developed to provide visual pilots with the skills necessary to recognize and respond to the cues associated with deteriorating weather conditions during flight. A total of 66 pilots were assigned to one of two groups, and the evaluation process was undertaken at both a self-report and performance level. At the self-report level, the results suggested that pilots were more likely to use the cues following exposure to the training program. From a performance perspective, there is evidence to suggest that cue-based training can improve the timeliness of weather-related decision making during visual flight rules flight. Actual or potential applications of this research include the development of computer-based training systems for fault diagnosis in complex industrial environments.
NASA Technical Reports Server (NTRS)
Whelan, Todd Michael
1996-01-01
In a real-time or batch mode simulation that is designed to model aircraft dynamics over a wide range of flight conditions, a table look- up scheme is implemented to determine the forces and moments on the vehicle based upon the values of parameters such as angle of attack, altitude, Mach number, and control surface deflections. Simulation Aerodynamic Variable Interface (SAVI) is a graphical user interface to the flight simulation input data, designed to operate on workstations that support X Windows. The purpose of the application is to provide two and three dimensional visualization of the data, to allow an intuitive sense of the data set. SAVI also allows the user to manipulate the data, either to conduct an interactive study of the influence of changes on the vehicle dynamics, or to make revisions to data set based on new information such as flight test. This paper discusses the reasons for developing the application, provides an overview of its capabilities, and outlines the software architecture and operating environment.
A rotorcraft flight database for validation of vision-based ranging algorithms
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1992-01-01
A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2015-08-12
Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.
Long, David E; Tann, Mark; Huang, Ke Colin; Bartlett, Gregory; Galle, James O; Furukawa, Yukie; Maluccio, Mary; Cox, John A; Kong, Feng-Ming Spring; Ellsworth, Susannah G
2018-05-01
Hepatobiliary iminodiacetic acid (HIDA) scans provide global and regional assessments of liver function that can serve as a road map for functional avoidance in stereotactic body radiation therapy (SBRT) planning. Functional liver image guided hepatic therapy (FLIGHT), an innovative planning technique, is described and compared with standard planning using functional dose-volume histograms. Thresholds predicting for decompensation during follow up are evaluated. We studied 17 patients who underwent HIDA scans before SBRT. All SBRT cases were replanned using FLIGHT. The following dosimetric endpoints were compared for FLIGHT versus standard SBRT planning: functional residual capacity <15 Gy (FRC 15 HIDA), mean liver dose (MLD), equivalent uniform dose (EUD), and functional EUD (FEUD). Receiver operating characteristics curves were used to evaluate whether baseline HIDA values, standard cirrhosis scoring, and/or dosimetric data predicted clinical decompensation. Compared with standard planning, FLIGHT significantly improved FRC 15 HIDA (mean improvement: 5.3%) as well as MLD, EUD, and FEUD (P < .05). Considerable interindividual variations in the extent of benefit were noted. Decompensation during follow-up was associated with baseline global HIDA <2.915%/min/m 2 , FRC 15 HIDA <2.11%/min/m 2 , and MELD ≥11 (P < .05). FLIGHT with HIDA-based parameters may complement blood chemistry-based assessments of liver function and facilitate individualized, adaptive liver SBRT planning. Copyright © 2018. Published by Elsevier Inc.
Visual-motor recalibration in geographical slant perception
NASA Technical Reports Server (NTRS)
Bhalla, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1999-01-01
In 4 experiments, it was shown that hills appear steeper to people who are encumbered by wearing a heavy backpack (Experiment 1), are fatigued (Experiment 2), are of low physical fitness (Experiment 3), or are elderly and/or in declining health (Experiment 4). Visually guided actions are unaffected by these manipulations of physiological potential. Although dissociable, the awareness and action systems were also shown to be interconnected. Recalibration of the transformation relating awareness and actions was found to occur over long-term changes in physiological potential (fitness level, age, and health) but not with transitory changes (fatigue and load). Findings are discussed in terms of a time-dependent coordination between the separate systems that control explicit visual awareness and visually guided action.
Simulator-induced spatial disorientation: effects of age, sleep deprivation, and type of conflict.
Previc, Fred H; Ercoline, William R; Evans, Richard H; Dillon, Nathan; Lopez, Nadia; Daluz, Christina M; Workman, Andrew
2007-05-01
Spatial disorientation mishaps are greater at night and with greater time on task, and sleep deprivation is known to decrease cognitive and overall flight performance. However, the ability to perceive and to be influenced by physiologically appropriate simulated SD conflicts has not previously been studied in an automated simulator flight profile. A set of 10 flight profiles were flown by 10 U.S. Air Force (USAF) pilots over a period of 28 h in a specially designed flight simulator for spatial disorientation research and training. Of the 10 flights, 4 had a total of 7 spatial disorientation (SD) conflicts inserted into each of them, 5 simulating motion illusions and 2 involving visual illusions. The percentage of conflict reports was measured along with the effects of four conflicts on flight performance. The results showed that, with one exception, all motion conflicts were reported over 60% of the time, whereas the two visual illusions were reported on average only 25% of the time, although they both significantly affected flight performance. Pilots older than 35 yr of age were more likely to report conflicts than were those under 30 yr of age (63% vs. 38%), whereas fatigue had little effect overall on either recognized or unrecognized SD. The overall effects of these conflicts on perception and performance were generally not altered by sleep deprivation, despite clear indications of fatigue in our pilots.
NextGen flight deck Data Comm : auxiliary synthetic speech phase I
DOT National Transportation Integrated Search
2012-12-31
Data Comma text-based controller-pilot communication systemis critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Interacting with a visual Data Comm display may yield an unsafe increase in head-down time...
Forum Guide to Data Visualization: A Resource for Education Agencies. NFES 2017-016
ERIC Educational Resources Information Center
National Forum on Education Statistics, 2016
2016-01-01
The purpose of this document is to recommend data visualization practices that will help education agencies communicate data meaning in visual formats that are accessible, accurate, and actionable for a wide range of education stakeholders. Although this resource is designed for staff in education agencies, many of the visualization principles…
ERIC Educational Resources Information Center
Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari
2009-01-01
In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…
Improving Aviation Safety with information Visualization: A Flight Simulation Study
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Hearst, Marti
2005-01-01
Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.
Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.
