Sample records for visually responsive neurons

  1. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits.

    PubMed

    Kimura, Rui; Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Kimura, Rie; Ebina, Teppei; Yanagawa, Yuchio; Sohya, Kazuhiro; Tsumoto, Tadaharu

    2014-07-23

    Visual responsiveness of cortical neurons changes depending on the brain state. Neural circuit mechanism underlying this change is unclear. By applying the method of in vivo two-photon functional calcium imaging to transgenic rats in which GABAergic neurons express fluorescent protein, we analyzed changes in visual response properties of cortical neurons when animals became awakened from anesthesia. In the awake state, the magnitude and reliability of visual responses of GABAergic neurons increased whereas the decay of responses of excitatory neurons became faster. To test whether the basal forebrain (BF) cholinergic projection is involved in these changes, we analyzed effects of electrical and optogenetic activation of BF on visual responses of mouse cortical neurons with in vivo imaging and whole-cell recordings. Electrical BF stimulation in anesthetized animals induced the same direction of changes in visual responses of both groups of neurons as awakening. Optogenetic activation increased the frequency of visually evoked action potentials in GABAergic neurons but induced the delayed hyperpolarization that ceased the late generation of action potentials in excitatory neurons. Pharmacological analysis in slice preparations revealed that photoactivation-induced depolarization of layer 1 GABAergic neurons was blocked by a nicotinic receptor antagonist, whereas non-fast-spiking layer 2/3 GABAergic neurons was blocked only by the application of both nicotinic and muscarinic receptor antagonists. These results suggest that the effect of awakening is mediated mainly through nicotinic activation of layer 1 GABAergic neurons and mixed nicotinic/muscarinic activation of layer 2/3 non-fast-spiking GABAergic neurons, which together curtails the visual responses of excitatory neurons. Copyright © 2014 the authors 0270-6474/14/3410122-12$15.00/0.

  2. Visual Attention Model Based on Statistical Properties of Neuron Responses

    PubMed Central

    Duan, Haibin; Wang, Xiaohua

    2015-01-01

    Visual attention is a mechanism of the visual system that can select relevant objects from a specific scene. Interactions among neurons in multiple cortical areas are considered to be involved in attentional allocation. However, the characteristics of the encoded features and neuron responses in those attention related cortices are indefinite. Therefore, further investigations carried out in this study aim at demonstrating that unusual regions arousing more attention generally cause particular neuron responses. We suppose that visual saliency is obtained on the basis of neuron responses to contexts in natural scenes. A bottom-up visual attention model is proposed based on the self-information of neuron responses to test and verify the hypothesis. Four different color spaces are adopted and a novel entropy-based combination scheme is designed to make full use of color information. Valuable regions are highlighted while redundant backgrounds are suppressed in the saliency maps obtained by the proposed model. Comparative results reveal that the proposed model outperforms several state-of-the-art models. This study provides insights into the neuron responses based saliency detection and may underlie the neural mechanism of early visual cortices for bottom-up visual attention. PMID:25747859

  3. Neuronal basis of covert spatial attention in the frontal eye field.

    PubMed

    Thompson, Kirk G; Biscoe, Keri L; Sato, Takashi R

    2005-10-12

    The influential "premotor theory of attention" proposes that developing oculomotor commands mediate covert visual spatial attention. A likely source of this attentional bias is the frontal eye field (FEF), an area of the frontal cortex involved in converting visual information into saccade commands. We investigated the link between FEF activity and covert spatial attention by recording from FEF visual and saccade-related neurons in monkeys performing covert visual search tasks without eye movements. Here we show that the source of attention signals in the FEF is enhanced activity of visually responsive neurons. At the time attention is allocated to the visual search target, nonvisually responsive saccade-related movement neurons are inhibited. Therefore, in the FEF, spatial attention signals are independent of explicit saccade command signals. We propose that spatially selective activity in FEF visually responsive neurons corresponds to the mental spotlight of attention via modulation of ongoing visual processing.

  4. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication

    PubMed Central

    2017-01-01

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40–50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40–50 ms. Here, in the corticogeniculate visual system of awake rabbits, we investigate the functional significance of this axonal diversity, and the effects of shifting alert/nonalert brain states on corticogeniculate processing. We show that axonal conduction times are strongly related to multiple visual response properties, suggesting a continuum of visual responsiveness spanning the spectrum of corticogeniculate axonal conduction times. We also show that transitions between awake brain states powerfully affect corticogeniculate processing, in some ways more strongly than in layer 4. PMID:28559382

  5. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    PubMed

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

    PubMed

    Marino, Robert A; Levy, Ron; Munoz, Douglas P

    2015-08-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. Copyright © 2015 the American Physiological Society.

  7. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus

    PubMed Central

    Levy, Ron; Munoz, Douglas P.

    2015-01-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. PMID:26063770

  8. Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey.

    PubMed

    Ono, T; Tamura, R; Nishijo, H; Nakamura, K; Tabuchi, E

    1989-02-01

    Visual information processing was investigated in the inferotemporal cortical (ITCx)-amygdalar (AM)-lateral hypothalamic (LHA) axis which contributes to food-nonfood discrimination. Neuronal activity was recorded from monkey AM and LHA during discrimination of sensory stimuli including sight of food or nonfood. The task had four phases: control, visual, bar press, and ingestion. Of 710 AM neurons tested, 220 (31.0%) responded during visual phase: 48 to only visual stimulation, 13 (1.9%) to visual plus oral sensory stimulation, 142 (20.0%) to multimodal stimulation and 17 (2.4%) to one affectively significant item. Of 669 LHA neurons tested, 106 (15.8%) responded in the visual phase. Of 80 visual-related neurons tested systematically, 33 (41.2%) responded selectively to the sight of any object predicting the availability of reward, and 47 (58.8%) responded nondifferentially to both food and nonfood. Many of AM neuron responses were graded according to the degree of affective significance of sensory stimuli (sensory-affective association), but responses of LHA food responsive neurons did not depend on the kind of reward indicated by the sensory stimuli (stimulus-reinforcement association). Some AM and LHA food responses were modulated by extinction or reversal. Dynamic information processing in ITCx-AM-LHA axis was investigated by reversible deficits of bilateral ITCx or AM by cooling. ITCx cooling suppressed discrimination by vision responding AM neurons (8/17). AM cooling suppressed LHA responses to food (9/22). We suggest deep AM-LHA involvement in food-nonfood discrimination based on AM sensory-affective association and LHA stimulus-reinforcement association.

  9. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    PubMed

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate visual system of awake rabbits, we investigate the functional significance of this axonal diversity, and the effects of shifting alert/nonalert brain states on corticogeniculate processing. We show that axonal conduction times are strongly related to multiple visual response properties, suggesting a continuum of visual responsiveness spanning the spectrum of corticogeniculate axonal conduction times. We also show that transitions between awake brain states powerfully affect corticogeniculate processing, in some ways more strongly than in layer 4. Copyright © 2017 the authors 0270-6474/17/376342-17$15.00/0.

  10. Visual adaptation and novelty responses in the superior colliculus

    PubMed Central

    Boehnke, Susan E.; Berg, David J.; Marino, Robert M.; Baldi, Pierre F.; Itti, Laurent; Munoz, Douglas P.

    2011-01-01

    The brain's ability to ignore repeating, often redundant, information while enhancing novel information processing is paramount to survival. When stimuli are repeatedly presented, the response of visually-sensitive neurons decreases in magnitude, i.e. neurons adapt or habituate, although the mechanism is not yet known. We monitored activity of visual neurons in the superior colliculus (SC) of rhesus monkeys who actively fixated while repeated visual events were presented. We dissociated adaptation from habituation as mechanisms of the response decrement by using a Bayesian model of adaptation, and by employing a paradigm including rare trials that included an oddball stimulus that was either brighter or dimmer. If the mechanism is adaptation, response recovery should be seen only for the brighter stimulus; if habituation, response recovery (‘dishabituation’) should be seen for both the brighter and dimmer stimulus. We observed a reduction in the magnitude of the initial transient response and an increase in response onset latency with stimulus repetition for all visually responsive neurons in the SC. Response decrement was successfully captured by the adaptation model which also predicted the effects of presentation rate and rare luminance changes. However, in a subset of neurons with sustained activity to visual stimuli, a novelty signal akin to dishabituation was observed late in the visual response profile to both brighter and dimmer stimuli and was not captured by the model. This suggests that SC neurons integrate both rapidly discounted information about repeating stimuli and novelty information about oddball events, to support efficient selection in a cluttered dynamic world. PMID:21864319

  11. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns

    PubMed Central

    Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA

    2015-01-01

    Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184

  12. Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation.

    PubMed

    Girman, S V; Lund, R D

    2007-07-01

    The uppermost layer (stratum griseum superficiale, SGS) of the superior colliculus (SC) provides an important gateway from the retina to the visual extrastriate and visuomotor systems. The majority of attention has been given to the role of this "visual" SC in saccade generation and target selection and it is generally considered to be less important in visual perception. We have found, however, that in the rat SGS1, the most superficial division of the SGS, the neurons perform very sophisticated analysis of visual information. First, in studying their responses with a variety of flashing stimuli we found that the neurons respond not to brightness changes per se, but to the appearance and/or disappearance of visual shapes in their receptive fields (RFs). Contrary to conventional RFs of neurons at the early stages of visual processing, the RFs in SGS1 cannot be described in terms of fixed spatial distribution of excitatory and inhibitory inputs. Second, SGS1 neurons showed robust orientation tuning to drifting gratings and orientation-specific modulation of the center response from surround. These are features previously seen only in visual cortical neurons and are considered to be involved in "contour" perception and figure-ground segregation. Third, responses of SGS1 neurons showed complex dynamics; typically the response tuning became progressively sharpened with repetitive grating periods. We conclude that SGS1 neurons are involved in considerably more complex analysis of retinal input than was previously thought. SGS1 may participate in early stages of figure-ground segregation and have a role in low-resolution nonconscious vision as encountered after visual decortication.

  13. Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements

    PubMed Central

    McFarland, James M.; Cumming, Bruce G.

    2016-01-01

    The ability to distinguish between elements of a sensory neuron's activity that are stimulus independent versus driven by the stimulus is critical for addressing many questions in systems neuroscience. This is typically accomplished by measuring neural responses to repeated presentations of identical stimuli and identifying the trial-variable components of the response as noise. In awake primates, however, small “fixational” eye movements (FEMs) introduce uncontrolled trial-to-trial differences in the visual stimulus itself, potentially confounding this distinction. Here, we describe novel analytical methods that directly quantify the stimulus-driven and stimulus-independent components of visual neuron responses in the presence of FEMs. We apply this approach, combined with precise model-based eye tracking, to recordings from primary visual cortex (V1), finding that standard approaches that ignore FEMs typically miss more than half of the stimulus-driven neural response variance, creating substantial biases in measures of response reliability. We show that these effects are likely not isolated to the particular experimental conditions used here, such as the choice of visual stimulus or spike measurement time window, and thus will be a more general problem for V1 recordings in awake primates. We also demonstrate that measurements of the stimulus-driven and stimulus-independent correlations among pairs of V1 neurons can be greatly biased by FEMs. These results thus illustrate the potentially dramatic impact of FEMs on measures of signal and noise in visual neuron activity and also demonstrate a novel approach for controlling for these eye-movement-induced effects. SIGNIFICANCE STATEMENT Distinguishing between the signal and noise in a sensory neuron's activity is typically accomplished by measuring neural responses to repeated presentations of an identical stimulus. For recordings from the visual cortex of awake animals, small “fixational” eye movements (FEMs) inevitably introduce trial-to-trial variability in the visual stimulus, potentially confounding such measures. Here, we show that FEMs often have a dramatic impact on several important measures of response variability for neurons in primary visual cortex. We also present an analytical approach for quantifying signal and noise in visual neuron activity in the presence of FEMs. These results thus highlight the importance of controlling for FEMs in studies of visual neuron function, and demonstrate novel methods for doing so. PMID:27277801

  14. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex.

    PubMed

    Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.

  15. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex

    PubMed Central

    Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207

  16. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  17. Specific excitatory connectivity for feature integration in mouse primary visual cortex

    PubMed Central

    Molina-Luna, Patricia; Roth, Morgane M.

    2017-01-01

    Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769

  18. Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo

    PubMed Central

    El-Boustani, Sami; Sur, Mriganka

    2014-01-01

    In the visual cortex, inhibitory neurons alter the computations performed by target cells via combination of two fundamental operations, division and subtraction. The origins of these operations have been variously ascribed to differences in neuron classes, synapse location or receptor conductances. Here, by utilizing specific visual stimuli and single optogenetic probe pulses, we show that the function of parvalbumin-expressing and somatostatin-expressing neurons in mice in vivo is governed by the overlap of response timing between these neurons and their targets. In particular, somatostatin-expressing neurons respond at longer latencies to small visual stimuli compared with their target neurons and provide subtractive inhibition. With large visual stimuli, however, they respond at short latencies coincident with their target cells and switch to provide divisive inhibition. These results indicate that inhibition mediated by these neurons is a dynamic property of cortical circuits rather than an immutable property of neuronal classes. PMID:25504329

  19. Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation

    PubMed Central

    Haider, Bilal; Krause, Matthew R.; Duque, Alvaro; Yu, Yuguo; Touryan, Jonathan; Mazer, James A.; McCormick, David A.

    2011-01-01

    SUMMARY During natural vision, the entire visual field is stimulated by images rich in spatiotemporal structure. Although many visual system studies restrict stimuli to the classical receptive field (CRF), it is known that costimulation of the CRF and the surrounding nonclassical receptive field (nCRF) increases neuronal response sparseness. The cellular and network mechanisms underlying increased response sparseness remain largely unexplored. Here we show that combined CRF + nCRF stimulation increases the sparseness, reliability, and precision of spiking and membrane potential responses in classical regular spiking (RSC) pyramidal neurons of cat primary visual cortex. Conversely, fast-spiking interneurons exhibit increased activity and decreased selectivity during CRF + nCRF stimulation. The increased sparseness and reliability of RSC neuron spiking is associated with increased inhibitory barrages and narrower visually evoked synaptic potentials. Our experimental observations were replicated with a simple computational model, suggesting that network interactions among neuronal subtypes ultimately sharpen recurrent excitation, producing specific and reliable visual responses. PMID:20152117

  20. Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.

    PubMed

    Wang, Feng; Chen, Minggui; Yan, Yin; Zhaoping, Li; Li, Wu

    2015-09-30

    Visual perception is influenced by attention deployed voluntarily or triggered involuntarily by salient stimuli. Modulation of visual cortical processing by voluntary or endogenous attention has been extensively studied, but much less is known about how involuntary or exogenous attention affects responses of visual cortical neurons. Using implanted microelectrode arrays, we examined the effects of exogenous attention on neuronal responses in the primary visual cortex (V1) of awake monkeys. A bright annular cue was flashed either around the receptive fields of recorded neurons or in the opposite visual field to capture attention. A subsequent grating stimulus probed the cue-induced effects. In a fixation task, when the cue-to-probe stimulus onset asynchrony (SOA) was <240 ms, the cue induced a transient increase of neuronal responses to the probe at the cued location during 40-100 ms after the onset of neuronal responses to the probe. This facilitation diminished and disappeared after repeated presentations of the same cue but recurred for a new cue of a different color. In another task to detect the probe, relative shortening of monkey's reaction times for the validly cued probe depended on the SOA in a way similar to the cue-induced V1 facilitation, and the behavioral and physiological cueing effects remained after repeated practice. Flashing two cues simultaneously in the two opposite visual fields weakened or diminished both the physiological and behavioral cueing effects. Our findings indicate that exogenous attention significantly modulates V1 responses and that the modulation strength depends on both novelty and task relevance of the stimulus. Significance statement: Visual attention can be involuntarily captured by a sudden appearance of a conspicuous object, allowing rapid reactions to unexpected events of significance. The current study discovered a correlate of this effect in monkey primary visual cortex. An abrupt, salient, flash enhanced neuronal responses, and shortened the animal's reaction time, to a subsequent visual probe stimulus at the same location. However, the enhancement of the neural responses diminished after repeated exposures to this flash if the animal was not required to react to the probe. Moreover, a second, simultaneous, flash at another location weakened the neuronal and behavioral effects of the first one. These findings revealed, beyond the observations reported so far, the effects of exogenous attention in the brain. Copyright © 2015 the authors 0270-6474/15/3513419-11$15.00/0.

  1. Improved contour detection model with spatial summation properties based on nonclassical receptive field

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya

    2016-07-01

    The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.

  2. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  3. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    PubMed

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  4. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    PubMed Central

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  5. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    PubMed

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex

    PubMed Central

    Mruczek, Ryan E. B.

    2012-01-01

    The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717

  7. Nonvisual influences on visual-information processing in the superior colliculus.

    PubMed

    Stein, B E; Jiang, W; Wallace, M T; Stanford, T R

    2001-01-01

    Although visually responsive neurons predominate in the deep layers of the superior colliculus (SC), the majority of them also receive sensory inputs from nonvisual sources (i.e. auditory and/or somatosensory). Most of these 'multisensory' neurons are able to synthesize their cross-modal inputs and, as a consequence, their responses to visual stimuli can be profoundly enhanced or depressed in the presence of a nonvisual cue. Whether response enhancement or response depression is produced by this multisensory interaction is predictable based on several factors. These include: the organization of a neuron's visual and nonvisual receptive fields; the relative spatial relationships of the different stimuli (to their respective receptive fields and to one another); and whether or not the neuron is innervated by a select population of cortical neurons. The response enhancement or depression of SC neurons via multisensory integration has significant survival value via its profound impact on overt attentive/orientation behaviors. Nevertheless, these multisensory processes are not present at birth, and require an extensive period of postnatal maturation. It seems likely that the sensory experiences obtained during this period play an important role in crafting the processes underlying these multisensory interactions.

  8. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.

  9. Attention Increases Spike Count Correlations between Visual Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161

  10. Encoding of Target Detection during Visual Search by Single Neurons in the Human Brain.

    PubMed

    Wang, Shuo; Mamelak, Adam N; Adolphs, Ralph; Rutishauser, Ueli

    2018-06-08

    Neurons in the primate medial temporal lobe (MTL) respond selectively to visual categories such as faces, contributing to how the brain represents stimulus meaning. However, it remains unknown whether MTL neurons continue to encode stimulus meaning when it changes flexibly as a function of variable task demands imposed by goal-directed behavior. While classically associated with long-term memory, recent lesion and neuroimaging studies show that the MTL also contributes critically to the online guidance of goal-directed behaviors such as visual search. Do such tasks modulate responses of neurons in the MTL, and if so, do their responses mirror bottom-up input from visual cortices or do they reflect more abstract goal-directed properties? To answer these questions, we performed concurrent recordings of eye movements and single neurons in the MTL and medial frontal cortex (MFC) in human neurosurgical patients performing a memory-guided visual search task. We identified a distinct population of target-selective neurons in both the MTL and MFC whose response signaled whether the currently fixated stimulus was a target or distractor. This target-selective response was invariant to visual category and predicted whether a target was detected or missed behaviorally during a given fixation. The response latencies, relative to fixation onset, of MFC target-selective neurons preceded those in the MTL by ∼200 ms, suggesting a frontal origin for the target signal. The human MTL thus represents not only fixed stimulus identity, but also task-specified stimulus relevance due to top-down goal relevance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition

    PubMed Central

    Aoki, Chiye; Hawken, Michael J.

    2012-01-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABAA receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701–713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  12. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition.

    PubMed

    Disney, Anita A; Aoki, Chiye; Hawken, Michael J

    2012-10-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width.

  13. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    PubMed

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  14. Visual processing in the central bee brain.

    PubMed

    Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila

    2009-08-12

    Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.

  15. Neocortical Rebound Depolarization Enhances Visual Perception

    PubMed Central

    Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji

    2015-01-01

    Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866

  16. Visual development in primates: Neural mechanisms and critical periods

    PubMed Central

    Kiorpes, Lynne

    2015-01-01

    Despite many decades of research into the development of visual cortex, it remains unclear what neural processes set limitations on the development of visual function and define its vulnerability to abnormal visual experience. This selected review examines the development of visual function and its neural correlates, and highlights the fact that in most cases receptive field properties of infant neurons are substantially more mature than infant visual function. One exception is temporal resolution, which can be accounted for by resolution of neurons at the level of the LGN. In terms of spatial vision, properties of single neurons alone are not sufficient to account for visual development. Different visual functions develop over different time courses. Their onset may be limited by the existence of neural response properties that support a given perceptual ability, but the subsequent time course of maturation to adult levels remains unexplained. Several examples are offered suggesting that taking account of weak signaling by infant neurons, correlated firing, and pooled responses of populations of neurons brings us closer to an understanding of the relationship between neural and behavioral development. PMID:25649764

  17. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish

    PubMed Central

    Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.

    2012-01-01

    During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441

  18. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  19. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    PubMed

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  20. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT

    PubMed Central

    Xiao, Jianbo

    2015-01-01

    Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869

  1. Dynamic representation of partially occluded objects in primate prefrontal and visual cortex

    PubMed Central

    Choi, Hannah; Shea-Brown, Eric

    2017-01-01

    Successful recognition of partially occluded objects is presumed to involve dynamic interactions between brain areas responsible for vision and cognition, but neurophysiological evidence for the involvement of feedback signals is lacking. Here, we demonstrate that neurons in the ventrolateral prefrontal cortex (vlPFC) of monkeys performing a shape discrimination task respond more strongly to occluded than unoccluded stimuli. In contrast, neurons in visual area V4 respond more strongly to unoccluded stimuli. Analyses of V4 response dynamics reveal that many neurons exhibit two transient response peaks, the second of which emerges after vlPFC response onset and displays stronger selectivity for occluded shapes. We replicate these findings using a model of V4/vlPFC interactions in which occlusion-sensitive vlPFC neurons feed back to shape-selective V4 neurons, thereby enhancing V4 responses and selectivity to occluded shapes. These results reveal how signals from frontal and visual cortex could interact to facilitate object recognition under occlusion. PMID:28925354

  2. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.

    PubMed

    Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M

    2006-10-25

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.

  3. Integration of Auditory and Visual Communication Information in the Primate Ventrolateral Prefrontal Cortex

    PubMed Central

    Sugihara, Tadashi; Diltz, Mark D.; Averbeck, Bruno B.; Romanski, Lizabeth M.

    2009-01-01

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O’Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication. PMID:17065454

  4. Neuronal responses to face-like stimuli in the monkey pulvinar.

    PubMed

    Nguyen, Minh Nui; Hori, Etsuro; Matsumoto, Jumpei; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    The pulvinar nuclei appear to function as the subcortical visual pathway that bypasses the striate cortex, rapidly processing coarse facial information. We investigated responses from monkey pulvinar neurons during a delayed non-matching-to-sample task, in which monkeys were required to discriminate five categories of visual stimuli [photos of faces with different gaze directions, line drawings of faces, face-like patterns (three dark blobs on a bright oval), eye-like patterns and simple geometric patterns]. Of 401 neurons recorded, 165 neurons responded differentially to the visual stimuli. These visual responses were suppressed by scrambling the images. Although these neurons exhibited a broad response latency distribution, face-like patterns elicited responses with the shortest latencies (approximately 50 ms). Multidimensional scaling analysis indicated that the pulvinar neurons could specifically encode face-like patterns during the first 50-ms period after stimulus onset and classify the stimuli into one of the five different categories during the next 50-ms period. The amount of stimulus information conveyed by the pulvinar neurons and the number of stimulus-differentiating neurons were consistently higher during the second 50-ms period than during the first 50-ms period. These results suggest that responsiveness to face-like patterns during the first 50-ms period might be attributed to ascending inputs from the superior colliculus or the retina, while responsiveness to the five different stimulus categories during the second 50-ms period might be mediated by descending inputs from cortical regions. These findings provide neurophysiological evidence for pulvinar involvement in social cognition and, specifically, rapid coarse facial information processing. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Origin and Function of Tuning Diversity in Macaque Visual Cortex

    PubMed Central

    Goris, Robbe L.T.; Simoncelli, Eero P.; Movshon, J. Anthony

    2016-01-01

    SUMMARY Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells’ diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. PMID:26549331

  6. Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.

    PubMed

    Kalb, Julia; Egelhaaf, Martin; Kurtz, Rafael

    2008-09-10

    Although many adaptation-induced effects on neuronal response properties have been described, it is often unknown at what processing stages in the nervous system they are generated. We focused on fly visual motion-sensitive neurons to identify changes in response characteristics during prolonged visual motion stimulation. By simultaneous recordings of synaptically coupled neurons, we were able to directly compare adaptation-induced effects at two consecutive processing stages in the fly visual motion pathway. This allowed us to narrow the potential sites of adaptation effects within the visual system and to relate them to the properties of signal transfer between neurons. Motion adaptation was accompanied by a response reduction, which was somewhat stronger in postsynaptic than in presynaptic cells. We found that the linear representation of motion velocity degrades during adaptation to a white-noise velocity-modulated stimulus. This effect is caused by an increasingly nonlinear velocity representation rather than by an increase of noise and is similarly strong in presynaptic and postsynaptic neurons. In accordance with this similarity, the dynamics and the reliability of interneuronal signal transfer remained nearly constant. Thus, adaptation is mainly based on processes located in the presynaptic neuron or in more peripheral processing stages. In contrast, changes of transfer properties at the analyzed synapse or in postsynaptic spike generation contribute little to changes in velocity coding during motion adaptation.

  7. Local Diversity and Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex

    PubMed Central

    Histed, Mark H.; Yurgenson, Sergey

    2011-01-01

    Many thousands of cortical neurons are activated by any single sensory stimulus, but the organization of these populations is poorly understood. For example, are neurons in mouse visual cortex—whose preferred orientations are arranged randomly—organized with respect to other response properties? Using high-speed in vivo two-photon calcium imaging, we characterized the receptive fields of up to 100 excitatory and inhibitory neurons in a 200 μm imaged plane. Inhibitory neurons had nonlinearly summating, complex-like receptive fields and were weakly tuned for orientation. Excitatory neurons had linear, simple receptive fields that can be studied with noise stimuli and system identification methods. We developed a wavelet stimulus that evoked rich population responses and yielded the detailed spatial receptive fields of most excitatory neurons in a plane. Receptive fields and visual responses were locally highly diverse, with nearby neurons having largely dissimilar receptive fields and response time courses. Receptive-field diversity was consistent with a nearly random sampling of orientation, spatial phase, and retinotopic position. Retinotopic positions varied locally on average by approximately half the receptive-field size. Nonetheless, the retinotopic progression across the cortex could be demonstrated at the scale of 100 μm, with a magnification of ∼10 μm/°. Receptive-field and response similarity were in register, decreasing by 50% over a distance of 200 μm. Together, the results indicate considerable randomness in local populations of mouse visual cortical neurons, with retinotopy as the principal source of organization at the scale of hundreds of micrometers. PMID:22171051

  8. Changes of the Prefrontal EEG (Electroencephalogram) Activities According to the Repetition of Audio-Visual Learning.

    ERIC Educational Resources Information Center

    Kim, Yong-Jin; Chang, Nam-Kee

    2001-01-01

    Investigates the changes of neuronal response according to a four time repetition of audio-visual learning. Obtains EEG data from the prefrontal (Fp1, Fp2) lobe from 20 subjects at the 8th grade level. Concludes that the habituation of neuronal response shows up in repetitive audio-visual learning and brain hemisphericity can be changed by…

  9. Neurons in the pigeon caudolateral nidopallium differentiate Pavlovian conditioned stimuli but not their associated reward value in a sign-tracking paradigm

    PubMed Central

    Kasties, Nils; Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.

    2016-01-01

    Animals exploit visual information to identify objects, form stimulus-reward associations, and prepare appropriate behavioral responses. The nidopallium caudolaterale (NCL), an associative region of the avian endbrain, contains neurons exhibiting prominent response modulation during presentation of reward-predicting visual stimuli, but it is unclear whether neural activity represents valuation signals, stimulus properties, or sensorimotor contingencies. To test the hypothesis that NCL neurons represent stimulus value, we subjected pigeons to a Pavlovian sign-tracking paradigm in which visual cues predicted rewards differing in magnitude (large vs. small) and delay to presentation (short vs. long). Subjects’ strength of conditioned responding to visual cues reliably differentiated between predicted reward types and thus indexed valuation. The majority of NCL neurons discriminated between visual cues, with discriminability peaking shortly after stimulus onset and being maintained at lower levels throughout the stimulus presentation period. However, while some cells’ firing rates correlated with reward value, such neurons were not more frequent than expected by chance. Instead, neurons formed discernible clusters which differed in their preferred visual cue. We propose that this activity pattern constitutes a prerequisite for using visual information in more complex situations e.g. requiring value-based choices. PMID:27762287

  10. Feedback to distal dendrites links fMRI signals to neural receptive fields in a spiking network model of the visual cortex.

    PubMed

    Heikkinen, Hanna; Sharifian, Fariba; Vigario, Ricardo; Vanni, Simo

    2015-07-01

    The blood oxygenation level-dependent (BOLD) response has been strongly associated with neuronal activity in the brain. However, some neuronal tuning properties are consistently different from the BOLD response. We studied the spatial extent of neural and hemodynamic responses in the primary visual cortex, where the BOLD responses spread and interact over much longer distances than the small receptive fields of individual neurons would predict. Our model shows that a feedforward-feedback loop between V1 and a higher visual area can account for the observed spread of the BOLD response. In particular, anisotropic landing of inputs to compartmental neurons were necessary to account for the BOLD signal spread, while retaining realistic spiking responses. Our work shows that simple dendrites can separate tuning at the synapses and at the action potential output, thus bridging the BOLD signal to the neural receptive fields with high fidelity. Copyright © 2015 the American Physiological Society.

  11. Visual Processing: Hungry Like the Mouse.

    PubMed

    Piscopo, Denise M; Niell, Cristopher M

    2016-09-07

    In this issue of Neuron, Burgess et al. (2016) explore how motivational state interacts with visual processing, by examining hunger modulation of food-associated visual responses in postrhinal cortical neurons and their inputs from amygdala. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less

  13. Working memory and decision processes in visual area v4.

    PubMed

    Hayden, Benjamin Y; Gallant, Jack L

    2013-01-01

    Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.

  14. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.

    PubMed

    Murthy, Aditya; Ray, Supriya; Shorter, Stephanie M; Schall, Jeffrey D; Thompson, Kirk G

    2009-05-01

    The dynamics of visual selection and saccade preparation by the frontal eye field was investigated in macaque monkeys performing a search-step task combining the classic double-step saccade task with visual search. Reward was earned for producing a saccade to a color singleton. On random trials the target and one distractor swapped locations before the saccade and monkeys were rewarded for shifting gaze to the new singleton location. A race model accounts for the probabilities and latencies of saccades to the initial and final singleton locations and provides a measure of the duration of a covert compensation process-target-step reaction time. When the target stepped out of a movement field, noncompensated saccades to the original location were produced when movement-related activity grew rapidly to a threshold. Compensated saccades to the final location were produced when the growth of the original movement-related activity was interrupted within target-step reaction time and was replaced by activation of other neurons producing the compensated saccade. When the target stepped into a receptive field, visual neurons selected the new target location regardless of the monkeys' response. When the target stepped out of a receptive field most visual neurons maintained the representation of the original target location, but a minority of visual neurons showed reduced activity. Chronometric analyses of the neural responses to the target step revealed that the modulation of visually responsive neurons and movement-related neurons occurred early enough to shift attention and saccade preparation from the old to the new target location. These findings indicate that visual activity in the frontal eye field signals the location of targets for orienting, whereas movement-related activity instantiates saccade preparation.

