Cross-sectional evaluation of visuomotor tracking performance following subconcussive head impacts.
Brokaw, E B; Fine, M S; Kindschi, K E; Santago Ii, A C; Lum, P S; Higgins, M
2018-01-01
Repeated mild traumatic brain injury (mTBI) has been associated with increased risk of degenerative neurological disorders. While the effects of mTBI and repeated injury are known, studies have only recently started examining repeated subconcussive impacts, impacts that do not result in a clinically diagnosed mTBI. In these studies, repeated subconcussive impacts have been connected to cognitive performance and brain imaging changes. Recent research suggests that performance on a visuomotor tracking (VMT) task may help improve the identification of mTBI. The goal of this study was to investigate if VMT performance is sensitive to the cumulative effect of repeated subconcussive head impacts in collegiate men's lacrosse players. A cross-sectional, prospective study was completed with eleven collegiate men's lacrosse players. Participants wore helmet-mounted sensors and completed VMT and reaction time assessments. The relationship between cumulative impact metrics and VMT metrics were investigated. In this study, VMT performance correlated with repeated subconcussive head impacts; individuals approached clinically diagnosed mTBI-like performance as the cumulative rotational velocity they experienced increased. This suggests that repeated subconcussive impacts can result in measurable impairments and indicates that visuomotor tracking performance may be a useful tool for monitoring the effects of repeated subconcussive impacts.
Visuomotor Tracking Ability of Young Adult Speakers.
ERIC Educational Resources Information Center
Moon, Jerald B.; And Others
1993-01-01
Twenty-five normal young adult speakers tracked sinusoidal and unpredictable target signals using lower lip and jaw movement and fundamental frequency modulation. Tracking accuracy varied as a function of target frequency and articulator used to track. Results show the potential of visuomotor tracking tasks in the assessment of speech articulatory…
Tumanova, Victoria; Zebrowski, Patricia M.; Goodman, Shawn S.; Arenas, Richard M.
2015-01-01
Purpose The purpose of this study was to utilize a visuomotor tracking task, with both the jaw and hand, to add to the literature regarding non-speech motor practice and sensorimotor integration (outside of auditory-motor integration domain) in adults who do (PWS) and do not (PWNS) stutter. Method Participants were 15 PWS (14 males, mean age = 27.0) and 15 PWNS (14 males, mean age = 27.2). Participants tracked both predictable and unpredictable moving targets separately with their jaw and their dominant hand, and accuracy was assessed by calculating phase and amplitude difference between the participant and the target. Motor practice effect was examined by comparing group performance over consecutive tracking trials of predictable conditions as well as within the first trial of same conditions. Results Results showed that compared to PWNS, PWS were not significantly different in matching either the phase (timing) or the amplitude of the target in both jaw and hand tracking of predictable and unpredictable targets. Further, there were no significant between-group differences in motor practice effects for either jaw or hand tracking. Both groups showed improved tracking accuracy within and between the trials. Conclusion Our findings revealed no statistically significant differences in non-speech motor practice effects and integration of sensorimotor feedback between PWS and PWNS, at least in the context of the visuomotor tracking tasks employed in the study. In general, both talker groups exhibited practice effects (i.e., increased accuracy over time) within and between tracking trials during both jaw and hand tracking. Implications for these results are discussed. PMID:25990027
Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study
ERIC Educational Resources Information Center
Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov
2012-01-01
Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…
Ju, Yan-Ying; Liu, Yen-Hsiu; Cheng, Chih-Hsiu; Lee, Yu-Lung; Chang, Shih-Tsung; Sun, Chi-Chin; Cheng, Hsin-Yi Kathy
2018-02-07
Data on visuomotor performance in combat training and the effects of combat training on visuomotor performance are limited. This study aimed to investigate the effects of a specially designed combat sports (CS) training program on the visuomotor performance levels of children. A pre-post comparative design was implemented. A total of 26 students aged 9-12 years underwent 40-min CS training sessions twice a week for 8 weeks during their physical education classes. The CS training program was designed by a karate coach and a motor control specialist. The other 30 students continued their regular activities and were considered as a control group. Each student's eye movement was monitored using an eye tracker, whereas the motor performance was measured using a target hitting system with a program-controlled microprocessor. The measurements were taken 8 weeks before (baseline), 1 day before (pretest), and 1 week after (posttest) the designated training program. The task used for evaluating these students was hitting or tracking random illuminated targets as rapidly as possible. A two-way analysis of variance [group(2) × time(3)] with repeated measures of time was performed for statistical analysis. For the children who received combat training, although the eye response improvement was not significant, both the primary and secondary saccade onset latencies were significantly earlier compared to the children without combat training. Both groups of students exhibited improvement in their hit response times during the target hitting tasks. The current finding supported the notion that sports training efforts essentially enhance visuomotor function in children aged 9-12 years, and combat training facilitates an earlier secondary saccade onset.
Visuomotor Tracking Abilities of Speakers With Apraxia of Speech or Conduction Aphasia
Robin, Donald A.; Jacks, Adam; Hageman, Carlin; Clark, Heather C.; Woodworth, George
2008-01-01
This investigation examined the visuomotor tracking abilities of persons with apraxia of speech (AOS) or conduction aphasia (CA). In addition, tracking performance was correlated with perceptual judgments of speech accuracy. Five individuals with AOS and four with CA served as participants, as well as an equal number of healthy controls matched by age and gender. Participants tracked predictable (sinusoidal) and unpredictable signals using jaw and lip movements transduced with strain gauges. Tracking performance in participants with AOS was poorest for predictable signals, with decreased kinematic measures of cross-correlation and gain ratio and increased target-tracker difference. In contrast, tracking of the unpredictable signal by participants with AOS was performed as well as for other groups (e.g. participants with CA, healthy controls). Performance of the subjects with AOS on the predictable tracking task was found to strongly correlate with perceptual judgments of speech. These findings suggest that motor control capabilities are impaired in AOS, but not in CA. Results suggest that AOS has its basis in motor programming deficits, not impaired motor execution. PMID:18558428
Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning.
Lang, W; Lang, M; Kornhuber, A; Kornhuber, H H
1986-02-01
Slow negative potential shifts were recorded together with the error made in motor performance when two different groups of 14 students tracked visual stimuli with their right hand. Various visuomotor tasks were compared. A tracking task (T) in which subjects had to track the stimulus directly, showed no decrease of error in motor performance during the experiment. In a distorted tracking task (DT) a continuous horizontal distortion of the visual feedback had to be compensated. The additional demands of this task required visuomotor learning. Another learning condition was a mirrored-tracking task (horizontally inverted tracking, hIT), i.e. an elementary function, such as the concept of changing left and right was interposed between perception and action. In addition, subjects performed a no-tracking control task (NT) in which they started the visual stimulus without tracking it. A slow negative potential shift was associated with the visuomotor performance (TP: tracking potential). In the learning tasks (DT and hIT) this negativity was significantly enhanced over the anterior midline and in hIT frontally and precentrally over both hemispheres. Comparing hIT and T for every subject, the enhancement of the tracking potential in hIT was correlated with the success in motor learning in frontomedial and bilaterally in frontolateral recordings (r = 0.81-0.88). However, comparing DT and T, such a correlation was only found in frontomedial and right frontolateral electrodes (r = 0.5-0.61), but not at the left frontolateral electrode. These experiments are consistent with previous findings and give further neurophysiological evidence for frontal lobe activity in visuomotor learning. The hemispherical asymmetry is discussed in respect to hemispherical specialization (right frontal lobe dominance in spatial visuomotor learning).
Neural Correlates of Expert Visuomotor Performance in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2016-11-01
Elite/skilled athletes participating in sports that require the initiation of targeted movements in response to visual cues under critical time pressure typically outperform nonathletes in a visuomotor reaction task. However, the exact physiological mechanisms of this advantage remain unclear. Therefore, this study aimed to determine the neurophysiological processes contributing to superior visuomotor performance in athletes using visual evoked potential (VEP). Central and peripheral determinants of visuomotor reaction time were investigated in 15 skilled badminton players and 28 age-matched nonathletic controls. To determine the speed of visual signal perception in the cortex, chromatic and achromatic pattern reversal stimuli were presented, and VEP values were recorded with a 64-channel EEG system. Further, a simple visuomotor reaction task was performed to investigate the transformation of the visual into a motor signal in the brain as well as the timing of muscular activation. Amplitude and latency of VEP (N75, P100, and N145) revealed that the athletes did not significantly differ from the nonathletes. However, visuomotor reaction time was significantly reduced in the athletes compared with nonathletes (athletes = 234.9 ms, nonathletes = 260.3 ms, P = 0.015). This was accompanied by an earlier activation of the premotor and supplementary motor areas (athletes = 163.9 ms, nonathletes = 199.1 ms, P = 0.015) as well as an earlier EMG onset (athletes = 167.5 ms, nonathletes = 206.5 ms, P < 0.001). The latency of premotor and supplementary motor area activation was correlated with EMG onset (r = 0.41) and visuomotor reaction time (r = 0.43). The results of this study indicate that superior visuomotor performance in athletes originates from faster visuomotor transformation in the premotor and supplementary motor cortical regions rather than from earlier perception of visual signals in the visual cortex.
Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.
Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel
2017-07-01
A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.
An Integrative Framework of Stress, Attention, and Visuomotor Performance
Vine, Samuel J.; Moore, Lee J.; Wilson, Mark R.
2016-01-01
The aim of this article is to present an integrative conceptual framework that depicts the effect of acute stress on the performance of visually guided motor skills. We draw upon seminal theories highlighting the importance of subjective interpretations of stress on subsequent performance and outline how models of disrupted attentional control might explain this effect through impairments in visuomotor control. We first synthesize and critically discuss empirical support for theories examining these relationships in isolation. We then outline our integrative framework that seeks to provide a more complete picture of the interacting influences of stress responses (challenge and threat) and attention in explaining how elevated stress may lead to different visuomotor performance outcomes. We propose a number of mechanisms that explain why evaluations of stress are related to attentional control, and highlight the emotion of anxiety as the most likely candidate to explain why negative reactions to stress lead to disrupted attention and poor visuomotor skill performance. Finally, we propose a number of feedback loops that explain why stress responses are often self-perpetuating, as well as a number of proposed interventions that are designed to help improve or maintain performance in real world performance environments (e.g., sport, surgery, military, and aviation). PMID:27847484
Elasticity improves handgrip performance and user experience during visuomotor control
Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-01-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human–machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9–14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices. PMID:28386448
Elasticity improves handgrip performance and user experience during visuomotor control.
Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-02-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices.
Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?
Russell, D M; Sternad, D
2001-12-01
In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.
A possible correlation between performance IQ, visuomotor adaptation ability and mu suppression.
Anwar, Muhammad Nabeel; Navid, Muhammad Samran; Khan, Mushtaq; Kitajo, Keiichi
2015-04-07
Psychometric, anatomical and functional brain studies suggest that individuals differ in the way that they perceive and analyze information and strategically control and execute movements. Inter-individual differences are also observed in neural correlates of specific and general cognitive ability. As a result, some individuals perceive and adapt to environmental conditions and perform motor activities better than others. The aim of this study was to identify a common factor that predicts adaptation of a reaching movement to a visual perturbation and suppression of movement-related brain activity (mu rhythms). Twenty-eight participants participated in two different experiments designed to evaluate visuomotor adaptation and mu suppression ability. Performance intelligence quotient (IQ) was assessed using the revised Wechsler Adult Intelligence Scale. Performance IQ predicted adaptation index of visuomotor performance (r=0.43, p=0.02) and suppression of mu rhythms (r=-0.59; p<0.001). Participants with high performance IQ were faster at adapting to a visuomotor perturbation and better at suppressing mu activity than participants with low performance IQ. We found a possible link between performance IQ and mu suppression, and performance IQ and the initial rate of adaptation. Individuals with high performance IQ were better in suppressing mu rhythms and were quicker at associating motor command and required movement than individuals with low performance IQ. Copyright © 2015 Elsevier B.V. All rights reserved.
Encoding attentional states during visuomotor adaptation
Im, Hee Yeon; Bédard, Patrick; Song, Joo-Hyun
2015-01-01
We recently showed that visuomotor adaptation acquired under attentional distraction is better recalled under a similar level of distraction compared to no distraction. This paradoxical effect suggests that attentional state (e.g., divided or undivided) is encoded as an internal context during visuomotor learning and should be reinstated for successful recall (Song & Bédard, 2015). To investigate if there is a critical temporal window for encoding attentional state in visuomotor memory, we manipulated whether participants performed the secondary attention-demanding task concurrently in the early or late phase of visuomotor learning. Recall performance was enhanced when the attentional states between recall and the early phase of visuomotor learning were consistent. However, it reverted to untrained levels when tested under the attentional state of the late-phase learning. This suggests that attentional state is primarily encoded during the early phase of learning before motor errors decrease and reach an asymptote. Furthermore, we demonstrate that when divided and undivided attentional states were mixed during visuomotor adaptation, only divided attention was encoded as an internal cue for memory retrieval. Therefore, a single attentional state appears to be primarily integrated with visuomotor memory while motor error reduction is in progress during learning. PMID:26114683
Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.
2018-01-01
Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370
Effect of visuomotor-map uncertainty on visuomotor adaptation.
Saijo, Naoki; Gomi, Hiroaki
2012-03-01
Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.
