Kemps, Eva; Newson, Rachel
2006-04-01
The study compared age-related decrements in verbal and visuo-spatial memory across a broad elderly adult age range. Twenty-four young (18-25 years), 24 young-old (65-74 years), 24 middle-old (75-84 years) and 24 old-old (85-93 years) adults completed parallel recall and recognition measures of verbal and visuo-spatial memory from the Doors and People Test (Baddeley, Emslie & Nimmo-Smith, 1994). These constituted 'pure' and validated indices of either verbal or visuo-spatial memory. Verbal and visuo-spatial memory declined similarly with age, with a steeper decline in recall than recognition. Unlike recognition memory, recall performance also showed a heightened decline after the age of 85. Age-associated memory loss in both modalities was largely due to working memory and executive function. Processing speed and sensory functioning (vision, hearing) made minor contributions to memory performance and age differences in it. Together, these findings demonstrate common, rather than differential, age-related effects on verbal and visuo-spatial memory. They also emphasize the importance of using 'pure', parallel and validated measures of verbal and visuo-spatial memory in memory ageing research.
Sports training enhances visuo-spatial cognition regardless of open-closed typology
Hsieh, Shu-Shih; Chen, Kuan-Fu; Chang, Yu-Kai
2017-01-01
The aim of this study was to investigate the effects of open and closed sport participation on visuo-spatial attention and memory performance among young adults. Forty-eight young adults—16 open-skill athletes, 16 closed-skill athletes, and 16 non-athletes controls—were recruited for the study. Both behavioral performance and event-related potential (ERP) measurement were assessed when participants performed non-delayed and delayed match-to-sample task that tested visuo-spatial attention and memory processing. Results demonstrated that regardless of training typology, the athlete groups exhibited shorter reaction times in both the visuo-spatial attention and memory conditions than the control group with no existence of speed-accuracy trade-off. Similarly, a larger P3 amplitudes were observed in both athlete groups than in the control group for the visuo-spatial memory condition. These findings suggest that sports training, regardless of typology, are associated with superior visuo-spatial attention and memory performance, and more efficient neural resource allocation in memory processing. PMID:28560098
Effects of complete monocular deprivation in visuo-spatial memory.
Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso
2008-09-30
Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.
A Familiar Pattern? Semantic Memory Contributes to the Enhancement of Visuo-Spatial Memories
ERIC Educational Resources Information Center
Riby, Leigh M.; Orme, Elizabeth
2013-01-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a…
Gallagher, P; Gray, J M; Kessels, R P C
2015-02-01
Previous studies of neurocognitive performance in bipolar disorder (BD) have demonstrated impairments in visuo-spatial memory. The aim of the present study was to use an object-location memory (OLM) paradigm to assess specific, dissociable processes in visuo-spatial memory and examine their relationship with broader neurocognitive performance. Fifty participants (25 patients with BD in a current depressive episode and 25 matched healthy controls) completed the OLM paradigm which assessed three different aspects of visuo-spatial memory: positional memory, object-location binding, and a combined process. Secondary neurocognitive measures of visuo-spatial memory, verbal memory, attention and executive function were also administered. BD patients were significantly impaired on all three OLM processes, with the largest effect in exact positional memory (d = 1.18, p < 0.0001). General deficits were also found across the secondary neurocognitive measures. Using hierarchical regression, verbal learning was found to explain significant variance on the OLM measures where object-identity was present (the object-location binding and combined processes) and accounted for the group difference. The group difference in precise positional memory remained intact. This study demonstrates that patients with bipolar depression manifest deficits in visuo-spatial memory, with substantial impairment in fine-grain, positional memory. The differential profile of processes underpinning the visuo-spatial memory impairment suggests a form of 'cognitive scaffolding', whereby performance on some measures can be supported by verbal memory. These results have important implications for our understanding of the functional cognitive architecture of mood disorder.
A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories.
Riby, Leigh M; Orme, Elizabeth
2013-03-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a change-detection paradigm; this was also associated with increased P300 and N400 components as well as a sustained negative slow wave (NSW). In contrast, processing of the low semantic stimuli was associated with an increased N200 and a reduction in the P300. These findings suggest that semantic content can aid in reducing early visual processing of information and subsequent memory load by unitizing complex patterns into familiar forms. The N400/NSW may be associated with the requirements for maintaining visuo-spatial information about semantic forms such as orientation and relative location. Evidence for individual differences in semantic elaboration strategies used by participants is also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
The development of visuo-spatial working memory.
Pickering, S J
2001-01-01
Children's performance on tests of visuo-spatial working memory improves with age, although relatively little is known about why this happens. One explanation concerns the development of the ability to recode visually presented information into phonological form. This process appears to be used from around 8 years of age and is a major contributor to tasks in which stimuli can be verbally labelled. However, evidence suggests that phonological recoding cannot account for all of the age-related change in performance on visuo-spatial working memory tasks. In this review, four other mechanisms (knowledge, processing strategies, processing speed, and attentional capacity) are considered in terms of their contribution to children's visuo-spatial working memory development.
Does visuo-spatial working memory generally contribute to immediate serial letter recall?
Fürstenberg, A; Rummer, R; Schweppe, J
2013-01-01
This work contributes to the understanding of the visual similarity effect in verbal working memory, a finding that suggests that the visuo-spatial sketch pad-the system in Baddeley's working memory model specialised in retaining nonverbal visual information-might be involved in the retention of visually presented verbal materials. Crucially this effect is implicitly interpreted by the most influential theory of multimedia learning as evidence for an obligatory involvement of the visuo-spatial sketch pad. We claim that it is only involved when the functioning of the working memory component normally used for processing verbal material is impaired. In this article we review the studies that give rise to the idea of obligatory involvement of the visuo-spatial sketch pad and suggest that some findings can be understood with reference to orthographic rather than visual similarity. We then test an alternative explanation of the finding that is most apt to serve as evidence for obligatory involvement of the visuo-spatial sketch pad. We conclude that, in healthy adults and under normal learning conditions, the visual similarity effect can be explained within the framework of verbal working memory proposed by Baddeley (e.g., 1986, 2000) without additional premises regarding the visuo-spatial sketch.
Co-speech iconic gestures and visuo-spatial working memory.
Wu, Ying Choon; Coulson, Seana
2014-11-01
Three experiments tested the role of verbal versus visuo-spatial working memory in the comprehension of co-speech iconic gestures. In Experiment 1, participants viewed congruent discourse primes in which the speaker's gestures matched the information conveyed by his speech, and incongruent ones in which the semantic content of the speaker's gestures diverged from that in his speech. Discourse primes were followed by picture probes that participants judged as being either related or unrelated to the preceding clip. Performance on this picture probe classification task was faster and more accurate after congruent than incongruent discourse primes. The effect of discourse congruency on response times was linearly related to measures of visuo-spatial, but not verbal, working memory capacity, as participants with greater visuo-spatial WM capacity benefited more from congruent gestures. In Experiments 2 and 3, participants performed the same picture probe classification task under conditions of high and low loads on concurrent visuo-spatial (Experiment 2) and verbal (Experiment 3) memory tasks. Effects of discourse congruency and verbal WM load were additive, while effects of discourse congruency and visuo-spatial WM load were interactive. Results suggest that congruent co-speech gestures facilitate multi-modal language comprehension, and indicate an important role for visuo-spatial WM in these speech-gesture integration processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valérie
2009-07-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and spatial storage were combined with both visual and spatial on-line processing components in computer-paced working memory span tasks (Experiment 1) and in a selective interference paradigm (Experiment 2). The cognitive load of the processing components was manipulated to investigate its impact on concurrent maintenance for both within-domain and between-domain combinations of processing and storage components. In contrast to both domain- and process-based fractionations of visuo-spatial working memory, the results revealed that recall performance was determined by the cognitive load induced by the processing of items, rather than by the domain to which those items pertained. These findings are interpreted as evidence for a time-based resource-sharing mechanism in visuo-spatial working memory.
ERIC Educational Resources Information Center
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valerie
2009-01-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and…
Jarrold, Christopher; Baddeley, Alan D; Phillips, Caroline
2007-02-01
Previous studies have suggested that Williams syndrome and Down syndrome may be associated with specific short-term memory deficits. Individuals with Williams syndrome perform relatively poorly on tests of visuo-spatial short-term memory and individuals with Down syndrome show a relative deficit on verbal short-term memory tasks. However, these patterns of impairments may reflect the impact of generally impaired visuo-spatial processing skills in Williams syndrome, and verbal abilities in Down syndrome. The current study explored this possibility by assessing long-term memory among 15 individuals with Williams syndrome and 20 individuals with Down syndrome using the Doors and People test, a battery which assesses recall and recognition of verbal and visual information. Individuals' performance was standardised for age and level of intellectual ability with reference to that shown by a sample of 110 typically developing children. The results showed that individuals with Down syndrome have no differential deficits in long-term memory for verbal information, implying that verbal short-term memory deficits in this population are relatively selective. Instead both individuals with Down syndrome and with Williams syndrome showed some evidence of relatively poor performance on tests of long-term memory for visual information. It is therefore possible that visuo-spatial short-term memory deficits that have previously been demonstrated in Williams syndrome may be secondary to more general problems in visuo-spatial processing in this population.
Visuo-spatial Ability in Individuals with Down Syndrome: Is it Really a Strength?
Yang, Yingying; Conners, Frances A.; Merrill, Edward C.
2014-01-01
Down syndrome (DS) is associated with extreme difficulty in verbal skills and relatively better visuo-spatial skills. Indeed, visuo-spatial ability is often considered a strength in DS. However, it is not clear whether this strength is only relative to the poor verbal skills, or, more impressively, relative to cognitive ability in general. To answer this question, we conducted an extensive literature review of studies on visuo-spatial abilities in people with Down syndrome from January 1987 to May 2013. Based on a general taxonomy of spatial abilities patterned after Lohman, Pellegrino, Alderton, and Regian (1987) and Carroll (1993) and existing studies of DS, we included five different domains of spatial abilities – visuo-spatial memory, visuo-spatial construction, mental rotation, closure, and wayfinding. We evaluated a total of 49 studies including 127 different comparisons. Most comparisons involved a group with DS vs. a group with typical development matched on mental age and compared on a task measuring one of the five visuo-spatial abilities. Although further research is needed for firm conclusions on some visuo-spatial abilities, there was no evidence that visuo-spatial ability is a strength in DS relative to general cognitive ability. Rather, the review suggests an uneven profile of visuo-spatial abilities in DS in which some abilities are commensurate with general cognitive ability level, and others are below. PMID:24755229
Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J
2016-01-29
The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in non-associative memory tasks likely reflect damage of regions outside the MTL. Importantly, the choice of a patient model in human lesion studies of the MTL significantly influences overall performance patterns in visuo-spatial memory tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verbal short-term memory and vocabulary learning in polyglots.
Papagno, C; Vallar, G
1995-02-01
Polyglot and non-polyglot Italian subjects were given tests assessing verbal (phonological) and visuo-spatial short-term and long-term memory, general intelligence, and vocabulary knowledge in their native language. Polyglots had a superior level of performance in verbal short-term memory tasks (auditory digit span and nonword repetition) and in a paired-associate learning test, which assessed the subjects' ability to acquire new (Russian) words. By contrast, the two groups had comparable performance levels in tasks assessing general intelligence, visuo-spatial short-term memory and learning, and paired-associate learning of Italian words. These findings, which are in line with neuropsychological and developmental evidence, as well as with data from normal subjects, suggest a close relationship between the capacity of phonological memory and the acquisition of foreign languages.
Multisensory Integration Affects Visuo-Spatial Working Memory
ERIC Educational Resources Information Center
Botta, Fabiano; Santangelo, Valerio; Raffone, Antonino; Sanabria, Daniel; Lupianez, Juan; Belardinelli, Marta Olivetti
2011-01-01
In the present study, we investigate how spatial attention, driven by unisensory and multisensory cues, can bias the access of information into visuo-spatial working memory (VSWM). In a series of four experiments, we compared the effectiveness of spatially-nonpredictive visual, auditory, or audiovisual cues in capturing participants' spatial…
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-10-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.
The Role of Visuo-Spatial Abilities in Recall of Spatial Descriptions: A Mediation Model
ERIC Educational Resources Information Center
Meneghetti, Chiara; De Beni, Rossana; Pazzaglia, Francesca; Gyselinck, Valerie
2011-01-01
This research investigates how visuo-spatial abilities (such as mental rotation--MR--and visuo-spatial working memory--VSWM--) work together to influence the recall of environmental descriptions. We tested a mediation model in which VSWM was assumed to mediate the relationship between MR and spatial text recall. First, 120 participants were…
Mathematical Skills in Ninth-graders: Relationship with Visuo-spatial Abilities and Working Memory.
ERIC Educational Resources Information Center
Reuhkala, Minna
2001-01-01
Investigates the relationship between working memory (WM) capacity (particularly visuo-spatial working memory (VSWM)), the ability to mentally rotate three-dimensional objects, and mathematical skills. Explains that in experiment 1, VSWM was examined; and in experiment 2, contributions of other WM components to mathematical skills was examined.…
ERIC Educational Resources Information Center
O'Leary, Timothy P.; Brown, Richard E.
2013-01-01
We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…
D'Antuono, Giovanni; La Torre, Francesca Romana; Marin, Dario; Antonucci, Gabriella; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
We investigated the relationship between verbal and visuo-spatial measures of working memory, inhibition, fluid intelligence and the performance on the Tower of London (ToL) task in a large sample of 830 healthy participants aged between 18 and 71 years. We found that fluid intelligence and visuo-spatial working memory accounted for a significant variance in the ToL task, while performances on verbal working memory and on the Stroop Test were not predictive for performance on the ToL. The present results confirm that fluid intelligence has a fundamental role on planning tests, but also show that visuo-spatial working memory plays a crucial role in ToL performance.
Memory ability of children with complex communication needs.
Larsson, Maria; Sandberg, Annika Dahlgren
2008-01-01
Phonological memory is central to language and reading and writing skills. Many children with complex communication needs (CCN) experience problems with reading and writing acquisition. The reason could be because of the absence of articulatory ability, which might have a negative affect on phonological memory. Phonological and visuo-spatial short-term memory and working memory were tested in 15 children with CCN, aged 5 - 12 years, and compared to children with natural speech matched for gender, and mental and linguistic age. Results indicated weaker phonological STM and visuo-spatial STM and WM in children with CCN. The lack of articulatory ability could be assumed to affect subvocal rehearsal and, therefore, phonological memory which, in turn, may affect reading and writing acquisition. Weak visuo-spatial memory could also complicate the use of Bliss symbols and other types of augmentative and alternative communication.
Guida, Alessandro; van Dijck, Jean-Philippe; Abrahamse, Elger
2017-05-01
In a recent study, Kreitz et al. (Psychological Research 79:1034-1041, 2015) reported on a relationship between verbal working memory capacity and visuo-spatial attentional breadth. The authors hinted at attentional control to be the major link underlying this relationship. We put forward an alternative explanation by framing it within the context of a recent theory on serial order in memory: verbal item sequences entering in working memory are coded by adding a spatial context that can be derived from reading/writing habits. The observation by Kreitz et al. (Psychological Research 79:1034-1041, 2015) enriches this framework by suggesting that a larger visuo-spatial attentional breadth allows for internal coding of the verbal items in a more (spatially) distinct manner-thereby increasing working memory performance. As such, Kreitz et al. (Psychological Research 79:1034-1041, 2015) is the first study revealing a functional link between visuo-spatial attentional breadth and verbal working memory size, which strengthens spatial accounts of serial order coding in working memory.
ERIC Educational Resources Information Center
Ropeter, Anna; Pauen, Sabina
2013-01-01
This study examines the relationship between various basic mental processing abilities in infancy. Two groups of 7-month-olds received the same delayed-response task to assess visuo-spatial working memory, but two different habituation-dishabituation tasks to assess processing speed and recognition memory. The single-stimulus group ("N"…
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692
Solís-Ortiz, S; Corsi-Cabrera, M
2008-08-01
Studies examining the influence of the menstrual cycle on cognitive function have been highly contradictory. The maintenance of attention is key to successful information processing, however how it co-vary with other cognitive functions and mood in function of phases of the menstrual cycle is not well know. Therefore, neuropsychological performance of nine healthy women with regular menstrual cycles was assessed during ovulation (OVU), early luteal (EL), late luteal (LL) and menstrual (MEN) phases. Neuropsychological test scores of sustained attention, executive functions, manual coordination, visuo-spatial memory, verbal fluency, spatial ability, anxiety and depression were obtained and submitted to a principal components analysis (PCA). Five eigenvectors that accounted the 68.31% of the total variance were identified. Performance of the sustained attention was grouped in an independent eigenvector (component 1), and the scores on verbal fluency and visuo-spatial memory were grouped together in an eigenvector (component 5), which explained 17.69% and 12.03% of the total variance, respectively. The component 1 (p<0.034) and the component 5 (p<0.003) showed significant variations during the menstrual cycle. Sustained attention showed an increase in the EL phase, when the progesterone is high. Visuo-spatial memory was increased, while that verbal fluency was decreased during the OVU phase, when the estrogens levels are high. These results indicate that sustained attention is favored by early luteal phase progesterone and do not covaried with any other neuropsychological variables studied. The influence of the estrogens on visuo-spatial memory was corroborated, and covaried inversely with verbal fluency.
Working, declarative and procedural memory in specific language impairment
Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.
2012-01-01
According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923
ERIC Educational Resources Information Center
Gau, Susan Shur-Fen; Chiang, Huey-Ling
2013-01-01
Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and…
Visuo-spatial processing and executive functions in children with specific language impairment
Marton, Klara
2007-01-01
Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522
Improving working memory in children with low language abilities
Holmes, Joni; Butterfield, Sally; Cormack, Francesca; van Loenhoud, Anita; Ruggero, Leanne; Kashikar, Linda; Gathercole, Susan
2015-01-01
This study investigated whether working memory training is effective in enhancing verbal memory in children with low language abilities (LLA). Cogmed Working Memory Training was completed by a community sample of children aged 8–11 years with LLA and a comparison group with matched non-verbal abilities and age-typical language performance. Short-term memory (STM), working memory, language, and IQ were assessed before and after training. Significant and equivalent post-training gains were found in visuo-spatial short-term memory in both groups. Exploratory analyses across the sample established that low verbal IQ scores were strongly and highly specifically associated with greater gains in verbal STM, and that children with higher verbal IQs made greater gains in visuo-spatial short-term memory following training. This provides preliminary evidence that intensive working memory training may be effective for enhancing the weakest aspects of STM in children with low verbal abilities, and may also be of value in developing compensatory strategies. PMID:25983703
Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues
ERIC Educational Resources Information Center
Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.
2016-01-01
The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…
Mitolo, Micaela; Borella, Erika; Meneghetti, Chiara; Carbone, Elena; Pazzaglia, Francesca
2017-05-01
This study aimed to assess the efficacy of a route-learning training in a group of older adults living in a residential care home. We verified the presence of training-specific effects in tasks similar to those trained - route-learning tasks - as well as transfer effects on related cognitive processes - visuo-spatial short-term memory (VSSTM; Corsi Blocks Test (CBT), forward version), visuo-spatial working memory (VSWM; CBT, backward version; Pathway Span Tasks; Jigsaw Puzzle Test) - and in self-report measures. The maintenance of training benefits was examined after 3 months. Thirty 70-90-year-old residential care home residents were randomly assigned to the route-learning training group or to an active control group (involved in non-visuo-spatial activities). The trained group performed better than the control group in the route-learning tasks, retaining this benefit 3 months later. Immediate transfer effects were also seen in visuo-spatial span tasks (i.e., CBT forward and backward version and Pathway Span Task); these benefits had been substantially maintained at the 3-month follow-up. These findings suggest that a training on route learning is a promising approach to sustain older adults' environmental learning and some related abilities (e.g., VSSTM and VSWM), even in residential care home residents.
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment.
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9-10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Piccardi, Laura; Matano, Alessandro; D'Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola
2016-01-01
The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men's superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement.
Visuo-spatial abilities are key for young children's verbal number skills.
Cornu, Véronique; Schiltz, Christine; Martin, Romain; Hornung, Caroline
2018-02-01
Children's development of verbal number skills (i.e., counting abilities and knowledge of the number names) presents a milestone in mathematical development. Different factors such as visuo-spatial and verbal abilities have been discussed as contributing to the development of these foundational skills. To understand the cognitive nature of verbal number skills in young children, the current study assessed the relation of preschoolers' verbal and visuo-spatial abilities to their verbal number skills. In total, 141 children aged 5 or 6 years participated in the current study. Verbal number skills were regressed on vocabulary, phonological awareness and visuo-spatial abilities, and verbal and visuo-spatial working memory in a structural equation model. Only visuo-spatial abilities emerged as a significant predictor of verbal number skills in the estimated model. Our results suggest that visuo-spatial abilities contribute to a larger extent to children's verbal number skills than verbal abilities. From a theoretical point of view, these results suggest a visuo-spatial, rather than a verbal, grounding of verbal number skills. These results are potentially informative for the conception of early mathematics assessments and interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Piccardi, Laura; Matano, Alessandro; D’Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola
2016-01-01
The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men’s superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement. PMID:27445734
Soto-Moyano, Rubén; Valladares, Luis; Sierralta, Walter; Pérez, Hernán; Mondaca, Mauricio; Fernández, Victor; Burgos, Héctor; Hernández, Alejandro
2005-06-01
Mild reduction in the protein content of the mother's diet from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but leads to significant enhancements in the concentration and release of cortical noradrenaline during early postnatal life. Since central noradrenaline and some of its receptors are critically involved in long-term potentiation (LTP) and memory formation, this study evaluated the effect of mild prenatal protein malnutrition on the alpha2C-adrenoceptor density in the frontal and occipital cortices, induction of LTP in the same cortical regions and the visuo-spatial memory. Pups born from rats fed a 25% casein diet throughout pregnancy served as controls. At day 8 of postnatal age, prenatally malnourished rats showed a threefold increase in neocortical alpha2C-adrenoceptor density. At 60 days-of-age, alpha2C-adrenoceptor density was still elevated in the neocortex, and the animals were unable to maintain neocortical LTP and presented lower visuo-spatial memory performance. Results suggest that overexpression of neocortical alpha2C-adrenoceptors during postnatal life, subsequent to mild prenatal protein malnutrition, could functionally affect the synaptic networks subserving neocortical LTP and visuo-spatial memory formation.
Visual distraction and visuo-spatial memory: a sandwich effect.
Tremblay, Sébastien; Nicholls, Alastair P; Parmentier, Fabrice B R; Jones, Dylan M
2005-01-01
The functional characteristics of visuo-spatial serial memory and its sensitivity to irrelevant visual information are examined in the present study, through the investigation of the sandwich effect (e.g., Hitch, 1975). The memory task was one of serial recall for the position of a sequence of seven spatially and temporally separated dots. The presence of irrelevant dots interpolated with to-be-remembered dots affected performance over most serial positions (Experiment 1) but that effect was significantly reduced when the interpolated dots were distinct from the to-be-remembered dots by colour and shape (Experiment 2). Parallels are made between verbal and spatial serial memory, and the reduction of the sandwich effect is discussed in terms of the contribution of perceptual organisation and attentional factors in short-term memory.
Soto-Moyano, Rubén; Burgos, Héctor; Flores, Francisco; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Pérez, Hernán; Hernández, Paula; Hernández, Alejandro
2006-10-01
Melatonin has been shown to inhibit long-term potentiation (LTP) in hippocampal slices of rats. Since LTP may be one of the main mechanisms by which memory traces are encoded and stored in the central nervous system, it is possible that melatonin could modulate cognitive performance by interfering with the cellular and/or molecular mechanisms involved in LTP. We investigated in rats the effects of intraperitoneally-administered melatonin (0.1, 1 and 10 mg/kg), its saline-ethanol solvent, or saline alone, on the acquisition of visuo-spatial memory as well as on the ability of the cerebral cortex to develop LTP in vivo. Visuo-spatial performance was assessed daily in rats, for 10 days, in an 8-arm radial maze, 30 min after they received a single daily dose of melatonin. Visual cortex LTP was determined in sodium pentobarbital anesthetized rats (65 mg/kg i.p.), by potentiating transcallosal evoked responses with a tetanizing train (312 Hz, 500 ms duration) 30 min after administration of a single dose of melatonin. Results showed that melatonin impaired visuo-spatial performance in rats, as revealed by the greater number of errors committed and time spent to solve the task in the radial maze. Melatonin also prevented the induction of neocortical LTP. It is concluded that melatonin, at the doses utilized in this study, could alter some forms of neocortical plasticity involved in short- and long-term visuo-spatial memories in rats.
Gau, Susan Shur-Fen; Chiang, Huey-Ling
2013-01-01
Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and adolescence. The participants included 401 patients with a clinical diagnosis of DSM-IV ADHD, 213 siblings, and 176 unaffected controls aged 8-17 years (mean age, 12.02 ± 2.24). All participants and their mothers were interviewed using the Chinese Kiddie Epidemiologic version of the Schedule for Affective Disorders and Schizophrenia to obtain information about ADHD symptoms and other psychiatric disorders retrospectively, at an earlier age first, then currently. The participants were assessed with the Wechsler Intelligence Scale for Children--3rd edition, including Digit Span, and the Spatial working memory task of the Cambridge Neuropsychological Test Automated Battery. Multi-level regression models were used for data analysis. Although crude analyses revealed that inattention, hyperactivity, and impulsivity symptoms significantly predicted deficits in short-term memory, only inattention symptoms had significant effects (all p<0.001) in a model that included all three ADHD symptoms. After further controlling for comorbidity, age of assessment, treatment with methylphenidate, and Full-scale IQ, the severity of childhood inattention symptoms was still significantly associated with worse verbal (p = 0.008) and spatial (p ranging from 0.017 to 0.002) short-term memory at the current assessment. Therefore, our findings suggest that earlier inattention symptoms are associated with impaired verbal and visuo-spatial short-term memory at a later development stage. Impaired short-term memory in adolescence can be detected earlier by screening for the severity of inattention in childhood. Copyright © 2012 Elsevier Ltd. All rights reserved.
Strategies and Biases in Location Memory in Williams Syndrome
ERIC Educational Resources Information Center
Farran, Emily K.
2008-01-01
Individuals with Williams syndrome (WS) demonstrate impaired visuo-spatial abilities in comparison to their level of verbal ability. In particular, visuo-spatial construction is an area of relative weakness. It has been hypothesised that poor or atypical location coding abilities contribute strongly to the impaired abilities observed on…
Taillade, Mathieu; Sauzéon, Hélène; Dejos, Marie; Pala, Prashant Arvind; Larrue, Florian; Wallet, Grégory; Gross, Christian; N'Kaoua, Bernard
2013-01-01
The aim of this study was to evaluate in large-scale spaces wayfinding and spatial learning difficulties for older adults in relation to the executive and memory decline associated with aging. We compared virtual reality (VR)-based wayfinding and spatial memory performances between young and older adults. Wayfinding and spatial memory performances were correlated with classical measures of executive and visuo-spatial memory functions, but also with self-reported estimates of wayfinding difficulties. We obtained a significant effect of age on wayfinding performances but not on spatial memory performances. The overall correlations showed significant correlations between the wayfinding performances and the classical measures of both executive and visuo-spatial memory, but only when the age factor was not partialled out. Also, older adults underestimated their wayfinding difficulties. A significant relationship between the wayfinding performances and self-reported wayfinding difficulty estimates is found, but only when the age effect was partialled out. These results show that, even when older adults have an equivalent spatial knowledge to young adults, they had greater difficulties with the wayfinding task, supporting an executive decline view in age-related wayfinding difficulties. However, the correlation results are in favor of both the memory and executive decline views as mediators of age-related differences in wayfinding performances. This is discussed in terms of the relationships between memory and executive functioning in wayfinding task orchestration. Our results also favor the use of objective assessments of everyday navigation difficulties in virtual applications, instead of self-reported questionnaires, since older adults showed difficulties in estimating their everyday wayfinding problems.
Landmark and route knowledge in children's spatial representation of a virtual environment.
Nys, Marion; Gyselinck, Valérie; Orriols, Eric; Hickmann, Maya
2014-01-01
This study investigates the development of landmark and route knowledge in complex wayfinding situations. It focuses on how children (aged 6, 8, and 10 years) and young adults (n = 79) indicate, recognize, and bind landmarks and directions in both verbal and visuo-spatial tasks after learning a virtual route. Performance in these tasks is also related to general verbal and visuo-spatial abilities as assessed by independent standardized tests (attention, working memory, perception of direction, production and comprehension of spatial terms, sentences and stories). The results first show that the quantity and quality of landmarks and directions produced and recognized by participants in both verbal and visuo-spatial tasks increased with age. In addition, an increase with age was observed in participants' selection of decisional landmarks (i.e., landmarks associated with a change of direction), as well as in their capacity to bind landmarks and directions. Our results support the view that children first acquire landmark knowledge, then route knowledge, as shown by their late developing ability to bind knowledge of directions and landmarks. Overall, the quality of verbal and visuo-spatial information in participants' spatial representations was found to vary mostly with their visuo-spatial abilities (attention and perception of directions) and not with their verbal abilities. Interestingly, however, when asked to recognize landmarks encountered during the route, participants show an increasing bias with age toward choosing a related landmark of the same category, regardless of its visual characteristics, i.e., they incorrectly choose the picture of another fountain. The discussion highlights the need for further studies to determine more precisely the role of verbal and visuo-spatial knowledge and the nature of how children learn to represent and memorize routes.
Bogousslavsky, J; Miklossy, J; Deruaz, J P; Assal, G; Regli, F
1987-01-01
A macular-sparing superior altitudinal hemianopia with no visuo-psychic disturbance, except impaired visual learning, was associated with bilateral ischaemic necrosis of the lingual gyrus and only partial involvement of the fusiform gyrus on the left side. It is suggested that bilateral destruction of the lingual gyrus alone is not sufficient to affect complex visual processing. The fusiform gyrus probably has a critical role in colour integration, visuo-spatial processing, facial recognition and corresponding visual imagery. Involvement of the occipitotemporal projection system deep to the lingual gyri probably explained visual memory dysfunction, by a visuo-limbic disconnection. Impaired verbal memory may have been due to posterior involvement of the parahippocampal gyrus and underlying white matter, which may have disconnected the intact speech areas from the left medial temporal structures. Images PMID:3585386
Dai, Ruizhi; Thomas, Ayanna K; Taylor, Holly A
2018-01-30
Research examining object identity and location processing in visuo-spatial working memory (VSWM) has yielded inconsistent results on whether age differences exist in VSWM. The present study investigated whether these inconsistencies may stem from age-related differences in VSWM sub-processes, and whether processing of component VSWM information can be facilitated. In two experiments, younger and older adults studied 5 × 5 grids containing five objects in separate locations. In a continuous recognition paradigm, participants were tested on memory for object identity, location, or identity and location information combined. Spatial and categorical relationships were manipulated within grids to provide trial-level facilitation. In Experiment 1, randomizing trial types (location, identity, combination) assured that participants could not predict the information that would be queried. In Experiment 2, blocking trials by type encouraged strategic processing. Thus, we manipulated the nature of the task through object categorical relationship and spatial organization, and trial blocking. Our findings support age-related declines in VSWM. Additionally, grid organizations (categorical and spatial relationships), and trial blocking differentially affected younger and older adults. Younger adults used spatial organizations more effectively whereas older adults demonstrated an association bias. Our finding also suggests that older adults may be less efficient than younger adults in strategically engaging information processing.
Visuo-spatial ability in colonoscopy simulator training.
Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J
2010-12-01
Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.
Improving working memory abilities in individuals with Down syndrome: a treatment case study
Costa, Hiwet Mariam; Purser, Harry R. M.; Passolunghi, Maria Chiara
2015-01-01
Working memory (WM) skills of individuals with Down’s syndrome (DS) tend to be very poor compared to typically developing children of similar mental age. In particular, research has found that in individuals with DS visuo-spatial WM is better preserved than verbal WM. This study investigated whether it is possible to train short-term memory (STM) and WM abilities in individuals with DS. The cases of two teenage children are reported: EH, 17 years and 3 months, and AS, 15 years and 11 months. A school-based treatment targeting visuo-spatial WM was given to EH and AS for six weeks. Both prior to and after the treatment, they completed a set of assessments to measure WM abilities and their performance was compared with younger typically developing non-verbal mental age controls. The results showed that the trained participants improved their performance in some of the trained and non-trained WM tasks proposed, especially with regard to the tasks assessing visuo-spatial WM abilities. These findings are discussed on the basis of their theoretical, educational, and clinical implications. PMID:26441713
Etiological Distinction of Working Memory Components in Relation to Mathematics
Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.
2014-01-01
Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699
ERIC Educational Resources Information Center
Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana
2009-01-01
The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…
Specific memory impairment following neonatal encephalopathy in term-born children.
van Handel, Mariëlle; de Sonneville, Leo; de Vries, Linda S; Jongmans, Marian J; Swaab, Hanna
2012-01-01
This study examines short-term memory, verbal working memory, episodic long-term memory, and intelligence in 32 children with mild neonatal encephalopathy (NE), 39 children with moderate NE, 10 children with NE who developed cerebral palsy (CP), and 53 comparison children, at the age of 9 to 10 years. in addition to a global effect on intelligence, NE had a specific effect on verbal working memory, verbal and visuo-spatial long-term memory, and learning, which was associated with degree of NE. Although these memory problems occurred in children without CP, they were more pronounced when children had also developed CP.
Meneghetti, Chiara; Borella, Erika; Carbone, Elena; Martinelli, Massimiliano; De Beni, Rossana
2016-05-01
This study examined age-related differences between young and older adults in the involvement of verbal and visuo-spatial components of working memory (WM) when paths are learned from verbal and visuo-spatial inputs. A sample of 60 young adults (20-30 years old) and 58 older adults (60-75 years old) learned two paths from the person's point of view, one displayed in the form of a video showing the path, the other presenting the path in a verbal description. During the learning phase, participants concurrently performed a verbal task (articulatory suppression, AS group), or a visuo-spatial task (spatial tapping, ST group), or no secondary task (control, C group). After learning each path, participants completed tasks that involved the following: (1) recalling the sequential order and the location of landmarks; and (2) judging spatial sentences as true or false (verification test). The results showed that young adults outperformed older adults in all recall tasks. In both age groups performance in all types of task was worse in the AS and ST groups than in the C group, irrespective of the type of input. Overall, these findings suggest that verbal and visuo-spatial components of WM underpin the processing of environmental information in both young and older adults. The results are discussed in terms of age-related differences and according to the spatial cognition framework. © 2015 The British Psychological Society.
Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis.
Potvin, Stéphane; Pelletier, Julie; Grot, Stéphanie; Hébert, Catherine; Barr, Alasdair M; Lecomte, Tania
2018-05-01
Methamphetamine has long been considered as a neurotoxic substance causing cognitive deficits. Recently, however, the magnitude and the clinical significance of the cognitive effects associated with methamphetamine use disorder (MUD) have been debated. To help clarify this controversy, we performed a meta-analysis of the cognitive deficits associated with MUD. A literature search yielded 44 studies that assessed cognitive dysfunction in 1592 subjects with MUD and 1820 healthy controls. Effect size estimates were calculated using the Comprehensive Meta-Analysis, for the following 12 cognitive domains: attention, executive functions, impulsivity/reward processing, social cognition, speed of processing, verbal fluency/language, verbal learning and memory, visual learning and memory, visuo-spatial abilities and working memory. Findings revealed moderate impairment across most cognitive domains, including attention, executive functions, language/verbal fluency, verbal learning and memory, visual memory and working memory. Deficits in impulsivity/reward processing and social cognition were more prominent, whereas visual learning and visuo-spatial abilities were relatively spared cognitive domains. A publication bias was observed. These results show that MUD is associated with broad cognitive deficits that are in the same range as those associated with alcohol and cocaine use disorder, as recently shown by way of meta-analysis. The prominent effects of MUD on social cognition and impulsivity/reward processing are based on a small number of studies, and as such, these results will need to be replicated. The functional consequences (social and occupational) of the cognitive deficits of methamphetamine will also need to be determined. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Psychometric Measure of Working Memory Capacity for Configured Body Movement
Wu, Ying Choon; Coulson, Seana
2014-01-01
Working memory (WM) models have traditionally assumed at least two domain-specific storage systems for verbal and visuo-spatial information. We review data that suggest the existence of an additional slave system devoted to the temporary storage of body movements, and present a novel instrument for its assessment: the movement span task. The movement span task assesses individuals' ability to remember and reproduce meaningless configurations of the body. During the encoding phase of a trial, participants watch short videos of meaningless movements presented in sets varying in size from one to five items. Immediately after encoding, they are prompted to reenact as many items as possible. The movement span task was administered to 90 participants along with standard tests of verbal WM, visuo-spatial WM, and a gesture classification test in which participants judged whether a speaker's gestures were congruent or incongruent with his accompanying speech. Performance on the gesture classification task was not related to standard measures of verbal or visuo-spatial working memory capacity, but was predicted by scores on the movement span task. Results suggest the movement span task can serve as an assessment of individual differences in WM capacity for body-centric information. PMID:24465437
Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.
Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L
2016-07-01
Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.
Executive and Visuo-Motor Function in Adolescents and Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Sachse, Michael; Schlitt, Sabine; Hainz, Daniela; Ciaramidaro, Angela; Schirman, Shella; Walter, Henrik; Poustka, Fritz; Bolte, Sven; Freitag, Christine M.
2013-01-01
This study broadly examines executive (EF) and visuo-motor function in 30 adolescent and adult individuals with high-functioning autism spectrum disorder (ASD) in comparison to 28 controls matched for age, gender, and IQ. ASD individuals showed impaired spatial working memory, whereas planning, cognitive flexibility, and inhibition were spared.…
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P.; Crewther, Sheila G.
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network. PMID:27199694
The effects of concurrent cannabis use among ecstasy users: neuroprotective or neurotoxic?
Fisk, John E; Montgomery, Catharine; Wareing, Michelle; Murphy, Philip N
2006-08-01
The research evidence regarding the potential effects of ecstasy suggests that it may be neurotoxic and that its use is associated with cognitive impairment. In recent years evidence has emerged suggesting that cannabinoids, the active ingredients in cannabis, can be neuroprotective under certain conditions. Given that many ecstasy users also consume cannabis at the same time, the possibility emerges that these individuals might be less susceptible to ecstasy-related impairment. The present paper reanalyses the data from a number of previous studies, contrasting the performance of those individuals who generally consume cannabis and ecstasy at the same time with those who generally consume ecstasy on its own. The two ecstasy-using groups are compared with non-ecstasy users on a range of measures including processing speed, random letter generation, verbal and visuo-spatial working memory span, reasoning and associative learning. The two ecstasy user groups did not differ significantly from each other on any of the measures. Both user groups were significantly worse than non-ecstasy users on measures of associative learning, verbal and visuo-spatial working memory and reasoning. The results suggest that consuming cannabis at the same time as ecstasy does not reduce the likelihood of cognitive impairment.
Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.
Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel
2017-07-01
A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.
Semantic amnesia without dementia: documentation of a case.
Rusconi, M L; Zago, S; Basso, A
1997-06-01
We described the case of a patient affected by a progressive semantic memory disorder associated with prevalent temporal lobe atrophy. This deficit seems to be "pure" in the sense that it has not been found to overlap with other cognitive deficits (intellectual, linguistic, perceptual, visuo-spatial etc.) for a long time. Furthermore, despite his impaired semantic knowledge, the autobiographical memory of the patient was largely intact. This case therefore represents a form of "semantic amnesia" without dementia, and supports the hypothesis that there is a partial distinction between "semantic" and "episodic" memory.
Aging and the intrusion superiority effect in visuo-spatial working memory.
Cornoldi, Cesare; Bassani, Chiara; Berto, Rita; Mammarella, Nicola
2007-01-01
This study investigated the active component of visuo-spatial working memory (VSWM) in younger and older adults testing the hypotheses that elderly individuals have a poorer performance than younger ones and that errors in active VSWM tasks depend, at least partially, on difficulties in avoiding intrusions (i.e., avoiding already activated information). In two experiments, participants were presented with sequences of matrices on which three positions were pointed out sequentially: their task was to process all the positions but indicate only the final position of each sequence. Results showed a poorer performance in the elderly compared to the younger group and a higher number of intrusion (errors due to activated but irrelevant positions) rather than invention (errors consisting of pointing out a position never indicated by the experiementer) errors. The number of errors increased when a concurrent task was introduced (Experiment 1) and it was affected by different patterns of matrices (Experiment 2). In general, results show that elderly people have an impaired VSWM and produce a large number of errors due to inhibition failures. However, both the younger and the older adults' visuo-spatial working memory was affected by the presence of activated irrelevant information, the reduction of the available resources, and task constraints.
Almeida, Rita; Barbosa, João; Compte, Albert
2015-09-01
The amount of information that can be retained in working memory (WM) is limited. Limitations of WM capacity have been the subject of intense research, especially in trying to specify algorithmic models for WM. Comparatively, neural circuit perspectives have barely been used to test WM limitations in behavioral experiments. Here we used a neuronal microcircuit model for visuo-spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a topographic organization of the circuit responsible for spatial memory retention. This assumption leads to specific predictions, which we tested in behavioral experiments. According to the model, nearby locations should be recalled with a bias, as if the two memory traces showed attraction or repulsion during the delay period depending on distance. Another prediction is that the previously reported loss of memory precision for an increasing number of memory items (memory load) should vanish when the distances between items are controlled for. Both predictions were confirmed experimentally. Taken together, our findings provide support for a topographic neural circuit organization of vsWM, they suggest that interference between similar memories underlies some WM limitations, and they put forward a circuit-based explanation that reconciles previous conflicting results on the dependence of WM precision with load. Copyright © 2015 the American Physiological Society.
Brayda, L.; De Carli, F.; Chellali, R.; Famà, F.; Bruzzo, C.; Lucagrossi, L.; Rodriguez, G.
2012-01-01
The neural correlates of exploration and cognitive mapping in blindness remain elusive. The role of visuo-spatial pathways in blind vs. sighted subjects is still under debate. In this preliminary study, we investigate, as a possible estimation of the activity in the visuo-spatial pathways, the EEG patterns of blind and blindfolded-sighted subjects during the active tactile construction of cognitive maps from virtual objects compared with rest and passive tactile stimulation. Ten blind and ten matched, blindfolded-sighted subjects participated in the study. Events were defined as moments when the finger was only stimulated (passive stimulation) or the contour of a virtual object was touched (during active exploration). Event-related spectral power and coherence perturbations were evaluated within the beta 1 band (14–18 Hz). They were then related to a subjective cognitive-load estimation required by the explorations [namely, perceived levels of difficulty (PLD)]. We found complementary cues for sensory substitution and spatial processing in both groups: both blind and sighted subjects showed, while exploring, late power decreases and early power increases, potentially associated with motor programming and touch, respectively. The latter involved occipital areas only for blind subjects (long-term plasticity) and only during active exploration, thus supporting tactile-to-visual sensory substitution. In both groups, coherences emerged among the fronto-central, centro-parietal, and occipito-temporal derivations associated with visuo-spatial processing. This seems in accordance with mental map construction involving spatial processing, sensory-motor processing, and working memory. The observed involvement of the occipital regions suggests that a substitution process also occurs in sighted subjects. Only during explorations did coherence correlate positively with PLD for both groups and in derivations, which can be related to visuo-spatial processing, supporting the existence of supramodal spatial processing independently of vision capabilities. PMID:22338024
De Leonibus, Elvira; Managò, Francesca; Giordani, Francesco; Petrosino, Francesco; Lopez, Sebastien; Oliverio, Alberto; Amalric, Marianne; Mele, Andrea
2009-02-01
Visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson's disease (PD), and they are frequently associated to motor symptoms in the early stages of the disease when dopamine loss is moderate and still restricted to the caudate-putamen. The metabotropic glutamate receptor 5 (mGluR5) antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has beneficial effects on motor symptoms in animal models of PD. However, the effects of MPEP on the cognitive deficits of the disease have never been investigated. Thus, the purpose of this study was to explore its therapeutic potentials by investigating its effects on the visuo-spatial deficits induced by 6-hydroxydopamine (6-OHDA) lesions of dorsal striatum in CD1 mice. The results demonstrated that systemic injections of MPEP (6, 12, and 24 mg/kg, i.p.) impair visuo-spatial discrimination in intact mice at high concentrations, whereas lower doses (1.5 and 3 mg/kg, i.p.) were void of effects. Nevertheless, when an ineffective dose (MPEP 3 mg/kg) was injected, either acutely or subchronically (8 days), it antagonized the visuo-spatial discrimination deficit induced by bilateral dopamine lesion of the striatum. Furthermore, the same treatment increased contralateral turning induced by L-DOPA in mice bearing unilateral 6-OHDA lesion. These results confirm the therapeutic potential of mGluR5 blockade on motor symptoms induced by reduced striatal dopamine function. Further, they demonstrate that mGluR5 blockade may also have beneficial effects on cognitive deficits induced by dopamine depletion.
The impact of path crossing on visuo-spatial serial memory: encoding or rehearsal effect?