  15. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements

    PubMed Central

    Marple-Horvat, D E; Criado, J M; Armstrong, D M

    1998-01-01

    The discharge patterns of 166 lateral cerebellar neurones were studied in cats at rest and during visually guided stepping on a horizontal circular ladder. A hundred and twelve cells were tested against one or both of two visual stimuli: a brief full-field flash of light delivered during eating or rest, and a rung which moved up as the cat approached. Forty-five cells (40%) gave a short latency response to one or both of these stimuli. These visually responsive neurones were found in hemispheral cortex (rather than paravermal) and the lateral cerebellar nucleus (rather than nucleus interpositus).Thirty-seven cells (of 103 tested, 36%) responded to flash. The cortical visual response (mean onset latency 38 ms) was usually an increase in Purkinje cell discharge rate, of around 50 impulses s−1 and representing 1 or 2 additional spikes per trial (1.6 on average). The nuclear response to flash (mean onset latency 27 ms) was usually an increased discharge rate which was shorter lived and converted rapidly to a depression of discharge or return to control levels, so that there were on average only an additional 0.6 spikes per trial. A straightforward explanation of the difference between the cortical and nuclear response would be that the increased inhibitory Purkinje cell output cuts short the nuclear response.A higher proportion of cells responded to rung movement, sixteen of twenty-five tested (64%). Again most responded with increased discharge, which had longer latency than the flash response (first change in dentate output ca 60 ms after start of movement) and longer duration. Peak frequency changes were twice the size of those in response to flash, at 100 impulses s−1 on average and additional spikes per trial were correspondingly 3–4 times higher. Both cortical and nuclear responses were context dependent, being larger when the rung moved when the cat was closer than further away.A quarter of cells (20 of 84 tested, 24%) modulated their activity in advance of saccades, increasing their discharge rate. Four-fifths of these were non-reciprocally directionally selective. Saccade-related neurones were usually susceptible to other influences, i.e. their activity was not wholly explicable in terms of saccade parameters.Substantial numbers of visually responsive neurones also discharged in relation to stepping movements while other visually responsive neurones discharged in advance of saccadic eye movements. And more than half the cells tested were active in relation both to eye movements and to stepping movements. These combinations of properties qualify even individual cerebellar neurones to participate in the co-ordination of visually guided eye and limb movements. PMID:9490874

  16. Attention Enhances Synaptic Efficacy and Signal-to-Noise in Neural Circuits

    PubMed Central

    Briggs, Farran; Mangun, George R.; Usrey, W. Martin

    2013-01-01

    Summary Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behavior are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by (1) increasing the efficacy of presynaptic input in driving postsynaptic responses, (2) increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and (3) decreasing redundant signals between postsynaptic neurons receiving common input. These results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory milieu. PMID:23803766

  17. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011

  18. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-12-01

    The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Cross-modality Sharpening of Visual Cortical Processing through Layer 1-Mediated Inhibition and Disinhibition

    PubMed Central

    Ibrahim, Leena A.; Mesik, Lukas; Ji, Xu-ying; Fang, Qi; Li, Hai-fu; Li, Ya-tang; Zingg, Brian; Zhang, Li I.; Tao, Huizhong Whit

    2016-01-01

    Summary Cross-modality interaction in sensory perception is advantageous for animals’ survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3 but not L4 excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast, and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron and L2/3 VIP-cell mediated inhibitory and disinhibitory circuits. PMID:26898778

  20. Neuronal responses to target onset in oculomotor and somatomotor parietal circuits differ markedly in a choice task.

    PubMed

    Kubanek, J; Wang, C; Snyder, L H

    2013-11-01

    We often look at and sometimes reach for visible targets. Looking at a target is fast and relatively easy. By comparison, reaching for an object is slower and is associated with a larger cost. We hypothesized that, as a result of these differences, abrupt visual onsets may drive the circuits involved in saccade planning more directly and with less intermediate regulation than the circuits involved in reach planning. To test this hypothesis, we recorded discharge activity of neurons in the parietal oculomotor system (area LIP) and in the parietal somatomotor system (area PRR) while monkeys performed a visually guided movement task and a choice task. We found that in the visually guided movement task LIP neurons show a prominent transient response to target onset. PRR neurons also show a transient response, although this response is reduced in amplitude, is delayed, and has a slower rise time compared with LIP. A more striking difference is observed in the choice task. The transient response of PRR neurons is almost completely abolished and replaced with a slow buildup of activity, while the LIP response is merely delayed and reduced in amplitude. Our findings suggest that the oculomotor system is more closely and obligatorily coupled to the visual system, whereas the somatomotor system operates in a more discriminating manner.

  1. Monkey pulvinar neurons fire differentially to snake postures.

    PubMed

    Le, Quan Van; Isbell, Lynne A; Matsumoto, Jumpei; Le, Van Quang; Hori, Etsuro; Tran, Anh Hai; Maior, Rafael S; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.

  2. Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey.

    PubMed

    Baumann, R; van der Zwan, R; Peterhans, E

    1997-06-01

    An important task of vision is the segregation of figure and ground in situations of spatial occlusion. Psychophysical evidence suggests that the depth order at contours is defined early in visual processing. We have analysed this process in the visual cortex of the alert monkey. The animals were trained on a visual fixation task which reinforced foveal viewing. During periods of active visual fixation, we recorded the responses of single neurons in striate and prestriate cortex (areas V1, V2, and V3/V3A). The stimuli mimicked situations of spatial occlusion, usually a uniform light (or dark) rectangle overlaying a grating texture of opposite contrast. The direction of figure and ground at the borders of these rectangles was defined by the direction of the terminating grating lines (occlusion cues). Neuronal responses were analysed with respect to figure-ground direction and contrast polarity at such contours. Striate neurons often failed to respond to such stimuli, or were selective for contrast polarity; others were non-selective. Some neurons preferred a certain combination of figure-ground direction and contrast polarity. These neurons were rare both in striate and prestriate cortex. The majority of neurons signalled figure-ground direction independent of contrast polarity. These neurons were only found in prestriate cortex. We explain these responses in terms of a model which also explains neuronal signals of illusory contours. These results suggest that occlusion cues are used at an early level of processing to segregate figure and ground at contours.

  3. Sensitivity Profile for Orientation Selectivity in the Visual Cortex of Goggle-Reared Mice

    PubMed Central

    Yoshida, Takamasa; Ozawa, Katsuya; Tanaka, Shigeru

    2012-01-01

    It has been widely accepted that ocular dominance in the responses of visual cortical neurons can change depending on visual experience in a postnatal period. However, experience-dependent plasticity for orientation selectivity, which is another important response property of visual cortical neurons, is not yet fully understood. To address this issue, using intrinsic signal imaging and two-photon calcium imaging we attempted to observe the alteration of orientation selectivity in the visual cortex of juvenile and adult mice reared with head-mounted goggles, through which animals can experience only the vertical orientation. After one week of goggle rearing, the density of neurons optimally responding to the exposed orientation increased, while that responding to unexposed orientations decreased. These changes can be interpreted as a reallocation of preferred orientations among visually responsive neurons. Our obtained sensitivity profile for orientation selectivity showed a marked peak at 5 weeks and sustained elevation at 12 weeks and later. These features indicate the existence of a critical period between 4 and 7 weeks and residual orientation plasticity in adult mice. The presence of a dip in the sensitivity profile at 10 weeks suggests that different mechanisms are involved in orientation plasticity in childhood and adulthood. PMID:22792390

  4. Cumulative latency advance underlies fast visual processing in desynchronized brain state

    PubMed Central

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-01

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals. PMID:24347634

  5. Cumulative latency advance underlies fast visual processing in desynchronized brain state.

    PubMed

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-07

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.

  6. Predation risk modifies behaviour by shaping the response of identified brain neurons.

    PubMed

    Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel

    2016-04-15

    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.

  7. Origin and Function of Tuning Diversity in Macaque Visual Cortex.

    PubMed

    Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony

    2015-11-18

    Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A fish on the hunt, observed neuron by neuron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    This three-dimensional microscopy image reveals an output neuron of the optic tectum lighting up in response to visual information from the retina. The scientists used this state-of-the-art imaging technology to learn how neurons in the optic tectum take visual information and convert it into an output that drives action. More information: http://newscenter.lbl.gov/feature-stories/2010/10/29/zebrafish-vision/

  9. Response properties of ON-OFF retinal ganglion cells to high-order stimulus statistics.

    PubMed

    Xiao, Lei; Gong, Han-Yan; Gong, Hai-Qing; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-10-17

    The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Role of temporal processing stages by inferior temporal neurons in facial recognition.

    PubMed

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.

  11. Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition

    PubMed Central

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904

  12. Neuronal Response Gain Enhancement prior to Microsaccades.

    PubMed

    Chen, Chih-Yang; Ignashchenkova, Alla; Thier, Peter; Hafed, Ziad M

    2015-08-17

    Neuronal response gain enhancement is a classic signature of the allocation of covert visual attention without eye movements. However, microsaccades continuously occur during gaze fixation. Because these tiny eye movements are preceded by motor preparatory signals well before they are triggered, it may be the case that a corollary of such signals may cause enhancement, even without attentional cueing. In six different macaque monkeys and two different brain areas previously implicated in covert visual attention (superior colliculus and frontal eye fields), we show neuronal response gain enhancement for peripheral stimuli appearing immediately before microsaccades. This enhancement occurs both during simple fixation with behaviorally irrelevant peripheral stimuli and when the stimuli are relevant for the subsequent allocation of covert visual attention. Moreover, this enhancement occurs in both purely visual neurons and visual-motor neurons, and it is replaced by suppression for stimuli appearing immediately after microsaccades. Our results suggest that there may be an obligatory link between microsaccade occurrence and peripheral selective processing, even though microsaccades can be orders of magnitude smaller than the eccentricities of peripheral stimuli. Because microsaccades occur in a repetitive manner during fixation, and because these eye movements reset neurophysiological rhythms every time they occur, our results highlight a possible mechanism through which oculomotor events may aid periodic sampling of the visual environment for the benefit of perception, even when gaze is prevented from overtly shifting. One functional consequence of such periodic sampling could be the magnification of rhythmic fluctuations of peripheral covert visual attention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Visual responses of neurones in the second visual area of flying foxes (Pteropus poliocephalus) after lesions of striate cortex

    PubMed Central

    Funk, Agnes P; Rosa, Marcello G P

    1998-01-01

    The first (V1) and second (V2) cortical visual areas exist in all mammals. However, the functional relationship between these areas varies between species. While in monkeys the responses of V2 cells depend on inputs from V1, in all non-primates studied so far V2 cells largely retain responsiveness to photic stimuli after destruction of V1.We studied the visual responsiveness of neurones in V2 of flying foxes after total or partial lesions of the primary visual cortex (V1). The main finding was that visual responses can be evoked in the region of V2 corresponding, in visuotopic co-ordinates, to the lesioned portion of V1 (‘lesion projection zone’; LPZ).The visuotopic organization of V2 was not altered by V1 lesions.The proportion of neurones with strong visual responses was significantly lower within the LPZs (31.5 %) than outside these zones, or in non-lesioned control hemispheres (> 70 %). LPZ cells showed weak direction and orientation bias, and responded consistently only at low spatial and temporal frequencies.The data demonstrate that the functional relationship between V1 and V2 of flying foxes resembles that observed in non-primate mammals. This observation contrasts with the ‘primate-like’ characteristics of the flying fox visual system reported by previous studies. PMID:9806999

  14. A morphological basis for orientation tuning in primary visual cortex.

    PubMed

    Mooser, François; Bosking, William H; Fitzpatrick, David

    2004-08-01

    Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.

  15. Relating Neuronal to Behavioral Performance: Variability of Optomotor Responses in the Blowfly

    PubMed Central

    Rosner, Ronny; Warzecha, Anne-Kathrin

    2011-01-01

    Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system. PMID:22066014

  16. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex

    PubMed Central

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-01-01

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730

  17. Face-selective neurons maintain consistent visual responses across months

    PubMed Central

    McMahon, David B. T.; Jones, Adam P.; Bondar, Igor V.; Leopold, David A.

    2014-01-01

    Face perception in both humans and monkeys is thought to depend on neurons clustered in discrete, specialized brain regions. Because primates are frequently called upon to recognize and remember new individuals, the neuronal representation of faces in the brain might be expected to change over time. The functional properties of neurons in behaving animals are typically assessed over time periods ranging from minutes to hours, which amounts to a snapshot compared to a lifespan of a neuron. It therefore remains unclear how neuronal properties observed on a given day predict that same neuron's activity months or years later. Here we show that the macaque inferotemporal cortex contains face-selective cells that show virtually no change in their patterns of visual responses over time periods as long as one year. Using chronically implanted microwire electrodes guided by functional MRI targeting, we obtained distinct profiles of selectivity for face and nonface stimuli that served as fingerprints for individual neurons in the anterior fundus (AF) face patch within the superior temporal sulcus. Longitudinal tracking over a series of daily recording sessions revealed that face-selective neurons maintain consistent visual response profiles across months-long time spans despite the influence of ongoing daily experience. We propose that neurons in the AF face patch are specialized for aspects of face perception that demand stability as opposed to plasticity. PMID:24799679

  18. Face-selective neurons maintain consistent visual responses across months.

    PubMed

    McMahon, David B T; Jones, Adam P; Bondar, Igor V; Leopold, David A

    2014-06-03

    Face perception in both humans and monkeys is thought to depend on neurons clustered in discrete, specialized brain regions. Because primates are frequently called upon to recognize and remember new individuals, the neuronal representation of faces in the brain might be expected to change over time. The functional properties of neurons in behaving animals are typically assessed over time periods ranging from minutes to hours, which amounts to a snapshot compared to a lifespan of a neuron. It therefore remains unclear how neuronal properties observed on a given day predict that same neuron's activity months or years later. Here we show that the macaque inferotemporal cortex contains face-selective cells that show virtually no change in their patterns of visual responses over time periods as long as one year. Using chronically implanted microwire electrodes guided by functional MRI targeting, we obtained distinct profiles of selectivity for face and nonface stimuli that served as fingerprints for individual neurons in the anterior fundus (AF) face patch within the superior temporal sulcus. Longitudinal tracking over a series of daily recording sessions revealed that face-selective neurons maintain consistent visual response profiles across months-long time spans despite the influence of ongoing daily experience. We propose that neurons in the AF face patch are specialized for aspects of face perception that demand stability as opposed to plasticity.

  19. Chronic multiunit recordings in behaving animals: advantages and limitations.

    PubMed

    Supèr, Hans; Roelfsema, Pieter R

    2005-01-01

    By simultaneous recording from neural responses at many different loci at the same time, we can understand the interaction between neurons, and thereby gain insight into the network properties of neural processing, instead of the functioning of individual neurons. Here we will discuss a method for recording in behaving animals that uses chronically implanted micro-electrodes that allow one to track neural responses over a long period of time. In a majority of cases, multiunit activity, which is the aggregate spiking activity of a number of neurons in the vicinity of an electrode tip, is recorded through these electrodes, and occasionally single neurons can be isolated. Here we compare the properties of multiunit responses to the responses of single neurons in the primary visual cortex. We also discuss the advantages and disadvantages of the multiunit signal as opposed to a signal of single neurons. We demonstrate that multiunit recording provides a reliable and useful technique in cases where the neurons at the electrodes have similar response properties. Multiunit recording is therefore especially valuable when task variables have an effect that is consistent across the population of neurons. In the primary visual cortex, this is the case for figure-ground segregation and visual attention. Multiunit recording also has clear advantages for cross-correlation analysis. We show that the cross-correlation function between multiunit signals gives a reliable estimate of the average single-unit cross-correlation function. By the use of multiunit recording, it becomes much easier to detect relatively weak interactions between neurons at different cortical locations.

  20. Shape encoding consistency across colors in primate V4

    PubMed Central

    Bushnell, Brittany N.

    2012-01-01

    Neurons in primate cortical area V4 are sensitive to the form and color of visual stimuli. To determine whether form selectivity remains consistent across colors, we studied the responses of single V4 neurons in awake monkeys to a set of two-dimensional shapes presented in two different colors. For each neuron, we chose two colors that were visually distinct and that evoked reliable and different responses. Across neurons, the correlation coefficient between responses in the two colors ranged from −0.03 to 0.93 (median 0.54). Neurons with highly consistent shape responses, i.e., high correlation coefficients, showed greater dispersion in their responses to the different shapes, i.e., greater shape selectivity, and also tended to have less eccentric receptive field locations; among shape-selective neurons, shape consistency ranged from 0.16 to 0.93 (median 0.63). Consistency of shape responses was independent of the physical difference between the stimulus colors used and the strength of neuronal color tuning. Finally, we found that our measurement of shape response consistency was strongly influenced by the number of stimulus repeats: consistency estimates based on fewer than 10 repeats were substantially underestimated. In conclusion, our results suggest that neurons that are likely to contribute to shape perception and discrimination exhibit shape responses that are largely consistent across colors, facilitating the use of simpler algorithms for decoding shape information from V4 neuronal populations. PMID:22673324

  1. Monkey Pulvinar Neurons Fire Differentially to Snake Postures

    PubMed Central

    Le, Quan Van; Isbell, Lynne A.; Matsumoto, Jumpei; Le, Van Quang; Hori, Etsuro; Tran, Anh Hai; Maior, Rafael S.; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems. PMID:25479158

  2. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations.

    PubMed

    Sztarker, Julieta; Tomsic, Daniel

    2008-06-01

    When confronted with predators, animals are forced to take crucial decisions such as the timing and manner of escape. In the case of the crab Chasmagnathus, cumulative evidence suggests that the escape response to a visual danger stimulus (VDS) can be accounted for by the response of a group of lobula giant (LG) neurons. To further investigate this hypothesis, we examined the relationship between behavioral and neuronal activities within a variety of experimental conditions that affected the level of escape. The intensity of the escape response to VDS was influenced by seasonal variations, changes in stimulus features, and whether the crab perceived stimuli monocularly or binocularly. These experimental conditions consistently affected the response of LG neurons in a way that closely matched the effects observed at the behavioral level. In other words, the intensity of the stimulus-elicited spike activity of LG neurons faithfully reflected the intensity of the escape response. These results support the idea that the LG neurons from the lobula of crabs are deeply involved in the decision for escaping from VDS.

  3. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements. PMID:28003409

  4. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    PubMed

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  5. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex

    PubMed Central

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722

  6. Neuronal plasticity and multisensory integration in filial imprinting.

    PubMed

    Town, Stephen Michael; McCabe, Brian John

    2011-03-10

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus.

  7. Neuronal Plasticity and Multisensory Integration in Filial Imprinting

    PubMed Central

    Town, Stephen Michael; McCabe, Brian John

    2011-01-01

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus. PMID:21423770

  8. Attention Influences Single Unit and Local Field Potential Response Latencies in Visual Cortical Area V4

    PubMed Central

    Sundberg, Kristy A.; Mitchell, Jude F.; Gawne, Timothy J.

    2012-01-01

    Many previous studies have demonstrated that changes in selective attention can alter the response magnitude of visual cortical neurons, but there has been little evidence for attention affecting response latency. Small latency differences, though hard to detect, can potentially be of functional importance, and may also give insight into the mechanisms of neuronal computation. We therefore reexamined the effect of attention on the response latency of both single units and the local field potential (LFP) in primate visual cortical area V4. We find that attention does produce small (1–2 ms) but significant reductions in the latency of both the spiking and LFP responses. Though attention, like contrast elevation, reduces response latencies, we find that the two have different effects on the magnitude of the LFP. Contrast elevations increase and attention decreases the magnitude of the initial deflection of the stimulus-evoked LFP. Both contrast elevation and attention increase the magnitude of the spiking response. We speculate that latencies may be reduced at higher contrast because stronger stimulus inputs drive neurons more rapidly to spiking threshold, while attention may reduce latencies by placing neurons in a more depolarized state closer to threshold before stimulus onset. PMID:23136440

  9. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.

    PubMed

    Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S

    2017-09-06

    The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.

  10. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts.

    PubMed

    Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas

    2015-12-01

    We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Area 21a of cat visual cortex strongly modulates neuronal activities in the superior colliculus

    PubMed Central

    Hashemi-Nezhad, M; Wang, C; Burke, W; Dreher, B

    2003-01-01

    We have examined the influence of cortico-tectal projections from one of the pattern-processing extrastriate visual cortical areas, area 21a, on the responses to visual stimuli of single neurones in the superior colliculi of adult cats. For this purpose area 21a was briefly inactivated by cooling to 10 °C using a Peltier device. Responses to visual stimuli before and during cooling as well as after rewarming ipsilateral area 21a were compared. In addition, in a subpopulation of collicular neurones we have studied the effects of reversible inactivation of ipsilateral striate cortex (area 17, area V1). When area 21a was cooled, the temperature of area 17 was kept at 36 °C and vice versa. In the majority of cases (41/65; 63 %), irrespective of the velocity response profiles of collicular neurones, inactivation of area 21a resulted in a significant decrease in magnitude of responses of neurones in the ipsilateral colliculus and only in a small proportion of cells (2/65; 3.1 %) was there a significant increase in the magnitude of responses. Inactivation of area 21a resulted in significant changes in the magnitude of responses of collicular cells located not only in the retino-recipient layers but also in the stratum griseum intermediale. In most cases, reversible inactivation of area 17 resulted in a greater reduction in the magnitude of responses of collicular cells than inactivation of area 21a. Reversible inactivation of area 21a also affected the direction selectivity indices and length tuning of most collicular cells tested. PMID:12794178

  12. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.

  13. Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex

    PubMed Central

    Hrvatin, Sinisa; Hochbaum, Daniel R.; Nagy, M. Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M.; Sabatini, Bernardo L.; Greenberg, Michael E.

    2017-01-01

    Activity-dependent transcriptional responses shape cortical function. However, we lack a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes that occur across cell types in mouse visual cortex following exposure to light. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal cells demonstrated clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are likely critical for cortical function and may be sites of de-regulation in developmental brain disorders. PMID:29230054

  14. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.

    PubMed

    Einstein, Michael C; Polack, Pierre-Olivier; Tran, Duy T; Golshani, Peyman

    2017-05-17

    Low-frequency membrane potential ( V m ) oscillations were once thought to only occur in sleeping and anesthetized states. Recently, low-frequency V m oscillations have been described in inactive awake animals, but it is unclear whether they shape sensory processing in neurons and whether they occur during active awake behavioral states. To answer these questions, we performed two-photon guided whole-cell V m recordings from primary visual cortex layer 2/3 excitatory and inhibitory neurons in awake mice during passive visual stimulation and performance of visual and auditory discrimination tasks. We recorded stereotyped 3-5 Hz V m oscillations where the V m baseline hyperpolarized as the V m underwent high amplitude rhythmic fluctuations lasting 1-2 s in duration. When 3-5 Hz V m oscillations coincided with visual cues, excitatory neuron responses to preferred cues were significantly reduced. Despite this disruption to sensory processing, visual cues were critical for evoking 3-5 Hz V m oscillations when animals performed discrimination tasks and passively viewed drifting grating stimuli. Using pupillometry and animal locomotive speed as indicators of arousal, we found that 3-5 Hz oscillations were not restricted to unaroused states and that they occurred equally in aroused and unaroused states. Therefore, low-frequency V m oscillations play a role in shaping sensory processing in visual cortical neurons, even during active wakefulness and decision making. SIGNIFICANCE STATEMENT A neuron's membrane potential ( V m ) strongly shapes how information is processed in sensory cortices of awake animals. Yet, very little is known about how low-frequency V m oscillations influence sensory processing and whether they occur in aroused awake animals. By performing two-photon guided whole-cell recordings from layer 2/3 excitatory and inhibitory neurons in the visual cortex of awake behaving animals, we found visually evoked stereotyped 3-5 Hz V m oscillations that disrupt excitatory responsiveness to visual stimuli. Moreover, these oscillations occurred when animals were in high and low arousal states as measured by animal speed and pupillometry. These findings show, for the first time, that low-frequency V m oscillations can significantly modulate sensory signal processing, even in awake active animals. Copyright © 2017 the authors 0270-6474/17/375084-15$15.00/0.

  15. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    PubMed

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli

    PubMed Central

    Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.

    2010-01-01

    Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356

  17. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity

    PubMed Central

    Kaplan, Eitan S; Cooke, Sam F; Komorowski, Robert W; Chubykin, Alexander A; Thomazeau, Aurore; Khibnik, Lena A; Gavornik, Jeffrey P; Bear, Mark F

    2016-01-01

    The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity. DOI: http://dx.doi.org/10.7554/eLife.11450.001 PMID:26943618

  18. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

    PubMed

    Gharat, Amol; Baker, Curtis L

    2017-01-25

    Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.

  19. Partitioning neuronal variability

    PubMed Central

    Goris, Robbe L.T.; Movshon, J. Anthony; Simoncelli, Eero P.

    2014-01-01

    Responses of sensory neurons differ across repeated measurements. This variability is usually treated as stochasticity arising within neurons or neural circuits. However, some portion of the variability arises from fluctuations in excitability due to factors that are not purely sensory, such as arousal, attention, and adaptation. To isolate these fluctuations, we developed a model in which spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in origin, and a gain summarizing stimulus-independent modulatory influences on excitability. This model provides an accurate account of response distributions of visual neurons in macaque LGN, V1, V2, and MT, revealing that variability originates in large part from excitability fluctuations which are correlated over time and between neurons, and which increase in strength along the visual pathway. The model provides a parsimonious explanation for observed systematic dependencies of response variability and covariability on firing rate. PMID:24777419

  20. Escape from harm: linking affective vision and motor responses during active avoidance

    PubMed Central

    Keil, Andreas

    2014-01-01

    When organisms confront unpleasant objects in their natural environments, they engage in behaviors that allow them to avoid aversive outcomes. Here, we linked visual processing of threat to its behavioral consequences by including a motor response that terminated exposure to an aversive event. Dense-array steady-state visual evoked potentials were recorded in response to conditioned threat and safety signals viewed in active or passive behavioral contexts. The amplitude of neuronal responses in visual cortex increased additively, as a function of emotional value and action relevance. The gain in local cortical population activity for threat relative to safety cues persisted when aversive reinforcement was behaviorally terminated, suggesting a lingering emotionally based response amplification within the visual system. Distinct patterns of long-range neural synchrony emerged between the visual cortex and extravisual regions. Increased coupling between visual and higher-order structures was observed specifically during active perception of threat, consistent with a reorganization of neuronal populations involved in linking sensory processing to action preparation. PMID:24493849

  1. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    PubMed

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  2. Finding and Not Finding Rat Perirhinal Neuronal Responses to Novelty

    PubMed Central

    Muller, Robert U.; Brown, Malcolm W.

    2016-01-01

    ABSTRACT There is much evidence that the perirhinal cortex of both rats and monkeys is important for judging the relative familiarity of visual stimuli. In monkeys many studies have found that a proportion of perirhinal neurons respond more to novel than familiar stimuli. There are fewer studies of perirhinal neuronal responses in rats, and those studies based on exploration of objects, have raised into question the encoding of stimulus familiarity by rat perirhinal neurons. For this reason, recordings of single neuronal activity were made from the perirhinal cortex of rats so as to compare responsiveness to novel and familiar stimuli in two different behavioral situations. The first situation was based upon that used in “paired viewing” experiments that have established rat perirhinal differences in immediate early gene expression for novel and familiar visual stimuli displayed on computer monitors. The second situation was similar to that used in the spontaneous object recognition test that has been widely used to establish the involvement of rat perirhinal cortex in familiarity discrimination. In the first condition 30 (25%) of 120 perirhinal neurons were visually responsive; of these responsive neurons 19 (63%) responded significantly differently to novel and familiar stimuli. In the second condition eight (53%) of 15 perirhinal neurons changed activity significantly in the vicinity of objects (had “object fields”); however, for none (0%) of these was there a significant activity change related to the familiarity of an object, an incidence significantly lower than for the first condition. Possible reasons for the difference are discussed. It is argued that the failure to find recognition‐related neuronal responses while exploring objects is related to its detectability by the measures used, rather than the absence of all such signals in perirhinal cortex. Indeed, as shown by the results, such signals are found when a different methodology is used. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26972751

  3. Using neuronal populations to study the mechanisms underlying spatial and feature attention

    PubMed Central

    Cohen, Marlene R.; Maunsell, John H.R.

    2012-01-01

    Summary Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and non-spatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can co-modulate local neuronal populations, while feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, while spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons. PMID:21689604

  4. Predicted contextual modulation varies with distance from pinwheel centers in the orientation preference map

    PubMed Central

    Okamoto, Tsuyoshi; Ikezoe, Koji; Tamura, Hiroshi; Watanabe, Masataka; Aihara, Kazuyuki; Fujita, Ichiro

    2011-01-01

    In the primary visual cortex (V1) of some mammals, columns of neurons with the full range of orientation preferences converge at the center of a pinwheel-like arrangement, the ‘pinwheel center' (PWC). Because a neuron receives abundant inputs from nearby neurons, the neuron's position on the cortical map likely has a significant impact on its responses to the layout of orientations inside and outside its classical receptive field (CRF). To understand the positional specificity of responses, we constructed a computational model based on orientation preference maps in monkey V1 and hypothetical neuronal connections. The model simulations showed that neurons near PWCs displayed weaker but detectable orientation selectivity within their CRFs, and strongly reduced contextual modulation from extra-CRF stimuli, than neurons distant from PWCs. We suggest that neurons near PWCs robustly extract local orientation within their CRF embedded in visual scenes, and that contextual information is processed in regions distant from PWCs. PMID:22355631

  5. Properties of V1 Neurons Tuned to Conjunctions of Visual Features: Application of the V1 Saliency Hypothesis to Visual Search behavior

    PubMed Central

    Zhaoping, Li; Zhe, Li

    2012-01-01

    From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target. PMID:22719829

  6. Properties of V1 neurons tuned to conjunctions of visual features: application of the V1 saliency hypothesis to visual search behavior.

    PubMed

    Zhaoping, Li; Zhe, Li

    2012-01-01

    From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.

  7. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.

    PubMed

    Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M

    2011-09-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.

  8. Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia

    PubMed Central

    Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.

    2011-01-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036

  9. Network activity influences the subthreshold and spiking visual responses of pyramidal neurons in the three-layer turtle cortex.

    PubMed

    Wright, Nathaniel C; Wessel, Ralf

    2017-10-01

    A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was "synchronous"; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing. Copyright © 2017 the American Physiological Society.

  10. Presence of strong harmonics during visual entrainment: a magnetoencephalography study.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2012-09-01

    Visual neurons are known to synchronize their firing with stimuli that flicker at a constant rate (e.g. 12Hz). These so-called visual steady-state responses (VSSR) are a well-studied phenomenon, yet the underlying mechanisms are widely disagreed upon. Furthermore, there is limited evidence that visual neurons may simultaneously synchronize at harmonics of the stimulation frequency. We utilized magnetoencephalography (MEG) to examine synchronization at harmonics of the visual stimulation frequency (18Hz). MEG data were analyzed for event-related-synchronization (ERS) at the fundamental frequency, 36, 54, and 72Hz. We found strong ERS in all bands. Only 31% of participants showed maximum entrainment at the fundamental; others showed stronger entrainment at either 36 or 54Hz. The cortical foci of these responses indicated that the harmonics involved cortices that were partially distinct from the fundamental. These findings suggest that spatially-overlapping subpopulations of neurons are simultaneously entrained at different harmonics of the stimulus frequency. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A normalization model suggests that attention changes the weighting of inputs between visual areas

    PubMed Central

    Cohen, Marlene R.

    2017-01-01

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1–MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations. PMID:28461501

  12. A normalization model suggests that attention changes the weighting of inputs between visual areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2017-05-16

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.

  13. Evaluating the operations underlying multisensory integration in the cat superior colliculus.

    PubMed

    Stanford, Terrence R; Quessy, Stephan; Stein, Barry E

    2005-07-13

    It is well established that superior colliculus (SC) multisensory neurons integrate cues from different senses; however, the mechanisms responsible for producing multisensory responses are poorly understood. Previous studies have shown that spatially congruent cues from different modalities (e.g., auditory and visual) yield enhanced responses and that the greatest relative enhancements occur for combinations of the least effective modality-specific stimuli. Although these phenomena are well documented, little is known about the mechanisms that underlie them, because no study has systematically examined the operation that multisensory neurons perform on their modality-specific inputs. The goal of this study was to evaluate the computations that multisensory neurons perform in combining the influences of stimuli from two modalities. The extracellular activities of single neurons in the SC of the cat were recorded in response to visual, auditory, and bimodal visual-auditory stimulation. Each neuron was tested across a range of stimulus intensities and multisensory responses evaluated against the null hypothesis of simple summation of unisensory influences. We found that the multisensory response could be superadditive, additive, or subadditive but that the computation was strongly dictated by the efficacies of the modality-specific stimulus components. Superadditivity was most common within a restricted range of near-threshold stimulus efficacies, whereas for the majority of stimuli, response magnitudes were consistent with the linear summation of modality-specific influences. In addition to providing a constraint for developing models of multisensory integration, the relationship between response mode and stimulus efficacy emphasizes the importance of considering stimulus parameters when inducing or interpreting multisensory phenomena.

  14. Model-based analysis of pattern motion processing in mouse primary visual cortex

    PubMed Central

    Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.

    2015-01-01

    Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738

  15. Localized direction selective responses in the dendrites of visual interneurons of the fly

    PubMed Central

    2010-01-01

    Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983

  16. Normalization of neuronal responses in cortical area MT across signal strengths and motion directions

    PubMed Central

    Xiao, Jianbo; Niu, Yu-Qiong; Wiesner, Steven

    2014-01-01

    Multiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°. We first varied the motion coherence of each random-dot pattern and characterized, across the direction tuning curve, the relationship between neuronal responses elicited by bidirectional stimuli and by the constituent motion components. The tuning curve for bidirectional stimuli showed response normalization and can be accounted for by a weighted sum of the responses to the motion components. Allowing nonlinear, multiplicative interaction between the two component responses significantly improved the data fit for some neurons, and the interaction mainly had a suppressive effect on the neuronal response. The weighting of the component responses was not fixed but dependent on relative signal strengths. When two stimulus components moved at different coherence levels, the response weight for the higher-coherence component was significantly greater than that for the lower-coherence component. We also varied relative luminance levels of two coherently moving stimuli and found that MT response weight for the higher-luminance component was also greater. These results suggest that competition between multiple stimuli within a neuron's RF depends on relative signal strengths of the stimuli and that multiplicative nonlinearity may play an important role in shaping the response tuning for multiple stimuli. PMID:24899674

  17. A simple white noise analysis of neuronal light responses.

    PubMed

    Chichilnisky, E J

    2001-05-01

    A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.