Playing Action Video Games Improves Visuomotor Control.
Li, Li; Chen, Rongrong; Chen, Jing
2016-08-01
Can playing action video games improve visuomotor control? If so, can these games be used in training people to perform daily visuomotor-control tasks, such as driving? We found that action gamers have better lane-keeping and visuomotor-control skills than do non-action gamers. We then trained non-action gamers with action or nonaction video games. After they played a driving or first-person-shooter video game for 5 or 10 hr, their visuomotor control improved significantly. In contrast, non-action gamers showed no such improvement after they played a nonaction video game. Our model-driven analysis revealed that although different action video games have different effects on the sensorimotor system underlying visuomotor control, action gaming in general improves the responsiveness of the sensorimotor system to input error signals. The findings support a causal link between action gaming (for as little as 5 hr) and enhancement in visuomotor control, and suggest that action video games can be beneficial training tools for driving. © The Author(s) 2016.
Shabbott, Britne A; Sainburg, Robert L
2010-05-01
Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.
Brief Morning Light Exposure, Visuomotor Performance, and Biochemistry in Sport Shooters.
Leichtfried, Veronika; Hanser, Friedrich; Griesmacher, Andrea; Canazei, Markus; Schobersberger, Wolfgang
2016-09-01
Demands on concentrative and cognitive performance are high in sport shooting and vary in a circadian pattern, aroused by internal and external stimuli. The most prominent external stimulus is light. Bright light (BL) has been shown to have a certain impact on cognitive and physical performance. To evaluate the impact of a single half hour of BL exposure in the morning hours on physical and cognitive performance in 15 sport shooters. In addition, courses of sulfateoxymelatonin (aMT6s), tryptophan (TRP), and kynurenine (KYN) were monitored. In a crossover design, 15 sport shooters were exposed to 30 min of BL and dim light (DL) in the early-morning hours. Shooting performance, balance, visuomotor performance, and courses of aMT6s, TRP, and KYN were evaluated. Shooting performance was 365.4 (349.7-381.0) and 368.5 (353.9-383.1), identical in both light setups. Numbers of right reactions (sustained attention) and deviations from the horizontal plane (balance-related measure) were higher after BL. TRP concentrations decreased from 77.5 (73.5-81.4) to 66.9 (60.7-67.0) in the DL setup only. The 2 light conditions generated heterogeneous visuomotor and physiological effects in sport shooters. The authors therefore suggest that a single half hour of BL exposure is effective in improving cognitive aspects of performance, but not physical performance. Further research is needed to evaluate BL's impact on biochemical parameters.
Visuomotor sensitivity to visual information about surface orientation.
Knill, David C; Kersten, Daniel
2004-03-01
We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.
Bigsby, Kathryn; Mangine, Robert E; Clark, Joseph F; Rauch, Joseph T; Bixenmann, Benjamin; Susaret, Antonia W; Hasselfeld, Kimberly A; Colosimo, Angelo J
2014-08-01
Visuomotor ability is an important parameter for neurologic function and effective sport performance. Adding a balance challenge during a structured eye-hand coordination task, such as hitting lights on a light board (Dynavision™), has not been previously reported. Using Division I football players, the aim of this study was to determine normative data on a dual-task performance regimen combining a visuomotor light board task with a balance task. The intent is to use such normative data and baseline data as part of a concussion management program. Division I college football team members, n=105, were consented. Subjects first performed Dynavision™ D2™ Visuomotor Training Device (D2™) eye-hand coordination tasks, the A* and the RT; they then performed the same tasks with an added balance challenge, standing on a BOSU® ball. Ninety-four athletes completed the full testing procedure on the D2™ system. The mean score of the A* test was 93 ± 11.0 hits per minute; and the mean on the A* test with the added BOSU® balance challenge was 83.7 ± 9.2 hits per minute. The mean RT time was 0.33 ± 0.036 seconds. Mean reaction time increased to 0.38 ± 0.063 while the subject stood on the BOSU® ball. Performance on the D2™ A* and RT were both statistically significantly different in the dual task condition (p<0.05). Results show an approximate 10% decline in D2™ performance when healthy individuals stand on a BOSU® ball. From the data presented here, the authors determined that there is a 10% decrement in performance when one's balance is challenged on the BOSU® ball. A fall in performance of substantially greater than 10% may indicate abnormal vestibulocerebellar regulatory processing of balance and motion. Further research, using these normative data is needed to determine more specific parameters for definitions of impairment and return-to-play and if there is utility for such studies as part of a concussion management program. III.
Baugh, Lee A; Lawrence, Jane M; Marotta, Jonathan J
2011-10-01
Previous literature has reported a wide range of anatomical correlates when participants are required to perform a visuomotor adaptation task. However, traditional adaptation tasks suffer a number of inherent limitations that may, in part, give rise to this variability. For instance, the sparse visual environment does not map well onto conditions in which a visuomotor transformation would normally be required in everyday life. To further clarify these neural underpinnings, functional magnetic resonance imaging (fMRI) was performed on 17 (6M, age range 20-45 years old; mean age=26) naive participants performing a viewing window task in which a visuomotor transformation was created by varying the relationship between the participant's movement and the resultant movement of the viewing window. The viewing window task more naturally replicates scenarios in which haptic and visual information would be combined to achieve a higher-level goal. Even though activity related to visuomotor adaptation was found within previously reported regions of the parietal lobes, frontal lobes, and occipital lobes, novel activation patterns were observed within the claustrum - a region well-established as multi-modal convergence zone. These results confirm the diversity in the number and location of neurological systems recruited to perform a required visuomotor adaptation, and provide the first evidence of participation of the claustrum to overcome a visuomotor transformation. Copyright © 2011 Elsevier B.V. All rights reserved.
Variable practice with lenses improves visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.
2001-01-01
Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.
Gómez-Moya, Rosinna; Díaz, Rosalinda; Fernandez-Ruiz, Juan
2016-04-01
Different processes are involved during visuomotor learning, including an error-based procedural and a strategy based cognitive mechanism. Our objective was to analyze if the changes in the adaptation or the aftereffect components of visuomotor learning measured across development, reflected different maturation rates of the aforementioned mechanisms. Ninety-five healthy children aged 4-12years and a group of young adults participated in a wedge prism and a dove prism throwing task, which laterally displace or horizontally reverse the visual field respectively. The results show that despite the age-related differences in motor control, all children groups adapted in the error-based wedge prisms condition. However, when removing the prism, small children showed a slower aftereffects extinction rate. On the strategy-based visual reversing task only the older children group reached adult-like levels. These results are consistent with the idea of different mechanisms with asynchronous maturation rates participating during visuomotor learning. Copyright © 2016 Elsevier B.V. All rights reserved.
Explicit instruction of rules interferes with visuomotor skill transfer.
Tanaka, Kanji; Watanabe, Katsumi
2017-06-01
In the present study, we examined the effects of explicit knowledge, obtained through instruction or spontaneous detection, on the transfer of visuomotor sequence learning. In the learning session, participants learned a visuomotor sequence, via trial and error. In the transfer session, the order of the sequence was reversed from that of the learning session. Before the commencement of the transfer session, some participants received explicit instruction regarding the reversal rule (i.e., Instruction group), while the others did not receive any information and were sorted into either an Aware or Unaware group, as assessed by interview conducted after the transfer session. Participants in the Instruction and Aware groups performed with fewer errors than the Unaware group in the transfer session. The participants in the Instruction group showed slower speed than the Aware and Unaware groups in the transfer session, and the sluggishness likely persisted even in late learning. These results suggest that explicit knowledge reduces errors in visuomotor skill transfer, but may interfere with performance speed, particularly when explicit knowledge is provided, as opposed to being spontaneously discovered.
Moving to Capture Children's Attention: Developing a Methodology for Measuring Visuomotor Attention.
Hill, Liam J B; Coats, Rachel O; Mushtaq, Faisal; Williams, Justin H G; Aucott, Lorna S; Mon-Williams, Mark
2016-01-01
Attention underpins many activities integral to a child's development. However, methodological limitations currently make large-scale assessment of children's attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of 'Visual Motor Attention' (VMA)-a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method's core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults' attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action).
Visuomotor cerebellum in human and nonhuman primates.
Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I
2012-06-01
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo
2011-01-01
This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE
Differential transfer processes in incremental visuomotor adaptation.
Seidler, Rachel D
2005-01-01
Visuomotor adaptive processes were examined by testing transfer of adaptation between similar conditions. Participants made manual aiming movements with a joystick to hit targets on a computer screen, with real-time feedback display of their movement. They adapted to three different rotations of the display in a sequential fashion, with a return to baseline display conditions between rotations. Adaptation was better when participants had prior adaptive experiences. When performance was assessed using direction error (calculated at the time of peak velocity) and initial endpoint error (error before any overt corrective actions), transfer was greater when the final rotation reflected an addition of previously experienced rotations (adaptation order 30 degrees rotation, 15 degrees, 45 degrees) than when it was a subtraction of previously experienced conditions (adaptation order 45 degrees rotation, 15 degrees, 30 degrees). Transfer was equal regardless of adaptation order when performance was assessed with final endpoint error (error following any discrete, corrective actions). These results imply the existence of multiple independent processes in visuomotor adaptation.
The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation.
Hinder, Mark R; Walk, Laura; Woolley, Daniel G; Riek, Stephan; Carson, Richard G
2007-07-01
An isometric torque-production task was used to investigate interference and retention in adaptation to multiple visuomotor environments. Subjects produced isometric flexion-extension and pronation-supination elbow torques to move a cursor to acquire targets as quickly as possible. Adaptation to a 30 degrees counter-clockwise (CCW) rotation (task A), was followed by a period of rest (control), trials with no rotation (task B0), or trials with a 60 degrees clockwise (CW) rotation (task B60). For all groups, retention of task A was assessed 5 h later. With initial training, all groups reduced the angular deviation of cursor paths early in the movements, indicating feedforward adaptation. For the control group, performance at commencement of the retest was significantly better than that at the beginning of the initial learning. For the B0 group, performance in the retest of task A was not dissimilar to that at the start of the initial learning, while for the B60 group retest performance in task A was markedly worse than initially observed. Our results indicate that close juxtaposition of two visuomotor environments precludes improved retest performance in the initial environment. Data for the B60 group, specifically larger angular errors upon retest compared with initial exposures, are consistent with the presence of anterograde interference. Furthermore, full interference occurred even when the visuomotor environment encountered in the second task was not rotated (B0). This latter novel result differs from those obtained for force field learning, where interference does not occur when task B does not impose perturbing forces, i.e., when B consists of a null field (Brashers-Krug et al., Nature 382:252-255, 1996). The results are consistent with recent proposals suggesting different interference mechanisms for visuomotor (kinematic) compared to force field (dynamic) adaptations, and have implications for the use of washout trials when studying interference between
Use of a Tracing Task to Assess Visuomotor Performance: Effects of Age, Sex, and Handedness
2013-01-01
Background. Visuomotor abnormalities are common in aging and age-related disease, yet difficult to quantify. This study investigated the effects of healthy aging, sex, and handedness on the performance of a tracing task. Participants (n = 150, aged 21–95 years, 75 females) used a stylus to follow a moving target around a circle on a tablet computer with their dominant and nondominant hands. Participants also performed the Trail Making Test (a measure of executive function). Methods. Deviations from the circular path were computed to derive an “error” time series. For each time series, absolute mean, variance, and complexity index (a proposed measure of system functionality and adaptability) were calculated. Using the moving target and stylus coordinates, the percentage of task time within the target region and the cumulative micropause duration (a measure of motion continuity) were computed. Results. All measures showed significant effects of aging (p < .0005). Post hoc age group comparisons showed that with increasing age, the absolute mean and variance of the error increased, complexity index decreased, percentage of time within the target region decreased, and cumulative micropause duration increased. Only complexity index showed a significant difference between dominant versus nondominant hands within each age group (p < .0005). All measures showed relationships to the Trail Making Test (p < .05). Conclusions. Measures derived from a tracing task identified performance differences in healthy individuals as a function of age, sex, and handedness. Studies in populations with specific neuromotor syndromes are warranted to test the utility of measures based on the dynamics of tracking a target as a clinical assessment tool. PMID:23388876
Multiple Motor Learning Strategies in Visuomotor Rotation
Saijo, Naoki; Gomi, Hiroaki
2010-01-01
Background When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions. Methodology/Principal Findings We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation. Conclusions/Significance The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies
Moving to Capture Children’s Attention: Developing a Methodology for Measuring Visuomotor Attention
Coats, Rachel O.; Mushtaq, Faisal; Williams, Justin H. G.; Aucott, Lorna S.; Mon-Williams, Mark
2016-01-01
Attention underpins many activities integral to a child’s development. However, methodological limitations currently make large-scale assessment of children’s attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of ‘Visual Motor Attention’ (VMA)—a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method’s core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults’ attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action). PMID:27434198
Concurrent visuomotor behaviour improves form discrimination in a patient with visual form agnosia.