Parmentier, Fabrice B R; Andrés, Pilar
2006-11-01
The determinants of visuo-spatial serial memory have been the object of little research, despite early evidence that not all sequences are equally remembered. Recently, empirical evidence was reported indicating that the complexity of the path formed by the to-be-remembered locations impacted on recall performance, defined for example by the presence of crossings in the path formed by successive locations (Parmentier, Elford, & Maybery, 2005). In this study, we examined whether this effect reflects rehearsal or encoding processes. We examined the effect of a retention interval and spatial interference on the ordered recall of spatial sequences with and without path crossings. Path crossings decreased recall performance, as did a retention interval. In line with the encoding hypothesis, but in contrast with the rehearsal hypothesis, the effect of crossing was not affected by the retention interval nor by tapping. The possible nature of the impact of path crossing on encoding mechanisms is discussed.
Senese, Vincenzo Paolo; De Lucia, Natascia; Conson, Massimiliano
2015-01-01
Cognitive models of drawing are mainly based on assessment of copying performance of adults, whereas only a few studies have verified these models in young children. Moreover, developmental investigations have only rarely performed a systematic examination of the contribution of perceptual and representational visuo-spatial processes to copying and drawing from memory. In this study we investigated the role of visual perception and mental representation in both copying and drawing from memory skills in a sample of 227 typically developing children (53% females) aged 7-10 years. Participants underwent a neuropsychological assessment and the Rey-Osterrieth Complex Figure (ROCF). The fit and invariance of the predictive model considering visuo-spatial abilities, working memory, and executive functions were tested by means of hierarchical regressions and path analysis. Results showed that, in a gender invariant way, visual perception abilities and spatial mental representation had a direct effect on copying performance, whereas copying performance was the only specific predictor for drawing from memory. These effects were independent from age and socioeconomic status, and showed that cognitive models of drawing built up for adults could be considered for predicting copying and drawing from memory in children.
ERIC Educational Resources Information Center
Waite, Jane; Beck, Sarah R.; Heald, Mary; Powis, Laurie; Oliver, Chris
2016-01-01
Working memory (WM) impairments might amplify behavioural difference in genetic syndromes. Murine models of Rubinstein-Taybi syndrome (RTS) evidence memory impairments but there is limited research on memory in RTS. Individuals with RTS and typically developing children completed WM tasks, with participants with RTS completing an IQ assessment and…
Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B
2014-07-01
The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.
Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone
2017-07-19
Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.
Gong, Pingyuan; Zheng, Anyun; Chen, Dongmei; Ge, Wanhua; Lv, Changchao; Zhang, Kejin; Gao, Xiaocai; Zhang, Fuchang
2009-07-01
Cognitive abilities are complex human traits influenced by genetic factors. Brain-derived neurotrophic factor (BDNF), a unique polypeptide growth factor, has an influence on the differentiation and survival of neurons in the nervous system. A single-nucleotide polymorphism (rs6265) in the human gene, resulting in a valine to methionine substitution in the pro-BDNF protein, was thought to associate with psychiatric disorders and might play roles in the individual difference of cognitive abilities. However, the specific roles of the gene in cognition remain unclear. To investigate the relationships between the substitution and cognitive abilities, a healthy population-based study and the PCR-SSCP method were performed. The results showed the substitution was associated with digital working memory (p = 0.02) and spatial localization (p = 0.03), but not with inhibition, shifting, updating, visuo-spatial working memory, long-term memory, and others (p > 0.05) among the compared genotype groups analyzed by general linear model. On the other hand, the participants with BDNF (GG) had higher average performance in digital working memory and spatial localization than the ones with BDNF (AA). The findings of the present work implied that the variation in BDNF might play positive roles in human digital working memory and spatial localization.
ERIC Educational Resources Information Center
Vock, Miriam; Holling, Heinz
2008-01-01
The objective of this study is to explore the potential for developing IRT-based working memory scales for assessing specific working memory components in children (8-13 years). These working memory scales should measure cognitive abilities reliably in the upper range of ability distribution as well as in the normal range, and provide a…
Memory Abilities in Williams Syndrome: Dissociation or Developmental Delay Hypothesis?
ERIC Educational Resources Information Center
Sampaio, Adriana; Sousa, Nuno; Fernandez, Montse; Henriques, Margarida; Goncalves, Oscar F.
2008-01-01
Williams syndrome (WS) is a neurodevelopmental genetic disorder often described as being characterized by a dissociative cognitive architecture, in which profound impairments of visuo-spatial cognition contrast with relative preservation of linguistic, face recognition and auditory short-memory abilities. This asymmetric and dissociative cognition…
Visuo-Spatial Processing and Executive Functions in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Marton, Klara
2008-01-01
Background: Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims: The purpose of the study was to examine executive…
The Effect of Configuration on VSWM Performance of Down Syndrome Individuals
ERIC Educational Resources Information Center
Carretti, B.; Lanfranchi, S.
2010-01-01
Background: Recent studies have demonstrated that individuals with Down syndrome (DS) are poorer than controls in spatial-simultaneous tasks, but not in spatial-sequential tasks. To explain this finding, it has been suggested that the simultaneous visuo-spatial working memory deficit of individuals with DS could be due to the request for…
Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.
Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui
2015-09-01
Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Metcalfe, Arron W. S.; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-01-01
Baddeley and Hitch’s multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. PMID:24212504
ERIC Educational Resources Information Center
Carretti, Barbara; Borella, Erika; Cornoldi, Cesare; De Beni, Rossana
2009-01-01
It is well established that working memory is related to reading comprehension ability. However, its role in explaining specific reading comprehension difficulties is still under debate: the issue mainly concerns whether the contribution of working memory is dependent on task modality (verbal tasks being more predictive than visuo-spatial tasks)…
ERIC Educational Resources Information Center
Alloway, T. P.
2010-01-01
Background: The aim of the present study was to investigate the following issues: (1) Do students with borderline intellectual functioning have a pervasive pattern of impaired working memory skills across both verbal and visuo-spatial domains? (2) Is there evidence for impairment in executive function skills, and which tasks indicate greater…
Saj, Arnaud; Cojan, Yann; Vocat, Roland; Luauté, Jacques; Vuilleumier, Patrik
2013-01-01
Unilateral spatial neglect involves a failure to report or orient to stimuli in the contralesional (left) space due to right brain damage, with severe handicap in everyday activities and poor rehabilitation outcome. Because behavioral studies suggest that prism adaptation may reduce spatial neglect, we investigated the neural mechanisms underlying prism effects on visuo-spatial processing in neglect patients. We used functional magnetic resonance imaging (fMRI) to examine the effect of (right-deviating) prisms on seven patients with left neglect, by comparing brain activity while they performed three different spatial tasks on the same visual stimuli (bisection, search, and memory), before and after a single prism-adaptation session. Following prism adaptation, fMRI data showed increased activation in bilateral parietal, frontal, and occipital cortex during bisection and visual search, but not during the memory task. These increases were associated with significant behavioral improvement in the same two tasks. Changes in neural activity and behavior were seen only after prism adaptation, but not attributable to mere task repetition. These results show for the first time the neural substrates underlying the therapeutic benefits of prism adaptation, and demonstrate that visuo-motor adaptation induced by prism exposure can restore activation in bilateral brain networks controlling spatial attention and awareness. This bilateral recruitment of fronto-parietal networks may counteract the pathological biases produced by unilateral right hemisphere damage, consistent with recent proposals that neglect may reflect lateralized deficits induced by bilateral hemispheric dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Towards a better cannabis drug.
Mechoulam, Raphael; Parker, Linda
2013-12-01
This commentary discusses the importance of a new study entitled 'Cannabidiol attenuates deficits of visuo-spatial associative memory induced by Δ(9) -tetrahydrocannabinol' by Wright et al. from the Scripps Institute in La Jolla, California. The results in this study show that the non-psychoactive cannabis constituent cannabidiol opposes some, but not all, forms of behavioural and memory disruption caused by Δ(9) -tetrahydrocannabinol in male rhesus monkeys. This article is a commentary on the research paper by Wright et al., pp 1365-1373 of this issue. To view this paper visit http://dx.doi.org/10.1111/bph.12199. © 2013 The British Pharmacological Society.
Towards a better cannabis drug
Mechoulam, Raphael; Parker, Linda
2013-01-01
This commentary discusses the importance of a new study entitled ‘Cannabidiol attenuates deficits of visuo-spatial associative memory induced by Δ9-tetrahydrocannabinol’ by Wright et al. from the Scripps Institute in La Jolla, California. The results in this study show that the non-psychoactive cannabis constituent cannabidiol opposes some, but not all, forms of behavioural and memory disruption caused by Δ9-tetrahydrocannabinol in male rhesus monkeys. LINKED ARTICLE This article is a commentary on the research paper by Wright et al., pp 1365–1373 of this issue. To view this paper visit http://dx.doi.org/10.1111/bph.12199 PMID:24024867
ERIC Educational Resources Information Center
Farvardin, Mohammad Taghi; Afghari, Akbar; Koosha, Mansour
2014-01-01
One of the most influential models of working memory (WM) is the one developed by Baddeley (1986, 2000, 2003) which views WM comprising several components--a central executive, an episodic buffer, the visuo-spatial sketchpad, and the phonological loop. The phonological loop or phonological memory (PM) deals with the temporary storage of verbal and…
Palomo, R; Casals-Coll, M; Sánchez-Benavides, G; Quintana, M; Manero, R M; Rognoni, T; Calvo, L; Aranciva, F; Tamayo, F; Peña-Casanova, J
2013-05-01
The Rey-Osterrieth Complex Figure (ROCF) and the Free and Cued Selective Reminding Test (FCSRT) are widely used in clinical practice. The ROCF assesses visual perception, constructional praxis, and visuo-spatial memory. The FCSRT assesses verbal learning and memory. In this study, as part of the Spanish normative studies project in young adults (NEURONORMA young adults), we present age- and education-adjusted normative data for both tests obtained by using linear regression techniques. The sample consisted of 179 healthy participants ranging in age from 18 to 49 years. We provide tables for converting raw scores to scaled scores in addition to tables with scores adjusted by socio-demographic factors. The results showed that education affects scores for some of the memory tests and the figure-copying task. Age was only found to have an effect on the performance of visuo-spatial memory tests, and the effect of sex was negligible. The normative data obtained will be extremely useful in the clinical neuropsychological evaluation of young Spanish adults. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Memory and Obstructive Sleep Apnea: A Meta-Analysis
Wallace, Anna; Bucks, Romola S.
2013-01-01
Study Objectives: To examine episodic memory performance in individuals with obstructive sleep apnea (OSA). Design Meta-analysis was used to synthesize results from individual studies examining the impact of OSA on episodic memory performance. The performance of individuals with OSA was compared to healthy controls or normative data. Participants Forty-two studies were included, comprising 2,294 adults with untreated OSA and 1,364 healthy controls. Studies that recorded information about participants at baseline prior to treatment interventions were included in the analysis. Measurements Participants were assessed with tasks that included a measure of episodic memory: immediate recall, delayed recall, learning, and/or recognition memory. Results: The results of the meta-analyses provide evidence that individuals with OSA are significantly impaired when compared to healthy controls on verbal episodic memory (immediate recall, delayed recall, learning, and recognition) and visuo-spatial episodic memory (immediate and delayed recall), but not visual immediate recall or visuo-spatial learning. When patients were compared to norms, negative effects of OSA were found only in verbal immediate and delayed recall. Conclusions: This meta-analysis contributes to understanding of the nature of episodic memory deficits in individuals with OSA. Impairments to episodic memory are likely to affect the daily functioning of individuals with OSA. Citation Wallace A; Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. SLEEP 2013;36(2):203-220. PMID:23372268
The Role of Cognitive Abilities in Laparoscopic Simulator Training
ERIC Educational Resources Information Center
Groenier, M.; Schraagen, J. M. C.; Miedema, H. A. T.; Broeders, I. A. J. M.
2014-01-01
Learning minimally invasive surgery (MIS) differs substantially from learning open surgery and trainees differ in their ability to learn MIS. Previous studies mainly focused on the role of visuo-spatial ability (VSA) on the learning curve for MIS. In the current study, the relationship between spatial memory, perceptual speed, and general…
ERIC Educational Resources Information Center
Bourke, Lorna; Davies, Simon J.; Sumner, Emma; Green, Carolyn
2014-01-01
Visually mediated processes including, exposure to print (e.g. reading) as well as orthographic transcription and coding skills, have been found to contribute to individual differences in literacy development. The current study examined the role of visuospatial working memory (WM) in underpinning this relationship and emergent writing. One hundred…
Yarube, I U; Ayo, J O; Fatihu, M Y; Magaji, R A; Umar, I A; Alhassan, A W; Saleh, M Ia
2017-03-06
Insulin has emerged from its traditional 'peripheral' glucose-lowering function to become increasingly regarded as a brain hormone that controls a wide range of functions including learning and memory. Insulin action on learning and memory is linked to nitric oxide (NO) signalling, but its effects on memory and histology of cerebral cortex in conditions of varied NO availability is unclear. This research sought to determine the effect of insulin on visuo-spatial learning, memory and histology of cerebral cortex during NO deficiency. Twenty-four mice weighing 21-23 g, were divided into four groups (n = 6) and treated daily for seven days with 0.2 ml distilled water subcutaneously (s.c.) (control), 10 I.U/kg insulin s.c., 10 I.U/kg insulin + 50 mg/kg L-NAME intraperitoneally (i.p.), and 50 mg/kg i.p. L-NAME s.c., respectively. The 3-day MWM paradigm was used to assess memory. Brain tissue was examined for histological changes. There was no significant difference between day 1 and day 2 latencies for all the groups. The mice in all (but L-NAME) groups spent more time in the target quadrant, and the difference was significant within but not between groups. There was significant reduction in number of platform site crossings (4.83 ± 0.5, 0.67 ± 0.3, 0.50 ± 0.3 and 0.50 ± 0.3 for control, insulin, insulin+L-NAME and L-NAME groups, respectively) in all the groups compared to control. Normal histology of the cortex and absence of histological lesions were observed in brain slides of control and treatment groups. It was concluded that insulin administration impairs visuo-spatial memory to a greater extent in the presence of NO block, and to a lesser extent in the absence of NO block. Nitric oxide has a role in insulin-induced memory impairment. Insulin administration in the presence or absence of NO block had no effect on histology of cortex.
Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-10-01
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-01-01
Background Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). Methods We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7–13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Results Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Conclusions Children with ASD showed differences in activation in the frontal and parietal lobes—both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances. PMID:25057329
Vogan, Vanessa M; Morgan, Benjamin R; Lee, Wayne; Powell, Tamara L; Smith, Mary Lou; Taylor, Margot J
2014-01-01
Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7-13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Children with ASD showed differences in activation in the frontal and parietal lobes-both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances.
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2015-01-01
We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children’s reliance on these neural representations vary as a function of math skill. At higher SES levels, higher skill was associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. At lower SES levels, higher skill was associated with greater recruitment of right parietal cortex, identified by the visuo-spatial localizer. This suggests that depending on parental SES, children engage different neural systems to solve subtraction problems. Furthermore, SES was related to the activation in the left temporal and frontal cortex during the independent verbal localizer task, but it was not related to activation during the independent visuo-spatial localizer task. Differences in activation during the verbal localizer task in turn were related to differences in activation during the subtraction task in right parietal cortex. The relation was stronger at lower SES levels. This result suggests that SES-related differences in the visuo-spatial regions during subtraction might be based in SES-related verbal differences. PMID:25664675
Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing
Salvato, Gerardo; Patai, Eva Z.; Nobre, Anna C.
2016-01-01
It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. PMID:26649914
Qu, Xingda
2014-10-27
Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.
ViSA: A Neurodynamic Model for Visuo-Spatial Working Memory, Attentional Blink, and Conscious Access
ERIC Educational Resources Information Center
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-01-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one "simultaneously" in a spatially distributed fashion, the other "sequentially" at a single location. To understand their findings in a unified framework, we propose a…
ERIC Educational Resources Information Center
Bomba, Marie D.; Singhal, Anthony
2010-01-01
Previous dual-task research pairing complex visual tasks involving non-spatial cognitive processes during dichotic listening have shown effects on the late component (Ndl) of the negative difference selective attention waveform but no effects on the early (Nde) response suggesting that the Ndl, but not the Nde, is affected by non-spatial…
Kumar, Sanjay; Rao, Shobini L; Chandramouli, Bangalore A; Pillai, Shibu
2013-08-01
Mild traumatic brain injury (MTBI) is associated with often selective impairment of both working memory (WM) and the executive functions (EFs). Research indicates that one of the commonest deficits present in MTBI patients falls in the domain of WM. We aimed to investigate the role of EFs in WM impairment following MTBI. Performance on the tests of EFs and the verbal and visuo-spatial WM of 30 consecutive MTBI patients were compared with age/education/IQ matched 30 normal healthy control participants. Correlation between EFs and WM was studied separately for the MTBI and the control group. The MTBI and control group were tested on a range of EF tests and WM. The MTBI group was demonstrated impairment on verbal and visuo-spatial WM and category fluency tests only. Furthermore, the MTBI group had fewer significant correlations between the WM and EFs (5 out of 54 possible correlations) than in the control group (13 out of 54 possible correlations). We suggest that MTBI may lead to WM deficits as the contribution of executive processes to support the WM is diminished following MTBI. Such an understanding of the poor WM performance in MTBI patients will be helpful when planning appropriate strategies for cognitive rehabilitation. Copyright © 2013 Elsevier B.V. All rights reserved.
Spatial working memory in neurofibromatosis 1: Altered neural activity and functional connectivity.
Ibrahim, Amira F A; Montojo, Caroline A; Haut, Kristen M; Karlsgodt, Katherine H; Hansen, Laura; Congdon, Eliza; Rosser, Tena; Bilder, Robert M; Silva, Alcino J; Bearden, Carrie E
2017-01-01
Neurofibromatosis Type 1 (NF1) is a genetic disorder that disrupts central nervous system development and neuronal function. Cognitively, NF1 is characterized by difficulties with executive control and visuospatial abilities. Little is known about the neural substrates underlying these deficits. The current study utilized Blood-Oxygen-Level-Dependent (BOLD) functional MRI (fMRI) to explore the neural correlates of spatial working memory (WM) deficits in patients with NF1. BOLD images were acquired from 23 adults with NF1 (age M = 32.69; 61% male) and 25 matched healthy controls (age M = 33.08; 64% male) during an in-scanner visuo-spatial WM task. Whole brain functional and psycho-physiological interaction analyses were utilized to investigate neural activity and functional connectivity, respectively, during visuo-spatial WM performance. Participants also completed behavioral measures of spatial reasoning and verbal WM. Relative to healthy controls, participants with NF1 showed reduced recruitment of key components of WM circuitry, the left dorsolateral prefrontal cortex and right parietal cortex. In addition, healthy controls exhibited greater simultaneous deactivation between the posterior cingulate cortex (PCC) and temporal regions than NF1 patients. In contrast, NF1 patients showed greater PCC and bilateral parietal connectivity with visual cortices as well as between the PCC and the cerebellum. In NF1 participants, increased functional coupling of the PCC with frontal and parietal regions was associated with better spatial reasoning and WM performance, respectively; these relationships were not observed in controls. Dysfunctional engagement of WM circuitry, and aberrant functional connectivity of 'task-negative' regions in NF1 patients may underlie spatial WM difficulties characteristic of the disorder.
ERIC Educational Resources Information Center
Freed, Jenny; Lockton, Elaine; Adams, Catherine
2012-01-01
Background: Children with specific language impairment (CwSLI) are consistently reported to have short-term memory (STM) and working memory (WM) difficulties. Aim: To compare STM and WM abilities in CwSLI with children with pragmatic language impairment (CwPLI). Methods & Procedures: Primary school-aged CwSLI (n = 12) and CwPLI (n = 23) were…
Does participation in art classes influence performance on two different cognitive tasks?
Schindler, Manuel; Maihöfner, Christian; Bolwerk, Anne; Lang, Frieder R
2017-04-01
Effects of two mentally stimulating art interventions on processing speed and visuo-spatial cognition were compared in three samples. In a randomized 10-week art intervention study with a pre-post follow-up design, 113 adults (27 healthy older adults with subjective memory complaints, 50 healthy older adults and 36 healthy younger adults) were randomly assigned to one of two groups: visual art production or cognitive art evaluation, where the participants either produced or evaluated art. ANOVAs with repeated measures were computed to observe effects on the Symbol-Digit Test, and the Stick Test. Significant Time effects were found with regard to processing speed and visuo-spatial cognition. Additionally, there was found a significant Time × Sample interaction for processing speed. The effects proved robust after testing for education and adding sex as additional factor. Mental stimulation by participation in art classes leads to an improvement of processing speed and visuo-spatial cognition. Further investigation is required to improve understanding of the potential impact of art intervention on cognitive abilities across adulthood.
Oculomotor preparation as a rehearsal mechanism in spatial working memory.
Pearson, David G; Ball, Keira; Smith, Daniel T
2014-09-01
There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Posterior cortical atrophy variant of Alzheimer's dementia-A case report.
Mukku, Shiva Shanker Reddy; Chintala, Haripriya; Nagaraj, Chandana; Mangalore, Sandhya; Sivakumar, Palanimuthu T; Varghese, Mathew
2018-05-17
Alzheimer's dementia (AD) is the commonest type of dementia presenting with initial episodic memory decline followed by involvement of other cognitive domains. Posterior cortical atrophy (PCA) is one of the variants of Alzheimer's dementia (AD) characterized by the atypical presentation of relatively persevered memory in the initial stage. PCA is an uncommon early onset dementia affecting adults between 50 and 65 years. It presents predominantly with visuo-spatial and visuo-perceptual deficits. PCA is a phenotype with varied etiology most common being Alzheimer's disease. The complex and atypical presentation with preserved memory and insight in patients with PCA poses challenge to clinicians in diagnosing at initial stages. There is also paucity of research on prevalence, course, prognosis and management of PCA. In this article we describe a middle aged gentlemen presenting with clinical features suggestive of PCA. We also discussed relevant literature. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Sowerby, Paula; Seal, Simon; Tripp, Gail
2011-01-01
Objective: To further define the nature of working memory (WM) impairments in children with combined-type ADHD. Method: A total of 40 Children with ADHD and an age and gender-matched control group (n = 40) completed two measures of visuo-spatial WM and two measures of verbal WM. The effects of age and learning/language difficulties on performance…
Lack of awareness for spatial and verbal constructive apraxia.
Rinaldi, Maria Cristina; Piras, Federica; Pizzamiglio, Luigi
2010-05-01
It is still a matter of debate whether constructive apraxia (CA) should be considered a form of apraxia or, rather, the motor expression of a more pervasive impairment in visuo-spatial processing. Constructive disorders were linked to visuo-spatial disorders and to deficits in appreciating spatial relations among component sub-parts or problems in reproducing three-dimensionality. We screened a large population of brain-damaged patients for CA. Only patients with constructive disorders and no signs of neglect and/or aphasia were selected. Five apractic subjects were tested with both visuo-spatial and verbal tasks requiring constructive abilities. The former ones were tests such as design copying, while the latter were experimental tasks built to transpose into the linguistic domain the constructive process as phrasing by arranging paper scraps into a sentence. A first result showed a constructive impairment in both the visuo-spatial and the linguistic domain; this finding challenges the idea that CA is confined to the visuo-spatial domain. A second result showed a systematic association between CA and unawareness for constructive disorders. Third, lack of awareness was always associated with a lesion in the right dorsolateral prefrontal cortex, a region deemed as involved in managing a conflict between intentions and sensory feed-back. Anosognosia for constructive disorders and the potential role of the right prefrontal cortex in generating the impairment, are discussed in the light of current models of action control. The core of CA could be the inability to detect any inconsistency between intended and executed action rather than a deficit in reproducing spatial relationship. 2010 Elsevier Ltd. All rights reserved.
Cognitive components of a mathematical processing network in 9-year-old children.
Szűcs, Dénes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2014-07-01
We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended number processing network and suggest that important processing nodes of this network are phonological processing, verbal knowledge, visuo-spatial short-term and working memory, spatial ability and general executive functioning. The model was highly specific to predicting arithmetic performance. There were no strong relations between mathematical achievement and verbal short-term and working memory, sustained attention, response inhibition, finger knowledge and symbolic number comparison performance. Non-verbal intelligence measures were also non-significant predictors when added to our model. Number sense variables were non-significant predictors in the model and they were also non-significant predictors when entered into regression analysis with only a single visuo-spatial WM measure. Number sense variables were predicted by sustained attention. Results support a network theory of mathematical competence in primary school children and falsify the importance of a proposed modular 'number sense'. We suggest an 'executive memory function centric' model of mathematical processing. Mapping a complex processing network requires that studies consider the complex predictor space of mathematics rather than just focusing on a single or a few explanatory factors.
Cognitive components of a mathematical processing network in 9-year-old children
Szűcs, Dénes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2014-01-01
We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended number processing network and suggest that important processing nodes of this network are phonological processing, verbal knowledge, visuo-spatial short-term and working memory, spatial ability and general executive functioning. The model was highly specific to predicting arithmetic performance. There were no strong relations between mathematical achievement and verbal short-term and working memory, sustained attention, response inhibition, finger knowledge and symbolic number comparison performance. Non-verbal intelligence measures were also non-significant predictors when added to our model. Number sense variables were non-significant predictors in the model and they were also non-significant predictors when entered into regression analysis with only a single visuo-spatial WM measure. Number sense variables were predicted by sustained attention. Results support a network theory of mathematical competence in primary school children and falsify the importance of a proposed modular ‘number sense’. We suggest an ‘executive memory function centric’ model of mathematical processing. Mapping a complex processing network requires that studies consider the complex predictor space of mathematics rather than just focusing on a single or a few explanatory factors. PMID:25089322
The human hippocampal formation mediates short-term memory of colour-location associations.
Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J
2008-01-31
The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.
Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C
2016-09-01
Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults
Zanolie, Kiki; Kleibeuker, Sietske W.; Crone, Eveline A.
2014-01-01
Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted. PMID:25514366
Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.
Salvato, Gerardo; Patai, Eva Z; Nobre, Anna C
2016-01-01
It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Banaj, Nerisa; Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Iorio, Mariangela; Battaglia, Claudia; Pantoli, Donatella; Ducci, Giuseppe; Spalletta, Gianfranco
2018-06-01
The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.
Working Memory: Its Role in Dyslexia and Other Specific Learning Difficulties
ERIC Educational Resources Information Center
Jeffries, Sharman; Everatt, John
2004-01-01
This paper reports a study contrasting dyslexic children against a control group of children without special educational needs (SEN) and a group with varied SENs. Children's abilities were compared on tasks assessing phonological processing, visuo-spatial/motor coordination and executive/inhibitory functioning; being targeted for assessment based…
Visuo-Spatial Processing in Autism--Testing the Predictions of Extreme Male Brain Theory
ERIC Educational Resources Information Center
Falter, Christine M.; Plaisted, Kate C.; Davis, Greg
2008-01-01
It has been hypothesised that autism is an extreme version of the male brain, caused by high levels of prenatal testosterone (Baron-Cohen 1999). To test this proposal, associations were assessed between three visuo-spatial tasks and prenatal testosterone, indexed in second-to-fourth digit length ratios (2D:4D). The study included children with…
Cabrera-Pastor, Andrea; Hernandez-Rabaza, Vicente; Taoro-Gonzalez, Lucas; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente
2016-10-01
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain
2013-02-01
Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.
Moving to higher ground: The dynamic field theory and the dynamics of visual cognition
Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor
2009-01-01
In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-spatial cognition. This theory grew out of the dynamic systems approach to motor control and development, and is grounded in neural principles. The initial application of dynamic field theory to issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these concepts still further to address topics in visual cognition, including visual working memory for non-spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in vision. In each case, we demonstrate that the general principles of the dynamic field approach can unify findings in the literature and generate novel predictions. We contend that the application of these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science, and points toward a formal integration of brains, bodies, and behavior. PMID:19173013
Decoding illusory self-location from activity in the human hippocampus.
Guterstam, Arvid; Björnsdotter, Malin; Bergouignan, Loretxu; Gentile, Giovanni; Li, Tie-Qiang; Ehrsson, H Henrik
2015-01-01
Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually 'teleport' six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI). The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving toward the cameras coupled with touches applied to the participant's chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P < 0.05) but not in the asynchronous condition (P > 0.05). At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P = 0.012). These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location.
Decoding illusory self-location from activity in the human hippocampus
Guterstam, Arvid; Björnsdotter, Malin; Bergouignan, Loretxu; Gentile, Giovanni; Li, Tie-Qiang; Ehrsson, H. Henrik
2015-01-01
Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually ‘teleport’ six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI). The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving toward the cameras coupled with touches applied to the participant’s chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P < 0.05) but not in the asynchronous condition (P > 0.05). At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P = 0.012). These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location. PMID:26236222
An Investigation of Cognitive Skills and Behavior in High Ability Students
ERIC Educational Resources Information Center
Alloway, Tracy Packiam; Elsworth, Miquela
2012-01-01
The purpose of this study was to investigate the cognitive and behavioral profiles of high ability students. Performance on measures of verbal and visuo-spatial working memory and general ability (vocabulary and block design) was compared across the following groups: high, average, and low ability students. The behavioral profile of high ability…
The Architecture, Dynamics, and Development of Mental Processing: Greek, Chinese, or Universal?
ERIC Educational Resources Information Center
Demetriou, A.; Kui, Z.X.; Spanoudis, G.; Christou, C.; Kyriakides, L.; Platsidou, M.
2005-01-01
This study compared Greeks with Chinese, from 8 to 14 years of age, on measures of processing efficiency, working memory, and reasoning. All processes were addressed through three domains of relations: verbal/propositional, quantitative, and visuo/spatial. Structural equations modelling and rating scale analysis showed that the architecture and…
Pozeg, Polona; Galli, Giulia; Blanke, Olaf
2015-01-01
Experiencing a body part as one’s own, i.e., body ownership, depends on the integration of multisensory bodily signals (including visual, tactile, and proprioceptive information) with the visual top-down signals from peripersonal space. Although it has been shown that the visuo-spatial viewpoint from where the body is seen is an important visual top-down factor for body ownership, different studies have reported diverging results. Furthermore, the role of visuo-spatial viewpoint (sometime also called first-person perspective) has only been studied for hands or the whole body, but not for the lower limbs. We thus investigated whether and how leg visuo-tactile integration and leg ownership depended on the visuo-spatial viewpoint from which the legs were seen and the anatomical similarity of the visual leg stimuli. Using a virtual leg illusion, we tested the strength of visuo-tactile integration of leg stimuli using the crossmodal congruency effect (CCE) as well as the subjective sense of leg ownership (assessed by a questionnaire). Fifteen participants viewed virtual legs or non-corporeal control objects, presented either from their habitual first-person viewpoint or from a viewpoint that was rotated by 90°(third-person viewpoint), while applying visuo-tactile stroking between the participants legs and the virtual legs shown on a head-mounted display. The data show that the first-person visuo-spatial viewpoint significantly boosts the visuo-tactile integration as well as the sense of leg ownership. Moreover, the viewpoint-dependent increment of the visuo-tactile integration was only found in the conditions when participants viewed the virtual legs (absent for control objects). These results confirm the importance of first person visuo-spatial viewpoint for the integration of visuo-tactile stimuli and extend findings from the upper extremity and the trunk to visuo-tactile integration and ownership for the legs. PMID:26635663
Helland, Turid; Morken, Frøydis
2016-02-01
The aim of this study was to find valid neurocognitive precursors of literacy development in first language (L1, Norwegian) and second language (L2, English) in a group of children during their Pre-literacy, Emergent Literacy and Literacy stages, by comparing children with dyslexia and a typical group. Children who were 5 years old at project start were followed until the age of 11, when dyslexia was identified and data could be analysed in retrospect. The children's neurocognitive pattern changed both by literacy stage and domain. Visuo-spatial recall and RAN appeared as early precursors of L1 literacy, while phonological awareness appeared as early precursor of L2 English. Verbal long term memory was associated with both L1 and L2 skills in the Literacy stage. Significant group differences seen in the Pre-literacy and Emergent literacy stages decreased in the Literacy stage. The developmental variations by stage and domain may explain some of the inconsistencies seen in dyslexia research. Early identification and training are essential to avoid academic failure, and our data show that visuo-spatial memory and RAN could be suitable early markers in transparent orthographies like Norwegian. Phonological awareness was here seen as an early precursor of L2 English, but not of L1 Norwegian. © 2015 The Authors. Dyslexia published by John Wiley & Sons Ltd.
Retrosplenial cortex is required for the retrieval of remote memory for auditory cues.
Todd, Travis P; Mehlman, Max L; Keene, Christopher S; DeAngeli, Nicole E; Bucci, David J
2016-06-01
The restrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of the RSC to recently acquired auditory fear memories. Since neocortical regions have been implicated in the permanent storage of remote memories, we examined the contribution of the RSC to remotely acquired auditory fear memories. In Experiment 1, retrieval of a remotely acquired auditory fear memory was impaired when permanent lesions (either electrolytic or neurotoxic) were made several weeks after initial conditioning. In Experiment 2, using a chemogenetic approach, we observed impairments in the retrieval of remote memory for an auditory cue when the RSC was temporarily inactivated during testing. In Experiment 3, after injection of a retrograde tracer into the RSC, we observed labeled cells in primary and secondary auditory cortices, as well as the claustrum, indicating that the RSC receives direct projections from auditory regions. Overall our results indicate the RSC has a critical role in the retrieval of remotely acquired auditory fear memories, and we suggest this is related to the quality of the memory, with less precise memories being RSC dependent. © 2016 Todd et al.; Published by Cold Spring Harbor Laboratory Press.
Kikinis, Zora; Makris, Nikos; Finn, Christine T.; Bouix, Sylvain; Lucia, Diandra; Coleman, Michael J.; Tworog-Dube, Erica; Kikinis, Ron; Kucherlapati, Raju; Shenton, Martha E.; Kubicki, Marek
2013-01-01
Patients with 22q11.2 deletion syndrome (22q11.2DS) represent a population at high risk for developing schizophrenia, as well as learning disabilities. Deficits in visuo-spatial memory are thought to underlie some of the cognitive disabilities. Neuronal substrates of visuo-spatial memory include the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal fasciculus (ILF), two tracts that comprise the ventral visual stream. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an established method to evaluate white matter (WM) connections in vivo. DT-MRI scans of nine 22q11.2DS young adults and nine matched healthy subjects were acquired. Tractography of the IFOF and the ILF was performed. DT-MRI indices, including Fractional anisotropy (FA) (measure of WM changes), axial diffusivity (AD, measure of axonal changes) and radial diffusivity (RD, measure of myelin changes) of each of the tracts and each group were measured and compared. The 22q11.2DS group showed statistically significant reductions of FA in IFOF in the left hemisphere. Additionally, reductions of AD were found in the IFOF and the ILF in both hemispheres. These findings might be the consequence of axonal changes, which is possibly due to fewer, thinner, or less organized fibers. No changes in RD were detected in any of the tracts delineated, which is in contrast to findings in schizophrenia patients where increases in RD are believed to be indicative of demyelination. We conclude that reduced axonal changes may be key to understanding the underlying pathology of WM leading to the visuo-spatial phenotype in 22q11.2DS. PMID:23612843
Visuo-spatial cueing in children with differential reading and spelling profiles
Kemény, Ferenc; Gangl, Melanie; Schulte-Körne, Gerd; Moll, Kristina; Landerl, Karin
2017-01-01
Dyslexia has been claimed to be causally related to deficits in visuo-spatial attention. In particular, inefficient shifting of visual attention during spatial cueing paradigms is assumed to be associated with problems in graphemic parsing during sublexical reading. The current study investigated visuo-spatial attention performance in an exogenous cueing paradigm in a large sample (N = 191) of third and fourth graders with different reading and spelling profiles (controls, isolated reading deficit, isolated spelling deficit, combined deficit in reading and spelling). Once individual variability in reaction times was taken into account by means of z-transformation, a cueing deficit (i.e. no significant difference between valid and invalid trials) was found for children with combined deficits in reading and spelling. However, poor readers without spelling problems showed a cueing effect comparable to controls, but exhibited a particularly strong right-over-left advantage (position effect). Isolated poor spellers showed a significant cueing effect, but no position effect. While we replicated earlier findings of a reduced cueing effect among poor nonword readers (indicating deficits in sublexical processing), we also found a reduced cueing effect among children with particularly poor orthographic spelling (indicating deficits in lexical processing). Thus, earlier claims of a specific association with nonword reading could not be confirmed. Controlling for ADHD-symptoms reported in a parental questionnaire did not impact on the statistical analysis, indicating that cueing deficits are not caused by more general attentional limitations. Between 31 and 48% of participants in the three reading and/or spelling deficit groups as well as 32% of the control group showed reduced spatial cueing. These findings indicate a significant, but moderate association between certain aspects of visuo-spatial attention and subcomponents of written language processing, the causal status of which is yet unclear. PMID:28686635
Visuo-spatial cueing in children with differential reading and spelling profiles.
Banfi, Chiara; Kemény, Ferenc; Gangl, Melanie; Schulte-Körne, Gerd; Moll, Kristina; Landerl, Karin
2017-01-01
Dyslexia has been claimed to be causally related to deficits in visuo-spatial attention. In particular, inefficient shifting of visual attention during spatial cueing paradigms is assumed to be associated with problems in graphemic parsing during sublexical reading. The current study investigated visuo-spatial attention performance in an exogenous cueing paradigm in a large sample (N = 191) of third and fourth graders with different reading and spelling profiles (controls, isolated reading deficit, isolated spelling deficit, combined deficit in reading and spelling). Once individual variability in reaction times was taken into account by means of z-transformation, a cueing deficit (i.e. no significant difference between valid and invalid trials) was found for children with combined deficits in reading and spelling. However, poor readers without spelling problems showed a cueing effect comparable to controls, but exhibited a particularly strong right-over-left advantage (position effect). Isolated poor spellers showed a significant cueing effect, but no position effect. While we replicated earlier findings of a reduced cueing effect among poor nonword readers (indicating deficits in sublexical processing), we also found a reduced cueing effect among children with particularly poor orthographic spelling (indicating deficits in lexical processing). Thus, earlier claims of a specific association with nonword reading could not be confirmed. Controlling for ADHD-symptoms reported in a parental questionnaire did not impact on the statistical analysis, indicating that cueing deficits are not caused by more general attentional limitations. Between 31 and 48% of participants in the three reading and/or spelling deficit groups as well as 32% of the control group showed reduced spatial cueing. These findings indicate a significant, but moderate association between certain aspects of visuo-spatial attention and subcomponents of written language processing, the causal status of which is yet unclear.
What's in a "face file"? Feature binding with facial identity, emotion, and gaze direction.
Fitousi, Daniel
2017-07-01
A series of four experiments investigated the binding of facial (i.e., facial identity, emotion, and gaze direction) and non-facial (i.e., spatial location and response location) attributes. Evidence for the creation and retrieval of temporary memory face structures across perception and action has been adduced. These episodic structures-dubbed herein "face files"-consisted of both visuo-visuo and visuo-motor bindings. Feature binding was indicated by partial-repetition costs. That is repeating a combination of facial features or altering them altogether, led to faster responses than repeating or alternating only one of the features. Taken together, the results indicate that: (a) "face files" affect both action and perception mechanisms, (b) binding can take place with facial dimensions and is not restricted to low-level features (Hommel, Visual Cognition 5:183-216, 1998), and (c) the binding of facial and non-facial attributes is facilitated if the dimensions share common spatial or motor codes. The theoretical contributions of these results to "person construal" theories (Freeman, & Ambady, Psychological Science, 20(10), 1183-1188, 2011), as well as to face recognition models (Haxby, Hoffman, & Gobbini, Biological Psychiatry, 51(1), 59-67, 2000) are discussed.
Muramatsu, Yukako; Tokita, Yoshihito; Mizuno, Seiji; Nakamura, Miho
2017-02-01
Williams syndrome (WS) is known for its uneven cognitive abilities, especially the difficulty in visuo-spatial cognition, though there are some inter-individual phenotypic differences. It has been proposed that the difficulty in visuo-spatial cognition of WS patients can be attributed to a haploinsufficiency of some genes located on the deleted region in 7q11.23, based on an examination of atypical deletions identified in WS patients with atypical cognitive deficits. According to this hypothesis, the inter-individual differences in visuo-spatial cognitive ability arise from variations in deletion. We investigated whether there were inter-individual differences in the visuo-spatial constructive abilities of five unrelated WS patients with the typical deletion on chromosome 7q11.23 that includes the candidate genes contributing visuo-spatial difficulty in WS patients. We used tests with three-dimensional factors such as Benton's three-dimensional block construction test, which are considered to be more sensitive than those with only two-dimensional factors. There were diverse inter-individual differences in the visuo-spatial constructive abilities among the present participants who shared the same typical genomic deletion of WS. One of the participants showed almost equivalent performances to typically developing adults in those tests. In the present study, we found a wide range of cognitive abilities in visuo-spatial construction even among the patients with a common deletion pattern of WS. The findings suggest that attributing differences in the phenotypes entirely to genetic factors such as an atypical deletion may not be always correct. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Agus, M.; Mascia, M. L.; Fastame, M. C.; Melis, V.; Pilloni, M. C.; Penna, M. P.
2015-02-01
A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment.
Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents.
Liang, J; Matheson, B E; Kaye, W H; Boutelle, K N
2014-04-01
Childhood obesity rates have risen dramatically over the past few decades. Although obesity has been linked to poorer neurocognitive functioning in adults, much less is known about this relationship in children and adolescents. Therefore, we conducted a systematic review to examine the relationship between obesity and obesity-related behaviors with neurocognitive functioning in youth. We reviewed articles from 1976 to 2013 using PsycInfo, PubMed, Medline and Google Scholar. Search terms included cognitive function, neurocognitive function/performance, executive function, impulsivity, self-regulation, effortful control, cognitive control, inhibition, delayed gratification, memory, attention, language, motor, visuo-spatial, academic achievement, obesity, overweight, body mass index, waist-hip ratio, adiposity and body fat. Articles were excluded if participants had health problems known to affect cognitive functioning, the study used imaging as the only outcome measure, they were non-peer-reviewed dissertations, theses, review papers, commentaries, or they were non-English articles. Sixty-seven studies met inclusion criteria for this review. Overall, we found data that support a negative relationship between obesity and various aspects of neurocognitive functioning, such as executive functioning, attention, visuo-spatial performance, and motor skill. The existing literature is mixed on the effects among obesity, general cognitive functioning, language, learning, memory, and academic achievement. Executive dysfunction is associated with obesity-related behaviors, such as increased intake, disinhibited eating, and less physical activity. Physical activity is positively linked with motor skill. More longitudinal research is needed to determine the directionality of such relationships, to point towards crucial intervention time periods in the development of children, and to inform effective treatment programs.
Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents
Liang, J.; Matheson, BE.; Kaye, WH.; Boutelle, KN.
2015-01-01
Childhood obesity rates have risen dramatically over the past few decades. Although obesity has been linked to poorer neurocognitive functioning in adults, much less is known about this relationship in children and adolescents. Therefore, we conducted a systematic review to examine the relationship between obesity and obesity-related behaviors with neurocognitive functioning in youth. We reviewed articles from 1976 to 2013 using PsycInfo, PubMed, Medline and Google Scholar. Search terms included cognitive function, neurocognitive function/performance, executive function, impulsivity, self-regulation, effortful control, cognitive control, inhibition, delayed gratification, memory, attention, language, motor, visuo-spatial, academic achievement, obesity, overweight, body mass index, waist-hip ratio, adiposity and body fat. Articles were excluded if participants had health problems known to affect cognitive functioning, the study used imaging as the only outcome measure, they were non-peer-reviewed dissertations, theses, review papers, commentaries, or they were non-English articles. Sixty-seven studies met inclusion criteria for this review. Overall, we found data that support a negative relationship between obesity and various aspects of neurocognitive functioning, such as executive functioning, attention, visuo-spatial performance, and motor skill. The existing literature is mixed on the effects among obesity, general cognitive functioning, language, learning, memory, and academic achievement. Executive dysfunction is associated with obesity-related behaviors, such as increased intake, disinhibited eating, and less physical activity. Physical activity is positively linked with motor skill. More longitudinal research is needed to determine the directionality of such relationships, to point towards crucial intervention time periods in the development of children, and to inform effective treatment programs. PMID:23913029
Insensitivity of visual short-term memory to irrelevant visual information.
Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud
2002-07-01
Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.
Fundamental movement skills and balance of children with Down syndrome.