  18. Spike synchrony reveals emergence of proto-objects in visual cortex.

    PubMed

    Martin, Anne B; von der Heydt, Rüdiger

    2015-04-29

    Neurons at early stages of the visual cortex signal elemental features, such as pieces of contour, but how these signals are organized into perceptual objects is unclear. Theories have proposed that spiking synchrony between these neurons encodes how features are grouped (binding-by-synchrony), but recent studies did not find the predicted increase in synchrony with binding. Here we propose that features are grouped to "proto-objects" by intrinsic feedback circuits that enhance the responses of the participating feature neurons. This hypothesis predicts synchrony exclusively between feature neurons that receive feedback from the same grouping circuit. We recorded from neurons in macaque visual cortex and used border-ownership selectivity, an intrinsic property of the neurons, to infer whether or not two neurons are part of the same grouping circuit. We found that binding produced synchrony between same-circuit neurons, but not between other pairs of neurons, as predicted by the grouping hypothesis. In a selective attention task, synchrony emerged with ignored as well as attended objects, and higher synchrony was associated with faster behavioral responses, as would be expected from early grouping mechanisms that provide the structure for object-based processing. Thus, synchrony could be produced by automatic activation of intrinsic grouping circuits. However, the binding-related elevation of synchrony was weak compared with its random fluctuations, arguing against synchrony as a code for binding. In contrast, feedback grouping circuits encode binding by modulating the response strength of related feature neurons. Thus, our results suggest a novel coding mechanism that might underlie the proto-objects of perception. Copyright © 2015 the authors 0270-6474/15/356860-11$15.00/0.

  19. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    PubMed

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  20. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision

    PubMed Central

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-01-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway. PMID:29196762

  1. Selective attention in an insect visual neuron.

    PubMed

    Wiederman, Steven D; O'Carroll, David C

    2013-01-21

    Animals need attention to focus on one target amid alternative distracters. Dragonflies, for example, capture flies in swarms comprising prey and conspecifics, a feat that requires neurons to select one moving target from competing alternatives. Diverse evidence, from functional imaging and physiology to psychophysics, highlights the importance of such "competitive selection" in attention for vertebrates. Analogous mechanisms have been proposed in artificial intelligence and even in invertebrates, yet direct neural correlates of attention are scarce from all animal groups. Here, we demonstrate responses from an identified dragonfly visual neuron that perfectly match a model for competitive selection within limits of neuronal variability (r(2) = 0.83). Responses to individual targets moving at different locations within the receptive field differ in both magnitude and time course. However, responses to two simultaneous targets exclusively track those for one target alone rather than any combination of the pair. Irrespective of target size, contrast, or separation, this neuron selects one target from the pair and perfectly preserves the response, regardless of whether the "winner" is the stronger stimulus if presented alone. This neuron is amenable to electrophysiological recordings, providing neuroscientists with a new model system for studying selective attention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

    PubMed Central

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2014-01-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587

  3. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    PubMed

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  4. Contrast invariance of orientation tuning in the lateral geniculate nucleus of the feline visual system.

    PubMed

    Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R

    2015-09-01

    Responses of most neurons in the primary visual cortex of mammals are markedly selective for stimulus orientation and their orientation tuning does not vary with changes in stimulus contrast. The basis of such contrast invariance of orientation tuning has been shown to be the higher variability in the response for low-contrast stimuli. Neurons in the lateral geniculate nucleus (LGN), which provides the major visual input to the cortex, have also been shown to have higher variability in their response to low-contrast stimuli. Parallel studies have also long established mild degrees of orientation selectivity in LGN and retinal cells. In our study, we show that contrast invariance of orientation tuning is already present in the LGN. In addition, we show that the variability of spike responses of LGN neurons increases at lower stimulus contrasts, especially for non-preferred orientations. We suggest that such contrast- and orientation-sensitive variability not only explains the contrast invariance observed in the LGN but can also underlie the contrast-invariant orientation tuning seen at the level of the primary visual cortex. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells.

    PubMed

    Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Hioki, Hiroyuki; Tsumoto, Tadaharu

    2017-10-06

    Neural circuits in the cerebral cortex consist primarily of excitatory pyramidal (Pyr) cells and inhibitory interneurons. Interneurons are divided into several subtypes, in which the two major groups are those expressing parvalbumin (PV) or somatostatin (SOM). These subtypes of interneurons are reported to play distinct roles in tuning and/or gain of visual response of pyramidal cells in the visual cortex. It remains unclear whether there is any quantitative and functional difference between the PV → Pyr and SOM → Pyr connections. We compared unitary inhibitory postsynaptic currents (uIPSCs) evoked by electrophysiological activation of single presynaptic interneurons with population IPSCs evoked by photo-activation of a mass of interneurons in vivo and in vitro in transgenic mice in which PV or SOM neurons expressed channelrhodopsin-2, and found that at least about 14 PV neurons made strong connections with a postsynaptic Pyr cell while a much larger number of SOM neurons made weak connections. Activation or suppression of single PV neurons modified visual responses of postsynaptic Pyr cells in 6 of 7 pairs whereas that of single SOM neurons showed no significant modification in 8 of 11 pairs, suggesting that PV neurons can act solo whereas most of SOM neurons may act in chorus on Pyr cells.

  6. The effects of short-term and long-term learning on the responses of lateral intraparietal neurons to visually presented objects.

    PubMed

    Sigurdardottir, Heida M; Sheinberg, David L

    2015-07-01

    The lateral intraparietal area (LIP) is thought to play an important role in the guidance of where to look and pay attention. LIP can also respond selectively to differently shaped objects. We sought to understand to what extent short-term and long-term experience with visual orienting determines the responses of LIP to objects of different shapes. We taught monkeys to arbitrarily associate centrally presented objects of various shapes with orienting either toward or away from a preferred spatial location of a neuron. The training could last for less than a single day or for several months. We found that neural responses to objects are affected by such experience, but that the length of the learning period determines how this neural plasticity manifests. Short-term learning affects neural responses to objects, but these effects are only seen relatively late after visual onset; at this time, the responses to newly learned objects resemble those of familiar objects that share their meaning or arbitrary association. Long-term learning affects the earliest bottom-up responses to visual objects. These responses tend to be greater for objects that have been associated with looking toward, rather than away from, LIP neurons' preferred spatial locations. Responses to objects can nonetheless be distinct, although they have been similarly acted on in the past and will lead to the same orienting behavior in the future. Our results therefore indicate that a complete experience-driven override of LIP object responses may be difficult or impossible. We relate these results to behavioral work on visual attention.

  7. Gain, noise, and contrast sensitivity of linear visual neurons

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    Contrast sensitivity is a measure of the ability of an observer to detect contrast signals of particular spatial and temporal frequencies. A formal definition of contrast sensitivity that can be applied to individual linear visual neurons is derived. A neuron is modeled by a contrast transfer function and its modulus, contrast gain, and by a noise power spectrum. The distributions of neural responses to signal and blank presentations are derived, and from these, a definition of contrast sensitivity is obtained. This formal definition may be used to relate the sensitivities of various populations of neurons, and to relate the sensitivities of neurons to that of the behaving animal.

  8. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    PubMed Central

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  9. Enriched Expression of Serotonin 1B and 2A Receptor Genes in Macaque Visual Cortex and their Bidirectional Modulatory Effects on Neuronal Responses

    PubMed Central

    Watakabe, Akiya; Komatsu, Yusuke; Sadakane, Osamu; Shimegi, Satoshi; Takahata, Toru; Higo, Noriyuki; Tochitani, Shiro; Hashikawa, Tsutomu; Naito, Tomoyuki; Osaki, Hironobu; Sakamoto, Hiroshi; Okamoto, Masahiro; Ishikawa, Ayako; Hara, Shin-ichiro; Akasaki, Takafumi; Sato, Hiromichi

    2009-01-01

    To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs. PMID:19056862

  10. Network model of top-down influences on local gain and contextual interactions in visual cortex.

    PubMed

    Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D

    2013-10-22

    The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.

  11. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.

    PubMed

    Paulk, Angelique C; Gronenberg, Wulfila

    2008-11-01

    To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.

  12. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice.

    PubMed

    Wallace, Michael L; van Woerden, Geeske M; Elgersma, Ype; Smith, Spencer L; Philpot, Benjamin D

    2017-07-01

    Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A Ube3a STOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a -deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a -deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS. NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS. Copyright © 2017 the American Physiological Society.

  13. Computational models of cortical visual processing.

    PubMed Central

    Heeger, D J; Simoncelli, E P; Movshon, J A

    1996-01-01

    The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties. PMID:8570605

  14. Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex

    PubMed Central

    Rikhye, Rajeev V.

    2015-01-01

    Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broadband spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes. SIGNIFICANCE STATEMENT The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations, which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate information processing in V1. PMID:26511254

  15. Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons

    PubMed Central

    Aton, Sara J.; Broussard, Christopher; Dumoulin, Michelle; Seibt, Julie; Watson, Adam; Coleman, Tammi; Frank, Marcos G.

    2013-01-01

    Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing–dependent depression of open-eye–biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation—evident only after post-MD sleep—are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40–300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye–biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep. PMID:23300282

  16. Is Fourier analysis performed by the visual system or by the visual investigator.

    PubMed

    Ochs, A L

    1979-01-01

    A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.

  17. Coding of Border Ownership in Monkey Visual Cortex

    PubMed Central

    Zhou, Hong; Friedman, Howard S.; von der Heydt, Rüdiger

    2016-01-01

    Areas V1 and V2 of the visual cortex have traditionally been conceived as stages of local feature representations. We investigated whether neural responses carry information about how local features belong to objects. Single-cell activity was recorded in areas V1, V2, and V4 of awake behaving monkeys. Displays were used in which the same local feature (contrast edge or line) could be presented as part of different figures. For example, the same light–dark edge could be the left side of a dark square or the right side of a light square. Each display was also presented with reversed contrast. We found significant modulation of responses as a function of the side of the figure in >50% of neurons of V2 and V4 and in 18% of neurons of the top layers of V1. Thus, besides the local contrast border information, neurons were found to encode the side to which the border belongs (“border ownership coding”). A majority of these neurons coded border ownership and the local polarity of luminance–chromaticity contrast. The others were insensitive to contrast polarity. Another 20% of the neurons of V2 and V4, and 48% of top layer V1, coded local contrast polarity, but not border ownership. The border ownership-related response differences emerged soon (<25 msec) after the response onset. In V2 and V4, the differences were found to be nearly independent of figure size up to the limit set by the size of our display (21°). Displays that differed only far outside the conventional receptive field could produce markedly different responses. When tested with more complex displays in which figure-ground cues were varied, some neurons produced invariant border ownership signals, others failed to signal border ownership for some of the displays, but neurons that reversed signals were rare. The influence of visual stimulation far from the receptive field center indicates mechanisms of global context integration. The short latencies and incomplete cue invariance suggest that the border-ownership effect is generated within the visual cortex rather than projected down from higher levels. PMID:10964965

  18. Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex

    PubMed Central

    Singer, Wolf; Maass, Wolfgang

    2009-01-01

    It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This information was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs. PMID:20027205

  19. The effects of short-term and long-term learning on the responses of lateral intraparietal neurons to visually presented objects

    PubMed Central

    Sigurdardottir, Heida M.; Sheinberg, David L.

    2015-01-01

    The lateral intraparietal area (LIP) of the dorsal visual stream is thought to play an important role in visually directed orienting, or the guidance of where to look and pay attention. LIP can also respond selectively to differently shaped objects. We sought to understand how and to what extent short-term and long-term experience with visual orienting can determine the nature of responses of LIP neurons to objects of different shapes. We taught monkeys to arbitrarily associate centrally presented objects of various shapes with orienting either toward or away from a preferred peripheral spatial location of a neuron. For some objects the training lasted for less than a single day, while for other objects the training lasted for several months. We found that neural responses to visual objects are affected both by such short-term and long-term experience, but that the length of the learning period determines exactly how this neural plasticity manifests itself. Short-term learning over the course of a single training session affects neural responses to objects, but these effects are only seen relatively late after visual onset; at this time, the neural responses to newly learned objects start to resemble those of familiar over-learned objects that share their meaning or arbitrary association. Long-term learning, on the other hand, affects the earliest and apparently bottom-up responses to visual objects. These responses tend to be greater for objects that have repeatedly been associated with looking toward, rather than away from, LIP neurons’ preferred spatial locations. Responses to objects can nonetheless be distinct even though the objects have both been similarly acted on in the past and will lead to the same orienting behavior in the future. Our results therefore also indicate that a complete experience-driven override of LIP object responses is difficult or impossible. PMID:25633647

  20. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  1. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  2. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  3. The influence of surround suppression on adaptation effects in primary visual cortex

    PubMed Central

    Wissig, Stephanie C.

    2012-01-01

    Adaptation, the prolonged presentation of stimuli, has been used to probe mechanisms of visual processing in physiological, imaging, and perceptual studies. Previous neurophysiological studies have measured adaptation effects by using stimuli tailored to evoke robust responses in individual neurons. This approach provides an incomplete view of how an adapter alters the representation of sensory stimuli by a population of neurons with diverse functional properties. We implanted microelectrode arrays in primary visual cortex (V1) of macaque monkeys and measured orientation tuning and contrast sensitivity in populations of neurons before and after prolonged adaptation. Whereas previous studies in V1 have reported that adaptation causes stimulus-specific suppression of responsivity and repulsive shifts in tuning preference, we have found that adaptation can also lead to response facilitation and shifts in tuning toward the adapter. To explain this range of effects, we have proposed and tested a simple model that employs stimulus-specific suppression in both the receptive field and the spatial surround. The predicted effects on tuning depend on the relative drive provided by the adapter to these two receptive field components. Our data reveal that adaptation can have a much richer repertoire of effects on neuronal responsivity and tuning than previously considered and suggest an intimate mechanistic relationship between spatial and temporal contextual effects. PMID:22423001

  4. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  5. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    PubMed

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  6. Auditory and visual modulation of temporal lobe neurons in voice-sensitive and association cortices.

    PubMed

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2014-02-12

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies.

  7. Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices

    PubMed Central

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.

    2014-01-01

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies. PMID:24523543

  8. Prediction suppression and surprise enhancement in monkey inferotemporal cortex.

    PubMed

    Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R

    2017-07-01

    Exposing monkeys, over the course of days and weeks, to pairs of images presented in fixed sequence, so that each leading image becomes a predictor for the corresponding trailing image, affects neuronal visual responsiveness in area TE. At the end of the training period, neurons respond relatively weakly to a trailing image when it appears in a trained sequence and, thus, confirms prediction, whereas they respond relatively strongly to the same image when it appears in an untrained sequence and, thus, violates prediction. This effect could arise from prediction suppression (reduced firing in response to the occurrence of a probable event) or surprise enhancement (elevated firing in response to the omission of a probable event). To identify its cause, we compared firing under the prediction-confirming and prediction-violating conditions to firing under a prediction-neutral condition. The results provide strong evidence for prediction suppression and limited evidence for surprise enhancement. NEW & NOTEWORTHY In predictive coding models of the visual system, neurons carry signed prediction error signals. We show here that monkey inferotemporal neurons exhibit prediction-modulated firing, as posited by these models, but that the signal is unsigned. The response to a prediction-confirming image is suppressed, and the response to a prediction-violating image may be enhanced. These results are better explained by a model in which the visual system emphasizes unpredicted events than by a predictive coding model. Copyright © 2017 the American Physiological Society.

  9. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    PubMed

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex.

    PubMed

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2015-01-06

    When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face-voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions.

  11. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  12. A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.

    PubMed

    Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion

    2015-12-21

    Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mechanisms of inhibition in cat visual cortex.

    PubMed Central

    Berman, N J; Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Neurones from layers 2-6 of the cat primary visual cortex were studied using extracellular and intracellular recordings made in vivo. The aim was to identify inhibitory events and determine whether they were associated with small or large (shunting) changes in the input conductance of the neurones. 2. Visual stimulation of subfields of simple receptive fields produced depolarizing or hyperpolarizing potentials that were associated with increased or decreased firing rates respectively. Hyperpolarizing potentials were small, 5 mV or less. In the same neurones, brief electrical stimulation of cortical afferents produced a characteristic sequence of a brief depolarization followed by a long-lasting (200-400 ms) hyperpolarization. 3. During the response to a stationary flashed bar, the synaptic activation increased the input conductance of the neurone by about 5-20%. Conductance changes of similar magnitude were obtained by electrically stimulating the neurone. Neurones stimulated with non-optimal orientations or directions of motion showed little change in input conductance. 4. These data indicate that while visually or electrically induced inhibition can be readily demonstrated in visual cortex, the inhibition is not associated with large sustained conductance changes. Thus a shunting or multiplicative inhibitory mechanism is not the principal mechanism of inhibition. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1804983

  14. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.

    PubMed

    Shen, Wanhua; McKeown, Caroline R; Demas, James A; Cline, Hollis T

    2011-11-01

    The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.

  15. Behavioral demand modulates object category representation in the inferior temporal cortex

    PubMed Central

    Emadi, Nazli

    2014-01-01

    Visual object categorization is a critical task in our daily life. Many studies have explored category representation in the inferior temporal (IT) cortex at the level of single neurons and population. However, it is not clear how behavioral demands modulate this category representation. Here, we recorded from the IT single neurons in monkeys performing two different tasks with identical visual stimuli: passive fixation and body/object categorization. We found that category selectivity of the IT neurons was improved in the categorization compared with the passive task where reward was not contingent on image category. The category improvement was the result of larger rate enhancement for the preferred category and smaller response variability for both preferred and nonpreferred categories. These specific modulations in the responses of IT category neurons enhanced signal-to-noise ratio of the neural responses to discriminate better between the preferred and nonpreferred categories. Our results provide new insight into the adaptable category representation in the IT cortex, which depends on behavioral demands. PMID:25080572

  16. Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence

    PubMed Central

    Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil

    2012-01-01

    The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631

  17. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin.

    PubMed

    Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L

    2017-01-01

    Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.

  18. Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.

    PubMed

    Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam

    2011-08-03

    Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.

  19. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    PubMed Central

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  20. Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus

    PubMed Central

    Jehee, Janneke F. M.; Ballard, Dana H.

    2009-01-01

    Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529

  1. A recurrent neural model for proto-object based contour integration and figure-ground segregation.

    PubMed

    Hu, Brian; Niebur, Ernst

    2017-12-01

    Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.

  2. Pop-out in visual search of moving targets in the archer fish.

    PubMed

    Ben-Tov, Mor; Donchin, Opher; Ben-Shahar, Ohad; Segev, Ronen

    2015-03-10

    Pop-out in visual search reflects the capacity of observers to rapidly detect visual targets independent of the number of distracting objects in the background. Although it may be beneficial to most animals, pop-out behaviour has been observed only in mammals, where neural correlates are found in primary visual cortex as contextually modulated neurons that encode aspects of saliency. Here we show that archer fish can also utilize this important search mechanism by exhibiting pop-out of moving targets. We explore neural correlates of this behaviour and report the presence of contextually modulated neurons in the optic tectum that may constitute the neural substrate for a saliency map. Furthermore, we find that both behaving fish and neural responses exhibit additive responses to multiple visual features. These findings suggest that similar neural computations underlie pop-out behaviour in mammals and fish, and that pop-out may be a universal search mechanism across all vertebrates.

  3. Contour Curvature As an Invariant Code for Objects in Visual Area V4

    PubMed Central

    Pasupathy, Anitha

    2016-01-01

    Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333

  4. Responses to Orientation Discontinuities in V1 and V2: Physiological Dissociations and Functional Implications

    PubMed Central

    Purpura, Keith P.; Victor, Jonathan D.

    2014-01-01

    Segmenting the visual image into objects is a crucial stage of visual processing. Object boundaries are typically associated with differences in luminance, but discontinuities in texture also play an important role. We showed previously that a subpopulation of neurons in V2 in anesthetized macaques responds to orientation discontinuities parallel to their receptive field orientation. Such single-cell responses could be a neurophysiological correlate of texture boundary detection. Neurons in V1, on the other hand, are known to have contextual response modulations such as iso-orientation surround suppression, which also produce responses to orientation discontinuities. Here, we use pseudorandom multiregion grating stimuli of two frame durations (20 and 40 ms) to probe and compare texture boundary responses in V1 and V2 in anesthetized macaque monkeys. In V1, responses to texture boundaries were observed for only the 40 ms frame duration and were independent of the orientation of the texture boundary. However, in transient V2 neurons, responses to such texture boundaries were robust for both frame durations and were stronger for boundaries parallel to the neuron's preferred orientation. The dependence of these processes on stimulus duration and orientation indicates that responses to texture boundaries in V2 arise independently of contextual modulations in V1. In addition, because the responses in transient V2 neurons are sensitive to the orientation of the texture boundary but those of V1 neurons are not, we suggest that V2 responses are the correlate of texture boundary detection, whereas contextual modulation in V1 serves other purposes, possibly related to orientation “pop-out.” PMID:24599456

  5. Modulation of neuronal responses during covert search for visual feature conjunctions

    PubMed Central

    Buracas, Giedrius T.; Albright, Thomas D.

    2009-01-01

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions. PMID:19805385

  6. Modulation of neuronal responses during covert search for visual feature conjunctions.

    PubMed

    Buracas, Giedrius T; Albright, Thomas D

    2009-09-29

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.

  7. Contextual Modulation is Related to Efficiency in a Spiking Network Model of Visual Cortex.

    PubMed

    Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo; Vanni, Simo

    2015-01-01

    In the visual cortex, stimuli outside the classical receptive field (CRF) modulate the neural firing rate, without driving the neuron by themselves. In the primary visual cortex (V1), such contextual modulation can be parametrized with an area summation function (ASF): increasing stimulus size causes first an increase and then a decrease of firing rate before reaching an asymptote. Earlier work has reported increase of sparseness when CRF stimulation is extended to its surroundings. However, there has been no clear connection between the ASF and network efficiency. Here we aimed to investigate possible link between ASF and network efficiency. In this study, we simulated the responses of a biomimetic spiking neural network model of the visual cortex to a set of natural images. We varied the network parameters, and compared the V1 excitatory neuron spike responses to the corresponding responses predicted from earlier single neuron data from primate visual cortex. The network efficiency was quantified with firing rate (which has direct association to neural energy consumption), entropy per spike and population sparseness. All three measures together provided a clear association between the network efficiency and the ASF. The association was clear when varying the horizontal connectivity within V1, which influenced both the efficiency and the distance to ASF, DAS. Given the limitations of our biophysical model, this association is qualitative, but nevertheless suggests that an ASF-like receptive field structure can cause efficient population response.

  8. The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat.

    PubMed

    Thigpen, Nina N; Bartsch, Felix; Keil, Andreas

    2017-04-01

    Emotional experience changes visual perception, leading to the prioritization of sensory information associated with threats and opportunities. These emotional biases have been extensively studied by basic and clinical scientists, but their underlying mechanism is not known. The present study combined measures of brain-electric activity and autonomic physiology to establish how threat biases emerge in human observers. Participants viewed stimuli designed to differentially challenge known properties of different neuronal populations along the visual pathway: location, eye, and orientation specificity. Biases were induced using aversive conditioning with only 1 combination of eye, orientation, and location predicting a noxious loud noise and replicated in a separate group of participants. Selective heart rate-orienting responses for the conditioned threat stimulus indicated bias formation. Retinotopic visual brain responses were persistently and selectively enhanced after massive aversive learning for only the threat stimulus and dissipated after extinction training. These changes were location-, eye-, and orientation-specific, supporting the hypothesis that short-term plasticity in primary visual neurons mediates the formation of perceptual biases to threat. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing

    PubMed Central

    Hwang, Jaewon

    2015-01-01

    During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing. PMID:25609614

  10. Converging levels of analysis in the cognitive neuroscience of visual attention.

    PubMed Central

    Duncan, J

    1998-01-01

    Experiments using behavioural, lesion, functional imaging and single neuron methods are considered in the context of a neuropsychological model of visual attention. According to this model, inputs compete for representation in multiple visually responsive brain systems, sensory and motor, cortical and subcortical. Competition is biased by advance priming of neurons responsive to current behavioural targets. Across systems competition is integrated such that the same, selected object tends to become dominant throughout. The behavioural studies reviewed concern divided attention within and between modalities. They implicate within-modality competition as one main restriction on concurrent stimulus identification. In contrast to the conventional association of lateral attentional focus with parietal lobe function, the lesion studies show attentional bias to be a widespread consequence of unilateral cortical damage. Although the clinical syndrome of unilateral neglect may indeed be associated with parietal lesions, this probably reflects an assortment of further deficits accompanying a simple attentional imbalance. The functional imaging studies show joint involvement of lateral prefrontal and occipital cortex in lateral attentional focus and competition. The single unit studies suggest how competition in several regions of extrastriate cortex is biased by advance priming of neurons responsive to current behavioural targets. Together, the concepts of competition, priming and integration allow a unified theoretical approach to findings from behavioural to single neuron levels. PMID:9770224

  11. Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.

    PubMed

    Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T

    2014-06-10

    Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.

  12. Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets.

    PubMed

    Meredith, M Alex; Allman, Brian L

    2015-03-01

    The recent findings in several species that the primary auditory cortex processes non-auditory information have largely overlooked the possibility of somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior auditory field and primary auditory cortex) for tactile responsivity. Multiple single-unit recordings from anesthetised ferret cortex yielded histologically verified neurons (n = 311) tested with electronically controlled auditory, visual and tactile stimuli, and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in the core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in the auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing, and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action.

    PubMed

    Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y

    1997-08-01

    Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior parietal lobule (IPL), representing egocentric distance; (2) depth-movement sensitive (DMS) neurons of V5A and the ventral intraparietal (VIP) area representing direction of linear movement in 3-D space; (3) depth-rotation-sensitive (RS) neurons of V5A and the posterior parietal (PP) area representing direction of rotary movement in space; (4) visually responsive manipulation-related neurons (visual-dominant or visual-and-motor type) of the anterior intraparietal (AIP) area, representing 3-D shape or orientation (or both) of objects for manipulation; and (5) axis-orientation-selective (AOS) and surface-orientation-selective (SOS) neurons in the caudal intraparietal sulcus (cIPS) sensitive to binocular disparity and representing the 3-D orientation of the longitudinal axes and flat surfaces, respectively. Some AOS and SOS neurons are selective in both orientation and shape. Thus the dorsal visual pathway is divided into at least two subsystems, V5A, PP and VIP areas for motion vision and V6, LIP and cIPS areas for coding position and 3-D features. The cIPS sends the signals of 3-D features of objects to the AIP area, which is reciprocally connected to the ventral premotor (F5) area and plays an essential role in matching hand orientation and shaping with 3-D objects for manipulation.

  14. Variability of visual responses of superior colliculus neurons depends on stimulus velocity.

    PubMed

    Mochol, Gabriela; Wójcik, Daniel K; Wypych, Marek; Wróbel, Andrzej; Waleszczyk, Wioletta J

    2010-03-03

    Visually responding neurons in the superficial, retinorecipient layers of the cat superior colliculus receive input from two primarily parallel information processing channels, Y and W, which is reflected in their velocity response profiles. We quantified the time-dependent variability of responses of these neurons to stimuli moving with different velocities by Fano factor (FF) calculated in discrete time windows. The FF for cells responding to low-velocity stimuli, thus receiving W inputs, increased with the increase in the firing rate. In contrast, the dynamics of activity of the cells responding to fast moving stimuli, processed by Y pathway, correlated negatively with FF whether the response was excitatory or suppressive. These observations were tested against several types of surrogate data. Whereas Poisson description failed to reproduce the variability of all collicular responses, the inclusion of secondary structure to the generating point process recovered most of the observed features of responses to fast moving stimuli. Neither model could reproduce the variability of low-velocity responses, which suggests that, in this case, more complex time dependencies need to be taken into account. Our results indicate that Y and W channels may differ in reliability of responses to visual stimulation. Apart from previously reported morphological and physiological differences of the cells belonging to Y and W channels, this is a new feature distinguishing these two pathways.

  15. Spontaneously emerging direction selectivity maps in visual cortex through STDP.

    PubMed

    Wenisch, Oliver G; Noll, Joachim; Hemmen, J Leo van

    2005-10-01

    It is still an open question as to whether, and how, direction-selective neuronal responses in primary visual cortex are generated by feedforward thalamocortical or recurrent intracortical connections, or a combination of both. Here we present an investigation that concentrates on and, only for the sake of simplicity, restricts itself to intracortical circuits, in particular, with respect to the developmental aspects of direction selectivity through spike-timing-dependent synaptic plasticity. We show that directional responses can emerge in a recurrent network model of visual cortex with spiking neurons that integrate inputs mainly from a particular direction, thus giving rise to an asymmetrically shaped receptive field. A moving stimulus that enters the receptive field from this (preferred) direction will activate a neuron most strongly because of the increased number and/or strength of inputs from this direction and since delayed isotropic inhibition will neither overlap with, nor cancel excitation, as would be the case for other stimulus directions. It is demonstrated how direction-selective responses result from spatial asymmetries in the distribution of synaptic contacts or weights of inputs delivered to a neuron by slowly conducting intracortical axonal delay lines. By means of spike-timing-dependent synaptic plasticity with an asymmetric learning window this kind of coupling asymmetry develops naturally in a recurrent network of stochastically spiking neurons in a scenario where the neurons are activated by unidirectionally moving bar stimuli and even when only intrinsic spontaneous activity drives the learning process. We also present simulation results to show the ability of this model to produce direction preference maps similar to experimental findings.

  16. Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex

    PubMed Central

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.; Petkov, Christopher I.

    2015-01-01

    When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face–voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions. PMID:25535356

  17. The effects of energy balance, obesity-proneness and sex on the neuronal response to sweet taste.

    PubMed

    Cornier, Marc-Andre; Shott, Megan E; Thomas, Elizabeth A; Bechtell, Jamie L; Bessesen, Daniel H; Tregellas, Jason R; Frank, Guido K

    2015-02-01

    We have previously shown that propensity for weight gain, energy balance state and sex are important determinants of the neuronal response to visual food cues. It is not clear, though, whether these factors also impact the neuronal response to taste. The objective of this study was to examine the neuronal response to sweet taste during energy imbalance in men and women recruited to be obesity-prone (OP) or obesity-resistant (OR). OP (13 men and 12 women) and OR (12 men and 12 women) subjects were studied after 1 day of eucaloric, overfed and underfed conditions in a randomized crossover design. On each test day, fMRI was performed in the respective acute fed state while subjects received in random order 60 trials each of 1M sucrose solution (SU), or artificial saliva (AS) following a visual cue predicting the taste. The neuronal response to SU versus AS expectation was significantly greater in the amygdala, orbitofrontal cortex, putamen and insula in OR versus OP; SU receipt was not different between groups. There were also sex-based differences with men having greater neuronal response to SU versus AS receipt in the caudate than women. The results, however, were not impacted by the state of energy balance. In summary, response to expectation but not receipt of basic sweet taste was different in OR compared to OP, highlighting the importance of learning and conditioning in the propensity to gain weight. Response to sucrose taste receipt was stronger in men than women, raising questions about the effect of sex hormones on brain response to food. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Trade-off between curvature tuning and position invariance in visual area V4

    PubMed Central

    Sharpee, Tatyana O.; Kouh, Minjoon; Reynolds, John H.

    2013-01-01

    Humans can rapidly recognize a multitude of objects despite differences in their appearance. The neural mechanisms that endow high-level sensory neurons with both selectivity to complex stimulus features and “tolerance” or invariance to identity-preserving transformations, such as spatial translation, remain poorly understood. Previous studies have demonstrated that both tolerance and selectivity to conjunctions of features are increased at successive stages of the ventral visual stream that mediates visual recognition. Within a given area, such as visual area V4 or the inferotemporal cortex, tolerance has been found to be inversely related to the sparseness of neural responses, which in turn was positively correlated with conjunction selectivity. However, the direct relationship between tolerance and conjunction selectivity has been difficult to establish, with different studies reporting either an inverse or no significant relationship. To resolve this, we measured V4 responses to natural scenes, and using recently developed statistical techniques, we estimated both the relevant stimulus features and the range of translation invariance for each neuron. Focusing the analysis on tuning to curvature, a tractable example of conjunction selectivity, we found that neurons that were tuned to more curved contours had smaller ranges of position invariance and produced sparser responses to natural stimuli. These trade-offs provide empirical support for recent theories of how the visual system estimates 3D shapes from shading and texture flows, as well as the tiling hypothesis of the visual space for different curvature values. PMID:23798444

  19. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex.

    PubMed

    Tucker, Thomas R; Katz, Lawrence C

    2003-01-01

    To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.

  20. Visuomotor Transformations Underlying Hunting Behavior in Zebrafish

    PubMed Central

    Bianco, Isaac H.; Engert, Florian

    2015-01-01

    Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638

  1. Visuomotor transformations underlying hunting behavior in zebrafish.

    PubMed

    Bianco, Isaac H; Engert, Florian

    2015-03-30

    Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Attention to the Color of a Moving Stimulus Modulates Motion-Signal Processing in Macaque Area MT: Evidence for a Unified Attentional System.