Schenk, Thomas; Milner, A David
2006-09-01
It is now well established that the visual brain is divided into two visual streams, the ventral and the dorsal stream. Milner and Goodale have suggested that the ventral stream is dedicated for processing vision for perception and the dorsal stream vision for action [A.D. Milner & M.A. Goodale (1995) The Visual Brain in Action, Oxford University Press, Oxford]. However, it is possible that ongoing processes in the visuomotor stream will nevertheless have an effect on perceptual processes. This possibility was examined in the present study. We have examined the visual form-discrimination performance of the form-agnosic patient D.F. with and without a concurrent visuomotor task, and found that her performance was significantly improved in the former condition. This suggests that the visuomotor behaviour provides cues that enhance her ability to recognize the form of the target object. In control experiments we have ruled out proprioceptive and efferent cues, and therefore propose that D.F. can, to a significant degree, access the object's visuomotor representation in the dorsal stream. Moreover, we show that the grasping-induced perceptual improvement disappears if the target objects only differ with respect to their shape but not their width. This suggests that shape information per se is not used for this grasping task.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S
2015-08-14
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S.
2015-01-01
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate’s diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904
Visual but not motor processes predict simple visuomotor reaction time of badminton players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2018-03-01
The athlete's brain exhibits significant functional adaptations that facilitate visuomotor reaction performance. However, it is currently unclear if the same neurophysiological processes that differentiate athletes from non-athletes also determine performance within a homogeneous group of athletes. This information can provide valuable help for athletes and coaches aiming to optimize existing training regimes. Therefore, this study aimed to identify the neurophysiological correlates of visuomotor reaction performance in a group of skilled athletes. In 36 skilled badminton athletes, electroencephalography (EEG) was used to investigate pattern reversal and motion onset visual-evoked potentials (VEPs) as well as visuomotor reaction time (VMRT) during a simple reaction task. Stimulus-locked and response-locked event-related potentials (ERPs) in visual and motor regions as well as the onset of muscle activation (EMG onset) were determined. Correlation and multiple regression analyses identified the neurophysiological parameters predicting EMG onset and VMRT. For pattern reversal stimuli, the P100 latency and age best predicted EMG onset (r = 0.43; p = .003) and VMRT (r = 0.62; p = .001). In the motion onset experiment, EMG onset (r = 0.80; p < .001) and VMRT (r = 0.78; p < .001) were predicted by N2 latency and age. In both conditions, cortical potentials in motor regions were not correlated with EMG onset or VMRT. It is concluded that previously identified neurophysiological parameters differentiating athletes from non-athletes do not necessarily determine performance within a homogeneous group of athletes. Specifically, the speed of visual perception/processing predicts EMG onset and VMRT in skilled badminton players while motor-related processes, although differentiating athletes from non-athletes, are not associated simple with visuomotor reaction performance.
Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2017-06-01
Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.
Aleci, Carlo; Piccoli, Marzia; Melotti, Valentina; Melis, Elena; Canavese, Lorenzo
2017-12-01
Purpose A model aimed at detecting the proportion of visuoperceptive and visuomotor coordination impairment in children with ascertained or suspected learning disability is described. The final purpose is to provide customized rehabilitation programs. Methods In this pilot study, four children (8-9 years) were administered a set of standardized tests to evaluate their ability to perform visuoperceptive and visuomotor tasks. Depending on the individual outcomes, two indexes have been computed from the resulting z-scores: η (Eta) that quantifies the visuoperceptive impairment, and μ (Mu) that expresses the alteration in visuomotor coordination. Results A condition of abnormality was evident in each patient: Subjects 1 and 3 suffered mainly from a visuoperceptive alteration (η higher than expected), while Subject 4 had reduced visuomotor coordination (μ higher than expected). Subject 2 showed balanced visuoperceptive and visuomotor impairment. Based on the obtained η and μ values, each child underwent a customized rehabilitation treatment, then they were examined again. At re-test, η or μ turned balanced and z-scores improved in the four patients. Conclusions The Eta/Mu model is effective in detecting the type of damage by quantifying the share of visuoperceptive and visuomotor coordination involvement in dyslexic children, allowing a customized rehabilitative approach. Such an approach, focused on treating the function found to be defective, appears to be effective in rebalancing individual visuomotor and visuoperceptive skills; it should, therefore, be taken into consideration when updating the rehabilitation plans of learning disabled children.
Acquisition, representation, and transfer of models of visuo-motor error
Zhang, Hang; Kulsa, Mila Kirstie C.; Maloney, Laurence T.
2015-01-01
We examined how human subjects acquire and represent models of visuo-motor error and how they transfer information about visuo-motor error from one task to a closely related one. The experiment consisted of three phases. In the training phase, subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen. The distribution of their endpoints was a vertically elongated bivariate Gaussian. In the subsequent choice phase, subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to investigate their internal models of visuo-motor error distribution, including the coordinate system in which they represented visuo-motor error. In the transfer phase, subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45°. From the new vantage point, visuo-motor error was effectively expanded horizontally by . We found that subjects incorrectly assumed an isotropic distribution in the choice phase but that the anisotropy they assumed in the transfer phase agreed with an objectively correct transfer. We also found that the coordinate system used in coding two-dimensional visuo-motor error in the choice phase was effectively one-dimensional. PMID:26057549
Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea
2014-01-01
Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518
Online adaptation and over-trial learning in macaque visuomotor control.
Braun, Daniel A; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning.
Performance in complex motor tasks deteriorates in hyperthermic humans.
Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars
2017-01-01
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control
Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526
Halje, Pär; Seeck, Margitta; Blanke, Olaf; Ionta, Silvio
2015-12-01
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V
2017-02-15
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain-machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model
Ryu, Stephen I.
2017-01-01
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain–machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models
Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.
Block, Hannah; Celnik, Pablo
2013-12-01
When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.
Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning
Block, Hannah; Celnik, Pablo
2013-01-01
When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383
Lei, Yuming; Binder, Jeffrey R.
2015-01-01
The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082
Changes in the Spinal Neural Circuits are Dependent on the Movement Speed of the Visuomotor Task
Kubota, Shinji; Hirano, Masato; Koizume, Yoshiki; Tanabe, Shigeo; Funase, Kozo
2015-01-01
Previous studies have shown that spinal neural circuits are modulated by motor skill training. However, the effects of task movement speed on changes in spinal neural circuits have not been clarified. The aim of this research was to investigate whether spinal neural circuits were affected by task movement speed. Thirty-eight healthy subjects participated in this study. In experiment 1, the effects of task movement speed on the spinal neural circuits were examined. Eighteen subjects performed a visuomotor task involving ankle muscle slow (nine subjects) or fast (nine subjects) movement speed. Another nine subjects performed a non-visuomotor task (controls) in fast movement speed. The motor task training lasted for 20 min. The amounts of D1 inhibition and reciprocal Ia inhibition were measured using H-relfex condition-test paradigm and recorded before, and at 5, 15, and 30 min after the training session. In experiment 2, using transcranial magnetic stimulation (TMS), the effects of corticospinal descending inputs on the presynaptic inhibitory pathway were examined before and after performing either a visuomotor (eight subjects) or a control task (eight subjects). All measurements were taken under resting conditions. The amount of D1 inhibition increased after the visuomotor task irrespective of movement speed (P < 0.01). The amount of reciprocal Ia inhibition increased with fast movement speed conditioning (P < 0.01), but was unchanged by slow movement speed conditioning. These changes lasted up to 15 min in D1 inhibition and 5 min in reciprocal Ia inhibition after the training session. The control task did not induce changes in D1 inhibition and reciprocal Ia inhibition. The TMS conditioned inhibitory effects of presynaptic inhibitory pathways decreased following visuomotor tasks (P < 0.01). The size of test H-reflex was almost the same size throughout experiments. The results suggest that supraspinal descending inputs for controlling joint movement are responsible
Wamsley, Erin J.; Perry, Karen; Djonlagic, Ina; Babkes Reaven, Laura; Stickgold, Robert
2010-01-01
Study Objectives: Studies of neural activity in animals and humans suggest that experiences are “replayed” in cortical and hippocampal networks during NREM sleep. Here, we examine whether memory reactivation in sleeping humans might also be evident within reports of concomitant subjective experience (i.e., dreaming). Design: Participants were trained on an engaging visuomotor learning task across a period of one or more days, and sleep onset mentation was collected at variable intervals using the “Nightcap” home-monitoring device. Verbal reports of sleep onset mentation were obtained either at the beginning of the night, or following 2 h of initial sleep. Setting: Data were collected in participants' home environments, via the Nightcap monitoring system, and at The Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston MA. Participants: 43 healthy, medication-free college students (16 males, age 18-25 years). Interventions: N/A Measurements and Results: The learning task exerted a powerful, direct effect on verbal reports of mentation during light NREM sleep (stages 1 and 2). On post-training nights, a full 30% of all verbal reports were related to the task. The nature of this cognitive “replay” effect was altered with increasing durations of sleep, becoming more abstracted from the original experience as time into sleep increased. Conclusions: These observations are interpreted in light of memory consolidation theory, and demonstrate that introspective reports can provide a valuable window on cognitive processing in the sleeping brain. Citation: Wamsley EJ; Perry K; Djonlagic I; Babkes Reaven L; Stickgold R. Cognitive replay of visuomotor learning at sleep onset: temporal dynamics and relationship to task performance. SLEEP 2010;33(1):59-68. PMID:20120621
Sleep benefits consolidation of visuo-motor adaptation learning in older adults.
Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C
2016-02-01
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
Effects of Normal Aging on Visuo-Motor Plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2001-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuomotor plasticity is a form of behavioral neural plasticity which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into a microgravity or underwater environment. In order to determine the effects of aging on visuomotor plasticity, we chose the simple and easily measured paradigm of visual-motor re-arrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel analyses for 73 subjects aged 20 to 80 years. We found no statistically significant difference in measures of visuomotor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
Effects of normal aging on visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2002-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuo-motor plasticity is a form of behavioral neural plasticity, which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into microgravity or an underwater environment. To determine the effects of aging on visuo-motor plasticity, we chose the simple and easily measured paradigm of visual-motor rearrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel modeling techniques for 73 subjects, aged 20 to 80 years. We found no statistically significant difference in measures of visuo-motor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
Compatibility of motion facilitates visuomotor synchronization.
Hove, Michael J; Spivey, Michael J; Krumhansl, Carol L
2010-12-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists.
Hayashi, Takuji; Yokoi, Atsushi; Hirashima, Masaya; Nozaki, Daichi
2016-01-01
When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation.
Visuomotor adaptation in head-mounted virtual reality versus conventional training
Anglin, J. M.; Sugiyama, T.; Liew, S.-L.
2017-01-01
Immersive, head-mounted virtual reality (HMD-VR) provides a unique opportunity to understand how changes in sensory environments affect motor learning. However, potential differences in mechanisms of motor learning and adaptation in HMD-VR versus a conventional training (CT) environment have not been extensively explored. Here, we investigated whether adaptation on a visuomotor rotation task in HMD-VR yields similar adaptation effects in CT and whether these effects are achieved through similar mechanisms. Specifically, recent work has shown that visuomotor adaptation may occur via both an implicit, error-based internal model and a more cognitive, explicit strategic component. We sought to measure both overall adaptation and balance between implicit and explicit mechanisms in HMD-VR versus CT. Twenty-four healthy individuals were placed in either HMD-VR or CT and trained on an identical visuomotor adaptation task that measured both implicit and explicit components. Our results showed that the overall timecourse of adaption was similar in both HMD-VR and CT. However, HMD-VR participants utilized a greater cognitive strategy than CT, while CT participants engaged in greater implicit learning. These results suggest that while both conditions produce similar results in overall adaptation, the mechanisms by which visuomotor adaption occurs in HMD-VR appear to be more reliant on cognitive strategies. PMID:28374808
Influence of divergent and convergent thinking on visuomotor adaptation in young and older adults.
Simon, Anja; Bock, Otmar
2016-04-01
Visuomotor adaptation declines in older age. This has been attributed to cognitive impairments. One relevant cognitive function could be creativity, since creativity is implicated as mediator of early learning. The present study therefore evaluates whether two aspects of creativity, divergent and convergent thinking, are differentially involved in the age-dependent decline of visuomotor adaptation. In 25 young and 24 older volunteers, divergent thinking was assessed by the alternative-uses-task (AUT), convergent thinking by the Intelligenz-Struktur-Test-2000 (IST), and sensorimotor-adaptation by a pointing task with 60° rotated visual feedback. Young participants outperformed older participants in all three tasks. AUT scores were positively associated with young but not older participants' adaptive performance, whereas IST scores were negatively associated with older but not young participants' adaptive performance. This pattern of findings could be attributed to a consistent relationship between AUT, IST and adaptation; taking this into account, adaptation deficits of older participants were no longer significant. We conclude that divergent thinking supports workaround-strategies during adaptation, but doesn't influence visuomotor recalibration. Furthermore, the decay of divergent thinking in older adults may explain most of age-related decline of adaptive strategies. When the age-related decay of divergent thinking coincides with well-preserved convergent thinking, adaptation suffers most. Copyright © 2015 Elsevier B.V. All rights reserved.
Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans
ERIC Educational Resources Information Center
Safstrom, Daniel; Edin, Benoni B.