Capio, C M; Mak, T C T; Tse, M A; Masters, R S W
2018-03-01
Conclusive evidence supports the importance of fundamental movement skills (FMS) proficiency in promoting physical activity and countering obesity. In children with Down Syndrome (DS), FMS development is delayed, which has been suggested to be associated with balance deficits. This study therefore examined the relationship between FMS proficiency and balance ability in children with DS, with the aim of contributing evidence to programmes that address FMS delay. Participants consisted of 20 children with DS (7.1 ± 2.9 years old) and an age-matched control group of children with typical development (7.25 ± 2.5 years). In the first part of the study, FMS (i.e. locomotor and object control) proficiency of the children was tested using the Test of Gross Motor Development-2. Balance ability was assessed using a force platform to measure centre of pressure average velocity (AV; mm/sec), path length (mm), medio-lateral standard deviation (mm) and antero-posterior standard deviation (mm). In the second part of the study, children with DS participated in 5 weeks of FMS training. FMS proficiency and balance ability were tested post-training and compared to pre-training scores. Verbal and visuo-spatial short-term memory capacities were measured at pre-training to verify the role of working memory in skill learning. FMS proficiency was associated with centre of pressure parameters in children with DS but not in children with typical development. After controlling for age, AV was found to predict significant variance in locomotor (R 2 = 0.61, P < 0.001) and object control (R 2 = 0.69, P < 0.001) scores. FMS proficiency and mastery improved after FMS training, as did AV, path length and antero-posterior standard deviation (all P < 0.05). Verbal and visuo-spatial short-term memory did not interact with the effects of training. Children with DS who have better balance ability tend to have more proficient FMS. Skill-specific training improved not only FMS sub-skills but static balance stability as well. Working memory did not play a role in the changes caused by skills training. Future research should examine the causal relationship between balance and FMS. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Visual Predictions in the Orbitofrontal Cortex Rely on Associative Content
Chaumon, Maximilien; Kveraga, Kestutis; Barrett, Lisa Feldman; Bar, Moshe
2014-01-01
Predicting upcoming events from incomplete information is an essential brain function. The orbitofrontal cortex (OFC) plays a critical role in this process by facilitating recognition of sensory inputs via predictive feedback to sensory cortices. In the visual domain, the OFC is engaged by low spatial frequency (LSF) and magnocellular-biased inputs, but beyond this, we know little about the information content required to activate it. Is the OFC automatically engaged to analyze any LSF information for meaning? Or is it engaged only when LSF information matches preexisting memory associations? We tested these hypotheses and show that only LSF information that could be linked to memory associations engages the OFC. Specifically, LSF stimuli activated the OFC in 2 distinct medial and lateral regions only if they resembled known visual objects. More identifiable objects increased activity in the medial OFC, known for its function in affective responses. Furthermore, these objects also increased the connectivity of the lateral OFC with the ventral visual cortex, a crucial region for object identification. At the interface between sensory, memory, and affective processing, the OFC thus appears to be attuned to the associative content of visual information and to play a central role in visuo-affective prediction. PMID:23771980
Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J
2013-05-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
García-Rodríguez, Beatriz; Guillén, Carmen Casares; Barba, Rosa Jurado; io Valladolid, Gabriel Rub; Arjona, José Antonio Molina; Ellgring, Heiner
2012-02-15
There is evidence that visuo-spatial capacity can become overloaded when processing a secondary visual task (Dual Task, DT), as occurs in daily life. Hence, we investigated the influence of the visuo-spatial interference in the identification of emotional facial expressions (EFEs) in early stages of Parkinson's disease (PD). We compared the identification of 24 emotional faces that illustrate six basic emotions in, unmedicated recently diagnosed PD patients (16) and healthy adults (20), under two different conditions: a) simple EFE identification, and b) identification with a concurrent visuo-spatial task (Corsi Blocks). EFE identification by PD patients was significantly worse than that of healthy adults when combined with another visual stimulus. Published by Elsevier B.V.
Enhancing the visuo-spatial aptitude of students
NASA Astrophysics Data System (ADS)
Lord, Thomas R.
Research to date has not been able to agree whether visuo-spatial ability can be influenced through practice. Many have concluded that spatial awareness is an innate phenomena and cannot be learned. Others contend that an individual's visuo-spatial potentials are acquired through interactions with the environment. Many of these theorists believe that spatial thinking can be developed through interactive exercises devised to encourage mental image formation and manipulation. To help alleviate the confusion surrounding this question the following study was undertaken. Eighty-four college undergraduates were randomly placed into control and experimental sections. Student records were examined to assure that the groups did not differ significantly in their verbal or math proficiency and pertinent pretests were given to ascertain spatial levels. The groups were also similar on their male and female ratios. During the semester the experimental section was treated to a 30-minute interaction each week. These sessions involved spatial exercises that required the participants to mentally bisect three-dimensional geometric figures and to envision the shape of the two-dimensional surface formed by the bisection. The subjects drew their mental image of this surface on a sheet of paper. Fourteen weeks later both groups were post tested with a second comparable version of the pretest. Statistical t tests were performed on the group means to see if significant differences developed between the sections. The results indicate that statistical improvement in visuo-spatial cognition did occur for the experimental group in spatial visualization, and spatial orientation. This finding suggests that the weekly intervention sessions had a positive effect on the students' visuo-spatial awareness. These results, therefore, tend to support those researchers that claim visuo-spatial aptitude can be enhanced through teaching.
Visuo-spatialWorking Memory as a Limited Resource of Cognitive Processing
NASA Astrophysics Data System (ADS)
Zimmer, Hubert D.; Münzer, Stefan; Umla-Runge, Katja
Working memory is considered a cognitive component that mainly serves two functions. It temporarily maintains information that was either perceived but is no longer present in the environment, or that was internally generated, and it supplies a work space for transforming and manipulating elements of perception and thinking. Both functions are relevant for a successful interaction with the environment and it is therefore not surprising that WM is a central topic of research in the field of general psychology. This interest is further increased by the fact that WM is seen as a limited resource that constrains cognitive performances.
Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.
A simultaneous examination of two forms of working memory training: Evidence for near transfer only.
Minear, Meredith; Brasher, Faith; Guerrero, Claudia Brandt; Brasher, Mandy; Moore, Andrew; Sukeena, Joshua
2016-10-01
The efficacy of working-memory training is a topic of considerable debate, with some studies showing transfer to measures such as fluid intelligence while others have not. We report the results of a study designed to examine two forms of working-memory training, one using a spatial n-back and the other a verbal complex span. Thirty-one undergraduates completed 4 weeks of n-back training and 32 completed 4 weeks of verbal complex span training. We also included two active control groups. One group trained on a non-adaptive version of n-back and the other trained on a real-time strategy video game. All participants completed pre- and post-training measures of a large battery of transfer tasks used to create composite measures of short-term and working memory in both verbal and visuo-spatial domains as well as verbal reasoning and fluid intelligence. We only found clear evidence for near transfer from the spatial n-back training to new forms of n-back, and this was the case for both adaptive and non-adaptive n-back.
Simone, Marta; Viterbo, Rosa Gemma; Margari, Lucia; Iaffaldano, Pietro
2018-06-08
The treatment of cognitive deficits is challenging in pediatric onset multiple sclerosis (POMS) and in patients with attention deficit hyperactivity disorder (ADHD). We performed a pilot double-blind RCT to evaluate the efficacy of a home-based computerized-program for retraining attention in two cohorts of POMS and ADHD patients. POMS and ADHD patients failing in at least 2/4 attention tests on a neuropsychological battery were randomized to specific or nonspecific computerized training (ST, nST), performed in one-hour sessions, twice/week for 3 months. The primary outcome was the effect of the training on global neuropsychological performances measured by the cognitive impairment index (CII). The efficacy of the intervention was evaluated in each disease group by using repeated measures ANOVA. Sixteen POMS (9 females, age 15.75 ± 1.74 years) and 20 ADHD (2 females, age 11.19 ± 2.49 years) patients were enrolled. In POMS patients the ST exposure was associated to a significantly more pronounced improvement of the CII (p < 0.0001) and on cognitive test exploring attention, concentration, planning strategies and visuo-spatial memory performances in comparison to nST exposure. In ADHD patients the difference between the ST and nST on the CII was not statistical significant (p = 0.06), but a greater effect of the ST was found only on cognitive test exploring attention and delayed recall of visuo-spatial memory performances. Our data suggest that a cognitive rehabilitation program that targets attention is a suitable tool for improving global cognitive functioning in POMS patients, whereas it has a less pronounced transfer effect in ADHD patients. ClinicalTrials.gov; NCT03190902 ; registration date: June 15, 2017; retrospectively registered.
Face processing in chronic alcoholism: a specific deficit for emotional features.
Maurage, P; Campanella, S; Philippot, P; Martin, S; de Timary, P
2008-04-01
It is well established that chronic alcoholism is associated with a deficit in the decoding of emotional facial expression (EFE). Nevertheless, it is still unclear whether this deficit is specifically for emotions or due to a more general impairment in visual or facial processing. This study was designed to clarify this issue using multiple control tasks and the subtraction method. Eighteen patients suffering from chronic alcoholism and 18 matched healthy control subjects were asked to perform several tasks evaluating (1) Basic visuo-spatial and facial identity processing; (2) Simple reaction times; (3) Complex facial features identification (namely age, emotion, gender, and race). Accuracy and reaction times were recorded. Alcoholic patients had a preserved performance for visuo-spatial and facial identity processing, but their performance was impaired for visuo-motor abilities and for the detection of complex facial aspects. More importantly, the subtraction method showed that alcoholism is associated with a specific EFE decoding deficit, still present when visuo-motor slowing down is controlled for. These results offer a post hoc confirmation of earlier data showing an EFE decoding deficit in alcoholism by strongly suggesting a specificity of this deficit for emotions. This may have implications for clinical situations, where emotional impairments are frequently observed among alcoholic subjects.
Short term memory for single surface features and bindings in ageing: A replication study.
Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo
2015-06-01
In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Lack of Awareness for Spatial and Verbal Constructive Apraxia
ERIC Educational Resources Information Center
Rinaldi, Maria Cristina; Piras, Federica; Pizzamiglio, Luigi
2010-01-01
It is still a matter of debate whether constructive apraxia (CA) should be considered a form of apraxia or, rather, the motor expression of a more pervasive impairment in visuo-spatial processing. Constructive disorders were linked to visuo-spatial disorders and to deficits in appreciating spatial relations among component sub-parts or problems in…
Cue generation and memory construction in direct and generative autobiographical memory retrieval.
Harris, Celia B; O'Connor, Akira R; Sutton, John
2015-05-01
Theories of autobiographical memory emphasise effortful, generative search processes in memory retrieval. However recent research suggests that memories are often retrieved directly, without effortful search. We investigated whether direct and generative retrieval differed in the characteristics of memories recalled, or only in terms of retrieval latency. Participants recalled autobiographical memories in response to cue words. For each memory, they reported whether it was retrieved directly or generatively, rated its visuo-spatial perspective, and judged its accompanying recollective experience. Our results indicated that direct retrieval was commonly reported and was faster than generative retrieval, replicating recent findings. The characteristics of directly retrieved memories differed from generatively retrieved memories: directly retrieved memories had higher field perspective ratings and lower observer perspective ratings. However, retrieval mode did not influence recollective experience. We discuss our findings in terms of cue generation and content construction, and the implication for reconstructive models of autobiographical memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Santos-Filho, Carlos; de Lima, Camila M; Fôro, César A R; de Oliveira, Marcus A; Magalhães, Nara G M; Guerreiro-Diniz, Cristovam; Diniz, Daniel G; Vasconcelos, Pedro F da C; Diniz, Cristovam W P
2014-11-01
We investigated whether the morphology of microglia in the molecular layer of the dentate gyrus (DG-Mol) or in the lacunosum molecular layer of CA1 (CA1-LMol) was correlated with spatial learning and memory in the capuchin monkey (Cebus apella). Learning and memory was tested in 4 monkeys with visuo-spatial, paired associated learning (PAL) tasks from the Cambridge battery of neuropsychological tests. After testing, monkeys were sacrificed, and hippocampi were sectioned. We specifically immunolabeled microglia with an antibody against the adapter binding, ionized calcium protein. Microglia were selected from the middle and outer thirds of the DG-Mol (n=268) and the CA1-LMol (n=185) for three-dimensional reconstructions created with Neurolucida and Neuroexplorer software. Cluster and discriminant analyses, based on microglial morphometric parameters, identified two major morphological microglia phenotypes (types I and II) found in both the CA1-LMol and DG-Mol of all individuals. Compared to type II, type I microglia were significantly smaller, thinner, more tortuous and ramified, and less complex (lower fractal dimensions). PAL performance was both linearly and non-linearly correlated with type I microglial morphological features from the rostral and caudal DG-Mol, but not with microglia from the CA1-LMol. These differences in microglial morphology and correlations with PAL performance were consistent with previous proposals of hippocampal regional contributions for spatial learning and memory. Our results suggested that at least two morphological microglial phenotypes provided distinct physiological roles to learning-associated activity in the rostral and caudal DG-Mol of the monkey brain. Copyright © 2014 Elsevier B.V. All rights reserved.
Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701
Profile of Executive and Memory Function Associated with Amphetamine and Opiate Dependence
Ersche, Karen D; Clark, Luke; London, Mervyn; Robbins, Trevor W; Sahakian, Barbara J
2007-01-01
Cognitive function was assessed in chronic drug users on neurocognitive measures of executive and memory function. Current amphetamine users were contrasted with current opiate users, and these two groups were compared with former users of these substances (abstinent for at least one year). Four groups of participants were recruited: amphetamine-dependent individuals, opiate-dependent individuals, former users of amphetamines, and/or opiates and healthy non-drug taking controls. Participants were administered the Tower of London (TOL) planning task and the 3D-IDED attentional set-shifting task to assess executive function, and Paired Associates Learning and Delayed Pattern Recognition Memory tasks to assess visual memory function. The three groups of substance users showed significant impairments on TOL planning, Pattern Recognition Memory and Paired Associates Learning. Current amphetamine users displayed a greater degree of impairment than current opiate users. Consistent with previous research showing that healthy men are performing better on visuo-spatial tests than women, our male controls remembered significantly more paired associates than their female counterparts. This relationship was reversed in drug users. While performance of female drug users was normal, male drug users showed significant impairment compared to both their female counterparts and male controls. There was no difference in performance between current and former drug users. Neither years of drug abuse nor years of drug abstinence were associated with performance. Chronic drug users display pronounced neuropsychological impairment in the domains of executive and memory function. Impairment persists after several years of drug abstinence and may reflect neuropathology in frontal and temporal cortices. PMID:16160707
From Resource-Adaptive Navigation Assistance to Augmented Cognition
NASA Astrophysics Data System (ADS)
Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg
In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.
Daza, María Teresa; Phillips-Silver, Jessica; Ruiz-Cuadra, María del Mar; López-López, Francisco
2014-12-01
The main aim of this study was to examine the relationship between language skills (vocabulary knowledge and phonological awareness), nonverbal cognitive processes (attention, memory and executive functions) and reading comprehension in deaf children. Participants were thirty prelingually deaf children (10.7 ± 1.6 years old; 18 boys, 12 girls), who were classified as either good readers or poor readers by their scores on two reading comprehension tasks. The children were administered a rhyme judgment task and seven computerized neuropsychological tasks specifically designed and adapted for deaf children to evaluate vocabulary knowledge, attention, memory and executive functions in deaf children. A correlational approach was also used to assess the association between variables. Although the two groups did not show differences in phonological awareness, good readers showed better vocabulary and performed significantly better than poor readers on attention, memory and executive functions measures. Significant correlations were found between better scores in reading comprehension and better scores on tasks of vocabulary and non-verbal cognitive processes. The results suggest that in deaf children, vocabulary knowledge and nonverbal cognitive processes such as selective attention, visuo-spatial memory, abstract reasoning and sequential processing may be especially relevant for the development of reading comprehension. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Cross-Modal Perspective on the Relationships between Imagery and Working Memory
Likova, Lora T.
2013-01-01
Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial “sketchpad” for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic “projection screen” of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the “top-down” signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire extrastriate cortex, thus ’cutting-off’ any signal propagation from/to V1 through the visual hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of WM and imagery and the nature of internal representations are evaluated. PMID:23346061
Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C
2017-03-01
Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Association of Chronic Subjective Tinnitus with Neuro- Cognitive Performance.
Gudwani, Sunita; Munjal, Sanjay K; Panda, Naresh K; Kohli, Adarsh
2017-12-01
Chronic subjective tinnitus is associated with cognitive disruptions affecting perception, thinking, language, reasoning, problem solving, memory, visual tasks (reading) and attention. To evaluate existence of any association between tinnitus parameters and neuropsychological performance to explain cognitive processing. Study design was prospective, consisting 25 patients with idiopathic chronic subjective tinnitus and gave informed consent before planning their treatment. Neuropsychological profile included (i) performance on verbal information, comprehension, arithmetic and digit span; (ii) non-verbal performance for visual pattern completion analogies; (iii) memory performance for long-term, recent, delayed-recall, immediate-recall, verbal-retention, visualretention, visual recognition; (iv) reception, interpretation and execution for visual motor gestalt. Correlation between tinnitus onset duration/ loudness perception with neuropsychological profile was assessed by calculating Spearman's coefficient. Findings suggest that tinnitus may interfere with cognitive processing especially performance on digit span, verbal comprehension, mental balance, attention & concentration, immediate recall, visual recognition and visual-motor gestalt subtests. Negative correlation between neurocognitive tasks with tinnitus loudness and onset duration indicated their association. Positive correlation between tinnitus and visual-motor gestalt performance indicated the brain dysfunction. Tinnitus association with non-auditory processing of verbal, visual and visuo-spatial information suggested neuroplastic changes that need to be targeted in cognitive rehabilitation.
[Short term memory and severe language disorders in the child].
Gras-Vincendon, A; Belion, M; Abecassis, J; Bursztejn, C
1994-10-01
Memory, and particularly short-term memory or "working memory" (Baddeley), is involved in language acquisition in children. We have studied short-term memory, with verbal-and non verbal tests, of 8 children suffering from developmental dysphasia compared with other ones, matched in terms of age and performance I.Q. (W.I.S.C.-R.). The digit span did not significantly differ in the two groups, while the visuo-spatial span was lower in the dysphasic group. The memorization of a list of monosyllabic words by dysphasic children was poor in the absence of visual presentation and improved by it. Differences between dysphasic and control-children are unlikely to be due to speech rate which does not significantly differ from one group to the other one. The results suggest the existence, in language disordered children, of cognitive functions disorders much more important than those directly involved in the speech production.
Symbol-string sensitivity and children's reading.
Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L
2004-06-01
In this study of primary school children, a novel 'symbol-string' task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover, developmental dyslexic readers show reduced sensitivity in this task, compared to chronological age controls. The results suggest that limitations set by visuo-spatial processes and/or attentional iconic memory resources may constrain children's reading accuracy.
Dynamic functional brain networks involved in simple visual discrimination learning.
Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis
2014-10-01
Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ness, Daniel; Farenga, Stephen J.
2016-01-01
The authors consider the strengths and weaknesses of three different visuo-spatial constructive play object (VCPO) types--blocks, bricks, and planks--and their impact on the development of creativity in spatial thinking and higher learning during free play. Each VCPO has its own set of attributes, they note, leading to different purposes,…
Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro
2005-07-06
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.
von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter
2014-10-01
Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.
Gathercole, Susan E; Briscoe, Josie; Thorn, Annabel; Tiffany, Claire
2008-03-01
Possible links between phonological short-term memory and both longer term memory and learning in 8-year-old children were investigated in this study. Performance on a range of tests of long-term memory and learning was compared for a group of 16 children with poor phonological short-term memory skills and a comparison group of children of the same age with matched nonverbal reasoning abilities but memory scores in the average range. The low-phonological-memory group were impaired on longer term memory and learning tasks that taxed memory for arbitrary verbal material such as names and nonwords. However, the two groups performed at comparable levels on tasks requiring the retention of visuo-spatial information and of meaningful material and at carrying out prospective memory tasks in which the children were asked to carry out actions at a future point in time. The results are consistent with the view that poor short-term memory function impairs the longer-term retention and ease of learning of novel verbal material.
Danielsson, Henrik; Zottarel, Valentina; Palmqvist, Lisa; Lanfranchi, Silvia
2015-01-01
Working memory (WM) training has been increasingly popular in the last years. Previous studies have shown that individuals with intellectual disabilities (ID) have low WM capacity and therefore would benefit by this type of intervention. The aim of this study was to investigate the effect of WM and cognitive training for individuals with ID. The effects reported in previous studies have varied and therefore a meta-analysis of articles in the major databases was conducted. Inclusion criteria included to have a pretest-posttest design with a training group and a control group and to have measures of WM or short-term memory. Ten studies with 28 comparisons were included. The results reveal a significant, but small, overall pretest-posttest effect size (ES) for WM training for individuals with ID compared to controls. A mixed WM approach, including both verbal and visuo-spatial components working mainly on strategies, was the only significant training type with a medium ES. The most commonly reported training type, visuo-spatial WM training, was performed in 60 percent of the included comparisons and had a non-significant ES close to zero. We conclude that even if there is an overall effect of WM training, a mixed WM approach appears to cause this effect. Given the few studies included and the different characteristics of the included studies, interpretations should be done with caution. However, different types of interventions appear to have different effects. Even if the results were promising, more studies are needed to better understand how to design an effective WM intervention for this group and to understand if, and how, these short-term effects remain over time and transfer to everyday activities.
Danielsson, Henrik; Zottarel, Valentina; Palmqvist, Lisa; Lanfranchi, Silvia
2015-01-01
Working memory (WM) training has been increasingly popular in the last years. Previous studies have shown that individuals with intellectual disabilities (ID) have low WM capacity and therefore would benefit by this type of intervention. The aim of this study was to investigate the effect of WM and cognitive training for individuals with ID. The effects reported in previous studies have varied and therefore a meta-analysis of articles in the major databases was conducted. Inclusion criteria included to have a pretest–posttest design with a training group and a control group and to have measures of WM or short-term memory. Ten studies with 28 comparisons were included. The results reveal a significant, but small, overall pretest–posttest effect size (ES) for WM training for individuals with ID compared to controls. A mixed WM approach, including both verbal and visuo-spatial components working mainly on strategies, was the only significant training type with a medium ES. The most commonly reported training type, visuo-spatial WM training, was performed in 60 percent of the included comparisons and had a non-significant ES close to zero. We conclude that even if there is an overall effect of WM training, a mixed WM approach appears to cause this effect. Given the few studies included and the different characteristics of the included studies, interpretations should be done with caution. However, different types of interventions appear to have different effects. Even if the results were promising, more studies are needed to better understand how to design an effective WM intervention for this group and to understand if, and how, these short-term effects remain over time and transfer to everyday activities. PMID:26347692
Bugden, Stephanie; Ansari, Daniel
2016-09-01
In the present study we examined whether children with Developmental Dyscalculia (DD) exhibit a deficit in the so-called 'Approximate Number System' (ANS). To do so, we examined a group of elementary school children who demonstrated persistent low math achievement over 4 years and compared them to typically developing (TD), aged-matched controls. The integrity of the ANS was measured using the Panamath (www.panamath.org) non-symbolic numerical discrimination test. Children with DD demonstrated imprecise ANS acuity indexed by larger Weber fraction (w) compared to TD controls. Given recent findings showing that non-symbolic numerical discrimination is affected by visual parameters, we went further and investigated whether children performed differently on trials on which number of dots and their overall area were either congruent or incongruent with each other. This analysis revealed that differences in w were only found between DD and TD children on the incongruent trials. In addition, visuo-spatial working memory strongly predicts individual differences in ANS acuity (w) during the incongruent trials. Thus the purported ANS deficit in DD can be explained by a difficulty in extracting number from an array of dots when area is anti-correlated with number. These data highlight the role of visuo-spatial working memory during the extraction process, and demonstrate that close attention needs to be paid to perceptual processes invoked by tasks thought to represent measures of the ANS. © 2015 John Wiley & Sons Ltd.
Kokubo, Naomi; Inagaki, Masumi; Gunji, Atsuko; Kobayashi, Tomoka; Ohta, Hidenobu; Kajimoto, Osami; Kaga, Makiko
2012-11-01
The present study aimed to investigate the developmental change in Visuo-Spatial Working Memory (VSWM) in typically developed children using a specially designed Advanced Trail Making Test for children (ATMT-C). We developed a new method for evaluating VSWM efficiency in children using a modified version ATMT to suit their shorter sustained attention. The ATMT-C consists of two parts; a number-based ATMT and a hiragana (Japanese phonogram)-based ATMT, both employing symbols familiar to young children. A total of 94 healthy participants (6-28 years of age) were enrolled in this study. A non-linear developmental change of VSWM efficiency was observed in the results from the ATMT-C. In the number-based ATMT, children under 8 years of age showed a relatively rapid increase in VSWM efficiency while older children (9-12 years) had a more gradual increase in VSWM efficiency. Results from the hiragana-based ATMT-C showed a slightly delayed increase pattern in VSWM efficiency compared to the pattern from the number-based ATMT. There were no significant differences in VSWM efficiency for gender, handedness and test order. VSWM in children gradually matures in a non steady-state manner and there is an important stage for VSWM maturation before reaching 12 years of age. VSWM efficiency may also vary depending on developmental condition of its cognitive subsystems. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Mental additions and verbal-domain interference in children with developmental dyscalculia.
Mammarella, Irene C; Caviola, Sara; Cornoldi, Cesare; Lucangeli, Daniela
2013-09-01
This study examined the involvement of verbal and visuo-spatial domains in solving addition problems with carrying in a sample of children diagnosed with developmental dyscalculia (DD) divided into two groups: (i) those with DD alone and (ii) those with DD and dyslexia. Age and stage matched typically developing (TD) children were also studied. The addition problems were presented horizontally or vertically and associated with verbal or visuo-spatial information. Study results showed that DD children's performance on mental calculation tasks was more impaired when they tackled horizontally presented addition problems compared to vertically presented ones that are associated to verbal domain involvement. The performance pattern in the two DD groups was found to be similar. The theoretical, clinical and educational implications of these findings are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dahlgren, Camilla Lindvall; Lask, Bryan; Landrø, Nils Inge; Rø, Øyvind
2013-09-01
To investigate neuropsychological functioning in adolescents with anorexia nervosa (AN) before and after receiving cognitive remediation therapy (CRT). Twenty young females with AN participated in an individually-delivered CRT treatment program. Neuropsychological and psychiatric assessments were administered before and after treatment. Weight, depression, anxiety, duration of illness, and level of eating disorder psychopathology were considered as covariates in statistical analyses. Significant changes in weight, depression, visio-spatial memory, perceptual disembedding abilities, and verbal fluency were observed. Changes in weight had a significant effect on improvements in visuo-spatial memory and verbal fluency. Results also revealed a significant effect of depressive symptoms on perceptual disembedding abilities. The results suggest improvements on a number of neuropsychological functions during the course of CRT. Future studies should explore the use of additional assessment instruments, and include control groups to assess the effectiveness of the intervention. Copyright © 2013 Wiley Periodicals, Inc.
Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1
Dierssen, Mara; Arqué, Gloria; McDonald, Jerome; Andreu, Nuria; Martínez-Cué, Carmen; Flórez, Jesús; Fillat, Cristina
2011-01-01
DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term. PMID:21364922
Association between Abacus Training and Improvement in Response Inhibition: A Case-control Study
Na, Kyoung-Sae; Lee, Soyoung Irene; Park, Jun-Ho; Jung, Han-Yong; Ryu, Jung-Hee
2015-01-01
Objective The abacus, first used in Asian countries more than 800 years ago, enables efficient arithmetic calculation via visuo-spatial configuration. We investigated whether abacus-trained children performed better on cognitive tasks and demonstrated higher levels of arithmetic abilities compared to those without such training. Methods We recruited 75 elementary school children (43 abacus-trained and 32 not so trained). Attention, memory, and arithmetic abilities were measured, and we compared the abacus with the control group. Results Children who had learned to use an abacus committed fewer commission errors and showed better arithmetic ability than did controls. We found no significant differences between children with and without abacus training in other areas of attention. Conclusion We speculate that abacus training improves response inhibition via neuroanatomical alterations of the areas that regulate such functions. Further studies are needed to confirm the association between abacus training and better response inhibition. PMID:26243843
Lamm, Claus; Fischmeister, Florian Ph S; Bauer, Herbert
2005-12-01
Using slow-cortical potentials (SCPs), Vitouch et al. demonstrated that subjects with low ability to solve a complex visuo-spatial imagery task show higher activity in occipital, parietal and frontal cortex during task processing than subjects with high ability. This finding has been interpreted in the sense of the so-called "neural efficiency" hypothesis, which assumes that the central nervous system of individuals with higher intellectual abilities is functioning in a more efficient way than the one of individuals with lower abilities. Using a higher spatial resolution of SCP recordings, and by employing the source localization method of LORETA (low-resolution electromagnetic tomography), we investigated this hypothesis by performing an extended replication of Vitouch et al.'s study. SCPs during processing of a visuo-spatial imagery task were recorded in pre-selected subjects with either high or low abilities in solving the imagery task. Topographic and LORETA analyses of SCPs revealed that a distributed network of extrastriate occipital, superior parietal, temporal, medial frontal and prefrontal areas was active during task solving. This network is well in line with former studies of the functional neuroanatomy of visuo-spatial imagery. Contrary to our expectations, however, the results of Vitouch et al. as well as of other studies supporting the neural efficiency hypothesis could not be confirmed since no difference in brain activity between groups was observed. This inconsistency between studies might be due to differing task processing strategies. While subjects with high abilities in the Vitouch et al. study seemed to use a visuo-perceptual task solving approach, all other subjects relied upon a visuo-motor task processing strategy.
Evidence for modality-independent order coding in working memory.
Depoorter, Ann; Vandierendonck, André
2009-03-01
The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.
Protopapa, Foteini; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2014-01-01
We employed spectral Granger causality analysis on a full set of 56 electroencephalographic recordings acquired during the execution of either a 2D movement pointing or a perceptual (yes/no) change detection task with memory and non-memory conditions. On the basis of network characteristics across frequency bands, we provide evidence for the full dissociation of the corresponding cognitive processes. Movement-memory trial types exhibited higher degree nodes during the first 2 s of the delay period, mainly at central, left frontal and right-parietal areas. Change detection-memory trial types resulted in a three-peak temporal pattern of the total degree with higher degree nodes emerging mainly at central, right frontal, and occipital areas. Functional connectivity networks resulting from non-memory trial types were characterized by more sparse structures for both tasks. The movement-memory trial types encompassed an apparent coarse flow from frontal to parietal areas while the opposite flow from occipital, parietal to central and frontal areas was evident for the change detection-memory trial types. The differences among tasks and conditions were more profound in α (8-12 Hz) and β (12-30 Hz) and less in γ (30-45 Hz) band. Our results favor the hypothesis which considers spatial working memory as a by-product of specific mental processes that engages common brain areas under different network organizations.
The Effect of Verbal and Visuo-Spatial Abilities on the Development of Knowledge of the Earth
NASA Astrophysics Data System (ADS)
Kikas, Eve
2006-09-01
Difficulties in students’ understanding of the spherical model of the Earth have been shown in previous studies. One of the reasons for these difficulties lies in beliefs and preliminary knowledge that hinder the interpretation of the scientific knowledge, the other reason may lie in the low level of verbal and visuo-spatial abilities. The study aims to investigate the effect of verbal and visuo-spatial abilities, but also that of preliminary knowledge on the later development of the knowledge of the Earth in school. 176 schoolchildren (96 boys and 80 girls) from five schools were tested; the mean age of the children during the first interview was seven years and eight months. All students were interviewed twice in grades 1 and 2, before and after they had learnt the topic in school. Factual, scientific and synthetic knowledge was assessed. The facilitative effect of visuo-spatial and verbal abilities and preliminary factual and scientific knowledge on students’ knowledge of astronomy after having learnt the topic in school was shown. In contrast, the hindering effect of synthetic knowledge was not found.
NASA Astrophysics Data System (ADS)
Agus, M.; Mascia, M. L.; Fastame, M. C.; Napoleone, V.; Porru, A. M.; Siddu, F.; Lucangeli, D.; Penna, M. P.
2016-11-01
The aim of this study was to verify the efficacy of two pencil-and-paper trainings empowering numerical and visuo-spatial abilities in Italian five-year-old kindergarteners. Specifically, the trainings were respectively carried out by the curricular teacher or by an external trainer. The former received a specific training in order to use the psychoeducational programmes with her pupils, whereas the latter received a specific education about the role of numerical and visuo-spatial abilities for school achievement and she was also trained to use psychoeducational trainings in kindergarten schools. At pre-test and post-test nonverbal functions and numeracy knowledge were assessed through a battery of standardized tests. The results show that both the numerical psychoeducational programme and the visuo-spatial one are useful tools to enhance mathematical achievements in kindergarteners. However, when the trainings were proposed by the external trainer, the efficacy of the psychoeducational programmes was more significant. These outcomes seem to be related both to the expertise and the novelty effect of the external trainer on the classroom.
Foti, Francesca; Sdoia, Stefano; Menghini, Deny; Mandolesi, Laura; Vicari, Stefano; Ferlazzo, Fabio; Petrosini, Laura
2015-01-01
Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities. PMID:25852605
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Visuo-spatial processing in autism--testing the predictions of extreme male brain theory.
Falter, Christine M; Plaisted, Kate C; Davis, Greg
2008-03-01
It has been hypothesised that autism is an extreme version of the male brain, caused by high levels of prenatal testosterone (Baron-Cohen 1999). To test this proposal, associations were assessed between three visuo-spatial tasks and prenatal testosterone, indexed in second-to-fourth digit length ratios (2D:4D). The study included children with Autism Spectrum Disorder, ASD (N = 28), and chronological as well as mental age matched typically-developing children (N = 31). While the group with ASD outperformed the control group at Mental Rotation and Figure-Disembedding, these group differences were not related to differences in prenatal testosterone level. Previous findings of an association between Targeting and 2D:4D were replicated in typically-developing children and children with ASD. The implications of these results for the extreme male brain (EMB) theory of autism are discussed.
ERIC Educational Resources Information Center
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2015-01-01
We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children's reliance on these neural…
Visuo-Spatial Performance in Autism: A Meta-Analysis
ERIC Educational Resources Information Center
Muth, Anne; Hönekopp, Johannes; Falter, Christine M.
2014-01-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large…
Observing Fearful Faces Leads to Visuo-Spatial Perspective Taking
ERIC Educational Resources Information Center
Zwickel, Jan; Muller, Hermann J.
2010-01-01
A number of recent studies suggested that visuo-spatial perspective taking (VSPT) occurs spontaneously when viewing either a human body or an action by an agent. However, it remains unclear whether VSPT is caused by the observation of an (potential) action or occurs because the observer infers from certain cues that another mind is present…
Incidental Learning of Links during Navigation: The Role of Visuo-Spatial Capacity
ERIC Educational Resources Information Center
Rouet, Jean-Francois; Voros, Zsofia; Pleh, Csaba
2012-01-01
We investigated the impact of readers' visuo-spatial (VS) capacity on their incidental learning of page links during the exploration of simple hierarchical hypertextual documents. Forty-three university students were asked to explore a series of hypertexts for a limited period of time. Then the participants were asked to recall the layout and the…
Schöning, S; Engelien, A; Kugel, H; Schäfer, S; Schiffbauer, H; Zwitserlood, P; Pletziger, E; Beizai, P; Kersting, A; Ohrmann, P; Greb, R R; Lehmann, W; Heindel, W; Arolt, V; Konrad, C
2007-11-05
Recent observations indicate that sex and level of steroid hormones may influence cortical networks associated with specific cognitive functions, in particular visuo-spatial abilities. The present study probed the influence of sex, menstrual cycle, and sex steroid hormones on 3D mental rotation and brain function using 3-T fMRI. Twelve healthy women and 12 men were investigated. Menstrual cycle and hormone levels were assessed. The early follicular and midluteal phase of the menstrual cycle were chosen to examine short-term cyclical changes. Parietal and frontal areas were activated during mental rotation in both sexes. Significant differences between men and women were revealed in both phases of menstrual cycle. In men we observed a significant correlation of activation levels with testosterone levels in the left parietal lobe (BA 40). In women, a cycle-dependent correlation pattern was observed for testosterone: brain activation correlated with this male hormone only during the early follicular phase. In both cycle phases females' brain activation was significantly correlated with estradiol in frontal and parietal areas. Our study provides evidence that fMRI-related activity during performance of cognitive tasks varies across sex and phases of the menstrual cycle. The variation might be partly explained by better task performance in men, but our results indicate that further explanations like basic neuronal or neurovascular effects modulated by steroid hormones must be considered. Both estradiol and testosterone levels may influence fMRI signals of cognitive tasks, which should affect selection of subjects for future fMRI studies.
Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.
Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A
2016-04-01
The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gagnon, Sylvain; Bedard, Marie-Josee; Turcotte, Josee
2005-01-01
Recent findings [Turcotte, Gagnon, & Poirier, 2005. The effect of old age on the learning of supra-span sequences. "Psychology and Aging," 20, 251-260.] indicate that incidental learning of visuo-spatial supra-span sequences through immediate serial recall declines with old age (Hebb's paradigm). In this study, we examined whether…
The Effect of Verbal and Visuo-Spatial Abilities on the Development of Knowledge of the Earth
ERIC Educational Resources Information Center
Kikas, Eve
2006-01-01
Difficulties in students' understanding of the spherical model of the Earth have been shown in previous studies. One of the reasons for these difficulties lies in beliefs and preliminary knowledge that hinder the interpretation of the scientific knowledge, the other reason may lie in the low level of verbal and visuo-spatial abilities. The study…
Visuo-spatial performance in autism: a meta-analysis.
Muth, Anne; Hönekopp, Johannes; Falter, Christine M
2014-12-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for Navon tasks (d = 0.35); less clear evidence for performance differences of a similar magnitude emerged. We discuss the meta-analysis results together with other findings relating to visuo-spatial processing and three cognitive theories of ASD: Weak Central Coherence, Enhanced Perceptual Functioning and Extreme Male Brain theory.
An examination of relationship between neurological soft signs and neurocognition.
Solanki, Ram Kumar; Swami, Mukesh Kumar; Singh, Paramjeet
2012-03-01
Neurological soft signs (NSS) and cognitive function had been examined in schizophrenia, but their relationship has remained elusive for several years. We examined the relationship between NSS and cognitive functions in the present study. A cross sectional study was carried out. Subjects were drawn from first degree relatives of schizophrenia patients, admitted as inpatient or attending as an outpatient. Controls were recruited by word of mouth from hospital staff and visitors of hospitalized patients. Those subjects who satisfied the screening process were subjected to Cambridge Neurological Inventory for soft sign assessment and digit span test, paired associate learning test (PALT) and visuo-spatial working memory matrix (VSWMM) for cognitive function assessment. Correlation analysis and structural equation modeling (SEM) was used for analysis. Significant negative correlation of primitive reflexes with PALT; of motor coordination with VSWMM, working memory (WM) and cognitive index; of total NSS with WM and cognitive index among first degree relatives. SEM showed that motor soft signs have important negative influence over WM. The current findings indicate that NSS have significant negative effect on cognitive functioning. Copyright © 2011 Elsevier B.V. All rights reserved.
Dynamic feature analysis of vector-based images for neuropsychological testing
NASA Astrophysics Data System (ADS)
Smith, Stephen L.; Cervantes, Basilio R.
1998-07-01
The dynamic properties of human motor activities, such as those observed in the course of drawing simple geometric shapes, are considerably more complex and often more informative than the goal to be achieved; in this case a static line drawing. This paper demonstrates how these dynamic properties may be used to provide a means of assessing a patient's visuo-spatial ability -- an important component of neuropsychological testing. The work described here provides a quantitative assessment of visuo-spatial ability, whilst preserving the conventional test environment. Results will be presented for a clinical population of long-term haemodialysis patients and test population comprises three groups of children (1) 7-8 years, (2) 9-10 years and (3) 11-12 years, all of which have no known neurological dysfunction. Ten new dynamic measurements extracted from patient responses in conjunction with one static feature deduced from earlier work describe a patient's visuo-spatial ability in a quantitative manner with sensitivity not previously attainable. The dynamic feature measurements in isolation provide a unique means of tracking a patient's approach to motor activities and could prove useful in monitoring a child' visuo-motor development.
Majerus, Steve; Salmon, Eric; Attout, Lucie
2013-01-01
Studies of brain-behaviour interactions in the field of working memory (WM) have associated WM success with activation of a fronto-parietal network during the maintenance stage, and this mainly for visuo-spatial WM. Using an inter-individual differences approach, we demonstrate here the equal importance of neural dynamics during the encoding stage, and this in the context of verbal WM tasks which are characterized by encoding phases of long duration and sustained attentional demands. Participants encoded and maintained 5-word lists, half of them containing an unexpected word intended to disturb WM encoding and associated task-related attention processes. We observed that inter-individual differences in WM performance for lists containing disturbing stimuli were related to activation levels in a region previously associated with task-related attentional processing, the left intraparietal sulcus (IPS), and this during stimulus encoding but not maintenance; functional connectivity strength between the left IPS and lateral prefrontal cortex (PFC) further predicted WM performance. This study highlights the critical role, during WM encoding, of neural substrates involved in task-related attentional processes for predicting inter-individual differences in verbal WM performance, and, more generally, provides support for attention-based models of WM. PMID:23874935
Pillet, Benoit; Morvan, Yannick; Todd, Aurelia; Franck, Nicolas; Duboc, Chloé; Grosz, Aimé; Launay, Corinne; Demily, Caroline; Gaillard, Raphaël; Krebs, Marie-Odile; Amado, Isabelle
2015-01-01
Cognitive deficits in schizophrenia mainly affect memory, attention and executive functions. Cognitive remediation is a technique derived from neuropsychology, which aims to improve or compensate for these deficits. Working memory, verbal learning, and executive functions are crucial factors for functional outcome. Our purpose was to assess the impact of the cognitive remediation therapy (CRT) program on cognitive difficulties in patients with schizophrenia, especially on working memory, verbal memory, and cognitive flexibility. We collected data from clinical and neuropsychological assessments in 24 patients suffering from schizophrenia (Diagnostic and Statistical Manual of mental Disorders-Fourth Edition, DSM-IV) who followed a 3-month (CRT) program. Verbal and visuo-spatial working memory, verbal memory, and cognitive flexibility were assessed before and after CRT. The Wilcoxon test showed significant improvements on the backward digit span, on the visual working memory span, on verbal memory and on flexibility. Cognitive improvement was substantial when baseline performance was low, independently from clinical benefit. CRT is effective on crucial cognitive domains and provides a huge benefit for patients having low baseline performance. Such cognitive amelioration appears highly promising for improving the outcome in cognitively impaired patients.
Migliaccio, Raffaella; Agosta, Federica; Toba, Monica N; Samri, Dalila; Corlier, Fabian; de Souza, Leonardo C; Chupin, Marie; Sharman, Michael; Gorno-Tempini, Maria L; Dubois, Bruno; Filippi, Massimo; Bartolomeo, Paolo
2012-01-01
Posterior cortical atrophy (PCA) is rare neurodegenerative dementia, clinically characterized by a progressive decline in higher-visual object and space processing. After a brief review of the literature on the neuroimaging in PCA, here we present a study of the brain structural connectivity in a patient with PCA and progressive isolated visual and visuo-motor signs. Clinical and cognitive data were acquired in a 58-years-old patient (woman, right-handed, disease duration 18 months). Brain structural and diffusion tensor (DT) magnetic resonance imaging (MRI) were obtained. A voxel-based morphometry (VBM) study was performed to explore the pattern of gray matter (GM) atrophy, and a fully automatic segmentation was assessed to obtain the hippocampal volumes. DT MRI-based tractography was used to assess the integrity of long-range white matter (WM) pathways in the patient and in six sex- and age-matched healthy subjects. This PCA patient had a clinical syndrome characterized by left visual neglect, optic ataxia, and left limb apraxia, as well as mild visuo-spatial episodic memory impairment. VBM study showed bilateral posterior GM atrophy with right predominance; DT MRI tractography demonstrated WM damage to the right hemisphere only, including the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus, as compared to age-matched controls. The homologous left-hemisphere tracts were spared. No difference was found between left and right hippocampal volumes. These data suggest that selective visuo-spatial deficits typical of PCA might not result from cortical damage alone, but by a right-lateralized network-level dysfunction including WM damage along the major visual pathways. Copyright © 2011 Elsevier Srl. All rights reserved.
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-01-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-hr ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-hr ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from ~11 trials/pair on the 24-hr ITI task to ~5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert. PMID:20144631
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-07-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-h ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-h ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from approximately 11 trials/pair on the 24-h ITI task to approximately 5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert.
Galvanic vestibular stimulation speeds visual memory recall.
Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William
2008-08-01
The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.
The contribution of general cognitive abilities and approximate number system to early mathematics.
Passolunghi, Maria Chiara; Cargnelutti, Elisa; Pastore, Massimiliano
2014-12-01
Math learning is a complex process that entails a wide range of cognitive abilities to be fulfilled. There is sufficient evidence that both general and specific cognitive skills assume a fundamental role, despite the absence of shared consensus about the relative extent of their involvement. Moreover, regarding general abilities, there is no agreement about the recruitment of the different memory components or of intelligence. In relation to specific factors, great debate subsists regarding the role of the approximate number system (ANS). Starting from these considerations, we wanted to conduct a wide assessment of memory components and ANS, by controlling for the effects associated with intelligence and also exploring possible relationships between all precursors. To achieve this purpose, a sample of 157 children was tested at both beginning and end of their Grade 1. Both general (memory and intelligence) and specific (ANS) precursors were evaluated by a wide battery of tests and put in relation to concurrent and subsequent math skills. Memory was explored in passive and active aspects involving both verbal and visuo-spatial components. Path analysis results demonstrated that memory, and especially the more active processes, and intelligence were the strongest precursors in both assessment times. ANS had a milder role which lost significance by the end of the school year. Memory and ANS seemed to influence early mathematics almost independently. Both general and specific precursors seemed to have a crucial role in early math competences, despite the lower involvement of ANS. © 2014 The British Psychological Society.