    PubMed

    Katzner, Steffen; Busse, Laura; Treue, Stefan

    2009-01-01

    Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tuning properties of the recorded neuron and the perceptual task at hand. We recorded extracellular responses from individual direction-selective neurons in the middle temporal area (MT) of rhesus monkeys trained to attend either to the color or the motion signal of a moving stimulus. We found that effects of spatial and feature-based attention in MT, which are typically observed in tasks allocating attention to motion, were very similar even when attention was directed to the color of the stimulus. We conclude that attentional modulation can occur in extrastriate cortex, even under conditions without a match between the tuning properties of the recorded neuron and the perceptual task at hand. Our data are consistent with theories of object-based attention describing a transfer of attention from relevant to irrelevant features, within the attended object and across the visual field. These results argue for a unified attentional system that modulates responses to a stimulus across cortical areas, even if a given area is specialized for processing task-irrelevant aspects of that stimulus.

  3. Cognitive processing in the primary visual cortex: from perception to memory.

    PubMed

    Supèr, Hans

    2002-01-01

    The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.

  4. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.

    PubMed

    Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M

    2003-03-01

    A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.

  5. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163

  6. From elements to perception: local and global processing in visual neurons.

    PubMed

    Spillmann, L

    1999-01-01

    Gestalt psychologists in the early part of the century challenged psychophysical notions that perceptual phenomena can be understood from a punctate (atomistic) analysis of the elements present in the stimulus. Their ideas slowed later attempts to explain vision in terms of single-cell recordings from individual neurons. A rapprochement between Gestalt phenomenology and neurophysiology seemed unlikely when the first ECVP was held in Marburg, Germany, in 1978. Since that time, response properties of neurons have been discovered that invite an interpretation of visual phenomena (including illusions) in terms of neuronal processing by long-range interactions, as first proposed by Mach and Hering in the last century. This article traces a personal journey into the early days of neurophysiological vision research to illustrate the progress that has taken place from the first attempts to correlate single-cell responses with visual perceptions. Whereas initially the receptive-field properties of individual classes of cells--e.g., contrast, wavelength, orientation, motion, disparity, and spatial-frequency detectors--were used to account for relatively simple visual phenomena, nowadays complex perceptions are interpreted in terms of long-range interactions, involving many neurons. This change in paradigm from local to global processing was made possible by recent findings, in the cortex, on horizontal interactions and backward propagation (feedback loops) in addition to classical feedforward processing. These mechanisms are exemplified by studies of the tilt effect and tilt aftereffect, direction-specific motion adaptation, illusory contours, filling-in and fading, figure--ground segregation by orientation and motion contrast, and pop-out in dynamic visual-noise patterns. Major questions for future research and a discussion of their epistemological implications conclude the article.

  7. Characterizing Responses of Translation Invariant Neurons to Natural Stimuli: Maximally Informative Invariant Dimensions

    PubMed Central

    Eickenberg, Michael; Rowekamp, Ryan J.; Kouh, Minjoon; Sharpee, Tatyana O.

    2012-01-01

    Our visual system is capable of recognizing complex objects even when their appearances change drastically under various viewing conditions. Especially in the higher cortical areas, the sensory neurons reflect such functional capacity in their selectivity for complex visual features and invariance to certain object transformations, such as image translation. Due to the strong nonlinearities necessary to achieve both the selectivity and invariance, characterizing and predicting the response patterns of these neurons represents a formidable computational challenge. A related problem is that such neurons are poorly driven by randomized inputs, such as white noise, and respond strongly only to stimuli with complex high-order correlations, such as natural stimuli. Here we describe a novel two-step optimization technique that can characterize both the shape selectivity and the range and coarseness of position invariance from neural responses to natural stimuli. One step in the optimization involves finding the template as the maximally informative dimension given the estimated spatial location where the response could have been triggered within each image. The estimates of the locations that triggered the response are subsequently updated in the next step. Under the assumption of a monotonic relationship between the firing rate and stimulus projections on the template at a given position, the most likely location is the one that has the largest projection on the estimate of the template. The algorithm shows quick convergence during optimization, and the estimation results are reliable even in the regime of small signal-to-noise ratios. When we apply the algorithm to responses of complex cells in the primary visual cortex (V1) to natural movies, we find that responses of the majority of cells were significantly better described by translation invariant models based on one template compared with position-specific models with several relevant features. PMID:22734487

  8. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    PubMed

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.

  9. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  10. Learning to Link Visual Contours

    PubMed Central

    Li, Wu; Piëch, Valentin; Gilbert, Charles D.

    2008-01-01

    SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036

  11. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping.

    PubMed

    Yildirim, Funda; Carvalho, Joana; Cornelissen, Frans W

    2018-01-01

    Visual field or retinotopic mapping is one of the most frequently used paradigms in fMRI. It uses activity evoked by position-varying high luminance contrast visual patterns presented throughout the visual field for determining the spatial organization of cortical visual areas. While the advantage of using high luminance contrast is that it tends to drive a wide range of neural populations - thus resulting in high signal-to-noise BOLD responses - this may also be a limitation, especially for approaches that attempt to squeeze more information out of the BOLD response, such as population receptive field (pRF) mapping. In that case, more selective stimulation of a subset of neurons - despite reduced signals - could result in better characterization of pRF properties. Here, we used a second-order stimulus based on local differences in orientation texture - to which we refer as orientation contrast - to perform retinotopic mapping. Participants in our experiment viewed arrays of Gabor patches composed of a foreground (a bar) and a background. These could only be distinguished on the basis of a difference in patch orientation. In our analyses, we compare the pRF properties obtained using this new orientation contrast-based retinotopy (OCR) to those obtained using classic luminance contrast-based retinotopy (LCR). Specifically, in higher order cortical visual areas such as LO, our novel approach resulted in non-trivial reductions in estimated population receptive field size of around 30%. A set of control experiments confirms that the most plausible cause for this reduction is that OCR mainly drives neurons sensitive to orientation contrast. We discuss how OCR - by limiting receptive field scatter and reducing BOLD displacement - may result in more accurate pRF localization as well. Estimation of neuronal properties is crucial for interpreting cortical function. Therefore, we conclude that using our approach, it is possible to selectively target particular neuronal populations, opening the way to use pRF modeling to dissect the response properties of more clearly-defined neuronal populations in different visual areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Representation of vestibular and visual cues to self-motion in ventral intraparietal (VIP) cortex

    PubMed Central

    Chen, Aihua; Deangelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately half of VIP cells show significant directional selectivity in response to optic flow, half show tuning to vestibular stimuli, and one-third show multisensory responses. Visual and vestibular direction preferences of multisensory VIP neurons could be congruent or opposite. When visual and vestibular stimuli were combined, VIP responses could be dominated by either input, unlike medial superior temporal area (MSTd) where optic flow tuning typically dominates or the visual posterior sylvian area (VPS) where vestibular tuning dominates. Optic flow selectivity in VIP was weaker than in MSTd but stronger than in VPS. In contrast, vestibular tuning for translation was strongest in VPS, intermediate in VIP, and weakest in MSTd. To characterize response dynamics, direction-time data were fit with a spatiotemporal model in which temporal responses were modeled as weighted sums of velocity, acceleration, and position components. Vestibular responses in VIP reflected balanced contributions of velocity and acceleration, whereas visual responses were dominated by velocity. Timing of vestibular responses in VIP was significantly faster than in MSTd, whereas timing of optic flow responses did not differ significantly among areas. These findings suggest that VIP may be proximal to MSTd in terms of vestibular processing but hierarchically similar to MSTd in terms of optic flow processing. PMID:21849564

  13. Priming with real motion biases visual cortical response to bistable apparent motion

    PubMed Central

    Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming

    2012-01-01

    Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797

  14. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.

    PubMed

    Augustinaite, Sigita; Heggelund, Paul

    2018-05-24

    Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset

    PubMed Central

    Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G

    2011-01-01

    Abstract The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion (‘pattern cells’). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern (‘component cells’) or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans. PMID:21946851

  16. OVEREXPRESSION OF SERUM RESPONSE FACTOR IN ASTROCYTES IMPROVES NEURONAL PLASTICITY IN A MODEL OF EARLY ALCOHOL EXPOSURE

    PubMed Central

    PAUL, ARCO P.; MEDINA, ALEXANDRE E.

    2012-01-01

    Neuronal plasticity deficits underlie many of the cognitive problems seen in Fetal Alcohol Spectrum Disorders (FASD). We have developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. Recently, we showed that this deficit could be reversed by overexpression of serum response factor (SRF) in the primary visual cortex during the period of monocular deprivation (MD). Surprisingly, this restoration was observed throughout the extent of visual cortex and most of the cells transfected by the virus were positive for the astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant negative (SRF−) or control GFP. After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF− or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD. PMID:22742904

  17. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area.

    PubMed

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3-5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment.

  18. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area

    PubMed Central

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3–5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment. PMID:29249953

  19. Tectonigral Projections in the Primate: A Pathway for Pre-Attentive Sensory Input to Midbrain Dopaminergic Neurons

    PubMed Central

    May, Paul J.; McHaffie, John G.; Stanford, Terrence R.; Jiang, Huai; Costello, M. Gabriela; Coizet, Veronique; Hayes, Lauren M.; Haber, Suzanne N.; Redgrave, Peter

    2010-01-01

    Much of the evidence linking the short-latency phasic signaling of midbrain dopaminergic neurons with reward-prediction errors used in learning and habit formation comes from recording the visual responses of monkey dopaminergic neurons. However, the information encoded by dopaminergic neuron activity is constrained by the qualities of the afferent visual signals made available to these cells. Recent evidence from rats and cats indicates the primary source of this visual input originates subcortically, via a direct tectonigral projection. The present anatomical study sought to establish whether a direct tectonigral projection is a significant feature of the primate brain. Injections of anterograde tracers into the superior colliculus of macaque monkeys labelled terminal arbors throughout the substantia nigra, with the densest terminations in the dorsal tier. Labelled boutons were found in close association (possibly indicative of synaptic contact) with ventral midbrain neurons staining positively for the dopaminergic marker tyrosine hydroxylase. Injections of retrograde tracer confined to the macaque substantia nigra retrogradely labelled small to medium sized neurons in the intermediate and deep layers of the superior colliculus. Together, these data indicate that a direct tectonigral projection is also a feature of the monkey brain, and therefore likely to have been conserved throughout mammalian evolution. Insofar as the superior colliculus is configured to detect unpredicted, biologically salient, sensory events, it may be safer to regard the phasic responses of midbrain dopaminergic neurons as ‘sensory prediction errors’ rather than ‘reward prediction errors’, in which case, dopamine-based theories of reinforcement learning will require revision. PMID:19175405

  20. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.

    PubMed

    Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J

    2011-08-24

    Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.

  1. Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex

    PubMed Central

    Tan (陈勇毅), Andrew Y. Y.; Brown, Brandon D.; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J.

    2011-01-01

    Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: 1) how does orientation selectivity in mouse V1 neurons compare with that in previously described species? 2) what is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity - based on membrane potential, synaptic excitation, and synaptic inhibition - to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats. PMID:21865476

  2. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  3. The disinhibitory zone of the striate neuron receptive field and its sensitivity to cross-like figures.

    PubMed

    Lazareva, N A; Shevelev, I A; Novikova, R V; Tikhomirov, A S; Sharaev, G A; Tsutskiridze, D Yu

    2002-01-01

    Acute experiments on immobilized anesthetized cats were used to confirm the suggestion that the sensitivity of many neurons on the primary visual cortex to cross-shaped, angular, and Y-shaped figures may be determined by the presence within their receptive fields of disinhibitory zones, which block end-stopping inhibition. A total of 55 neurons (84 functions, i.e.. on and off responses) were used for studies of sensitivity to crosses, and responses to single bars of different lengths were compared before and after stimulation of an additional lateral zone of the field (the presumptive disinhibitory zone), which was located in terms of responses to crosses. Seventeen of the 55 cells in which increases in the length of a single bar decreased responses, i.e., which demonstrated end-stopping inhibition, showed significant increases in responses (by an average factor of 2.06 +/- 0.16) during simultaneous stimulation of the lateral zone of the receptive field, which we interpreted as a disinhibitory effect on end-stopping inhibition. These data provide the first direct evidence for the role of end-stopping inhibition and its blockade by the disinhibitory zone of the receptive field in determining the sensitivity of some neurons in the primary visual cortex of the cat to cross-shaped figures.

  4. An egalitarian network model for the emergence of simple and complex cells in visual cortex

    PubMed Central

    Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert

    2004-01-01

    We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891

  5. Modulation of neuronal oscillatory activity in the beta- and gamma-band is associated with current individual anxiety levels.

    PubMed

    Schneider, Till R; Hipp, Joerg F; Domnick, Claudia; Carl, Christine; Büchel, Christian; Engel, Andreas K

    2018-05-26

    Human faces are among the most salient visual stimuli and act both as socially and emotionally relevant signals. Faces and especially faces with emotional expression receive prioritized processing in the human brain and activate a distributed network of brain areas reflected, e.g., in enhanced oscillatory neuronal activity. However, an inconsistent picture emerged so far regarding neuronal oscillatory activity across different frequency-bands modulated by emotionally and socially relevant stimuli. The individual level of anxiety among healthy populations might be one explanation for these inconsistent findings. Therefore, we tested the hypothesis whether oscillatory neuronal activity is associated with individual anxiety levels during perception of faces with neutral and fearful facial expressions. We recorded neuronal activity using magnetoencephalography (MEG) in 27 healthy participants and determined their individual state anxiety levels. Images of human faces with neutral and fearful expressions, and physically matched visual control stimuli were presented while participants performed a simple color detection task. Spectral analyses revealed that face processing and in particular processing of fearful faces was characterized by enhanced neuronal activity in the theta- and gamma-band and decreased activity in the beta-band in early visual cortex and the fusiform gyrus (FFG). Moreover, the individuals' state anxiety levels correlated positively with the gamma-band response and negatively with the beta response in the FFG and the amygdala. Our results suggest that oscillatory neuronal activity plays an important role in affective face processing and is dependent on the individual level of state anxiety. Our work provides new insights on the role of oscillatory neuronal activity underlying processing of faces. Copyright © 2018. Published by Elsevier Inc.

  6. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.

    PubMed

    Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio

    2015-02-19

    Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  8. Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.

    PubMed Central

    Calford, M B; Schmid, L M; Rosa, M G

    1999-01-01

    Electrophysiological recording in primary visual cortex (VI) was performed both prior to and in the hours immediately following the creation of a discrete retinal lesion in one eye with an argon laser. Lesion projection zones (LPZs; 21-64 mm2) were defined in the visual cortex by mapping the extent of the lesion onto the topographic representation in cortex. There was no effect on neuronal responses to the unlesioned eye or on its topographic representation. However, within hours of producing the retinal lesion, receptive fields obtained from stimulation of the lesioned eye were displaced onto areas surrounding the scotoma and were enlarged compared with the corresponding field obtained through the normal eye. The proportion of such responsive recording sites increased during the experiment such that 8-11 hours post-lesion, 56% of recording sites displayed neurons responsive to the lesioned eye. This is an equivalent proportion to that previously reported with long-term recovery (three weeks to three months). Responsive neurons were evident as far as 2.5 mm inside the border of the LPZ. The reorganization of the lesioned eye representation produced binocular disparities as great as 15 degrees, suggesting interactions between sites in VI up to 5.5 mm apart. PMID:10189714

  9. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons

    PubMed Central

    Sergio, Lauren E.; Crawford, J. Douglas; Fallah, Mazyar

    2015-01-01

    Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements. PMID:25717165

  10. Attention stabilizes the shared gain of V4 populations

    PubMed Central

    Rabinowitz, Neil C; Goris, Robbe L; Cohen, Marlene; Simoncelli, Eero P

    2015-01-01

    Responses of sensory neurons represent stimulus information, but are also influenced by internal state. For example, when monkeys direct their attention to a visual stimulus, the response gain of specific subsets of neurons in visual cortex changes. Here, we develop a functional model of population activity to investigate the structure of this effect. We fit the model to the spiking activity of bilateral neural populations in area V4, recorded while the animal performed a stimulus discrimination task under spatial attention. The model reveals four separate time-varying shared modulatory signals, the dominant two of which each target task-relevant neurons in one hemisphere. In attention-directed conditions, the associated shared modulatory signal decreases in variance. This finding provides an interpretable and parsimonious explanation for previous observations that attention reduces variability and noise correlations of sensory neurons. Finally, the recovered modulatory signals reflect previous reward, and are predictive of subsequent choice behavior. DOI: http://dx.doi.org/10.7554/eLife.08998.001 PMID:26523390

  11. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence.

    PubMed

    Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F

    2005-01-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.

  12. Global versus local adaptation in fly motion-sensitive neurons

    PubMed Central

    Neri, Peter; Laughlin, Simon B

    2005-01-01

    Flies, like humans, experience a well-known consequence of adaptation to visual motion, the waterfall illusion. Direction-selective neurons in the fly lobula plate permit a detailed analysis of the mechanisms responsible for motion adaptation and their function. Most of these neurons are spatially non-opponent, they sum responses to motion in the preferred direction across their entire receptive field, and adaptation depresses responses by subtraction and by reducing contrast gain. When we adapted a small area of the receptive field to motion in its anti-preferred direction, we discovered that directional gain at unadapted regions was enhanced. This novel phenomenon shows that neuronal responses to the direction of stimulation in one area of the receptive field are dynamically adjusted to the history of stimulation both within and outside that area. PMID:16191636

  13. Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex.

    PubMed

    Flevaris, Anastasia V; Murray, Scott O

    2015-09-02

    Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement. Copyright © 2015 the authors 0270-6474/15/3512273-08$15.00/0.

  14. The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices

    PubMed Central

    An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei

    2014-01-01

    All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033

  15. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  16. The Analysis of Visual Motion: From Computational Theory to Neuronal Mechanisms.

    DTIC Science & Technology

    1986-12-01

    neuronb. Brain Res. 151:599-603. Frost, B . J., Nakayama, K . 1983. Single visual neurons code opposing motion independent JW of direction. Science 220:744...Biol. Cybern. 42:195-204. llolden, A. 1. 1977. Responses of directional ganglion cells in the pigeon retina. J. Physiol., 270:2,53 269. Horn. B . K . P...R. Soc. Iond. B . 223:165-175. 51 % Computations Underlying Motion ttildret ik Koch %V. Longuet-Iliggins, H. C., Prazdny. K . 1981. The interpretation

  17. Linearly Additive Shape and Color Signals in Monkey Inferotemporal Cortex

    PubMed Central

    McMahon, David B. T.; Olson, Carl R.

    2009-01-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes—shape and color—varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape–color combinations. PMID:19144745

  18. Linearly additive shape and color signals in monkey inferotemporal cortex.

    PubMed

    McMahon, David B T; Olson, Carl R

    2009-04-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes-shape and color-varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape-color combinations.

  19. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  20. Complementary mechanisms create direction selectivity in the fly

    PubMed Central

    Haag, Juergen; Arenz, Alexander; Serbe, Etienne; Gabbiani, Fabrizio; Borst, Alexander

    2016-01-01

    How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection. DOI: http://dx.doi.org/10.7554/eLife.17421.001 PMID:27502554

  1. Spectral and Temporal Processing in Rat Posterior Auditory Cortex

    PubMed Central

    Pandya, Pritesh K.; Rathbun, Daniel L.; Moucha, Raluca; Engineer, Navzer D.; Kilgard, Michael P.

    2009-01-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex. PMID:17615251

  2. Preserving information in neural transmission.

    PubMed

    Sincich, Lawrence C; Horton, Jonathan C; Sharpee, Tatyana O

    2009-05-13

    Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transformation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated nonlinearities, could account for >85% of the total information available in the spike trains and the preserved information transmission. These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.

  3. Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices

    PubMed Central

    Amatrudo, Joseph M.; Weaver, Christina M.; Crimins, Johanna L.; Hof, Patrick R.; Rosene, Douglas L.; Luebke, Jennifer I.

    2012-01-01

    Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning. PMID:23035077

  4. Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys.

    PubMed

    Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing

    2018-04-26

    One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.

  5. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    PubMed Central

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  6. Role of spike-frequency adaptation in shaping neuronal response to dynamic stimuli.

    PubMed

    Peron, Simon Peter; Gabbiani, Fabrizio

    2009-06-01

    Spike-frequency adaptation is the reduction of a neuron's firing rate to a stimulus of constant intensity. In the locust, the Lobula Giant Movement Detector (LGMD) is a visual interneuron that exhibits rapid adaptation to both current injection and visual stimuli. Here, a reduced compartmental model of the LGMD is employed to explore adaptation's role in selectivity for stimuli whose intensity changes with time. We show that supralinearly increasing current injection stimuli are best at driving a high spike count in the response, while linearly increasing current injection stimuli (i.e., ramps) are best at attaining large firing rate changes in an adapting neuron. This result is extended with in vivo experiments showing that the LGMD's response to translating stimuli having a supralinear velocity profile is larger than the response to constant or linearly increasing velocity translation. Furthermore, we show that the LGMD's preference for approaching versus receding stimuli can partly be accounted for by adaptation. Finally, we show that the LGMD's adaptation mechanism appears well tuned to minimize sensitivity for the level of basal input.

  7. Walking modulates speed sensitivity in Drosophila motion vision.

    PubMed

    Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek

    2010-08-24

    Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Normalization as a canonical neural computation

    PubMed Central

    Carandini, Matteo; Heeger, David J.

    2012-01-01

    There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation. PMID:22108672

  9. Neurally Constrained Modeling of Perceptual Decision Making

    ERIC Educational Resources Information Center

    Purcell, Braden A.; Heitz, Richard P.; Cohen, Jeremiah Y.; Schall, Jeffrey D.; Logan, Gordon D.; Palmeri, Thomas J.

    2010-01-01

    Stochastic accumulator models account for response time in perceptual decision-making tasks by assuming that perceptual evidence accumulates to a threshold. The present investigation mapped the firing rate of frontal eye field (FEF) visual neurons onto perceptual evidence and the firing rate of FEF movement neurons onto evidence accumulation to…

  10. Visualizing the spinal neuronal dynamics of locomotion

    NASA Astrophysics Data System (ADS)

    Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.

    2004-06-01

    Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.

  11. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system.

    PubMed

    Burgess, Jed D; Arnold, Sara L; Fitzgibbon, Bernadette M; Fitzgerald, Paul B; Enticott, Peter G

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.

  12. Figure-Ground Organization in Visual Cortex for Natural Scenes

    PubMed Central

    2016-01-01

    Abstract Figure-ground organization and border-ownership assignment are essential for understanding natural scenes. It has been shown that many neurons in the macaque visual cortex signal border-ownership in displays of simple geometric shapes such as squares, but how well these neurons resolve border-ownership in natural scenes is not known. We studied area V2 neurons in behaving macaques with static images of complex natural scenes. We found that about half of the neurons were border-ownership selective for contours in natural scenes, and this selectivity originated from the image context. The border-ownership signals emerged within 70 ms after stimulus onset, only ∼30 ms after response onset. A substantial fraction of neurons were highly consistent across scenes. Thus, the cortical mechanisms of figure-ground organization are fast and efficient even in images of complex natural scenes. Understanding how the brain performs this task so fast remains a challenge. PMID:28058269

  13. Multiple pathways carry signals from short-wavelength-sensitive ('blue') cones to the middle temporal area of the macaque.

    PubMed

    Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R

    2013-01-01

    We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.

  14. Congruent and Opposite Neurons as Partners in Multisensory Integration and Segregation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hao; Wong, K. Y. Michael; Wang, He; Wu, Si

    Experiments revealed that where visual and vestibular cues are integrated to infer heading direction in the brain, there are two types of neurons with roughly the same number. Respectively, congruent and opposite cells respond similarly and oppositely to visual and vestibular cues. Congruent neurons are known to be responsible for cue integration, but the computational role of opposite neurons remains largely unknown. We propose that opposite neurons may serve to encode the disparity information between cues necessary for multisensory segregation. We build a computational model composed of two reciprocally coupled modules, each consisting of groups of congruent and opposite neurons. Our model reproduces the characteristics of congruent and opposite neurons, and demonstrates that in each module, congruent and opposite neurons can jointly achieve optimal multisensory information integration and segregation. This study sheds light on our understanding of how the brain implements optimal multisensory integration and segregation concurrently in a distributed manner. This work is supported by the Research Grants Council of Hong Kong (N _HKUST606/12, 605813, and 16322616) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).

  15. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    ERIC Educational Resources Information Center

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  16. The Role of Visual Area V4 in the Discrimination of Partially Occluded Shapes

    PubMed Central

    Kosai, Yoshito; El-Shamayleh, Yasmine; Fyall, Amber M.

    2014-01-01

    The primate brain successfully recognizes objects, even when they are partially occluded. To begin to elucidate the neural substrates of this perceptual capacity, we measured the responses of shape-selective neurons in visual area V4 while monkeys discriminated pairs of shapes under varying degrees of occlusion. We found that neuronal shape selectivity always decreased with increasing occlusion level, with some neurons being notably more robust to occlusion than others. The responses of neurons that maintained their selectivity across a wider range of occlusion levels were often sufficiently sensitive to support behavioral performance. Many of these same neurons were distinctively selective for the curvature of local boundary features and their shape tuning was well fit by a model of boundary curvature (curvature-tuned neurons). A significant subset of V4 neurons also signaled the animal's upcoming behavioral choices; these decision signals had short onset latencies that emerged progressively later for higher occlusion levels. The time course of the decision signals in V4 paralleled that of shape selectivity in curvature-tuned neurons: shape selectivity in curvature-tuned neurons, but not others, emerged earlier than the decision signals. These findings provide evidence for the involvement of contour-based mechanisms in the segmentation and recognition of partially occluded objects, consistent with psychophysical theory. Furthermore, they suggest that area V4 participates in the representation of the relevant sensory signals and the generation of decision signals underlying discrimination. PMID:24948811

  17. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity

    PubMed Central

    Eguchi, Akihiro; Neymotin, Samuel A.; Stringer, Simon M.

    2014-01-01

    Although many computational models have been proposed to explain orientation maps in primary visual cortex (V1), it is not yet known how similar clusters of color-selective neurons in macaque V1/V2 are connected and develop. In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. Each color input is decomposed into a red, green, and blue representation and transmitted to the visual cortex via a simulated optic nerve in a luminance channel and red–green and blue–yellow opponent color channels. Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1 output layer makes synaptic connections to neighboring neurons and receives the three types of signals in the different channels from the corresponding photoreceptor position. Synaptic weights are randomized and learned using spike-timing-dependent plasticity (STDP). After training with natural images, the neurons display heightened sensitivity to specific colors. Information-theoretic analysis reveals mutual information between particular stimuli and responses, and that the information reaches a maximum with fewer neurons in the higher layers, indicating that estimations of the input colors can be done using the output of fewer cells in the later stages of cortical processing. In addition, cells with similar color receptive fields form clusters. Analysis of spiking activity reveals increased firing synchrony between neurons when particular color inputs are presented or removed (ON-cell/OFF-cell). PMID:24659956

  18. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1994-01-01

    A template model of human visual self-motion perception, which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions. We tested the model detectors with stimuli used by others in single-unit studies. The detectors showed emergent properties similar to those of MST neurons: (1) Sensitivity to non-preferred flow; Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow, and (2) Position invariance; The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields. It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  19. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input.

    PubMed

    Kim, Haram R; Hong, Su Z; Fiorillo, Christopher D

    2015-01-01

    Although neurons within intact nervous systems can be classified as 'sensory' or 'motor,' it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of 'predictive homeostasis' to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced ('H-type') depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.

  20. The sequence of cortical activity inferred by response latency variability in the human ventral pathway of face processing.

    PubMed

    Lin, Jo-Fu Lotus; Silva-Pereyra, Juan; Chou, Chih-Che; Lin, Fa-Hsuan

    2018-04-11

    Variability in neuronal response latency has been typically considered caused by random noise. Previous studies of single cells and large neuronal populations have shown that the temporal variability tends to increase along the visual pathway. Inspired by these previous studies, we hypothesized that functional areas at later stages in the visual pathway of face processing would have larger variability in the response latency. To test this hypothesis, we used magnetoencephalographic data collected when subjects were presented with images of human faces. Faces are known to elicit a sequence of activity from the primary visual cortex to the fusiform gyrus. Our results revealed that the fusiform gyrus showed larger variability in the response latency compared to the calcarine fissure. Dynamic and spectral analyses of the latency variability indicated that the response latency in the fusiform gyrus was more variable than in the calcarine fissure between 70 ms and 200 ms after the stimulus onset and between 4 Hz and 40 Hz, respectively. The sequential processing of face information from the calcarine sulcus to the fusiform sulcus was more reliably detected based on sizes of the response variability than instants of the maximal response peaks. With two areas in the ventral visual pathway, we show that the variability in response latency across brain areas can be used to infer the sequence of cortical activity.

  1. Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response.

    PubMed

    McLaughlin, David; Shapley, Robert; Shelley, Michael

    2003-01-01

    A large-scale computational model of a local patch of input layer 4 [Formula: see text] of the primary visual cortex (V1) of the macaque monkey, together with a coarse-grained reduction of the model, are used to understand potential effects of cortical architecture upon neuronal performance. Both the large-scale point neuron model and its asymptotic reduction are described. The work focuses upon orientation preference and selectivity, and upon the spatial distribution of neuronal responses across the cortical layer. Emphasis is given to the role of cortical architecture (the geometry of synaptic connectivity, of the ordered and disordered structure of input feature maps, and of their interplay) as mechanisms underlying cortical responses within the model. Specifically: (i) Distinct characteristics of model neuronal responses (firing rates and orientation selectivity) as they depend upon the neuron's location within the cortical layer relative to the pinwheel centers of the map of orientation preference; (ii) A time independent (DC) elevation in cortico-cortical conductances within the model, in contrast to a "push-pull" antagonism between excitation and inhibition; (iii) The use of asymptotic analysis to unveil mechanisms which underly these performances of the model; (iv) A discussion of emerging experimental data. The work illustrates that large-scale scientific computation--coupled together with analytical reduction, mathematical analysis, and experimental data, can provide significant understanding and intuition about the possible mechanisms of cortical response. It also illustrates that the idealization which is a necessary part of theoretical modeling can outline in sharp relief the consequences of differing alternative interpretations and mechanisms--with final arbiter being a body of experimental evidence whose measurements address the consequences of these analyses.

  2. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    PubMed

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.

  3. Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics

    PubMed Central

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity. PMID:25569445

  4. Gain Modulation as a Mechanism for Coding Depth from Motion Parallax in Macaque Area MT

    PubMed Central

    Kim, HyungGoo R.; Angelaki, Dora E.

    2017-01-01

    Observer translation produces differential image motion between objects that are located at different distances from the observer's point of fixation [motion parallax (MP)]. However, MP can be ambiguous with respect to depth sign (near vs far), and this ambiguity can be resolved by combining retinal image motion with signals regarding eye movement relative to the scene. We have previously demonstrated that both extra-retinal and visual signals related to smooth eye movements can modulate the responses of neurons in area MT of macaque monkeys, and that these modulations generate neural selectivity for depth sign. However, the neural mechanisms that govern this selectivity have remained unclear. In this study, we analyze responses of MT neurons as a function of both retinal velocity and direction of eye movement, and we show that smooth eye movements modulate MT responses in a systematic, temporally precise, and directionally specific manner to generate depth-sign selectivity. We demonstrate that depth-sign selectivity is primarily generated by multiplicative modulations of the response gain of MT neurons. Through simulations, we further demonstrate that depth can be estimated reasonably well by a linear decoding of a population of MT neurons with response gains that depend on eye velocity. Together, our findings provide the first mechanistic description of how visual cortical neurons signal depth from MP. SIGNIFICANCE STATEMENT Motion parallax is a monocular cue to depth that commonly arises during observer translation. To compute from motion parallax whether an object appears nearer or farther than the point of fixation requires combining retinal image motion with signals related to eye rotation, but the neurobiological mechanisms have remained unclear. This study provides the first mechanistic account of how this interaction takes place in the responses of cortical neurons. Specifically, we show that smooth eye movements modulate the gain of responses of neurons in area MT in a directionally specific manner to generate selectivity for depth sign from motion parallax. We also show, through simulations, that depth could be estimated from a population of such gain-modulated neurons. PMID:28739582

  5. Heading Tuning in Macaque Area V6.

    PubMed

    Fan, Reuben H; Liu, Sheng; DeAngelis, Gregory C; Angelaki, Dora E

    2015-12-16

    Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception. To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We provide the first demonstration that V6 neurons carry 3D visual heading signals, which are represented in an eye-centered reference frame. In contrast, we found almost no evidence for vestibular heading signals in V6, indicating that V6 is unlikely to contribute to multisensory integration of heading signals, unlike other cortical areas. These findings provide important constraints on the roles of V6 in self-motion perception. Copyright © 2015 the authors 0270-6474/15/3516303-12$15.00/0.