Muth, Eric R; Lawson, Ben
2003-05-01
The U.S. Navy is considering placing flight simulators aboard ships. It is known that certain types of flight simulators can elicit motion adaptation syndrome (MAS), and also that certain types of ship motion can cause MAS. The goal of this study was to determine if using a flight simulator during ship motion would cause MAS, even when the simulator stimulus and the ship motion were both very mild. All participants in this study completed three conditions. Condition 1 (Sim) entailed "flying" a personal computer-based flight simulator situated on land. Condition 2 (Ship) involved riding aboard a U.S. Navy Yard Patrol boat. Condition 3 (ShipSim) entailed "flying" a personal computer-based flight simulator while riding aboard a Yard Patrol boat. Before and after each condition, participants' balance and dynamic visual acuity were assessed. After each condition, participants filled out the Nausea Profile and the Simulator Sickness Questionnaire. Following exposure to a flight simulator aboard a ship, participants reported negligible symptoms of nausea and simulator sickness. However, participants exhibited a decrease in dynamic visual acuity after exposure to the flight simulator aboard ship (T[25] = 3.61, p < 0.05). Balance results were confounded by significant learning and, therefore, not interpretable. This study suggests that flight simulators can be used aboard ship. As a minimal safety precaution, these simulators should be used according to current safety practices for land-based simulators. Optimally, these simulators should be designed to minimize MAS, located near the ship's center of rotation and used when ship motion is not provocative.
Bullying 101: The Club Crew's Guide to Bullying Prevention
ERIC Educational Resources Information Center
PACER Center, 2013
2013-01-01
"Bullying 101" is the Club Crew's Guide to Bullying Prevention. A visually-friendly, age-appropriate, 16-page colorful guide for students to read or for parents to use when talking with children, this guide describes and explains what bullying is and is not, the roles of other students, and tips on what each student can do to prevent…
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.
2016-01-01
The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.
NASA Technical Reports Server (NTRS)
Bigler, W. B., II
1977-01-01
The NASA passenger ride quality apparatus (PRQA), a ground based motion simulator, was compared to the total in flight simulator (TIFS). Tests were made on PRQA with varying stimuli: motions only; motions and noise; motions, noise, and visual; and motions and visual. Regression equations for the tests were obtained and subsequent t-testing of the slopes indicated that ground based simulator tests produced comfort change rates similar to actual flight data. It was recommended that PRQA be used in the ride quality program for aircraft and that it be validated for other transportation modes.
Open Source and Design Thinking at NASA: A Vision for Future Software
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.
Interfaces Visualize Data for Airline Safety, Efficiency
NASA Technical Reports Server (NTRS)
2014-01-01
As the A-Train Constellation orbits Earth to gather data, NASA scientists and partners visualize, analyze, and communicate the information. To this end, Langley Research Center awarded SBIR funding to Fairfax, Virginia-based WxAnalyst Ltd. to refine the company's existing user interface for Google Earth to visualize data. Hawaiian Airlines is now using the technology to help manage its flights.
NASA Astrophysics Data System (ADS)
Rieder, Christian; Schwier, Michael; Weihusen, Andreas; Zidowitz, Stephan; Peitgen, Heinz-Otto
2009-02-01
Image guided radiofrequency ablation (RFA) is becoming a standard procedure as a minimally invasive method for tumor treatment in the clinical routine. The visualization of pathological tissue and potential risk structures like vessels or important organs gives essential support in image guided pre-interventional RFA planning. In this work our aim is to present novel visualization techniques for interactive RFA planning to support the physician with spatial information of pathological structures as well as the finding of trajectories without harming vitally important tissue. Furthermore, we illustrate three-dimensional applicator models of different manufactures combined with corresponding ablation areas in homogenous tissue, as specified by the manufacturers, to enhance the estimated amount of cell destruction caused by ablation. The visualization techniques are embedded in a workflow oriented application, designed for the use in the clinical routine. To allow a high-quality volume rendering we integrated a visualization method using the fuzzy c-means algorithm. This method automatically defines a transfer function for volume visualization of vessels without the need of a segmentation mask. However, insufficient visualization results of the displayed vessels caused by low data quality can be improved using local vessel segmentation in the vicinity of the lesion. We also provide an interactive segmentation technique of liver tumors for the volumetric measurement and for the visualization of pathological tissue combined with anatomical structures. In order to support coagulation estimation with respect to the heat-sink effect of the cooling blood flow which decreases thermal ablation, a numerical simulation of the heat distribution is provided.
Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic.
Gunther, Tobias; Schulze, Maik; Friederici, Anke; Theisel, Holger
2016-01-01
Volcanic eruptions are not only hazardous in the direct vicinity of a volcano, but they also affect the climate and air travel for great distances. This article sheds light on the Grímsvötn, Puyehue-Cordón Caulle, and Nabro eruptions in 2011. The authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of Nabro's sulfate aerosol into the stratosphere. The results here were developed for the 2014 IEEE Scientific Visualization Contest, which centers around the fusion of multiple satellite data modalities to reconstruct and assess the movement of volcanic ash and sulfate aerosol emissions. Using data from three volcanic eruptions that occurred in the span of approximately three weeks, the authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of sulfate aerosol into the stratosphere. This video provides animations of the reconstructed ash clouds. https://youtu.be/D9DvJ5AvZAs.
Simulators for training in ultrasound guided procedures.
Farjad Sultan, Syed; Shorten, George; Iohom, Gabrielle
2013-06-01
The four major categories of skill sets associated with proficiency in ultrasound guided regional anaesthesia are 1) understanding device operations, 2) image optimization, 3) image interpretation and 4) visualization of needle insertion and injection of the local anesthetic solution. Of these, visualization of needle insertion and injection of local anaesthetic solution can be practiced using simulators and phantoms. This survey of existing simulators summarizes advantages and disadvantages of each. Current deficits pertain to the validation process.
Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus
Sabesan, Ramkumar; Johns, Lynette; Tomashevskaya, Olga; Jacobs, Deborah S.; Rosenthal, Perry; Yoon, Geunyoung
2016-01-01
Purpose To investigate the feasibility of correcting ocular higher order aberrations (HOA) in keratoconus (KC) using wavefront-guided optics in a scleral lens prosthetic device (SLPD). Methods Six advanced keratoconus patients (11 eyes) were fitted with a SLPD with conventional spherical optics. A custom-made Shack-Hartmann wavefront sensor was used to measure aberrations through a dilated pupil wearing the SLPD. The position of SLPD, i.e. horizontal and vertical decentration relative to the pupil and rotation were measured and incorporated into the design of the wavefront-guided optics for the customized SLPD. A submicron-precision lathe created the designed irregular profile on the front surface of the device. The residual aberrations of the same eyes wearing the SLPD with wavefront-guided optics were subsequently measured. Visual performance with natural mesopic pupil was compared between SLPDs having conventional spherical and wavefront-guided optics by measuring best-corrected high-contrast visual acuity and contrast sensitivity. Results Root-mean-square of HOA(RMS) in the 11 eyes wearing conventional SLPD with spherical optics was 1.17±0.57μm for a 6 mm pupil. HOA were effectively corrected by the customized SLPD with wavefront-guided optics and RMS was reduced 3.1 times on average to 0.37±0.19μm for the same pupil. This correction resulted in significant improvement of 1.9 lines in mean visual acuity (p<0.05). Contrast sensitivity was also significantly improved by a factor of 2.4, 1.8 and 1.4 on average for 4, 8 and 12 cycles/degree, respectively (p<0.05 for all frequencies). Although the residual aberration was comparable to that of normal eyes, the average visual acuity in logMAR with the customized SLPD was 0.21, substantially worse than normal acuity. Conclusions The customized SLPD with wavefront-guided optics corrected the HOA of advanced KC patients to normal levels and improved their vision significantly. PMID:23478630
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)
2000-01-01
Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.
Oculometer Measurement of Air Traffic Controller Visual Attention
1975-02-01
AD/A-006 965 OCULOMETER MEASUREMENT OF AIR TRAFFIC CONTR OLLER VISUAL ATTENTION Gloria Karsten, et al National Aviation Facilities Experimental Cente...Radiation Center, Lexington, Mass., July 1971. 2. Stell, Kenneth J ., Avionics: Optical Device Studies Flight Displays, Aviation Week and Space Technology
Astronaut Charles Conrad during visual acuity experiments over Laredo
NASA Technical Reports Server (NTRS)
1965-01-01
Astronaut Charles Conrad Jr., pilot for the prime crew on the Gemini 5 space flight, takes pictures of predetermined land areas during visual acuity experiments over Laredo, Texas. The experiments will aid in learning to identify known terrestrial features under controlled conditions.
Safety recommendation : visual meteorological conditions (VMC)
DOT National Transportation Integrated Search
1999-06-01
On April 4, 1998 at 1034 eastern standard time, N111LR, a Cessna 525 CitiationJEt, and N737Wd, a Cessna 172 Skyhawk, collided in flight over Marietta, Georgia. Visual meteorological conditions (VMC) prevailed at the time of the accident. The Citation...
Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.
2006-01-01
A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.
Effects of Retinal Eccentricity on Human Manual Control
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.
2017-01-01
This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.
Embodied linearity of speed control in Drosophila melanogaster.
Medici, V; Fry, S N
2012-12-07
Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.
Embodied linearity of speed control in Drosophila melanogaster
Medici, V.; Fry, S. N.
2012-01-01
Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles. PMID:22933185
[Health risks of long-distance air travel. Role of the general practitioner].
Bazex, Jacques; Cabanis, Emmanuel Alain
2010-06-01
Air transport is seeing an increase in long-distance flights (12-16 hours average flight time), greater seating capacity, and a higher proportion of elderly, and hence more fragile, passengers. The French Academy of Medicine recommends that medical care be reinforced, particularly on long-distance flights, through the following measures: (i) passengers should be informed in advance of potential risks, through a Passenger's Guide, (ii) all future passengers should be encouraged to seek health advice and information from their general practitioner, (iii) flight crew members should receive training as "in-flight medical correspondents", and (iv) airlines and plane designers should reserve a "medical space" on the plane, equipped with appropriate medical materials.
Skating down a steeper slope: Fear influences the perception of geographical slant
Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish
2008-01-01
Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594
Auditory, visual, and bimodal data link displays and how they support pilot performance.
Steelman, Kelly S; Talleur, Donald; Carbonari, Ronald; Yamani, Yusuke; Nunes, Ashley; McCarley, Jason S
2013-06-01
The design of data link messaging systems to ensure optimal pilot performance requires empirical guidance. The current study examined the effects of display format (auditory, visual, or bimodal) and visual display position (adjacent to instrument panel or mounted on console) on pilot performance. Subjects performed five 20-min simulated single-pilot flights. During each flight, subjects received messages from a simulated air traffic controller. Messages were delivered visually, auditorily, or bimodally. Subjects were asked to read back each message aloud and then perform the instructed maneuver. Visual and bimodal displays engendered lower subjective workload and better altitude tracking than auditory displays. Readback times were shorter with the two unimodal visual formats than with any of the other three formats. Advantages for the unimodal visual format ranged in size from 2.8 s to 3.8 s relative to the bimodal upper left and auditory formats, respectively. Auditory displays allowed slightly more head-up time (3 to 3.5 seconds per minute) than either visual or bimodal displays. Position of the visual display had only modest effects on any measure. Combined with the results from previous studies by Helleberg and Wickens and Lancaster and Casali the current data favor visual and bimodal displays over auditory displays; unimodal auditory displays were favored by only one measure, head-up time, and only very modestly. Data evinced no statistically significant effects of visual display position on performance, suggesting that, contrary to expectations, the placement of a visual data link display may be of relatively little consequence to performance.
Real-world visual search is dominated by top-down guidance.
Chen, Xin; Zelinsky, Gregory J
2006-11-01
How do bottom-up and top-down guidance signals combine to guide search behavior? Observers searched for a target either with or without a preview (top-down manipulation) or a color singleton (bottom-up manipulation) among the display objects. With a preview, reaction times were faster and more initial eye movements were guided to the target; the singleton failed to attract initial saccades under these conditions. Only in the absence of a preview did subjects preferentially fixate the color singleton. We conclude that the search for realistic objects is guided primarily by top-down control. Implications for saliency map models of visual search are discussed.
Honeybee Odometry: Performance in Varying Natural Terrain
Tautz, Juergen; Zhang, Shaowu; Spaethe, Johannes; Brockmann, Axel; Si, Aung
2004-01-01
Recent studies have shown that honeybees flying through short, narrow tunnels with visually textured walls perform waggle dances that indicate a much greater flight distance than that actually flown. These studies suggest that the bee's “odometer” is driven by the optic flow (image motion) that is experienced during flight. One might therefore expect that, when bees fly to a food source through a varying outdoor landscape, their waggle dances would depend upon the nature of the terrain experienced en route. We trained honeybees to visit feeders positioned along two routes, each 580 m long. One route was exclusively over land. The other was initially over land, then over water and, finally, again over land. Flight over water resulted in a significantly flatter slope of the waggle-duration versus distance regression, compared to flight over land. The mean visual contrast of the scenes was significantly greater over land than over water. The results reveal that, in outdoor flight, the honeybee's odometer does not run at a constant rate; rather, the rate depends upon the properties of the terrain. The bee's perception of distance flown is therefore not absolute, but scene-dependent. These findings raise important and interesting questions about how these animals navigate reliably. PMID:15252454
NASA Technical Reports Server (NTRS)
Brower, S. J.; Ridd, M. K.