Long-term effects of cannabis on oculomotor function in humans.
Huestegge, L; Radach, R; Kunert, H J
2009-08-01
Cannabis is known to affect human cognitive and visuomotor skills directly after consumption. Some studies even point to rather long-lasting effects, especially after chronic tetrahydrocannabinol (THC) abuse. However, it is still unknown whether long-term effects on basic visual and oculomotor processing may exist. In the present study, the performance of 20 healthy long-term cannabis users without acute THC intoxication and 20 control subjects were examined in four basic visuomotor paradigms to search for specific long-term impairments. Subjects were asked to perform: 1) reflexive saccades to visual targets (prosaccades), including gap and overlap conditions, 2) voluntary antisaccades, 3) memory-guided saccades and 4) double-step saccades. Spatial and temporal parameters of the saccades were subsequently analysed. THC subjects exhibited a significant increase of latency in the prosaccade and antisaccade tasks, as well as prolonged saccade amplitudes in the antisaccade and memory-guided task, compared with the control subjects. The results point to substantial and specific long-term deficits in basic temporal processing of saccades and impaired visuo-spatial working memory. We suggest that these impairments are a major contributor to degraded performance of chronic users in a vital everyday task like visual search, and they might potentially also affect spatial navigation and reading.
Gender differences in navigational memory: pilots vs. nonpilots.
Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico
2015-02-01
The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.
ERIC Educational Resources Information Center
Wang, Li-Chih; Yang, Hsien-Ming
2011-01-01
This study focused on a comparison of the visuo-spatial abilities (correct rate and speed) between dyslexic and normal students in Taiwan and Hong Kong. There were a total of 120 10-12 year old students. Thirty students had been diagnosed as dyslexic in Taiwan (T.W. dyslexia) and thirty students had been diagnosed as dyslexic in Hong Kong (H.K.…
McClusky, D A; Ritter, E M; Lederman, A B; Gallagher, A G; Smith, C D
2005-01-01
Given the dynamic nature of modern surgical education, determining factors that may improve the efficiency of laparoscopic training is warranted. The objective of this study was to analyze whether perceptual, visuo-spatial, or psychomotor aptitude are related to the amount of training required to reach specific performance-based goals on a virtual reality surgical simulator. Sixteen MS4 medical students participated in an elective skills course intended to train laparoscopic skills. All were tested for perceptual, visuo-spatial, and psychomotor aptitude using previously validated psychological tests. Training involved as many instructor-guided 1-hour sessions as needed to reach performance goals on a custom designed MIST-VR manipulation-diathermy task (Mentice AB, Gothenberg, Sweden). Thirteen subjects reached performance goals by the end of the course. Two were excluded from analysis due to previous experience with the MIST-VR (total n = 11). Perceptual ability (r = -0.76, P = 0.007) and psychomotor skills (r = 0.62, P = 0.04) significantly correlated with the number of trials required. Visuo-spatial ability did not significantly correlate with training duration. The number of trials required to train subjects to performance goals on the MIST-VR manipulation diathermy task is significantly related to perceptual and psychomotor aptitude.
A look at spatial abilities in undergraduate women science majors
NASA Astrophysics Data System (ADS)
Lord, Thomas R.
Contemporary investigations indicate that men generally perform significantly better in tasks involving visuo-spatial awareness than do women. Researchers have attempted to explain this difference through several hypotheses but as yet the reason for the dimorphism has not been established. Further, contemporary studies have indicated that enhancement of mental image formation and manipulation is possible when students are subjected to carefully designed spatial interventions. Present research was conducted to see if women in the sciences were as spatial perceptively accurate as their male counterparts. The researcher also was interested to find if the women that received the intervention excercises improved in their visuo-spatial awareness as rapidly as their male counterparts.The study was conducted on science majors at a suburban two year college. The population was randomly divided into groups (experimental, placebo, and control) each containing approximately the same number of men and women. All groups were given a battery of spatial perception tests (Ekstrom et al, 1976) at the onset of the winter semester and a second version of the battery at the conclusion of the semester. An analysis of variance followed by Scheffe contrasts were run on the results. The statistics revealed that the experimental group significantly outperformed the nonexperimental groups on the tests. When the differences between the mean scores for the women in the experimental group were statistically compared to those of the men in the experimental group the women were improving at a more rapid rate. Many women have the capacity to develop visuo-spatial aptitude and although they may start out behind men in spatial ability, they learn quickly and often catch up to the men's level when given meaningful visuo-spatial interventions.
Maschio, Marta; Dinapoli, Loredana; Fabi, Alessandra; Giannarelli, Diana; Cantelmi, Tonino
2015-11-01
The aim of this pilot observational study was to evaluate effect of cognitive rehabilitation training (RehabTr) on cognitive performances in patients with brain tumor-related epilepsy (BTRE) and cognitive disturbances. Medical inclusion criteria: patients (M/F) ≥ 18 years ≤ 75 with symptomatic seizures due to primary brain tumors or brain metastases in stable treatment with antiepileptic drugs; previous surgical resection or biopsy; >70 Karnofsky Performance Status; stable oncological disease. Eligible patients recruited from 100 consecutive patients with BTRE at first visit to our Center from 2011 to 2012. All recruited patients were administered battery of neuropsychological tests exploring various cognitive domains. Patients considered to have a neuropsychological deficit were those with at least one test score for a given domain indicative of impairment. Thirty patients out of 100 showed cognitive deficits, and were offered participation in RehabTr, of which 16 accepted (5 low grade glioma, 4 high grade glioma, 2 glioblastoma, 2 meningioma and 3 metastases) and 14 declined for various reasons. The RehabTr consisted of one weekly individual session of 1 h, for a total of 10 weeks, carried out by a trained psychologist. The functions trained were: memory, attention, visuo-spatial functions, language and reasoning by means of Training NeuroPsicologico (TNP(®)) software. To evaluate the effect of the RehabTr, the same battery of tests was administered directly after cognitive rehabilitation (T1), and at six-month follow-up (T2). Statistical analysis with Student T test for paired data showed that short-term verbal memory, episodic memory, fluency and long term visuo-spatial memory improved immediately after the T1 and remained stable at T2. At final follow-up all patients showed an improvement in at least one domain that had been lower than normal at baseline. Our results demonstrated a positive effect of rehabilitative training at different times, and, for these reasons, should encourage future research in this area with large, randomized clinical trials that evaluate the impact of a cognitive rehabilitation in patients with BTRE and cognitive deficits.
Computerized visuo-spatial memory test as a supplementary screening test for dementia.
Maki, Yohko; Yoshida, Hiroshi; Yamaguchi, Haruyasu
2010-06-01
To prepare for a super-aging society, effective dementia screening tests are required. The most salient deficit appearing from the early stages of dementia/Alzheimer's disease (AD) is a deterioration in memory. The Hasegawa Dementia Scale-revised (HDS-R) and the Mini-Mental State Examination (MMSE) are widely used in Japan to screen for dementia. Both place an emphasis on memory function, but neither examines visuo-spatial memory (VSM) function, even though VSM deficits are a sensitive marker for the detection of conversion to dementia. Furthermore, brief tests of VSM that are appropriate for screening have not been standardized. Thus, in the present study, we devised a brief, computer-aided short-term VSM test. Sixty-six aged people were evaluated. Using the Clinical Dementia Rating (CDR), it was found that 29 could be considered normal controls (NC; CDR 0), 10 had mild cognitive impairment (MCI; CDR 0.5), 15 had mild dementia (CDR 1), and 12 had moderate to severe dementia (CDR 2-3). The VSM test estimated how many locations each subject could memorize. Several numbered circles were shown on a monitor and subjects were required to memorize the location of these circles sequentially. After the numbers on the circles on the screen had disappeared, the subjects were required to indicate the circles in ascending order. A touch panel screen was used for this test to make it easier. The HDS-R was applied to subjects with MCI and dementia. The mean (+/-SD) VSM score in subjects with MCI (5.70 +/- 0.96) was significantly lower than that in NC subjects (6.69 +/- 0.82), but significantly higher than that in subjects classified as CDR 1 (4.67 +/- 0.87). There was no significant difference in VSM scores between subjects classified as CDR 1 and CDR 2-3 (3.80 +/- 0.80). There was a moderate significant correlation between VSM and HDS-R scores. In the present study, the VSM test detected differences in VSM function among NC subjects and subjects with MCI and mild dementia. The software program for the VSM test is distributed for free so that it can be widely used.
Neuropsychology of selective attention and magnetic cortical stimulation.
Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V
1996-01-01
Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.
Colomer-Diago, Carla; Miranda-Casas, Ana; Herdoiza-Arroyo, Paulina; Presentación-Herrero, M Jesús
2012-02-29
The identification of possible factors that are influencing the course of attention-deficit hyperactivity disorder (ADHD) will allow the development of more effective early intervention strategies. AIMS. This research, which used a longitudinal and correlational design, set out to examine the temporal consistency of the primary symptoms and ADHD associated problems. In addition, the relationships and predictive power of working memory, inhibition and stressful characteristics of children with ADHD on the disorder symptoms and behavioral problems in adolescence was analyzed. This study included 65 families with children diagnosed with ADHD. In phase 1 children performed verbal working memory, visuo-spatial and inhibition tests, and information from parents about stressful characteristics of children was collected. In phase 1 and in the follow-up phase, which took place three years later, parents and teachers reported on the primary symptoms of ADHD and behavioral problems. Inattention symptoms as well as most behavioral problems were stable over time, while hyperactivity/impulsivity symptoms decreased. Moreover, neither working memory nor inhibition showed power to predict the central manifestations of ADHD or behavioral problems, while stressful characteristics of demandingness, low adaptability and negative mood had a moderate predictive capacity. These results confirm the role of stressful child characteristics as a risk factor in the course of ADHD.
Yoshino, Yuta; Mori, Takaaki; Yoshida, Taku; Toyota, Yasutaka; Shimizu, Hideaki; Iga, Jun-ichi; Nishitani, Shusaku; Ueno, Shu-ichi
2017-01-01
Objective Donepezil is used to improve cognitive impairment of dementia with Lewy bodies (DLB). Visuo-spatial dysfunction is a well-known symptom of DLB. Non-verbal Raven’s Colored Progressive Matrices (RCPM) were used to assess both visual perception and reasoning ability in DLB subjects treated with donepezil. Methods Twenty-one DLB patients (mean age, 78.7±4.5 years) were enrolled. RCPM assessment was performed at the time of starting donepezil and within one year after starting donepezil. Results There were significant improvements of RCPM in the total scores between one year donepezil treatment (p=0.013), in both Set A score (p=0.002) and Set AB score (p=0.015), but trend in the Set B score (p=0.083). Conclusion Donepezil is useful for improving visuo-spatial impairment in DLB, but not for problem-solving impairment. PMID:28783933
The riddle of style changes in the visual arts after interference with the right brain.
Blanke, Olaf; Pasqualini, Isabella
2011-01-01
We here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. In our analysis we focus in particular on the oeuvre of Lovis Corinth and Luchino Visconti as both major artists continued to be highly productive over many years after their right brain damage. We analyzed their post-stroke paintings and films, indicate several aspects that differ from their pre-stroke work (omissions, use of color, perseveration, deformation), and propose-although both artists come from different times, countries, genres, and styles-that their post-stroke oeuvre reveals important similarities in style. We argue that these changes may be associated with visuo-spatial hemineglect and the right brain. We discuss future avenues of how the neuropsychological investigation of visual artists with and without neglect may allow us to investigate the relationship between brain and art.
Extinction of auditory stimuli in hemineglect: Space versus ear.
Spierer, Lucas; Meuli, Reto; Clarke, Stephanie
2007-02-01
Unilateral extinction of auditory stimuli, a key feature of the neglect syndrome, was investigated in 15 patients with right (11), left (3) or bilateral (1) hemispheric lesions using a verbal dichotic condition, in which each ear received simultaneously one word, and a interaural-time-difference (ITD) diotic condition, in which both ears received both words lateralised by means of ITD. Additional investigations included sound localisation, visuo-spatial attention and general cognitive status. Five patients presented a significant asymmetry in the ITD diotic test, due to a decrease of left hemispace reporting but no asymmetry was found in dichotic listening. Six other patients presented a significant asymmetry in the dichotic test due to a significant decrease of left or right ear reporting, but no asymmetry in diotic listening. Ten of the above patients presented mild to severe deficits in sound localisation and eight signs of visuo-spatial neglect (three with selective asymmetry in the diotic and five in the dichotic task). Four other patients presented a significant asymmetry in both the diotic and dichotic listening tasks. Three of them presented moderate deficits in localisation and all four moderate visuo-spatial neglect. Thus, extinction for left ear and left hemispace can double dissociate, suggesting distinct underlying neural processes. Furthermore, the co-occurrence with sound localisation disturbance and with visuo-spatial hemineglect speaks in favour of the involvement of multisensory attentional representations.
Origins and early development of human body knowledge.
Slaughter, Virginia; Heron, Michelle
2004-01-01
As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.
Weed, Michael R; Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard; Bristow, Linda J
2017-01-01
Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.
Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G.; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard; Bristow, Linda J.
2017-01-01
Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task. PMID:29261656
Macaluso, Emiliano; Ogawa, Akitoshi
2018-05-01
Functional imaging studies have associated dorsal and ventral fronto-parietal regions with the control of visuo-spatial attention. Previous studies demonstrated that the activity of both the dorsal and the ventral attention systems can be modulated by many different factors, related both to the stimuli and the task. However, the vast majority of this work utilized stereotyped paradigms with simple and repeated stimuli. This is at odd with any real life situation that instead involve complex combinations of different types of co-occurring signals, thus raising the question of the ecological significance of the previous findings. Here we investigated how the brain responds to task-related and stimulus-related signals using an innovative approach that involved active exploration of a virtual environment. This enabled us to study visuo-spatial orienting in conditions entailing a dynamic and coherent flow of visual signals, to some extent analogous to real life situations. The environment comprised colored/textured spheres and cubes, which allowed us to implement a standard feature-conjunction search task (task-related signals), and included one physically salient object that served to track the processing of stimulus-related signals. The imaging analyses showed that the posterior parietal cortex (PPC) activated when the participants' gaze was directed towards the salient-objects. By contrast, the right inferior partial cortex was associated with the processing of the target-objects and of distractors that shared the target-color and shape, consistent with goal-directed template-matching operations. The study highlights the possibility of combining measures of gaze orienting and functional imaging to investigate the processing of different types of signals during active behavior in complex environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schmaling, Karen B; Betterton, Karran L
2016-05-01
The purpose of this study was to conduct a longitudinal examination of cognitive complaints and functional status in patients with chronic fatigue syndrome (CFS) alone and those who also had fibromyalgia (CFS/FM). A total of 93 patients from a tertiary care fatigue clinic were evaluated on four occasions, each 6 months apart. Each evaluation included a tender point assessment, and self-reported functional status and cognitive complaints. Patients with CFS/FM reported significantly worse physical functioning, more bodily pain, and more cognitive difficulties (visuo-perceptual ability and verbal memory) than patients with CFS alone. Over time, bodily pain decreased only for participants with CFS alone. Verbal memory problems were associated with more bodily pain for both patient groups, whereas visuo-perceptual problems were associated with worse functional status for patients with CFS alone. This study adds to the literature on functional status, longitudinal course, and cognitive difficulties among patients with CFS and those with CFS and FM. The results suggest that patients with CFS/FM are more disabled, have more cognitive complaints, and improve more slowly over time than patients with CFS alone. Specific cognitive difficulties are related to worse functional status, which supports the addition of cognitive difficulties to the FM case criteria.
Ascent to moderate altitude impairs overnight memory improvements.
Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto
2015-02-01
Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. Copyright © 2014 Elsevier Inc. All rights reserved.
Exaggerated Leftward Bias in the Mental Number Line of Patients with Schizophrenia
ERIC Educational Resources Information Center
Cavezian, Celine; Rossetti, Yves; Danckert, James; d'Amato, Thierry; Dalery, Jean; Saoud, Mohamed
2007-01-01
Several visuo-motor tasks can be used to demonstrate biases towards left hemispace in schizophrenic patients, suggesting a minor right hemineglect. Recent studies in neglect patients used a new number bisection task to highlight a lateralized defect in their visuo-spatial representation of numbers. To test a possible lateralized representational…
Wang, Li-Chih; Yang, Hsien-Ming
2011-01-01
This study focused on a comparison of the visuo-spatial abilities (correct rate and speed) between dyslexic and normal students in Taiwan and Hong Kong. There were a total of 120 10-12 year old students. Thirty students had been diagnosed as dyslexic in Taiwan (T.W. dyslexia) and thirty students had been diagnosed as dyslexic in Hong Kong (H.K. dyslexia). Overall, 30 of the Taiwanese participants (T.W. normal) and 30 of the Hong Kong participants (H.K. normal) had received no special education. Dyslexic individuals were diagnosed by the doctors' clinical determination. The material was designed using Autodesk 3ds Max. The participants rotated 3D figures by themselves to find a ball. The results indicated that there was very little difference between dyslexic and normal students. However, the most significant difference between dyslexic and normal student was answering speed, especially in the combined data and the male data. An one-way ANOVA test indicated that in terms of rate and answering speed there was no difference between the H.K. and the T.W. dyslexics. Similar results were also found for the students with normal reading abilities in T.W. and H.K. The criterions for defining the visuo-spatial abilities of dyslexia students appear to be similar in Taiwan and Hong Kong. In addition, there is no difference between students' visuo-spatial abilities even though Chinese literacy instructions differed in the two areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wiklund-Hörnqvist, Carola; Jonsson, Bert; Korhonen, Johan; Eklöf, Hanna; Nyroos, Mikaela
2016-01-01
The aim with the present study was to examine the relationship between the subcomponents in working memory (WM) and mathematical performance, as measured by the National tests in a sample of 597 Swedish third-grade pupils. In line with compelling evidence of other studies, individual differences in WM capacity significantly predicted mathematical performance. Dividing the sample into four groups, based on their mathematical performance, revealed that mathematical ability can be conceptualized in terms of different WM profiles. Pupils categorized as High-math performers particularly differed from the other three groups in having a significant higher phonological ability. In contrast, pupils categorized as Low-math performers were particularly characterized by having a significant lower visuo-spatial ability. Findings suggest that it is important for educators to recognize and acknowledge individual differences in WM to support mathematical achievement at an individual level. PMID:27486413
Reading a Story: Different Degrees of Learning in Different Learning Environments.
Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura
2017-01-01
The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story's moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.
Reading a Story: Different Degrees of Learning in Different Learning Environments
Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura
2017-01-01
The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story’s moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension. PMID:29085296
Frick, Andrea; Möhring, Wenke
2016-01-01
Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children’s motor control and their spatial and proportional reasoning. We measured 6-year-olds’ spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children’s understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children’s balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157
Exploring biased attention towards body-related stimuli and its relationship with body awareness.
Salvato, Gerardo; De Maio, Gabriele; Bottini, Gabriella
2017-12-08
Stimuli of great social relevance exogenously capture attention. Here we explored the impact of body-related stimuli on endogenous attention. Additionally, we investigate the influence of internal states on biased attention towards this class of stimuli. Participants were presented with a body, face, or chair cue to hold in memory (Memory task) or to merely attend (Priming task) and, subsequently, they were asked to find a circle in an unrelated visual search task. In the valid condition, the circle was flanked by the cue. In the invalid condition, the pre-cued picture re-appeared flanking the distracter. In the neutral condition, the cue item did not re-appear in the search display. We found that although bodies and faces benefited from a general faster visual processing compared to chairs, holding them in memory did not produce any additional advantage on attention compared to when they are merely attended. Furthermore, face cues generated larger orienting effect compared to body and chairs cues in both Memory and Priming task. Importantly, results showed that individual sensitivity to internal bodily responses predicted the magnitude of the memory-based orienting of attention to bodies, shedding new light on the relationship between body awareness and visuo-spatial attention.
The influence of visual ability on learning and memory performance in 13 strains of mice.
Brown, Richard E; Wong, Aimée A
2007-03-01
We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.
Hearing visuo-tactile synchrony - Sound-induced proprioceptive drift in the invisible hand illusion.
Darnai, Gergely; Szolcsányi, Tibor; Hegedüs, Gábor; Kincses, Péter; Kállai, János; Kovács, Márton; Simon, Eszter; Nagy, Zsófia; Janszky, József
2017-02-01
The rubber hand illusion (RHI) and its variant the invisible hand illusion (IHI) are useful for investigating multisensory aspects of bodily self-consciousness. Here, we explored whether auditory conditioning during an RHI could enhance the trisensory visuo-tactile-proprioceptive interaction underlying the IHI. Our paradigm comprised of an IHI session that was followed by an RHI session and another IHI session. The IHI sessions had two parts presented in counterbalanced order. One part was conducted in silence, whereas the other part was conducted on the backdrop of metronome beats that occurred in synchrony with the brush movements used for the induction of the illusion. In a first experiment, the RHI session also involved metronome beats and was aimed at creating an associative memory between the brush stroking of a rubber hand and the sounds. An analysis of IHI sessions showed that the participants' perceived hand position drifted more towards the body-midline in the metronome relative to the silent condition without any sound-related session differences. Thus, the sounds, but not the auditory RHI conditioning, influenced the IHI. In a second experiment, the RHI session was conducted without metronome beats. This confirmed the conditioning-independent presence of sound-induced proprioceptive drift in the IHI. Together, these findings show that the influence of visuo-tactile integration on proprioceptive updating is modifiable by irrelevant auditory cues merely through the temporal correspondence between the visuo-tactile and auditory events. © 2016 The British Psychological Society.
The Nature of Verbal Short-Term Impairment in Dyslexia: The Importance of Serial Order
Majerus, Steve; Cowan, Nelson
2016-01-01
Verbal short-term memory (STM) impairment is one of the most consistent associated deficits observed in developmental reading disorders such as dyslexia. Few studies have addressed the nature of this STM impairment, especially as regards the ability to temporarily store serial order information. This question is important as studies in typically developing children have shown that serial order STM abilities are predictors of oral and written language development. Associated serial order STM deficits in dyslexia may therefore further increase the learning difficulties in these populations. In this mini review, we show that specific serial order STM impairment is frequently reported in both dyslexic children and adults with a history of dyslexia. Serial order STM impairment appears to occur for the retention of both verbal and visuo-spatial sequence information. Serial order STM impairment is, however, not a characteristic of every individual dyslexic subject and is not specific to dyslexia. Future studies need to determine whether serial order STM impairment is a risk factor which, in association with phonological processing deficits, can lead to dyslexia or whether serial order STM impairment reflects associated deficits causally unrelated to dyslexia. PMID:27752247
Jelínek, Martin; Květon, Petr; Vobořil, Dalibor
2015-02-01
Despite initial expectations, which have emerged with the advancement of computer technology over the last decade of the twentieth century, scientific literature does not contain many relevant references regarding the development and use of innovative items in psychological testing. Our study presents and evaluates two novel item types. One item type is derived from a standard schematic test item used for the assessment of the spatial perception aspect of spatial ability, enhanced by an interactive response module. The performance on this item type is correlated with the performance on its paper and pencil counterpart. The other innovative item type used complex stimuli in the form of a short video of a ride through a city presented in an on-route perspective, which is intended to measure navigation skills and the ability to keep oneself oriented in space. In this case, the scores were related to the capacity of visuo-spatial working memory and also to the overall score in the paper/pencil test of spatial ability. The second relationship was moderated by gender.
The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus.
Damasceno, B P; Carelli, E F; Honorato, D C; Facure, J J
1997-06-01
Eighteen patients (mean age of 66.5 years) with normal pressure hydrocephalus (NPH) underwent a ventriculo-peritoneal shunt surgery. Prior to operation a cerebrospinal fluid tap-test (CSF-TT) was performed with measurements of gait pattern and psychometric functions (memory, visuo-motor speed and visuo-constructive skills) before and after the removal of 50 ml CSF by lumbar puncture (LP). Fifteen patients improved and 3 were unchanged after surgery. Short duration of disease, gait disturbance preceding mental deterioration, wide temporal horns and small sulci on CT-scan were associated with good outcome after shunting. There was a good correlation between the results of CSF-TT and shunt surgery (chi 2 = 4.11, phi = 0.48, p < 0.05), with gait test showing highest correlation (r = 0.99, p = 0.01). In conclusion, this version of CSF-TT proved to be an effective test to predict improvement after shunting in patients with NPH.
Faria, Ana Lúcia; Andrade, Andreia; Soares, Luísa; I Badia, Sergi Bermúdez
2016-11-02
Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. There is substancial evidence on post-stroke cognitive rehabilitation benefits, but its implementation is generally limited by the use of paper-and-pencil methods, insufficient personalization, and suboptimal intensity. Virtual reality tools have shown potential for improving cognitive rehabilitation by supporting carefully personalized, ecologically valid tasks through accessible technologies. Notwithstanding important progress in VR-based cognitive rehabilitation systems, specially with Activities of Daily Living (ADL's) simulations, there is still a need of more clinical trials for its validation. In this work we present a one-month randomized controlled trial with 18 stroke in and outpatients from two rehabilitation units: 9 performing a VR-based intervention and 9 performing conventional rehabilitation. The VR-based intervention involved a virtual simulation of a city - Reh@City - where memory, attention, visuo-spatial abilities and executive functions tasks are integrated in the performance of several daily routines. The intervention had levels of difficulty progression through a method of fading cues. There was a pre and post-intervention assessment in both groups with the Addenbrooke Cognitive Examination (primary outcome) and the Trail Making Test A and B, Picture Arrangement from WAIS III and Stroke Impact Scale 3.0 (secondary outcomes). A within groups analysis revealed significant improvements in global cognitive functioning, attention, memory, visuo-spatial abilities, executive functions, emotion and overall recovery in the VR group. The control group only improved in self-reported memory and social participation. A between groups analysis, showed significantly greater improvements in global cognitive functioning, attention and executive functions when comparing VR to conventional therapy. Our results suggest that cognitive rehabilitation through the Reh@City, an ecologically valid VR system for the training of ADL's, has more impact than conventional methods. This trial was not registered because it is a small sample study that evaluates the clinical validity of a prototype virtual reality system.
Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert
2007-07-15
Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.
The Riddle of Style Changes in the Visual Arts after Interference with the Right Brain
Blanke, Olaf; Pasqualini, Isabella
2011-01-01
We here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. In our analysis we focus in particular on the oeuvre of Lovis Corinth and Luchino Visconti as both major artists continued to be highly productive over many years after their right brain damage. We analyzed their post-stroke paintings and films, indicate several aspects that differ from their pre-stroke work (omissions, use of color, perseveration, deformation), and propose–although both artists come from different times, countries, genres, and styles–that their post-stroke oeuvre reveals important similarities in style. We argue that these changes may be associated with visuo-spatial hemineglect and the right brain. We discuss future avenues of how the neuropsychological investigation of visual artists with and without neglect may allow us to investigate the relationship between brain and art. PMID:22232586
The Network Architecture of Cortical Processing in Visuo-spatial Reasoning
Shokri-Kojori, Ehsan; Motes, Michael A.; Rypma, Bart; Krawczyk, Daniel C.
2012-01-01
Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements. PMID:22624092
The network architecture of cortical processing in visuo-spatial reasoning.
Shokri-Kojori, Ehsan; Motes, Michael A; Rypma, Bart; Krawczyk, Daniel C
2012-01-01
Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements.
A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits.
Simner, Julia; Mayo, Neil; Spiller, Mary-Jane
2009-01-01
Individuals with 'time-space' synaesthesia have conscious awareness of mappings between time and space (e.g., they may see months arranged in an ellipse, or years as columns or spirals). These mappings exist in the 3D space around the body or in a virtual space within the mind's eye. Our study shows that these extra-ordinary mappings derive from, or give rise to, superior abilities in the two domains linked by this cross-modal phenomenon (i.e., abilities relating to time, and visualised space). We tested ten time-space synaesthetes with a battery of temporal and visual/spatial tests. Our temporal battery (the Edinburgh [Public and Autobiographical] Events Battery - EEB) assessed both autobiographical and non-autobiographical memory for events. Our visual/spatial tests assessed the ability to manipulate real or imagined objects in 3D space (the Three Dimensional Constructional Praxis test; Visual Object and Space Perception Battery, University of Southern California Mental Rotation Test) as well as assessing visual memory recall (Visual Patterns Test - VPT). Synaesthetes' performance was superior to the control population in every assessment, but was not superior in tasks that do not draw upon abilities related to their mental calendars. Our paper discusses the implications of this temporal-spatial advantage as it relates to normal processing, synaesthetic processing, and to the savant-like condition of hyperthymestic syndrome (Parker et al., 2006).
Kleibeuker, Sietske W; De Dreu, Carsten K W; Crone, Eveline A
2013-01-01
We examined developmental trajectories of creative cognition across adolescence. Participants (N = 98), divided into four age groups (12/13 yrs, 15/16 yrs, 18/19 yrs, and 25-30 yrs), were subjected to a battery of tasks gauging creative insight (visual; verbal) and divergent thinking (verbal; visuo-spatial). The two older age groups outperformed the two younger age groups on insight tasks. The 25-30-year-olds outperformed the two youngest age groups on the originality measure of verbal divergent thinking. No age-group differences were observed for verbal divergent thinking fluency and flexibility. On divergent thinking in the visuo-spatial domain, however, only 15/16-year-olds outperformed 12/13-year-olds; a model with peak performance for 15/16-years-old showed the best fit. The results for the different creativity processes are discussed in relation to cognitive and related neurobiological models. We conclude that mid-adolescence is a period of not only immaturities but also of creative potentials in the visuo-spatial domain, possibly related to developing control functions and explorative behavior. © 2012 Blackwell Publishing Ltd.
Neurological and cognitive impairment associated with leaded gasoline encephalopathy.
Cairney, Sheree; Maruff, Paul; Burns, Chris B; Currie, Jon; Currie, Bart J
2004-02-07
A toxic encephalopathy (or 'lead encephalopathy') may arise from leaded gasoline abuse that is characterised by tremor, hallucinations, nystagmus, ataxia, seizures and death. This syndrome requires emergency and intensive hospital treatment. We compared neurological and cognitive function between chronic gasoline abusers with (n=15) and without (n=15) a history of leaded gasoline encephalopathy, and with controls who had never abused gasoline (n=15). Both groups of chronic gasoline abusers had abused gasoline for the same length of time and compared to controls, showed equivalently elevated blood lead levels and cognitive abnormalities in the areas of visuo-spatial attention, recognition memory and paired associate learning. However, where gasoline abusers with no history of leaded gasoline encephalopathy showed only mild movement abnormalities, gasoline abusers with a history of leaded gasoline encephalopathy showed severe neurological impairment that manifest as higher rates of gait ataxia, abnormal rapid finger tapping, finger to nose movements, dysdiadochokinesia and heel to knee movements, increased deep tendon reflexes and presence of a palmomental reflex. While neurological and cognitive functions are disrupted by chronic gasoline abuse, leaded gasoline encephalopathy is associated with additional and long-lasting damage to cortical and cerebellar functions.
Domain Specific Changes in Cognition at High Altitude and Its Correlation with Hyperhomocysteinemia
Sharma, Vijay K.; Das, Saroj K.; Dhar, Priyanka; Hota, Kalpana B.; Mahapatra, Bidhu B.; Vashishtha, Vivek; Kumar, Ashish; Hota, Sunil K.; Norboo, Tsering; Srivastava, Ravi B.
2014-01-01
Though acute exposure to hypobaric hypoxia is reported to impair cognitive performance, the effects of prolonged exposure on different cognitive domains have been less studied. The present study aimed at investigating the time dependent changes in cognitive performance on prolonged stay at high altitude and its correlation with electroencephalogram (EEG) and plasma homocysteine. The study was conducted on 761 male volunteers of 25–35 years age who had never been to high altitude and baseline data pertaining to domain specific cognitive performance, EEG and homocysteine was acquired at altitude ≤240 m mean sea level (MSL). The volunteers were inducted to an altitude of 4200–4600 m MSL and longitudinal follow-ups were conducted at durations of 03, 12 and 18 months. Neuropsychological assessment was performed for mild cognitive impairment (MCI), attention, information processing rate, visuo-spatial cognition and executive functioning. Total homocysteine (tHcy), vitamin B12 and folic acid were estimated. Mini Mental State Examination (MMSE) showed temporal increase in the percentage prevalence of MCI from 8.17% on 03 months of stay at high altitude to 18.54% on 18 months of stay. Impairment in visuo-spatial executive, attention, delayed recall and procedural memory related cognitive domains were detected following prolonged stay in high altitude. Increase in alpha wave amplitude in the T3, T4 and C3 regions was observed during the follow-ups which was inversely correlated (r = −0.68) to MMSE scores. The tHcy increased proportionately with duration of stay at high altitude and was correlated with MCI. No change in vitamin B12 and folic acid was observed. Our findings suggest that cognitive impairment is progressively associated with duration of stay at high altitude and is correlated with elevated tHcy in the plasma. Moreover, progressive MCI at high altitude occurs despite acclimatization and is independent of vitamin B12 and folic acid. PMID:24988417
Mailo, Janette; Tang-Wai, Richard
2015-09-01
To date, there is limited understanding of the role of the precuneus. fMRI studies have suggested its involvement in a wide spectrum of highly integrated tasks, including spatially-guided behaviour, visuo-spatial imagery, and consciousness. We present a patient with intractable parietal lobe epilepsy arising from a lesion localized to the right precuneus. Two seizure types with distinct semiologies were captured on video-EEG monitoring. The first type consisted of an urge described as a "feeling of wanting to move". On video analysis, the patient is seen to turn his head and body to his left. He remains conscious, he is able to answer questions and when asked, he can look to his right. This seizure was associated with an ictal pattern localized to the right parieto-occipital region. The second seizure type consisted of reading-induced visual distortion with macropsia and micropsia. Interictally, intermittent rhythmic slowing and spikes were seen and localized to the parietal midline and the right parieto-occipital regions. Our patient's seizures are positive phenomena of the right precuneus and its related processing network. They represent unique seizure semiologies that offer further insight into the role of the precuneus in spatial awareness, visuo-spatial processing and consciousness.
Van der Molen, M J; Van Luit, J E H; Van der Molen, M W; Klugkist, I; Jongmans, M J
2010-05-01
The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. A total of 95 adolescents with mild to borderline intellectual disabilities were randomly assigned to either a training adaptive to each child's progress in WM, a non-adaptive WM training, or to a control group. Verbal short-term memory (STM) improved significantly from pre- to post-testing in the group who received the adaptive training compared with the control group. The beneficial effect on verbal STM was maintained at follow-up and other effects became clear at that time as well. Both the adaptive and non-adaptive WM training led to higher scores at follow-up than at post-intervention on visual STM, arithmetic and story recall compared with the control condition. In addition, the non-adaptive training group showed a significant increase in visuo-spatial WM capacity. The current study provides the first demonstration that WM can be effectively trained in adolescents with mild to borderline intellectual disabilities.
Gonthier, Corentin; Aubry, Alexandre; Bourdin, Béatrice
2018-06-01
Working memory tasks designed for children usually present trials in order of ascending difficulty, with testing discontinued when the child fails a particular level. Unfortunately, this procedure comes with a number of issues, such as decreased engagement from high-ability children, vulnerability of the scores to temporary mind-wandering, and large between-subjects variations in number of trials, testing time, and proactive interference. To circumvent these problems, the goal of the present study was to demonstrate the feasibility of assessing working memory using an adaptive testing procedure. The principle of adaptive testing is to dynamically adjust the level of difficulty as the task progresses to match the participant's ability. We used this method to develop an adaptive complex span task (the ACCES) comprising verbal and visuo-spatial subtests. The task presents a fixed number of trials to all participants, allows for partial credit scoring, and can be used with children regardless of ability level. The ACCES demonstrated satisfying psychometric properties in a sample of 268 children aged 8-13 years, confirming the feasibility of using adaptive tasks to measure working memory capacity in children. A free-to-use implementation of the ACCES is provided.
The effect of childhood trauma on spatial cognition in adults: a possible role of sex.
Syal, Supriya; Ipser, Jonathan; Phillips, Nicole; Thomas, Kevin G F; van der Honk, Jack; Stein, Dan J
2014-06-01
Although animal evidence indicates that early life trauma results in pervasive hippocampal deficits underlying spatial and cognitive impairment, visuo-spatial data from adult humans with early childhood adversity are lacking. We administered 4 tests of visuo-spatial ability from the Cambridge Neuorpsychological Test Automated Battery (CANTAB) to adults with a history of childhood trauma (measured by the Childhood Trauma Questionnaire) and a matched sample of healthy controls (trauma/control = 27/28). We observed a significant effect of trauma history on spatial/pattern learning. These effects could not be accounted for by adverse adult experiences, and were sex-specific, with prior adversity improving performance in men but worsening performance in women, relative to controls. Limitations include the small sample size and reliance of our study design on a retrospective, self report measure. Our results suggest that early adversity can lead to specific and pervasive deficits in adult cognitive function.
Symbol-string sensitivity and adult performance in lexical decision.
Pammer, Kristen; Lavis, Ruth; Cooper, Charity; Hansen, Peter C; Cornelissen, Piers L
2005-09-01
In this study of adult readers, we used a symbol-string task to assess participants' sensitivity to the position of briefly presented, non-alphabetic but letter-like symbols. We found that sensitivity in this task explained a significant proportion of sample variance in visual lexical decision. Based on a number of controls, we show that this relationship cannot be explained by other factors including: chronological age, intelligence, speed of processing and/or concentration, short term memory consolidation, or fixation stability. This approach represents a new way to elucidate how, and to what extent, individual variation in pre-orthographic visual and cognitive processes impinge on reading skills, and the results suggest that limitations set by visuo-spatial processes constrain visual word recognition.
Wijeakumar, Sobanawartiny; Magnotta, Vincent A; Buss, Aaron T; Ambrose, Joseph P; Wifall, Timothy A; Hazeltine, Eliot; Spencer, John P
2015-10-15
Recent evidence has sparked debate about the neural bases of response selection and inhibition. In the current study, we employed two reactive inhibition tasks, the Go/Nogo (GnG) and Simon tasks, to examine questions central to these debates. First, we investigated whether a fronto-cortical-striatal system was sensitive to the need for inhibition per se or the presentation of infrequent stimuli, by manipulating the proportion of trials that do not require inhibition (Go/Compatible trials) relative to trials that require inhibition (Nogo/Incompatible trials). A cortico-subcortical network composed of insula, putamen, and thalamus showed greater activation on salient and infrequent events, regardless of the need for inhibition. Thus, consistent with recent findings, key parts of the fronto-cortical-striatal system are engaged by salient events and do not appear to play a selective role in response inhibition. Second, we examined how the fronto-cortical-striatal system is modulated by working memory demands by varying the number of stimulus-response (SR) mappings. Right inferior parietal lobule showed decreasing activation as the number of SR mappings increased, suggesting that a form of associative memory - rather than working memory - might underlie performance in these tasks. A broad motor planning and control network showed similar trends that were also modulated by the number of motor responses required in each task. Finally, bilateral lingual gyri were more robustly engaged in the Simon task, consistent with the role of this area in shifts of visuo-spatial attention. The current study sheds light on how the fronto-cortical-striatal network is selectively engaged in reactive control tasks and how control is modulated by manipulations of attention and memory load. Copyright © 2015 Elsevier Inc. All rights reserved.
Thirioux, Bérangère; Wehrmann, Moritz; Langbour, Nicolas; Jaafari, Nematollah; Berthoz, Alain
2016-01-01
Looking at our face in a mirror is one of the strongest phenomenological experiences of the Self in which we need to identify the face as reflected in the mirror as belonging to us. Recent behavioral and neuroimaging studies reported that self-face identification not only relies upon visual-mnemonic representation of one’s own face but also upon continuous updating and integration of visuo-tactile signals. Therefore, bodily self-consciousness plays a major role in self-face identification, with respect to interplay between unisensory and multisensory processing. However, if previous studies demonstrated that the integration of multisensory body-related signals contributes to the visual processing of one’s own face, there is so far no data regarding how self-face identification, inversely, contributes to bodily self-consciousness. In the present study, we tested whether self–other face identification impacts either the egocentered or heterocentered visuo-spatial mechanisms that are core processes of bodily self-consciousness and sustain self–other distinction. For that, we developed a new paradigm, named “Double Mirror.” This paradigm, consisting of a semi-transparent double mirror and computer-controlled Light Emitting Diodes, elicits self–other face merging illusory effect in ecologically more valid conditions, i.e., when participants are physically facing each other and interacting. Self-face identification was manipulated by exposing pairs of participants to an Interpersonal Visual Stimulation in which the reflection of their faces merged in the mirror. Participants simultaneously performed visuo-spatial and mental own-body transformation tasks centered on their own face (egocentered) or the face of their partner (heterocentered) in the pre- and post-stimulation phase. We show that self–other face identification altered the egocentered visuo-spatial mechanisms. Heterocentered coding was preserved. Our data suggest that changes in self-face identification induced a bottom-up conflict between the current visual representation and the stored mnemonic representation of one’s own face which, in turn, top-down impacted bodily self-consciousness. PMID:27610095
Music experience influences laparoscopic skills performance.
Boyd, Tanner; Jung, Inkyung; Van Sickle, Kent; Schwesinger, Wayne; Michalek, Joel; Bingener, Juliane
2008-01-01
Music education affects the mathematical and visuo-spatial skills of school-age children. Visuo-spatial abilities have a significant effect on laparoscopic suturing performance. We hypothesize that prior music experience influences the performance of laparoscopic suturing tasks. Thirty novices observed a laparoscopic suturing task video. Each performed 3 timed suturing task trials. Demographics were recorded. A repeated measures linear mixed model was used to examine the effects of prior music experience on suturing task time. Twelve women and 18 men completed the tasks. When adjusted for video game experience, participants who currently played an instrument performed significantly faster than those who did not (P<0.001). The model showed a significant sex by instrument interaction. Men who had never played an instrument or were currently playing an instrument performed better than women in the same group (P=0.002 and P<0.001). There was no sex difference in the performance of participants who had played an instrument in the past (P=0.29). This study attempted to investigate the effect of music experience on the laparoscopic suturing abilities of surgical novices. The visuo-spatial abilities used in laparoscopic suturing may be enhanced in those involved in playing an instrument.
Learning by observation: insights from Williams syndrome.
Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura
2013-01-01
Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects' interest in the actions to be performed and functioned as a catalyst for executed action.
Sleep benefits consolidation of visuo-motor adaptation learning in older adults.
Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C
2016-02-01
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
Harjunen, Ville J; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M
2017-01-01
Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver's body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements.
Harjunen, Ville J.; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M.
2017-01-01
Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver’s body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements. PMID:28275346
Mellet, E; Jobard, G; Zago, L; Crivello, F; Petit, L; Joliot, M; Mazoyer, B; Tzourio-Mazoyer, N
2014-01-01
The relationship between manual laterality and cognitive skills remains highly controversial. Some studies have reported that strongly lateralised participants had higher cognitive performance in verbal and visuo-spatial domains compared to non-lateralised participants; however, others found the opposite. Moreover, some have suggested that familial sinistrality and sex might interact with individual laterality factors to alter cognitive skills. The present study addressed these issues in 237 right-handed and 199 left-handed individuals. Performance tests covered various aspects of verbal and spatial cognition. A principal component analysis yielded two verbal and one spatial factor scores. Participant laterality assessments included handedness, manual preference strength, asymmetry of motor performance, and familial sinistrality. Age, sex, education level, and brain volume were also considered. No effect of handedness was found, but the mean factor scores in verbal and spatial domains increased with right asymmetry in motor performance. Performance was reduced in participants with a familial history of left-handedness combined with a non-maximal preference strength in the dominant hand. These results elucidated some discrepancies among previous findings in laterality factors and cognitive skills. Laterality factors had small effects compared to the adverse effects of age for spatial cognition and verbal memory, the positive effects of education for all three domains, and the effect of sex for spatial cognition.
Left neglect dyslexia: Perseveration and reading error types.