  6. Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1

    PubMed Central

    2017-01-01

    Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and the information contained within the neural population. We found that locomotion improved encoding of visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to accommodate an increased load on the visual system when mice are moving. SIGNIFICANCE STATEMENT This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase information in cells of all layers of the visual cortex. Third, we show that the means by which information is enhanced by locomotion differs between the upper layers, where the major effect is the increasing of firing rates, and in layer V, where the major effect is the reduction in noise correlations. PMID:28264980

  7. Attentional modulation of neuronal variability in circuit models of cortex

    PubMed Central

    Kanashiro, Tatjana; Ocker, Gabriel Koch; Cohen, Marlene R; Doiron, Brent

    2017-01-01

    The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition. DOI: http://dx.doi.org/10.7554/eLife.23978.001 PMID:28590902

  8. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  9. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    PubMed Central

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  10. Attention operates uniformly throughout the classical receptive field and the surround.

    PubMed

    Verhoef, Bram-Ernst; Maunsell, John Hr

    2016-08-22

    Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround.

  11. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; Eberly, Lynn E; Deelchand, Dinesh K; Barreto, Felipe R; Mangia, Silvia

    2018-02-01

    In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1 H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.

  12. Disinhibition outside receptive fields in the visual cortex.

    PubMed

    Walker, Gary A; Ohzawa, Izumi; Freeman, Ralph D

    2002-07-01

    By definition, the region outside the classical receptive field (CRF) of a neuron in the visual cortex does not directly activate the cell. However, the response of a neuron can be influenced by stimulation of the surrounding area. In previous work, we showed that this influence is mainly suppressive and that it is generally limited to a local region outside the CRF. In the experiments reported here, we investigate the mechanisms of the suppressive effect. Our approach is to find the position of a grating patch that is most effective in suppressing the response of a cell. We then use a masking stimulus at different contrasts over the grating patch in an attempt to disinhibit the response. We find that suppressive effects may be partially or completely reversed by use of the masking stimulus. This disinhibition suggests that effects from outside the CRF may be local. Although they do not necessarily underlie the perceptual analysis of a figure-ground visual scene, they may provide a substrate for this process.

  13. Reduced BOLD response to periodic visual stimulation.

    PubMed

    Parkes, Laura M; Fries, Pascal; Kerskens, Christian M; Norris, David G

    2004-01-01

    The blood oxygenation level-dependent (BOLD) response to entrained neuronal firing in the human visual cortex and lateral geniculate nuclei was investigated. Periodic checkerboard flashes at a range of frequencies (4-20 Hz) were used to drive the visual cortex neurons into entrained oscillatory firing. This is compared to a checkerboard flashing aperiodically, with the same average number of flashes per unit time. A magnetoencephalography (MEG) measurement was made to confirm that the periodic paradigm elicited entrainment. We found that for frequencies of 10 and 15 Hz, the periodic stimulus gave a smaller BOLD response than for the aperiodic stimulus. Detailed investigation at 15 Hz showed that the aperiodic stimulus gave a similar BOLD increase regardless of the magnitude of jitter (+/-17 ms compared to +/-33 ms), indicating that flashes need to be precise to at least 17 ms to maintain entrainment. This is also evidence that for aperiodic stimuli, the amplitude of the BOLD response ordinarily reflects the total number of flashes per unit time, irrespective of the precise spacing between them, suggesting that entrainment is the main cause of the BOLD reduction in the periodic condition. The results indicate that, during entrainment, there is a reduction in the neuronal metabolic demand. We suggest that because of the selective frequency band of this effect, it could be connected to synchronised reverberations around an internal feedback loop.

  14. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.

    PubMed

    Zerlaut, Yann; Chemla, Sandrine; Chavane, Frederic; Destexhe, Alain

    2018-02-01

    Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. We study a network of regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons to describe the average dynamics of the coupled populations. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the analytical description. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model predicts the response time course of the population. Finally, to model VSDi signals, we consider a one-dimensional ring model made of interconnected RS-FS mean-field units. We found that this model can reproduce the spatio-temporal patterns seen in VSDi of awake monkey visual cortex as a response to local and transient visual stimuli. Conversely, we show that the model allows one to infer physiological parameters from the experimentally-recorded spatio-temporal patterns.

  15. Novel Models of Visual Topographic Map Alignment in the Superior Colliculus

    PubMed Central

    El-Ghazawi, Tarek A.; Triplett, Jason W.

    2016-01-01

    The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them. PMID:28027309

  16. Breaking cover: neural responses to slow and fast camouflage-breaking motion.

    PubMed

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei

    2015-08-22

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.

  17. Breaking cover: neural responses to slow and fast camouflage-breaking motion

    PubMed Central

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei

    2015-01-01

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500

  18. A neural mechanism of dynamic gating of task-relevant information by top-down influence in primary visual cortex.

    PubMed

    Kamiyama, Akikazu; Fujita, Kazuhisa; Kashimori, Yoshiki

    2016-12-01

    Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior. However, little is known about the neuronal mechanism underlying the gating of task-relevant information in V1. To address this issue, we focus on task-dependent tuning modulations of V1 neurons in two tasks of perceptual learning. We develop a model of the V1, which receives feedforward input from lateral geniculate nucleus and top-down input from a higher visual area. We show here that the change in a balance between excitation and inhibition in V1 connectivity is necessary for gating task-relevant information in V1. The balance change well accounts for the modulations of tuning characteristic and temporal properties of V1 neuronal responses. We also show that the balance change of V1 connectivity is shaped by top-down signals with temporal correlations reflecting the perceptual strategies of the two tasks. We propose a learning mechanism by which synaptic balance is modulated. To conclude, top-down signal changes the synaptic balance between excitation and inhibition in V1 connectivity, enabling early visual area such as V1 to gate context-dependent information under multiple task performances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Causal evidence for retina dependent and independent visual motion computations in mouse cortex

    PubMed Central

    Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond

    2017-01-01

    How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661

  20. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review.

    PubMed

    Spering, Miriam; Montagnini, Anna

    2011-04-22

    Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Pattern Adaptation and Normalization Reweighting.

    PubMed

    Westrick, Zachary M; Heeger, David J; Landy, Michael S

    2016-09-21

    Adaptation to an oriented stimulus changes both the gain and preferred orientation of neural responses in V1. Neurons tuned near the adapted orientation are suppressed, and their preferred orientations shift away from the adapter. We propose a model in which weights of divisive normalization are dynamically adjusted to homeostatically maintain response products between pairs of neurons. We demonstrate that this adjustment can be performed by a very simple learning rule. Simulations of this model closely match existing data from visual adaptation experiments. We consider several alternative models, including variants based on homeostatic maintenance of response correlations or covariance, as well as feedforward gain-control models with multiple layers, and we demonstrate that homeostatic maintenance of response products provides the best account of the physiological data. Adaptation is a phenomenon throughout the nervous system in which neural tuning properties change in response to changes in environmental statistics. We developed a model of adaptation that combines normalization (in which a neuron's gain is reduced by the summed responses of its neighbors) and Hebbian learning (in which synaptic strength, in this case divisive normalization, is increased by correlated firing). The model is shown to account for several properties of adaptation in primary visual cortex in response to changes in the statistics of contour orientation. Copyright © 2016 the authors 0270-6474/16/369805-12$15.00/0.

  2. Stimulus-related activity during conditional associations in monkey perirhinal cortex neurons depends on upcoming reward outcome.

    PubMed

    Ohyama, Kaoru; Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Shidara, Munetaka; Sato, Chikara

    2012-11-28

    Acquiring the significance of events based on reward-related information is critical for animals to survive and to conduct social activities. The importance of the perirhinal cortex for reward-related information processing has been suggested. To examine whether or not neurons in this cortex represent reward information flexibly when a visual stimulus indicates either a rewarded or unrewarded outcome, neuronal activity in the macaque perirhinal cortex was examined using a conditional-association cued-reward task. The task design allowed us to study how the neuronal responses depended on the animal's prediction of whether it would or would not be rewarded. Two visual stimuli, a color stimulus as Cue1 followed by a pattern stimulus as Cue2, were sequentially presented. Each pattern stimulus was conditionally associated with both rewarded and unrewarded outcomes depending on the preceding color stimulus. We found an activity depending upon the two reward conditions during Cue2, i.e., pattern stimulus presentation. The response appeared after the response dependent upon the image identity of Cue2. The response delineating a specific cue sequence also appeared between the responses dependent upon the identity of Cue2 and reward conditions. Thus, when Cue1 sets the context for whether or not Cue2 indicates a reward, this region represents the meaning of Cue2, i.e., the reward conditions, independent of the identity of Cue2. These results suggest that neurons in the perirhinal cortex do more than associate a single stimulus with a reward to achieve flexible representations of reward information.

  3. Activity of neurons in area 6 of the cat during fixation and eye movements.

    PubMed

    Weyand, T G; Gafka, A C

    1998-01-01

    We studied the visuomotor properties of 645 neurons in area 6 of five cats trained in oculomotor tasks. The area we recorded from corresponds well with territories believed to contain the feline homologue of the frontal eye fields observed in primates. Despite an expectation that cells with pre-saccadic activity would be common, only a small fraction (approximately 5%) of the cells displayed activity that could be linked to subsequent saccadic eye movements. These pre-motor cells appeared to be distributed over a broad region of cortex mixed in with other cell types. As in primates, saccade-related activity tended to occur only during "purposeful" saccades. At least 30% (208/645) of the neurons were visual, with many of these cells possessing huge receptive fields that appeared to include the entire contralateral visual field. Visual responsiveness was generally attenuated by fixation during the oculomotor tasks. Although attentional mechanisms may play a role in this attenuation, this cortical area also exhibits powerful lateral interactions in which spatially displaced visual stimuli suppress each other. Most cells, visually responsive or not, were affected by fixation. Nearly equal proportions of cells showed increases or decreases in activity during fixation. For many of the cells affected by fixation, the source of this modulation appears to reflect cognitive, rather than sensory or motor processes. This included cells that showed anticipatory activity, and cells that responded to the reward only when it was presented in the context of the task. Based on the paucity of pre-saccadic neurons, it would be difficult to conclude that this region of cortex in the cat is homologous to the frontal eye fields of the monkey. However, when considered in the context of differences in the oculomotor habits of these two animals, we believe the homology fits. In addition to pre-motor neurons, the properties of several other cell types found in this area could contribute to the control of gaze.

  4. Sensory convergence in the parieto-insular vestibular cortex

    PubMed Central

    Shinder, Michael E.

    2014-01-01

    Vestibular signals are pervasive throughout the central nervous system, including the cortex, where they likely play different roles than they do in the better studied brainstem. Little is known about the parieto-insular vestibular cortex (PIVC), an area of the cortex with prominent vestibular inputs. Neural activity was recorded in the PIVC of rhesus macaques during combinations of head, body, and visual target rotations. Activity of many PIVC neurons was correlated with the motion of the head in space (vestibular), the twist of the neck (proprioceptive), and the motion of a visual target, but was not associated with eye movement. PIVC neurons responded most commonly to more than one stimulus, and responses to combined movements could often be approximated by a combination of the individual sensitivities to head, neck, and target motion. The pattern of visual, vestibular, and somatic sensitivities on PIVC neurons displayed a continuous range, with some cells strongly responding to one or two of the stimulus modalities while other cells responded to any type of motion equivalently. The PIVC contains multisensory convergence of self-motion cues with external visual object motion information, such that neurons do not represent a specific transformation of any one sensory input. Instead, the PIVC neuron population may define the movement of head, body, and external visual objects in space and relative to one another. This comparison of self and external movement is consistent with insular cortex functions related to monitoring and explains many disparate findings of previous studies. PMID:24671533

  5. An optimized fluorescent probe for visualizing glutamate neurotransmission.

    PubMed

    Marvin, Jonathan S; Borghuis, Bart G; Tian, Lin; Cichon, Joseph; Harnett, Mark T; Akerboom, Jasper; Gordus, Andrew; Renninger, Sabine L; Chen, Tsai-Wen; Bargmann, Cornelia I; Orger, Michael B; Schreiter, Eric R; Demb, Jonathan B; Gan, Wen-Biao; Hires, S Andrew; Looger, Loren L

    2013-02-01

    We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

  6. Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation

    PubMed Central

    Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan

    2015-01-01

    Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636

  7. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions

    PubMed Central

    Carrillo-Reid, Luis; Bando, Yuki; Peterka, Darcy S

    2018-01-01

    The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity. PMID:29412138

  8. Caudate clues to rewarding cues.

    PubMed

    Platt, Michael L

    2002-01-31

    Behavioral studies indicate that prior experience can influence discrimination of subsequent stimuli. The mechanisms responsible for highlighting a particular aspect of the stimulus, such as motion or color, as most relevant and thus deserving further scrutiny, however, remain poorly understood. In the current issue of Neuron, demonstrate that neurons in the caudate nucleus of the basal ganglia signal which dimension of a visual cue, either color or location, is associated with reward in an eye movement task. These findings raise the possibility that this structure participates in the reward-based control of visual attention.

  9. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.

    PubMed

    Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-11-19

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.

  10. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes

    PubMed Central

    Van Le, Quan; Isbell, Lynne A.; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S.; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates’ heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage. PMID:24167268

  11. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity.

    PubMed

    Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.

  12. Effects of Isoflurane Anesthesia on Ensemble Patterns of Ca2+ Activity in Mouse V1: Reduced Direction Selectivity Independent of Increased Correlations in Cellular Activity

    PubMed Central

    Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867

  13. Neuron analysis of visual perception

    NASA Technical Reports Server (NTRS)

    Chow, K. L.

    1980-01-01

    The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.

  14. Graded Neuronal Modulations Related to Visual Spatial Attention.

    PubMed

    Mayo, J Patrick; Maunsell, John H R

    2016-05-11

    Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary "spotlight" of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused ("cued" vs "uncued"). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral performance and neuronal responses during neutral cueing were intermediate to those of the cued and uncued conditions. We found no signatures of a single mechanism of attention that switches between stimulus locations. Thus, attention-related changes in neuronal activity are largely hemisphere-specific and graded according to task demands. Copyright © 2016 the authors 0270-6474/16/365353-09$15.00/0.

  15. Graded Neuronal Modulations Related to Visual Spatial Attention

    PubMed Central

    Maunsell, John H. R.

    2016-01-01

    Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary “spotlight” of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. SIGNIFICANCE STATEMENT Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused (“cued” vs “uncued”). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral performance and neuronal responses during neutral cueing were intermediate to those of the cued and uncued conditions. We found no signatures of a single mechanism of attention that switches between stimulus locations. Thus, attention-related changes in neuronal activity are largely hemisphere-specific and graded according to task demands. PMID:27170131

  16. The primate amygdala represents the positive and negative value of visual stimuli during learning

    PubMed Central

    Paton, Joseph J.; Belova, Marina A.; Morrison, Sara E.; Salzman, C. Daniel

    2008-01-01

    Visual stimuli can acquire positive or negative value through their association with rewards and punishments, a process called reinforcement learning. Although we now know a great deal about how the brain analyses visual information, we know little about how visual representations become linked with values. To study this process, we turned to the amygdala, a brain structure implicated in reinforcement learning1–5. We recorded the activity of individual amygdala neurons in monkeys while abstract images acquired either positive or negative value through conditioning. After monkeys had learned the initial associations, we reversed image value assignments. We examined neural responses in relation to these reversals in order to estimate the relative contribution to neural activity of the sensory properties of images and their conditioned values. Here we show that changes in the values of images modulate neural activity, and that this modulation occurs rapidly enough to account for, and correlates with, monkeys’ learning. Furthermore, distinct populations of neurons encode the positive and negative values of visual stimuli. Behavioural and physiological responses to visual stimuli may therefore be based in part on the plastic representation of value provided by the amygdala. PMID:16482160

  17. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses.

    PubMed

    Ogueta, Maite; Hardie, Roger C; Stanewsky, Ralf

    2018-06-04

    The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Receptive-field subfields of V2 neurons in macaque monkeys are adult-like near birth.

    PubMed

    Zhang, Bin; Tao, Xiaofeng; Shen, Guofu; Smith, Earl L; Ohzawa, Izumi; Chino, Yuzo M

    2013-02-06

    Infant primates can discriminate texture-defined form despite their relatively low visual acuity. The neuronal mechanisms underlying this remarkable visual capacity of infants have not been studied in nonhuman primates. Since many V2 neurons in adult monkeys can extract the local features in complex stimuli that are required for form vision, we used two-dimensional dynamic noise stimuli and local spectral reverse correlation to measure whether the spatial map of receptive-field subfields in individual V2 neurons is sufficiently mature near birth to capture local features. As in adults, most V2 neurons in 4-week-old monkeys showed a relatively high degree of homogeneity in the spatial matrix of facilitatory subfields. However, ∼25% of V2 neurons had the subfield map where the neighboring facilitatory subfields substantially differed in their preferred orientations and spatial frequencies. Over 80% of V2 neurons in both infants and adults had "tuned" suppressive profiles in their subfield maps that could alter the tuning properties of facilitatory profiles. The differences in the preferred orientations between facilitatory and suppressive profiles were relatively large but extended over a broad range. Response immaturities in infants were mild; the overall strength of facilitatory subfield responses was lower than that in adults, and the optimal correlation delay ("latency") was longer in 4-week-old infants. These results suggest that as early as 4 weeks of age, the spatial receptive-field structure of V2 neurons is as complex as in adults and the ability of V2 neurons to compare local features of neighboring stimulus elements is nearly adult like.

  19. Potential roles of cholinergic modulation in the neural coding of location and movement speed

    PubMed Central

    Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.

    2016-01-01

    Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935

  20. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  1. Retinal ganglion cells in diabetes

    PubMed Central

    Kern, Timothy S; Barber, Alistair J

    2008-01-01

    Diabetic retinopathy has long been recognized as a vascular disease that develops in most patients, and it was believed that the visual dysfunction that develops in some diabetics was due to the vascular lesions used to characterize the disease. It is becoming increasingly clear that neuronal cells of the retina also are affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells. Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the effect of diabetes. Although investigations are providing new information about RGCs in diabetes, including therapies to inhibit the neurodegeneration, critical information about the function, anatomy and response properties of these cells is yet needed to understand the relationship between RGC changes and visual dysfunction in diabetes. PMID:18565995

  2. Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal Mechanisms.

    PubMed

    Nikbakht, Nader; Tafreshiha, Azadeh; Zoccolan, Davide; Diamond, Mathew E

    2018-02-07

    To better understand how object recognition can be triggered independently of the sensory channel through which information is acquired, we devised a task in which rats judged the orientation of a raised, black and white grating. They learned to recognize two categories of orientation: 0° ± 45° ("horizontal") and 90° ± 45° ("vertical"). Each trial required a visual (V), a tactile (T), or a visual-tactile (VT) discrimination; VT performance was better than that predicted by optimal linear combination of V and T signals, indicating synergy between sensory channels. We examined posterior parietal cortex (PPC) and uncovered key neuronal correlates of the behavioral findings: PPC carried both graded information about object orientation and categorical information about the rat's upcoming choice; single neurons exhibited identical responses under the three modality conditions. Finally, a linear classifier of neuronal population firing replicated the behavioral findings. Taken together, these findings suggest that PPC is involved in the supramodal processing of shape. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  4. The Representation of Information about Faces in the Temporal and Frontal Lobes

    ERIC Educational Resources Information Center

    Rolls, Edmund T.

    2007-01-01

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed…

  5. Fast Coding of Orientation in Primary Visual Cortex

    PubMed Central

    Shriki, Oren; Kohn, Adam; Shamir, Maoz

    2012-01-01

    Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made. PMID:22719237

  6. Overexpression of Serum Response Factor in Neurons Restores Ocular Dominance Plasticity in a Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Foxworthy, W. Alex; Medina, Alexandre E.

    2015-01-01

    Background Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in Fetal Alcohol Spectrum Disorders (FASD). Our lab has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons’ responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our lab demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here we test whether neuronal overexpression of SRF can achieve similar effects. Methods Ferrets received 3.5 g/kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal day (P) 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes viral vector to express either GFP or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4–5 d after which single-unit recordings were conducted to determine if changes in ocular dominance had occurred. Results Overexpression of a constitutively active form of SRF by neurons restored OD plasticity in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. Conclusions Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex. PMID:26342644

  7. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    PubMed

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.

  9. Development of visual cortical function in infant macaques: A BOLD fMRI study

    PubMed Central

    Meeson, Alan; Munk, Matthias H. J.; Kourtzi, Zoe; Movshon, J. Anthony; Logothetis, Nikos K.; Kiorpes, Lynne

    2017-01-01

    Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level. PMID:29145469

  10. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys

    PubMed Central

    Shooner, Christopher; Kelly, Jenna G.; García-Marín, Virginia; Movshon, J. Anthony; Kiorpes, Lynne

    2017-01-01

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. PMID:28743725

  11. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys.

    PubMed

    Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-08-23

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. Copyright © 2017 the authors 0270-6474/17/378216-11$15.00/0.

  12. Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina

    PubMed Central

    Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto

    2012-01-01

    Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253

  13. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    PubMed Central

    DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700

  14. Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex

    PubMed Central

    Herring, Jim D.; Thut, Gregor; Jensen, Ole

    2015-01-01

    Cortical oscillations, such as 8–12 Hz alpha-band activity, are thought to subserve gating of information processing in the human brain. While most of the supporting evidence is correlational, causal evidence comes from attempts to externally drive (“entrain”) these oscillations by transcranial magnetic stimulation (TMS). Indeed, the frequency profile of TMS-evoked potentials (TEPs) closely resembles that of oscillations spontaneously emerging in the same brain region. However, it is unclear whether TMS-locked and spontaneous oscillations are produced by the same neuronal mechanisms. If so, they should react in a similar manner to top-down modulation by endogenous attention. To test this prediction, we assessed the alpha-like EEG response to TMS of the visual cortex during periods of high and low visual attention while participants attended to either the visual or auditory modality in a cross-modal attention task. We observed a TMS-locked local oscillatory alpha response lasting several cycles after TMS (but not after sham stimulation). Importantly, TMS-locked alpha power was suppressed during deployment of visual relative to auditory attention, mirroring spontaneous alpha amplitudes. In addition, the early N40 TEP component, located at the stimulation site, was amplified by visual attention. The extent of attentional modulation for both TMS-locked alpha power and N40 amplitude did depend, with opposite sign, on the individual ability to modulate spontaneous alpha power at the stimulation site. We therefore argue that TMS-locked and spontaneous oscillations are of common neurophysiological origin, whereas the N40 TEP component may serve as an index of current cortical excitability at the time of stimulation. SIGNIFICANCE STATEMENT Rhythmic transcranial magnetic stimulation (TMS) is a promising tool to experimentally “entrain” cortical activity. If TMS-locked oscillatory responses actually recruit the same neuronal mechanisms as spontaneous cortical oscillations, they qualify as a valid tool to study the causal role of neuronal oscillations in cognition but also to enable new treatments targeting aberrant oscillatory activity in, for example, neurological conditions. Here, we provide first-time evidence that TMS-locked and spontaneous oscillations are indeed tightly related and are likely to rely on the same neuronal generators. In addition, we demonstrate that an early local component of the TMS-evoked potential (the N40) may serve as a new objective and noninvasive probe of visual cortex excitability, which so far was only accessible via subjective phosphene reports. PMID:26511236

  15. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    PubMed

    Born, Jannis; Galeazzi, Juan M; Stringer, Simon M

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet.

  16. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    PubMed Central

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet. PMID:28562618

  17. Orientation selectivity in the visual cortex of the nine-banded armadillo

    PubMed Central

    Scholl, Benjamin; Rylee, Johnathan; Luci, Jeffrey J.; Priebe, Nicholas J.

    2017-01-01

    Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals. NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials. PMID:28053246

  18. Masking reduces orientation selectivity in rat visual cortex

    PubMed Central

    Alwis, Dasuni S.; Richards, Katrina L.

    2016-01-01

    In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition. PMID:27535373

  19. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure.

    PubMed

    Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan

    2017-01-01

    Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.

  20. Binocular disparity tuning and visual-vestibular congruency of multisensory neurons in macaque parietal cortex

    PubMed Central

    Yang, Yun; Liu, Sheng; Chowdhury, Syed A.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2012-01-01

    Many neurons in the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of the macaque brain are multisensory, responding to both optic flow and vestibular cues to self-motion. The heading tuning of visual and vestibular responses can be either congruent or opposite, but only congruent cells have been implicated in cue integration for heading perception. Because of the geometric properties of motion parallax, however, both congruent and opposite cells could be involved in coding self-motion when observers fixate a world-fixed target during translation, if congruent cells prefer near disparities and opposite cells prefer far disparities. We characterized the binocular disparity selectivity and heading tuning of MSTd and VIP cells using random-dot stimuli. Most (70%) MSTd neurons were disparity-selective with monotonic tuning, and there was no consistent relationship between depth preference and congruency of visual and vestibular heading tuning. One-third of disparity-selective MSTd cells reversed their depth preference for opposite directions of motion (direction-dependent disparity tuning, DDD), but most of these cells were unisensory with no tuning for vestibular stimuli. Inconsistent with previous reports, the direction preferences of most DDD neurons do not reverse with disparity. By comparison to MSTd, VIP contains fewer disparity-selective neurons (41%) and very few DDD cells. On average, VIP neurons also preferred higher speeds and nearer disparities than MSTd cells. Our findings are inconsistent with the hypothesis that visual/vestibular congruency is linked to depth preference, and also suggest that DDD cells are not involved in multisensory integration for heading perception. PMID:22159105

  1. Investigating the role of the superior colliculus in active vision with the visual search paradigm.

    PubMed

    Shen, Kelly; Valero, Jerome; Day, Gregory S; Paré, Martin

    2011-06-01

    We review here both the evidence that the functional visuomotor organization of the optic tectum is conserved in the primate superior colliculus (SC) and the evidence for the linking proposition that SC discriminating activity instantiates saccade target selection. We also present new data in response to questions that arose from recent SC visual search studies. First, we observed that SC discriminating activity predicts saccade initiation when monkeys perform an unconstrained search for a target defined by either a single visual feature or a conjunction of two features. Quantitative differences between the results in these two search tasks suggest, however, that SC discriminating activity does not only reflect saccade programming. This finding concurs with visual search studies conducted in posterior parietal cortex and the idea that, during natural active vision, visual attention is shifted concomitantly with saccade programming. Second, the analysis of a large neuronal sample recorded during feature search revealed that visual neurons in the superficial layers do possess discriminating activity. In addition, the hypotheses that there are distinct types of SC neurons in the deeper layers and that they are differently involved in saccade target selection were not substantiated. Third, we found that the discriminating quality of single-neuron activity substantially surpasses the ability of the monkeys to discriminate the target from distracters, raising the possibility that saccade target selection is a noisy process. We discuss these new findings in light of the visual search literature and the view that the SC is a visual salience map for orienting eye movements. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Attention operates uniformly throughout the classical receptive field and the surround

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John HR

    2016-01-01

    Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround. DOI: http://dx.doi.org/10.7554/eLife.17256.001 PMID:27547989

  3. Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1

    PubMed Central

    Olman, Cheryl A.; Harel, Noam; Feinberg, David A.; He, Sheng; Zhang, Peng; Ugurbil, Kamil; Yacoub, Essa

    2012-01-01

    Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths. PMID:22448223

  4. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    PubMed

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low convolutional layers of VGG19 are considerably larger than the value of approximately 100 reported for IT neurons in Lehky et al. ( 2014 ), whereas those at the high fully connected layers are close to or lower than 100. To the best of our knowledge, this work is the first attempt to analyze the response statistics of DNN neurons with respect to primate IT neurons in image object representation.

  5. Balanced increases in selectivity and tolerance produce constant sparseness along the ventral visual stream

    PubMed Central

    Rust, Nicole C.; DiCarlo, James J.

    2012-01-01

    While popular accounts suggest that neurons along the ventral visual processing stream become increasingly selective for particular objects, this appears at odds with the fact that inferior temporal cortical (IT) neurons are broadly tuned. To explore this apparent contradiction, we compared processing in two ventral stream stages (V4 and IT) in the rhesus macaque monkey. We confirmed that IT neurons are indeed more selective for conjunctions of visual features than V4 neurons, and that this increase in feature conjunction selectivity is accompanied by an increase in tolerance (“invariance”) to identity-preserving transformations (e.g. shifting, scaling) of those features. We report here that V4 and IT neurons are, on average, tightly matched in their tuning breadth for natural images (“sparseness”), and that the average V4 or IT neuron will produce a robust firing rate response (over 50% of its peak observed firing rate) to ~10% of all natural images. We also observed that sparseness was positively correlated with conjunction selectivity and negatively correlated with tolerance within both V4 and IT, consistent with selectivity-building and invariance-building computations that offset one another to produce sparseness. Our results imply that the conjunction-selectivity-building and invariance-building computations necessary to support object recognition are implemented in a balanced fashion to maintain sparseness at each stage of processing. PMID:22836252

  6. Adding words to the brain's visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA.

    PubMed

    Glezer, Laurie S; Kim, Judy; Rule, Josh; Jiang, Xiong; Riesenhuber, Maximilian

    2015-03-25

    The nature of orthographic representations in the human brain is still subject of much debate. Recent reports have claimed that the visual word form area (VWFA) in left occipitotemporal cortex contains an orthographic lexicon based on neuronal representations highly selective for individual written real words (RWs). This theory predicts that learning novel words should selectively increase neural specificity for these words in the VWFA. We trained subjects to recognize novel pseudowords (PWs) and used fMRI rapid adaptation to compare neural selectivity with RWs, untrained PWs (UTPWs), and trained PWs (TPWs). Before training, PWs elicited broadly tuned responses, whereas responses to RWs indicated tight tuning. After training, TPW responses resembled those of RWs, whereas UTPWs continued to show broad tuning. This change in selectivity was specific to the VWFA. Therefore, word learning appears to selectively increase neuronal specificity for the new words in the VWFA, thereby adding these words to the brain's visual dictionary. Copyright © 2015 the authors 0270-6474/15/354965-08$15.00/0.

  7. A visual salience map in the primate frontal eye field.

    PubMed

    Thompson, Kirk G; Bichot, Narcisse P

    2005-01-01

    Models of attention and saccade target selection propose that within the brain there is a topographic map of visual salience that combines bottom-up and top-down influences to identify locations for further processing. The results of a series of experiments with monkeys performing visual search tasks have identified a population of frontal eye field (FEF) visually responsive neurons that exhibit all of the characteristics of a visual salience map. The activity of these FEF neurons is not sensitive to specific features of visual stimuli; but instead, their activity evolves over time to select the target of the search array. This selective activation reflects both the bottom-up intrinsic conspicuousness of the stimuli and the top-down knowledge and goals of the viewer. The peak response within FEF specifies the target for the overt gaze shift. However, the selective activity in FEF is not in itself a motor command because the magnitude of activation reflects the relative behavioral significance of the different stimuli in the visual scene and occurs even when no saccade is made. Identifying a visual salience map in FEF validates the theoretical concept of a salience map in many models of attention. In addition, it strengthens the emerging view that FEF is not only involved in producing overt gaze shifts, but is also important for directing covert spatial attention.

  8. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    PubMed

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values

    PubMed Central

    Hikosaka, Okihide

    2014-01-01

    Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head [CD(H)]. Are the stable and flexible value signals processed separately throughout the CD-SNr-SC circuit? To answer this question, we identified SNr neurons by their inputs from CD and outputs to SC and examined their sensitivity to object values. The direct input from CD was identified by SNr neuron's inhibitory response to electrical stimulation of CD. We found that SNr neurons were separated into two groups: 1) neurons inhibited by CD(T) stimulation, located in the caudal-dorsal-lateral SNr (cdlSNr), and 2) neurons inhibited by CD(H) stimulation, located in the rostral-ventral-medial SNr (rvmSNr). Most of CD(T)-recipient SNr neurons encoded stable values, whereas CD(H)-recipient SNr neurons tended to encode flexible values. The output to SC was identified by SNr neuron's antidromic response to SC stimulation. Among the antidromically activated neurons, many encoded only stable values, while some encoded only flexible values. These results suggest that CD(T)-cdlSNr-SC circuit and CD(H)-rvmSNr-SC circuit transmit stable and flexible value signals, largely separately, to SC. The speed of signal transmission was faster through CD(T)-cdlSNr-SC circuit than through CD(H)-rvmSNr-SC circuit, which may reflect automatic and controlled gaze orienting guided by these circuits. PMID:25540224

  10. Noise destroys feedback enhanced figure-ground segmentation but not feedforward figure-ground segmentation.

    PubMed

    Romeo, August; Arall, Marina; Supèr, Hans

    2012-01-01

    Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception.

  11. Noise destroys feedback enhanced figure-ground segmentation but not feedforward figure-ground segmentation

    PubMed Central

    Romeo, August; Arall, Marina; Supèr, Hans

    2012-01-01

    Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception. PMID:22934028

  12. Neuronal correlates of reduced memory performance in overweight subjects.

    PubMed

    Stingl, Krunoslav T; Kullmann, Stephanie; Ketterer, Caroline; Heni, Martin; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2012-03-01

    There is growing evidence that excessive body weight correlates with impaired cognitive performance like executive function, attention and memory. In our study, we applied a visual working memory task to quantify associations between body weight and executive function. In total, 34 lean (BMI 22±2.1 kg/m(2)) and 34 obese (BMI 30.4±3.2 kg/m(2)) subjects were included. Magnetic brain activity and behavioral responses were recorded during a one-back visual memory task with food and non-food pictures, which were matched for color, size and complexity. Behavioral responses (reaction time and accuracy) were reduced in obese subjects independent of the stimulus category. Neuronal activity at the source level showed a positive correlation between the right dorsolateral prefrontal cortex (DLPFC) activity and BMI only for the food category. In addition, a negative correlation between BMI and neuronal activity was observed in the occipital area for both categories. Therefore we conclude that increased body weight is associated with reduced task performance and specific neuronal changes. This altered activity is probably related to executive function as well as encoding and retrieval of information. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  14. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control.