2005-01-01
During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…
Hirashima, Masaya
2016-01-01
Abstract When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation. PMID:27275006
Dissociation of agency and body ownership following visuomotor temporal recalibration
Imaizumi, Shu; Asai, Tomohisa
2015-01-01
Bodily self-consciousness consists of one’s sense of agency (I am causing an action) and body ownership (my body belongs to me). Both stem from the temporal congruence between different modalities, although some visuomotor temporal incongruence is acceptable for agency. To examine the association or dissociation between agency and body ownership in the context of different temporal sensitivities, we applied a temporal recalibration paradigm, in which subjective synchrony between asynchronous hand action and its visual feedback can be perceived after exposure to the asynchronous visuomotor stimulation. In the experiment, participants continuously clasped and unclasped their hand while watching an online video of their hand that was presented with delays of 50, 110, 170, 230, 290, and 350 ms. Then, they rated a video of their hand with a delay of 50 ms (test stimulus) with respect to the synchrony between hand action and hand video and the perceived agency over the video. Moreover, proprioceptive drift of participants’ hand location toward the hand video during the exposure was measured as an index of illusory body ownership. Results indicated that perception of agency emerged over the delayed hand video as subjective visuomotor synchrony was recalibrated, but that body ownership did not emerge for the delayed video, even after the recalibration. We suggest that there is a dissociation between agency and body ownership following visuomotor temporal recalibration. PMID:25999826
Implicit transfer of spatial structure in visuomotor sequence learning.
Tanaka, Kanji; Watanabe, Katsumi
2014-11-01
Implicit learning and transfer in sequence learning are essential in daily life. Here, we investigated the implicit transfer of visuomotor sequences following a spatial transformation. In the two experiments, participants used trial and error to learn a sequence consisting of several button presses, known as the m×n task (Hikosaka et al., 1995). After this learning session, participants learned another sequence in which the button configuration was spatially transformed in one of the following ways: mirrored, rotated, and random arrangement. Our results showed that even when participants were unaware of the transformation rules, accuracy of transfer session in the mirrored and rotated groups was higher than that in the random group (i.e., implicit transfer occurred). Both those who noticed the transformation rules and those who did not (i.e., explicit and implicit transfer instances, respectively) showed faster performance in the mirrored sequences than in the rotated sequences. Taken together, the present results suggest that people can use their implicit visuomotor knowledge to spatially transform sequences and that implicit transfers are modulated by a transformation cost, similar to that in explicit transfer. Copyright © 2014 Elsevier B.V. All rights reserved.
Pelle, Gina; Perrucci, Mauro Gianni; Galati, Gaspare; Fattori, Patrizia; Galletti, Claudio; Committeri, Giorgia
2012-01-01
Background Several psychophysical experiments found evidence for the involvement of gaze-centered and/or body-centered coordinates in arm-movement planning and execution. Here we aimed at investigating the frames of reference involved in the visuomotor transformations for reaching towards visual targets in space by taking target eccentricity and performing hand into account. Methodology/Principal Findings We examined several performance measures while subjects reached, in complete darkness, memorized targets situated at different locations relative to the gaze and/or to the body, thus distinguishing between an eye-centered and a body-centered frame of reference involved in the computation of the movement vector. The errors seem to be mainly affected by the visual hemifield of the target, independently from its location relative to the body, with an overestimation error in the horizontal reaching dimension (retinal exaggeration effect). The use of several target locations within the perifoveal visual field allowed us to reveal a novel finding, that is, a positive linear correlation between horizontal overestimation errors and target retinal eccentricity. In addition, we found an independent influence of the performing hand on the visuomotor transformation process, with each hand misreaching towards the ipsilateral side. Conclusions While supporting the existence of an internal mechanism of target-effector integration in multiple frames of reference, the present data, especially the linear overshoot at small target eccentricities, clearly indicate the primary role of gaze-centered coding of target location in the visuomotor transformation for reaching. PMID:23272180
Quiet eye training in a visuomotor control task.
Causer, Joe; Holmes, Paul S; Williams, Andrew Mark
2011-06-01
Several researchers have reported the importance of maintaining a longer final fixation on the target (termed the quiet eye period, QE) before performing an aiming task. We present an innovative, perceptual training intervention intended to improve the efficiency of gaze behavior (i.e., QE) in shotgun shooting. A sample of 20 international-level skeet shooters were assigned equally to one of two ability-matched groups based on their pretest shooting scores. A perceptual training group participated in a four-step preshot routine alongside three video feedback sessions involving their own gaze behaviors and those of an expert model in an effort to positively influence QE behaviors. A control group received video feedback of performance but without the addition of feedback on QE behaviors. Participants completed pretests and posttests along with an 8-wk training intervention. Subjects of the perceptual training group significantly increased their mean QE duration (397 vs 423 ms), used an earlier onset of QE (257 vs 244 ms), and recorded higher shooting accuracy scores (62 vs 70%) from pretest to posttest. Participants in the perceptual training group significantly reduced gun barrel displacement and absolute peak velocity on the posttest compared with the pretest, although neither variable was overtly trained. A transfer test based on performance during competition indicated that perceptual training significantly improved shooting accuracy from before to after the intervention. No pretest to posttest differences were observed for the control group on the measures reported. The results demonstrate the effectiveness of QE training in improving shooting accuracy and developing a more efficient visuomotor control strategy.The findings have implications for future research on training visuomotor behaviors, attention, and gaze orientation during the performance of aiming tasks.
Keeping on Track: Performance Profiles of Low Performers in Academic Educational Tracks
ERIC Educational Resources Information Center
Reed, Helen C.; van Wesel, Floryt; Ouwehand, Carolijn; Jolles, Jelle
2015-01-01
In countries with high differentiation between academic and vocational education, an individual's future prospects are strongly determined by the educational track to which he or she is assigned. This large-scale, cross-sectional study focuses on low-performing students in academic tracks who face being moved to a vocational track. If more is…
Visuomotor Dissociation in Cerebral Scaling of Size.
Potgieser, Adriaan R E; de Jong, Bauke M
2016-01-01
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.
Flexible explicit but rigid implicit learning in a visuomotor adaptation task
Bond, Krista M.
2015-01-01
There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks. PMID:25855690
Ulrich, Martin; Kiefer, Markus
2016-06-01
Unconscious visuomotor priming defined as the advantage in reaction time (RT) or accuracy for target shapes mapped to the same (congruent condition) when compared with a different (incongruent condition) motor response as a preceding subliminally presented prime shape has been shown to modulate activity within a visuomotor network comprised of parietal and frontal motor areas in previous functional magnetic resonance imaging (fMRI) studies. The present fMRI study investigated whether, in addition to changes in brain activity, unconscious visuomotor priming results in a modulation of functional connectivity profiles. Activity associated with congruent compared with incongruent trials was lower in the bilateral inferior and medial superior frontal gyri, in the inferior parietal lobules, and in the right caudate nucleus and adjacent portions of the thalamus. Functional connectivity increased under congruent relative to incongruent conditions between ventral visual stream areas (e.g., calcarine, fusiform, and lingual gyri), the precentral gyrus, the supplementary motor area, posterior parietal areas, the inferior frontal gyrus, and the caudate nucleus. Our findings suggest that an increase in coupling between visuomotor regions, reflecting higher efficiency of processing, is an important neural mechanism underlying unconscious visuomotor priming, in addition to changes in the magnitude of activation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
D'Mello, G D; Duffy, E A; Miles, S S
1985-01-01
A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.
Neural substrates of visuomotor learning based on improved feedback control and prediction
Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn
2008-01-01
Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069
Dopaminergic striatal innervation predicts interlimb transfer of a visuomotor skill.
Isaias, Ioannis U; Moisello, Clara; Marotta, Giorgio; Schiavella, Mauro; Canesi, Margherita; Perfetti, Bernardo; Cavallari, Paolo; Pezzoli, Gianni; Ghilardi, M Felice
2011-10-12
We investigated whether dopamine influences the rate of adaptation to a visuomotor distortion and the transfer of this learning from the right to the left limb in human subjects. We thus studied patients with Parkinson disease as a putative in vivo model of dopaminergic denervation. Despite normal adaptation rates, patients showed a reduced transfer compared with age-matched healthy controls. The magnitude of the transfer, but not of the adaptation rate, was positively predicted by the values of dopamine-transporter binding of the right caudate and putamen. We conclude that striatal dopaminergic activity plays an important role in the transfer of visuomotor skills.
Performance of a visuomotor walking task in an augmented reality training setting.
Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper
2017-12-01
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Dopaminergic striatal innervation predicts interlimb transfer of a visuomotor skill
Isaias, IU; Moisello, C; Marotta, G; Schiavella, M; Canesi, M; Perfetti, B; Cavallari, P; Pezzoli, G; Ghilardi, MF
2011-01-01
We investigated whether dopamine influences the rate of adaptation to a visuomotor distortion and the transfer of this learning from the right to the left limb in human subjects. We thus studied patients with Parkinson disease as a putative in vivo model of dopaminergic denervation. Despite normal adaptation rates, patients showed a reduced transfer compared to age-matched healthy controls. The magnitude of the transfer, but not of the adaptation rate, was positively predicted by the values of dopamine-transporter binding of the right caudate and putamen. We conclude that striatal dopaminergic activity plays an important role in the transfer of visuomotor skills. PMID:21994362
Visuomotor adaptability in older adults with mild cognitive decline.
Schaffert, Jeffrey; Lee, Chi-Mei; Neill, Rebecca; Bo, Jin
2017-02-01
The current study examined the augmentation of error feedback on visuomotor adaptability in older adults with varying degrees of cognitive decline (assessed by the Montreal Cognitive Assessment; MoCA). Twenty-three participants performed a center-out computerized visuomotor adaptation task when the visual feedback of their hand movement error was presented in a regular (ratio=1:1) or enhanced (ratio=1:2) error feedback schedule. Results showed that older adults with lower scores on the MoCA had less adaptability than those with higher MoCA scores during the regular feedback schedule. However, participants demonstrated similar adaptability during the enhanced feedback schedule, regardless of their cognitive ability. Furthermore, individuals with lower MoCA scores showed larger after-effects in spatial control during the enhanced schedule compared to the regular schedule, whereas individuals with higher MoCA scores displayed the opposite pattern. Additional neuro-cognitive assessments revealed that spatial working memory and processing speed were positively related to motor adaptability during the regular scheduled but negatively related to adaptability during the enhanced schedule. We argue that individuals with mild cognitive decline employed different adaptation strategies when encountering enhanced visual feedback, suggesting older adults with mild cognitive impairment (MCI) may benefit from enhanced visual error feedback during sensorimotor adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.
When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.
Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-26
Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mongeon, David; Blanchet, Pierre; Messier, Julie
2013-01-01
The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and…
Impaired visuomotor adaptation in adults with ADHD.
Kurdziel, Laura B F; Dempsey, Katherine; Zahara, Mackenzie; Valera, Eve; Spencer, Rebecca M C
2015-04-01
Attention-deficit hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children that often continues into adulthood. It has been suggested that motor impairments in ADHD are associated with underlying cerebellar pathology. If such is the case, individuals with ADHD should be impaired on motor tasks requiring healthy cerebellar function. To test this, we compared performance of individuals with ADHD and ADHD-like symptoms with non-ADHD controls on a visuomotor adaptation task known to be impaired following cerebellar lesions. Participants adapted reaching movements to a visual representation that was rotated by 30°. Individuals with ADHD and those with ADHD-like symptoms took longer to correct the angle of movement once the rotation was applied relative to controls. However, post-adaptation residual effect did not differ for individuals with ADHD and ADHD-like symptoms compared to the control group. These results are consistent with the hypothesis that mild cerebellar deficits are evident in the motor performance of adults with ADHD.
Consolidation of visuomotor adaptation memory with consistent and noisy environments
Maeda, Rodrigo S.; McGee, Steven E.
2016-01-01
Our understanding of how we learn and retain motor behaviors is still limited. For instance, there is conflicting evidence as to whether the memory of a learned visuomotor perturbation consolidates; i.e., the motor memory becomes resistant to interference from learning a competing perturbation over time. Here, we sought to determine the factors that influence consolidation during visually guided walking. Subjects learned a novel mapping relationship, created by prism lenses, between the perceived location of two targets and the motor commands necessary to direct the feet to their positions. Subjects relearned this mapping 1 wk later. Different groups experienced protocols with or without a competing mapping (and with and without washout trials), presented either on the same day as initial learning or before relearning on day 2. We tested identical protocols under constant and noisy mapping structures. In the latter, we varied, on a trial-by-trial basis, the strength of prism lenses around a non-zero mean. We found that a novel visuomotor mapping is retained at least 1 wk after initial learning. We also found reduced foot-placement error with relearning in constant and noisy mapping groups, despite learning a competing mapping beforehand, and with the exception of one protocol, with and without washout trials. Exposure to noisy mappings led to similar performance on relearning compared with the equivalent constant mapping groups for most protocols. Overall, our results support the idea of motor memory consolidation during visually guided walking and suggest that constant and noisy practices are effective for motor learning. NEW & NOTEWORTHY The adaptation of movement is essential for many daily activities. To interact with targets, this often requires learning the mapping to produce appropriate motor commands based on visual input. Here, we show that a novel visuomotor mapping is retained 1 wk after initial learning in a visually guided walking task. Furthermore, we
ERIC Educational Resources Information Center
Trempe, Maxime; Proteau, Luc
2010-01-01
Consolidation is a time-dependent process responsible for the storage of information in long-term memory. As such, it plays a crucial role in motor learning. In two experiments, we sought to determine whether one's performance influences the outcome of the consolidation process. We used a visuomotor adaptation task in which the cursor moved by the…
Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
Langan, Jeanne; Seidler, Rachael D
2011-11-20
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer
Langan, Jeanne; Seidler, Rachael. D.