Ronchi, Roberta; Algeri, Lorella; Chiapella, Laura; Gallucci, Marcello; Spada, Maria Simonetta; Vallar, Giuseppe
2016-08-01
Right-brain-damaged patients may show a reading disorder termed neglect dyslexia. Patients with left neglect dyslexia omit letters on the left-hand-side (the beginning, when reading left-to-right) part of the letter string, substitute them with other letters, and add letters to the left of the string. The aim of this study was to investigate the pattern of association, if any, between error types in patients with left neglect dyslexia and recurrent perseveration (a productive visuo-motor deficit characterized by addition of marks) in target cancellation. Specifically, we aimed at assessing whether different productive symptoms (relative to the reading and the visuo-motor domains) could be associated in patients with left spatial neglect. Fifty-four right-brain-damaged patients took part in the study: 50 out of the 54 patients showed left spatial neglect, with 27 of them also exhibiting left neglect dyslexia. Neglect dyslexic patients who showed perseveration produced mainly substitution neglect errors in reading. Conversely, omissions were the prevailing reading error pattern in neglect dyslexic patients without perseveration. Addition reading errors were much infrequent. Different functional pathological mechanisms may underlie omission and substitution reading errors committed by right-brain-damaged patients with left neglect dyslexia. One such mechanism, involving the defective stopping of inappropriate responses, may contribute to both recurrent perseveration in target cancellation, and substitution errors in reading. Productive pathological phenomena, together with deficits of spatial attention to events taking place on the left-hand-side of space, shape the manifestations of neglect dyslexia, and, more generally, of spatial neglect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Halje, Pär; Seeck, Margitta; Blanke, Olaf; Ionta, Silvio
2015-12-01
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald
2013-01-01
Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762
Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals.
Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L
2014-04-01
Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. © 2014 Anatomical Society.
Memory functions of children born with asymmetric intrauterine growth restriction.
Geva, Ronny; Eshel, Rina; Leitner, Yael; Fattal-Valevski, Aviva; Harel, Shaul
2006-10-30
Learning difficulties are frequently diagnosed in children born with intrauterine growth restriction (IUGR). Models of various animal species with IUGR were studied and demonstrated specific susceptibility and alterations of the hippocampal formation and its related neural structures. The main purpose was to study memory functions of children born with asymmetric IUGR in a large-scale cohort using a long-term prospective paradigm. One hundred and ten infants diagnosed with IUGR were followed-up from birth to 9 years of age. Their performance was compared with a group of 63 children with comparable gestational age and multiple socioeconomic factors. Memory functions (short-term, super- and long-term spans) for different stimuli types (verbal and visual) were evaluated using Visual Auditory Digit Span tasks (VADS), Rey Auditory Verbal Learning Test (Rey-AVLT), and Rey Osterrieth Complex Figure Test (ROCF). Children with IUGR had short-term memory difficulties that hindered both serial verbal processing system and simultaneous processing of high-load visuo-spatial stimuli. The difficulties were not related to prematurity, neonatal complications or growth catch-up, but were augmented by lower maternal education. Recognition skills and benefits from reiteration, typically affected by hippocampal dysfunction, were preserved in both groups. Memory profile of children born with IUGR is characterized primarily by a short-term memory deficit that does not necessarily comply with a typical hippocampal deficit, but rather may reflect an executive short-term memory deficit characteristic of anterior hippocampal-prefrontal network. Implications for cognitive intervention are discussed.
Ivanoiu, Adrian; Dricot, Laurence; Gilis, Nathalie; Grandin, Cécile; Lhommel, Renaud; Quenon, Lisa; Hanseeuw, Bernard
2015-01-01
New diagnostic criteria for predemential Alzheimer's disease (AD) advocate the use of biomarkers. However, the benefit of using biomarkers has not been clearly demonstrated in clinical practice. To investigate whether a combination of biomarkers may be helpful in classifying a population of non-demented patients attending a Memory Clinic. Sixty non-demented patients were compared with 31 healthy elderly subjects. All subjects underwent a neuropsychological examination, brain 3T magnetic resonance imaging, [F18]-fluorodeoxyglucose and [F18]-flutemetamol positron emission tomography. According to their performance on memory, language, executive, and visuo-spatial domains, the patients were classified as mild cognitive impairment (amnestic, non-amnestic, single, or multiple domain) or subjective cognitive impairment. Patients were then classified according to the National Institute on Aging-Alzheimer's Association (NIA-AA) criteria, using the normalized mean hippocampal volume (Freesurfer), [F18]-FDG PALZAD, and [F18]-flutemetamol standard uptake value ratio (SUVr) (cut-off at the 10th percentile of controls). The standard of truth was the clinical status at study entry (patient versus control). The sensitivity/specificity of the clinical classification was 65/84%. The NIA-AA criteria were applicable in 85% of patients and 87% of controls. For biomarkers the best sensitivity (72%) at a fixed specificity of 84% was achieved by a combination of the three biomarkers. The clinical diagnosis was reconsidered in more than one third of the patients (42%) as a result of including the biomarker results. Application of the new NIA-AA AD diagnostic criteria based on biomarkers in an unselected sample of non-demented patients attending a Memory Clinic was useful in allowing for a better classification of the subjects.
Out with the Old and in with the New—Is Backward Inhibition a Domain-Specific Process?
Menghini, Deny; Vicari, Stefano; Petrosini, Laura; Ferlazzo, Fabio
2015-01-01
Effective task switching is supported by the inhibition of the just executed task, so that potential interference from previously executed tasks is adaptively counteracted. This inhibitory mechanism, named Backward Inhibition (BI), has been inferred from the finding that switching back to a recently executed task (A-B-A task sequence) is harder than switching back to a less recently executed task (C-B-A task sequence). Despite the fact that BI effects do impact performance on everyday life activities, up to now it is still not clear whether the BI represents an amodal and material-independent process or whether it interacts with the task material. To address this issue, a group of individuals with Williams syndrome (WS) characterized by specific difficulties in maintaining and processing visuo-spatial, but not verbal, information, and a mental age- and gender-matched group of typically developing (TD) children were subjected to three task-switching experiments requiring verbal or visuo-spatial material to be processed. Results showed that individuals with WS exhibited a normal BI effect during verbal task-switching, but a clear deficit during visuo-spatial task-switching. Overall, our findings demonstrating that the BI is a material-specific process have important implications for theoretical models of cognitive control and its architecture. PMID:26565628
Aparicio-López, Celeste; García-Molina, Alberto; García-Fernández, Juan; Lopez-Blazquez, Raquel; Enseñat-Cantallops, Antonia; Sánchez-Carrión, Rocío; Muriel, Vega; Tormos, Jose María; Roig-Rovira, Teresa
2015-01-01
To assess whether, following a right-hemisphere stroke, the combined administration of computer-based cognitive rehabilitation and right hemifield eye-patching in patients with visuo-spatial neglect is more effective than computer-based cognitive rehabilitation alone. Twelve patients were randomized into two treatment groups: a single treatment group (n = 7) and a combination treatment group (n = 5). In both cases, the treatment consisted of a mean number of 15 sessions, each lasting 1 hour. Visuo-spatial neglect was assessed using a specific exploration protocol (Bell Cancellation Test, Figure Copying of Odgen, Line Bisection, Baking Tray Task and Reading Task). The functional effects of the treatment were assessed using the Catherine Bergego Scale. Significant between-group differences were observed when comparing the pre- and post-treatment scores for the Reading Task. No differences were observed in either group in the Catherine Bergego Scale administered at baseline and at the final intervention. The results obtained do not allow one to conclude that the combination treatment with cognitive rehabilitation and right hemifield eye-patching is more effective than cognitive rehabilitation alone. Although partial improvement in the performance of neuropsychological tests was observed, this improvement is not present at functional level.
Fournier, L R; Ryan Borchers, T A; Robison, L M; Wiediger, M; Park, J S; Chew, B P; McGuire, M K; Sclar, D A; Skaer, T L; Beerman, K A
2007-01-01
The decline in estrogen concentrations in women after menopause can contribute to health related changes including impairments in cognition, especially memory. Because of the health concerns related to hormone replacement therapy (HRT), alternative approaches to treat menopausal symptoms, such as nutritional supplements and/or diet containing isoflavones, are of interest. This study investigated whether soy isoflavones (soy milk and supplement) could improve cognitive functioning in healthy, postmenopausal women. PARTICIPANTS, INTERVENTION AND DESIGN: A total of 79 postmenopausal women, 48-65 years of age, completed a double-blind, placebo-controlled trial in which they were randomly assigned to one of three experimental groups: cow's milk and a placebo supplement (control); soy milk and placebo supplement (soy milk, 72 mg isoflavones/day); or cow's milk and isoflavone supplement (isoflavone supplement, 70 mg isoflavones/day). Cognitive functioning was assessed using various cognitive tasks before the intervention (baseline) and after the intervention (test). In contrast to predictions, soy isoflavones did not improve selective attention (Stroop task), visual long-term memory (pattern recognition), short-term visuospatial memory (Benton Visual Retention Test), or visuo-spatial working memory (color match task). Also, the soy milk group showed a decline in verbal working memory (Digit Ordering Task) compared to the soy supplement and control groups. Soy isoflavones consumed as a food or supplement over a 16-week period did not improve or appreciably affect cognitive functioning in healthy, postmenopausal women.
Music practice is associated with development of working memory during childhood and adolescence.
Bergman Nutley, Sissela; Darki, Fahimeh; Klingberg, Torkel
2014-01-07
Practicing a musical instrument is associated with cognitive benefits and structural brain changes in correlational and interventional trials; however, the effect of musical training on cognition during childhood is still unclear. In this longitudinal study of child development we analyzed the association between musical practice and performance on reasoning, processing speed and working memory (WM) during development. Subjects (n = 352) between the ages of 6 and 25 years participated in neuropsychological assessments and neuroimaging investigations (n = 64) on two or three occasions, 2 years apart. Mixed model regression showed that musical practice had an overall positive association with WM capacity (visuo-spatial WM, F = 4.59, p = 0.033, verbal WM, F = 9.69, p = 0.002), processing speed, (F = 4.91, p = 0.027) and reasoning (Raven's progressive matrices, F = 28.34, p < 0.001) across all three time points, after correcting for the effect of parental education and other after school activities. Music players also had larger gray matter volume in the temporo-occipital and insular cortex (p = 0.008), areas previously reported to be related to musical notation reading. The change in WM between the time points was proportional to the weekly hours spent on music practice for both WM tests (VSWM, β = 0.351, p = 0.003, verbal WM, β = 0.261, p = 0.006) but this was not significant for reasoning ability (β = 0.021, p = 0.090). These effects remained when controlling for parental education and other after school activities. In conclusion, these results indicate that music practice positively affects WM development and support the importance of practice for the development of WM during childhood and adolescence.
Spatial Context and Visual Perception for Action
ERIC Educational Resources Information Center
Coello, Yann
2005-01-01
In this paper, evidences that visuo-spatial perception in the peri-personal space is not an abstract, disembodied phenomenon but is rather shaped by action constraints are reviewed. Locating a visual target with the intention of reaching it requires that the relevant spatial information is considered in relation with the body-part that will be…
Chyza, Karolina Julia; Polityńska, Barbara; Kochanowicz, Jan; Lewko, Janusz
2007-03-01
It is now well established that cognitive deficits are a frequent consequence of aneurysmal subarachnoid haemorrhage (SAH). The cognitive status in the acute phase of the illness may provide valuable prognostic information in relation to the effects of the proposed treatment and long-term functioning of the patient. A prerequisite for this task is the identification of instruments that might prove useful in the diagnosis of neuropsychological deficits in patients with SAH. For these purposes we used The Middlesex Elderly Assessment of Mental State (MEAMS) in order to assess the cognitive deficits consequent upon SAH. To assess the cognitive functioning of patients undergoing treatment for SAH of aneurysmal origin in the acute stage of the illness, using a modified form of the MEAMS. 49 patients participated in the study, none of whom had a previous history of neurological or psychiatric illness. The age of the patients ranged between 23-70 years. 35 (71%) patients received surgical treatment (clipping of the aneurysm neck) and in 14 (29%) the aneurysm was embolised. The patients were assessed on two occasions: the first on admission to the Neurosurgery department following the SAH, and on the second, following treatment to secure the aneurysm. A modified version of the MEAMS in two parallel versions was used in the assessment. The results obtained were evaluated with reference to a control group. A range of cognitive impairments was identified with the aid of the MEAMS in patients undergoing treatment for aneurysmal SAH. These included deficits in visual and auditory memory, executive, perceptual and visuo-spatial functions together with the tendency to perseverate. In those patients who underwent surgery, deficits were observed in the following areas: disorientation in relation to self, time and place; perceptual, memory and visuo-spatial impairments. The results obtained indicate that the Middlesex Elderly Assessment of Mental State, in the form used in the present study appears to be a sensitive and useful instrument for the screening of cognitive impairments in patients following SAH, in the acute stages of the illness.
Likova, Lora T.
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or “sketchpad,” for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw. PMID:22593738
Likova, Lora T
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or "sketchpad," for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw.
Top-down search for color prevents voluntary directing of attention to informative singleton cues.
Worschech, Franziska; Ansorge, Ulrich
2012-01-01
Visuo-spatial attention can be directed in a top-down controlled way to search for color targets and it can be captured by color contrasts, regardless of color identity. Here we tested whether participants can both search for a particular color target (e.g., red) and make use of a color-contrast cue that predicted the target's most likely position to direct their attention voluntarily. Our results show that this was impossible for the participants. Results support that top-down search for particular colors is incommensurate with directing attention to just any color contrast. The results are discussed in light of the current debates concerning the roles of color and color contrast for visuo-spatial attention.
Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.
Lüttgen, Jenna; Heuer, Herbert
2012-10-01
Robotic guidance is an engineered form of haptic-guidance training and intended to enhance motor learning in rehabilitation, surgery, and sports. However, its benefits (and pitfalls) are still debated. Here, we investigate the effects of different presentation modes on the reproduction of a spatiotemporal movement pattern. In three different groups of participants, the movement was demonstrated in three different modalities, namely visual, haptic, and visuo-haptic. After demonstration, participants had to reproduce the movement in two alternating recall conditions: haptic and visuo-haptic. Performance of the three groups during recall was compared with regard to spatial and dynamic movement characteristics. After haptic presentation, participants showed superior dynamic accuracy, whereas after visual presentation, participants performed better with regard to spatial accuracy. Added visual feedback during recall always led to enhanced performance, independent of the movement characteristic and the presentation modality. These findings substantiate the different benefits of different presentation modes for different movement characteristics. In particular, robotic guidance is beneficial for the learning of dynamic, but not of spatial movement characteristics.
Burin, Debora I.; Acion, Laura; Kurczek, Jake; Duff, Melissa C.; Tranel, Daniel; Jorge, Ricardo E.
2015-01-01
Two hypotheses about the role of the ventromedial prefrontal cortex (vmPFC) in narrative comprehension inferences, global semantic coherence versus socio-emotional perspective, were tested. Seven patients with vmPFC lesions and seven demographically matched healthy comparison participants read short narratives. Using the consistency paradigm, narratives required participants to make either an emotional or visuo-spatial inference, in which a target sentence provided consistent or inconsistent information with a previous emotional state of a character or a visuo-spatial location of an object. Healthy comparison participants made the inferences both for spatial and emotional stories, as shown by longer reading times for inconsistent critical sentences. For patients with vmPFC lesions, inconsistent sentences were read slower in the spatial stories, but not in the emotional ones. This pattern of results is compatible with the hypothesis that vmPFC contributes to narrative comprehension by supporting inferences about socio-emotional aspects of verbally described situations. PMID:24561428
Cassel, Raphaelle; Kelche, Christian; Lecourtier, Lucas; Cassel, Jean-Christophe
2012-05-01
Animals can perform goal-directed tasks by using response cues or place cues. The underlying memory systems are occasionally presented as competing. Using the double-H maze test (Pol-Bodetto et al.), we trained rats for response learning and, 24 h later, tested their memory in a 60-s probe trial using a new start place. A modest shift of the start place (translation: 60-cm to the left) provided a high misleading potential, whereas a marked shift (180° rotation; shift to the opposite) provided a low misleading potential. We analyzed each rat's first arm choice (to assess response vs. place memory retrieval) and its subsequent search for the former platform location (to assess the persistence in place memory or the shift from response to place memory). After the translation, response memory-based behavior was found in more than 90% rats (24/26). After the rotation, place memory-based behavior was observed in 50% rats, the others showing response memory or failing. Rats starting to use response cues were nevertheless able to subsequently shift to place ones. A posteriori behavioral analyses showed more and longer stops in rats starting their probe trial on the basis of place (vs. response) cues. These observations qualify the idea of competing memory systems for responses and places and are compatible with that of a cooperation between both systems according to principles of match/mismatch computation (at the start of a probe trial) and of error-driven adjustment (during the ongoing probe trial). Copyright © 2012 Elsevier B.V. All rights reserved.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco
2015-01-01
The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E. J.; Re, Marta; Esposito, Fabrizio; Sack, Alexander T.; Salle, Francesco Di
2015-01-01
Introduction The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. Methods To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. Results We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks. Conclusions Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network. PMID:25848951
Temporal grouping effects in musical short-term memory.
Gorin, Simon; Mengal, Pierre; Majerus, Steve
2018-07-01
Recent theoretical accounts of verbal and visuo-spatial short-term memory (STM) have proposed the existence of domain-general mechanisms for the maintenance of serial order information. These accounts are based on the observation of similar behavioural effects across several modalities, such as temporal grouping effects. Across two experiments, the present study aimed at extending these findings, by exploring a STM modality that has received little interest so far, STM for musical information. Given its inherent rhythmic, temporal and serial organisation, the musical domain is of interest for investigating serial order STM processes such as temporal grouping. In Experiment 1, the data did not allow to determine the presence or the absence of temporal grouping effects. In Experiment 2, we observed that temporal grouping of tone sequences during encoding improves short-term recognition for serially presented probe tones. Furthermore, the serial position curves included micro-primacy and micro-recency effects, which are the hallmark characteristic of temporal grouping. Our results suggest that the encoding of serial order information in musical STM may be supported by temporal positional coding mechanisms similar to those reported in the verbal domain.
Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables.
Le Pira, Francesco; Zappalà, Giuseppe; Saponara, Riccardo; Domina, Elisabetta; Restivo, Domenico; Reggio, Ester; Nicoletti, Alessandra; Giuffrida, Salvatore
2002-09-15
Several authors have recently reported a broad cognitive impairment in autosomal dominant cerebellar ataxias (ADCAs) patients. However, only a few studies on neuropsychological features in spinocerebellar ataxia type 2 (SCA2) patients are present in the current literature. The aim of this study is to evaluate the cognitive impairment in a wide sample of SCA2 patients and to verify the role of different disease-related factors (age of onset, disease duration, and clinical severity) on intellectual abilities. We administered a battery of neuropsychological tests assessing handedness, attention, short- and long-term verbal and visuo-spatial memory, executive functions, constructive abilities, general intellectual abilities and depression to 18 SCA2 patients belonging to eight families who came to our observation. Evidence of impaired verbal memory, executive functions and attention was found. The cognitive status was partially related to clinical severity rather than to disease duration or age at onset of symptoms. We partially confirmed data on cognitive defects already reported by others but we also found defective attention skills as well as significant lower performances in a nonverbal intelligence task.
ERIC Educational Resources Information Center
Zane, Emily
2016-01-01
This project used Event-Related Potentials (ERPs) to explore neurophysiological brain responses to prepositional phrases involving concrete and abstract reference nouns (e.g., "plate" and "moment," respectively) after the presentation of objects with varying spatial features. Prepositional phrases were headed by "in"…
The relation between navigation strategy and associative memory: An individual differences approach.
Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R
2016-04-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).
Constant, Martin; Mellet, Emmanuel
2018-01-01
The present study examined the relationship between left–right discrimination (LRD) performance and handedness, sex and cognitive abilities. In total, 31 men and 35 women – with a balanced ratio of left-and right-handers – completed the Bergen Left–Right Discrimination Test. We found an advantage of left-handers in both identifying left hands and in verifying “left” propositions. A sex effect was also found, as women had an overall higher error rate than men, and increasing difficulty impacted their reaction time more than it did for men. Moreover, sex interacted with handedness and manual preference strength. A negative correlation of LRD reaction time with visuo-spatial and verbal long-term memory was found independently of sex, providing new insights into the relationship between cognitive skills and performance on LRD. PMID:29636718
Constant, Martin; Mellet, Emmanuel
2018-01-01
The present study examined the relationship between left-right discrimination (LRD) performance and handedness, sex and cognitive abilities. In total, 31 men and 35 women - with a balanced ratio of left-and right-handers - completed the Bergen Left-Right Discrimination Test. We found an advantage of left-handers in both identifying left hands and in verifying "left" propositions. A sex effect was also found, as women had an overall higher error rate than men, and increasing difficulty impacted their reaction time more than it did for men. Moreover, sex interacted with handedness and manual preference strength. A negative correlation of LRD reaction time with visuo-spatial and verbal long-term memory was found independently of sex, providing new insights into the relationship between cognitive skills and performance on LRD.
Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect.
Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne
2015-01-01
Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields.
Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect
Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne
2015-01-01
Objectives Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Methods Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Results Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. Conclusions A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields. PMID:26247469
Blatt, Joana; Vellage, Anne; Baier, Bernhard; Müller, Notger G
2014-08-01
Attentional selection, i.e. filtering out of irrelevant sensory input and information storage are two crucial components of working memory (WM). It has been proposed that the two processes are mediated by different neurotransmitters, namely acetylcholine for attentional selection and dopamine for memory storage. However, this hypothesis has been challenged by others, who for example linked a lack in dopamine levels in the brain to filtering deficits. Here we tested the above mentioned hypothesis in two patient cohorts which either served as a proxy for a cholinergic or a dopaminergic deficit. The first group comprised 18 patients with amnestic mild cognitive impairment (aMCI), the second 22 patients with Parkinson׳s disease (PD). The two groups did not differ regarding their overall cognitive abilities. Both patient groups as well as a control group without neurological deficits (n=25) performed a visuo-spatial working memory task in which both the necessity to filter out irrelevant information and memory load, i.e. the number of items to be held in memory, were manipulated. In accordance with the primary hypothesis, aMCI patients displayed problems with filtering, i.e., were especially impaired when the task required ignoring distracting stimuli. PD patients on the other hand showed difficulties when memory load was increased suggesting that they mainly suffered from a storage deficit. In sum, this study underlines how the investigation of neurologic patients with a presumed neurotransmitter deficit can aid to clarify these neurotransmitters׳ contribution to specific cognitive functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn
2005-10-01
Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
Akhtar, Rizwan S; Xie, Sharon X; Chen, Yin J; Rick, Jacqueline; Gross, Rachel G; Nasrallah, Ilya M; Van Deerlin, Vivianna M; Trojanowski, John Q; Chen-Plotkin, Alice S; Hurtig, Howard I; Siderowf, Andrew D; Dubroff, Jacob G; Weintraub, Daniel
2017-01-01
Parkinson disease patients develop clinically significant cognitive impairment at variable times over their disease course, which is often preceded by milder deficits in memory, visuo-spatial, and executive domains. The significance of amyloid-β accumulation to these problems is unclear. We hypothesized that amyloid-β PET imaging by 18F-florbetapir, a radiotracer that detects fibrillar amyloid-β plaque deposits, would identify subjects with global cognitive impairment or poor performance in individual cognitive domains in non-demented Parkinson disease patients. We assessed 61 non-demented Parkinson disease patients with detailed cognitive assessments and 18F-florbetapir PET brain imaging. Scans were interpreted qualitatively (positive or negative) by two independent nuclear medicine physicians blinded to clinical data, and quantitatively by a novel volume-weighted method. The presence of mild cognitive impairment was determined through an expert consensus process using Level 1 criteria from the Movement Disorder Society. Nineteen participants (31.2%) were diagnosed with mild cognitive impairment and the remainder had normal cognition. Qualitative 18F-florbetapir PET imaging was positive in 15 participants (24.6%). Increasing age and presence of an APOE ε4 allele were associated with higher composite 18F-florbetapir binding. In multivariable models, an abnormal 18F-florbetapir scan by expert rating was not associated with a diagnosis of mild cognitive impairment. However, 18F-florbetapir retention values in the posterior cingulate gyrus inversely correlated with verbal memory performance. Retention values in the frontal cortex, precuneus, and anterior cingulate gyrus retention values inversely correlated with naming performance. Regional cortical amyloid-β amyloid, as measured by 18F-florbetapir PET, may be a biomarker of specific cognitive deficits in non-demented Parkinson disease patients.
Cognitive profile in Wilson's disease: a case series of 31 patients.
Wenisch, E; De Tassigny, A; Trocello, J-M; Beretti, J; Girardot-Tinant, N; Woimant, F
2013-12-01
Wilson's disease (WD) is a rare autosomal recessive disorder of copper metabolism. If untreated, WD, which is initially a liver disease, can turn into a multi-systemic disease with neurological involvement. Very few studies have described cognitive impairment in WD. The aim of this study is to report the cognitive profile of 31 treated WD patients. Patients were classed into two groups using the Unified Wilson Disease Rating Scale (UWDRS): WD patients without neurological signs (WD-N(-)) (n=13), and WD patients with neurological signs (WD-N(+)) (n=18). The patients participated in a neuropsychological assessment evaluating memory, executive function and visuo-spatial abilities. Both groups performed well for verbal intelligence and episodic memory skills. However, the majority of these patients exhibited altered performance for at least one cognitive test, particularly in the executive domain. The WD-N(+) group performed less well than the WD-N(-) group on cognitive tests involving rapid motor function, abstract thinking, working memory and top-down inhibitory control. Cognitive impairment in treated WD patients essentially affects executive function involving fronto-striatal circuits. Verbal intelligence and episodic memory abilities seem to be remarkably preserved. Neuropsychological assessment is a valuable tool to evaluate the presence and the consequences of these cognitive impairments in WD patients with or without neurological signs in the course of this chronic disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults?
Basak, Chandramallika; Boot, Walter R.; Voss, Michelle W.; Kramer, Arthur F.
2014-01-01
Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults. PMID:19140648
Pre-University Tuition in Science and Technology Can Influence Executive Functions
ERIC Educational Resources Information Center
Méndez, Marta; Arias, Natalia; Menéndez, José R.; Villar, José R.; Neira, Ángel; Romano, Pedro V.; Núñez, José Carlos; Arias, Jorge L.
2014-01-01
Introduction: Scientific and technological areas include tuition based on highly visuo-spatial specialization and problem solving. Spatial skills and problem solving are embedded in a curriculum that promotes understanding of Science and technical subjects. These abilities are related to the development of executive functions (EFs). We aim to…
Are Numerical Impairments Syndrome Specific? Evidence from Williams Syndrome and Down's Syndrome
ERIC Educational Resources Information Center
Paterson, Sarah J.; Girelli, Luisa; Butterworth, Brian; Karmiloff-Smith, Annette
2006-01-01
Background: Several theorists maintain that exact number abilities rely on language-relevant processes whereas approximate number calls on visuo-spatial skills. We chose two genetic disorders, Williams syndrome and Down's syndrome, which differ in their relative abilities in verbal versus spatial skills, to examine this hypothesis. Five…
Cerebral asymmetry for mental rotation: effects of response hand, handedness and gender.
Johnson, Blake W; McKenzie, Kirsten J; Hamm, Jeff P
2002-10-28
We assessed lateralization of brain function during mental rotation, measuring the scalp distribution of a 400-600 ms latency event-related potential (ERP) with 128 recording electrodes. Twenty-four subjects, consisting of equal numbers of dextral and sinistral males and females, performed a mental rotation task under two response conditions (dominant non-dominant hand). For males, ERPs showed a right parietal bias regardless of response hand. For females, the parietal ERPs were slightly left-lateralized when making dominant hand responses, but strongly right-lateralized when making non-dominant hand responses. These results support the notion that visuo-spatial processing is more bilaterally organized in females. However, left hemisphere resources may be allocated to response preparation when using the non-dominant hand, forcing visuo-spatial processing to the right hemisphere.
Substantia nigra hyperechogenicity is related to decline in verbal memory in healthy elderly adults.
Yilmaz, R; Behnke, S; Liepelt-Scarfone, I; Roeben, B; Pausch, C; Runkel, A; Heinzel, S; Niebler, R; Suenkel, U; Eschweiler, G W; Maetzler, W; Berg, D
2016-05-01
Deficits in cognition have been reported in Parkinson's disease (PD) already in the early and even in the pre-motor stages. Whilst substantia nigra hyperechogenicity measured by transcranial B-mode sonography (TCS) represents a strong PD marker and is associated with an increased risk for PD in still healthy individuals, its association with cognitive performance in prodromal PD stages is not well established. Two different cohorts of healthy elderly individuals were assessed by TCS and two different neuropsychological test batteries covering executive functions, verbal memory, language, visuo-constructional function and attention. Cognitive performance was compared between individuals with hyperechogenicity (SN+) and without hyperechogenicity (SN-). In both cohorts, SN+ individuals performed significantly worse than the SN- group in tests assessing verbal memory (word list delayed recall P = 0.05, logical memory II P < 0.017). Significant differences in Mini-Mental State Examination score (cohort 1, P = 0.02) and executive function tests (cohort 2, Stroop Color-Word Reading, P = 0.004) could only be shown in one of the two cohorts. No between-group effects were found in other cognitive tests and domains. These results indicate that individuals with the PD risk marker SN+ perform worse in verbal memory compared to SN- independent of the assessment battery. Memory performance should be assessed in detail in individuals at risk for PD. © 2016 EAN.
Temporal precision and the capacity of auditory-verbal short-term memory.
Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom
2017-12-01
The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.
Working memory operates over the same representations as attention
Xie, Jiushu; Xia, Tiansheng; Mo, Lei
2017-01-01
A recent study observed a working memory (WM) Stroop effect with a magnitude equivalent to that of the classic Stroop effect, indicating that WM operates over the same representations as attention. However, more research is needed to examine this proposal. One unanswered question is whether the WM Stroop effect occurs when the WM item and the perceptual task do not have an overlapping response set. We addressed this question in Experiment 1 by conducting an attentional word-color task and a WM word-color task. The results showed that a WM Stroop effect also occurred in that condition, as a word that only indirectly evoked a color representation could interfere with the color judgement in both the attentional task and WM task. In Experiment 2, we used a classic Simon task and a WM Simon task to examine whether holding visuo-spatial information rather than verbal information in WM could interfere with perceptual judgment as well. We observed a WM Simon effect of equivalent magnitude to that of the classic Simon effect. The well-known stimulus-response compatibility effect also existed in the WM domain. The two experiments together demonstrated that WM operates over the same representations as attention, which sheds new light on the hypothesis that working memory is internally directed attention. PMID:28604840
Working memory operates over the same representations as attention.
Chen, Ke; Ye, Yanyan; Xie, Jiushu; Xia, Tiansheng; Mo, Lei
2017-01-01
A recent study observed a working memory (WM) Stroop effect with a magnitude equivalent to that of the classic Stroop effect, indicating that WM operates over the same representations as attention. However, more research is needed to examine this proposal. One unanswered question is whether the WM Stroop effect occurs when the WM item and the perceptual task do not have an overlapping response set. We addressed this question in Experiment 1 by conducting an attentional word-color task and a WM word-color task. The results showed that a WM Stroop effect also occurred in that condition, as a word that only indirectly evoked a color representation could interfere with the color judgement in both the attentional task and WM task. In Experiment 2, we used a classic Simon task and a WM Simon task to examine whether holding visuo-spatial information rather than verbal information in WM could interfere with perceptual judgment as well. We observed a WM Simon effect of equivalent magnitude to that of the classic Simon effect. The well-known stimulus-response compatibility effect also existed in the WM domain. The two experiments together demonstrated that WM operates over the same representations as attention, which sheds new light on the hypothesis that working memory is internally directed attention.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Metcalfe, Arron W.S.; Swigart, Anna G.; Menon, Vinod
2014-01-01
The study of developmental disorders can provide a unique window into the role of domain-general cognitive abilities and neural systems in typical and atypical development. Mathematical disabilities (MD) are characterized by marked difficulty in mathematical cognition in the presence of preserved intelligence and verbal ability. Although studies of MD have most often focused on the role of core deficits in numerical processing, domain-general cognitive abilities, in particular working memory (WM), have also been implicated. Here we identify specific WM components that are impaired in children with MD and then examine their role in arithmetic problem solving. Compared to typically developing (TD) children, the MD group demonstrated lower arithmetic performance and lower visuo-spatial working memory (VSWM) scores with preserved abilities on the phonological and central executive components of WM. Whole brain analysis revealed that, during arithmetic problem solving, left posterior parietal cortex, bilateral dorsolateral and ventrolateral prefrontal cortex, cingulate gyrus and precuneus, and fusiform gyrus responses were positively correlated with VSWM ability in TD children, but not in the MD group. Additional analyses using a priori posterior parietal cortex regions previously implicated in WM tasks, demonstrated a convergent pattern of results during arithmetic problem solving. These results suggest that MD is characterized by a common locus of arithmetic and VSWM deficits at both the cognitive and functional neuroanatomical levels. Unlike TD children, children with MD do not use VSWM resources appropriately during arithmetic problem solving. This work advances our understanding of VSWM as an important domain-general cognitive process in both typical and atypical mathematical skill development. PMID:23896444
Positive Association of Video Game Playing with Left Frontal Cortical Thickness in Adolescents
Kühn, Simone; Lorenz, Robert; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Conrod, Patricia J.; Flor, Herta; Garavan, Hugh; Ittermann, Bernd; Loth, Eva; Mann, Karl; Nees, Frauke; Artiges, Eric; Paus, Tomas; Rietschel, Marcella; Smolka, Michael N.; Ströhle, Andreas; Walaszek, Bernadetta; Schumann, Gunter; Heinz, Andreas; Gallinat, Jürgen
2014-01-01
Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness. Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per week). A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral prefrontal cortex (DLPFC) and left frontal eye fields (FEFs). No regions showed cortical thinning in association with video gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in video games. The results may represent the biological basis of previously reported cognitive improvements due to video game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be studied in future longitudinal investigations. PMID:24633348
Tánczos, Tímea; Zádori, Dénes; Jakab, Katalin; Hnyilicza, Zsuzsanna; Klivényi, Péter; Keresztes, László; Engelhardt, József; Németh, Dezső; Vécsei, László
2014-01-01
Lightning-related injuries most often involve impairment of the functions of the central and peripheral nervous systems, usually including cognitive dysfunctions. We evaluated the cognitive deficit of a patient who had survived a lightning strike and measured the improvement after her cognitive training. This therapeutic method appears to be a powerful tool in the neurorehabilitation treatment. The aim of this case study was to prove the beneficial effects of cognitive training as part of the neurorehabilitation after a lightning strike. Six neuropsychological functions were examined in order to test the cognitive status of the patient before and after the 2-month cognitive training: phonological short-term memory (digit span test and word repetitions test), visuo-spatial short-term memory (Corsi Block Tapping Test), working memory (backward digit span test and listening span test), executive functions (letter and semantic fluencies), language functions (non-word repetition test, Pléh-Palotás-Lörik (PPL) test and sentence repetition test) and episodic memory (Rivermead Behavioral Memory Test and Mini Mental State Examination). We also utilized these tests in aged-matched healthy individuals so as to be able to characterize the domains of the observed improvements more precisely. The patient exhibited a considerable improvement in the backward digit span, semantic fluency, non-word repetition, PPL, sentence repetition and Rivermead Behavioral Memory tests. The cognitive training played an important role in the neurorehabilitation treatment of this lightning injury patient. It considerably improved her quality of life through the functional recovery.
Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load
ERIC Educational Resources Information Center
Santangelo, Valerio; Spence, Charles
2007-01-01
We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…
Relationship between Spatial Abilities, Mental Rotation and Functional Anatomy Learning
ERIC Educational Resources Information Center
Guillot, Aymeric; Champely, Stephane; Batier, Christophe; Thiriet, Patrice; Collet, Christian
2007-01-01
This study investigated the relationship between visuo-spatial representation, mental rotation (MR) and functional anatomy examination results. A total of 184 students completed the Group Embedded Figures Test (GEFT), Mental Rotation Test (MRT) and Gordon Test of Visual Imagery Control. The time spent on personal assignment was also considered.…
Dementia of frontal lobe type.
Neary, D; Snowden, J S; Northen, B; Goulding, P
1988-01-01
A significant proportion of patients with presenile dementia due to primary cerebral atrophy do not have Alzheimer's disease. One form of non-Alzheimer dementia may be designated as dementia of frontal lobe type (DFT), on the basis of a characteristic neuropsychological picture suggestive of frontal lobe disorder, confirmed by findings on single photon emission tomography. The case histories of seven patients exemplify the disorder: a presentation of social misconduct and personality change, unconcern and disinhibition, in the presence of physical well-being and few neurological signs. Assessment revealed economic and concrete speech with verbal stereotypes, variable memory impairment, and marked abnormalities on tasks sensitive to frontal lobe function. Visuo-spatial disorder was invariably absent. Comparisons of DFT and Alzheimer patients revealed qualitative differences in clinical presentation, neurological signs, profile of psychological disability, electroencephalography, single photon emission tomography and demography. DFT, which may represent forms of Pick's disease, may be more common than is often recognised. PMID:3258902
Capotosto, Paolo; Perrucci, M Gianni; Brunetti, Marcella; Del Gratta, Cosimo; Doppelmayr, Michael; Grabner, Roland H; Klimesch, Wolfgang; Neubauer, Aljoscha; Neuper, Christa; Pfurtscheller, Gert; Romani, Gian Luca; Babiloni, Claudio
2009-12-28
More intelligent persons (high IQ) typically present a higher cortical activity during tasks requiring the encoding of visuo-spatial information, namely higher alpha (about 10 Hz) event-related desynchronization (ERD; Doppelmayr et al., 2005). The opposite is true ("neural efficiency") during the retrieval of the encoded information, as revealed by both lower alpha ERD and/or lower theta (about 5 Hz) event-related synchronization (ERS; Grabner et al., 2004). To reconcile these contrasting results, here we evaluated the working hypothesis that more intelligent male subjects are characterized by a high cortical activity during the encoding phase. This deep encoding would explain the relatively low cortical activity for the retrieval of the encoded information. To test this hypothesis, electroencephalographic (EEG) data were recorded in 22 healthy young male volunteers during visuo-spatial information processing (encoding) and short-term retrieval of the encoded information. Cortical activity was indexed by theta ERS and alpha ERD. It was found that the higher the subjects' total IQ, the stronger the frontal theta ERS during the encoding task. Furthermore, the higher the subjects' total IQ, the lower the frontal high-frequency alpha ERD (about 10-12 Hz) during the retrieval task. This was not true for parietal counterpart of these EEG rhythms. These results reconcile previous contrasting evidence confirming that more intelligent persons do not ever show event-related cortical responses compatible with "neural efficiency" hypothesis. Rather, their cortical activity would depend on flexible and task-adapting features of frontal activation.
Marin, Dario; Madotto, Eleonora; Fabbro, Franco; Skrap, Miran; Tomasino, Barbara
2017-10-01
We addressed the neuroanatomical correlates of 54 right-brain-damaged neurosurgical patients on visuo-spatial design fluency, which is a measure of the ability to generate/plan a series of new abstract combinations in a flexible way. 22.2% of the patients were impaired. They failed the task because they did not use strategic behavior, in particular they used rotational strategy to a significantly lower extent and produced a significantly higher rate of perseverative errors. Overall performance did not correlate with neuropsychological tests, suggesting that proficient performance was independent of other cognitive domains. Performance significantly correlated with use of rotational strategy. Tasks related to executive functions such as psychomotor speed and capacity to shift were positively correlated to the number of strategies used to solve the task. Lesion analysis showed that the maximum density of the patients' lesions-obtained by subtracting the overlap of lesions of spared patients from the overlap of lesions of impaired patients-overlaps with the precentral gyrus, rolandic operculum/insula, superior/middle temporal gyrus/hippocampus and, at subcortical level, with part of the superior longitudinal fasciculus, external capsule, retrolenticular part of the internal capsule and sagittal stratum (inferior longitudinal fasciculus and inferior fronto-occipital fasciculus). These areas are part of the fronto-parietal-temporal network known to be involved in top-down control of visuo-spatial attention, suggesting that the mechanisms and the strategies needed for proficient performance are essentially visuo-spatial in nature.
Association between MRI structural features and cognitive measures in pediatric multiple sclerosis
NASA Astrophysics Data System (ADS)
Amoroso, N.; Bellotti, R.; Fanizzi, A.; Lombardi, A.; Monaco, A.; Liguori, M.; Margari, L.; Simone, M.; Viterbo, R. G.; Tangaro, S.
2017-09-01
Multiple sclerosis (MS) is an inflammatory and demyelinating disease associated with neurodegenerative processes that lead to brain structural changes. The disease affects mostly young adults, but 3-5% of cases has a pediatric onset (POMS). Magnetic Resonance Imaging (MRI) is generally used for diagnosis and follow-up in MS patients, however the most common MRI measures (e.g. new or enlarging T2-weighted lesions, T1-weighted gadolinium- enhancing lesions) have often failed as surrogate markers of MS disability and progression. MS is clinically heterogenous with symptoms that can include both physical changes (such as visual loss or walking difficulties) and cognitive impairment. 30-50% of POMS experience prominent cognitive dysfunction. In order to investigate the association between cognitive measures and brain morphometry, in this work we present a fully automated pipeline for processing and analyzing MRI brain scans. Relevant anatomical structures are segmented with FreeSurfer; besides, statistical features are computed. Thus, we describe the data referred to 12 patients with early POMS (mean age at MRI: 15.5 +/- 2.7 years) with a set of 181 structural features. The major cognitive abilities measured are verbal and visuo-spatial learning, expressive language and complex attention. Data was collected at the Department of Basic Sciences, Neurosciences and Sense Organs, University of Bari, and exploring different abilities like the verbal and visuo-spatial learning, expressive language and complex attention. Different regression models and parameter configurations are explored to assess the robustness of the results, in particular Generalized Linear Models, Bayes Regression, Random Forests, Support Vector Regression and Artificial Neural Networks are discussed.
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Line and word bisection in right-brain-damaged patients with left spatial neglect.
Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S
2014-01-01
Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support line and word bisection performance of right-brain-damaged patients with left spatial neglect, and healthy participants.
Working memory and executive functions in transient global amnesia.
Quinette, Peggy; Guillery, Bérengère; Desgranges, Béatrice; de la Sayette, Vincent; Viader, Fausto; Eustache, Francis
2003-09-01
Transient global amnesia (TGA) is usually considered to produce a profound impairment of long-term episodic memory, while at the same time sparing working memory. However, this neuropsychological dissociation has rarely been examined in detail. While a few studies have assessed some components of working memory in TGA, the results that have been obtained are far from conclusive. To clarify this issue, we carried out a comprehensive investigation of working memory in 10 patients during a TGA attack. In the first study, we report the results from three patients examined with a battery of neuropsychological tests designed to assess each of the three subcomponents of Baddeley's model of working memory. In a second study, seven different patients underwent neuropsychological investigations that focused specifically on the central executive system, using a protocol derived from a study by Miyake and colleagues. Our findings showed that subcomponents of working memory, such as the phonological loop and visuo-spatial sketch pad, were spared in TGA patients. Specific executive functions that entailed inhibitory control, dual task performance, updating and shifting mechanisms were also found to be normal. However, we found significantly impaired performance for the Brown-Peterson test, and that TGA patients were significantly impaired in the recollection of their episodic memories. They also made reduced numbers of 'remember' compared with 'know' judgments in the episodic memory test several days after TGA. On the basis of our findings, it would appear that the episodic memory deficit during TGA is not related to elementary aspects of executive functioning. Our data also highlight the nature of the cognitive mechanisms involved in the Brown-Peterson task, which may well depend on long-term memory (such as the process of semantic encoding). Lastly, the selective deficit in recollective episodic memories observed in TGA may be principally related to medial temporal lobe abnormalities that have been reported in this syndrome.
Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M
2014-06-30
Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impairment (aMCI) patients and 40 healthy controls (HC). The neuropsychological battery tested for impairment in executive functions, as well as memory and visuo-spatial skills, the results of which were compared across study groups. In addition, we calculated composite scores for memory (learning, recall, recognition) and executive functions (verbal fluency, cognitive flexibility, working memory). We hypothesized that the nature of memory impairment in ALS will be different from those exhibited by aMCI patients. Patient groups exhibited significant differences in their type of memory deficit, with the ALS group showing impairment only in recognition, whereas aMCI patients showed short and delayed recall performance deficits as well as reduced short-term capacity. Regression analysis revealed a significant impact of executive function on memory performance exclusively for the ALS group, accounting for one fifth of their memory performance. Interestingly, merging all sub scores into a single memory and an executive function score obscured these differences. The presented results indicate that the interpretation of neuropsychological scores needs to take the distinct cognitive profiles in ALS and aMCI into consideration. Importantly, the observed memory deficits in ALS were distinctly different from those observed in aMCI and can be explained only to some extent in the context of comorbid (coexisting) executive dysfunction. These findings highlight the qualitative differences in temporal lobe dysfunction between ALS and aMCI patients, and support temporal lobe dysfunction as a mechanism underlying the distinct cognitive impairments observed in ALS.