    PubMed

    Caruso, Valeria C; Pages, Daniel S; Sommer, Marc A; Groh, Jennifer M

    2016-06-01

    Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway. Copyright © 2016 the American Physiological Society.

  15. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.

    PubMed

    Fabiani, Monica; Gordon, Brian A; Maclin, Edward L; Pearson, Melanie A; Brumback-Peltz, Carrie R; Low, Kathy A; McAuley, Edward; Sutton, Bradley P; Kramer, Arthur F; Gratton, Gabriele

    2014-01-15

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy- and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Face processing in different brain areas, and critical band masking.

    PubMed

    Rolls, Edmund T

    2008-09-01

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size, view, and spatial frequency of faces and objects, and that these neurons show rapid processing and rapid learning. Critical band spatial frequency masking is shown to be a property of these face-selective neurons and of the human visual perception of faces. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximizing the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalization, and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses generalize to other views of the same face. A theory is described of how such invariant representations may be produced by self-organizing learning in a hierarchically organized set of visual cortical areas with convergent connectivity. The theory utilizes either temporal or spatial continuity with an associative synaptic modification rule. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye-gaze, face view, and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the human orbitofrontal and pregenual cingulate cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.

  17. The representation of information about faces in the temporal and frontal lobes.

    PubMed

    Rolls, Edmund T

    2007-01-07

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximising the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalisation and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses, generalise to other views of the same face. A theory is described of how such invariant representations may be produced in a hierarchically organised set of visual cortical areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified Hebb synaptic modification rule with a short-term memory trace to capture whatever can be captured at each stage that is invariant about objects as the objects change in retinal view, position, size and rotation. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye gaze, face view and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the orbitofrontal cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.

  18. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    PubMed

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Neural mechanism for sensing fast motion in dim light.

    PubMed

    Li, Ran; Wang, Yi

    2013-11-07

    Luminance is a fundamental property of visual scenes. A population of neurons in primary visual cortex (V1) is sensitive to uniform luminance. In natural vision, however, the retinal image often changes rapidly. Consequently the luminance signals visual cells receive are transiently varying. How V1 neurons respond to such luminance changes is unknown. By applying large static uniform stimuli or grating stimuli altering at 25 Hz that resemble the rapid luminance changes in the environment, we show that approximately 40% V1 cells responded to rapid luminance changes of uniform stimuli. Most of them strongly preferred luminance decrements. Importantly, when tested with drifting gratings, the preferred speeds of these cells were significantly higher than cells responsive to static grating stimuli but not to uniform stimuli. This responsiveness can be accounted for by the preferences for low spatial frequencies and high temporal frequencies. These luminance-sensitive cells subserve the detection of fast motion under the conditions of dim illumination.

  20. Role of the visual experience-dependent nascent proteome in neuronal plasticity

    PubMed Central

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R

    2018-01-01

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139

  1. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.

    PubMed

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-10-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. Copyright © 2017 the authors 0270-6474/17/3710139-15$15.00/0.

  2. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    PubMed Central

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed “local” (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. PMID:28924008

  3. Figure-ground organization and the emergence of proto-objects in the visual cortex.

    PubMed

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a 'figure' relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations ('proto-objects'). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.

  4. Figure–ground organization and the emergence of proto-objects in the visual cortex

    PubMed Central

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex. PMID:26579062

  5. Spatial limitations of fast temporal segmentation are best modeled by V1 receptive fields.

    PubMed

    Goodbourn, Patrick T; Forte, Jason D

    2013-11-22

    The fine temporal structure of events influences the spatial grouping and segmentation of visual-scene elements. Although adjacent regions flickering asynchronously at high temporal frequencies appear identical, the visual system signals a boundary between them. These "phantom contours" disappear when the gap between regions exceeds a critical value (g(max)). We used g(max) as an index of neuronal receptive-field size to compare with known receptive-field data from along the visual pathway and thus infer the location of the mechanism responsible for fast temporal segmentation. Observers viewed a circular stimulus reversing in luminance contrast at 20 Hz for 500 ms. A gap of constant retinal eccentricity segmented each stimulus quadrant; on each trial, participants identified a target quadrant containing counterphasing inner and outer segments. Through varying the gap width, g(max) was determined at a range of retinal eccentricities. We found that g(max) increased from 0.3° to 0.8° for eccentricities from 2° to 12°. These values correspond to receptive-field diameters of neurons in primary visual cortex that have been reported in single-cell and fMRI studies and are consistent with the spatial limitations of motion detection. In a further experiment, we found that modulation sensitivity depended critically on the length of the contour and could be predicted by a simple model of spatial summation in early cortical neurons. The results suggest that temporal segmentation is achieved by neurons at the earliest cortical stages of visual processing, most likely in primary visual cortex.

  6. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    PubMed Central

    Kress, Daniel; Egelhaaf, Martin

    2014-01-01

    During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed. PMID:25309362

  7. Visual Stimuli Induce Waves of Electrical Activity in Turtle Cortex

    NASA Astrophysics Data System (ADS)

    Prechtl, J. C.; Cohen, L. B.; Pesaran, B.; Mitra, P. P.; Kleinfeld, D.

    1997-07-01

    The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334-337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of ≈ π /2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing.

  8. Visual stimuli induce waves of electrical activity in turtle cortex

    PubMed Central

    Prechtl, J. C.; Cohen, L. B.; Pesaran, B.; Mitra, P. P.; Kleinfeld, D.

    1997-01-01

    The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334–337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of ≈π/2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing. PMID:9207142

  9. Surfing a spike wave down the ventral stream.

    PubMed

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  10. Joint representation of translational and rotational components of optic flow in parietal cortex

    PubMed Central

    Sunkara, Adhira; DeAngelis, Gregory C.; Angelaki, Dora E.

    2016-01-01

    Terrestrial navigation naturally involves translations within the horizontal plane and eye rotations about a vertical (yaw) axis to track and fixate targets of interest. Neurons in the macaque ventral intraparietal (VIP) area are known to represent heading (the direction of self-translation) from optic flow in a manner that is tolerant to rotational visual cues generated during pursuit eye movements. Previous studies have also reported that eye rotations modulate the response gain of heading tuning curves in VIP neurons. We tested the hypothesis that VIP neurons simultaneously represent both heading and horizontal (yaw) eye rotation velocity by measuring heading tuning curves for a range of rotational velocities of either real or simulated eye movements. Three findings support the hypothesis of a joint representation. First, we show that rotation velocity selectivity based on gain modulations of visual heading tuning is similar to that measured during pure rotations. Second, gain modulations of heading tuning are similar for self-generated eye rotations and visually simulated rotations, indicating that the representation of rotation velocity in VIP is multimodal, driven by both visual and extraretinal signals. Third, we show that roughly one-half of VIP neurons jointly represent heading and rotation velocity in a multiplicatively separable manner. These results provide the first evidence, to our knowledge, for a joint representation of translation direction and rotation velocity in parietal cortex and show that rotation velocity can be represented based on visual cues, even in the absence of efference copy signals. PMID:27095846

  11. Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex.

    PubMed

    Victor, Jonathan D; Mechler, Ferenc; Ohiorhenuan, Ifije; Schmid, Anita M; Purpura, Keith P

    2009-12-01

    A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey and area 17 neurons in the cat to two-dimensional Hermite functions (TDHs). TDHs are intermediate in complexity between traditional analytic stimuli and natural scenes and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above-cited model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear-nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.

  12. Spatial attention enhances the selective integration of activity from area MT.

    PubMed

    Masse, Nicolas Y; Herrington, Todd M; Cook, Erik P

    2012-09-01

    Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.

  13. Influence of movement parameters on area 18 neurones in the cat.

    PubMed

    Orban, G A; Callens, M

    1977-10-24

    In cats, 107 area 18 neurones with identified FR type, 10-50 degrees from the visual axis, were tested for the influence of direction, velocity and amplitude of movement. These three parameters are believed to be the primary parameters of a movement analysing system. 94% of the neurones were influenced by the direction of movement, all of them by the angular velocity and 16% by the amplitude of movement. For each of the primary parameters, tuning curves were established. Angular velocity influenced not only the response magnitude but also the response latency and the direction bias. By preparing response amplitude functions at different velocities the influence of movement duration was ruled out. The association of functional properties and RF organization suggests a model of information processing in area 18 of the cat.

  14. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  15. Texture Segregation Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4 of Visual Cortex

    PubMed Central

    Poort, Jasper; Self, Matthew W.; van Vugt, Bram; Malkki, Hemi; Roelfsema, Pieter R.

    2016-01-01

    Segregation of images into figures and background is fundamental for visual perception. Cortical neurons respond more strongly to figural image elements than to background elements, but the mechanisms of figure–ground modulation (FGM) are only partially understood. It is unclear whether FGM in early and mid-level visual cortex is caused by an enhanced response to the figure, a suppressed response to the background, or both. We studied neuronal activity in areas V1 and V4 in monkeys performing a texture segregation task. We compared texture-defined figures with homogeneous textures and found an early enhancement of the figure representation, and a later suppression of the background. Across neurons, the strength of figure enhancement was independent of the strength of background suppression. We also examined activity in the different V1 layers. Both figure enhancement and ground suppression were strongest in superficial and deep layers and weaker in layer 4. The current–source density profiles suggested that figure enhancement was caused by stronger synaptic inputs in feedback-recipient layers 1, 2, and 5 and ground suppression by weaker inputs in these layers, suggesting an important role for feedback connections from higher level areas. These results provide new insights into the mechanisms for figure–ground organization. PMID:27522074

  16. Laminar circuit organization and response modulation in mouse visual cortex

    PubMed Central

    Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin

    2012-01-01

    The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751

  17. Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.

    PubMed

    McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth

    2015-07-15

    A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel channels that operate at different time scales. Copyright © 2015 the authors 0270-6474/15/3510268-13$15.00/0.

  18. Multiplicative mixing of object identity and image attributes in single inferior temporal neurons.

    PubMed

    Ratan Murty, N Apurva; Arun, S P

    2018-04-03

    Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively. Copyright © 2018 the Author(s). Published by PNAS.

  19. Shape Selectivity of Middle Superior Temporal Sulcus Body Patch Neurons

    PubMed Central

    2017-01-01

    Abstract Functional MRI studies in primates have demonstrated cortical regions that are strongly activated by visual images of bodies. The presence of such body patches in macaques allows characterization of the stimulus selectivity of their single neurons. Middle superior temporal sulcus body (MSB) patch neurons showed similar stimulus selectivity for natural, shaded, and textured images compared with their silhouettes, suggesting that shape is an important determinant of MSB responses. Here, we examined and modeled the shape selectivity of single MSB neurons. We measured the responses of single MSB neurons to a variety of shapes producing a wide range of responses. We used an adaptive stimulus sampling procedure, selecting and modifying shapes based on the responses of the neuron. Forty percent of shapes that produced the maximal response were rated by humans as animal-like, but the top shape of many MSB neurons was not judged as resembling a body. We fitted the shape selectivity of MSB neurons with a model that parameterizes shapes in terms of curvature and orientation of contour segments, with a pixel-based model, and with layers of units of convolutional neural networks (CNNs). The deep convolutional layers of CNNs provided the best goodness-of-fit, with a median explained explainable variance of the neurons’ responses of 77%. The goodness-of-fit increased along the convolutional layers’ hierarchy but was lower for the fully connected layers. Together with demonstrating the successful modeling of single unit shape selectivity with deep CNNs, the data suggest that semantic or category knowledge determines only slightly the single MSB neuron’s shape selectivity. PMID:28660250

  20. From perceptive fields to Gestalt.

    PubMed

    Spillmann, Lothar

    2006-01-01

    Studies on visual psychophysics and perception conducted in the Freiburg psychophysics laboratory during the last 35 years are reviewed. Many of these were inspired by single-cell neurophysiology in cat and monkey. The aim was to correlate perceptual phenomena and their effects to possible neuronal mechanisms from retina to visual cortex and beyond. Topics discussed include perceptive field organization, figure-ground segregation and grouping, fading and filling-in, and long-range color interaction. While some of these studies succeeded in linking perception to neuronal response patterns, others require further investigation. The task of probing the human brain with perceptual phenomena continues to be a challenge for the future.

  1. Multimap formation in visual cortex

    PubMed Central

    Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.

    2015-01-01

    An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946

  2. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    PubMed Central

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  3. Color-Change Detection Activity in the Primate Superior Colliculus.

    PubMed

    Herman, James P; Krauzlis, Richard J

    2017-01-01

    The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC's involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.

  4. Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over Hours

    PubMed Central

    Boström, Jan; Elger, Christian E.; Mormann, Florian

    2016-01-01

    Recording extracellulary from neurons in the brains of animals in vivo is among the most established experimental techniques in neuroscience, and has recently become feasible in humans. Many interesting scientific questions can be addressed only when extracellular recordings last several hours, and when individual neurons are tracked throughout the entire recording. Such questions regard, for example, neuronal mechanisms of learning and memory consolidation, and the generation of epileptic seizures. Several difficulties have so far limited the use of extracellular multi-hour recordings in neuroscience: Datasets become huge, and data are necessarily noisy in clinical recording environments. No methods for spike sorting of such recordings have been available. Spike sorting refers to the process of identifying the contributions of several neurons to the signal recorded in one electrode. To overcome these difficulties, we developed Combinato: a complete data-analysis framework for spike sorting in noisy recordings lasting twelve hours or more. Our framework includes software for artifact rejection, automatic spike sorting, manual optimization, and efficient visualization of results. Our completely automatic framework excels at two tasks: It outperforms existing methods when tested on simulated and real data, and it enables researchers to analyze multi-hour recordings. We evaluated our methods on both short and multi-hour simulated datasets. To evaluate the performance of our methods in an actual neuroscientific experiment, we used data from from neurosurgical patients, recorded in order to identify visually responsive neurons in the medial temporal lobe. These neurons responded to the semantic content, rather than to visual features, of a given stimulus. To test our methods with multi-hour recordings, we made use of neurons in the human medial temporal lobe that respond selectively to the same stimulus in the evening and next morning. PMID:27930664

  5. Adiponectin Enhances the Responsiveness of the Olfactory System

    PubMed Central

    Loch, Diana; Heidel, Christian; Breer, Heinz; Strotmann, Jörg

    2013-01-01

    The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons. PMID:24130737

  6. Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain.

    PubMed

    Ditz, Helen M; Nieder, Andreas

    2016-11-23

    Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several characteristics that are surprisingly similar to the ones found in primates. Our data suggest a common code for number in two different vertebrate taxa that has evolved based on convergent evolution. Copyright © 2016 the authors 0270-6474/16/3612044-09$15.00/0.

  7. Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study

    PubMed Central

    Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano

    2017-01-01

    The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631

  8. A linear model fails to predict orientation selectivity of cells in the cat visual cortex.

    PubMed Central

    Volgushev, M; Vidyasagar, T R; Pei, X

    1996-01-01

    1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828

  9. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys

    PubMed Central

    Tao, X.; Zhang, B.; Smith, E. L.; Nishimoto, S.; Ohzawa, I.

    2012-01-01

    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features. PMID:22114163

  11. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  12. The primary visual cortex in the neural circuit for visual orienting

    NASA Astrophysics Data System (ADS)

    Zhaoping, Li

    The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.

  13. Endogenous Sequential Cortical Activity Evoked by Visual Stimuli

    PubMed Central

    Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael

    2015-01-01

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915

  14. The neurophysiology of figure-ground segregation in primary visual cortex.

    PubMed

    Lamme, V A

    1995-02-01

    The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.

  15. Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex.

    PubMed

    Sakura, Midori; Lambrinos, Dimitrios; Labhart, Thomas

    2008-02-01

    Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.

  16. Theory of correlation in a network with synaptic depression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato

    2012-01-01

    Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.

  17. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhang, Xin; Li, Yuejun; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2016-09-01

    Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.

  18. Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks

    PubMed Central

    2018-01-01

    Abstract Brain computations depend on how neurons transform inputs to spike outputs. Here, to understand input-output transformations in cortical networks, we recorded spiking responses from visual cortex (V1) of awake mice of either sex while pairing sensory stimuli with optogenetic perturbation of excitatory and parvalbumin-positive inhibitory neurons. We found that V1 neurons’ average responses were primarily additive (linear). We used a recurrent cortical network model to determine whether these data, as well as past observations of nonlinearity, could be described by a common circuit architecture. Simulations showed that cortical input-output transformations can be changed from linear to sublinear with moderate (∼20%) strengthening of connections between inhibitory neurons, but this change away from linear scaling depends on the presence of feedforward inhibition. Simulating a variety of recurrent connection strengths showed that, compared with when input arrives only to excitatory neurons, networks produce a wider range of output spiking responses in the presence of feedforward inhibition. PMID:29682603

  19. Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies

    NASA Astrophysics Data System (ADS)

    MacLeod, Katrina; Laurent, Gilles

    1996-11-01

    Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.

  20. The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex.

    PubMed

    Pulimood, Nisha S; Rodrigues, Wandilson Dos Santos; Atkinson, Devon A; Mooney, Sandra M; Medina, Alexandre E

    2017-07-12

    The transcription factors CREB (cAMP response element binding factor), SRF (serum response factor), and MEF2 (myocyte enhancer factor 2) play critical roles in the mechanisms underlying neuronal plasticity. However, the role of the activation of these transcription factors in the different components of plasticity in vivo is not well known. In this study, we tested the role of CREB, SRF, and MEF2 in ocular dominance plasticity (ODP), a paradigm of activity-dependent neuronal plasticity in the visual cortex. These three proteins bind to the synaptic activity response element (SARE), an enhancer sequence found upstream of many plasticity-related genes (Kawashima et al., 2009; Rodríguez-Tornos et al., 2013), and can act cooperatively to express Arc , a gene required for ODP (McCurry et al., 2010). We used viral-mediated gene transfer to block the transcription function of CREB, SRF, and MEF2 in the visual cortex, and measured visually evoked potentials in awake male and female mice before and after a 7 d monocular deprivation, which allowed us to examine both the depression component (Dc-ODP) and potentiation component (Pc-ODP) of plasticity independently. We found that CREB, SRF, and MEF2 are all required for ODP, but have differential effects on Dc-ODP and Pc-ODP. CREB is necessary for both Dc-ODP and Pc-ODP, whereas SRF and MEF2 are only needed for Dc-ODP. This finding supports previous reports implicating SRF and MEF2 in long-term depression (required for Dc-ODP), and CREB in long-term potentiation (required for Pc-ODP). SIGNIFICANCE STATEMENT Activity-dependent neuronal plasticity is the cellular basis for learning and memory, and it is crucial for the refinement of neuronal circuits during development. Identifying the mechanisms of activity-dependent neuronal plasticity is crucial to finding therapeutic interventions in the myriad of disorders where it is disrupted, such as Fragile X syndrome, Rett syndrome, epilepsy, major depressive disorder, and autism spectrum disorder. Transcription factors are essential nuclear proteins that trigger the expression of gene programs required for long-term functional and structural plasticity changes. Our results elucidate the specific role of the transcription factors CREB, SRF, and MEF2 in the depression and potentiation components of ODP in vivo , therefore better informing future attempts to find therapeutic targets for diseases where activity-dependent plasticity is disrupted. Copyright © 2017 the authors 0270-6474/17/376628-10$15.00/0.

  1. The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex

    PubMed Central

    Rodrigues, Wandilson dos Santos; Mooney, Sandra M.

    2017-01-01

    The transcription factors CREB (cAMP response element binding factor), SRF (serum response factor), and MEF2 (myocyte enhancer factor 2) play critical roles in the mechanisms underlying neuronal plasticity. However, the role of the activation of these transcription factors in the different components of plasticity in vivo is not well known. In this study, we tested the role of CREB, SRF, and MEF2 in ocular dominance plasticity (ODP), a paradigm of activity-dependent neuronal plasticity in the visual cortex. These three proteins bind to the synaptic activity response element (SARE), an enhancer sequence found upstream of many plasticity-related genes (Kawashima et al., 2009; Rodríguez-Tornos et al., 2013), and can act cooperatively to express Arc, a gene required for ODP (McCurry et al., 2010). We used viral-mediated gene transfer to block the transcription function of CREB, SRF, and MEF2 in the visual cortex, and measured visually evoked potentials in awake male and female mice before and after a 7 d monocular deprivation, which allowed us to examine both the depression component (Dc-ODP) and potentiation component (Pc-ODP) of plasticity independently. We found that CREB, SRF, and MEF2 are all required for ODP, but have differential effects on Dc-ODP and Pc-ODP. CREB is necessary for both Dc-ODP and Pc-ODP, whereas SRF and MEF2 are only needed for Dc-ODP. This finding supports previous reports implicating SRF and MEF2 in long-term depression (required for Dc-ODP), and CREB in long-term potentiation (required for Pc-ODP). SIGNIFICANCE STATEMENT Activity-dependent neuronal plasticity is the cellular basis for learning and memory, and it is crucial for the refinement of neuronal circuits during development. Identifying the mechanisms of activity-dependent neuronal plasticity is crucial to finding therapeutic interventions in the myriad of disorders where it is disrupted, such as Fragile X syndrome, Rett syndrome, epilepsy, major depressive disorder, and autism spectrum disorder. Transcription factors are essential nuclear proteins that trigger the expression of gene programs required for long-term functional and structural plasticity changes. Our results elucidate the specific role of the transcription factors CREB, SRF, and MEF2 in the depression and potentiation components of ODP in vivo, therefore better informing future attempts to find therapeutic targets for diseases where activity-dependent plasticity is disrupted. PMID:28607167

  2. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    PubMed

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A Role for Mouse Primary Visual Cortex in Motion Perception.

    PubMed

    Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo

    2018-06-04

    Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information

    PubMed Central

    Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén

    2016-01-01

    Numerous studies have shown that neuronal responses are modulated by stimulus properties, and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation, and vice versa. The information encoded by multiplicatively-modulated neurons increased with greater population activity, while that of additively-modulated neurons decreased. These effects offset each other, so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a `traffic light' that determines which subset of neurons are most informative. PMID:26924437

  5. Matrix Metalloproteinase-9 regulates neuronal circuit development and excitability

    PubMed Central

    Murase, Sachiko; Lantz, Crystal; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A.; Quinlan, Elizabeth M.

    2015-01-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here we demonstrate that deletion of the extracellular proteinase MMP-9 affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons, but decreases dendritic length and complexity while dendritic spine density is unchanged. Parallel changes in neuronal morphology are observed in primary visual cortex, and persist into adulthood. Individual CA1 neurons in MMP-9−/− mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significant increases spontaneous neuronal activity in awake MMP-9−/− mice and enhances response to acute challenge by the excitotoxin kainate. Thus MMP-9-dependent proteolysis regulates several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  6. Putative pyramidal neurons and interneurons in the monkey parietal cortex make different contributions to the performance of a visual grouping task.

    PubMed

    Yokoi, Isao; Komatsu, Hidehiko

    2010-09-01

    Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.

  7. Face-infringement space: the frame of reference of the ventral intraparietal area.

    PubMed

    McCollum, Gin; Klam, François; Graf, Werner

    2012-07-01

    Experimental studies have shown that responses of ventral intraparietal area (VIP) neurons specialize in head movements and the environment near the head. VIP neurons respond to visual, auditory, and tactile stimuli, smooth pursuit eye movements, and passive and active movements of the head. This study demonstrates mathematical structure on a higher organizational level created within VIP by the integration of a complete set of variables covering face-infringement. Rather than positing dynamics in an a priori defined coordinate system such as those of physical space, we assemble neuronal receptive fields to find out what space of variables VIP neurons together cover. Section 1 presents a view of neurons as multidimensional mathematical objects. Each VIP neuron occupies or is responsive to a region in a sensorimotor phase space, thus unifying variables relevant to the disparate sensory modalities and movements. Convergence on one neuron joins variables functionally, as space and time are joined in relativistic physics to form a unified spacetime. The space of position and motion together forms a neuronal phase space, bridging neurophysiology and the physics of face-infringement. After a brief review of the experimental literature, the neuronal phase space natural to VIP is sequentially characterized, based on experimental data. Responses of neurons indicate variables that may serve as axes of neural reference frames, and neuronal responses have been so used in this study. The space of sensory and movement variables covered by VIP receptive fields joins visual and auditory space to body-bound sensory modalities: somatosensation and the inertial senses. This joining of allocentric and egocentric modalities is in keeping with the known relationship of the parietal lobe to the sense of self in space and to hemineglect, in both humans and monkeys. Following this inductive step, variables are formalized in terms of the mathematics of graph theory to deduce which combinations are complete as a multidimensional neural structure that provides the organism with a complete set of options regarding objects impacting the face, such as acceptance, pursuit, and avoidance. We consider four basic variable types: position and motion of the face and of an external object. Formalizing the four types of variables allows us to generalize to any sensory system and to determine the necessary and sufficient conditions for a neural center (for example, a cortical region) to provide a face-infringement space. We demonstrate that VIP includes at least one such face-infringement space.

  8. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes

    PubMed Central

    Galeazzi, Juan M.; Navajas, Joaquín; Mender, Bedeho M. W.; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M.

    2016-01-01

    ABSTRACT Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant’s gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views. PMID:27253452

  9. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    PubMed

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  10. Integration of visual and motion cues for simulator requirements and ride quality investigation. [computerized simulation of aircraft landing, visual perception of aircraft pilots

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1975-01-01

    Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.

  11. Quantification and classification of neuronal responses in kernel-smoothed peristimulus time histograms

    PubMed Central

    Fried, Itzhak; Koch, Christof

    2014-01-01

    Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352

  12. Single-exposure visual memory judgments are reflected in inferotemporal cortex

    PubMed Central

    Meyer, Travis

    2018-01-01

    Our visual memory percepts of whether we have encountered specific objects or scenes before are hypothesized to manifest as decrements in neural responses in inferotemporal cortex (IT) with stimulus repetition. To evaluate this proposal, we recorded IT neural responses as two monkeys performed a single-exposure visual memory task designed to measure the rates of forgetting with time. We found that a weighted linear read-out of IT was a better predictor of the monkeys’ forgetting rates and reaction time patterns than a strict instantiation of the repetition suppression hypothesis, expressed as a total spike count scheme. Behavioral predictions could be attributed to visual memory signals that were reflected as repetition suppression and were intermingled with visual selectivity, but only when combined across the most sensitive neurons. PMID:29517485

  13. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697

  14. Spatial representation and cognitive modulation of response variability in the lateral intraparietal area priority map.

    PubMed

    Falkner, Annegret L; Goldberg, Michael E; Krishna, B Suresh

    2013-10-09

    The lateral intraparietal area (LIP) in the macaque contains a priority-based representation of the visual scene. We previously showed that the mean spike rate of LIP neurons is strongly influenced by spatially wide-ranging surround suppression in a manner that effectively sharpens the priority map. Reducing response variability can also improve the precision of LIP's priority map. We show that when a monkey plans a visually guided delayed saccade with an intervening distractor, variability (measured by the Fano factor) decreases both for neurons representing the saccade goal and for neurons representing the broad spatial surround. The reduction in Fano factor is maximal for neurons representing the saccade goal and steadily decreases for neurons representing more distant locations. LIP Fano factor changes are behaviorally significant: increasing expected reward leads to lower variability for the LIP representation of both the target and distractor locations, and trials with shorter latency saccades are associated with lower Fano factors in neurons representing the surround. Thus, the LIP Fano factor reflects both stimulus and behavioral engagement. Quantitative modeling shows that the interaction between mean spike count and target-receptive field (RF) distance in the surround during the predistractor epoch is multiplicative: the Fano factor increases more steeply with mean spike count further away from the RF. A negative-binomial model for LIP spike counts captures these findings quantitatively, suggests underlying mechanisms based on trial-by-trial variations in mean spike rate or burst-firing patterns, and potentially provides a principled framework to account simultaneously for the previously observed unsystematic relationships between spike rate and variability in different brain areas.

  15. Functional divisions for visual processing in the central brain of flying Drosophila

    PubMed Central

    Weir, Peter T.; Dickinson, Michael H.

    2015-01-01

    Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910

  16. Functional divisions for visual processing in the central brain of flying Drosophila.

    PubMed

    Weir, Peter T; Dickinson, Michael H

    2015-10-06

    Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.

  17. Multimodal sensory responses of nucleus reticularis gigantocellularis and the responses' relation to cortical and motor activation.

    PubMed

    Martin, Eugene M; Pavlides, Constantine; Pfaff, Donald

    2010-05-01

    The connectivity of large neurons of the nucleus reticularis gigantocellularis (NRGc) in the medullary reticular formation potentially allows both for the integration of stimuli, in several modalities, that would demand immediate action, and for coordinated activation of cortical and motoric activity. We have simultaneously recorded cortical local field potentials, neck muscle electromyograph (EMG), and the neural activity of medullary NRGc neurons in unrestrained, unanesthetized rats to determine whether the activity of the NRGc is consistent with the modulation of general arousal. We observed excitatory responses of individual NRGc neurons to all modalities tested: tactile, visual, auditory, vestibular, and olfactory. Excitation was directly linked to increases in neck muscle EMG amplitude and corresponded with increases in the power of fast oscillations (30 to 80 Hz) of cortical activity and decreases in the power of slow oscillations (2 to 8 Hz). Because these reticular formation neurons can respond to broad ranges of stimuli with increased firing rates associated with the initiation of behavioral responses, we infer that they are part of an elementary "first responder" CNS arousal mechanism.

  18. Multimodal Sensory Responses of Nucleus Reticularis Gigantocellularis and the Responses' Relation to Cortical and Motor Activation

    PubMed Central

    Pavlides, Constantine; Pfaff, Donald

    2010-01-01

    The connectivity of large neurons of the nucleus reticularis gigantocellularis (NRGc) in the medullary reticular formation potentially allows both for the integration of stimuli, in several modalities, that would demand immediate action, and for coordinated activation of cortical and motoric activity. We have simultaneously recorded cortical local field potentials, neck muscle electromyograph (EMG), and the neural activity of medullary NRGc neurons in unrestrained, unanesthetized rats to determine whether the activity of the NRGc is consistent with the modulation of general arousal. We observed excitatory responses of individual NRGc neurons to all modalities tested: tactile, visual, auditory, vestibular, and olfactory. Excitation was directly linked to increases in neck muscle EMG amplitude and corresponded with increases in the power of fast oscillations (30 to 80 Hz) of cortical activity and decreases in the power of slow oscillations (2 to 8 Hz). Because these reticular formation neurons can respond to broad ranges of stimuli with increased firing rates associated with the initiation of behavioral responses, we infer that they are part of an elementary “first responder” CNS arousal mechanism. PMID:20181730

  19. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    PubMed

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  20. Tracking memory's trace

    PubMed Central

    Horn, Gabriel; Nicol, Alister U.; Brown, Malcolm W.

    2001-01-01

    There is strong converging evidence that the intermediate and medial part of the hyperstriatum ventrale of the chick brain is a memory store for information acquired through the learning process of imprinting. Neurons in this memory system come, through imprinting, to respond selectively to the imprinting stimulus (IS) neurons and so possess the properties of a memory trace. Therefore, the responses of the intermediate and medial part of the hyperstriatum ventrale neurons to a visual imprinting stimulus were determined before, during, and after training. Of the total recorded population, the proportions of IS neurons shortly after each of two 1-h training sessions were significantly higher (approximately 2 times) than the pretraining proportion. However, ≈4.5 h later this proportion had fallen significantly and did not differ significantly from the pretraining proportion. Nevertheless, ≈21.5 h after the end of training, the proportion of IS neurons was at its highest (approximately 3 times the pretraining level). No significant fluctuations occurred in the proportions of neurons responding to the alternative stimulus. In addition, nonmonotonic changes were found commonly in the activity of 230 of the neurons tracked individually from before training to shortly after the end of training. Thus the pattern of change in responsiveness both at the population level and at the level of individual neurons was highly nonmonotonic. Such a pattern of change is not consistent with simple models of memory based on synaptic strengthening to asymptote. A model is proposed that accounts for the changes in the population responses to the imprinting stimulus in terms of changes in the responses of individual neurons. PMID:11296266

  1. Cross-orientation suppression in human visual cortex

    PubMed Central

    Heeger, David J.