1984-01-01
The use of the Environmental Protection Agency (EPA) Enviropod camera system is detailed in this handbook which contains a step-by-step guide for mission planning, flights, film processing, indexing, and documentation. Information regarding Enviropod equipment and specifications is included.
CNN Newsroom Classroom Guides. November 1999.
ERIC Educational Resources Information Center
Cable News Network, Atlanta, GA.
These guides, designed to accompany the daily Cable News Network (CNN) Newsroom broadcasts for November 1-30, 1999, provide program rundowns, suggestions for class activities and discussion, links to relevant World Wide Web sites, and a list of related news terms. Top stories include: EgyptAir Flight 990 crash, Oslo summit, India cyclone,…
Shankar, S; Ellard, C
2000-02-01
Past research has indicated that many species use the time-to-collision variable but little is known about its neural underpinnings in rodents. In a set of three experiments we set out to replicate and extend the findings of Sun et al. (Sun H-J, Carey DP, Goodale MA. Exp Brain Res 1992;91:171-175) in a visually guided task in Mongolian gerbils, and then investigated the effects of lesions to different cortical areas. We trained Mongolian gerbils to run in the dark toward a target on a computer screen. In some trials the target changed in size as the animal ran toward it in such a way as to produce 'virtual targets' if the animals were using time-to-collision or contact information. In experiment 1 we confirmed that gerbils use time-to-contact information to modulate their speed of running toward a target. In experiment 2 we established that visual cortex lesions attenuate the ability of lesioned animals to use information from the visual target to guide their run, while frontal cortex lesioned animals are not as severely affected. In experiment 3 we found that small radio-frequency lesions, of either area VI or of the lateral extrastriate regions of the visual cortex also affected the use of information from the target to modulate locomotion.
Mechnical Drawing/Drafting Curriculum Guide.
ERIC Educational Resources Information Center
Gregory, Margaret R.; Benson, Robert T.
This curriculum guide consists of materials for teaching a course in mechanical drawing and drafting. Addressed in the individual units of the guide are the following topics: the nature and scope of drawing and drafting, visualization and spatial relationships, drafting tools and materials, linework, freehand lettering, geometric construction,…
Aviation & Space Education: A Teacher's Resource Guide.
ERIC Educational Resources Information Center
Texas State Dept. of Aviation, Austin.
This resource guide contains information on curriculum guides, resources for teachers, computer software and computer related programs, audio/visual presentations, model aircraft and demonstration aids, training seminars and career education, and an aerospace bibliography for primary grades. Each entry includes all or some of the following items:…
Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François
2017-01-01
The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
14 CFR 420.23 - Launch site location review-flight corridor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this part, to contain debris with a ballistic coefficient of ≥ 3 pounds per square foot, from any non... that its proposed method provides an equivalent level of safety to that required by appendix A or B of... of ≥ 3 pounds per square foot, from any non-nominal flight of a guided sub-orbital expendable launch...
Code of Federal Regulations, 2013 CFR
2013-01-01
... not less than once every 4 hours, if the cargo space is accessible during flight. If the animal cargo space is not accessible during flight, the carrier shall visually observe the live rabbits whenever loaded and unloaded and whenever the animal cargo space is otherwise accessible to assure that they are...
Code of Federal Regulations, 2012 CFR
2012-01-01
... not less than once every 4 hours, if the cargo space is accessible during flight. If the animal cargo space is not accessible during flight, the carrier shall visually observe the live rabbits whenever loaded and unloaded and whenever the animal cargo space is otherwise accessible to assure that they are...
Code of Federal Regulations, 2014 CFR
2014-01-01
... not less than once every 4 hours, if the cargo space is accessible during flight. If the animal cargo space is not accessible during flight, the carrier shall visually observe the live rabbits whenever loaded and unloaded and whenever the animal cargo space is otherwise accessible to assure that they are...
Barth, Rolf F; Kellough, David A; Allenby, Patricia; Blower, Luke E; Hammond, Scott H; Allenby, Greg M; Buja, L Maximilian
Determination of the degree of stenosis of atherosclerotic coronary arteries is an important part of postmortem examination of the heart, but, unfortunately, estimation of the degree of luminal narrowing can be imprecise and tends to be approximations. Visual guides can be useful to assess this, but earlier attempts to develop such guides did not employ digital technology. Using this approach, we have developed two computer-generated morphometric guides to estimate the degree of luminal narrowing of atherosclerotic coronary arteries. The first is based on symmetric or eccentric circular or crescentic narrowing of the vessel lumen and the second on either slit-like or irregularly shaped narrowing of the vessel lumens. Using the Aperio ScanScope XT at a magnification of 20× we created digital whole-slide images of 20 representative microscopic cross sections of the left anterior descending (LAD) coronary artery, stained with either hematoxylin and eosin (H&E) or Movat's pentachrome stain. These cross sections illustrated a variety of luminal profiles and degrees of stenosis. Three representative types of images were selected and a visual guide was constructed with Adobe Photoshop CS5. Using the "Scale" and "Measurement" tools, we created a series of representations of stenosis with luminal cross sections depicting 20%, 40%, 60%, 70%, 80%, and 90% occlusion of the LAD branch. Four pathologists independently reviewed and scored the degree of atherosclerotic luminal narrowing based on our visual guides. In addition, digital technology was employed to determine the degree of narrowing by measuring the cross-sectional area of the 20 microscopic sections of the vessels, first assuming no narrowing and then comparing this to the percent of narrowing determined by precise measurement. Two of the observers were very experienced general autopsy pathologists, one was a first-year pathology resident on his first rotation on the autopsy service, and the fourth observer was a highly experienced cardiovascular pathologist. Interobserver reliability was assessed by determination of the intraclass correlation coefficient. The degrees of agreement for two H&E- and Movat-stained sections of the LADs from each of 10 decedents were 0.874 and 0.899, respectively, indicating strong interobserver agreement. On the average, the mean visual scores were ~8% less than the morphometric assessment (52.7 vs. 60.2), respectively. The visual guides that we have generated for scoring atherosclerotic luminal narrowing of coronary arteries should be helpful for a broad group of pathologists, from beginning pathology residents to experienced cardiovascular pathologists. Copyright © 2017 Elsevier Inc. All rights reserved.