Pawełczyk, Tomasz; Pawełczyk, Agnieszka; Białkowska, Jolanta; Jabłkowski, Maciej; Strzelecki, Dominik; Dworniak, Daniela; Rabe-Jabłońska, Jolanta
2008-01-01
Chronic hepatitis C (CHC) patients treated with peg-interferon alpha and ribavirin (peg-IFNalpha/RBV) complain of irritability, attention and memory disturbances which may indicate cognitive impairment associated with treatment. Assessment of the probable connection between peg-IFNalpha/RBV treatment and the development of cognitive disturbances in CHC patients. 47 CHC patients were divided into two groups: experimental (n=26) and control (n=21). The experimental group patients were given peg-IFNalpha2a (n=18) or peg-IFNalpha2b (n=8) plus RBV in standard doses as recommended by the manufacturers. Control group patients did not receive the above treatment. Both groups underwent a neuropsychological examination consisting of R. Brickenkamp d2 test, Auditory Verbal Learning Test and Hooper Visual Organization Test at the beginning (t=0) and after 12 weeks of treatment or observation (t=1). The experimental group patients showed significant deterioration in all the measured cognitive functions in t=1 comparing to t=0. Cognitive decline was not seen in the control group. The observed cognitive performance changes could not be correlated sufficiently enough with the presence of organic affective disorders diagnosed according to ICD-10 criteria. The findings suggest that peg-IFNalpha/RBV therapy of CHC patients is connected with the deterioration in cognitive functioning including attention, auditory verbal memory and visuo-spatial skills. These changes may be the effect of peg-IFNalpha-induced neurotransmission abnormalities in the dorso-lateral prefrontal cortex, anterior cingulate cortex, hippocampus and parieto-orbital cortical regions and can impair patients' ability to drive a motor vehicle, operate machinery, or their engagement in hazardous activities requiring attention and coordination. Medical professionals should thoroughly inform patients about the possibility of cognitive decline associated with peg-IFNalpha/RBV therapy.
ERIC Educational Resources Information Center
Cardini, Flavia; Haggard, Patrick; Ladavas, Elisabetta
2013-01-01
We have investigated the relation between visuo-tactile interactions and the self-other distinction. In the Visual Enhancement of Touch (VET) effect, non-informative vision of one's own hand improves tactile spatial perception. Previous studies suggested that looking at "another"person's hand could also enhance tactile perception, but did not…
Ezzati, Ali; Katz, Mindy J; Zammit, Andrea R; Lipton, Michael L; Zimmerman, Molly E; Sliwinski, Martin J; Lipton, Richard B
2016-12-01
The hippocampus plays a critical role in verbal and spatial memory, thus any pathological damage to this formation may lead to cognitive impairment. It is suggested that right and left hippocampi are affected differentially in healthy or pathologic aging. The purpose of this study was to test the hypothesis that verbal episodic memory performance is associated with left hippocampal volume (HV) while spatial memory is associated with right HV. 115 non-demented adults over age 70 were drawn from the Einstein Aging Study. Verbal memory was measured using the free recall score from the Free and Cued Selective Reminding Test - immediate recall (FCSRT-IR), logical memory immediate and delayed subtests (LM-I and LM-II) from the Wechsler Memory Scale-Revised (WMS-R). Spatial Memory was measured using a computerized dot memory paradigm that has been validated for use in older adults. All participants underwent 3T MRI with subsequent automatized measurement of the volume of each hippocampus. The sample had a mean age of 78.7 years (SD=5.0); 57% were women, and 52% were white. Participants had a mean of 14.3 years (SD=3.5) of education. In regression models, two tests of verbal memory (FCSRT-IR free recall and LM-II) were positively associated with left HV, but not with right HV. Performance on the spatial memory task was associated with right HV, but not left HV. Our findings support the hypothesis that the left hippocampus plays a critical role in episodic verbal memory, while right hippocampus might be more important for spatial memory processing among non-demented older adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peijnenborgh, Janneke C A W; Hurks, Petra M; Aldenkamp, Albert P; Vles, Johan S H; Hendriksen, Jos G M
2016-10-01
The effectiveness of working memory (WM) training programmes is still a subject of debate. Previous reviews were heterogeneous with regard to participant characteristics of the studies included. To examine whether these programmes are of added value for children with learning disabilities (LDs), a systematic meta-analytic review was undertaken focusing specifically on LDs. Thirteen randomised controlled studies were included, with a total of 307 participants (age range = 5.5-17, Mean age across studies = 10.61, SD = 1.77). Potential moderator variables were examined, i.e., age, type of LD, training programme, training dose, design type, and type of control group. The meta-analysis indicated reliable short-term improvements in verbal WM, visuo-spatial WM, and word decoding in children with LDs after training (effect sizes ranged between 0.36 and 0.63), when compared to the untrained control group. These improvements sustained over time for up to eight months. Furthermore, children > 10 years seemed to benefit more in terms of verbal WM than younger children, both immediately after training as well as in the long-term. Other moderator variables did not have an effect on treatment efficacy.
Taverniers, John; Taylor, Marcus K; Smeets, Tom
2013-05-01
The aim of this paper is twofold. First, it explores delayed effects of high endogenously evoked cortisol concentrations on visuo-spatial declarative memory. Subsequently, it applies multiple mediation (MM) analyses to reveal path processes between stress and cognitive performance in a sample of 24 male Special Forces (SF) candidates (mean age = 27.0 years, SD = 4.1). The SF candidates were randomly assigned to a control (n = 12) or an intense stress group (n = 12), and cortisol secretion for the intense stress condition was triggered by a brusque 60 min prisoner of war exercise. Stress exposure provoked robust increases in cortisol concentrations and a significant decline in immediate recall performance, measured with the Rey-Osterrieth Complex Figure (ROCF). The relative retrieval differences in regard to the ROCF persisted even after a recovery period of 24 h, as both groups showed similar levels of memory decline over 24 h. Next, the study applied a MM design that involved distribution-independent asymptotic and resampling strategies to extend traditional bivariate analyses. MM results showed that ROCF performance was mediated by increases in cortisol concentrations. Considering the studied variables, the current analysis was the first to provide statistical support for the generally accepted thesis that cortisol secretion in itself, rather than subjective strain or the experimental treatment, affects cognitive performance. The revelation of such path processes is important because it establishes process identification and may refine existing paradigms.
How Visuo-Spatial Mental Imagery Develops: Image Generation and Maintenance
Wimmer, Marina C.; Maras, Katie L.; Robinson, Elizabeth J; Doherty, Martin J; Pugeault, Nicolas
2015-01-01
Two experiments examined the nature of visuo-spatial mental imagery generation and maintenance in 4-, 6-, 8-, 10-year old children and adults (N = 211). The key questions were how image generation and maintenance develop (Experiment 1) and how accurately children and adults coordinate mental and visually perceived images (Experiment 2). Experiment 1 indicated that basic image generation and maintenance abilities are present at 4 years of age but the precision with which images are generated and maintained improves particularly between 4 and 8 years. In addition to increased precision, Experiment 2 demonstrated that generated and maintained mental images become increasingly similar to visually perceived objects. Altogether, findings suggest that for simple tasks demanding image generation and maintenance, children attain adult-like precision younger than previously reported. This research also sheds new light on the ability to coordinate mental images with visual images in children and adults. PMID:26562296
Fractionating spatial memory with glutamate receptor subunit-knockout mice.
Bannerman, David M
2009-12-01
In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.
Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe
2015-04-01
That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Borella, Erika; Carbone, Elena; Pastore, Massimiliano; De Beni, Rossana; Carretti, Barbara
2017-01-01
Objective: The aim of the present study was to explore whether individual characteristics such as age, education, vocabulary, and baseline performance in a working memory (WM) task—similar to the one used in the training (criterion task)—predict the short- and long-term specific gains and transfer effects of a verbal WM training for older adults. Method: Four studies that adopted the Borella et al. (2010) verbal WM training procedure were found eligible for our analysis as they included: healthy older adults who attended either the training sessions (WM training group), or alternative activities (active control group); the same measures for assessing specific gains (on the criterion WM task), and transfer effects (nearest on a visuo-spatial WM task, near on short-term memory tasks and far on a measure of fluid intelligence, a measure of processing speed and two inhibitory measures); and a follow-up session. Results: Linear mixed models confirmed the overall efficacy of the training, in the short-term at least, and some maintenance effects. In the trained group, the individual characteristics considered were found to contribute (albeit only modestly in some cases) to explaining the effects of the training. Conclusions: Overall, our findings suggest the importance of taking individual characteristics and individual differences into account when examining WM training gains in older adults. PMID:28381995
Marini, Francesco; Tagliabue, Chiara F; Sposito, Ambra V; Hernandez-Arieta, Alejandro; Brugger, Peter; Estévez, Natalia; Maravita, Angelo
2014-01-01
The way in which humans represent their own bodies is critical in guiding their interactions with the environment. To achieve successful body-space interactions, the body representation is strictly connected with that of the space immediately surrounding it through efficient visuo-tactile crossmodal integration. Such a body-space integrated representation is not fixed, but can be dynamically modulated by the use of external tools. Our study aims to explore the effect of using a complex tool, namely a functional prosthesis, on crossmodal visuo-tactile spatial interactions in healthy participants. By using the crossmodal visuo-tactile congruency paradigm, we found that prolonged training with a mechanical hand capable of distal hand movements and providing sensory feedback induces a pattern of interference, which is not observed after a brief training, between visual stimuli close to the prosthesis and touches on the body. These results suggest that after extensive, but not short, training the functional prosthesis acquires a visuo-tactile crossmodal representation akin to real limbs. This finding adds to previous evidence for the embodiment of functional prostheses in amputees, and shows that their use may also improve the crossmodal combination of somatosensory feedback delivered by the prosthesis with visual stimuli in the space around it, thus effectively augmenting the patients' visuomotor abilities. © 2013 Published by Elsevier Ltd.
BDNF and TNF-α polymorphisms in memory.
Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R
2013-09-01
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of Working Memory for Verbal-Spatial Associations
ERIC Educational Resources Information Center
Cowan, Nelson; Saults, J. Scott; Morey, Candice C.
2006-01-01
Verbal-to-spatial associations in working memory may index a core capacity for abstract information limited in the amount concurrently retained. However, what look like associative, abstract representations could instead reflect verbal and spatial codes held separately and then used in parallel. We investigated this issue in two experiments on…
Enhanced visual statistical learning in adults with autism
Roser, Matthew E.; Aslin, Richard N.; McKenzie, Rebecca; Zahra, Daniel; Fiser, József
2014-01-01
Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuo-spatial processing and short-term memory, with some evidence of supra-normal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. Child and adult participants with ASD, and age-matched control participants, viewed multi-shape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. After this passive exposure phase, a post-test revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, while performance in children with ASD was no different than controls. These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features. PMID:25151115
Vestibular stimulation, spatial hemineglect and dysphasia, selective effects.
Vallar, G; Papagno, C; Rusconi, M L; Bisiach, E
1995-09-01
The selectivity of the effects of vestibular stimulation was investigated in a left brain-damaged patient suffering from right visuo-spatial hemineglect and severe dysplasia. Vestibular stimulation temporarily improved the former but not the latter disorder. These results support the view that this treatment improves hemineglect by a specific effect, running counter the rightward distortion of egocentric co-ordinates, rather than by a general hemispheric activation.
Ekstrom, Arne D; Bookheimer, Susan Y
2007-10-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.
Plancher, Gaën; Gyselinck, Valérie; Piolino, Pascale
2018-01-01
Memory is one of the most important cognitive functions in a person's life as it is essential for recalling personal memories and performing many everyday tasks. Although a huge number of studies have been conducted in the field, only a few of them investigated memory in realistic situations, due to methodological issues. The various tools that have been developed using virtual environments (VEs) have gained popularity in cognitive psychology and neuropsychology because they enable to create naturalistic and controlled situations, and are thus particularly adapted to the study of episodic memory (EM), for which an ecological evaluation is of prime importance. EM is the conscious recollection of personal events combined with their phenomenological and spatiotemporal encoding contexts. Using an original paradigm in a VE, the objective of the present study was to characterize the construction of episodic memories. While the concept of working memory has become central in the understanding of a wide range of cognitive functions, its role in the integration of episodic memories has seldom been assessed in an ecological context. This experiment aimed at filling this gap by studying how EM is affected by concurrent tasks requiring working memory resources in a realistic situation. Participants navigated in a virtual town and had to memorize as many elements in their spatiotemporal context as they could. During learning, participants had either to perform a concurrent task meant to prevent maintenance through the phonological loop, or a task aimed at preventing maintenance through the visuospatial sketchpad, or no concurrent task. EM was assessed in a recall test performed after learning through various scores measuring the what, where and when of the memories. Results showed that, compared to the control condition with no concurrent task, the prevention of maintenance through the phonological loop had a deleterious impact only on the encoding of central elements. By contrast, the prevention of visuo-spatial maintenance interfered both with the encoding of the temporal context and with the binding. These results suggest that the integration of realistic episodic memories relies on different working memory processes that depend on the nature of the traces.
Aging and the Effects of Exploratory Behavior on Spatial Memory.
Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W
2016-03-01
The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.
Pupil Size Tracks Attentional Performance In Attention-Deficit/Hyperactivity Disorder.
Wainstein, G; Rojas-Líbano, D; Crossley, N A; Carrasco, X; Aboitiz, F; Ossandón, T
2017-08-15
Attention-deficit/hyperactivity disorder (ADHD) diagnosis is based on reported symptoms, which carries the potential risk of over- or under-diagnosis. A biological marker that helps to objectively define the disorder, providing information about its pathophysiology, is needed. A promising marker of cognitive states in humans is pupil size, which reflects the activity of an 'arousal' network, related to the norepinephrine system. We monitored pupil size from ADHD and control subjects, during a visuo-spatial working memory task. A sub group of ADHD children performed the task twice, with and without methylphenidate, a norepinephrine-dopamine reuptake inhibitor. Off-medication patients showed a decreased pupil diameter during the task. This difference was no longer present when patients were on-medication. Pupil size correlated with the subjects' performance and reaction time variability, two vastly studied indicators of attention. Furthermore, this effect was modulated by medication. Through pupil size, we provide evidence of an involvement of the noradrenergic system during an attentional task. Our results suggest that pupil size could serve as a biomarker in ADHD.
Spatial working memory and attention skills are predicted by maternal stress during pregnancy.
Plamondon, André; Akbari, Emis; Atkinson, Leslie; Steiner, Meir; Meaney, Michael J; Fleming, Alison S
2015-01-01
Experimental evidence in rodents shows that maternal stress during pregnancy (MSDP) negatively impacts spatial learning and memory in the offspring. We aim to investigate the association between MSDP (i.e., life events) and spatial working memory, as well as attention skills (attention shifting and attention focusing), in humans. The moderating roles of child sex, maternal anxiety during pregnancy and postnatal care are also investigated. Participants were 236 mother-child dyads that were followed from the second trimester of pregnancy until 4 years postpartum. Measurements included questionnaires and independent observations. MSDP was negatively associated with attention shifting at 18 months when concurrent maternal anxiety was low. MSDP was associated with poorer spatial working memory at 4 years of age, but only for boys who experienced poorer postnatal care. Consistent with results observed in rodents, MSDP was found to be associated with spatial working memory and attention skills. These results point to postnatal care and maternal anxiety during pregnancy as potential targets for interventions that aim to buffer children from the detrimental effects of MSDP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik
2016-10-01
To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
A Principal Components Analysis of Dynamic Spatial Memory Biases
ERIC Educational Resources Information Center
Motes, Michael A.; Hubbard, Timothy L.; Courtney, Jon R.; Rypma, Bart
2008-01-01
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed…
ERIC Educational Resources Information Center
Schutte, Anne R.; Spencer, John P.
2009-01-01
This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds' spatial recall responses are biased toward reference axes after short memory delays, whereas…
Motor Skill Learning in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Bo, Jin; Lee, Chi-Mei
2013-01-01
Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…
Bilateral Hippocampal Dysfunction in Schizophrenia
Hanlon, Faith M.; Houck, Jon M.; Pyeatt, Clinton J.; Lundy, S. Laura; Euler, Matthew J.; Weisend, Michael P.; Thoma, Robert J.; Bustillo, Juan R.; Miller, Gregory A.; Tesche, Claudia D.
2014-01-01
The hippocampus has long been known to be important for memory, with the right hippocampus particularly implicated in nonverbal/visuo-spatial memory and left in verbal/narrative or episodic memory. Despite this hypothesized lateralized functional difference, there has not been a single task that has been shown to activate both the right and left hippocampus differentially, dissociating the two, using neuroimaging. The transverse patterning (TP) task is a strong candidate for this purpose, as it has been shown in human and nonhuman animal studies to theoretically and empirically depend on the hippocampus. In TP, participants choose between stimuli presented in pairs, with the correct choice being a function of the specific pairing. In this project, TP was used to assess lateralized hippocampal function by varying its dependence on verbal material, with the goal of dissociating the two hippocampi. Magnetoencephalographic (MEG) data were collected while controls performed verbal and nonverbal versions of TP in order to verify and validate lateralized activation within the hippocampi. Schizophrenia patients were evaluated to determine whether they exhibited a lateralized hippocampal deficit. As hypothesized, patients’ mean level of behavioral performance was poorer than controls’ on both verbal and nonverbal TP. In contrast, patients had no decrement in performance on a verbal and nonverbal non-hippocampal-dependent matched control task. Also, controls but not patients showed more right hippocampal activation during nonverbal TP and more left hippocampal activation during verbal TP. These data demonstrate the capacity to assess lateralized hippocampal function and suggest a bilateral hippocampal behavioral and activation deficit in schizophrenia. PMID:21763438
NMDA Signaling in CA1 Mediates Selectively the Spatial Component of Episodic Memory
ERIC Educational Resources Information Center
Place, Ryan; Lykken, Christy; Beer, Zachery; Suh, Junghyup; McHugh, Thomas J.; Tonegawa, Susumu; Eichenbaum, Howard; Sauvage, Magdalena M.
2012-01-01
Recent studies focusing on the memory for temporal order have reported that CA1 plays a critical role in the memory for the sequences of events, in addition to its well-described role in spatial navigation. In contrast, CA3 was found to principally contribute to the memory for the association of items with spatial or contextual information in…
Videogame training strategy-induced change in brain function during a complex visuomotor task.
Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F
2012-07-01
Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Jacquin-Courtois, S; Rode, G; Pavani, F; O'Shea, J; Giard, M H; Boisson, D; Rossetti, Y
2010-03-01
Unilateral neglect is a disabling syndrome frequently observed following right hemisphere brain damage. Symptoms range from visuo-motor impairments through to deficient visuo-spatial imagery, but impairment can also affect the auditory modality. A short period of adaptation to a rightward prismatic shift of the visual field is known to improve a wide range of hemispatial neglect symptoms, including visuo-manual tasks, mental imagery, postural imbalance, visuo-verbal measures and number bisection. The aim of the present study was to assess whether the beneficial effects of prism adaptation may generalize to auditory manifestations of neglect. Auditory extinction, whose clinical manifestations are independent of the sensory modalities engaged in visuo-manual adaptation, was examined in neglect patients before and after prism adaptation. Two separate groups of neglect patients (all of whom exhibited left auditory extinction) underwent prism adaptation: one group (n = 6) received a classical prism treatment ('Prism' group), the other group (n = 6) was submitted to the same procedure, but wore neutral glasses creating no optical shift (placebo 'Control' group). Auditory extinction was assessed by means of a dichotic listening task performed three times: prior to prism exposure (pre-test), upon prism removal (0 h post-test) and 2 h later (2 h post-test). The total number of correct responses, the lateralization index (detection asymmetry between the two ears) and the number of left-right fusion errors were analysed. Our results demonstrate that prism adaptation can improve left auditory extinction, thus revealing transfer of benefit to a sensory modality that is orthogonal to the visual, proprioceptive and motor modalities directly implicated in the visuo-motor adaptive process. The observed benefit was specific to the detection asymmetry between the two ears and did not affect the total number of responses. This indicates a specific effect of prism adaptation on lateralized processes rather than on general arousal. Our results suggest that the effects of prism adaptation can extend to unexposed sensory systems. The bottom-up approach of visuo-motor adaptation appears to interact with higher order brain functions related to multisensory integration and can have beneficial effects on sensory processing in different modalities. These findings should stimulate the development of therapeutic approaches aimed at bypassing the affected sensory processing modality by adapting other sensory modalities.
Visual and Analytic Strategies in Geometry
ERIC Educational Resources Information Center
Kospentaris, George; Vosniadou, Stella; Kazic, Smaragda; Thanou, Emilian
2016-01-01
We argue that there is an increasing reliance on analytic strategies compared to visuospatial strategies, which is related to geometry expertise and not on individual differences in cognitive style. A Visual/Analytic Strategy Test (VAST) was developed to investigate the use of visuo-spatial and analytic strategies in geometry in 30 mathematics…
ERIC Educational Resources Information Center
Lord, Thomas R.
1984-01-01
The visuo-spatial centers of the right brain are crucial to being able to problem solve or conceptualize (two abilities necessary for success in understanding science). Yet, current educational format is almost exclusively a left-brain undertaking. Reasons why educators should emphasize right-brain understanding in educational curricula at all…
ERIC Educational Resources Information Center
Cocchini, Gianna; Watling, Rosamond; Della Sala, Sergio; Jansari, Ashok
2007-01-01
Successful interaction with the environment depends upon our ability to retain and update visuo-spatial information of both front and back egocentric space. Several studies have observed that healthy people tend to show a displacement of the egocentric frame of reference towards the left. However representation of space behind us (back space) has…
A Rehabilitation Protocol for Empowering Spatial Orientation in MCI. A Pilot Study.
Gadler, Erminia; Grassi, Alessandra; Riva, Giuseppe
2009-01-01
Spatial navigation is among the first cognitive functions to be impaired in Alzheimer's disease [1] and deficit in this domain is detectable earlier in patients with Mild Cognitive Impairment [2]. Since efficacy of cognitive training in persons with MCI was successfully assessed [3], we developed a multitasking training protocol using virtual environments for stimulating attention, perception and visuo-spatial cognition in order to empower spatial orientation in MCI. Two healthy elders were exposed to the training over a period of four weeks and both showed improved performances in attention and orientation after the end of the intervention.
Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G
2017-09-01
Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.
Clewett, David; Sakaki, Michiko; Huang, Ringo; Nielsen, Shawn E.; Mather, Mara
2017-01-01
Recent findings indicate that emotional arousal can enhance memory consolidation of goal-relevant stimuli while impairing it for irrelevant stimuli. According to one recent model, these goal-dependent memory tradeoffs are driven by arousal-induced release of norepinephrine (NE), which amplifies neural gain in target sensory and memory processing brain regions. Past work also shows that ovarian hormones modulate activity in the same regions thought to support NE’s effects on memory, such as the amygdala, suggesting that men and women may be differentially susceptible to arousal’s dual effects on episodic memory. Here, we aimed to determine the neurohormonal mechanisms that mediate arousal-biased competition processes in memory. In a competitive visuo-attention task, participants viewed images of a transparent object overlaid on a background scene and explicitly memorized one of these stimuli while ignoring the other. Participants then heard emotional or neutral audio-clips and provided a subjective arousal rating. Hierarchical generalized linear modeling (HGLM) analyses revealed that greater pre-to-post task increases in salivary alpha-amylase (sAA), a biomarker of noradrenergic activity, was associated with significantly greater arousal-enhanced memory tradeoffs in women than in men. These sex-dependent effects appeared to result from phasic and background noradrenergic activity interacting to suppress task-irrelevant representations in women but enhancing them in men. Additionally, in naturally cycling women, low ovarian hormone levels interacted with increased noradrenergic activity to amplify memory selectivity independently of emotion-induced arousal. Together these findings suggest that increased noradrenergic transmission enhances preferential consolidation of goal-relevant memory traces according to phasic arousal and ovarian hormone levels in women. PMID:28324703
Clewett, David; Sakaki, Michiko; Huang, Ringo; Nielsen, Shawn E; Mather, Mara
2017-06-01
Recent findings indicate that emotional arousal can enhance memory consolidation of goal-relevant stimuli while impairing it for irrelevant stimuli. According to one recent model, these goal-dependent memory tradeoffs are driven by arousal-induced release of norepinephrine (NE), which amplifies neural gain in target sensory and memory processing brain regions. Past work also shows that ovarian hormones modulate activity in the same regions thought to support NE's effects on memory, such as the amygdala, suggesting that men and women may be differentially susceptible to arousal's dual effects on episodic memory. Here, we aimed to determine the neurohormonal mechanisms that mediate arousal-biased competition processes in memory. In a competitive visuo-attention task, participants viewed images of a transparent object overlaid on a background scene and explicitly memorized one of these stimuli while ignoring the other. Participants then heard emotional or neutral audio-clips and provided a subjective arousal rating. Hierarchical generalized linear modeling (HGLM) analyses revealed that greater pre-to-post task increases in salivary alpha-amylase (sAA), a biomarker of noradrenergic activity, was associated with significantly greater arousal-enhanced memory tradeoffs in women than in men. These sex-dependent effects appeared to result from phasic and background noradrenergic activity interacting to suppress task-irrelevant representations in women but enhancing them in men. Additionally, in naturally cycling women, low ovarian hormone levels interacted with increased noradrenergic activity to amplify memory selectivity independently of emotion-induced arousal. Together these findings suggest that increased noradrenergic transmission enhances preferential consolidation of goal-relevant memory traces according to phasic arousal and ovarian hormone levels in women. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hoshi, Eiji
2013-01-01
Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
Effects of normal aging on visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2002-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuo-motor plasticity is a form of behavioral neural plasticity, which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into microgravity or an underwater environment. To determine the effects of aging on visuo-motor plasticity, we chose the simple and easily measured paradigm of visual-motor rearrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel modeling techniques for 73 subjects, aged 20 to 80 years. We found no statistically significant difference in measures of visuo-motor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
Working-memory performance is related to spatial breadth of attention.
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2015-11-01
Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.
Numbers Are Associated with Different Types of Spatial Information Depending on the Task
ERIC Educational Resources Information Center
van Dijck, Jean-Philippe; Gevers, Wim; Fias, Wim
2009-01-01
In this study, we examined the nature of the spatial-numerical associations underlying the SNARC-effect by imposing a verbal or spatial working memory load during a parity judgment and a magnitude comparison task. The results showed a double dissociation between the type of working memory load and type of task. The SNARC-effect disappeared under…
Platz, Thomas; Schüttauf, Johannes; Aschenbach, Julia; Mengdehl, Christine; Lotze, Martin
2016-01-01
The study sought to alter visual spatial attention in young healthy subjects by a neuronavigated inhibitory rTMS protocol (cTBS-600) to right brain areas thought to be involved in visual attentional processes, i.e. the temporoparietal junction (TPJ) and the posterior middle frontal gyrus (pMFG), and to test the reversibility of effects by an additional consecutive cTBS to the homologue left brain cortical areas. Healthy subjects showed a leftward bias of the egocentric perspective for both visual-perceptive and visual-exploratory tasks specifically for items presented in the left hemifield. cTBS to the right TPJ, and less systematically to the right pMFG reduced this bias for visuo-spatial and exploratory visuo-motor behaviour. Further, a consecutive cTBS to the left TPJ changed the bias again towards the left for a visual-perceptive task. The evidence supports the notion of an involvement of the right TPJ (and pMFG) in spatial visual attention. The observations further indicate that inhibitory non-invasive brain stimulation (cTBS) to the left TPJ has a potential for reversing a rightward bias of spatial attention when the right TPJ is dysfunctional. Accordingly, the findings could have implications for therapeutic rTMS development for right brain damaged patients with visual neglect.
The neural basis of monitoring goal progress
Benn, Yael; Webb, Thomas L.; Chang, Betty P. I.; Sun, Yu-Hsuan; Wilkinson, Iain D.; Farrow, Tom F. D.
2014-01-01
The neural basis of progress monitoring has received relatively little attention compared to other sub-processes that are involved in goal directed behavior such as motor control and response inhibition. Studies of error-monitoring have identified the dorsal anterior cingulate cortex (dACC) as a structure that is sensitive to conflict detection, and triggers corrective action. However, monitoring goal progress involves monitoring correct as well as erroneous events over a period of time. In the present research, 20 healthy participants underwent functional magnetic resonance imagining (fMRI) while playing a game that involved monitoring progress toward either a numerical or a visuo-spatial target. The findings confirmed the role of the dACC in detecting situations in which the current state may conflict with the desired state, but also revealed activations in the frontal and parietal regions, pointing to the involvement of processes such as attention and working memory (WM) in monitoring progress over time. In addition, activation of the cuneus was associated with monitoring progress toward a specific target presented in the visual modality. This is the first time that activation in this region has been linked to higher-order processing of goal-relevant information, rather than low-level anticipation of visual stimuli. Taken together, these findings identify the neural substrates involved in monitoring progress over time, and how these extend beyond activations observed in conflict and error monitoring. PMID:25309380
Gerlai, R; Adams, B; Fitch, T; Chaney, S; Baez, M
2002-08-01
mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.
Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J
2016-01-01
Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137
Virtual Human Analogs to Rodent Spatial Pattern Separation and Completion Memory Tasks
ERIC Educational Resources Information Center
Paleja, Meera; Girard, Todd A.; Christensen, Bruce K.
2011-01-01
Spatial pattern separation (SPS) and spatial pattern completion (SPC) have played an increasingly important role in computational and rodent literatures as processes underlying associative memory. SPS and SPC are complementary processes, allowing the formation of unique representations and the reconstruction of complete spatial environments based…
Hsu, Wei L; Ma, Yun L; Liu, Yen C; Lee, Eminy H Y
2017-11-28
Smad4 is a critical effector of TGF-β signaling that regulates a variety of cellular functions. However, its role in the brain has rarely been studied. Here, we examined the molecular mechanisms underlying the post-translational regulation of Smad4 function by SUMOylation, and its role in spatial memory formation. In the hippocampus, Smad4 is SUMOylated by the E3 ligase PIAS1 at Lys-113 and Lys-159. Both spatial training and NMDA injection enhanced Smad4 SUMOylation. Inhibition of Smad4 SUMOylation impaired spatial learning and memory in rats by downregulating TPM2, a gene associated with skeletal myopathies. Similarly, knockdown of TPM2 expression impaired spatial learning and memory, while TPM2 mRNA and protein expression increased after spatial training. Among the TPM2 mutations associated with skeletal myopathies, the TPM2E122K mutation was found to reduce TPM2 expression and impair spatial learning and memory in rats. We have identified a novel role of Smad4 SUMOylation and TPM2 in learning and memory formation. These results suggest that patients with skeletal myopathies who carry the TPM2E122K mutation may also have deficits in learning and memory functions.
Right-hemispheric dominance for visual remapping in humans.
Pisella, L; Alahyane, N; Blangero, A; Thery, F; Blanc, S; Pelisson, D
2011-02-27
We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans--and present additional original data--which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.
Two speed factors of visual recognition independently correlated with fluid intelligence.
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).
Chanes, Lorena; Chica, Ana B.; Quentin, Romain; Valero-Cabré, Antoni
2012-01-01
The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network. PMID:22615759
Right-hemispheric dominance for visual remapping in humans
Pisella, L.; Alahyane, N.; Blangero, A.; Thery, F.; Blanc, S.; Pelisson, D.
2011-01-01
We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans—and present additional original data—which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized. PMID:21242144
The lasting memory enhancements of retrospective attention
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-01-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756
Individual Differences in a Spatial-Semantic Virtual Environment.
ERIC Educational Resources Information Center
Chen, Chaomei
2000-01-01
Presents two empirical case studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. Discusses information visualization in information systems; cognitive factors, including associative memory, spatial ability, and visual memory; user satisfaction; and cognitive abilities and search…
Thermodynamic Model of Spatial Memory
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Allen, P.
1998-03-01
We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.
An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information
Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn
2011-01-01
Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871
Audio-Visual, Visuo-Tactile and Audio-Tactile Correspondences in Preschoolers.
Nava, Elena; Grassi, Massimo; Turati, Chiara
2016-01-01
Interest in crossmodal correspondences has recently seen a renaissance thanks to numerous studies in human adults. Yet, still very little is known about crossmodal correspondences in children, particularly in sensory pairings other than audition and vision. In the current study, we investigated whether 4-5-year-old children match auditory pitch to the spatial motion of visual objects (audio-visual condition). In addition, we investigated whether this correspondence extends to touch, i.e., whether children also match auditory pitch to the spatial motion of touch (audio-tactile condition) and the spatial motion of visual objects to touch (visuo-tactile condition). In two experiments, two different groups of children were asked to indicate which of two stimuli fitted best with a centrally located third stimulus (Experiment 1), or to report whether two presented stimuli fitted together well (Experiment 2). We found sensitivity to the congruency of all of the sensory pairings only in Experiment 2, suggesting that only under specific circumstances can these correspondences be observed. Our results suggest that pitch-height correspondences for audio-visual and audio-tactile combinations may still be weak in preschool children, and speculate that this could be due to immature linguistic and auditory cues that are still developing at age five.
Gueguen, Marc; Vuillerme, Nicolas; Isableu, Brice
2012-01-01
Background The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect. Methodology/Principal Findings Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the visual dependent subject. Conclusions: Taken together, these findings emphasize the importance of identifying individual spatial FOR preferences to assess the efficiency of our interaction with the environment whilst performing spatial tasks. PMID:22509295
NASA Astrophysics Data System (ADS)
Huang, Shih-Chieh Douglas
In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation (visual modality and gestures) and visuo-haptic simulation (visual modality, gestures, and somatosensory information). A pilot study involving N = 23 college students examined how using different types of visuo-haptic representation in instruction affected people's mental model construction for physics systems. Participants' abilities to construct mental models were operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Findings from this pilot study revealed that, while both simulations significantly improved participants' mental modal construction for physics systems, visuo-haptic simulation was significantly better than visuo-gestural simulation. In addition, clinical interviews suggested that participants' mental model construction for physics systems benefited from receiving visuo-haptic simulation in a tutorial prior to the instruction stage. A dissertation study involving N = 96 college students examined how types of visuo-haptic representation in different applications support participants' mental model construction for physics systems. Participant's abilities to construct mental models were again operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Participants' physics misconceptions were also measured before and after the grounded learning experience. Findings from this dissertation study not only revealed that visuo-haptic simulation was significantly more effective in promoting mental model construction and remedying participants' physics misconceptions than visuo-gestural simulation, they also revealed that visuo-haptic simulation was more effective during the priming stage than during the instruction stage. Interestingly, the effects of visuo-haptic simulation in priming and visuo-haptic simulation in instruction on participants' pretest-to-posttest gain scores for a basic physics system appeared additive. These results suggested that visuo-haptic simulation is effective in physics learning, especially when it is used during the priming stage.
Cappagli, Giulia; Finocchietti, Sara; Baud-Bovy, Gabriel; Cocchi, Elena; Gori, Monica
2017-01-01
Since it has been shown that spatial development can be delayed in blind children, focused sensorimotor trainings that associate auditory and motor information might be used to prevent the risk of spatial-related developmental delays or impairments from an early age. With this aim, we proposed a new technological device based on the implicit link between action and perception: ABBI (Audio Bracelet for Blind Interaction) is an audio bracelet that produces a sound when a movement occurs by allowing the substitution of the visuo-motor association with a new audio-motor association. In this study, we assessed the effects of an extensive but entertaining sensorimotor training with ABBI on the development of spatial hearing in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR). The training required the participants to play several spatial games individually and/or together with the psychomotor therapist 1 h per week for 3 months: the spatial games consisted of exercises meant to train their ability to associate visual and motor-related signals from their body, in order to foster the development of multisensory processes. We measured spatial performance by asking participants to indicate the position of one single fixed (static condition) or moving (dynamic condition) sound source on a vertical sensorized surface. We found that spatial performance of congenitally blind but not low vision children is improved after the training, indicating that early interventions with the use of science-driven devices based on multisensory capabilities can provide consistent advancements in therapeutic interventions, improving the quality of life of children with visual disability. PMID:29097987
Electrophysiological evidence for Audio-visuo-lingual speech integration.
Treille, Avril; Vilain, Coriandre; Schwartz, Jean-Luc; Hueber, Thomas; Sato, Marc
2018-01-31
Recent neurophysiological studies demonstrate that audio-visual speech integration partly operates through temporal expectations and speech-specific predictions. From these results, one common view is that the binding of auditory and visual, lipread, speech cues relies on their joint probability and prior associative audio-visual experience. The present EEG study examined whether visual tongue movements integrate with relevant speech sounds, despite little associative audio-visual experience between the two modalities. A second objective was to determine possible similarities and differences of audio-visual speech integration between unusual audio-visuo-lingual and classical audio-visuo-labial modalities. To this aim, participants were presented with auditory, visual, and audio-visual isolated syllables, with the visual presentation related to either a sagittal view of the tongue movements or a facial view of the lip movements of a speaker, with lingual and facial movements previously recorded by an ultrasound imaging system and a video camera. In line with previous EEG studies, our results revealed an amplitude decrease and a latency facilitation of P2 auditory evoked potentials in both audio-visual-lingual and audio-visuo-labial conditions compared to the sum of unimodal conditions. These results argue against the view that auditory and visual speech cues solely integrate based on prior associative audio-visual perceptual experience. Rather, they suggest that dynamic and phonetic informational cues are sharable across sensory modalities, possibly through a cross-modal transfer of implicit articulatory motor knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Owens, Matthew; Stevenson, Jim; Norgate, Roger; Hadwin, Julie A
2008-10-01
Working memory skills are positively associated with academic performance. In contrast, high levels of trait anxiety are linked with educational underachievement. Based on Eysenck and Calvo's (1992) processing efficiency theory (PET), the present study investigated whether associations between anxiety and educational achievement were mediated via poor working memory performance. Fifty children aged 11-12 years completed verbal (backwards digit span; tapping the phonological store/central executive) and spatial (Corsi blocks; tapping the visuospatial sketchpad/central executive) working memory tasks. Trait anxiety was measured using the State-Trait Anxiety Inventory for Children. Academic performance was assessed using school administered tests of reasoning (Cognitive Abilities Test) and attainment (Standard Assessment Tests). The results showed that the association between trait anxiety and academic performance was significantly mediated by verbal working memory for three of the six academic performance measures (math, quantitative and non-verbal reasoning). Spatial working memory did not significantly mediate the relationship between trait anxiety and academic performance. On average verbal working memory accounted for 51% of the association between trait anxiety and academic performance, while spatial working memory only accounted for 9%. The findings indicate that PET is a useful framework to assess the impact of children's anxiety on educational achievement.
Li, Jieying; Wu, Liyong; Tang, Yi; Zhou, Aihong; Wang, Fen; Xing, Yi; Jia, Jianping
2018-05-10
Posterior cortical atrophy (PCA) is a group of clinical syndromes characterized by visuospatial and visuoperceptual impairment, with memory relatively preserved. Although PCA is pathologically almost identical to Alzheimer's disease (AD), they have different cognitive features. Those differences have only rarely been reported in any Chinese population. The purpose of the study is to establish neuropsychological tests that distinguish the clinical features of PCA from early onset AD (EOAD). Twenty-one PCA patients, 20 EOAD patients, and 20 healthy controls participated in this study. Patients had disease duration of ≤4 years. All participants completed a series of neuropsychological tests to evaluate their visuospatial, visuoperceptual, visuo-constructive, language, executive function, memory, calculation, writing, and reading abilities. The cognitive features of PCA and EOAD were compared. All the neuropsychological test scores showed that both the PCA and EOAD patients were significantly more impaired than people in the control group. However, PCA patients were significantly more impaired than EOAD patients in visuospatial, visuoperceptual, and visuo-constructive function, as well as in handwriting, and reading Chinese characters. The profile of neuropsychological test results highlights cognitive features that differ between PCA and EOAD. One surprising result is that the two syndromes could be distinguished by patients' ability to read and write Chinese characters. Tests based on these characteristics could therefore form a brief PCA neuropsychological examination that would improve the diagnosis of PCA.
Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J
2010-09-01
Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.
Broussard, John I; Acion, Laura; De Jesús-Cortés, Héctor; Yin, Terry; Britt, Jeremiah K; Salas, Ramiro; Costa-Mattioli, Mauro; Robertson, Claudia; Pieper, Andrew A; Arciniegas, David B; Jorge, Ricardo
2018-01-01
Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.
Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen
2012-05-01
Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.
A New Look to a Classic Issue: Reasoning and Academic Achievement at Secondary School
Gómez-Veiga, Isabel; Vila Chaves, José O.; Duque, Gonzalo; García Madruga, Juan A.
2018-01-01
Higher-order thinking abilities such as abstract reasoning and meaningful school learning occur sequentially. The fulfillment of these tasks demands that people activate and use all of their working memory resources in a controlled and supervised way. The aims of this work were: (a) to study the interplay between two new reasoning measures, one mathematical (Cognitive Reflection Test) and the other verbal (Deductive Reasoning Test), and a third classical visuo-spatial reasoning measure (Raven Progressive Matrices Test); and (b) to investigate the relationship between these measures and academic achievement. Fifty-one 4th grade secondary school students participated in the experiment and completed the three reasoning tests. Academic achievement measures were the final numerical scores in seven basic subjects. The results demonstrated that cognitive reflection, visual, and verbal reasoning are intimately related and predicts academic achievement. This work confirms that abstract reasoning constitutes the most important higher-order cognitive ability that underlies academic achievement. It also reveals the importance of dual processes, verbal deduction and metacognition in ordinary teaching and learning at school. PMID:29643823
Interaction of cerebral hemispheres and artistic thinking
NASA Astrophysics Data System (ADS)
Nikolaenko, Nikolay N.
1998-07-01
Study of drawings by patients with local lesions of the right or left hemisphere allows to understand how artistic thinking is supported by brain structures. The role of the right hemisphere is significant at the early stage of creative process. The right hemisphere is a generator of nonverbal visuo-spatial thinking. It operates with blurred nonverbal images and arrange them in a visual space. With the help of iconic signs the right hemisphere reflects the world and creates perceptive visual standards which are stored in the long-term right hemisphere memory. The image, which appeared in the `inner' space, should be transferred into a principally different language, i.e. a left hemispheric sign language. This language operates with a number of discrete units, logical succession and learned grammar rules. This process can be explained by activation (information) transfer from the right hemisphere to the left one. Thus, natural and spontaneous creative process, which is finished by a conscious effort, can be understood as an activation impulse transfer from the right hemisphere to the left one and back.
A New Look to a Classic Issue: Reasoning and Academic Achievement at Secondary School.
Gómez-Veiga, Isabel; Vila Chaves, José O; Duque, Gonzalo; García Madruga, Juan A
2018-01-01
Higher-order thinking abilities such as abstract reasoning and meaningful school learning occur sequentially. The fulfillment of these tasks demands that people activate and use all of their working memory resources in a controlled and supervised way. The aims of this work were: (a) to study the interplay between two new reasoning measures, one mathematical (Cognitive Reflection Test) and the other verbal (Deductive Reasoning Test), and a third classical visuo-spatial reasoning measure (Raven Progressive Matrices Test); and (b) to investigate the relationship between these measures and academic achievement. Fifty-one 4th grade secondary school students participated in the experiment and completed the three reasoning tests. Academic achievement measures were the final numerical scores in seven basic subjects. The results demonstrated that cognitive reflection, visual, and verbal reasoning are intimately related and predicts academic achievement. This work confirms that abstract reasoning constitutes the most important higher-order cognitive ability that underlies academic achievement. It also reveals the importance of dual processes, verbal deduction and metacognition in ordinary teaching and learning at school.
Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J
2011-03-01
Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Kemner, Chantal; van Ewijk, Lizet; van Engeland, Herman; Hooge, Ignace
2008-01-01
Subjects with PDD excel on certain visuo-spatial tasks, amongst which visual search tasks, and this has been attributed to enhanced perceptual discrimination. However, an alternative explanation is that subjects with PDD show a different, more effective search strategy. The present study aimed to test both hypotheses, by measuring eye movements…
Subitizing Reflects Visuo-Spatial Object Individuation Capacity
ERIC Educational Resources Information Center
Piazza, Manuela; Fumarola, Antonia; Chinello, Alessandro; Melcher, David
2011-01-01
Subitizing is the immediate apprehension of the exact number of items in small sets. Despite more than a 100 years of research around this phenomenon, its nature and origin are still unknown. One view posits that it reflects a number estimation process common for small and large sets, which precision decreases as the number of items increases,…
Visualisierungen im Lehr-Lern-Process (Visualizations in the Process of Teaching and Learning).
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Zink, Thomas; Pfeiffer, Michael
1996-01-01
Discusses the role of visualization of information in learning. Theorizes that the comprehension of visualizations is a process of structure mapping between a visuo-spatial configuration and a mental model. Tests the model and finds differences in the use of text and picture information to answer different kinds of text questions. (DSK)
ERIC Educational Resources Information Center
Fidler, Deborah; Hepburn, Susan; Rogers, Sally
2006-01-01
Background: Though the Down syndrome behavioural phenotype has been described as involving relative strengths in visuo-spatial processing and sociability, and relative weaknesses in verbal skills and motor planning, the early emergence of this phenotypic pattern of strengths and weaknesses has not yet been fully explored. Method: In this study, we…
Differential association between MAOA, ADHD and neuropsychological functioning in boys and girls.