    2011-01-01

    Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720

  2. A Neural Signature of Divisive Normalization at the Level of Multisensory Integration in Primate Cortex.

    PubMed

    Ohshiro, Tomokazu; Angelaki, Dora E; DeAngelis, Gregory C

    2017-07-19

    Studies of multisensory integration by single neurons have traditionally emphasized empirical principles that describe nonlinear interactions between inputs from two sensory modalities. We previously proposed that many of these empirical principles could be explained by a divisive normalization mechanism operating in brain regions where multisensory integration occurs. This normalization model makes a critical diagnostic prediction: a non-preferred sensory input from one modality, which activates the neuron on its own, should suppress the response to a preferred input from another modality. We tested this prediction by recording from neurons in macaque area MSTd that integrate visual and vestibular cues regarding self-motion. We show that many MSTd neurons exhibit the diagnostic form of cross-modal suppression, whereas unisensory neurons in area MT do not. The normalization model also fits population responses better than a model based on subtractive inhibition. These findings provide strong support for a divisive normalization mechanism in multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Neural correlates of auditory short-term memory in rostral superior temporal cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2014-01-01

    Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448

  4. [Orientation hypercolumns of the visual cortex: ring model].

    PubMed

    Smirnova, E Iu; Chizhov, A V

    2011-01-01

    A hypercolumn of the visual cortex is a functional unit formed of the neighbouring columns whose neurons respond to a stimulus of particular orientation. The function of the hypercolumn is to amplify the orientation tuning of visually evoked responses. According to the conventional simple model of a hypercolumn, neuronal populations with different orientation preferences are distributed on a ring. Every population is described by the frequency (FR) model. To determine the limitations of the FR-ring model, it was compared with a more detailed ring model, which takes into account the distribution of neurons of each population according to their voltage values. In the case of the leaky integrate-and-fire neurons, every neural population is described by the Fokker-Planck (FP) equation. The mapping of parameters was obtained. The simulations revealed differences in the behaviour of the two models. Contrary to the FR model, the model based on the Fokker-Planck equation reacts faster to a change in stimulus orientation. The Fokker-Planck ring model gives a steady-state solution in the form of waves of activity travelling on the ring, whereas the FR ring model presents amplitude instability for the same parameter set. The FR ring model reproduces the characteristic effects of the ring model: the virtual rotation and the symmetry breaking.

  5. NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.

    PubMed

    Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus

    2014-12-01

    We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

  6. Texture Segregation Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4 of Visual Cortex.

    PubMed

    Poort, Jasper; Self, Matthew W; van Vugt, Bram; Malkki, Hemi; Roelfsema, Pieter R

    2016-10-01

    Segregation of images into figures and background is fundamental for visual perception. Cortical neurons respond more strongly to figural image elements than to background elements, but the mechanisms of figure-ground modulation (FGM) are only partially understood. It is unclear whether FGM in early and mid-level visual cortex is caused by an enhanced response to the figure, a suppressed response to the background, or both.We studied neuronal activity in areas V1 and V4 in monkeys performing a texture segregation task. We compared texture-defined figures with homogeneous textures and found an early enhancement of the figure representation, and a later suppression of the background. Across neurons, the strength of figure enhancement was independent of the strength of background suppression.We also examined activity in the different V1 layers. Both figure enhancement and ground suppression were strongest in superficial and deep layers and weaker in layer 4. The current-source density profiles suggested that figure enhancement was caused by stronger synaptic inputs in feedback-recipient layers 1, 2, and 5 and ground suppression by weaker inputs in these layers, suggesting an important role for feedback connections from higher level areas. These results provide new insights into the mechanisms for figure-ground organization. © The Author 2016. Published by Oxford University Press.

  7. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  8. Neurons with two sites of synaptic integration learn invariant representations.

    PubMed

    Körding, K P; König, P

    2001-12-01

    Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.

  9. A Biophysical Neural Model To Describe Spatial Visual Attention

    NASA Astrophysics Data System (ADS)

    Hugues, Etienne; José, Jorge V.

    2008-02-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.

  10. A Biophysical Neural Model To Describe Spatial Visual Attention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugues, Etienne; Jose, Jorge V.

    2008-02-14

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We firstmore » constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.« less

  11. Computational modeling of the neural representation of object shape in the primate ventral visual system

    PubMed Central

    Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.

    2015-01-01

    Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766

  12. A visual pathway links brain structures active during magnetic compass orientation in migratory birds.

    PubMed

    Heyers, Dominik; Manns, Martina; Luksch, Harald; Güntürkün, Onur; Mouritsen, Henrik

    2007-09-26

    The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.

  13. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum

    PubMed Central

    Sommer, Marc A.

    2013-01-01

    The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182

  14. Identification of non-visual photomotor response cells in the vertebrate hindbrain

    PubMed Central

    Kokel, David; Dunn, Timothy W.; Ahrens, Misha B.; Alshut, Rüdiger; Cheung, Chung Yan J.; Saint-Amant, Louis; Bruni, Giancarlo; Mateus, Rita; van Ham, Tjakko J.; Shiraki, Tomoya; Fukada, Yoshitaka; Kojima, Daisuke; Yeh, Jing-Ruey J.; Mikut, Ralf; von Lintig, Johannes; Engert, Florian; Peterson, Randall T.

    2013-01-01

    Non-visual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of non-visual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain. PMID:23447595

  15. Area 18 of the cat: the first step in processing visual movement information.

    PubMed

    Orban, G A

    1977-01-01

    In cats, responses of area 18 neurons to different moving patterns were measured. The influence of three movement parameters--direction, angular velocity, and amplitude of movement--were tested. The results indicate that in area 18 no ideal movement detector exists, but that simple and complex cells each perform complementary operations of primary visual areas, i.e. analysis and detection of movement.

  16. Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation

    NASA Technical Reports Server (NTRS)

    Perrone, J. A.; Stone, L. S.

    1998-01-01

    We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.

  17. Macaque Parieto-Insular Vestibular Cortex: Responses to self-motion and optic flow

    PubMed Central

    Chen, Aihua; DeAngelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency, and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency, and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed roughly uniformly for translation, but showing a preference for roll rotation. Spatio-temporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception. PMID:20181599

  18. An Extended Normalization Model of Attention Accounts for Feature-Based Attentional Enhancement of Both Response and Coherence Gain

    PubMed Central

    Krishna, B. Suresh; Treue, Stefan

    2016-01-01

    Paying attention to a sensory feature improves its perception and impairs that of others. Recent work has shown that a Normalization Model of Attention (NMoA) can account for a wide range of physiological findings and the influence of different attentional manipulations on visual performance. A key prediction of the NMoA is that attention to a visual feature like an orientation or a motion direction will increase the response of neurons preferring the attended feature (response gain) rather than increase the sensory input strength of the attended stimulus (input gain). This effect of feature-based attention on neuronal responses should translate to similar patterns of improvement in behavioral performance, with psychometric functions showing response gain rather than input gain when attention is directed to the task-relevant feature. In contrast, we report here that when human subjects are cued to attend to one of two motion directions in a transparent motion display, attentional effects manifest as a combination of input and response gain. Further, the impact on input gain is greater when attention is directed towards a narrow range of motion directions than when it is directed towards a broad range. These results are captured by an extended NMoA, which either includes a stimulus-independent attentional contribution to normalization or utilizes direction-tuned normalization. The proposed extensions are consistent with the feature-similarity gain model of attention and the attentional modulation in extrastriate area MT, where neuronal responses are enhanced and suppressed by attention to preferred and non-preferred motion directions respectively. PMID:27977679

  19. Texture-dependent motion signals in primate middle temporal area

    PubMed Central

    Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G

    2013-01-01

    Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175

  20. Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects

    PubMed Central

    Mihalas, Stefan; Dong, Yi; von der Heydt, Rüdiger; Niebur, Ernst

    2011-01-01

    Visual attention is often understood as a modulatory field acting at early stages of processing, but the mechanisms that direct and fit the field to the attended object are not known. We show that a purely spatial attention field propagating downward in the neuronal network responsible for perceptual organization will be reshaped, repositioned, and sharpened to match the object's shape and scale. Key features of the model are grouping neurons integrating local features into coherent tentative objects, excitatory feedback to the same local feature neurons that caused grouping neuron activation, and inhibition between incompatible interpretations both at the local feature level and at the object representation level. PMID:21502489

  1. Synchrony and the binding problem in macaque visual cortex

    PubMed Central

    Dong, Yi; Mihalas, Stefan; Qiu, Fangtu; von der Heydt, Rüdiger; Niebur, Ernst

    2009-01-01

    We tested the binding-by-synchrony hypothesis which proposes that object representations are formed by synchronizing spike activity between neurons that code features of the same object. We studied responses of 32 pairs of neurons recorded with microelectrodes 3 mm apart in the visual cortex of macaques performing a fixation task. Upon mapping the receptive fields of the neurons, a quadrilateral was generated so that two of its sides were centered in the receptive fields at the optimal orientations. This one-figure condition was compared with a two-figure condition in which the neurons were stimulated by two separate figures, keeping the local edges in the receptive fields identical. For each neuron, we also determined its border ownership selectivity (H. Zhou, H. S. Friedman, & R. von der Heydt, 2000). We examined both synchronization and correlation at nonzero time lag. After correcting for effects of the firing rate, we found that synchrony did not depend on the binding condition. However, finding synchrony in a pair of neurons was correlated with finding border-ownership selectivity in both members of the pair. This suggests that the synchrony reflected the connectivity in the network that generates border ownership assignment. Thus, we have not found evidence to support the binding-by-synchrony hypothesis. PMID:19146262

  2. Responses of prefrontal multisensory neurons to mismatching faces and vocalizations.

    PubMed

    Diehl, Maria M; Romanski, Lizabeth M

    2014-08-20

    Social communication relies on the integration of auditory and visual information, which are present in faces and vocalizations. Evidence suggests that the integration of information from multiple sources enhances perception compared with the processing of a unimodal stimulus. Our previous studies demonstrated that single neurons in the ventrolateral prefrontal cortex (VLPFC) of the rhesus monkey (Macaca mulatta) respond to and integrate conspecific vocalizations and their accompanying facial gestures. We were therefore interested in how VLPFC neurons respond differentially to matching (congruent) and mismatching (incongruent) faces and vocalizations. We recorded VLPFC neurons during the presentation of movies with congruent or incongruent species-specific facial gestures and vocalizations as well as their unimodal components. Recordings showed that while many VLPFC units are multisensory and respond to faces, vocalizations, or their combination, a subset of neurons showed a significant change in neuronal activity in response to incongruent versus congruent vocalization movies. Among these neurons, we typically observed incongruent suppression during the early stimulus period and incongruent enhancement during the late stimulus period. Incongruent-responsive VLPFC neurons were both bimodal and nonlinear multisensory, fostering their ability to respond to changes in either modality of a face-vocalization stimulus. These results demonstrate that ventral prefrontal neurons respond to changes in either modality of an audiovisual stimulus, which is important in identity processing and for the integration of multisensory communication information. Copyright © 2014 the authors 0270-6474/14/3411233-11$15.00/0.

  3. A Multi-Stage Model for Fundamental Functional Properties in Primary Visual Cortex

    PubMed Central

    Hesam Shariati, Nastaran; Freeman, Alan W.

    2012-01-01

    Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex. PMID:22496811

  4. Speed skills: measuring the visual speed analyzing properties of primate MT neurons.

    PubMed

    Perrone, J A; Thiele, A

    2001-05-01

    Knowing the direction and speed of moving objects is often critical for survival. However, it is poorly understood how cortical neurons process the speed of image movement. Here we tested MT neurons using moving sine-wave gratings of different spatial and temporal frequencies, and mapped out the neurons' spatiotemporal frequency response profiles. The maps typically had oriented ridges of peak sensitivity as expected for speed-tuned neurons. The preferred speed estimate, derived from the orientation of the maps, corresponded well to the preferred speed when moving bars were presented. Thus, our data demonstrate that MT neurons are truly sensitive to the object speed. These findings indicate that MT is not only a key structure in the analysis of direction of motion and depth perception, but also in the analysis of object speed.

  5. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    PubMed

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  6. Neural activity in cortical area V4 underlies fine disparity discrimination.

    PubMed

    Shiozaki, Hiroshi M; Tanabe, Seiji; Doi, Takahiro; Fujita, Ichiro

    2012-03-14

    Primates are capable of discriminating depth with remarkable precision using binocular disparity. Neurons in area V4 are selective for relative disparity, which is the crucial visual cue for discrimination of fine disparity. Here, we investigated the contribution of V4 neurons to fine disparity discrimination. Monkeys discriminated whether the center disk of a dynamic random-dot stereogram was in front of or behind its surrounding annulus. We first behaviorally tested the reference frame of the disparity representation used for performing this task. After learning the task with a set of surround disparities, the monkey generalized its responses to untrained surround disparities, indicating that the perceptual decisions were generated from a disparity representation in a relative frame of reference. We then recorded single-unit responses from V4 while the monkeys performed the task. On average, neuronal thresholds were higher than the behavioral thresholds. The most sensitive neurons reached thresholds as low as the psychophysical thresholds. For subthreshold disparities, the monkeys made frequent errors. The variable decisions were predictable from the fluctuation in the neuronal responses. The predictions were based on a decision model in which each V4 neuron transmits the evidence for the disparity it prefers. We finally altered the disparity representation artificially by means of microstimulation to V4. The decisions were systematically biased when microstimulation boosted the V4 responses. The bias was toward the direction predicted from the decision model. We suggest that disparity signals carried by V4 neurons underlie precise discrimination of fine stereoscopic depth.

  7. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex

    PubMed Central

    Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.

    2017-01-01

    The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756

  8. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    PubMed

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans

    PubMed Central

    Rokem, Ariel; Silver, Michael A.

    2010-01-01

    Summary Learning through experience underlies the ability to adapt to novel tasks and unfamiliar environments. However, learning must be regulated so that relevant aspects of the environment are selectively encoded. Acetylcholine (ACh) has been suggested to regulate learning by enhancing the responses of sensory cortical neurons to behaviorally-relevant stimuli [1]. In this study, we increased synaptic levels of ACh in the brains of healthy human subjects with the cholinesterase inhibitor donepezil (trade name: Aricept) and measured the effects of this cholinergic enhancement on visual perceptual learning. Each subject completed two five-day courses of training on a motion direction discrimination task [2], once while ingesting 5 mg of donepezil before every training session and once while placebo was administered. We found that cholinergic enhancement augmented perceptual learning for stimuli having the same direction of motion and visual field location used during training. In addition, perceptual learning under donepezil was more selective to the trained direction of motion and visual field location. These results, combined with previous studies demonstrating an increase in neuronal selectivity following cholinergic enhancement [3–5], suggest a possible mechanism by which ACh augments neural plasticity by directing activity to populations of neurons that encode behaviorally-relevant stimulus features. PMID:20850321

  10. Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex

    PubMed Central

    Kim, Taekjun; Allen, Elena A.; Pasley, Brian N.; Freeman, Ralph D.

    2015-01-01

    Background Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. Objective/Hypothesis Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat’s visual cortex. Methods Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4Hz, 4sec) was delivered with a 70mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. Results We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. Conclusions These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs. PMID:25862599

  11. Emulating the Visual Receptive Field Properties of MST Neurons with a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John A.; Stone, Leland S.

    1997-01-01

    We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.

  12. Can responses to basic non-numerical visual features explain neural numerosity responses?

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2017-04-01

    Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantitative distribution of GABA-immunoreactive neurons in cetacean visual cortex is similar to that in land mammals.

    PubMed

    Garey, L J; Takács, J; Revishchin, A V; Hámori, J

    1989-04-24

    Sections of the anterior portion of the visual cortex in the lateral gyrus of the Black Sea porpoise were studied to determine the neuronal architecture and numerical density, and the distribution of neurons immunoreactive to gamma-aminobutyric acid (GABA). Cytoarchitecture and neuronal density are similar to those described in another cetacean, the bottlenose dolphin. GABA-positive neurons are distributed through all layers of the visual cortex but are especially dense in layers II and III, and comprise some 20% of the total neuronal population in this part of the cortex. The distribution of GABA-positive neurons is similar to that found in land mammals.

  14. Visual perception and imagery: a new molecular hypothesis.

    PubMed

    Bókkon, I

    2009-05-01

    Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.

  15. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    PubMed

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we studied the behavioral consequences of adding different types of auditory distractors in a visual selective attention task in wild-type and α-9 nicotinic receptor knock-out (KO) mice. We demonstrate that KO mice perform poorly in the selective attention paradigm and that an intact medial olivocochlear transmission aids in ignoring auditory distractors during attention. Copyright © 2016 the authors 0270-6474/16/367198-12$15.00/0.

  16. Multiscale neural connectivity during human sensory processing in the brain

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  17. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential

    PubMed Central

    Nguyen, Mai; Winawer, Jonathan

    2017-01-01

    The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8–13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30–80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity. PMID:28742093

  18. Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state.

    PubMed

    Kohatsu, Soh; Yamamoto, Daisuke

    2015-03-06

    The courtship ritual of male Drosophila represents an innate behaviour that is initiated by female-derived sensory stimuli. Here we report that moving light spots can induce courtship-like following pursuit in tethered wild-type male flies provided the fly is primed by optogenetic stimulation of specific dsx-expressing neuronal clusters in the lateral protocerebrum (LPR). Namely, stimulation of the pC1 neuronal cluster initiates unilateral wing extension and vibration of both sides, whereas stimulation of the pC2l cluster initiates only contralateral wing displays. In addition, stimulation of pC2l but not pC1 neurons induced abdominal bending and proboscis extension. Ca(2+) imaging of the pC1 cluster revealed periodic Ca(2+) rises, each corresponding to a turn of the male fly during courtship. In contrast, group-reared fru mutant males exhibit light spot-induced courtship pursuit without optogenetic priming. Ca(2+) imaging revealed enhanced responses of LPR neurons to visual stimuli in the mutants, suggesting a neural correlate of the light spot-induced courtship behaviour.

  19. Mechanisms of Neuronal Computation in Mammalian Visual Cortex

    PubMed Central

    Priebe, Nicholas J.; Ferster, David

    2012-01-01

    Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant. PMID:22841306

  20. Functional implications of orientation maps in primary visual cortex

    NASA Astrophysics Data System (ADS)

    Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim

    2016-11-01

    Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.

  1. Integrative Properties of the Pe1 Neuron, a Unique Mushroom Body Output Neuron

    PubMed Central

    Rybak, Jürgen; Menzel, Randolf

    1998-01-01

    A mushroom body extrinsic neuron, the Pe1 neuron, connects the peduncle of the mushroom body (MB) with two areas of the protocerebrum in the honeybee brain, the lateral protocerebral lobe (LPL) and the ring neuropil around the α-lobe. Each side of the bee brain contains only one Pe1 neuron. Using a combination of intracellular recording and neuroanatomical techniques we analyzed its properties of integrative processing of the different sensory modalities. The Pe1 neuron responds to visual, mechanosensory, and olfactory stimuli. The responses are broadly tuned, consisting of a sustained increase of spike frequency to the onset and offset of light flashes, to horizontal and vertical movements of extended objects, to mechanical stimuli applied to the antennae or mouth parts, and to all olfactory stimuli tested (29 chemicals). These multisensory properties are reflected in its dendritic organization. Serial reconstructions of intracellularly stained Pe1 neurons using confocal microscopy reveal that the Pe1 neuron arborizes throughout all layers of MB peduncle with finger-like, vertically oriented dendrites. The peduncle of the MB is formed by the axons of Kenyon cells, whose dendritic inputs are organized in modality-specific subcompartments of the calyx region. The peduncular arborization indicates that the Pe1 neuron receives input from Kenyon cells of all calycal subcompartments. Because the Pe1 neuron changes its odor responses transiently as a consequence of olfactory learning, we hypothesize that the multimodal response properties might have a role in memory consolidation and help to establish contextual references in the long-term trace. PMID:10454378

  2. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland Scott; Perrone, J. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A template model of human visual self-motion perception (Perrone, JOSA, 1992; Perrone & Stone, Vis. Res., in press), which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results (Warren & Hannon, Nature, 1988; Stone & Perrone, Neuro. Abstr., 1991) including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions (Royden et al., Nature, 1992). We tested the model detectors with stimuli used by others in- single-unit studies. The detectors showed emergent properties similar to those of MST neurons: 1) Sensitivity to non-preferred flow. Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow (Orban et al., PNAS, 1992), and 2) Position invariance. The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields (e.g. Duffy & Wurtz, J. Neurophys., 1991; Graziano et al., J. Neurosci., 1994). It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  3. Learning enhances the relative impact of top-down processing in the visual cortex

    PubMed Central

    Makino, Hiroshi; Komiyama, Takaki

    2015-01-01

    Theories have proposed that in sensory cortices learning can enhance top-down modulation by higher brain areas while reducing bottom-up sensory inputs. To address circuit mechanisms underlying this process, we examined the activity of layer 2/3 (L2/3) excitatory neurons in the mouse primary visual cortex (V1) as well as L4 neurons, the main bottom-up source, and long-range top-down projections from the retrosplenial cortex (RSC) during associative learning over days using chronic two-photon calcium imaging. During learning, L4 responses gradually weakened, while RSC inputs became stronger. Furthermore, L2/3 acquired a ramp-up response temporal profile with learning, coinciding with a similar change in RSC inputs. Learning also reduced the activity of somatostatin-expressing inhibitory neurons (SOM-INs) in V1 that could potentially gate top-down inputs. Finally, RSC inactivation or SOM-IN activation was sufficient to partially reverse the learning-induced changes in L2/3. Together, these results reveal a learning-dependent dynamic shift in the balance between bottom-up and top-down information streams and uncover a role of SOM-INs in controlling this process. PMID:26167904

  4. The projective field of a retinal amacrine cell

    PubMed Central

    de Vries, Saskia E. J.; Baccus, Stephen A.; Meister, Markus

    2011-01-01

    In sensory systems, neurons are generally characterized by their receptive field, namely the sensitivity to activity patterns at the circuit's input. To assess the neuron's role in the system, one must also know its projective field, namely the spatio-temporal effects the neuron exerts on all the circuit's outputs. We studied both the receptive and projective fields of an amacrine interneuron in the salamander retina. This amacrine type has a sustained OFF response with a small receptive field, but its output projects over a much larger region. Unlike other amacrines, this type is remarkably promiscuous and affects nearly every ganglion cell within reach of its dendrites. Its activity modulates the sensitivity of visual responses in ganglion cells, while leaving their kinetics unchanged. The projective field displays a center-surround structure: Depolarizing a single amacrine suppresses the visual sensitivity of ganglion cells nearby, and enhances it at greater distances. This change in sign is seen even within the receptive field of one ganglion cell; thus the modulation occurs presynaptically on bipolar cell terminals, most likely via GABAB receptors. Such an antagonistic projective field could contribute to the retina's mechanisms for predictive coding. PMID:21653863

  5. Focal damage to macaque photoreceptors produces persistent visual loss

    PubMed Central

    Strazzeri, Jennifer M.; Hunter, Jennifer J.; Masella, Benjamin D.; Yin, Lu; Fischer, William S.; DiLoreto, David A.; Libby, Richard T.; Williams, David R.; Merigan, William H.

    2014-01-01

    Insertion of light-gated channels into inner retina neurons restores neural light responses, light evoked potentials, visual optomotor responses and visually-guided maze behavior in mice blinded by retinal degeneration. This method of vision restoration bypasses damaged outer retina, providing stimulation directly to retinal ganglion cells in inner retina. The approach is similar to that of electronic visual protheses, but may offer some advantages, such as avoidance of complex surgery and direct targeting of many thousands of neurons. However, the promise of this technique for restoring human vision remains uncertain because rodent animal models, in which it has been largely developed, are not ideal for evaluating visual perception. On the other hand, psychophysical vision studies in macaque can be used to evaluate different approaches to vision restoration in humans. Furthermore, it has not been possible to test vision restoration in macaques, the optimal model for human-like vision, because there has been no macaque model of outer retina degeneration. In this study, we describe development of a macaque model of photoreceptor degeneration that can in future studies be used to test restoration of perception by visual prostheses. Our results show that perceptual deficits caused by focal light damage are restricted to locations at which photoreceptors are damaged, that optical coherence tomography (OCT) can be used to track such lesions, and that adaptive optics retinal imaging, which we recently used for in vivo recording of ganglion cell function, can be used in future studies to examine these lesions. PMID:24316158

  6. Cross-correlated and oscillatory visual responses of superficial-layer and tecto-reticular neurones in cat superior colliculus.

    PubMed

    Chabli, A; Guitton, D; Fortin, S; Molotchnikoff, S

    2000-03-01

    The present study examined, in the superior colliculus (SC) of anaesthetised cats, the functional connectivity between superficial-layer neurones (SLNs) and tectoreticular neurones (TRNs: collicular output cells). TRNs were antidromically identified by electrical stimulation of the predorsal bundle. The auto- and cross-correlation histograms of visual responses of both types of neurones were recorded and analysed. A delayed, sharp peak in cross-correlograms allowed us to verify whether SLN and TRN cells were coupled; in addition, oscillatory activities were compared to verify if rhythmic responses of SLN sites were transmitted to TRN sites. We found that oscillatory activity was rarely observed in spontaneous activity of superficial (1/74) and TRN sites (1/48). Moving light bars induced oscillation in 31% (23/74) of the superficial-layer and in 23% (11/48) of the TRN sites. The strength of the rhythmic responses was determined by specific ranges of stimulus velocity in 83% (19/23) and 64% (7/11) of oscillating SLN and TRN sites, respectively. Frequencies of oscillations ranged between 5 and 125 Hz and were confined, for 53% of the cells, to the 5-20 Hz band. Thus, the band-width of frequencies of the stimulus-related oscillations in the superior colliculus was broader than the gamma range. Analysis of cross-correlation histograms revealed a significant predominant peak with a mean delay of 2.7+/-0.9 ms in 46% (17/37) of SLN-TRN pairs. Most correlated SLN-TRN pairs (88%: 15/17) had superimposed receptive fields, suggesting they were functionally interconnected. However, individual oscillatory frequencies of correlated and oscillatory SLN and TRN cells were never the same (0/8). Together, these results suggest that the neurones in collicular superficial layer contact TRNs and, consequently, support the idea that the superficial layers contribute to collicular outputs producing eye- and head-orienting movements.

  7. Are neural correlates of visual consciousness retinotopic?

    PubMed

    ffytche, Dominic H; Pins, Delphine

    2003-11-14

    Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.

  8. Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex

    PubMed Central

    Sugase-Miyamoto, Yasuko; Liu, Zheng; Wiener, Matthew C.; Optican, Lance M.; Richmond, Barry J.

    2008-01-01

    Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory. PMID:18464917

  9. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation

    PubMed Central

    Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo; Barnes, Graham R.

    2013-01-01

    Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology. PMID:23515488

  10. Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data.

    PubMed

    Helmer, Markus; Kozyrev, Vladislav; Stephan, Valeska; Treue, Stefan; Geisel, Theo; Battaglia, Demian

    2016-01-01

    Tuning curves are the functions that relate the responses of sensory neurons to various values within one continuous stimulus dimension (such as the orientation of a bar in the visual domain or the frequency of a tone in the auditory domain). They are commonly determined by fitting a model e.g. a Gaussian or other bell-shaped curves to the measured responses to a small subset of discrete stimuli in the relevant dimension. However, as neuronal responses are irregular and experimental measurements noisy, it is often difficult to determine reliably the appropriate model from the data. We illustrate this general problem by fitting diverse models to representative recordings from area MT in rhesus monkey visual cortex during multiple attentional tasks involving complex composite stimuli. We find that all models can be well-fitted, that the best model generally varies between neurons and that statistical comparisons between neuronal responses across different experimental conditions are affected quantitatively and qualitatively by specific model choices. As a robust alternative to an often arbitrary model selection, we introduce a model-free approach, in which features of interest are extracted directly from the measured response data without the need of fitting any model. In our attentional datasets, we demonstrate that data-driven methods provide descriptions of tuning curve features such as preferred stimulus direction or attentional gain modulations which are in agreement with fit-based approaches when a good fit exists. Furthermore, these methods naturally extend to the frequent cases of uncertain model selection. We show that model-free approaches can identify attentional modulation patterns, such as general alterations of the irregular shape of tuning curves, which cannot be captured by fitting stereotyped conventional models. Finally, by comparing datasets across different conditions, we demonstrate effects of attention that are cell- and even stimulus-specific. Based on these proofs-of-concept, we conclude that our data-driven methods can reliably extract relevant tuning information from neuronal recordings, including cells whose seemingly haphazard response curves defy conventional fitting approaches.

  11. Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data

    PubMed Central

    Helmer, Markus; Kozyrev, Vladislav; Stephan, Valeska; Treue, Stefan; Geisel, Theo; Battaglia, Demian

    2016-01-01

    Tuning curves are the functions that relate the responses of sensory neurons to various values within one continuous stimulus dimension (such as the orientation of a bar in the visual domain or the frequency of a tone in the auditory domain). They are commonly determined by fitting a model e.g. a Gaussian or other bell-shaped curves to the measured responses to a small subset of discrete stimuli in the relevant dimension. However, as neuronal responses are irregular and experimental measurements noisy, it is often difficult to determine reliably the appropriate model from the data. We illustrate this general problem by fitting diverse models to representative recordings from area MT in rhesus monkey visual cortex during multiple attentional tasks involving complex composite stimuli. We find that all models can be well-fitted, that the best model generally varies between neurons and that statistical comparisons between neuronal responses across different experimental conditions are affected quantitatively and qualitatively by specific model choices. As a robust alternative to an often arbitrary model selection, we introduce a model-free approach, in which features of interest are extracted directly from the measured response data without the need of fitting any model. In our attentional datasets, we demonstrate that data-driven methods provide descriptions of tuning curve features such as preferred stimulus direction or attentional gain modulations which are in agreement with fit-based approaches when a good fit exists. Furthermore, these methods naturally extend to the frequent cases of uncertain model selection. We show that model-free approaches can identify attentional modulation patterns, such as general alterations of the irregular shape of tuning curves, which cannot be captured by fitting stereotyped conventional models. Finally, by comparing datasets across different conditions, we demonstrate effects of attention that are cell- and even stimulus-specific. Based on these proofs-of-concept, we conclude that our data-driven methods can reliably extract relevant tuning information from neuronal recordings, including cells whose seemingly haphazard response curves defy conventional fitting approaches. PMID:26785378

  12. Multisensory integration in the basal ganglia.

    PubMed

    Nagy, Attila; Eördegh, Gabriella; Paróczy, Zsuzsanna; Márkus, Zita; Benedek, György

    2006-08-01

    Sensorimotor co-ordination in mammals is achieved predominantly via the activity of the basal ganglia. To investigate the underlying multisensory information processing, we recorded the neuronal responses in the caudate nucleus (CN) and substantia nigra (SN) of anaesthetized cats to visual, auditory or somatosensory stimulation alone and also to their combinations, i.e. multisensory stimuli. The main goal of the study was to ascertain whether multisensory information provides more information to the neurons than do the individual sensory components. A majority of the investigated SN and CN multisensory units exhibited significant cross-modal interactions. The multisensory response enhancements were either additive or superadditive; multisensory response depressions were also detected. CN and SN cells with facilitatory and inhibitory interactions were found in each multisensory combination. The strengths of the multisensory interactions did not differ in the two structures. A significant inverse correlation was found between the strengths of the best unimodal responses and the magnitudes of the multisensory response enhancements, i.e. the neurons with the weakest net unimodal responses exhibited the strongest enhancement effects. The onset latencies of the responses of the integrative CN and SN neurons to the multisensory stimuli were significantly shorter than those to the unimodal stimuli. These results provide evidence that the multisensory CN and SN neurons, similarly to those in the superior colliculus and related structures, have the ability to integrate multisensory information. Multisensory integration may help in the effective processing of sensory events and the changes in the environment during motor actions controlled by the basal ganglia.

  13. The influence of spontaneous activity on stimulus processing in primary visual cortex.

    PubMed

    Schölvinck, M L; Friston, K J; Rees, G

    2012-02-01

    Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.

  14. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish.

    PubMed

    Kubo, Fumi; Hablitzel, Bastian; Dal Maschio, Marco; Driever, Wolfgang; Baier, Herwig; Arrenberg, Aristides B

    2014-03-19

    Animals respond to whole-field visual motion with compensatory eye and body movements in order to stabilize both their gaze and position with respect to their surroundings. In zebrafish, rotational stimuli need to be distinguished from translational stimuli to drive the optokinetic and the optomotor responses, respectively. Here, we systematically characterize the neural circuits responsible for these operations using a combination of optogenetic manipulation and in vivo calcium imaging during optic flow stimulation. By recording the activity of thousands of neurons within the area pretectalis (APT), we find four bilateral pairs of clusters that process horizontal whole-field motion and functionally classify eleven prominent neuron types with highly selective response profiles. APT neurons are prevalently direction selective, either monocularly or binocularly driven, and hierarchically organized to distinguish between rotational and translational optic flow. Our data predict a wiring diagram of a neural circuit tailored to drive behavior that compensates for self-motion. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Static and dynamic views of visual cortical organization.