Review of fluorescence guided surgery visualization and overlay techniques
Elliott, Jonathan T.; Dsouza, Alisha V.; Davis, Scott C.; Olson, Jonathan D.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.
2015-01-01
In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check. PMID:26504628
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.
A guide to the visual analysis and communication of biomolecular structural data.
Johnson, Graham T; Hertig, Samuel
2014-10-01
Biologists regularly face an increasingly difficult task - to effectively communicate bigger and more complex structural data using an ever-expanding suite of visualization tools. Whether presenting results to peers or educating an outreach audience, a scientist can achieve maximal impact with minimal production time by systematically identifying an audience's needs, planning solutions from a variety of visual communication techniques and then applying the most appropriate software tools. A guide to available resources that range from software tools to professional illustrators can help researchers to generate better figures and presentations tailored to any audience's needs, and enable artistically inclined scientists to create captivating outreach imagery.
Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning
2015-07-26
To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.
SABER: Airland Combat Training Model Credibility Assessment and Methodology
1992-03-01
The three types of weather are good, VFR conditions (visual flight rules); fair , MVFR (marginal VFR), and; poor, IFR conditions (instrument flight rules...categories good, fair and poor represent VFR, MVFR and IFR flight conditions respectively. Darkness can be thought of as an attribute of weather, that... fair , poor, or very poor (VP). The meaning of these values were explained in section 4.3.5. Another value , called impassible (IMP), should be added to
A bee in the corridor: centering and wall-following
NASA Astrophysics Data System (ADS)
Serres, Julien R.; Masson, Guillaume P.; Ruffier, Franck; Franceschini, Nicolas
2008-12-01
In an attempt to better understand the mechanism underlying lateral collision avoidance in flying insects, we trained honeybees ( Apis mellifera) to fly through a large (95-cm wide) flight tunnel. We found that, depending on the entrance and feeder positions, honeybees would either center along the corridor midline or fly along one wall. Bees kept following one wall even when a major (150-cm long) part of the opposite wall was removed. These findings cannot be accounted for by the “optic flow balance” hypothesis that has been put forward to explain the typical bees’ “centering response” observed in narrower corridors. Both centering and wall-following behaviors are well accounted for, however, by a control scheme called the lateral optic flow regulator, i.e., a feedback system that strives to maintain the unilateral optic flow constant. The power of this control scheme is that it would allow the bee to guide itself visually in a corridor without having to measure its speed or distance from the walls.
Analysis of a flare-director concept for an externally blown flap STOL aircraft
NASA Technical Reports Server (NTRS)
Middleton, D. B.
1974-01-01
A flare-director concept involving a thrust-required flare-guidance equation was developed and tested on a moving-base simulator. The equation gives a signal to command thrust as a linear function of the errors between the variables thrust, altitude, and altitude rate and corresponding values on a desired reference flare trajectory. During the simulator landing tests this signal drove either the horizontal command bar of the aircraft's flight director or a thrust-command dot on a head-up virtual-image display of a flare director. It was also used as the input to a simple autoflare system. An externally blown flap STOL (short take-off and landing) aircraft (with considerable stability and control augmentation) was modeled for the landing tests. The pilots considered the flare director a valuable guide for executing a proper flare-thrust program under instrument-landing conditions, but were reluctant to make any use of the head-up display when they were performing the landings visually.
Users guide: The LaRC human-operator-simulator-based pilot model
NASA Technical Reports Server (NTRS)
Bogart, E. H.; Waller, M. C.
1985-01-01
A Human Operator Simulator (HOS) based pilot model has been developed for use at NASA LaRC for analysis of flight management problems. The model is currently configured to simulate piloted flight of an advanced transport airplane. The generic HOS operator and machine model was originally developed under U.S. Navy sponsorship by Analytics, Inc. and through a contract with LaRC was configured to represent a pilot flying a transport airplane. A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central computer system. This document provides a guide for using the program and describes in some detail the assortment of files used during its operation.
Kimura, Takeshi; Shiomi, Hiroki; Kuribayashi, Sachio; Isshiki, Takaaki; Kanazawa, Susumu; Ito, Hiroshi; Ikeda, Shunya; Forrest, Ben; Zarins, Christopher K; Hlatky, Mark A; Norgaard, Bjarne L
2015-01-01
Percutaneous coronary intervention (PCI) based on fractional flow reserve (FFRcath) measurement during invasive coronary angiography (CAG) results in improved patient outcome and reduced healthcare costs. FFR can now be computed non-invasively from standard coronary CT angiography (cCTA) scans (FFRCT). The purpose of this study is to determine the potential impact of non-invasive FFRCT on costs and clinical outcomes of patients with suspected coronary artery disease in Japan. Clinical data from 254 patients in the HeartFlowNXT trial, costs of goods and services in Japan, and clinical outcome data from the literature were used to estimate the costs and outcomes of 4 clinical pathways: (1) CAG-visual guided PCI, (2) CAG-FFRcath guided PCI, (3) cCTA followed by CAG-visual guided PCI, (4) cCTA-FFRCT guided PCI. The CAG-visual strategy demonstrated the highest projected cost ($10,360) and highest projected 1-year death/myocardial infarction rate (2.4 %). An assumed price for FFRCT of US $2,000 produced equivalent clinical outcomes (death/MI rate: 1.9 %) and healthcare costs ($7,222) for the cCTA-FFRCT strategy and the CAG-FFRcath guided PCI strategy. Use of the cCTA-FFRCT strategy to select patients for PCI would result in 32 % lower costs and 19 % fewer cardiac events at 1 year compared to the most commonly used CAG-visual strategy. Use of cCTA-FFRCT to select patients for CAG and PCI may reduce costs and improve clinical outcome in patients with suspected coronary artery disease in Japan.
NASA Technical Reports Server (NTRS)
Rising, J. J.
1982-01-01
The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.
Simulation of nap-of-the-Earth flight in helicopters
NASA Technical Reports Server (NTRS)
Condon, Gregory W.
1991-01-01
NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.