Rommelse, Nanda N J; Altink, Marieke E; Arias-Vásquez, Alejandro; Buschgens, Cathelijne J M; Fliers, Ellen; Faraone, Stephen V; Buitelaar, Jan K; Sergeant, Joseph A; Oosterlaan, Jaap; Franke, Barbara
2008-12-05
Attention-deficit/hyperactivity disorder (ADHD) is more common in boys than in girls. It has been hypothesized that this sex difference might be related to genes on the X-chromosome, like Monoamine Oxidase A (MAOA). Almost all studies on the role of MAOA in ADHD have focused predominantly on boys, making it unknown whether MAOA also has an effect on ADHD in girls, and few studies have investigated the relationship between MAOA and neuropsychological functioning, yet this may provide insight into the pathways leading from genotype to phenotype. The current study set out to examine the relationship between MAOA, ADHD, and neuropsychological functioning in both boys (265 boys with ADHD and 89 male non-affected siblings) and girls (85 girls with ADHD and 106 female non-affected siblings). A haplotype was used based on three single nucleotide polymorphisms (SNPs) (rs12843268, rs3027400, and rs1137070). Two haplotypes (GGC and ATT) captured 97% of the genetic variance in the investigated MAOA SNPs. The ATT haplotype was more common in non-affected siblings (P = 0.025), conferring a protective effect for ADHD in both boys and girls. The target and direction of the MAOA effect on neuropsychological functioning was different in boys and girls: The ATT haplotype was associated with poorer motor control in boys (P = 0.002), but with better visuo-spatial working memory in girls (P = 0.01). These findings suggest that the genetic and neuropsychological mechanisms underlying ADHD may be different in boys and girls and underline the importance of taking into account sex effects when studying ADHD. Copyright 2008 Wiley-Liss, Inc.
Holographic Associative Memory System Using A Thresholding Microchannel Spatial Light Modulator
NASA Astrophysics Data System (ADS)
Song, Q. W.; Yu, Francis T.
1989-05-01
Experimental implementation of a holographic optical associative memory system using a thresholding microchannel spatial light modulator (MSLM) is presented. The first part of the system is basically a joint transform correlator, in which a liquid crystal light valve is used as a square-law converter for the inner product of the addressing and input memories. The MSLM is used as an active element to recall the associated data. If the device is properly thresholded, the system is capable of improving the quality of the output image.
The lasting memory enhancements of retrospective attention.
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-07-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.
Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.
Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng
2016-01-01
Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.
Crocker, N.; Riley, E.P.; Mattson, S.N.
2014-01-01
Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323
Crocker, Nicole; Riley, Edward P; Mattson, Sarah N
2015-01-01
The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Subjects were 56 children (29 AE, 27 CON) who were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory, and visual memory data were entered together on Step 1 followed by group on Step 2, and the interaction terms on Step 3. Model 1 accounted for a significant amount of variance in both mathematics achievement measures; however, model fit improved with the addition of group on Step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Nordberg, Ann; Dahlgren Sandberg, Annika; Miniscalco, Carmela
2015-01-01
Research on retelling ability and cognition is limited in children with cerebral palsy (CP) and speech impairment. To explore the impact of expressive and receptive language, narrative discourse dimensions (Narrative Assessment Profile measures), auditory and visual memory, theory of mind (ToM) and non-verbal cognition on the retelling ability of children with CP and speech impairment. Fifteen speaking children with speech impairment (seven girls, eight boys) (mean age = 11 years, SD = 1;4 years), and different types of CP and different levels of gross motor and cognitive function participated in the present study. Story retelling skills were tested and analysed with the Bus Story Test (BST) and the Narrative Assessment Profile (NAP). Receptive language ability was tested with the Test for Reception of Grammar-2 (TROG-2) and the Peabody Picture Vocabulary Test - IV (PPVT-IV). Non-verbal cognitive level was tested with the Raven's coloured progressive matrices (RCPM), memory functions assessed with the Corsi block-tapping task (CB) and the Digit Span from the Wechsler Intelligence Scale for Children-III. ToM was assessed with the false belief items of the two story tests "Kiki and the Cat" and "Birthday Puppy". The children had severe problems with retelling ability corresponding to an age-equivalent of 5;2-6;9 years. Receptive and expressive language, visuo-spatial and auditory memory, non-verbal cognitive level and ToM varied widely within and among the children. Both expressive and receptive language correlated significantly with narrative ability in terms of NAP total scores, so did auditory memory. The results suggest that retelling ability in the children with CP in the present study is dependent on language comprehension and production, and memory functions. Consequently, it is important to examine retelling ability together with language and cognitive abilities in these children in order to provide appropriate support. © 2015 Royal College of Speech and Language Therapists.
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta
2013-01-01
Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. UMIN Clinical Trial Registry 000005618.
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta
2013-01-01
Background Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. Methods We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Results and Discussion Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Conclusions Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. Trial Registration UMIN Clinical Trial Registry 000005618. PMID:23405164
Wang, Y H; Huang, F Y; Zheng, Y; Shi, G S; Wang, L; Liao, S S
2017-04-10
Objective: To examine the association between social isolation and cognitive function among the elderly living in the communities of Daqing city. Methods: A total of 981 community residents aged 60 years or over, were surveyed with a questionnaire. Both Lubben Social Network Scale-6 (LSNS-6) and Montreal Congnitive Assessment (MoCA) Changsha Versions were used to respectively screen the status of social isolation and cognitive function, on these elderly. Results: The average age was 71 years old for the 981 study participants. 10.60 % (104/981) of the participants were assessed as having the status of social isolation, 9.48 % (93/981) as having marginal family ties and 13.97 % (137/981) as having marginal friendship ties. Results from the multivariate linear regression analysis revealed that participants with higher scores of LSNS-6 presenting better cognitive function score, with a partial regression coefficient as 0.10 ( P <0.01). The MoCA scores in participants with social isolation (20.38±5.54) were significantly lower than the ones without social isolation (22.10±5.01) and the difference was statistically significant ( P <0.01). Social isolation was significantly related to the domain scores on visuo-spatial constructional executive functions ( P =0.02), naming ( P =0.03), language ( P =0.01) and delayed memory functions ( P <0.01), but not with other domains as concentration ( P =0.33), orientation ( P =0.27) or abstraction ( P =0.49). Conclusion: The findings suggested that social isolation was mainly caused by the lack of friendship ties and associated with cognitive function and among the elderly in Daqing city, Heilongjiang province.
Hershey, Tamara; Lillie, Rema; Sadler, Michelle; White, Neil H
2004-06-01
In a previous retrospective study, severe hypoglycemia (SH) was associated with decreased long-term spatial memory in children with type 1 diabetes mellitus (T1DM). In this study, we tested the hypothesis that prospectively ascertained SH would also be associated with decreased spatial long-term memory over time. Children with T1DM (n = 42) and sibling controls (n = 25) performed a spatial delayed response (SDR) task with short and long delays and other neuropsychological tests at baseline and after 15 months of monitoring. Extreme glycemic events and other medical complications were recorded prospectively during follow-up. Fourteen T1DM children experienced at least one episode of SH during the follow-up period (range = 1-5). After controlling for long-delay SDR performance at baseline, age, gender, and age of onset, the presence of SH during the prospective period was statistically associated with decreased long-delay SDR performance at follow-up (semipartial r = -0.38, p = 0.017). This relationship was not seen with short-delay SDR or with verbal or object memory, attention, or motor speed. These results, together with previously reported data, support the hypothesis that SH has specific, negative effects on spatial memory skills in T1DM children.
Not That Heart-Stopping After All: Visuo-Cardiac Synchrony Does Not Boost Self-Face Attribution
Porciello, Giuseppina; Daum, Moritz M.; Menghini, Cristina; Brugger, Peter; Lenggenhager, Bigna
2016-01-01
Recent experimental evidence and theoretical models suggest that an integration of exteroceptive and interoceptive signals underlies several key aspects of the bodily self. While it has been shown that self-attribution of both the hand and the full-body are altered by conflicting extero-exteroceptive (e.g. visuo-tactile) and extero-interoceptive (e.g. visuo-cardiac) information, no study has thus far investigated whether self-attribution of the face might be altered by visuo-cardiac stimulation similarly to visuo-tactile stimulation. In three independent groups of participants we presented ambiguous (i.e. morphed with a stranger's face) self-faces flashing synchronously or asynchronously with the participants’ heartbeat. We then measured the subjective percentages of self-face attribution of morphed stimuli. To control for a potential effect of visuo-cardiac synchrony on familiarity, a task assessing the attribution of a familiar face was introduced. Moreover, different durations of visuo-cardiac flashing and different degrees of asynchronicity were used. Based on previous studies showing that synchronous visuo-cardiac stimulation generally increases self-attribution of the full-body and the hand, and that synchronous visuo-tactile stimulation increases self-face attribution, we predicted higher self-face attribution during the synchronous visuo-cardiac flashing of the morphed stimuli. In contrast to this hypothesis, the results showed no difference between synchronous and asynchronous stimulation on self-face attribution in any of the three studies. We thus conclude that visuo-cardiac synchrony does not boost self-attribution of the face as it does that of hand and full-body. PMID:27541587
Not That Heart-Stopping After All: Visuo-Cardiac Synchrony Does Not Boost Self-Face Attribution.
Porciello, Giuseppina; Daum, Moritz M; Menghini, Cristina; Brugger, Peter; Lenggenhager, Bigna
2016-01-01
Recent experimental evidence and theoretical models suggest that an integration of exteroceptive and interoceptive signals underlies several key aspects of the bodily self. While it has been shown that self-attribution of both the hand and the full-body are altered by conflicting extero-exteroceptive (e.g. visuo-tactile) and extero-interoceptive (e.g. visuo-cardiac) information, no study has thus far investigated whether self-attribution of the face might be altered by visuo-cardiac stimulation similarly to visuo-tactile stimulation. In three independent groups of participants we presented ambiguous (i.e. morphed with a stranger's face) self-faces flashing synchronously or asynchronously with the participants' heartbeat. We then measured the subjective percentages of self-face attribution of morphed stimuli. To control for a potential effect of visuo-cardiac synchrony on familiarity, a task assessing the attribution of a familiar face was introduced. Moreover, different durations of visuo-cardiac flashing and different degrees of asynchronicity were used. Based on previous studies showing that synchronous visuo-cardiac stimulation generally increases self-attribution of the full-body and the hand, and that synchronous visuo-tactile stimulation increases self-face attribution, we predicted higher self-face attribution during the synchronous visuo-cardiac flashing of the morphed stimuli. In contrast to this hypothesis, the results showed no difference between synchronous and asynchronous stimulation on self-face attribution in any of the three studies. We thus conclude that visuo-cardiac synchrony does not boost self-attribution of the face as it does that of hand and full-body.
Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex
Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang
2014-01-01
Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575
Visuo-oculomotor skills related to the visual demands of sporting environments.
Ceyte, Hadrien; Lion, Alexis; Caudron, Sébastien; Perrin, Philippe; Gauchard, Gérome C
2017-01-01
The aim of this study was to assess the visuo-oculomotor skills of gaze orientation in selected sport activities relative to visual demands of the sporting environment. Both temporal and spatial demands of the sporting environment were investigated: The latency and accuracy of horizontal saccades and the gain of the horizontal smooth pursuit of the sporting environment were investigated in 16 fencers, 19 tennis players, 12 gymnasts, 9 swimmers and 18 sedentary participants. For the saccade test, two sequences were tested: In the fixed sequence, participants knew in advance the time interval between each target, as well as the direction and the amplitude of its reappearance; in the Freyss sequence however, the spatial changes of the target (direction and amplitude) were known in advance by participants but the time interval between each target was unknown. For the smooth-pursuit test, participants were instructed to smoothly track a target moving in a predictable sinusoidal, horizontal way without corrective ocular saccades, nor via anticipation or head movements. The results showed no significant differences between specificities of selected sporting activities via the saccade latency (although shorter than in non-athletes), contrary to saccade accuracy and the gain of smooth pursuit. Higher saccade accuracy was observed overall in fencers compared to non-athletes and all other sportsmen with the exception of tennis players. In the smooth-pursuit task, only tennis players presented a significantly higher gain compared to non-athletes and gymnasts. These sport-specific characteristics of the visuo-oculomotor skills are discussed with regard to the different cognitive skills such as attentional allocation and cue utilization ability as well as with regard to the difference in motor preparation.
Allen, Kevin; Fuchs, Elke C.; Jaschonek, Hannah; Bannerman, David M.; Monyer, Hannah
2011-01-01
Gap junctions containing connexin-36 (Cx36) electrically couple interneurons in many brain regions and synchronize their activity. We used Cx36 knockout mice (Cx36−/−) to study the importance of electrical coupling between interneurons for spatial coding in the hippocampus and for different forms of hippocampus-dependent spatial memory. Recordings in behaving mice revealed that the spatial selectivity of hippocampal pyramidal neurons was reduced and less stable in Cx36−/− mice. Altered network activity was reflected in slower theta oscillations in the mutants. Temporal coding, assessed by determining the presence and characteristics of theta phase precession, had different dynamics in Cx36−/− mice compared to controls. At the behavioral level, Cx36−/− mice displayed impaired short-term spatial memory but normal spatial reference memory. These results highlight the functional role of electrically coupled interneurons for spatial coding and cognition. Moreover, they suggest that the precise spatial selectivity of place cells is not essential for normal performance on spatial tasks assessing associative long-term memory. PMID:21525295
Altered prefrontal function with aging: insights into age-associated performance decline.
Solbakk, Anne-Kristin; Fuhrmann Alpert, Galit; Furst, Ansgar J; Hale, Laura A; Oga, Tatsuhide; Chetty, Sundari; Pickard, Natasha; Knight, Robert T
2008-09-26
We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.
Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui
2017-05-01
Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.
The Influence of Visual Ability on Learning and Memory Performance in 13 Strains of Mice
ERIC Educational Resources Information Center
Brown, Richard E.; Wong, Aimee A.
2007-01-01
We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial…
Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping
2014-09-01
This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.
Sleep enhances a spatially mediated generalization of learned values
Tolat, Anisha; Spiers, Hugo J.
2015-01-01
Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered objects, resulting in an impaired memory for the value of high-valued objects. Our results are consistent with (a) spatial context helping to bind items together in long-term memory and serve as a basis for generalizing across memories and (b) sleep mediating memory effects on salient/reward-related items. PMID:26373834
A new approach for implementation of associative memory using volume holographic materials
NASA Astrophysics Data System (ADS)
Habibi, Mohammad; Pashaie, Ramin
2012-02-01
Associative memory, also known as fault tolerant or content-addressable memory, has gained considerable attention in last few decades. This memory possesses important advantages over the more common random access memories since it provides the capability to correct faults and/or partially missing information in a given input pattern. There is general consensus that optical implementation of connectionist models and parallel processors including associative memory has a better record of success compared to their electronic counterparts. In this article, we describe a novel optical implementation of associative memory which not only has the advantage of all optical learning and recalling capabilities, it can also be realized easily. We present a new approach, inspired by tomographic imaging techniques, for holographic implementation of associative memories. In this approach, a volume holographic material is sandwiched within a matrix of inputs (optical point sources) and outputs (photodetectors). The memory capacity is realized by the spatial modulation of refractive index of the holographic material. Constructing the spatial distribution of the refractive index from an array of known inputs and outputs is formulated as an inverse problem consisting a set of linear integral equations.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509
Aman, Michael G; Hollway, Jill A; Veenstra-VanderWeele, Jeremy; Handen, Benjamin L; Sanders, Kevin B; Chan, James; Macklin, Eric; Arnold, L Eugene; Wong, Taylor; Newsom, Cassandra; Hastie Adams, Rianne; Marler, Sarah; Peleg, Naomi; Anagnostou, Evdokia A
2018-05-01
Studies in humans and rodents suggest that metformin, a medicine typically used to treat type 2 diabetes, may have beneficial effects on memory. We sought to determine whether metformin improved spatial or verbal memory in children with autism spectrum disorder (ASD) and overweight associated with atypical antipsychotic use. We studied the effects of metformin (Riomet ® ) concentrate on spatial and verbal memory in 51 youth with ASD, ages 6 through 17 years, who were taking atypical antipsychotic medications, had gained significant weight, and were enrolled in a trial of metformin for weight management. Phase 1 was a 16-week, randomized, double-blind, placebo-controlled, parallel-group comparison of metformin (500-850 mg given twice a day) versus placebo. During Phase 2, all participants took open-label metformin from week 17 through week 32. We assessed spatial and verbal memory using the Neuropsychological Assessment 2nd Edition (NEPSY-II) and a modified children's verbal learning task. No measures differed between participants randomized to metformin versus placebo, at either 16 or 32 weeks, after adjustment for multiple comparisons. Sixteen-week change in memory for spatial location on the NEPSY-II was nominally better among participants randomized to placebo. However, patterns of treatment response across all measures revealed no systematic differences in performance, suggesting that metformin had no effect on spatial or verbal memory in these children. Although further study is needed to support these null effects, the overall impression is that metformin does not affect memory in overweight youth with ASD who were taking atypical antipsychotic medications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villasana, Laura E.; Benice, Theodore S.; Raber, Jacob, E-mail: raberj@ohsu.ed
Purpose: To assess whether the effects of cranial {sup 56}Fe irradiation on the spatial memory of mice in the water maze are sex and apolipoprotein E (apoE) isoform dependent and whether radiation-induced changes in spatial memory are associated with changes in the dendritic marker microtubule-associated protein 2 (MAP-2) and the presynaptic marker synaptophysin. Methods and Materials: Two-month-old male and female mice expressing human apoE3 or apoE4 received either a 3-Gy dose of cranial {sup 56}Fe irradiation (600 MeV/amu) or sham irradiation. Mice were tested in a water maze task 13 months later to assess effects of irradiation on spatial memorymore » retention. After behavioral testing, the brain tissues of these mice were analyzed for synaptophysin and MAP-2 immunoreactivity. Results: After irradiation, spatial memory retention of apoE3 female, but not male, mice was impaired. A general genotype deficit in spatial memory was observed in sham-irradiated apoE4 mice. Strikingly, irradiation prevented this genotype deficit in apoE4 male mice. A similar but nonsignificant trend was observed in apoE4 female mice. Although there was no change in MAP-2 immunoreactivity after irradiation, synaptophysin immunoreactivity was increased in irradiated female mice, independent of genotype. Conclusions: The effects of {sup 56}Fe irradiation on the spatial memory retention of mice are critically influenced by sex, and the direction of these effects is influenced by apoE isoform. Although in female mice synaptophysin immunoreactivity provides a sensitive marker for effects of irradiation, it cannot explain the apoE genotype-dependent effects of irradiation on the spatial memory retention of the mice.« less
Maternal Scaffolding and Preterm Toddlers’ Visual-Spatial Processing and Emerging Working Memory
Poehlmann, Julie; Hilgendorf, Amy E; Miller, Kyle; Lambert, Heather
2010-01-01
Objective We examined longitudinal associations among neonatal and socioeconomic risks, maternal scaffolding behaviors, and 24-month visual-spatial processing and working memory in a sample of 73 toddlers born preterm or low birthweight (PT LBW). Methods Risk data were collected at hospital discharge and dyadic play interactions were observed at 16-months postterm. Abbreviated IQ scores, verbal/nonverbal working memory, and verbal/nonverbal visual-spatial processing data were collected at 24-months postterm. Results Higher attention scaffolding and lower emotion scaffolding during 16-month play were associated with 24-month verbal working memory scores. A joint significance test revealed that maternal attention and emotion scaffolding during 16-month play mediated the relationship between socioeconomic risk and 24-month verbal working memory. Conclusions These findings suggest areas for future research and intervention with children born PT LBW who also experience high socioeconomic risk. PMID:19505998
Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza
2017-10-01
Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.
Cognitive Behavioral Performance of Untreated Depressed Patients with Mild Depressive Symptoms
Li, Mi; Zhong, Ning; Lu, Shengfu; Wang, Gang; Feng, Lei; Hu, Bin
2016-01-01
This study evaluated the working memory performance of 18 patients experiencing their first onset of mild depression without treatment and 18 healthy matched controls. The results demonstrated that working memory impairment in patients with mild depression occurred when memorizing the position of a picture but not when memorizing the pictures themselves. There was no significant difference between the two groups in the emotional impact on the working memory, indicating that the attenuation of spatial working memory was not affected by negative emotion; however, cognitive control selectively affected spatial working memory. In addition, the accuracy of spatial working memory in the depressed patients was not significantly reduced, but the reaction time was significantly extended compared with the healthy controls. This finding indicated that there was no damage to memory encoding and function maintenance in the patients but rather only impaired memory retrieval, suggesting that the extent of damage to the working memory system and cognitive control abilities was associated with the corresponding depressive symptoms. The development of mild to severe depressive symptoms may be accompanied by spatial working memory damage from the impaired memory retrieval function extending to memory encoding and memory retention impairments. In addition, the impaired cognitive control began with an inadequate capacity to automatically process internal negative emotions and further extended to impairment of the ability to regulate and suppress external emotions. The results of the mood-congruent study showed that the memory of patients with mild symptoms of depression was associated with a mood-congruent memory effect, demonstrating that mood-congruent memory was a typical feature of depression, regardless of the severity of depression. This study provided important information for understanding the development of cognitive dysfunction. PMID:26730597
ERIC Educational Resources Information Center
Agus, Mirian; Peró-Cebollero, Maribel; Penna, Maria Pietronilla; Guàrdia-Olmos, Joan
2015-01-01
This study aims to investigate about the existence of a graphical facilitation effect on probabilistic reasoning. Measures of undergraduates' performances on problems presented in both verbal-numerical and graphical-pictorial formats have been related to visuo-spatial and numerical prerequisites, to statistical anxiety, to attitudes towards…
Item and Error Analysis on Raven's Coloured Progressive Matrices in Williams Syndrome
ERIC Educational Resources Information Center
Van Herwegen, Jo; Farran, Emily; Annaz, Dagmara
2011-01-01
Raven's Coloured Progressive Matrices (RCPM) is a standardised test that is commonly used to obtain a non-verbal reasoning score for children. As the RCPM involves the matching of a target to a pattern it is also considered to be a visuo-spatial perception task. RCPM is therefore frequently used in studies in Williams Syndrome (WS), in order to…
Mnemonic neuronal activity in somatosensory cortex.
Zhou, Y D; Fuster, J M
1996-01-01
Single-unit activity was recorded from the hand areas of the somatosensory cortex of monkeys trained to perform a haptic delayed matching to sample task with objects of identical dimensions but different surface features. During the memory retention period of the task (delay), many units showed sustained firing frequency change, either excitation or inhibition. In some cases, firing during that period was significantly higher after one sample object than after another. These observations indicate the participation of somatosensory neurons not only in the perception but in the short-term memory of tactile stimuli. Neurons most directly implicated in tactile memory are (i) those with object-selective delay activity, (ii) those with nondifferential delay activity but without activity related to preparation for movement, and (iii) those with delay activity in the haptic-haptic delayed matching task but no such activity in a control visuo-haptic delayed matching task. The results indicate that cells in early stages of cortical somatosensory processing participate in haptic short-term memory. PMID:8927629
Two Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR). PMID:24825574
Sex differences in neural efficiency: Are they due to the stereotype threat effect?☆
Dunst, Beate; Benedek, Mathias; Bergner, Sabine; Athenstaedt, Ursula; Neubauer, Aljoscha C.
2013-01-01
The neural efficiency hypothesis postulates a more efficient use of brain resources in more intelligent people as compared to less intelligent ones. However, this relationship was found to be moderated by sex and task content. While the phenomenon of neural efficiency was previously supported for men when performing visuo-spatial tasks it occurred for women only when performing verbal tasks. One possible explanation for this finding could be provided by the well-studied phenomenon called stereotype threat. Stereotype threat arises when a negative stereotype of one’s own group is made salient and can result in behavior that confirms the stereotype. Overall, 32 boys and 31 girls of varying intellectual ability were tested with a mental rotation task, either under a stereotype exposure or a no-stereotype exposure condition while measuring their EEG. The behavioral results show that an activated negative stereotype not necessarily hampers the performance of girls. Physiologically, a confirmation of the neural efficiency phenomenon was only obtained for boys working under a no-stereotype exposure condition. This result pattern replicates previous findings without threat and thus suggests that sex differences in neural efficiency during visuo-spatial tasks may not be due to the stereotype threat effect. PMID:24092950
Perception of biological motion from size-invariant body representations.
Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E
2015-01-01
The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
Britten, Richard A; Jewell, Jessica S; Davis, Leslie K; Miller, Vania D; Hadley, Melissa M; Semmes, O John; Lonart, György; Dutta, Sucharita M
2017-03-01
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56 Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56 Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Virtual reality in neurologic rehabilitation of spatial disorientation
2013-01-01
Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289
Llewellyn, Sue; Hobson, J Allan
2015-07-01
This article argues both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep contribute to overnight episodic memory processes but their roles differ. Episodic memory may have evolved from memory for spatial navigation in animals and humans. Equally, mnemonic navigation in world and mental space may rely on fundamentally equivalent processes. Consequently, the basic spatial network characteristics of pathways which meet at omnidirectional nodes or junctions may be conserved in episodic brain networks. A pathway is formally identified with the unidirectional, sequential phases of an episodic memory. In contrast, the function of omnidirectional junctions is not well understood. In evolutionary terms, both animals and early humans undertook tours to a series of landmark junctions, to take advantage of resources (food, water and shelter), whilst trying to avoid predators. Such tours required memory for emotionally significant landmark resource-place-danger associations and the spatial relationships amongst these landmarks. In consequence, these tours may have driven the evolution of both spatial and episodic memory. The environment is dynamic. Resource-place associations are liable to shift and new resource-rich landmarks may be discovered, these changes may require re-wiring in neural networks. To realise these changes, REM may perform an associative, emotional encoding function between memory networks, engendering an omnidirectional landmark junction which is instantiated in the cortex during NREM Stage 2. In sum, REM may preplay associated elements of past episodes (rather than replay individual episodes), to engender an unconscious representation which can be used by the animal on approach to a landmark junction in wake. Copyright © 2015 Elsevier Inc. All rights reserved.
Characterizing age-related decline of recognition memory and brain activation profile in mice.
Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale
2018-06-01
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao
2016-01-01
Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247
The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach
ERIC Educational Resources Information Center
Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.
2016-01-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…
Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter
2017-08-01
Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.
Lima, Luciana C. A.; Ansai, Juliana H.; Andrade, Larissa P.; Takahashi, Anielle C. M.
2015-01-01
BACKGROUND: The dual-task performance is associated with the functionality of the elderly and it becomes more complex with age. OBJECTIVE: To investigate the relationship between the Timed Up and Go dual task (TUG-DT) and cognitive tests among elderly participants who exercise regularly. METHOD: This study examined 98 non-institutionalized people over 60 years old who exercised regularly. Participants were assessed using the TUG-DT (i.e. doing the TUG while listing the days of the week in reverse order), the Montreal Cognitive Assessment (MoCA), the Clock Drawing Test (CDT), and the Mini Mental State Examination (MMSE). The motor (i.e. time and number of steps) and cognitive (i.e. number of correct words) data were collected from TUG-DT . We used a significance level of α=0.05 and SPSS 17.0 for all data analyses. RESULTS: This current elderly sample featured a predominance of women (69.4%) who were highly educated (median=10 years of education) compared to Brazilian population and mostly non-fallers (86.7%). The volunteers showed a good performance on the TUG-DT and the other cognitive tests, except the MoCA, with scores below the cutoff of 26 points. Significant and weak correlations were observed between the TUG-DT (time) and the visuo-spatial/executive domain of the MoCA and the MMSE. The cognitive component of the TUG-DT showed strong correlations between the total MoCA performance score and its visuo-spatial/executive domain. CONCLUSIONS: The use of the TUG-DT to assess cognition is promising; however, the use of more challenging cognitive tasks should be considered when the study population has a high level of education. PMID:25993629
ERIC Educational Resources Information Center
Rhodes, Sinead M.; Riby, Deborah M.; Fraser, Emma; Campbell, Lorna Elise
2011-01-01
The present study investigated verbal and spatial working memory (WM) functioning in individuals with the neuro-developmental disorder Williams syndrome (WS) using WM component tasks. While there is strong evidence of WM impairments in WS, previous research has focused on short-term memory and has neglected assessment of executive components of…
Brébion, G; Ohlsen, R I; Bressan, R A; David, A S
2012-12-01
Previous research has shown associations between source memory errors and hallucinations in patients with schizophrenia. We bring together here findings from a broad memory investigation to specify better the type of source memory failure that is associated with auditory and visual hallucinations. Forty-one patients with schizophrenia and 43 healthy participants underwent a memory task involving recall and recognition of lists of words, recognition of pictures, memory for temporal and spatial context of presentation of the stimuli, and remembering whether target items were presented as words or pictures. False recognition of words and pictures was associated with hallucination scores. The extra-list intrusions in free recall were associated with verbal hallucinations whereas the intra-list intrusions were associated with a global hallucination score. Errors in discriminating the temporal context of word presentation and the spatial context of picture presentation were associated with auditory hallucinations. The tendency to remember verbal labels of items as pictures of these items was associated with visual hallucinations. Several memory errors were also inversely associated with affective flattening and anhedonia. Verbal and visual hallucinations are associated with confusion between internal verbal thoughts or internal visual images and perception. In addition, auditory hallucinations are associated with failure to process or remember the context of presentation of the events. Certain negative symptoms have an opposite effect on memory errors.
Practice of aerobic sports is associated with better spatial memory in adults and older men.
Sánchez-Horcajo, Rubén; Llamas-Alonso, Juan; Cimadevilla, José Manuel
2015-01-01
BACKGROUND/STUDY CONTEXT: Cognitive abilities experience diverse age-related changes. Memory complaints are common in aging. The practice of sports is known to benefit brain functioning, improving memory among other abilities. Introduction of virtual reality tasks makes it possible to easily assess cognitive functions such as spatial memory, a hippocampus-dependent cognitive ability. In this study, the authors applied a virtual reality-based task to study spatial reference memory in two groups of men, sportsmen (n=28) and sedentary (n=28), across three different age groups: 50-59, 60-69, and 70-77 years. The data showed that sportsmen outperformed sedentary participants. In addition, there was also a significant effect of the factor age. Hence, older men (70-77 years old) displayed a poorer performance in comparison with the other age groups. These results support the beneficial effect of habitual physical activity in spatial memory.
Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.
2017-01-01
Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324
Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M
2009-06-01
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
O'Hanlon, Erik; Howley, Sarah; Prasad, Sarah; McGrath, Jane; Leemans, Alexander; McDonald, Colm; Garavan, Hugh; Murphy, Kieran C
2016-12-01
Impaired spatial working memory is a core cognitive deficit observed in people with 22q11 Deletion syndrome (22q11DS) and has been suggested as a candidate endophenotype for schizophrenia. However, to date, the neuroanatomical mechanisms describing its structural and functional underpinnings in 22q11DS remain unclear. We quantitatively investigate the cognitive processes and associated neuroanatomy of spatial working memory in people with 22q11DS compared to matched controls. We examine whether there are significant between-group differences in spatial working memory using task related fMRI, Voxel based morphometry and white matter fiber tractography. Multimodal magnetic resonance imaging employing functional, diffusion and volumetric techniques were used to quantitatively assess the cognitive and neuroanatomical features of spatial working memory processes in 22q11DS. Twenty-six participants with genetically confirmed 22q11DS aged between 9 and 52 years and 26 controls aged between 8 and 46 years, matched for age, gender, and handedness were recruited. People with 22q11DS have significant differences in spatial working memory functioning accompanied by a gray matter volume reduction in the right precuneus. Gray matter volume was significantly correlated with task performance scores in these areas. Tractography revealed extensive differences along fibers between task-related cortical activations with pronounced differences localized to interhemispheric commissural fibers within the parietal section of the corpus callosum. Abnormal spatial working memory in 22q11DS is associated with aberrant functional activity in conjunction with gray and white matter structural abnormalities. These anomalies in discrete brain regions may increase susceptibility to the development of psychiatric disorders such as schizophrenia. Hum Brain Mapp 37:4689-4705, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Diabetes and Cognitive Decline in Older Adults: The Ginkgo Evaluation of Memory Study.
Palta, Priya; Carlson, Michelle C; Crum, Rosa M; Colantuoni, Elizabeth; Sharrett, A Richey; Yasar, Sevil; Nahin, Richard L; DeKosky, Steven T; Snitz, Beth; Lopez, Oscar; Williamson, Jeff D; Furberg, Curt D; Rapp, Stephen R; Golden, Sherita Hill
2017-12-12
Previous studies have shown that individuals with diabetes exhibit accelerated cognitive decline. However, methodological limitations have limited the quality of this evidence. Heterogeneity in study design, cognitive test administration, and methods of analysis of cognitive data have made it difficult to synthesize and translate findings to practice. We analyzed longitudinal data from the Ginkgo Evaluation of Memory Study to test our hypothesis that older adults with diabetes have greater test-specific and domain-specific cognitive declines compared to older adults without diabetes. Tests of memory, visuo-spatial construction, language, psychomotor speed, and executive function were administered. Test scores were standardized to z-scores and averaged to yield domain scores. Linear random effects models were used to compare baseline differences and changes over time in test and domain scores among individuals with and without diabetes. Among the 3,069 adults, aged 72-96 years, 9.3% reported diabetes. Over a median follow-up of 6.1 years, participants with diabetes exhibited greater baseline differences in a test of executive function (trail making test, Part B) and greater declines in a test of language (phonemic verbal fluency). For the composite cognitive domain scores, participants with diabetes exhibited lower baseline executive function and global cognition domain scores, but no significant differences in the rate of decline. Identifying cognitive domains most affected by diabetes can lead to targeted risk modification, possibly in the form of lifestyle interventions such as diet and physical activity, which we know to be beneficial for improving vascular risk factors, such as diabetes, and therefore may reduce the risk of executive dysfunction and possible dementia. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dodich, Alessandra; Cerami, Chiara; Cappa, Stefano F; Marcone, Alessandra; Golzi, Valeria; Zamboni, Michele; Giusti, Maria Cristina; Iannaccone, Sandro
2018-01-01
Current diagnostic criteria for behavioral variant of frontotemporal dementia (bvFTD) and typical Alzheimer's disease (AD) include a differential pattern of neuropsychological impairments (episodic memory deficit in typical AD and dysexecutive syndrome in bvFTD). There is, however, large evidence of a frequent overlap in neuropsychological features, making the differential diagnosis extremely difficult. In this retrospective study, we evaluated the diagnostic value of different cognitive and neurobehavioral markers in bvFTD and AD patient groups. We included 95 dementia patients with a clinical and biomarker evidence of bvFTD (n = 48) or typical AD (n = 47) pathology. A clinical 2-year follow-up confirmed clinical classification. Performances at basic cognitive tasks (memory, executive functions, visuo-spatial, language) as well as social cognition skills and neurobehavioral profiles have been recorded. A stepwise logistic regression model compared the neuropsychological profiles between groups and assessed the accuracy of cognitive and neurobehavioral markers in discriminating bvFTD from AD. Statistical comparison between patient groups proved social cognition and episodic memory impairments as main cognitive signatures of bvFTD and AD neuropsychological profiles, respectively. Only half of bvFTD patients showed attentive/executive deficits, questioning their role as cognitive marker of bvFTD. Notably, the large majority of bvFTD sample (i.e., 70%) poorly performed at delayed recall tasks. Logistic regression analysis identified social cognition performances, Frontal Behavioral Inventory and Mini-Mental State Examination scores as the best combination in distinguishing bvFTD from AD. Social cognition tasks and socio-behavioral questionnaires are recommended in clinical settings to improve the accuracy of early diagnosis of bvFTD.
Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S
2012-09-01
Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.
Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
Csicsvari, Jozsef; Dupret, David
2014-02-05
Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.
García-Montes, José Manuel; Noguera, Carmen; Alvarez, Dolores; Ruiz, Marina; Cimadevilla Redondo, José Manuel
2014-01-01
Schizotypy is a psychological construct related to schizophrenia. The exact relationship between both entities is not clear. In recent years, schizophrenia has been associated with hippocampal abnormalities and spatial memory problems. The aim of this study was to determine possible links between high schizotypy (HS) and low schizotypy (LS) and spatial abilities, using virtual reality tasks. We hypothesised that the HS group would exhibit a lower performance in spatial memory tasks than the LS group. Two groups of female students were formed according to their score on the ESQUIZO-Q-A questionnaire. HS and LS subjects were tested on two different tasks: the Boxes Room task, a spatial memory task sensitive to hippocampal alterations and a spatial recognition task. Data showed that both groups mastered both tasks. Groups differed in personality features but not in spatial performance. These results provide valuable information about the schizotypy-schizophrenia connections. Schizotypal subjects are not impaired on spatial cognition and, accordingly, the schizotypy-schizophrenia relationship is not straightforward.
A principal components analysis of dynamic spatial memory biases.
Motes, Michael A; Hubbard, Timothy L; Courtney, Jon R; Rypma, Bart
2008-09-01
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory. (c) 2008 APA, all rights reserved.
ERIC Educational Resources Information Center
Schuler, Anne; Scheiter, Katharina; Rummer, Ralf; Gerjets, Peter
2012-01-01
The study examined whether the modality effect is caused by either high visuo-spatial load or a lack of temporal contiguity when processing written text and pictures. Students (N = 147) viewed pictures on the development of tornados, which were accompanied by either spoken or written explanations presented simultaneously with, before, or after the…
ERIC Educational Resources Information Center
Uno, Akira; Wydell, Taeko N.; Haruhara, Noriko; Kaneko, Masato; Shinya, Naoko
2009-01-01
Four hundred and ninety-five Japanese primary-school children aged from 8 (Grade-2) to 12 (Grade-6) were tested for their abilities to read/write in Hiragana, Katakana, and Kanji, for their size of vocabulary and for other cognitive abilities including arithmetic, visuo-spatial and phonological processing. Percentages of the children whose…
ERIC Educational Resources Information Center
Cortis Mack, Cathleen; Dent, Kevin; Ward, Geoff
2018-01-01
Three experiments examined the immediate free recall (IFR) of auditory-verbal and visuospatial materials from single-modality and dual-modality lists. In Experiment 1, we presented participants with between 1 and 16 spoken words, with between 1 and 16 visuospatial dot locations, or with between 1 and 16 words "and" dots with synchronized…
Distinct regions of the hippocampus are associated with memory for different spatial locations.
Jeye, Brittany M; MacEvoy, Sean P; Karanian, Jessica M; Slotnick, Scott D
2018-05-15
In the present functional magnetic resonance imaging (fMRI) study, we aimed to evaluate whether distinct regions of the hippocampus were associated with spatial memory for items presented in different locations of the visual field. In Experiment 1, during the study phase, participants viewed abstract shapes in the left or right visual field while maintaining central fixation. At test, old shapes were presented at fixation and participants classified each shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. Accurate spatial memory for shapes in the left visual field was isolated by contrasting accurate versus inaccurate spatial location responses. This contrast produced one hippocampal activation in which the interaction between item type and accuracy was significant. The analogous contrast for right visual field shapes did not produce activity in the hippocampus; however, the contrast of high confidence versus low confidence right-hits produced one hippocampal activation in which the interaction between item type and confidence was significant. In Experiment 2, the same paradigm was used but shapes were presented in each quadrant of the visual field during the study phase. Accurate memory for shapes in each quadrant, exclusively masked by accurate memory for shapes in the other quadrants, produced a distinct activation in the hippocampus. A multi-voxel pattern analysis (MVPA) of hippocampal activity revealed a significant correlation between behavioral spatial location accuracy and hippocampal MVPA accuracy across participants. The findings of both experiments indicate that distinct hippocampal regions are associated with memory for different visual field locations. Copyright © 2018 Elsevier B.V. All rights reserved.
NMDA Receptors Are Not Required for Pattern Completion During Associative Memory Recall
Gu, Yiran; Cui, Zhenzhong; Tsien, Joe Z.
2011-01-01
Pattern completion, the ability to retrieve complete memories initiated by subsets of external cues, has been a major focus of many computation models. A previously study reports that such pattern completion requires NMDA receptors in the hippocampus. However, such a claim was derived from a non-inducible gene knockout experiment in which the NMDA receptors were absent throughout all stages of memory processes as well as animal's adult life. This raises the critical question regarding whether the previously described results were truly resulting from the requirement of the NMDA receptors in retrieval. Here, we have examined the role of the NMDA receptors in pattern completion via inducible knockout of NMDA receptors limited to the memory retrieval stage. By using two independent mouse lines, we found that inducible knockout mice, lacking NMDA receptor in either forebrain or hippocampus CA1 region at the time of memory retrieval, exhibited normal recall of associative spatial reference memory regardless of whether retrievals took place under full-cue or partial-cue conditions. Moreover, systemic antagonism of NMDA receptor during retention tests also had no effect on full-cue or partial-cue recall of spatial water maze memories. Thus, both genetic and pharmacological experiments collectively demonstrate that pattern completion during spatial associative memory recall does not require the NMDA receptor in the hippocampus or forebrain. PMID:21559402
Hippocampal 5-HT1A Receptor and Spatial Learning and Memory
Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.
2015-01-01
Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889
Johnson, Sarah A.; Sacks, Patricia K.; Turner, Sean M.; Gaynor, Leslie S.; Ormerod, Brandi K.; Maurer, Andrew P.; Bizon, Jennifer L.
2016-01-01
Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats’ abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus. PMID:27317194
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)
1996-01-01
The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.
Strand, Michael T; Hawk, Larry W; Bubnik, Michelle; Shiels, Keri; Pelham, William E; Waxmonsky, James G
2012-10-01
Working memory (WM) is considered a core deficit in Attention-Deficit/ Hyperactivity Disorder (ADHD), with numerous studies demonstrating impaired WM among children with ADHD. We tested the degree to which WM in children with ADHD was improved by performance-based incentives, an analog of behavioral intervention. In two studies, WM performance was assessed using a visuo-spatial n-back task. Study 1 compared children (ages 9-12 years) with ADHD-Combined type (n = 24) to a group of typically developing (TD) children (n = 32). Study 1 replicated WM deficits among children with ADHD. Incentives improved WM, particularly among children with ADHD. The provision of incentives reduced the ADHD-control group difference by approximately half but did not normalize WM. Study 2 examined the separate and combined effects of incentives and stimulant medication among 17 children with ADHD-Combined type. Both incentives and a moderate dose of long-acting methylphenidate (MPH; ~0.3 mg/kg t.i.d. equivalent) robustly improved WM relative to the no-incentive, placebo condition. The combination of incentives and medication improved WM significantly more than either incentives or MPH alone. These studies indicate that contingencies markedly improve WM among children with ADHD-Combined type, with effect sizes comparable to a moderate dose of stimulant medication. More broadly, this work calls attention to the role of motivation in studying cognitive deficits in ADHD and in testing multifactorial models of ADHD.
De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo
2017-09-01
Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond epilepsy resolution. Copyright © 2017 Elsevier Inc. All rights reserved.
Long-term memory biases auditory spatial attention.
Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude
2017-10-01
Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants heard audio clips, some of which included a lateralized target (p = 50%). On each trial participants indicated whether the target was presented from the left, right, or was absent. Following a 1 hr retention interval, participants were presented with the same audio clips, which now all included a target. In Experiment 1, participants showed memory-based gains in response time and d'. Experiment 2 showed that temporal expectations modulate attention, with greater memory-guided attention effects on performance when temporal context was reinstated from learning (i.e., when timing of the target within audio clips was not changed from initially learned timing). Experiment 3 showed that while conscious recall of target locations was modulated by exposure to target-context associations during learning (i.e., better recall with higher number of learning blocks), the influence of LTM associations on spatial attention was not reduced (i.e., number of learning blocks did not affect memory-guided attention). Both Experiments 2 and 3 showed gains in performance related to target-context associations, even for associations that were not explicitly remembered. Together, these findings indicate that memory for audio clips is acquired quickly and is surprisingly robust; both implicit and explicit LTM for the location of a faint target tone modulated auditory spatial attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Jung, Seung H.; Brownlow, Milene L.; Pellegrini, Matteo; Jankord, Ryan
2017-01-01
Individual susceptibility determines the magnitude of stress effects on cognitive function. The hippocampus, a brain region of memory consolidation, is vulnerable to stressful environments, and the impact of stress on hippocampus may determine individual variability in cognitive performance. Therefore, the purpose of this study was to define the relationship between the divergence in spatial memory performance under chronically unpredictable stress and an associated transcriptomic alternation in hippocampus, the brain region of spatial memory consolidation. Multiple strains of BXD (B6 × D2) recombinant inbred mice went through a 4-week chronic variable stress (CVS) paradigm, and the Morris water maze (MWM) test was conducted during the last week of CVS to assess hippocampal-dependent spatial memory performance and grouped animals into low and high performing groups based on the cognitive performance. Using hippocampal whole transcriptome RNA-sequencing data, differential expression, PANTHER analysis, WGCNA, Ingenuity's upstream regulator analysis in the Ingenuity Pathway Analysis® and phenotype association analysis were conducted. Our data identified multiple genes and pathways that were significantly associated with chronic stress-associated cognitive modification and the divergence in hippocampal dependent memory performance under chronic stress. Biological pathways associated with memory performance following chronic stress included metabolism, neurotransmitter and receptor regulation, immune response and cellular process. The Ingenuity's upstream regulator analysis identified 247 upstream transcriptional regulators from 16 different molecule types. Transcripts predictive of cognitive performance under high stress included genes that are associated with a high occurrence of Alzheimer's and cognitive impairments (e.g., Ncl, Eno1, Scn9a, Slc19a3, Ncstn, Fos, Eif4h, Copa, etc.). Our results show that the variable effects of chronic stress on the hippocampal transcriptome are related to the ability to complete the MWM task and that the modulations of specific pathways are indicative of hippocampal dependent memory performance. Thus, the divergence in spatial memory performance following chronic stress is related to the unique pattern of gene expression within the hippocampus. PMID:28912681
Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.