2011-01-01
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106
Motor learning and consolidation: the case of visuomotor rotation.
Krakauer, John W
2009-01-01
Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).
Limited Plasticity of Prismatic Visuomotor Adaptation
Wischhusen, Sven; Fahle, Manfred
2017-01-01
Movements toward an object displaced optically through prisms adapt quickly, a striking example for the plasticity of neuronal visuomotor programs. We investigated the degree and time course of this system’s plasticity. Participants performed goal-directed throwing or pointing movements with terminal feedback before, during, and after wearing prism goggles shifting the visual world laterally either to the right or to the left. Prism adaptation was incomplete even after 240 throwing movements, still deviating significantly laterally by on average of 0.8° (CI = 0.20°) at the end of the adaptation period. The remaining lateral deviation was significant for pointing movements only with left shifting prisms. In both tasks, removal of the prisms led to an aftereffect which disappeared in the course of further training. This incomplete prism adaptation may be caused by movement variability combined with an adaptive neuronal control system exhibiting a finite capacity for evaluating movement errors. PMID:28473909
Villalobos, Michele E.; Mizuno, Akiko; Dahl, Branelle C.; Kemmotsu, Nobuko; Müller, Ralph-Axel
2010-01-01
Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and 8 handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional. PMID:15808991
Villalobos, Michele E; Mizuno, Akiko; Dahl, Branelle C; Kemmotsu, Nobuko; Müller, Ralph-Axel
2005-04-15
Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and eight handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional.
Use of a tracing task to assess visuomotor performance for evidence of concussion and recuperation.
Kelty-Stephen, Damian G; Qureshi Ahmad, Mona; Stirling, Leia
2015-12-01
The likelihood of suffering a concussion while playing a contact sport ranges from 15-45% per year of play. These rates are highly variable as athletes seldom report concussive symptoms, or do not recognize their symptoms. We performed a prospective cohort study (n = 206, aged 10-17) to examine visuomotor tracing to determine the sensitivity for detecting neuromotor components of concussion. Tracing variability measures were investigated for a mean shift with presentation of concussion-related symptoms and a linear return toward baseline over subsequent return visits. Furthermore, previous research relating brain injury to the dissociation of smooth movements into "submovements" led to the expectation that cumulative micropause duration, a measure of motion continuity, might detect likelihood of injury. Separate linear mixed effects regressions of tracing measures indicated that 4 of the 5 tracing measures captured both short-term effects of injury and longer-term effects of recovery with subsequent visits. Cumulative micropause duration has a positive relationship with likelihood of participants having had a concussion. The present results suggest that future research should evaluate how well the coefficients for the tracing parameter in the logistic regression help to detect concussion in novel cases. (c) 2015 APA, all rights reserved).
Haptic Guidance Improves the Visuo-Manual Tracking of Trajectories
Bluteau, Jérémy; Coquillart, Sabine; Payan, Yohan; Gentaz, Edouard
2008-01-01
Background Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)–on visuo-manual tracking (“following”) of trajectories are still under debate. Methodology/Principals Findings Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. Trajectories consisted of two Arabic and two Japanese-inspired letters in Experiment 1 and ellipses in Experiment 2. We observed that the use of HGF globally improves the fluency of the visuo-manual tracking of trajectories while no significant improvement was found for HGP or NHG. Conclusion/Significance These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories. PMID:18335049
ERIC Educational Resources Information Center
Chung, Kevin Kien Hoa; Lam, Chun Bun; Cheung, Ka Chun
2018-01-01
This cross-sectional study examined the associations of visuomotor integration and executive functioning with Chinese word reading and writing in kindergarten children. A total of 369 Chinese children (mean age = 57.99 months; 55% of them were girls) from Hong Kong, China, completed tasks on visuomotor integration, executive functioning, and…
Visuomotor Transformations Underlying Hunting Behavior in Zebrafish
Bianco, Isaac H.; Engert, Florian
2015-01-01
Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638
Barton, Brian; Treister, Andrew; Humphrey, Melanie; Abedi, Garen; Cramer, Steven C.; Brewer, Alyssa A.
2014-01-01
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val66Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left–right-reversed visual input. PMID:25104829
Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli
ERIC Educational Resources Information Center
Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.
2010-01-01
Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…
Handwriting, Visuomotor Integration, and Neurological Condition at School Age
ERIC Educational Resources Information Center
Van Hoorn, Jessika F.; Maathuis, Carel G. B.; Peters, Lieke H. J.; Hadders-Algra, Mijna
2010-01-01
Aim: The study investigated the relationships between handwriting, visuomotor integration, and neurological condition. We paid particular attention to the presence of minor neurological dysfunction (MND). Method : Participants were 200 children (131 males, 69 females; age range 8-13y) of whom 118 received mainstream education (mean age 10y 5mo, SD…
Visuomotor transformations underlying hunting behavior in zebrafish.
Bianco, Isaac H; Engert, Florian
2015-03-30
Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bao, Shancheng; Lei, Yuming; Wang, Jinsung
2017-01-18
The extent of transfer following visuomotor adaptation across the arms is typically limited as compared to that within the same arm. However, we have demonstrated that interlimb transfer can occur nearly completely if one arm performs reaching movements associated with a desired trajectory repeatedly and actively during an initial training session in which the other arm adapts to a novel visuomotor adaptation. Based on that finding, we argued that the absence of instances associated with specific motor effectors is the major reason for limited interlimb transfer. Here, we examined whether providing movement instances associated with one arm passively while adapting to a visuomotor rotation with the opposite arm could also lead to a greater extent of interlimb transfer. We had subjects perform reaching movements either actively or passively with the right arm while adapting to a 30° visuomotor rotation with the left arm (training session), and then had them perform reaching movements under the rotation condition with the right arm (transfer session). Results showed that the extent of transfer observed in the active and the passive training groups was significantly greater than that observed in a control group who only experienced the testing session. This finding suggests that providing effector-specific instances can increase the extent of interlimb transfer substantially, regardless of whether the instances are provided actively or passively. The current finding may have implications for neurorehabilitation targeted for individuals with motor impairment, such as persons with stroke or spinal cord injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Morgan, Kyle K; Luu, Phan; Tucker, Don M
2016-01-01
Learning is not a unitary phenomenon. Rather, learning progresses through stages, with the stages reflecting different challenges that require the support of specific cognitive processes that reflect the functions of different brain networks. A theory of general learning proposes that learning can be divided into early and late stages controlled by corticolimbic networks located in frontal and posterior brain regions, respectively. Recent human studies using dense-array EEG (dEEG) support these results by showing progressive increases in P3b amplitude (an Event Related Potential with estimated sources in posterior cingulate cortex and hippocampus) as participants acquire a new visuomotor skill. In the present study, the P3b was used to track the learning and performance of participants as they identify defensive football formations and make an appropriate response. Participants acquired the task over three days, and P3b latency and amplitude significantly changed when participants learned the task. As participants demonstrated further proficiency with extensive training, amplitude and latency changes in the P3b continued to closely mirror performance improvements. Source localization results across all days suggest that an important source generator of the P3b is located in the posterior cingulate cortex. Results from the study support prior findings and further suggest that the careful analysis of covert learning mechanisms and their underlying electrical signatures are a robust index of task competency.
Visuomotor learning in cerebellar patients.
Timmann, D; Shimansky, Y; Larson, P S; Wunderlich, D A; Stelmach, G E; Bloedel, J R
1996-11-01
The aim of the present study was to demonstrate that patients with pathology affecting substantial regions of the cerebellum can improve their performance in a series of two-dimensional tracing tasks, thus supporting the view that this type of motor behavior can be acquired even when the integrity of this structure is compromised. Eight patients with chronic, isolated cerebellar lesions and eight age- and sex-matched healthy controls were tested. Three patients had mild, five had moderate upper limb ataxia. The experiment was divided into two parts. In the first, subjects traced an irregularly shaped outline over 20 consecutive trials ('Trace 1' task). Next, subjects were asked to redraw the object without any underlying template as a guide ('Memory 1' task). In the second part of the study, subjects were asked to trace a different, irregularly shaped outline over 20 consecutive trials ('Trace 2' task). Next, they were required to redraw it by memory with its axis rotated 90 degrees ('Memory 2' task). In each of the memory tasks the template was placed over the drawn image after each trial and shown to the subjects. The error of performance was determined by calculating three different measurements, each focused on different aspects of the task. Based on these measurements, the cerebellar patients showed improvement in both memory tasks. In the 'Memory 1' task the calculated error decreased significantly for the patients with mild ataxia. In the 'Memory 2' task all cerebellar patients improved their performance substantially enough to reduce significantly the magnitude of all three error measurements. The experiments demonstrate that patients with cerebellar lesions are capable of improving substantially their performance of a complex motor task involving the recall of memorized shapes and the visuomotor control of a tracing movement.
Impaired force control in writer's cramp showing a bilateral deficit in sensorimotor integration.
Bleton, Jean-Pierre; Teremetz, Maxime; Vidailhet, Marie; Mesure, Serge; Maier, Marc A; Lindberg, Påvel G
2014-01-01
Abnormal cortical processing of sensory inputs has been found bilaterally in writer's cramp (WC). This study tested the hypothesis that patients with WC have an impaired ability to adjust grip forces according to visual and somatosensory cues in both hands. A unimanual visuomotor force-tracking task and a bimanual sense of effort force-matching task were performed by WC patients and healthy controls. In visuomotor tracking, WC patients showed increased error, greater variability, and longer release duration than controls. In the force-matching task, patients underestimated, whereas controls overestimated, the force applied in the other hand. Visuomotor tracking and force matching were equally impaired in both the symptomatic and nonsymptomatic hand in WC patients. This study provides evidence of bilaterally impaired grip-force control in WC, when using visual or sense of effort cues. This suggests a generalized subclinical deficit in sensorimotor integration in WC. Copyright © 2013 Movement Disorder Society.
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.
Smith, Mary Lou; Puka, Klajdi; Sehra, Ramandeep; Read, Stanley E; Bitnun, Ari
2017-10-01
Little is known about the neurodevelopmental outcomes of children older than 3 years of age born to HIV infected mother but who are HIV-uninfected (HEU), and who have been exposed in utero and early in life to HIV and to antiretroviral medications (ARVs). We conducted a longitudinal study of cognitive, visuomotor and adaptive function of HEU children, who were assessed at two ages, 3.5 and 5.5 years. Sixty-four children (33 female) were assessed. In comparison with population norms for their age, at 3.5 years of age they had scores significantly below age expectations on aspects of adaptive behavior, but at age 5.5 years, their scores did not significantly diverge from the population norms on any of the measures. Verbal intelligence was lower at age 5.5 than at age 3.5 years, although there were also improvements in some features of adaptive behavior. Exposure to PI-based ARVs (compared to NNRTIs) was associated with higher Performance IQ, visuomotor and communication scores at age 5.5 years. Birth, early growth, and sociodemographic variables were predictive of outcomes. This study is important in tracking the trajectory of neurocognitive development across the pre-school and early school age years. The findings suggest that the full impact of early ARV exposure may not be evident until a considerable period of development has occurred. The results raise the possibility of negative effects of early ARV exposure on neurodevelopment that emerge over time, and reiterate the importance of sociodemographic and early health variables for optimal development.
Peripheral neuropathy reduces asymmetries in inter-limb transfer in a visuo-motor task.
Pan, Zhujun; Van Gemmert, Arend W A
2016-01-01
Asymmetry of inter-limb transfer has been associated with the specialization of the dominant and non-dominant motor system. Reductions of asymmetry have been interpreted as behavioural evidence showing a decline of hemispheric lateralization. A previous study showed that ageing did not qualitatively change the inter-limb transfer asymmetry of a visuo-motor task. The current study elaborates on these findings; it examines whether diminished somatosensory information as a result of peripheral neuropathy (PN) adversely affects inter-limb transfer asymmetry. Twenty individuals affected by PN and 20 older controls were recruited and divided equally across two groups. One group trained a visuo-motor task with the right hand while the other group trained it with the left hand. Performance (initial direction error) of the untrained hand before and after training was collected to determine learning effects from inter-limb transfer. Similar to previous studies, the current study showed asymmetric inter-limb transfer in older controls. In contrast, PN showed inter-limb transfer in both directions indicating that PN reduces inter-limb transfer asymmetry. Increased bilateral hemispheric recruitment is suggested to be responsible for this reduced asymmetry which may compensate for deteriorated tactile and/or proprioceptive inputs in PN. Two possible hypotheses are discussed explaining the relationship between declined somatosensory information and increases in bilateral hemispheric recruitment.
Flash/crazing effects on simulator pursuit tracking performance
NASA Astrophysics Data System (ADS)
Stamper, D. A.; Lund, D. J.; Levine, R. R.; Molchany, J. W.; Best, P.