Lemeshchenko, N A; Ivanov, A I; Lapa, V V; Davydov, V V; Zhelonkin, V I; Riabinin, V A; Golosov, S Iu
2014-01-01
The article deals with results of experimental studies conducted on flight testing desk and covering peculiarities of pilot's perception of flight information presented on on-board liquid crystal display in dependence on changes speed and update rate of the screen. The authors determine frequency characteristics of information update rate, that achieve acceptable quality of the flight parameters perception in accordance with the changes speed. Vigorous maneuvering with high angular velocities of changed parameters of roll and pitch causes visual distortions that are connected with poor frequency of information update rate, deteriorate piloting quality and can cause flight unsafety.
Visual Odometry for Autonomous Deep-Space Navigation Project
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory’s considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm’s performance and ability to process ‘flight-like’ imagery formats with a ‘flight-like’ trajectory, positioning ourselves to easily process flight data from the upcoming ‘ISS Selfie’ activity and then compare the algorithm’s quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system.Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.
Visual Odometry for Autonomous Deep-Space Navigation Project
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory's considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm's performance and ability to process 'flight-like' imagery formats with a 'flight-like' trajectory, positioning ourselves to easily process flight data from the upcoming 'ISS Selfie' activity and then compare the algorithm's quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system. Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.
Introduction to the MCS. Visual Media Learning Guide.
ERIC Educational Resources Information Center
Spokane Falls Community Coll., WA.
This student learning guide is designed to introduce graphics arts students t the MCS (Modular Composition System) compugraphic typesetting system. Addressed in the individual units of the competency-based guide are the following tasks: programming the compugraphic typesetting system, creating a new file and editing a file, operating a…
Graphic Design Career Guide 2. Revised Edition.
ERIC Educational Resources Information Center
Craig, James
The graphic design field is diverse and includes many areas of specialization. This guide introduces students to career opportunities in graphic design. The guide is organized in four parts. "Part One: Careers in Graphic Design" identifies and discusses the various segments of the graphic design industry, including: Advertising, Audio-Visual, Book…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de; Pech, Maciej; Lux, Anke
ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BDmore » and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.« less
Fadlallah, Ali; Dirani, Ali; Chelala, Elias; Antonios, Rafic; Cherfan, George; Jarade, Elias
2014-10-01
To evaluate the safety and clinical outcome of combined non-topography-guided photorefractive keratectomy (PRK) and corneal collagen cross-linking (CXL) for the treatment of mild refractive errors in patients with early stage keratoconus. A retrospective, nonrandomized study of patients with early stage keratoconus (stage 1 or 2) who underwent simultaneous non-topography-guided PRK and CXL. All patients had at least 2 years of follow-up. Data were collected preoperatively and postoperatively at the 6-month, 1-year, and 2-year follow-up visit after combined non-topography-guided PRK and CXL. Seventy-nine patients (140 eyes) were included in the study. Combined non-topography-guided PRK and CXL induced a significant improvement in both visual acuity and refraction. Uncorrected distance visual acuity significantly improved from 0.39 ± 0.22 logMAR before combined non-topography-guided PRK and CXL to 0.12 ± 0.14 logMAR at the last follow-up visit (P <.001) and corrected distance visual acuity remained stable (0.035 ± 0.062 logMAR preoperatively vs 0.036 ± 0.058 logMAR postoperatively, P =.79). The mean spherical equivalent decreased from -1.78 ± 1.43 to -0.42 ± 0.60 diopters (D) (P <.001), and the mean cylinder decreased from 1.47 ± 1.10 to 0.83 ± 0.55 D (P <.001). At the last follow-up visit mean keratometry flat was 43.30 ± 1.75 vs 45.62 ± 1.72 D preoperatively (P = .03) and mean keratometry steep was 44.39 ± 3.14 vs 46.53 ± 2.13 D preoperatively (P = .02). Mean central corneal thickness decreased from 501.74 ± 13.11 to 475.93 ± 12.25 µm following combined non-topography-guided PRK and CXL (P < .001). No intraoperative complications occurred. Four eyes developed mild haze that responded well to a short course of topical steroids. No eye developed infectious keratitis. Combined non-topography-guided PRK and CXL is an effective and safe option for correcting mild refractive error and improving visual acuity in patients with early stable keratoconus. Copyright 2014, SLACK Incorporated.
Impaired visually guided weight-shifting ability in children with cerebral palsy.
Ballaz, Laurent; Robert, Maxime; Parent, Audrey; Prince, François; Lemay, Martin
2014-09-01
The ability to control voluntary weight shifting is crucial in many functional tasks. To our knowledge, weight shifting ability in response to a visual stimulus has never been evaluated in children with cerebral palsy (CP). The aim of the study was (1) to propose a new method to assess visually guided medio-lateral (M/L) weight shifting ability and (2) to compare weight-shifting ability in children with CP and typically developing (TD) children. Ten children with spastic diplegic CP (Gross Motor Function Classification System level I and II; age 7-12 years) and 10 TD age-matched children were tested. Participants played with the skiing game on the Wii Fit game console. Center of pressure (COP) displacements, trunk and lower-limb movements were recorded during the last virtual slalom. Maximal isometric lower limb strength and postural control during quiet standing were also assessed. Lower-limb muscle strength was reduced in children with CP compared to TD children and postural control during quiet standing was impaired in children with CP. As expected, the skiing game mainly resulted in M/L COP displacements. Children with CP showed lower M/L COP range and velocity as compared to TD children but larger trunk movements. Trunk and lower extremity movements were less in phase in children with CP compared to TD children. Commercially available active video games can be used to assess visually guided weight shifting ability. Children with spastic diplegic CP showed impaired visually guided weight shifting which can be explained by non-optimal coordination of postural movement and reduced muscular strength. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi
2007-07-01
Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.
Eye movements, visual search and scene memory, in an immersive virtual environment.
Kit, Dmitry; Katz, Leor; Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary
2014-01-01
Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency.
Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per
2017-04-01
The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.
Hummingbirds control hovering flight by stabilizing visual motion.