Li, Jay-Shake; Chao, Yuen-Shin
2008-02-01
Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.
Zhang, Shujuan; Li, Xiaoguang; Wang, Zhouyi; Liu, Yanchao; Gao, Yuan; Tan, Lu; Liu, Enjie; Zhou, Qiuzhi; Xu, Cheng; Wang, Xin; Liu, Gongping; Chen, Haote; Wang, Jian-Zhi
2017-05-08
Recent studies suggest that spatial training can maintain associative memory capacity in Tg2576 mice, but it is not known whether the beneficial effects can be inherited from the trained fathers to their offspring. Here, we exposed male wild-type and male 3XTg Alzheimer disease (AD) mice (3-m old) respectively to spatial training for one week and assessed the transgenerational effects in the F1 offspring when they were grown to 7-m old. We found that the paternal spatial training significantly enhanced progeny's spatial cognitive performance and synaptic transmission in wild-type mice. Among several synapse- or memory-associated proteins, we observed that the expression level of synaptotagmin 1 (SYT1) was significantly increased in the hippocampus of the paternally trained-offspring. Paternal training increased histone acetylation at the promoter of SYT1 in both fathers' and the offspring's hippocampus, and as well as in the fathers' sperm. Finally, paternal spatial training for one week did not improve memory and synaptic plasticity in 3XTg AD F1 offspring. Our findings suggest paternal spatial training for one week benefits the offspring's cognitive performance in wild-type mice with the mechanisms involving an enhanced transgenerational histone acetylation at SYT1 promoter.
BDNF is Associated With Age-Related Decline in Hippocampal Volume
Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.
2010-01-01
Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958
Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.
2015-01-01
High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454
Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W
2015-04-01
High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kubo, Kin-ya; Yamada, Yukiko; Iinuma, Mitsuo; Iwaku, Fumihiko; Tamura, Yasuo; Watanabe, Kazuko; Nakamura, Hiroyuki; Onozuka, Minoru
2007-03-06
We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, hippocampal neuron number, and spatial performance in the water maze. The bite-raised condition was associated with an accelerated age-related decline in spatial memory, increased plasma corticosterone levels, and a decreased number of neurons in the hippocampal CA3 region. The findings suggest that the bite-raised condition in aged SAMP8 mice induces hippocampal neuron loss, thereby leading to senile memory deficits.
Yan, Wen-Wen; Chen, Gui-Hai; Wang, Fang; Tong, Jing-Jing; Tao, Fei
2015-04-07
Age-associated memory impairment (AAMI) not only reduces the quality of life for the elderly but also increases the costs of healthcare for society. Methods that can regulate glucose metabolism, insulin/insulin-like growth factor 1 (IGF-1) system and acetylated histone H4 lysine 8 (H4K8ac), one of the most well-researched facets of histone acetylation modification associating with cognition, tend to ameliorate the AAMI. Here, we used SAMP8 mice, the excellent animal model of aging and AAMI, to study the effect of long-term treatment with acarbose, an inhibitor of a-glucosidase, on AAMI and explore whether blood glucose, insulin/IGF-1 system and H4K8ac are associated with potential effects. The treatment group received acarbose (20mg/kg/d, dissolved in drinking water) at the age of 3-month until 9-month old before the behavioral test, and the controls only received water. Compared to the young controls (3-month-old, n=11), the old group (9-month-old, n=8) had declined abilities of spatial learning and memory and levels of serum insulin, hippocampal insulin receptors (InsRs) and H4K8ac. Interestingly, the acarbose group (9-month-old, n=9) showed better abilities of spatial learning and memory and higher levels of insulin, InsRs and H4K8ac relative to the old controls. Good performance of spatial learning and memory was positively correlated with the elevated insulin, InsRs and H4K8ac. All these results suggested that long-term administration of acarbose could alleviate the age-related impairment of spatial learning and memory in the SAMP8 mice, and the alleviated reduction of an insulin system and H4K8ac might be associated with the alleviation. Copyright © 2015 Elsevier B.V. All rights reserved.
The Profile of Memory Function in Children With Autism
Williams, Diane L.; Goldstein, Gerald; Minshew, Nancy J.
2007-01-01
A clinical memory test was administered to 38 high-functioning children with autism and 38 individually matched normal controls, 8–16 years of age. The resulting profile of memory abilities in the children with autism was characterized by relatively poor memory for complex visual and verbal information and spatial working memory with relatively intact associative learning ability, verbal working memory, and recognition memory. A stepwise discriminant function analysis of the subtests found that the Finger Windows subtest, a measure of spatial working memory, discriminated most accurately between the autism and normal control groups. A principal components analysis indicated that the factor structure of the subtests differed substantially between the children with autism and controls, suggesting differing organizations of memory ability. PMID:16460219
Malkova, Ludise; Mishkin, Mortimer
2003-03-01
In earlier studies of one-trial spatial memory in monkeys (Parkinson et al., 1988; Angeli et al., 1993), severe and chronic memory impairment for both object-place association and place alone was found after ablation of the hippocampal formation. The results appeared to provide the first clear-cut evidence in the monkey of the essential role of the hippocampus in spatial memory, but that interpretation neglected the inclusion in the lesion of the underlying posterior parahippocampal region. To determine the separate contributions of the hippocampus and posterior parahippocampal region to these spatial forms of one-trial memory, we trained 10 rhesus monkeys, as before, to remember the spatial positions of either two different trial-unique objects overlying two of the wells in a three-well test tray (object-place trials) or simply two of the three wells (place trials). Six of the monkeys then received ibotenic acid lesions restricted to the hippocampal formation (group H), and the four others received selective ablations of the posterior parahippocampal region (group P), comprising mainly parahippocampal cortex, parasubiculum, and presubiculum. Group H was found to be completely unaffected postoperatively on both types of trials, whereas group P sustained an impairment on both types equal in magnitude to that observed after the combined lesions in the original studies. Thus, contrary to the previous interpretation, one-trial memory for object-place association and, perhaps more fundamentally, one-trial memory for two different places appear to be critically dependent not on the hippocampal formation but rather on the posterior parahippocampal region.
ERIC Educational Resources Information Center
Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G. M.
2008-01-01
Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous…
Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja
2017-01-01
Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults ( N > 600; age: 55-85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels.
Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja
2017-01-01
Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults (N > 600; age: 55–85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels. PMID:29163003
Almeida, Osvaldo P; Flicker, Leon; Lautenschlager, Nicola T; Leedman, Peter; Vasikaran, Samuel; van Bockxmeer, Frank M
2005-02-01
Homocysteine (Hcy) is harmful to neurons and blood vessels, including the cerebral microvasculature. It is possible that such effects contribute to the cascade of events that leads to cognitive decline, dementia, and depression in later life. Hcy is produced during the metabolism of the essential amino-acid methionine, which also involves a methyl group transfer derived from folate and choline metabolism. Its plasma level can be influenced by factors such as age, vitamin deficiency, renal function, and a common mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, where cytosine is replaced by thymidine (C-->T) at nucleotide position 677. Subjects with the TT genotype have higher homocysteine levels and may be particularly prone to experiencing depression as a result of high plasma Hcy and dysfunction of methylation metabolic pathways critical to the synthesis of noradrenaline and serotonin. We designed the present study to investigate whether older women with the TT genotype would have higher depression and lower cognitive scores than women with CT and CC genotypes. A total of 240 community-dwelling women aged 70 years or over volunteered to take part in the study - 29 carried the TT genotype, 113 the CT and 98 the CC genotype. The Beck Depression Inventory (BDI) score for subjects with the TT genotype was statistically similar to the other groups (P = 0.609). Plasma Hcy showed a modest and significant correlation with BDI scores (r = 0.21) that was independent from age, B12 and folate levels. There was no association between beck anxiety inventory (BAI) scores and MTHFR genotype or homocysteine levels. The cognitive assessment of participants included measures of verbal memory, memory for faces, verbal fluency, visuo-spatial abilities and the cognitive section of the Cambridge Examination For Mental Disorders Of The Elderly (CAMCOG)-MTHFR genotype had no clear association with cognitive scores. These results indicate that, in isolation, the MTHFR C677T gene variation does not play an important role in the modulation of mood and cognitive performance in later life.
ERIC Educational Resources Information Center
Vestergaard, Martin; Madsen, Kathrine Skak; Baare, William F. C.; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.
2011-01-01
During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly…
Overcoming default categorical bias in spatial memory.
Sampaio, Cristina; Wang, Ranxiao Frances
2010-12-01
In the present study, we investigated whether a strong default categorical bias can be overcome in spatial memory by using alternative membership information. In three experiments, we tested location memory in a circular space while providing participants with an alternative categorization. We found that visual presentation of the boundaries of the alternative categories (Experiment 1) did not induce the use of the alternative categories in estimation. In contrast, visual cuing of the alternative category membership of a target (Experiment 2) and unique target feature information associated with each alternative category (Experiment 3) successfully led to the use of the alternative categories in estimation. Taken together, the results indicate that default categorical bias in spatial memory can be overcome when appropriate cues are provided. We discuss how these findings expand the category adjustment model (Huttenlocher, Hedges, & Duncan, 1991) in spatial memory by proposing a retrieval-based category adjustment (RCA) model.
Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne
2017-01-01
Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597
Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne
2016-01-01
Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults ( M age = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.
Statistical Mechanics Model of the Speed - Accuracy Tradeoff in Spatial and Lexical Memory
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Allen, Philip
2000-03-01
The molar neural network model of P. Allen, M. Kaufman, A. F. Smith, R. E. Popper, Psychology and Aging 13, 501 (1998) and Experimental Aging Research, 24, 307 (1998) is extended to incorporate reaction times. In our model the entropy associated with a particular task determines the reaction time. We use this molar neural model to directly analyze experimental data on episodic (spatial) memory and semantic (lexical) memory tasks. In particular we are interested in the effect of aging on the two types of memory. We find that there is no difference in performance levels for lexical memory tasks between younger and older adults. In the case spatial memory tasks we find that aging has a detrimental effect on the performance level. This work is supported by NIH/NIA grant AG09282-06.
Aerobic Fitness is Associated With Hippocampal Volume in Elderly Humans
Erickson, Kirk I.; Prakash, Ruchika S.; Voss, Michelle W.; Chaddock, Laura; Hu, Liang; Morris, Katherine S.; White, Siobhan M.; Wójcicki, Thomas R.; McAuley, Edward; Kramer, Arthur F.
2010-01-01
Deterioration of the hippocampus occurs in elderly individuals with and without dementia, yet individual variation exists in the degree and rate of hippocampal decay. Determining the factors that influence individual variation in the magnitude and rate of hippocampal decay may help promote lifestyle changes that prevent such deterioration from taking place. Aerobic fitness and exercise are effective at preventing cortical decay and cognitive impairment in older adults and epidemiological studies suggest that physical activity can reduce the risk for developing dementia. However, the relationship between aerobic fitness and hippocampal volume in elderly humans is unknown. In this study, we investigated whether individuals with higher levels of aerobic fitness displayed greater volume of the hippocampus and better spatial memory performance than individuals with lower fitness levels. Furthermore, in exploratory analyses, we assessed whether hippocampal volume mediated the relationship between fitness and spatial memory. Using a region-of-interest analysis on magnetic resonance images in 165 nondemented older adults, we found a triple association such that higher fitness levels were associated with larger left and right hippocampi after controlling for age, sex, and years of education, and larger hippocampi and higher fitness levels were correlated with better spatial memory performance. Furthermore, we demonstrated that hippocampal volume partially mediated the relationship between higher fitness levels and enhanced spatial memory. Our results clearly indicate that higher levels of aerobic fitness are associated with increased hippocampal volume in older humans, which translates to better memory function. PMID:19123237
Pfeiffer, Christian; Lopez, Christophe; Schmutz, Valentin; Duenas, Julio Angel; Martuzzi, Roberto; Blanke, Olaf
2013-01-01
In three experiments we investigated the effects of visuo-tactile and visuo-vestibular conflict about the direction of gravity on three aspects of bodily self-consciousness: self-identification, self-location, and the experienced direction of the first-person perspective. Robotic visuo-tactile stimulation was administered to 78 participants in three experiments. Additionally, we presented participants with a virtual body as seen from an elevated and downward-directed perspective while they were lying supine and were therefore receiving vestibular and postural cues about an upward-directed perspective. Under these conditions, we studied the effects of different degrees of visuo-vestibular conflict, repeated measurements during illusion induction, and the relationship to a classical measure of visuo-vestibular integration. Extending earlier findings on experimentally induced changes in bodily self-consciousness, we show that self-identification does not depend on the experienced direction of the first-person perspective, whereas self-location does. Changes in bodily self-consciousness depend on visual gravitational signals. Individual differences in the experienced direction of first-person perspective correlated with individual differences in visuo-vestibular integration. Our data reveal important contributions of visuo-vestibular gravitational cues to bodily self-consciousness. In particular we show that the experienced direction of the first-person perspective depends on the integration of visual, vestibular, and tactile signals, as well as on individual differences in idiosyncratic visuo-vestibular strategies. PMID:23630611
Kanchan, Amrita; Singh, Amool Ranjan; Khan, Nawab Akhtar; Jahan, Masroor; Raman, Rajesh; Sathyanarayana Rao, T S
2018-01-01
The present study was targeted to observe the impact of neuropsychological rehabilitation on activities of daily living (ADL) and community reintegration of patients with traumatic brain injury (TBI). Based on purposive sampling technique, ten patients with TBI falling in the age range of 20-40 years and fulfilling the inclusion and exclusion criteria were chosen from All India Institute of Speech and Hearing, Mysuru, India. A quasi-experimental design, i.e., nonequivalent control group design was chosen for the study. Patients were assessed on Luria-Nebraska Neuropsychological Battery for Adults, Cognitive Symptoms Checklist, and Community Integration Questionnaire. Patients in experimental group were given neuropsychological rehabilitation for 6 months. Brainwave-R and Talking Pen were used as rehabilitative tools. Patients with TBI have significant neuropsychological deficits observed in memory, visuo-spatial organization, arithmetic, spelling, writing, fine motor coordination, and executive functioning. Neuropsychological deficits have a major impact on ADL and community reintegration. Neuropsychological rehabilitation is effective in rehabilitating neuropsychological deficits, which in turn leads to improvement in ADL and community reintegration. Neuropsychological rehabilitation should be one of the major goals in rehabilitation procedures for patients with TBI in order to bring overall improvement in them.
Significance of the Feuerstein approach in neurocognitive rehabilitation.
Lebeer, Jo
2016-06-18
The theory of Structural Cognitive Modifiability and Mediated Learning Experience of Reuven Feuerstein states that individuals with brain impairment, because of congenital or acquired origin, may substantially and structurally improve their cognitive functioning, by a systematic intervention based on a specific, criteria-based type of interaction ("mediated learning"). Three application systems are based on it: a dynamic-interactive assessment of learning capacity and processes of learning, the LPAD (Learning Propensity Assessment Device); a cognitive intervention program called "Instrumental Enrichment Program", which trains cognitive, metacognitive and executive functions; and a program, which is oriented at working in context, Shaping Modifying Environments. These programs have been applied in widely different target groups: from children and young adults with learning and developmental disabilities, at risk of school failure, or having failed at school, because of socio-economic disadvantage or congenital neurological impairment; disadvantaged youngsters and adults in vocational training, to elderly people at the beginning of a dementia process. Experience with cognitive rehabilitation of children and adults with acquired brain damage, has been relatively recent, first in the Feuerstein Institute's Brain Injury Unit in Jerusalem, later in other centers in different parts of the world; therefore scientific data are scarce. The purpose of this paper is to examine how the Feuerstein-approach fits into the goals and proposed approaches of cognitive rehabilitation, and to explore its relevance for assessment and intervention in individuals with congenital or acquired brain damage. The methodology of the Feuerstein approach consists of four pillars: dynamic assessment, cognitive activation, mediated learning and shaping a modifying environment. The criteria of mediated learning experience are explained with specific reference to people with acquired brain injury. The procedure of learning propensity assessment device uses visuo-spatial and verbal tasks known from neuropsychological assessment (such as Rey's complex figure drawing), as well as a in a pre-test - brief intervention - post-test format. Cognitive activation is done in various ways: a paper-and-pencil relatively content-free program called "instrumental enrichment", with transfer of learned principles into daily life situations, followed by metacognitive feedback. Four case histories of acquired brain damage are analyzed: a 19 year old man with extensive post-astrocytoma frontotemporal brain lesions; a 19 year old man with bilateral frontal and right temporal and parieto-occipital parenchymatous destruction after a traumatic brain injury; a 24 year old man with hemispherectomy for intractable epilepsy because of Sturge-Weber syndrome; and a 30-year old man with left porencephalic cyst after cerebral hemorrhage. Structural cognitive improvement could be demonstrated in positive change scores in visuo-spatial memory, associative and verbal memory, abstract thinking, and organizing tasks, even more than 10 years post-TBI. In some cases a rise in IQ has been documented. Improvement in daily life functioning and academic skills (re)learning has also been seen. Though impossible to claim scientific evidence, the case histories nevertheless suggest the importance of interactive assessment in designing intervention programs which have sufficient intensity, frequency, duration and consistency of mediation; furthermore, an essential ingredient is the ecological approach which requires working with the patient and the whole network around; a firm "belief system" or that modifiability is possible even with severe brain damage and many years after the injury; a cognitive, metacognitive and executive approach, and a quality of interaction according to criteria of mediated learning. They suggest that Feuerstein approach may offer interesting perspectives to cognitive rehabilitation. More extensive research is needed to provide a broader scientific evidence base.
D'Mello, G D; Duffy, E A; Miles, S S
1985-01-01
A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation.
Irish, Muireann; Lawlor, Brian A; Coen, Robert F; O'Mara, Shane M
2011-08-04
Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.
Hawkes, Teresa D; Siu, Ka-Chun; Silsupadol, Patima; Woollacott, Marjorie H.
2011-01-01
Previous research using dual-task paradigms indicates balance-impaired older adults (BIOA) are less able to flexibly shift attentional focus between a cognitive and motor task than healthy older adults (HOA). Shifting attention is a component of executive function. Task switch tests assess executive attention function. This multivariate study asked if BIOAs demonstrate greater task switching deficits than HOAs. A group of 39 HOA (65–80 yrs) and BIOA (65–87 yrs) subjects performed a visuo-spatial task switch. A sub-group of subjects performed a dual-task obstacle avoidance paradigm. All participants completed the Berg Balance Scale (BBS) and Timed Up and Go (TUG). We assessed differences by group for: 1) visuo-spatial task switch reaction times (switch/no-switch), and performance on the BBS and TUG. Our balance groups differed significantly on BBS score (p < .001) and switch reaction time (p = .032), but not the TUG. This confirmed our hypothesis that neuromuscular and executive attention function differs between these two groups. For our BIOA sub-group, gait velocity correlated negatively with performance on the switch condition (p=.036). This suggests that BIOA efficiency of attentional allocation in dual task settings should be further explored. PMID:21964051
Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano
2015-01-01
Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002
Li, Xiaobo; Thermenos, Heidi W; Wu, Ziyan; Momura, Yoko; Wu, Kai; Keshavan, Matcheri; Seidman, Lawrence; DeLisi, Lynn E
2016-10-01
Working memory impairment (especially in verbal and spatial domains) is the core neurocognitive impairment in schizophrenia and the familial high-risk (FHR) population. Inconsistent results have been reported in clinical and neuroimaging studies examining the verbal- and spatial-memory deficits in the FHR subjects, due to sample differences and lack of understanding on interactions of the brain regions for processing verbal- and spatial-working memory. Functional MRI data acquired during a verbal- vs. spatial-memory task were included from 51 young adults [26 FHR and 25 controls]. Group comparisons were conducted in brain activation patterns responding to 1) verbal-memory condition (A), 2) spatial-memory condition (B), 3) verbal higher than spatial (A-B), 4) spatial higher than verbal (B-A), 5) conjunction of brain regions that were activated during both A and B (A∧B). Group difference of the laterality index (LI) in inferior frontal lobe for condition A was also assessed. Compared to controls, the FHR group exhibited significantly decreased brain activity in left inferior frontal during A, and significantly stronger involvement of ACC, PCC, paracentral gyrus for the contrast of A-B. The LI showed a trend of reduced left-higher-than-right pattern for verbal-memory processing in the HR group. Our findings suggest that in the entire functional brain network for working-memory processing, verbal information processing associated brain pathways are significantly altered in people at familial high risk for developing schizophrenia. Future studies will need to examine whether these alterations may indicate vulnerability for predicting the onset of Schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Biasing the content of hippocampal replay during sleep
Bendor, Daniel; Wilson, Matthew A.
2013-01-01
The hippocampus plays an essential role in encoding self-experienced events into memory. During sleep, neural activity in the hippocampus related to a recent experience has been observed to spontaneously reoccur, and this “replay” has been postulated to be important for memory consolidation. Task-related cues can enhance memory consolidation when presented during a post-training sleep session, and if memories are consolidated by hippocampal replay, a specific enhancement for this replay should also be observed. To test this, we have trained rats on an auditory-spatial association task, while recording from neuronal ensembles in the hippocampus. Here we report that during sleep, a task-related auditory cue biases reactivation events towards replaying the spatial memory associated with that cue. These results indicate that sleep replay can be manipulated by external stimulation, and provide further evidence for the role of hippocampal replay in memory consolidation. PMID:22941111
Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D
2013-11-01
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.
The role of NPY in learning and memory.
Gøtzsche, C R; Woldbye, D P D
2016-02-01
High levels of NPY expression in brain regions important for learning and memory together with its neuromodulatory and neurotrophic effects suggest a regulatory role for NPY in memory processes. Therefore it is not surprising that an increasing number of studies have provided evidence for NPY acting as a modulator of neuroplasticity, neurotransmission, and memory. Here these results are presented in relation to the types of memory affected by NPY and its receptors. NPY can exert both inhibitory and stimulatory effects on memory, depending on memory type and phase, dose applied, brain region, and NPY receptor subtypes. Thus NPY act as a resilience factor by impairing associative implicit memory after stressful and aversive events, as evident in models of fear conditioning, presumably via Y1 receptors in the amygdala and prefrontal cortex. In addition, NPY impairs acquisition but enhances consolidation and retention in models depending on spatial and discriminative types of associative explicit memory, presumably involving Y2 receptor-mediated regulations of hippocampal excitatory transmission. Moreover, spatial memory training leads to increased hippocampal NPY gene expression that together with Y1 receptor-mediated neurogenesis could constitute necessary steps in consolidation and long-term retention of spatial memory. Altogether, NPY-induced effects on learning and memory seem to be biphasic, anatomically and temporally differential, and in support of a modulatory role of NPY at keeping the system in balance. Obtaining further insight into memory-related effects of NPY could inspire the engineering of new therapeutics targeting diseases where impaired learning and memory are central elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I
2016-05-01
White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Spatial coding of ordinal information in short- and long-term memory.
Ginsburg, Véronique; Gevers, Wim
2015-01-01
The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.
Transfer after process-based object-location memory training in healthy older adults.
Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne
2016-11-01
A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Modulation of Memory by Vestibular Lesions and Galvanic Vestibular Stimulation
Smith, Paul F.; Geddes, Lisa H.; Baek, Jean-Ha; Darlington, Cynthia L.; Zheng, Yiwen
2010-01-01
For decades it has been speculated that there is a close association between the vestibular system and spatial memories constructed by areas of the brain such as the hippocampus. While many animal studies have been conducted which support this relationship, only in the last 10 years have detailed quantitative studies been carried out in patients with vestibular disorders. The majority of these studies suggest that complete bilateral vestibular loss results in spatial memory deficits that are not simply due to vestibular reflex dysfunction, while the effects of unilateral vestibular damage are more complex and subtle. Very recently, reports have emerged that sub-threshold, noisy galvanic vestibular stimulation can enhance memory in humans, although this has not been investigated for spatial memory as yet. These studies add to the increasing evidence that suggests a connection between vestibular sensory information and memory in humans. PMID:21173897
Neural correlates of reward-based spatial learning in persons with cocaine dependence.
Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S
2014-02-01
Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.
Miskowiak, K W; Kjaerstad, H L; Støttrup, M M; Svendsen, A M; Demant, K M; Hoeffding, L K; Werge, T M; Burdick, K E; Domschke, K; Carvalho, A F; Vieta, E; Vinberg, M; Kessing, L V; Siebner, H R; Macoveanu, J
2017-05-01
Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working memory in BD. Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory test outside the scanner. During high working memory load (2-back vs 1-back), Val homozygotes displayed decreased activity relative to ValMet individuals, with Met homozygotes displaying intermediate levels of activity in the right dorsolateral prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive impairments in BD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rajah, M Natasha; Kromas, Michelle; Han, Jung Eun; Pruessner, Jens C
2010-12-01
The ability to retrieve temporal and spatial context information from memory declines with healthy aging. The hippocampus (HC) has been shown to be associated with successful encoding and retrieval of spatio-temporal context, versus item recognition information (Davachi, Mitchell, & Wagner, 2003; Nadel, Samsonovich, Ryan, & Moscovitch, 2000; Ross & Slotnick, 2008). Aging has been linked to volume reduction in the HC (Bouchard, Malykhin, Martin, Hanstock, Emery, Fisher, & Camicioli, 2008; Malykhin, Bouchard, Camicioli, & Coupland, 2008; Raz et al., 2005). As such, age-associated reductions in anterior HC volume may contribute to the context memory deficits observed in older adults. In the current MRI study we investigated whether item recognition, spatial context and temporal context memory performance would be predicted by regional volumes in HC head (HH), body (HB) and tail (HT) volumes, using within group multiple regression analyses in a sample of 19 healthy young (mean age 24.3) and 20 older adults (mean age 67.7). We further examined between age-group differences in the volumes of the same HC sub-regions. Multiple regression analyses revealed that in younger adults both spatial and temporal context retrieval performance was predicted by anterior HC volume. Older age was associated with significant volume reductions in HH and HB, but not HT; and with reduced ability to retrieve spatial and temporal contextual details from episodic memory. However, HC volumes did not predict context retrieval performance in older adults. We conclude that individual differences in anterior, not posterior, HC volumes predict context memory performance in young adults. With age there may be a posterior-to-anterior shift from using HC-related processes, due to HC volume loss, to employing the prefrontal cortex to aid in the performance of cognitively demanding context memory tasks. However, due to concomitant changes in the prefrontal system with age, there are limits to compensation in the aging brain. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory
Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela; Schrott, Lisa M.; Serrano, Peter A.
2013-01-01
It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing. PMID:24244733
McHugh, Stephen B; Niewoehner, Burkhard; Rawlins, J N P; Bannerman, David M
2008-01-10
Previous lesion studies have suggested a functional dissociation along the septotemporal axis of the hippocampus. Whereas the dorsal hippocampus has been implicated in spatial memory processes, the ventral hippocampus may play a role in anxiety. However, these lesion studies are potentially confounded by demyelination of fibres passing through the lesion site, and the possibility of secondary, downstream changes in associated brain structures as a consequence of their chronic denervation following the lesion. In the present study, we have used the microinfusion of muscimol to temporarily inactivate either the dorsal or ventral hippocampus in order to re-examine the contribution of the hippocampal sub-regions to spatial memory. Microinfusion studies spare fibres of passage and offer fewer opportunities for compensatory changes because the effects are transient and short-lasting. Rats were infused prior to spatial working memory testing on a non-matching to place T-maze alternation task. Spatial working memory was impaired by dorsal but not ventral hippocampal inactivation. In a second experiment, infusion of the NMDAR antagonist, D-AP5, into dorsal hippocampus also impaired spatial working memory performance, suggesting that NMDAR function within the dorsal hippocampus makes an essential contribution to this aspect of hippocampal information processing.
When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory
Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna
2012-01-01
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455
Sormaz, Mladen; Jefferies, Elizabeth; Bernhardt, Boris C; Karapanagiotidis, Theodoros; Mollo, Giovanna; Bernasconi, Neda; Bernasconi, Andrea; Hartley, Tom; Smallwood, Jonathan
2017-05-15
The hippocampus contributes to episodic, spatial and semantic aspects of memory, yet individual differences within and between these functions are not well-understood. In 136 healthy individuals, we investigated whether these differences reflect variation in the strength of connections between functionally-specialised segments of the hippocampus and diverse cortical regions that participate in different aspects of memory. Better topographical memory was associated with stronger connectivity between lingual gyrus and left anterior, rather than posterior, hippocampus. Better semantic memory was associated with increased connectivity between the intracalcarine/cuneus and left, rather than right, posterior hippocampus. Notably, we observed a double dissociation between semantic and topographical memory: better semantic memory was associated with stronger connectivity between left temporoparietal cortex and left anterior hippocampus, while better topographic memory was linked to stronger connectivity with right anterior hippocampus. Together these data support a division-of-labour account of hippocampal functioning: at the population level, differences in connectivity across the hippocampus reflect functional specialisation for different facets of memory, while variation in these connectivity patterns across individuals is associated with differences in the capacity to retrieve different types of information. In particular, within-hemisphere connectivity between hippocampus and left temporoparietal cortex supports conceptual processing at the expense of spatial ability. Copyright © 2017. Published by Elsevier Inc.
Acquisition, representation, and transfer of models of visuo-motor error
Zhang, Hang; Kulsa, Mila Kirstie C.; Maloney, Laurence T.
2015-01-01
We examined how human subjects acquire and represent models of visuo-motor error and how they transfer information about visuo-motor error from one task to a closely related one. The experiment consisted of three phases. In the training phase, subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen. The distribution of their endpoints was a vertically elongated bivariate Gaussian. In the subsequent choice phase, subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to investigate their internal models of visuo-motor error distribution, including the coordinate system in which they represented visuo-motor error. In the transfer phase, subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45°. From the new vantage point, visuo-motor error was effectively expanded horizontally by . We found that subjects incorrectly assumed an isotropic distribution in the choice phase but that the anisotropy they assumed in the transfer phase agreed with an objectively correct transfer. We also found that the coordinate system used in coding two-dimensional visuo-motor error in the choice phase was effectively one-dimensional. PMID:26057549
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation
2011-01-01
Background Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. Results The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. Conclusions As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time. PMID:21816065
A localized model of spatial cognition in chemistry
NASA Astrophysics Data System (ADS)
Stieff, Mike
This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role, however, in problem solving on a select group of chemistry tasks that require students to translate molecular representations or fundamentally alter the morphology of a molecule. Ultimately, this dissertation calls into question the assumption that individual differences in visuo-spatial ability play a critical role in determining who succeeds in chemistry. The results of this work establish a foundation for defining the precise manner in which visualization tools can best support problem solving.
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.
Lamônica, Dionísia Aparecida Cusin; Ferraz, Plínio Marcos Duarte Pinto; Ferreira, Amanda Tragueta; Prado, Lívia Maria do; Abramides, Dagma Venturini Marquez; Gejão, Mariana Germano
2011-01-01
The Fragile X syndrome is the most frequent cause of inherited intellectual disability. The Dandy-Walker variant is a specific constellation of neuroradiological findings. The present study reports oral and written communication findings in a 15-year-old boy with clinical and molecular diagnosis of Fragile X syndrome and neuroimaging findings consistent with Dandy-Walker variant. The speech-language pathology and audiology evaluation was carried out using the Communicative Behavior Observation, the Phonology assessment of the ABFW - Child Language Test, the Phonological Abilities Profile, the Test of School Performance, and the Illinois Test of Psycholinguistic Abilities. Stomatognathic system and hearing assessments were also performed. It was observed: phonological, semantic, pragmatic and morphosyntactic deficits in oral language; deficits in psycholinguistic abilities (auditory reception, verbal expression, combination of sounds, auditory and visual sequential memory, auditory closure, auditory and visual association); and morphological and functional alterations in the stomatognathic system. Difficulties in decoding the graphical symbols were observed in reading. In writing, the subject presented omissions, agglutinations and multiple representations with the predominant use of vowels, besides difficulties in visuo-spatial organization. In mathematics, in spite of the numeric recognition, the participant didn't accomplish arithmetic operations. No alterations were observed in the peripheral hearing evaluation. The constellation of behavioral, cognitive, linguistic and perceptual symptoms described for Fragile X syndrome, in addition to the structural central nervous alterations observed in the Dandy-Walker variant, caused outstanding interferences in the development of communicative abilities, in reading and writing learning, and in the individual's social integration.
Fabry-Perot confocal resonator optical associative memory
NASA Astrophysics Data System (ADS)
Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.
1993-03-01
A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.
Goldstein, Kim E; Hazlett, Erin A; Savage, Kimberley R; Berlin, Heather A; Hamilton, Holly K; Zelmanova, Yuliya; Look, Amy E; Koenigsberg, Harold W; Mitsis, Effie M; Tang, Cheuk Y; McNamara, Margaret; Siever, Larry J; Cohen, Barry H; New, Antonia S
2011-04-15
Schizotypal personality disorder (SPD) individuals and borderline personality disorder (BPD) individuals have been reported to show neuropsychological impairments and abnormalities in brain structure. However, relationships between neuropsychological function and brain structure in these groups are not well understood. This study compared visual-spatial working memory (SWM) and its associations with dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) gray matter volume in 18 unmedicated SPD patients with no BPD traits, 18 unmedicated BPD patients with no SPD traits, and 16 healthy controls (HC). Results showed impaired SWM in SPD but not BPD, compared with HC. Moreover, among the HC group, but not SPD patients, better SWM performance was associated with larger VLPFC (BA44/45) gray matter volume (Fisher's Z p-values <0.05). Findings suggest spatial working memory impairments may be a core neuropsychological deficit specific to SPD patients and highlight the role of VLPFC subcomponents in normal and dysfunctional memory performance. Published by Elsevier B.V.
Nguyen, Tuong-Vi; Wu, Mia; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Campbell, Benjamin C; Booij, Linda; Herba, Catherine; Monnier, Patricia; Ducharme, Simon; McCracken, James T
2017-12-01
Existing studies suggest that dehydroepiandrosterone (DHEA) may be important for human brain development and cognition. For example, molecular studies have hinted at the critical role of DHEA in enhancing brain plasticity. Studies of human brain development also support the notion that DHEA is involved in preserving cortical plasticity. Further, some, though not all, studies show that DHEA administration may lead to improvements in working memory in adults. Yet these findings remain limited by an incomplete understanding of the specific neuroanatomical mechanisms through which DHEA may impact the CNS during development. Here we examined associations between DHEA, cortico-hippocampal structural covariance, and working memory (216 participants [female=123], age range 6-22 years old, mean age: 13.6 +/-3.6 years, each followed for a maximum of 3 visits over the course of 4 years). In addition to administering performance-based, spatial working memory tests to these children, we also collected ecological, parent ratings of working memory in everyday situations. We found that increasingly higher DHEA levels were associated with a shift toward positive insular-hippocampal and occipito-hippocampal structural covariance. In turn, DHEA-related insular-hippocampal covariance was associated with lower spatial working memory but higher overall working memory as measured by the ecological parent ratings. Taken together with previous research, these results support the hypothesis that DHEA may optimize cortical functions related to general attentional and working memory processes, but impair the development of bottom-up, hippocampal-to-cortical connections, resulting in impaired encoding of spatial cues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Course of Relational and Non-Relational Recognition Memory across the Adult Lifespan
ERIC Educational Resources Information Center
Soei, Eleonore; Daum, Irene
2008-01-01
Human recognition memory shows a decline during normal ageing, which is thought to be related to age-associated dysfunctions of mediotemporal lobe structures. Whether the hippocampus is critical for human general relational memory or for spatial relational memory only is still disputed. The human perirhinal cortex is thought to be critically…
Bilateral Parietal Cortex Damage Does Not Impair Associative Memory for Paired Stimuli
Berryhill, Marian E.; Drowos, David B.; Olson, Ingrid R.
2010-01-01
Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word-pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for non-verbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378
Rolls, Edmund T
2017-05-01
The art of memory (ars memoriae) used since classical times includes using a well-known scene to associate each view or part of the scene with a different item in a speech. This memory technique is also known as the "method of loci." The new theory is proposed that this type of memory is implemented in the CA3 region of the hippocampus where there are spatial view cells in primates that allow a particular view to be associated with a particular object in an event or episodic memory. Given that the CA3 cells with their extensive recurrent collateral system connecting different CA3 cells, and associative synaptic modifiability, form an autoassociation or attractor network, the spatial view cells with their approximately Gaussian view fields become linked in a continuous attractor network. As the view space is traversed continuously (e.g., by self-motion or imagined self-motion across the scene), the views are therefore successively recalled in the correct order, with no view missing, and with low interference between the items to be recalled. Given that each spatial view has been associated with a different discrete item, the items are recalled in the correct order, with none missing. This is the first neuroscience theory of ars memoriae. The theory provides a foundation for understanding how a key feature of ars memoriae, the ability to use a spatial scene to encode a sequence of items to be remembered, is implemented. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Silver, Henry; Bilker, Warren B
2015-03-30
Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn
2005-01-01
We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory. PMID:16011544
Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn
2005-07-01
We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory.
Is working memory training in older adults sensitive to music?
Borella, Erika; Carretti, Barbara; Meneghetti, Chiara; Carbone, Elena; Vincenzi, Margherita; Madonna, Jessica Cira; Grassi, Massimo; Fairfield, Beth; Mammarella, Nicola
2017-12-19
Evidence in the literature suggests that listening to music can improve cognitive performance. The aim of the present study was to examine whether the short- and long-term gains of a working memory (WM) training in older adults could be enhanced by music listening-the Mozart's Sonata K448 and the Albinoni's Adagio in G minor-which differ in tempo and mode. Seventy-two healthy older adults (age range: 65-75 years) participated in the study. They were divided into four groups. At each training session, before starting the WM training activities, one group listened to Mozart (Mozart group, N = 19), one to Albinoni (Albinoni group, N = 19), one to white noise (White noise group, N = 16), while one served as an active control group involved in other activities and was not exposed to any music (active control group, N = 18). Specific training gains on a task like the one used in the training, and transfer effects on visuo-spatial abilities, executive function and reasoning measures were assessed. Irrespective of listening condition (Mozart, Albinoni, White noise), trained groups generally outperformed the control group. The White noise group never differed from the two music groups. However, the Albinoni group showed larger specific training gains in the criterion task at short-term and transfer effects in the reasoning task at both short-and long term compared to the Mozart group. Overall the present findings suggest caution when interpreting the effects of music before a WM training, and are discussed according to aging and music effect literature.
Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?
Guinet, M; Michel, C
2013-12-19
Studies involving therapeutic combinations reveal an important benefit in the rehabilitation of neglect patients when compared to single therapies. In light of these observations our present work examines, in healthy individuals, sensorimotor and cognitive after-effects of prism adaptation and neck muscle vibration applied individually or simultaneously. We explored sensorimotor after-effects on visuo-manual open-loop pointing, visual and proprioceptive straight-ahead estimations. We assessed cognitive after-effects on the line bisection task. Fifty-four healthy participants were divided into six groups designated according to the exposure procedure used with each: 'Prism' (P) group; 'Vibration with a sensation of body rotation' (Vb) group; 'Vibration with a move illusion of the LED' (Vl) group; 'Association with a sensation of body rotation' (Ab) group; 'Association with a move illusion of the LED' (Al) group; and 'Control' (C) group. The main findings showed that prism adaptation applied alone or combined with vibration showed significant adaptation in visuo-manual open-loop pointing, visual straight-ahead and proprioceptive straight-ahead. Vibration alone produced significant after-effects on proprioceptive straight-ahead estimation in the Vl group. Furthermore all groups (except C group) showed a rightward neglect-like bias in line bisection following the training procedure. This is the first demonstration of cognitive after-effects following neck muscle vibration in healthy individuals. The simultaneous application of both methods did not produce significant greater after-effects than prism adaptation alone in both sensorimotor and cognitive tasks. These results are discussed in terms of transfer of sensorimotor plasticity to spatial cognition in healthy individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Spatial Memory Engram in the Mouse Retrosplenial Cortex.
Milczarek, Michal M; Vann, Seralynne D; Sengpiel, Frank
2018-06-18
Memory relies on lasting adaptations of neuronal properties elicited by stimulus-driven plastic changes [1]. The strengthening (and weakening) of synapses results in the establishment of functional ensembles. It is presumed that such ensembles (or engrams) are activated during memory acquisition and re-activated upon memory retrieval. The retrosplenial cortex (RSC) has emerged as a key brain area supporting memory [2], including episodic and topographical memory in humans [3-5], as well as spatial memory in rodents [6, 7]. Dysgranular RSC is densely connected with dorsal stream visual areas [8] and contains place-like and head-direction cells, making it a prime candidate for integrating navigational information [9]. While previous reports [6, 10] describe the recruitment of RSC ensembles during navigational tasks, such ensembles have never been tracked long enough to provide evidence of stable engrams and have not been related to the retention of long-term memory. Here, we used in vivo 2-photon imaging to analyze patterns of activity of over 6,000 neurons within dysgranular RSC. Eight mice were trained on a spatial memory task. Learning was accompanied by the gradual emergence of a context-specific pattern of neuronal activity over a 3-week period, which was re-instated upon retrieval more than 3 weeks later. The stability of this memory engram was predictive of the degree of forgetting; more stable engrams were associated with better performance. This provides direct evidence for the interdependence of spatial memory consolidation and RSC engram formation. Our results demonstrate the participation of RSC in spatial memory storage at the level of neuronal ensembles. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Taffe, Michael A.; Taffe, William J.
2011-01-01
Several nonhuman primate species have been reported to employ a distance-minimizing, traveling salesman-like, strategy during foraging as well as in experimental spatial search tasks involving lesser amounts of locomotion. Spatial sequencing may optimize performance by reducing reference or episodic memory loads, locomotor costs, competition or other demands. A computerized self-ordered spatial search (SOSS) memory task has been adapted from a human neuropsychological testing battery (CANTAB, Cambridge Cognition, Ltd) for use in monkeys. Accurate completion of a trial requires sequential responses to colored boxes in two or more spatial locations without repetition of a previous location. Marmosets have been reported to employ a circling pattern of search, suggesting spontaneous adoption of a strategy to reduce working memory load. In this study the SOSS performance of rhesus monkeys was assessed to determine if the use of a distance-minimizing search path enhances accuracy. A novel strategy score, independent of the trial difficulty and arrangement of boxes, has been devised. Analysis of the performance of 21 monkeys trained on SOSS over two years shows that a distance-minimizing search strategy is associated with improved accuracy. This effect is observed within individuals as they improve over many cumulative sessions of training on the task and across individuals at any given level of training. Erroneous trials were associated with a failure to deploy the strategy. It is concluded that the effect of utilizing the strategy on this locomotion-free, laboratory task is to enhance accuracy by reducing demands on spatial working memory resources. PMID:21840507
Freas, C A; Bingman, K; Ladage, L D; Pravosudov, V V
2013-01-01
Variation in environmental conditions associated with differential selection on spatial memory has been hypothesized to result in evolutionary changes in the morphology of the hippocampus, a brain region involved in spatial memory. At the same time, it is well known that the morphology of the hippocampus might also be directly affected by environmental conditions. Understanding the role of environment-based plasticity is therefore critical when investigating potential adaptive evolutionary changes in the hippocampus associated with environmental variation. We previously demonstrated large elevation-related variation in hippocampus morphology in mountain chickadees over an extremely small spatial scale. We hypothesized that this variation is related to differential selection pressures associated with differences in winter climate severity along an elevation gradient, which make different demands on spatial memory used for food cache retrieval. Here, we tested whether such variation is experience based, generated by potential differences in the environment, by comparing the hippocampus morphology of chickadees from different elevations maintained in a uniform captive environment in a laboratory with those sampled directly from the wild. In addition, we compared hippocampal neuron soma size in chickadees sampled directly from the wild with those maintained in laboratory conditions with restricted and unrestricted spatial memory use via manipulation of food-caching experiences to test whether memory use can affect neuron soma size. There were significant elevation-related differences in hippocampus volume and the total number of hippocampal neurons, but not in neuron soma size, in captive birds. Captive environmental conditions were associated with a large reduction in hippocampus volume and neuron soma size, but not in the total number of neurons or in neuron soma size in other telencephalic regions. Restriction of memory use while in laboratory conditions produced no significant effects on hippocampal neuron soma size. Overall our results showed that captivity has a strong effect on hippocampus volume, which could be due, at least partly, to a reduction in neuron soma size specifically in the hippocampus, but it did not override elevation-related differences in hippocampus volume or in the total number of hippocampal neurons. These data are consistent with the idea of the adaptive nature of the elevation-related differences associated with selection on spatial memory, while at the same time demonstrating additional environment-based plasticity in hippocampus volume, but not in neuron numbers. Our results, however, cannot rule out that the differences between elevations might still be driven by some developmental or early posthatching conditions/experiences. © 2013 S. Karger AG, Basel.