1986-03-01
Day sights which are purposefully or inadvertently irradiated with laser radiation may become nonfunctional due to cracking or crazing of the optical glass. The degree of performance degradation may be related to the amount of damage to the glass and possible flash blindness from reradiation. Thirty-two male enlisted men and officers tracked a scale model tank through a constant arc at a simulated distance of 1 km, using a laboratory constructed viscous-damped tracking device. There were four crazing groups (4 men/group) under bright and dim ambient light conditions for a total of eight groups. Each man tracked the target during three flash/crazing and three crazing only trials, which were randomly presented during 30 trials. The simulated countermeasure which included the flash and crazing had dramatic effects on tracking performance, even under daylight conditions. Under the most severe degree of crazing, tracking performance was not possible under either ambient light condition. The relatively small amounts of laser radiation used to craze the BK-7 glass used in this study, which lead to significant performance decrements, demonstrates the potential impact of flash/crazing effects on operators of day sights.
Lei, Yuming; Wang, Jinsung
2014-11-01
Learning a visumotor adaptation task with one arm typically facilitates subsequent performance with the other. The extent of transfer across the arms, however, is generally much smaller than that across different conditions within the same arm. This may be attributed to a possibility that intralimb transfer involves both algorithmic and instance-reliant learning, whereas interlimb transfer only involves algorithmic learning. Here, we investigated whether prolonged training with one arm could facilitate subsequent performance with the other arm to a greater extent, by examining the effect of varying lengths of practice trials on the extent of interlimb transfer. We had 18 subjects adapt to a 30° visuomotor rotation with the left arm first (training), then with the right arm (transfer). During the training session, the subjects reached toward multiple targets for 160, 320 or 400 trials; during the transfer session, all subjects performed the same task for 160 trials. Our results revealed substantial initial transfer from the left to the right arm in all three conditions. However, neither the amount of initial transfer nor the rate of adaptation during the transfer session was significantly different across the conditions, indicating that the extent of transfer was similar regardless of the length of initial training. Our findings suggest that interlimb transfer of visuomotor adaptation may only occur through algorithmic learning, which is effector independent, and that prolonged training may only have beneficial effects when instance-reliant learning, which is effector dependent, is also involved in the learning process. Copyright © 2014 Elsevier Inc. All rights reserved.
Rand, Miya K.; Rentsch, Sebastian
2016-01-01
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task under the use of terminal visual feedback. Young adults made reaching movements to targets on a digitizer while looking at targets on a monitor where the rotated feedback (a cursor) of hand movements appeared after each movement. Three rotation angles (30°, 75° and 150°) were examined in three groups in order to vary the task difficulty. The results showed that the 30° group gradually reduced direction errors of reaching with practice and adapted well to the visuomotor rotation. The 75° group made large direction errors of reaching, and the 150° group applied a 180° reversal shift from early practice. The 75°and 150° groups, however, overcompensated the respective rotations at the end of practice. Despite these group differences in adaptive changes of reaching, all groups gradually adapted gaze directions prior to reaching from the target area to the areas related to the final positions of reaching during the course of practice. The adaptive changes of both hand and eye movements in all groups mainly reflected adjustments of movement directions based on explicit knowledge of the applied rotation acquired through practice. Only the 30° group showed small implicit adaptation in both effectors. The results suggest that by adapting gaze directions from the target to the final position of reaching based on explicit knowledge of the visuomotor rotation, the oculomotor system supports the limb-motor system to make precise preplanned adjustments of reaching directions during learning of visuomotor rotation under terminal visual feedback. PMID:27812093
The Role of Representation Strength of the Prime in Subliminal Visuomotor Priming.
Wang, Yongchun; Wang, Yonghui; Liu, Peng; Di, Meilin; Gong, Yanyan; Tan, Mengge
2017-11-01
This study investigated the role of representation strength of the prime in subliminal visuomotor priming in two experiments. Prime/target compatibility (compatible and incompatible) and preposed object type (jumbled lines, strong masking; and rectangular outlines, weak masking) were manipulated in Experiment 1. A significant negative compatibility effect (NCE) was observed in the rectangle condition, whereas no compatibility effect was found in the line condition. However, when a new variable, prime duration, was introduced in Experiment 2, the NCE was reversed with an increase in the prime duration in the rectangle condition, whereas the NCE was maintained in the line condition. This result is consistent with the claim that increasing the prime duration causes the prime representation to be too strong for inhibition in the rectangle condition but strong enough to reliably trigger inhibition in the line condition. The findings demonstrated that prime representation has a causal role in subliminal visuomotor priming.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
Enhanced visuomotor processing of phobic images in blood-injury-injection fear.
Haberkamp, Anke; Schmidt, Thomas
2014-04-01
Numerous studies have identified attentional biases and processing enhancements for fear-relevant stimuli in individuals with specific phobias. However, this has not been conclusively shown in blood-injury-injection (BII) phobia, which has rarely been investigated even though it has features distinct from all other specific phobias. The present study aims to fill that gap and compares the time-course of visuomotor processing of phobic stimuli (i.e., pictures of small injuries) in BII-fearful (n=19) and non-anxious control participants (n=23) by using a response priming paradigm. In BII-fearful participants, phobic stimuli produced larger priming effects and lower response times compared to neutral stimuli, whereas non-anxious control participants showed no such differences. Because these effects are fully present in the fastest responses, they indicate an enhancement in early visuomotor processing of injury pictures in BII-fearful participants. These results are comparable to the enhanced processing of phobic stimuli in other specific phobias (i.e., spider phobia). Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: Visually Guided Reaching
Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Hirji, Zahra; Crawford, J. Douglas; Wong, Agnes M. F.
2016-01-01
Purpose The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. Methods Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation in three viewing conditions: binocular, monocular amblyopic eye, and monocular fellow eye viewing (left and right monocular viewing for control subjects). Visual feedback of the target was removed on 50% of the trials at the initiation of reaching. Results Reaching accuracy was comparable between patients and control subjects during all three viewing conditions. Patients’ reaching responses were slightly less precise during amblyopic eye viewing, but their precision was normal during binocular or fellow eye viewing. Reaching reaction time was not affected by amblyopia. The duration of the acceleration phase was longer in patients than in control subjects under all viewing conditions, whereas the duration of the deceleration phase was unaffected. Peak acceleration and peak velocity were also reduced in patients. Conclusions Amblyopia affects both the programming and the execution of visually guided reaching. The increased duration of the acceleration phase, as well as the reduced peak acceleration and peak velocity, might reflect a strategy or adaptation of feedforward/feedback control of the visuomotor system to compensate for degraded spatiotemporal vision in amblyopia, allowing patients to optimize their reaching performance. PMID:21051723
Visuo-motor and cognitive procedural learning in children with basal ganglia pathology.
Mayor-Dubois, C; Maeder, P; Zesiger, P; Roulet-Perez, E
2010-06-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage. Copyright 2010 Elsevier Ltd. All rights reserved.
Human performance evaluation in dual-axis critical task tracking
NASA Technical Reports Server (NTRS)
Ritchie, M. L.; Nataraj, N. S.
1975-01-01
A dual axis tracking using a multiloop critical task was set up to evaluate human performance. The effects of control stick variation and display formats are evaluated. A secondary loading was used to measure the degradation in tracking performance.
Duiser, Ivonne H F; van der Kamp, John; Ledebt, Annick; Savelsbergh, Geert J P
2014-04-01
We examined whether the three subtests of the Beery Buktenica developmental test of visuomotor integration predicted quality of handwriting across and within groups of boys and girls classified as proficient, at risk or non-proficient writers according to the Concise Assessment Scale for Children's Handwriting. The Beery Buktenica developmental test of visuomotor integration and the Concise Assessment Scale for Children's Handwriting tests were administered to 240 grade 2 children. Proficient writers scored better on the visuomotor integration subtest than non-proficient writers, while proficient and at risk writers scored better than non-proficient writers on the motor coordination subtest. No differences were found on the visual perception subtest. Girls were more often classified as proficient writers than boys, and they scored better on the motor coordination subtest. Across groups, regression indicated that gender and both the visuomotor integration subtest and the motor coordination subtest were significant predictors for the quality of handwriting (i.e., accounted for 17% of the variance). After one year of writing tuition, the visuomotor integration subtest (and to a lesser extent the motor coordination subtest) but not the visual perception subtest significant relates to quality of children's handwriting as measured with the Concise Assessment Scale for Children's Handwriting. However, the relatively little variance explained also points to other abilities and/or task constraints that underlie quality of handwriting. © 2013 Occupational Therapy Australia.
Visuomotor control of human adaptive locomotion: understanding the anticipatory nature.
Higuchi, Takahiro
2013-01-01
To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual's action capabilities.
NASA Astrophysics Data System (ADS)
Kurzeck, Bernhard; Heckmann, Andreas; Wesseler, Christoph; Rapp, Matthias
2014-05-01
Future high-speed trains are the main focus of the DLR research project Next Generation Train. One central point of the research activities is the development of mechatronic track guidance for the two-axle intermediate wagons with steerable, individually powered, independently rotating wheels. The traction motors hereby fulfil two functions; they concurrently are traction drives and steering actuators. In this paper, the influence of the track properties - line layout and track irregularities - on the performance requirements for the guidance actuator is investigated using multi-body models in SIMPACK®. In order to compromise on the design conflict between low wheel wear and low steering torque, the control parameters of the mechatronic track guidance are optimised using the DLR in-house software MOPS. Besides the track irregularities especially the increasing inclination at transition curves defines high actuator requirements due to gyroscopic effects at high speed. After introducing a limiter for the actuating variables into the control system, a good performance is achieved.
Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology
ERIC Educational Resources Information Center
Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.
2010-01-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…
Facilitation of learning induced by both random and gradual visuomotor task variation
Braun, Daniel A.; Wolpert, Daniel M.
2012-01-01
Motor task variation has been shown to be a key ingredient in skill transfer, retention, and structural learning. However, many studies only compare training of randomly varying tasks to either blocked or null training, and it is not clear how experiencing different nonrandom temporal orderings of tasks might affect the learning process. Here we study learning in human subjects who experience the same set of visuomotor rotations, evenly spaced between −60° and +60°, either in a random order or in an order in which the rotation angle changed gradually. We compared subsequent learning of three test blocks of +30°→−30°→+30° rotations. The groups that underwent either random or gradual training showed significant (P < 0.01) facilitation of learning in the test blocks compared with a control group who had not experienced any visuomotor rotations before. We also found that movement initiation times in the random group during the test blocks were significantly (P < 0.05) lower than for the gradual or the control group. When we fit a state-space model with fast and slow learning processes to our data, we found that the differences in performance in the test block were consistent with the gradual or random task variation changing the learning and retention rates of only the fast learning process. Such adaptation of learning rates may be a key feature of ongoing meta-learning processes. Our results therefore suggest that both gradual and random task variation can induce meta-learning and that random learning has an advantage in terms of shorter initiation times, suggesting less reliance on cognitive processes. PMID:22131385
Visuomotor Integration and Inhibitory Control Compensate for Each Other in School Readiness
ERIC Educational Resources Information Center
Cameron, Claire E.; Brock, Laura L.; Hatfield, Bridget E.; Cottone, Elizabeth A.; Rubinstein, Elise; LoCasale-Crouch, Jennifer; Grissmer, David W.
2015-01-01
Visuomotor integration (VMI), or the ability to copy designs, and 2 measures of executive function were examined in a predominantly low-income, typically developing sample of children (n = 467, mean age 4.2 years) from 5 U.S. states. In regression models controlling for age and demographic variables, we tested the interaction between visuomotor…
Resting-state connectivity predicts visuo-motor skill learning.
Manuel, Aurélie L; Guggisberg, Adrian G; Thézé, Raphaël; Turri, Francesco; Schnider, Armin
2018-08-01
Spontaneous brain activity at rest is highly organized even when the brain is not explicitly engaged in a task. Functional connectivity (FC) in the alpha frequency band (α, 8-12 Hz) during rest is associated with improved performance on various cognitive and motor tasks. In this study we explored how FC is associated with visuo-motor skill learning and offline consolidation. We tested two hypotheses by which resting-state FC might achieve its impact on behavior: preparing the brain for an upcoming task or consolidating training gains. Twenty-four healthy participants were assigned to one of two groups: The experimental group (n = 12) performed a computerized mirror-drawing task. The control group (n = 12) performed a similar task but with concordant cursor direction. High-density 156-channel resting-state EEG was recorded before and after learning. Subjects were tested for offline consolidation 24h later. The Experimental group improved during training and showed offline consolidation. Increased α-FC between the left superior parietal cortex and the rest of the brain before training and decreased α-FC in the same region after training predicted learning. Resting-state FC following training did not predict offline consolidation and none of these effects were present in controls. These findings indicate that resting-state alpha-band FC is primarily implicated in providing optimal neural resources for upcoming tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Saccone, Elizabeth J; Szpak, Ancret; Churches, Owen; Nicholls, Michael E R
2018-01-01
Research suggests that the human brain codes manipulable objects as possibilities for action, or affordances, particularly objects close to the body. Near-body space is not only a zone for body-environment interaction but also is socially relevant, as we are driven to preserve our near-body, personal space from others. The current, novel study investigated how close proximity of a stranger modulates visuomotor processing of object affordances in shared, social space. Participants performed a behavioural object recognition task both alone and with a human confederate. All object images were in participants' reachable space but appeared relatively closer to the participant or the confederate. Results revealed when participants were alone, objects in both locations produced an affordance congruency effect but when the confederate was present, only objects nearer the participant elicited the effect. Findings suggest space is divided between strangers to preserve independent near-body space boundaries, and in turn this process influences motor coding for stimuli within that social space. To demonstrate that this visuomotor modulation represents a social phenomenon, rather than a general, attentional effect, two subsequent experiments employed nonhuman joint conditions. Neither a small, Japanese, waving cat statue (Experiment 2) nor a metronome (Experiment 3) modulated the affordance effect as in Experiment 1. These findings suggest a truly social explanation of the key interaction from Experiment 1. This study represents an important step toward understanding object affordance processing in real-world, social contexts and has implications broadly across fields of social action and cognition, and body space representation.