Goller, Benjamin; Altshuler, Douglas L
2014-12-23
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Dark focus of accommodation as dependent and independent variables in visual display technology
NASA Technical Reports Server (NTRS)
Jones, Sherrie; Kennedy, Robert; Harm, Deborah
1992-01-01
When independent stimuli are available for accommodation, as in the dark or under low contrast conditions, the lens seeks its resting position. Individual differences in resting positions are reliable, under autonomic control, and can change with visual task demands. We hypothesized that motion sickness in a flight simulator might result in dark focus changes. Method: Subjects received training flights in three different Navy flight simulators. Two were helicopter simulators entailed CRT presentation using infinity optics, one involved a dome presentation of a computer graphic visual projection system. Results: In all three experiments there were significant differences between dark focus activity before and after simulator exposure when comparisons were made between sick and not-sick pilot subjects. In two of these experiments, the average shift in dark focus for the sick subjects was toward increased myopia when each subject was compared to his own baseline. In the third experiment, the group showed an average shift outward of small amount and the subjects who were sick showed significantly less outward movement than those who were symptom free. Conclusions: Although the relationship is not a simple one, dark focus changes in simulator sickness imply parasympathetic activity. Because changes can occur in relation to endogenous and exogenous events, such measurement may have useful applications as dependent measures in studies of visually coupled systems, virtual reality systems, and space adaptation syndrome.
Off-surface infrared flow visualization
NASA Technical Reports Server (NTRS)
Manuel, Gregory S. (Inventor); Obara, Clifford J. (Inventor); Daryabeigi, Kamran (Inventor); Alderfer, David W. (Inventor)
1993-01-01
A method for visualizing off-surface flows is provided. The method consists of releasing a gas with infrared absorbing and emitting characteristics into a fluid flow and imaging the flow with an infrared imaging system. This method allows for visualization of off-surface fluid flow in-flight. The novelty of this method is found in providing an apparatus for flow visualization which is contained within the aircraft so as not to disrupt the airflow around the aircraft, is effective at various speeds and altitudes, and is longer-lasting than previous methods of flow visualization.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... eddy current and visual inspections of the upper wing strut fitting for evidence of cracks, wear and/or... permitted extending the intervals for the repetitive eddy current and visual inspections from 100 Flight... the applicability and to require repetitive eddy current and visual inspections of the upper wing...
NASA Astrophysics Data System (ADS)
Kammel, H.; Haase, H.
An experimental psycho-physiological method is presented for the evaluation of visual-cognitive performance preconditions and operational reliability of pilots and cosmonauts. As visual-cognitive stress are used tachistoscopically presented instrument symbols under conditions of individual speed of work and time pressure. The results of the compared extreme groups consisting of pilots with good and insufficient flight performance showed that the pilots with impairments to the quality of flight activity differ already before the test in their individual habitual characteristics and actual motivation, during the stress in their operational parameters, in the dimensions of their cardiorespiratory activation as well as in their efficiency and after the stress in their subjective experience of the stress. Conclusions are drawn for the evaluation of the aptitude of pilots and cosmonauts.
Chow, John W; Stokic, Dobrivoje S
2018-03-01
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
DOT National Transportation Integrated Search
2013-10-04
Performance based navigation supports the design of more precise flight procedures. However, these new procedures can be visually complex, which may impact the usability of charts that depict the procedures. The purpose of the study was to evaluate w...
Orbiter 'Enterprise' rides 'piggy-back' atop NASA 747 carrier
NASA Technical Reports Server (NTRS)
1977-01-01
The Orbiter 101 'Enterprise' rides 'piggy-back' atop the NASA 747 carrier aircraft during the second free flight of the Shuttle Apporach and Landing Tests (ALTs) conducted on September 13, 1977 at Dryden Flight Research Center in Southern California. One chase plane can be seen in the left background, another appearing to be directly under the Boeing 747. Astronauts Joe H. Engle, and Richard H. Truly were the crew of the 'Enterprise.' The ALT free flights are designed to verify Orbiter subsonic airworthiness, integrated systems operations and pilot-guided approach and landing capability and satisfying prerequisites to automatic flight control and navigation mode.
ERIC Educational Resources Information Center
Jazzar, Michael; Hamm, Carl
2007-01-01
Following an illustrious introduction to the Montagnards and their plight and flight to the United States, this study explores the education, assimilation, and future development of Montagnard students into American schools. A guide for school leaders is presented within this study to assist the Montagnard students in overcoming obstacles and…
Flight to Success: A Collection of Lists Created for Today's Business World.
ERIC Educational Resources Information Center
Corder, Lloyd E., Comp.
This guide suggests ways to improve communication skills for those individuals just starting out in the business world. The guide offers advice from an abundance of sources condensed into easy-to-follow lists on the subjects of: (1) dress tips for men and women; (2) introductions; (3) remembering people's names; (4) conversational techniques for…
Scouts behave as streakers in honeybee swarms
NASA Astrophysics Data System (ADS)
Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf
2013-08-01
Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.
Hilbert, Sebastian; Sommer, Philipp; Gutberlet, Matthias; Gaspar, Thomas; Foldyna, Borek; Piorkowski, Christopher; Weiss, Steffen; Lloyd, Thomas; Schnackenburg, Bernhard; Krueger, Sascha; Fleiter, Christian; Paetsch, Ingo; Jahnke, Cosima; Hindricks, Gerhard; Grothoff, Matthias
2016-04-01
Recently cardiac magnetic resonance (CMR) imaging has been found feasible for the visualization of the underlying substrate for cardiac arrhythmias as well as for the visualization of cardiac catheters for diagnostic and ablation procedures. Real-time CMR-guided cavotricuspid isthmus ablation was performed in a series of six patients using a combination of active catheter tracking and catheter visualization using real-time MR imaging. Cardiac magnetic resonance utilizing a 1.5 T system was performed in patients under deep propofol sedation. A three-dimensional-whole-heart sequence with navigator technique and a fast automated segmentation algorithm was used for online segmentation of all cardiac chambers, which were thereafter displayed on a dedicated image guidance platform. In three out of six patients complete isthmus block could be achieved in the MR scanner, two of these patients did not need any additional fluoroscopy. In the first patient technical issues called for a completion of the procedure in a conventional laboratory, in another two patients the isthmus was partially blocked by magnetic resonance imaging (MRI)-guided ablation. The mean procedural time for the MR procedure was 109 ± 58 min. The intubation of the CS was performed within a mean time of 2.75 ± 2.21 min. Total fluoroscopy time for completion of the isthmus block ranged from 0 to 7.5 min. The combination of active catheter tracking and passive real-time visualization in CMR-guided electrophysiologic (EP) studies using advanced interventional hardware and software was safe and enabled efficient navigation, mapping, and ablation. These cases demonstrate significant progress in the development of MR-guided EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Sleep Disturbances among Persons Who Are Visually Impaired: Survey of Dog Guide Users.