    PubMed

    Casagrande, Vivien A; Xu, Xiangmin; Sáry, Gyula

    2002-01-01

    Without the aid of modern techniques Cajal speculated that cells in the visual cortex were connected in circuits. From Cajal's time until fairly recently, the flow of information within the cells and circuits of visual cortex has been described as progressing from input to output, from sensation to action. In this chapter we argue that a paradigm shift in our concept of the visual cortical neuron is under way. The most important change in our view concerns the neuron's functional role. Visual cortical neurons do not have static functional signatures but instead function dynamically depending on the ongoing activity of the networks to which they belong. These networks are not merely top-down or bottom-up unidirectional transmission lines, but rather represent machinery that uses recurrent information and is dynamic and highly adaptable. With the advancement of technology for analyzing the conversations of multiple neurons at many levels in the visual system and higher resolution imaging, we predict that the paradigm shift will progress to the point where neurons are no longer viewed as independent processing units but as members of subsets of networks where their role is mapped in space-time coordinates in relationship to the other neuronal members. This view moves us far from Cajal's original views of the neuron. Nevertheless, we believe that understanding the basic morphology and wiring of networks will continue to contribute to our overall understanding of the visual cortex.

  17. Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-09-13

    The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.

  18. V1 mechanisms underlying chromatic contrast detection

    PubMed Central

    Hass, Charles A.

    2013-01-01

    To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689

  19. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.

    PubMed

    Das, Sulagna; Moon, Hyungseok C; Singer, Robert H; Park, Hye Yoon

    2018-06-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca 2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  20. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  1. Contributions of the 12 neuron classes in the fly lamina to motion vision

    PubMed Central

    Tuthill, John C.; Nern, Aljoscha; Holtz, Stephen L.; Rubin, Gerald M.; Reiser, Michael B.

    2013-01-01

    SUMMARY Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type, and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing, and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. PMID:23849200

  2. Contributions of the 12 neuron classes in the fly lamina to motion vision.

    PubMed

    Tuthill, John C; Nern, Aljoscha; Holtz, Stephen L; Rubin, Gerald M; Reiser, Michael B

    2013-07-10

    Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates.

    PubMed

    Lee, Conrad C Y; Diamond, Mathew E; Arabzadeh, Ehsan

    2016-03-16

    Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high-likelihood context, detection was faster and more reliable. Neuronal recording from the vibrissal cortex revealed enhanced representation of vibrations in the prioritized context. These results establish the rat as an alternative model organism to primates for studying attention. Copyright © 2016 the authors 0270-6474/16/363243-11$15.00/0.

  4. In Vivo Voltage-Sensitive Dye Study of Lateral Spreading of Cortical Activity in Mouse Primary Visual Cortex Induced by a Current Impulse

    PubMed Central

    Fehérvári, Tamás Dávid; Sawai, Hajime; Yagi, Tetsuya

    2015-01-01

    In the mammalian primary visual cortex (V1), lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN), making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD) imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08–0.15 m/s) however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05–0.08 m/s) suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1. PMID:26230520

  5. Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats

    PubMed Central

    Sriram, Balaji; Meier, Philip M.

    2016-01-01

    Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions. PMID:26936980

  6. Robust Representation of Stable Object Values in the Oculomotor Basal Ganglia

    PubMed Central

    Yasuda, Masaharu; Yamamoto, Shinya; Hikosaka, Okihide

    2012-01-01

    Our gaze tends to be directed to objects previously associated with rewards. Such object values change flexibly or remain stable. Here we present evidence that the monkey substantia nigra pars reticulata (SNr) in the basal ganglia represents stable, rather than flexible, object values. After across-day learning of object–reward association, SNr neurons gradually showed a response bias to surprisingly many visual objects: inhibition to high-valued objects and excitation to low-valued objects. Many of these neurons were shown to project to the ipsilateral superior colliculus. This neuronal bias remained intact even after >100 d without further learning. In parallel with the neuronal bias, the monkeys tended to look at high-valued objects. The neuronal and behavioral biases were present even if no value was associated during testing. These results suggest that SNr neurons bias the gaze toward objects that were consistently associated with high values in one’s history. PMID:23175843

  7. Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.

    PubMed

    Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P

    2013-07-24

    Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.

  8. Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat.

    PubMed

    Aasebø, Ida E J; Lepperød, Mikkel E; Stavrinou, Maria; Nøkkevangen, Sandra; Einevoll, Gaute; Hafting, Torkel; Fyhn, Marianne

    2017-01-01

    The activity pattern and temporal dynamics within and between neuron ensembles are essential features of information processing and believed to be profoundly affected by anesthesia. Much of our general understanding of sensory information processing, including computational models aimed at mathematically simulating sensory information processing, rely on parameters derived from recordings conducted on animals under anesthesia. Due to the high variety of neuronal subtypes in the brain, population-based estimates of the impact of anesthesia may conceal unit- or ensemble-specific effects of the transition between states. Using chronically implanted tetrodes into primary visual cortex (V1) of rats, we conducted extracellular recordings of single units and followed the same cell ensembles in the awake and anesthetized states. We found that the transition from wakefulness to anesthesia involves unpredictable changes in temporal response characteristics. The latency of single-unit responses to visual stimulation was delayed in anesthesia, with large individual variations between units. Pair-wise correlations between units increased under anesthesia, indicating more synchronized activity. Further, the units within an ensemble show reproducible temporal activity patterns in response to visual stimuli that is changed between states, suggesting state-dependent sequences of activity. The current dataset, with recordings from the same neural ensembles across states, is well suited for validating and testing computational network models. This can lead to testable predictions, bring a deeper understanding of the experimental findings and improve models of neural information processing. Here, we exemplify such a workflow using a Brunel network model.

  9. Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat

    PubMed Central

    Aasebø, Ida E. J.; Stavrinou, Maria; Nøkkevangen, Sandra; Einevoll, Gaute

    2017-01-01

    Abstract The activity pattern and temporal dynamics within and between neuron ensembles are essential features of information processing and believed to be profoundly affected by anesthesia. Much of our general understanding of sensory information processing, including computational models aimed at mathematically simulating sensory information processing, rely on parameters derived from recordings conducted on animals under anesthesia. Due to the high variety of neuronal subtypes in the brain, population-based estimates of the impact of anesthesia may conceal unit- or ensemble-specific effects of the transition between states. Using chronically implanted tetrodes into primary visual cortex (V1) of rats, we conducted extracellular recordings of single units and followed the same cell ensembles in the awake and anesthetized states. We found that the transition from wakefulness to anesthesia involves unpredictable changes in temporal response characteristics. The latency of single-unit responses to visual stimulation was delayed in anesthesia, with large individual variations between units. Pair-wise correlations between units increased under anesthesia, indicating more synchronized activity. Further, the units within an ensemble show reproducible temporal activity patterns in response to visual stimuli that is changed between states, suggesting state-dependent sequences of activity. The current dataset, with recordings from the same neural ensembles across states, is well suited for validating and testing computational network models. This can lead to testable predictions, bring a deeper understanding of the experimental findings and improve models of neural information processing. Here, we exemplify such a workflow using a Brunel network model. PMID:28791331

  10. An intracellular analysis of the visual responses of neurones in cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Extracellular and intracellular recordings were made from neurones in the visual cortex of the cat in order to compare the subthreshold membrane potentials, reflecting the input to the neurone, with the output from the neurone seen as action potentials. 2. Moving bars and edges, generated under computer control, were used to stimulate the neurones. The membrane potential was digitized and averaged for a number of trials after stripping the action potentials. Comparison of extracellular and intracellular discharge patterns indicated that the intracellular impalement did not alter the neurones' properties. Input resistance of the neurone altered little during stable intracellular recordings (30 min-2 h 50 min). 3. Intracellular recordings showed two distinct patterns of membrane potential changes during optimal visual stimulation. The patterns corresponded closely to the division of S-type (simple) and C-type (complex) receptive fields. Simple cells had a complex pattern of membrane potential fluctuations, involving depolarizations alternating with hyperpolarizations. Complex cells had a simple single sustained plateau of depolarization that was often followed but not preceded by a hyperpolarization. In both simple and complex cells the depolarizations led to action potential discharges. The hyperpolarizations were associated with inhibition of action potential discharge. 4. Stimulating simple cells with non-optimal directions of motion produced little or no hyperpolarization of the membrane in most cases, despite a lack of action potential output. Directional complex cells always produced a single plateau of depolarization leading to action potential discharge in both the optimal and non-optimal directions of motion. The directionality could not be predicted on the basis of the position of the hyperpolarizing inhibitory potentials found in the optimal direction. 5. Stimulation of simple cells with non-optimal orientations occasionally produced slight hyperpolarizations and inhibition of action potential discharge. Complex cells, which had broader orientation tuning than simple cells, could show marked hyperpolarization for non-optimal orientations, but this was not generally the case. 6. The data do not support models of directionality and orientation that rely solely on strong inhibitory mechanisms to produce stimulus selectivity. PMID:1804981

  11. Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

    PubMed Central

    An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei

    2014-01-01

    Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576

  12. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice

    PubMed Central

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena

    2017-01-01

    Abstract CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60–80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. PMID:28369421

  13. Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli.

    PubMed

    Dreosti, Elena; Vendrell Llopis, Nuria; Carl, Matthias; Yaksi, Emre; Wilson, Stephen W

    2014-02-17

    Left-right asymmetries are most likely a universal feature of bilaterian nervous systems and may serve to increase neural capacity by specializing equivalent structures on left and right sides for distinct roles. However, little is known about how asymmetries are encoded within vertebrate neural circuits and how lateralization influences processing of information in the brain. Consequently, it remains unclear the extent to which lateralization of the nervous system is important for normal cognitive and other brain functions and whether defects in lateralization contribute to neurological deficits. Here we show that sensory responses to light and odor are lateralized in larval zebrafish habenulae and that loss of brain asymmetry leads to concomitant loss of responsiveness to either visual or olfactory stimuli. We find that in wild-type zebrafish, most habenular neurons responding to light are present on the left, whereas neurons responding to odor are more frequent on the right. Manipulations that reverse the direction of brain asymmetry reverse the functional properties of habenular neurons, whereas manipulations that generate either double-left- or double-right-sided brains lead to loss of habenular responsiveness to either odor or light, respectively. Our results indicate that loss of brain lateralization has significant consequences upon sensory processing and circuit function. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

    PubMed

    Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G

    2014-02-01

    The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

  15. The emergence of mirror-like response properties from domain-general principles in vision and audition.

    PubMed

    Saygin, Ayse P; Dick, Frederic

    2014-04-01

    Like Cook et al., we suggest that mirror neurons are a fascinating product of cross-modal learning. As predicted by an associative account, responses in motor regions are observed for novel and/or abstract visual stimuli such as point-light and android movements. Domain-specific mirror responses also emerge as a function of audiomotor expertise that is slowly acquired over years of intensive training.

  16. The dusp1 Immediate Early Gene is Regulated by Natural Stimuli Predominantly in Sensory Input Neurons

    PubMed Central

    Horita, Haruhito; Wada, Kazuhiro; Rivas, Miriam V.; Hara, Erina; Jarvis, Erich D.

    2010-01-01

    Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. PMID:20506480

  17. Temporally evolving gain mechanisms of attention in macaque area V4.

    PubMed

    Sani, Ilaria; Santandrea, Elisa; Morrone, Maria Concetta; Chelazzi, Leonardo

    2017-08-01

    Cognitive attention and perceptual saliency jointly govern our interaction with the environment. Yet, we still lack a universally accepted account of the interplay between attention and luminance contrast, a fundamental dimension of saliency. We measured the attentional modulation of V4 neurons' contrast response functions (CRFs) in awake, behaving macaque monkeys and applied a new approach that emphasizes the temporal dynamics of cell responses. We found that attention modulates CRFs via different gain mechanisms during subsequent epochs of visually driven activity: an early contrast-gain, strongly dependent on prestimulus activity changes (baseline shift); a time-limited stimulus-dependent multiplicative modulation, reaching its maximal expression around 150 ms after stimulus onset; and a late resurgence of contrast-gain modulation. Attention produced comparable time-dependent attentional gain changes on cells heterogeneously coding contrast, supporting the notion that the same circuits mediate attention mechanisms in V4 regardless of the form of contrast selectivity expressed by the given neuron. Surprisingly, attention was also sometimes capable of inducing radical transformations in the shape of CRFs. These findings offer important insights into the mechanisms that underlie contrast coding and attention in primate visual cortex and a new perspective on their interplay, one in which time becomes a fundamental factor. NEW & NOTEWORTHY We offer an innovative perspective on the interplay between attention and luminance contrast in macaque area V4, one in which time becomes a fundamental factor. We place emphasis on the temporal dynamics of attentional effects, pioneering the notion that attention modulates contrast response functions of V4 neurons via the sequential engagement of distinct gain mechanisms. These findings advance understanding of attentional influences on visual processing and help reconcile divergent results in the literature. Copyright © 2017 the American Physiological Society.

  18. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation.

    PubMed

    Baslow, Morris H; Hrabe, Jan; Guilfoyle, David N

    2007-01-01

    N-acetyl-l-aspartic acid (NAA), an amino acid synthesized and stored primarily in neurons in the brain, has been proposed to be a molecular water pump (MWP) whose function is to rapidly remove water from neurons against a water gradient. In this communication, we describe the results of a functional (1)H proton magnetic resonance spectroscopy (fMRS) study, and provide evidence that in the human visual cortex, over a 10-min period of visual stimulation, there are stimulation-induced graded changes in the NAA MRS signal from that of a preceding 10-min baseline period with a decline in the NAA signal of 13.1% by the end of the 10-min stimulation period. Upon cessation of visual stimulation, the NAA signal gradually increases during a 10-min recovery period and once again approaches the baseline level. Because the NAA MRS signal reflects the NAA concentration, these changes indicate rapid focal changes in its concentration, and transient changes in its intercompartmental metabolism. These include its rates of synthesis and efflux from neurons and its hydrolysis by oligodendrocytes. During stimulation, the apparent rate of NAA efflux and hydrolysis increased 14.2 times, from 0.55 to 7.8 micromol g(-1) h(-1). During recovery, the apparent rate of synthesis increased 13.3 times, from 0.55 to 7.3 micromol g(-1) h(-1). The decline in the NAA signal during stimulation suggests that a rapid increase in the rate of NAA-obligated water release to extracellular fluid (ECF) is the initial and seminal event in response to neurostimulation. It is concluded that the NAA metabolic cycle in the visual cortex is intimately linked to rates of neuronal signaling, and that the functional cycle of NAA is associated with its release to ECF, thus supporting the hypothesis that an important function of the NAA metabolic cycle is that of an efflux MWP.

  19. Encoding of reward expectation by monkey anterior insular neurons

    PubMed Central

    Mizuhiki, Takashi; Richmond, Barry J.

    2012-01-01

    The insula, a cortical brain region that is known to encode information about autonomic, visceral, and olfactory functions, has recently been shown to encode information during reward-seeking tasks in both single neuronal recording and functional magnetic resonance imaging studies. To examine the reward-related activation, we recorded from 170 single neurons in anterior insula of 2 monkeys during a multitrial reward schedule task, where the monkeys had to complete a schedule of 1, 2, 3, or 4 trials to earn a reward. In one block of trials a visual cue indicated whether a reward would or would not be delivered in the current trial after the monkey successfully detected that a red spot turned green, and in other blocks the visual cue was random with respect to reward delivery. Over one-quarter of 131 responsive neurons were activated when the current trial would (certain or uncertain) be rewarded if performed correctly. These same neurons failed to respond in trials that were certain, as indicated by the cue, to be unrewarded. Another group of neurons responded when the reward was delivered, similar to results reported previously. The dynamics of population activity in anterior insula also showed strong signals related to knowing when a reward is coming. The most parsimonious explanation is that this activity codes for a type of expected outcome, where the expectation encompasses both certain and uncertain rewards. PMID:22402653

  20. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave

    PubMed Central

    Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain

    2014-01-01

    Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473

  1. Multiple adaptable mechanisms early in the primate visual pathway

    PubMed Central

    Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter

    2011-01-01

    We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535

  2. Persistent spatial information in the frontal eye field during object-based short-term memory.

    PubMed

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2012-08-08

    Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.

  3. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination.

    PubMed

    Kato, Shigeki; Kuramochi, Masahito; Kobayashi, Kenta; Fukabori, Ryoji; Okada, Kana; Uchigashima, Motokazu; Watanabe, Masahiko; Tsutsui, Yuji; Kobayashi, Kazuto

    2011-11-23

    The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorsolateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrimination task. When the pathway elimination was induced after learning acquisition, it disturbed the response accuracy in the task performance with no apparent change in the response time. The elimination did not influence spontaneous locomotion, methamphetamine-induced hyperactivity, and motor skill learning that demand the function of the dorsal striatum. These results demonstrate that thalamostriatal projection derived from the PF plays essential roles in the acquisition and execution of discrimination learning in response to sensory stimulus. The temporal difference in the pathway requirement for visual discrimination suggests a stage-specific role of thalamostriatal pathway in the modulation of response time of learned motor actions.

  4. Dynamic binding of visual features by neuronal/stimulus synchrony.

    PubMed

    Iwabuchi, A

    1998-05-01

    When people see a visual scene, certain parts of the visual scene are treated as belonging together and we regard them as a perceptual unit, which is called a "figure". People focus on figures, and the remaining parts of the scene are disregarded as "ground". In Gestalt psychology this process is called "figure-ground segregation". According to current perceptual psychology, a figure is formed by binding various visual features in a scene, and developments in neuroscience have revealed that there are many feature-encoding neurons, which respond to such features specifically. It is not known, however, how the brain binds different features of an object into a coherent visual object representation. Recently, the theory of binding by neuronal synchrony, which argues that feature binding is dynamically mediated by neuronal synchrony of feature-encoding neurons, has been proposed. This review article portrays the problem of figure-ground segregation and features binding, summarizes neurophysiological and psychophysical experiments and theory relevant to feature binding by neuronal/stimulus synchrony, and suggests possible directions for future research on this topic.

  5. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1)

    PubMed Central

    Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.

    2012-01-01

    Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381

  7. Attention-related changes in correlated neuronal activity arise from normalization mechanisms

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John H.R.

    2017-01-01

    Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943

  8. Seeing a straight line on a curved surface: decoupling of patterns from surfaces by single IT neurons

    PubMed Central

    Ratan Murty, N. Apurva

    2016-01-01

    We have no difficulty seeing a straight line drawn on a paper even when the paper is bent, but this inference is in fact nontrivial. Doing so requires either matching local features or representing the pattern after factoring out the surface shape. Here we show that single neurons in the monkey inferior temporal (IT) cortex show invariant responses to patterns across rigid and nonrigid changes of surfaces. We recorded neuronal responses to stimuli in which the pattern and the surrounding surface were varied independently. In a subset of neurons, we found pattern-surface interactions that produced similar responses to stimuli across congruent pattern and surface transformations. These interactions produced systematic shifts in curvature tuning of patterns when overlaid on convex and flat surfaces. Our results show that surfaces are factored out of patterns by single neurons, thereby enabling complex perceptual inferences. NEW & NOTEWORTHY We have no difficulty seeing a straight line on a curved piece of paper, but in fact, doing so requires decoupling the shape of the surface from the pattern itself. Here we report a novel form of invariance in the visual cortex: single neurons in monkey inferior temporal cortex respond similarly to congruent transformations of patterns and surfaces, in effect decoupling patterns from the surface on which they are overlaid. PMID:27733595

  9. Electrophysiological indices of surround suppression in humans

    PubMed Central

    Vanegas, M. Isabel; Blangero, Annabelle

    2014-01-01

    Surround suppression is a well-known example of contextual interaction in visual cortical neurophysiology, whereby the neural response to a stimulus presented within a neuron's classical receptive field is suppressed by surrounding stimuli. Human psychophysical reports present an obvious analog to the effects seen at the single-neuron level: stimuli are perceived as lower-contrast when embedded in a surround. Here we report on a visual paradigm that provides relatively direct, straightforward indices of surround suppression in human electrophysiology, enabling us to reproduce several well-known neurophysiological and psychophysical effects, and to conduct new analyses of temporal trends and retinal location effects. Steady-state visual evoked potentials (SSVEP) elicited by flickering “foreground” stimuli were measured in the context of various static surround patterns. Early visual cortex geometry and retinotopic organization were exploited to enhance SSVEP amplitude. The foreground response was strongly suppressed as a monotonic function of surround contrast. Furthermore, suppression was stronger for surrounds of matching orientation than orthogonally-oriented ones, and stronger at peripheral than foveal locations. These patterns were reproduced in psychophysical reports of perceived contrast, and peripheral electrophysiological suppression effects correlated with psychophysical effects across subjects. Temporal analysis of SSVEP amplitude revealed short-term contrast adaptation effects that caused the foreground signal to either fall or grow over time, depending on the relative contrast of the surround, consistent with stronger adaptation of the suppressive drive. This electrophysiology paradigm has clinical potential in indexing not just visual deficits but possibly gain control deficits expressed more widely in the disordered brain. PMID:25411464

  10. Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle)

    PubMed Central

    Fadool, D. A.; Wachowiak, M.; Brann, J. H.

    2011-01-01

    Summary The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, −54.5±2.7 mV, N=11; input resistance, 6.7±1.4GΩ, N=25; capacitance, 4.2±0.3 pF, N=22; means ± S.E.M.). The voltage-gated K+ current inactivation rate was significantly slower in VN neurons from males than in those from females, and K+ currents in males were less sensitive (greater Ki) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of −60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2–3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine-or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals. PMID:11815645

  11. Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle).

    PubMed

    Fadool, D A; Wachowiak, M; Brann, J H

    2001-12-01

    The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.iol

  12. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions

    PubMed Central

    Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  13. Computational implications of activity-dependent neuronal processes

    NASA Astrophysics Data System (ADS)

    Goldman, Mark Steven

    Synapses, the connections between neurons, often fail to transmit a large percentage of the action potentials that they receive. I describe several models of synaptic transmission at a single stochastic synapse with an activity-dependent probability of transmission and demonstrate how synaptic transmission failures may increase the efficiency with which a synapse transmits information. Spike trains in the visual cortex of freely viewing monkeys have positive auto correlations that are indicative of a redundant representation of the information they contain. I show how a synapse with activity-dependent transmission failures modeled after those occurring in visual cortical synapses can remove this redundancy by transmitting a decorrelated subset of the spike trains it receives. I suggest that redundancy reduction at individual synapses saves synaptic resources while increasing the sensitivity of the postsynaptic neuron to information arriving along many inputs. For a neuron receiving input from many decorrelating synapses, my analysis leads to a prediction of the number of visual inputs to a neuron and the cross-correlations between these inputs and suggests that the time scale of synaptic dynamics observed in sensory areas corresponds to a fundamental time scale for processing sensory information. Systems with activity-dependent changes in their parameters, or plasticity, often display a wide variability in their individual components that belies the stability of their function, Motivated by experiments demonstrating that identified neurons with stereotyped function can have a large variability in the densities of their ion channels, or ionic conductances, I build a conductance-based model of a single neuron. The neuron's firing activity is relatively insensitive to changes in certain combinations of conductances, but markedly sensitive to changes in other combinations. Using a combined modeling and experimental approach, I show that neuromodulators and regulatory processes target sensitive combinations of conductances. I suggest that the variability observed in conductance measurements occurs along insensitive combinations of conductances and could result from homeostatic processes that allow the neuron's conductances to drift without triggering activity- dependent feedback mechanisms. These results together suggest that plastic systems may have a high degree of flexibility and variability in their components without a loss of robustness in their response properties.

  14. Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders

    PubMed Central

    Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole

    2015-01-01

    Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342

  15. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception

    PubMed Central

    Liu, Sheng; Angelaki, Dora E.

    2009-01-01

    Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631

  16. Visual sensation during pecking in pigeons.

    PubMed

    Ostheim, J

    1997-10-01

    During the final down-thrust of a pigeon's head, the eyes are closed gradually, a response that was thought to block visual input. This phase of pecking was therefore assumed to be under feed-forward control exclusively. Analysis of high resolution video-recordings showed that visual information collected during the down-thrust of the head could be used for 'on-line' modulations of pecks in progress. We thus concluded that the final down-thrust of the head is not exclusively controlled by feed-forward mechanisms but also by visual feedback components. We could further establish that as a rule the eyes are never closed completely but instead the eyelids form a slit which leaves a part of the pupil uncovered. The width of the slit between the pigeon' eyelids is highly sensitive to both, ambient luminance and the visual background against which seeds are offered. It was concluded that eyelid slits increase the focal depth of retinal images at extreme near-field viewing-conditions. Applying pharmacological methods we could confirm that pupil size and eyelid slit width are controlled through conjoint neuronal mechanisms. This shared neuronal network is particularly sensitive to drugs that affect dopamine receptors.

  17. Stimulus-Response-Outcome Coding in the Pigeon Nidopallium Caudolaterale

    PubMed Central

    Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.

    2013-01-01

    A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S–) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments. PMID:23437383

  18. Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

    PubMed Central

    Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor

    2015-01-01

    Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor mediated inhibitory postsynaptic responses. The nicotinic receptor mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli. PMID:25865337

  19. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus.

    PubMed

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Štastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-03-10

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson's disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well.

  20. A Small World of Neuronal Synchrony

    PubMed Central

    Yu, Shan; Huang, Debin; Singer, Wolf

    2008-01-01

    A small-world network has been suggested to be an efficient solution for achieving both modular and global processing—a property highly desirable for brain computations. Here, we investigated functional networks of cortical neurons using correlation analysis to identify functional connectivity. To reconstruct the interaction network, we applied the Ising model based on the principle of maximum entropy. This allowed us to assess the interactions by measuring pairwise correlations and to assess the strength of coupling from the degree of synchrony. Visual responses were recorded in visual cortex of anesthetized cats, simultaneously from up to 24 neurons. First, pairwise correlations captured most of the patterns in the population's activity and, therefore, provided a reliable basis for the reconstruction of the interaction networks. Second, and most importantly, the resulting networks had small-world properties; the average path lengths were as short as in simulated random networks, but the clustering coefficients were larger. Neurons differed considerably with respect to the number and strength of interactions, suggesting the existence of “hubs” in the network. Notably, there was no evidence for scale-free properties. These results suggest that cortical networks are optimized for the coexistence of local and global computations: feature detection and feature integration or binding. PMID:18400792

  1. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons

    PubMed Central

    2018-01-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3′ untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  2. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature.

    PubMed

    Chen, Chenghao; Buhl, Edgar; Xu, Min; Croset, Vincent; Rees, Johanna S; Lilley, Kathryn S; Benton, Richard; Hodge, James J L; Stanewsky, Ralf

    2015-11-26

    Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.

  3. Corticostriatal and corticotectal neurons in area 6 of the cat during fixation and eye movements.

    PubMed

    Weyand, T G; Gafka, A C

    1998-01-01

    We studied the visuomotor properties of 54 corticostriatal (CS) and 38 corticotectal (CT) neurons in a region of area 6 that largely corresponds to the cat's frontal eye fields in five cats trained to do simple oculomotor tasks. Overall, these cells were similar to the general population of area 6 neurons described in the previous paper (Weyand & Gafka, 1998), with very few showing pre-saccadic activity. Likewise, CS and CT cells were similar to each other, although only CS cells showed activity exclusively related to the delivery of the reward and CT cells were more likely to be active during saccades. Variability in visual response latencies and the observation that some cells showed initial visual suppression suggest CS and CT cells reflect the output of a variety of intracortical circuits. Despite similar response properties and overlapping laminar origin, CS and CT circuits appear largely independent. Among 32 cells that we could electrically activate (either synaptically or antidromically) from the superior colliculus, only two could also be activated from stimulating electrodes in the striatum. Similarly, 23 of 25 cells electrically activated from the striatum could not be activated from the superior colliculus. Although few of these efferent cells exhibited pre-motor activity, many exhibit properties that could contribute to gaze control.

  4. Spatial updating in area LIP is independent of saccade direction.

    PubMed

    Heiser, Laura M; Colby, Carol L

    2006-05-01

    We explore the world around us by making rapid eye movements to objects of interest. Remarkably, these eye movements go unnoticed, and we perceive the world as stable. Spatial updating is one of the neural mechanisms that contributes to this perception of spatial constancy. Previous studies in macaque lateral intraparietal cortex (area LIP) have shown that individual neurons update, or "remap," the locations of salient visual stimuli at the time of an eye movement. The existence of remapping implies that neurons have access to visual information from regions far beyond the classically defined receptive field. We hypothesized that neurons have access to information located anywhere in the visual field. We tested this by recording the activity of LIP neurons while systematically varying the direction in which a stimulus location must be updated. Our primary finding is that individual neurons remap stimulus traces in multiple directions, indicating that LIP neurons have access to information throughout the visual field. At the population level, stimulus traces are updated in conjunction with all saccade directions, even when we consider direction as a function of receptive field location. These results show that spatial updating in LIP is effectively independent of saccade direction. Our findings support the hypothesis that the activity of LIP neurons contributes to the maintenance of spatial constancy throughout the visual field.

  5. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.

    PubMed

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso

    2017-06-15

    CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.

  6. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  7. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  8. Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections.

    PubMed

    Sporns, O; Tononi, G; Edelman, G M

    1991-01-01

    The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws.

  9. Modeling Perceptual Grouping and Figure-Ground Segregation by Means of Active Reentrant Connections

    NASA Astrophysics Data System (ADS)

    Sporns, Olaf; Tononi, Giulio; Edelman, Gerald M.

    1991-01-01

    The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws.

  10. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.

    PubMed

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.

  11. Gain control by layer six in cortical circuits of vision.

    PubMed

    Olsen, Shawn R; Bortone, Dante S; Adesnik, Hillel; Scanziani, Massimo

    2012-02-22

    After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.

  12. Reward modulates the effect of visual cortical microstimulation on perceptual decisions

    PubMed Central

    Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

    2015-01-01

    Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. DOI: http://dx.doi.org/10.7554/eLife.07832.001 PMID:26402458

  13. Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention.

    PubMed

    Montijn, Jorrit Steven; Klink, P Christaan; van Wezel, Richard J A

    2012-01-01

    Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25-100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the "communication-through-coherence" (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention.

  14. Divisive Normalization and Neuronal Oscillations in a Single Hierarchical Framework of Selective Visual Attention

    PubMed Central

    Montijn, Jorrit Steven; Klink, P. Christaan; van Wezel, Richard J. A.

    2012-01-01

    Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25–100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the “communication-through-coherence” (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention. PMID:22586372

  15. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study.

    PubMed

    Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla

    2014-01-01

    Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory. Copyright © 2013. Published by Elsevier B.V.

  16. Receptive fields of visual neurons: the early years.

    PubMed

    Spillmann, Lothar

    2014-01-01

    This paper traces the history of the visual receptive field (RF) from Hartline to Hubel and Wiesel. Hartline (1938, 1940) found that an isolated optic nerve fiber in the frog could be excited by light falling on a small circular area of the retina. He called this area the RF, using a term first introduced by Sherrington (1906) in the tactile domain. In 1953 Kuffler discovered the antagonistic center-surround organization of cat RFs, and Barlow, Fitzhugh, and Kuffler (1957) extended this work to stimulus size and state of adaptation. Shortly thereafter, Lettvin and colleagues (1959) in an iconic paper asked "what the frog's eye tells the frog's brain". Meanwhile, Jung and colleagues (1952-1973) searched for the perceptual correlates of neuronal responses, and Jung and Spillmann (1970) proposed the term perceptive field (PF) as a psychophysical correlate of the RF. The Westheimer function (1967) enabled psychophysical measurements of the PF center and surround in human and monkey, which correlated closely with the underlying RF organization. The sixties and seventies were marked by rapid progress in RF research. Hubel and Wiesel (1959-1974), recording from neurons in the visual cortex of the cat and monkey, found elongated RFs selective for the shape, orientation, and position of the stimulus, as well as for movement direction and ocularity. These findings prompted the emergence in visual psychophysics of the concept of feature detectors selective for lines, bars, and edges, and contributed to a model of the RF in terms of difference of Gaussians (DOG) and Fourier channels. The distinction between simple, complex, and hypercomplex neurons followed. Although RF size increases towards the peripheral retina, its cortical representation remains constant due to the reciprocal relationship with the cortical magnification factor (M). This constitutes a uniform yardstick for M-scaled stimuli across the retina. Developmental studies have shown that RF properties are not fixed. RFs possess their full response inventory already at birth, but require the interaction with appropriate stimuli within a critical time window for refinement and consolidation. Taken together these findings paved the way for a better understanding of how objective properties of the external world are encoded to become subjective properties of the subjective, perceptual world.

  17. Spatial Tuning Shifts Increase the Discriminability and Fidelity of Population Codes in Visual Cortex

    PubMed Central

    2017-01-01

    Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex. SIGNIFICANCE STATEMENT Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings. PMID:28242794

  18. Spatiotemporal Receptive Field Properties of a Looming-Sensitive Neuron in Solitarious and Gregarious Phases of the Desert Locust

    PubMed Central

    Harston, George W. J.; Kilburn-Toppin, Fleur; Matheson, Thomas; Burrows, Malcolm; Gabbiani, Fabrizio; Krapp, Holger G.

    2010-01-01

    Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes. PMID:19955292

  19. A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    PubMed Central

    Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.

    2007-01-01

    Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012

  20. What Brain Research Suggests for Teaching Reading Strategies

    ERIC Educational Resources Information Center

    Willis, Judy

    2009-01-01

    How the brain learns to read has been the subject of much neuroscience educational research. Evidence is mounting for identifiable networks of connected neurons that are particularly active during reading processes such as response to visual and auditory stimuli, relating new information to prior knowledge, long-term memory storage, comprehension,…

Top