Brain-computer interface analysis of a dynamic visuo-motor task.
Logar, Vito; Belič, Aleš
2011-01-01
The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could
Vibro-acoustic performance of newly designed tram track structures
NASA Astrophysics Data System (ADS)
Haladin, Ivo; Lakušić, Stjepan; Ahac, Maja
2017-09-01
Rail vehicles in interaction with a railway structure induce vibrations that are propagating to surrounding structures and cause noise disturbance in the surrounding areas. Since tram tracks in urban areas often share the running surface with road vehicles one of top priorities is to achieve low maintenance and long lasting structure. Research conducted in scope of this paper gives an overview of newly designed tram track structures designated for use on Zagreb tram network and their performance in terms of noise and vibration mitigation. Research has been conducted on a 150 m long test section consisted of three tram track types: standard tram track structure commonly used on tram lines in Zagreb, optimized tram structure for better noise and vibration mitigation and a slab track with double sleepers embedded in a concrete slab, which presents an entirely new approach of tram track construction in Zagreb. Track has been instrumented with acceleration sensors, strain gauges and revision shafts for inspection. Relative deformations give an insight into track structure dynamic load distribution through the exploitation period. Further the paper describes vibro-acoustic measurements conducted at the test site. To evaluate the track performance from the vibro-acoustical standpoint, detailed analysis of track decay rate has been analysed. Opposed to measurement technique using impact hammer for track decay rate measurements, newly developed measuring technique using vehicle pass by vibrations as a source of excitation has been proposed and analysed. Paper gives overview of the method, it’s benefits compared to standard method of track decay rate measurements and method evaluation based on noise measurements of the vehicle pass by.
Acquisition and generalization of visuomotor transformations by nonhuman primates.
Paz, Rony; Nathan, Chen; Boraud, Thomas; Bergman, Hagai; Vaadia, Eilon
2005-02-01
The kinematics of straight reaching movements can be specified vectorially by the direction of the movement and its extent. To explore the representation in the brain of these two properties, psychophysical studies have examined learning of visuomotor transformations of either rotation or gain and their generalization. However, the neuronal substrates of such complex learning are only beginning to be addressed. As an initial step in ensuring the validity of such investigations, it must be shown that monkeys indeed learn and generalize visuomotor transformations in the same manner as humans. Here, we analyze trajectories and velocities of movements as monkeys adapt to either rotational or gain transformations. We used rotations with different signs and magnitudes, and gains with different signs, and analyzed transfer of learning to untrained movements. The results show that monkeys can adapt to both types of transformation with a time course that resembles human learning. Analysis of the aftereffects reveals that rotation is learned locally and generalizes poorly to untrained directions, whereas gain is learned more globally and can be transferred to other amplitudes. The results lend additional support to the hypothesis that reaching movements are learned locally but can be easily rescaled to other magnitudes by scaling the peak velocity. The findings also indicate that reaching movements in monkeys are planned and executed very similarly to those in humans. This validates the underlying presumption that neuronal recordings in primates can help elucidate the mechanisms of motor learning in particular and motor planning in general.
Hue distinctiveness overrides category in determining performance in multiple object tracking.
Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming
2018-02-01
The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.
Simon, Anja; Bock, Otmar
2015-01-01
A new 3-stage model based on neuroimaging evidence is proposed by Chein and Schneider (2012). Each stage is associated with different brain regions, and draws on cognitive abilities: the first stage on creativity, the second on selective attention, and the third on automatic processing. The purpose of the present study was to scrutinize the validity of this model for 1 popular learning paradigm, visuomotor adaptation. Participants completed tests for creativity, selective attention and automated processing before attending in a pointing task with adaptation to a 60° rotation of visual feedback. To examine the relationship between cognitive abilities and motor learning at different times of practice, associations between cognitive and adaptation scores were calculated repeatedly throughout adaptation. The authors found no benefit of high creativity for adaptive performance. High levels of selective attention were positively associated with early adaptation, but hardly with late adaptation and de-adaptation. High levels of automated execution were beneficial for late adaptation, but hardly for early and de-adaptation. From this we conclude that Chein and Schneider's first learning stage is difficult to confirm by research on visuomotor adaptation, and that the other 2 learning stages rather relate to workaround strategies than to actual adaptive recalibration.
Executive and Visuo-Motor Function in Adolescents and Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Sachse, Michael; Schlitt, Sabine; Hainz, Daniela; Ciaramidaro, Angela; Schirman, Shella; Walter, Henrik; Poustka, Fritz; Bolte, Sven; Freitag, Christine M.
2013-01-01
This study broadly examines executive (EF) and visuo-motor function in 30 adolescent and adult individuals with high-functioning autism spectrum disorder (ASD) in comparison to 28 controls matched for age, gender, and IQ. ASD individuals showed impaired spatial working memory, whereas planning, cognitive flexibility, and inhibition were spared.…
Deceiving Oneself about Being in Control: Conscious Detection of Changes in Visuomotor Coupling
ERIC Educational Resources Information Center
Knoblich, Gunther; Kircher, Tilo T. J.
2004-01-01
Previous research has demonstrated that compensatory movements for changes in visuomotor coupling often are not consciously detected. But what factors affect the conscious detection of such changes? This issue was addressed in 4 experiments. Participants carried out a drawing task in which the relative velocity between the actual movement and its…
A Developmental and Cognitivist Approach to a Perceptuo-Motor Task.
ERIC Educational Resources Information Center
Zanone, P. G.; Hauert, C. A.
Discussed are data concerning a simple visuomotor tracking task, especially the expectations and cognitive representations involved in performing such a task. The task consisted in tracking the horizontal displacement of a target spot on the screen by appropriate forearm rotations. Each subject participated in two sessions: first, at a .8 Hz…
Human operator tracking performance with a vibrotactile display
NASA Technical Reports Server (NTRS)
Inbar, Gideon F.
1991-01-01
Vibrotactile displays have been designed and used as a sensory aid for the blind. In the present work the same 6 x 24 'Optacon' type vibrotactile display (VTD) was used to characterize human operator (HO) tracking performance in pursuit and compensatory tasks. The VTD was connected via a microprocessor to a one-dimensional joy stick manipulator. Various display schemes were tested on the VDT, and were also compared to visual tracking performance using a specially constructed photo diode matrix display comparable to the VTD.
Zovko, Monika; Kiefer, Markus
2013-02-01
According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.
A new neural net approach to robot 3D perception and visuo-motor coordination
NASA Technical Reports Server (NTRS)
Lee, Sukhan
1992-01-01
A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.
ERIC Educational Resources Information Center
Byers, Anthony I.; Cameron, Claire E.; Ko, Michelle; LoCasale-Crouch, Jennifer; Grissmer, David W.
2016-01-01
Research Findings: This study examined the contribution of several classroom experience measures (classroom characteristics, teacher characteristics, and teacher-child interactions) to preschoolers' improvement in visuomotor integration. Children (N = 467) ranged in age from 3 to 5 years old and were enrolled in 115 classrooms in 5 U.S. states.…
Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.
Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K
2018-01-08
Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.
Gorbet, Diana J; Sergio, Lauren E
2018-01-01
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses.
Gorbet, Diana J.; Sergio, Lauren E.
2018-01-01
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses. PMID:29364891
ERIC Educational Resources Information Center
Becker, Derek R.; Miao, Alicia; Duncan, Robert; McClelland, Megan M.
2014-01-01
The present study explored direct and interactive effects between behavioral self-regulation (SR) and two measures of executive function (EF, inhibitory control and working memory), with a fine motor measure tapping visuomotor skills (VMS) in a sample of 127 prekindergarten and kindergarten children. It also examined the relative contribution of…
NASA Technical Reports Server (NTRS)
Morin, Lawrence P.; Blanchard, Jane H.
2005-01-01
The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.
Li, Songpo; Zhang, Xiaoli; Webb, Jeremy D
2017-12-01
The goal of this paper is to achieve a novel 3-D-gaze-based human-robot-interaction modality, with which a user with motion impairment can intuitively express what tasks he/she wants the robot to do by directly looking at the object of interest in the real world. Toward this goal, we investigate 1) the technology to accurately sense where a person is looking in real environments and 2) the method to interpret the human gaze and convert it into an effective interaction modality. Looking at a specific object reflects what a person is thinking related to that object, and the gaze location contains essential information for object manipulation. A novel gaze vector method is developed to accurately estimate the 3-D coordinates of the object being looked at in real environments, and a novel interpretation framework that mimics human visuomotor functions is designed to increase the control capability of gaze in object grasping tasks. High tracking accuracy was achieved using the gaze vector method. Participants successfully controlled a robotic arm for object grasping by directly looking at the target object. Human 3-D gaze can be effectively employed as an intuitive interaction modality for robotic object manipulation. It is the first time that 3-D gaze is utilized in a real environment to command a robot for a practical application. Three-dimensional gaze tracking is promising as an intuitive alternative for human-robot interaction especially for disabled and elderly people who cannot handle the conventional interaction modalities.
Amtrak performance tracking (APT) system : methodology summary
DOT National Transportation Integrated Search
2017-09-15
The Volpe Center collaborated with Amtrak and the Federal Railroad Administration (FRA) to develop a cost accounting system named Amtrak Performance Tracking (APT) used by Amtrak to manage, allocate, and report its costs. APTs initial development ...
Dumel, Gaëlle; Carr, Michelle; Marquis, Louis-Philippe; Blanchette-Carrière, Cloé; Paquette, Tyna; Nielsen, Tore
2015-08-01
Although sleep facilitates learning and memory, the roles of dreaming and habitual levels of recalling dreams remain unknown. This study examined if performance and overnight improvement on a rapid eye movement sleep-sensitive visuomotor task is associated differentially with habitually high or low dream recall frequency. As a relation between dream production and visuospatial skills has been demonstrated previously, one possibility is that frequency of dream recall will be linked to performance on visuomotor tasks such as the Mirror Tracing Task. We expected that habitually low dream recallers would perform more poorly on the Mirror Tracing Task than would high recallers and would show less task improvement following a night of sleep. Fifteen low and 20 high dream recallers slept one night each in the laboratory and performed the Mirror Tracing Task before and after sleep. Low recallers had overall worse baseline performance but a greater evening-to-morning improvement than did high recallers. Greater improvements in completion time in low recallers were associated with Stage 2 rather than rapid eye movement sleep. Findings support the separate notions that dreaming is related to visuomotor processes and that different levels of visuomotor skill engage different sleep- and dream-related consolidation mechanisms. © 2015 European Sleep Research Society.
Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng
2017-05-01
This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A novel method for quantification of beam's-eye-view tumor tracking performance.
Hu, Yue-Houng; Myronakis, Marios; Rottmann, Joerg; Wang, Adam; Morf, Daniel; Shedlock, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross
2017-11-01
In-treatment imaging using an electronic portal imaging device (EPID) can be used to confirm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt (MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum noise response, while also preserving the high spatial resolution of the current clinical detector. Recently investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architecture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the present study was to provide a method of quantitating improvement in tracking performance as well as to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a generalizable ideal observer methodology for the quantification of tumor tracking performance. The analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer imager (SLI) design as well as the effect of MLI architecture on tracking performance. The present study uses the ideal observer signal-to-noise ratio (d') as a surrogate for tracking performance. We employ functions which model clinically relevant tasks and generalized frequency-domain imaging metrics to connect image quality with tumor tracking. A detection task for relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization - STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tissue textures, measured experimentally and fit as a power-law in trend (with exponent β) using a cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect of
Credit Assignment in Multiple Goal Embodied Visuomotor Behavior
Rothkopf, Constantin A.; Ballard, Dana H.
2010-01-01
The intrinsic complexity of the brain can lead one to set aside issues related to its relationships with the body, but the field of embodied cognition emphasizes that understanding brain function at the system level requires one to address the role of the brain-body interface. It has only recently been appreciated that this interface performs huge amounts of computation that does not have to be repeated by the brain, and thus affords the brain great simplifications in its representations. In effect the brain's abstract states can refer to coded representations of the world created by the body. But even if the brain can communicate with the world through abstractions, the severe speed limitations in its neural circuitry mean that vast amounts of indexing must be performed during development so that appropriate behavioral responses can be rapidly accessed. One way this could happen would be if the brain used a decomposition whereby behavioral primitives could be quickly accessed and combined. This realization motivates our study of independent sensorimotor task solvers, which we call modules, in directing behavior. The issue we focus on herein is how an embodied agent can learn to calibrate such individual visuomotor modules while pursuing multiple goals. The biologically plausible standard for module programming is that of reinforcement given during exploration of the environment. However this formulation contains a substantial issue when sensorimotor modules are used in combination: The credit for their overall performance must be divided amongst them. We show that this problem can be solved and that diverse task combinations are beneficial in learning and not a complication, as usually assumed. Our simulations show that fast algorithms are available that allot credit correctly and are insensitive to measurement noise. PMID:21833235
NASA Astrophysics Data System (ADS)
Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William
2009-05-01
Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.