ERIC Educational Resources Information Center
Fouladi, Massoud K.; Moseley, Merrick J.; Jones, Helen S.; Tobin, Michael J.
1998-01-01
A survey completed by 1237 adults with severe visual impairments found that 20% described the quality of their sleep as poor or very poor. Exercise was associated with better sleep and depression with poorer sleep. However, visual acuity did not predict sleep quality, casting doubt on the idea that restricted visual input (light) causes sleep…
Visual Literacy for Libraries: A Practical, Standards-Based Guide
ERIC Educational Resources Information Center
Brown, Nicole E.; Bussert, Kaila; Hattwig, Denise; Medaille, Ann
2016-01-01
The importance of images and visual media in today's culture is changing what it means to be literate in the 21st century. Digital technologies have made it possible for almost anyone to create and share visual media. Yet the pervasiveness of images and visual media does not necessarily mean that individuals are able to critically view, use, and…
Ground-Based Studies of Headward Fluid Shifts Related to Space Flight
NASA Technical Reports Server (NTRS)
Petersen, L. G.; Watkins, W.; Hargens, A. R.; Macias, B. R.
2017-01-01
Long-term space flight decreases visual acuity in more than 50% of astronauts with some reports of post-flight lumbar opening pressures up to 21 mmHg1. Loss of hydrostatic (gravitational) pressures in microgravity shifts blood, spinal fluid and tissue fluids towards the head, probably causing venous congestion and leading to symptoms compatible with chronically increased intracranial pressure (ICP). This is characterized as the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Simulation of gravitational stress by application of Lower Body Negative Pressure (LBNP) is proposed as a means to reduce ICP and reestablish cerebral health in astronauts during long mission stay in space. We hypothesize that 50 mmHg of lower body negative pressure (LBNP) during supine and simulated intracranial hypertension by 15 deg head-down tilt (HDT) counteracts elevations in ICP and internal jugular vein crosssectional area (IJV CSA).
Comparison of Flight Simulators Based on Human Motion Perception Metrics
NASA Technical Reports Server (NTRS)
Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.
2015-01-01
In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Bloomberg, J. J.; Layne, C. S.
1997-01-01
We present a review of converging sources of evidence which suggest that the differences between loading histories experienced in 1-g and weightlessness are sufficient to stimulate adaptation in mechanical impedance of the musculoskeletal system. As a consequence of this adaptive change we argue that we should observe changes in the ability to attenuate force transmission through the musculoskeletal system both during and after space flight. By focusing attention on the relation between human sensorimotor activity and support surfaces, the importance of controlling mechanical energy flow through the musculoskeletal system is demonstrated. The implications of such control are discussed in light of visual-vestibular function in the specific context of head and gaze control during postflight locomotion. Evidence from locomotory biomechanics, visual-vestibular function, ergonomic evaluations of human vibration, and specific investigations of locomotion and head and gaze control after space flight, is considered.
Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.
2013-05-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray
2013-01-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Deal, P. L.
1975-01-01
The simulation employed all six rigid-body degrees of freedom and incorporated aerodynamic characteristics based on wind-tunnel data. The flight instrumentation included a localizer and a flight director which was used to capture and to maintain a two-segment glide slope. A closed-circuit television display of a STOLport provided visual cues during simulations of the approach and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls and believed that the simulator motion was an aid in evaluating the decoupled controls, although a minimum turbulence level with root-mean-square gust intensity of 0.3 m/sec (1 ft/sec) was required to mask undesirable characteristics of the moving-base simulator.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel
2017-01-01
A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.
1971-01-01
The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.
Tyurin packs the docking probe in Node 1 during Expedition Three
2001-09-17
ISS003-E-5632 (17 September 2001) --- Cosmonaut Mikhail Tyurin, Expedition Three flight engineer, packs the docking probe in a stowage bag in Unity. Cosmonaut Vladimir Dezhurov, flight engineer, videotapes the event. The docking probe successfully guided the arrival of the Russian-built Pirs docking compartment to the International Space Station (ISS). Tyurin and Dezhurov represent Rosaviakosmos.
Dezhurov removes the docking probe in Zvezda during Expedition Three
2001-09-17
ISS003-E-5621 (17 September 2001) --- Cosmonaut Vladimir Dezhurov, Expedition Three flight engineer, prepares to remove the docking probe in the Zvezda Service Module's pressurized adapter. The docking probe successfully guided the arrival of the Russian-built Pirs docking compartment to the International Space Station (ISS). Mikhail Tyurin, flight engineer, is visible in the background. Tyurin and Dezhurov represent Rosaviakosmos.
Thomas P. Hodgman
2005-01-01
State agencies are often considered the prime avenues for implementation of Partners in Flight (PIF) bird conservation plans. Yet, such agencies already have in place a planning structure, which allows for dispersal of Federal Aid funds and guides management actions. Consequently, superimposing additional planning frameworks (e.g., PIF bird conservation plans) on state...
Three-Dimensional Displays In The Future Flight Station
NASA Astrophysics Data System (ADS)
Bridges, Alan L.
1984-10-01
This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.
Local motion adaptation enhances the representation of spatial structure at EMD arrays
Lindemann, Jens P.; Egelhaaf, Martin
2017-01-01
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631
Material inspection of EURECA first findings and recommendations
NASA Technical Reports Server (NTRS)
Vaneesbeek, Marc; Froggatt, Michael; Gourmelon, Georges
1995-01-01
This paper gives the first results of the Post flight materials investigation on the European Retrievable Carrier (EURECA) after a stay of 11 months in LEO. The paper will concentrate on the first findings after the visual inspection performed at KSC and Astrotech and give some general design recommendations for potential future Carrier flights.
14 CFR Appendix A to Part 129 - Application for Operations Specifications by Foreign Air Carriers
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Operations. State whether the operation proposed is day or night, visual flight rules, instrument flight...). Sec. IV. Communications facilities. List all communication facilities to be used by the applicant in... English language to a degree necessary to enable them to properly communicate with Airport Traffic Control...
Prototyping Visual Learning Analytics Guided by an Educational Theory Informed Goal
ERIC Educational Resources Information Center
Hillaire, Garron; Rappolt-Schlichtmann, Gabrielle; Ducharme, Kim
2016-01-01
Prototype work can support the creation of data visualizations throughout the research and development process through paper prototypes with sketching, designed prototypes with graphic design tools, and functional prototypes to explore how the implementation will work. One challenging aspect of data visualization work is coordinating the expertise…