Proprioceptive recalibration in the right and left hands following abrupt visuomotor adaptation.
Salomonczyk, Danielle; Henriques, Denise Y P; Cressman, Erin K
2012-03-01
Previous studies have demonstrated that after reaching with misaligned visual feedback of the hand, one adapts his or her reaches and partially recalibrates proprioception, such that sense of felt hand position is shifted to match the seen hand position. However, to date, this has only been demonstrated in the right (dominant) hand following reach training with a visuomotor distortion in which the rotated cursor distortion was introduced gradually. As reach adaptation has been shown to differ depending on how the distortion is introduced (gradual vs. abrupt), we sought to examine proprioceptive recalibration following reach training with a cursor that was abruptly rotated 30° clockwise relative to hand motion. Furthermore, because the left and right arms have demonstrated selective advantages when matching visual and proprioceptive targets, respectively, we assessed proprioceptive recalibration in right-handed subjects following training with either the right or the left hand. On average, we observed shifts in felt hand position of approximately 7.6° following training with misaligned visual feedback of the hand, which is consistent with our previous findings in which the distortion was introduced gradually. Moreover, no difference was observed in proprioceptive recalibration across the left and right hands. These findings suggest that proprioceptive recalibration is a robust process that arises symmetrically in the two hands following visuomotor adaptation regardless of the initial magnitude of the error signal.
Control order and visuomotor strategy development for joystick-steered underground shuttle cars.
Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy
2014-09-01
In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.
Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles
Rentsch, Sebastian; Rand, Miya K.
2014-01-01
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions. PMID:25333942
Trial-by-trial analysis of intermanual transfer during visuomotor adaptation
Wojaczynski, Greg J.; Ivry, Richard B.
2011-01-01
Studies of intermanual transfer have been used to probe representations formed during skill acquisition. We employ a new method that provides a continuous assay of intermanual transfer, intermixing right- and left-hand trials while limiting visual feedback to right-hand movements. We manipulated the degree of awareness of the visuomotor rotation, introducing a 22.5° perturbation in either an abrupt single step or gradually in ∼1° increments every 10 trials. Intermanual transfer was observed with the direction of left-hand movements shifting in the opposite direction of the rotation over the course of training. The transfer on left-hand trials was less than that observed in the right hand. Moreover, the magnitude of transfer was larger in our mixed-limb design compared with the standard blocked design in which transfer is only probed at the end of training. Transfer was similar in the abrupt and gradual groups, suggesting that awareness of the perturbation has little effect on intermanual transfer. In a final experiment, participants were provided with a strategy to offset an abrupt rotation, a method that has been shown to increase error over the course of training due to the operation of sensorimotor adaptation. This deterioration was also observed on left-hand probe trials, providing further support that awareness has little effect on intermanual transfer. These results indicate that intermanual transfer is not dependent on the implementation of cognitively assisted strategies that participants might adopt when they become aware that the visuomotor mapping has been perturbed. Rather, the results indicate that the information available to processes involved in adaptation entails some degree of effector independence. PMID:21917998
High-performance object tracking and fixation with an online neural estimator.
Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian
2007-02-01
Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.
Leow, Li-Ann; Gunn, Reece; Marinovic, Welber; Carroll, Timothy J
2017-08-01
When sensory feedback is perturbed, accurate movement is restored by a combination of implicit processes and deliberate reaiming to strategically compensate for errors. Here, we directly compare two methods used previously to dissociate implicit from explicit learning on a trial-by-trial basis: 1 ) asking participants to report the direction that they aim their movements, and contrasting this with the directions of the target and the movement that they actually produce, and 2 ) manipulating movement preparation time. By instructing participants to reaim without a sensory perturbation, we show that reaiming is possible even with the shortest possible preparation times, particularly when targets are narrowly distributed. Nonetheless, reaiming is effortful and comes at the cost of increased variability, so we tested whether constraining preparation time is sufficient to suppress strategic reaiming during adaptation to visuomotor rotation with a broad target distribution. The rate and extent of error reduction under preparation time constraints were similar to estimates of implicit learning obtained from self-report without time pressure, suggesting that participants chose not to apply a reaiming strategy to correct visual errors under time pressure. Surprisingly, participants who reported aiming directions showed less implicit learning according to an alternative measure, obtained during trials performed without visual feedback. This suggests that the process of reporting can affect the extent or persistence of implicit learning. The data extend existing evidence that restricting preparation time can suppress explicit reaiming and provide an estimate of implicit visuomotor rotation learning that does not require participants to report their aiming directions. NEW & NOTEWORTHY During sensorimotor adaptation, implicit error-driven learning can be isolated from explicit strategy-driven reaiming by subtracting self-reported aiming directions from movement directions, or
Loop shaping design for tracking performance in machine axes.
Schinstock, Dale E; Wei, Zhouhong; Yang, Tao
2006-01-01
A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.
Effect of GNSS receiver carrier phase tracking loops on earthquake monitoring performance
NASA Astrophysics Data System (ADS)
Clare, Adam; Lin, Tao; Lachapelle, Gérard
2017-06-01
This research focuses on the performance of GNSS receiver carrier phase tracking loops for early earthquake monitoring systems. An earthquake was simulated using a hardware simulator and position, velocity and acceleration displacements were obtained to recreate the dynamics of the 2011 Tohoku earthquake. Using a software defined receiver, GSNRx, tracking bandwidths of 5, 10, 15, 20, 30, 40 and 50 Hz along with integration times of 1, 5 and 10 ms were tested. Using the phase lock indicator, an adaptive tracking loop was designed and tested to maximize performance for this application.
Hadj-Bouziane, Fadila; Benatru, Isabelle; Brovelli, Andrea; Klinger, Hélène; Thobois, Stéphane; Broussolle, Emmanuel; Boussaoud, Driss; Meunier, Martine
2013-01-01
The present behavioral study re-addresses the question of habit learning in Parkinson's disease (PD). Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding vs. following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under 60 years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by PD. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced PD stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed actions. PMID:23386815
Experimental Study of Lightweight Tracked Vehicle Performance on Dry Granular Materials
2013-09-12
agricultural tractor and found that the length of the ground contact area is the most important factor affecting tractive performance, while track...authors are grateful to Ce- cilia Cantu and to Meccanotecnica Riesi SRL for collaborating on designing and manufacturing the single track device
Fitzgibbon, Bernadette M; Kirkovski, Melissa; Fornito, Alex; Paton, Bryan; Fitzgerald, Paul B; Enticott, Peter G
2016-04-01
Recent neuroimaging studies have demonstrated that activation of the putative human mirror neuron system (MNS) can be elicited via visuomotor training. This is generally interpreted as supporting an associative learning account of the mirror neuron system (MNS) that argues against the ontogeny of the MNS to be an evolutionary adaptation for social cognition. The current study assessed whether a central component of social cognition, emotion processing, would influence the MNS activity to trained visuomotor associations, which could support a broader role of the MNS in social cognition. Using functional magnetic resonance imaging (fMRI), we assessed repetition suppression to the presentation of stimulus pairs involving a simple hand action and a geometric shape that was either congruent or incongruent with earlier association training. Each pair was preceded by an image of positive, negative, or neutral emotionality. In support of an associative learning account of the MNS, repetition suppression was greater for trained pairs compared with untrained pairs in several regions, primarily supplementary motor area (SMA) and right inferior frontal gyrus (rIFG). This response, however, was not modulated by the valence of the emotional images. These findings argue against a fundamental role of emotion processing in the mirror neuron response, and are inconsistent with theoretical accounts linking mirror neurons to social cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Human Performance in Time-Shared Verbal and Tracking Tasks.
1979-04-01
represented tracking performance. A graph of RMSE as a funtion of the experimental conditions is presented in Figur3 4. The ANOVA summary for these...alterations in the stimulus format or keyboard/joy- stick relationships would probably have either no effect, or would be detrimental to performance of
Factors that influence tractive performance of wheels, tracks, and vehicles
USDA-ARS?s Scientific Manuscript database
Traction of agricultural vehicles and other off-road vehicles is important in allowing these vehicles to perform their desired tasks. This book chapter describes factors affecting the off-road tractive performance of tires and rubber tracks. Tractive performance is affected by soil type, soil cond...
Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector
NASA Astrophysics Data System (ADS)
Ullah, Fahim; Min, Kang
2018-01-01
A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.
Performance evaluation of an asynchronous multisensor track fusion filter
NASA Astrophysics Data System (ADS)
Alouani, Ali T.; Gray, John E.; McCabe, D. H.
2003-08-01
Recently the authors developed a new filter that uses data generated by asynchronous sensors to produce a state estimate that is optimal in the minimum mean square sense. The solution accounts for communications delay between sensors platform and fusion center. It also deals with out of sequence data as well as latent data by processing the information in a batch-like manner. This paper compares, using simulated targets and Monte Carlo simulations, the performance of the filter to the optimal sequential processing approach. It was found that the new asynchronous Multisensor track fusion filter (AMSTFF) performance is identical to that of the extended sequential Kalman filter (SEKF), while the new filter updates its track at a much lower rate than the SEKF.
A data set for evaluating the performance of multi-class multi-object video tracking
NASA Astrophysics Data System (ADS)
Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David
2017-05-01
One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.
Mechanisms underlying interlimb transfer of visuomotor rotations
Wang, Jinsung; Sainburg, Robert L.
2013-01-01
We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm
Role of the Visuomotor System in On-Line Attenuation of a Premovement Illusory Bias in Grip Aperture
ERIC Educational Resources Information Center
Heath, M.; Rival, C.
2005-01-01
In this investigation participants formulated a grip aperture (GA) consistent with the size of an object embedded within a Muller-Lyer (ML) figure prior to initiating visually guided grasping movements. The accuracy of the grasping response was emphasized to determine whether or not the visuomotor system might resolve the premovement bias in GA…
Noncoherent pseudonoise code tracking performance of spread spectrum receivers
NASA Technical Reports Server (NTRS)
Simon, M. K.
1977-01-01
The optimum design and performance of two noncoherent PN tracking loop configurations, namely, the delay-locked loop and tau-dither loop, are described. In particular, the bandlimiting effects of the bandpass arm filters are considered by demonstrating that for a fixed data rate and data signal-to-noise ratio, there exists an optimum filter bandwidth in the sense of minimizing the loop's tracking jitter. Both the linear and nonlinear loop analyses are presented, and the region of validity of the former relative to the latter is indicated. In addition, numerical results are given for several filter types. For example, assuming ideal bandpass arm filters, it is shown that the tau-dither loop requires approximately 1 dB more signal-to-noise ratio than the delay-locked loop for equal rms tracking jitters.
2009-03-01
BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF IMPOSED BOUNDARIES ON PILOT-AIRCRAFT...States Government. AFIT/GAE/ENY/09-M03 BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF IMPOSED BOUNDARIES ON PILOT-AIRCRAFT PERFORMANCE...Case 2 (Gray, 2005) ....................................... 20 Figure 8. Effect of BAT Parameters on Tracking Success (Gray, 2005
Engel, Annerose; Bangert, Marc; Horbank, David; Hijmans, Brenda S; Wilkens, Katharina; Keller, Peter E; Keysers, Christian
2012-11-01
To investigate the cross-modal transfer of movement patterns necessary to perform melodies on the piano, 22 non-musicians learned to play short sequences on a piano keyboard by (1) merely listening and replaying (vision of own fingers occluded) or (2) merely observing silent finger movements and replaying (on a silent keyboard). After training, participants recognized with above chance accuracy (1) audio-motor learned sequences upon visual presentation (89±17%), and (2) visuo-motor learned sequences upon auditory presentation (77±22%). The recognition rates for visual presentation significantly exceeded those for auditory presentation (p<.05). fMRI revealed that observing finger movements corresponding to audio-motor trained melodies is associated with stronger activation in the left rolandic operculum than observing untrained sequences. This region was also involved in silent execution of sequences, suggesting that a link to motor representations may play a role in cross-modal transfer from audio-motor training condition to visual recognition. No significant differences in brain activity were found during listening to visuo-motor trained compared to untrained melodies. Cross-modal transfer was stronger from the audio-motor training condition to visual recognition and this is discussed in relation to the fact that non-musicians are familiar with how their finger movements look (motor-to-vision transformation), but not with how they sound on a piano (motor-to-sound transformation). Copyright © 2012 Elsevier Inc. All rights reserved.
Shah, Reshma P.; Spruyt, Karen; Kragie, Brigette C.; Greeley, Siri Atma W.; Msall, Michael E.
2012-01-01
OBJECTIVE To assess performance on an age-standardized neuromotor coordination task among sulfonylurea-treated KCNJ11-related neonatal diabetic patients. RESEARCH DESIGN AND METHODS Nineteen children carrying KCNJ11 mutations associated with isolated diabetes (R201H; n = 8), diabetes with neurodevelopmental impairment (V59M or V59A [V59M/A]; n = 8), or diabetes not consistently associated with neurodevelopmental disability (Y330C, E322K, or R201C; n = 3) were studied using the age-standardized Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI). RESULTS Although R201H subjects tested in the normal range (median standard score = 107), children with V59M/A mutations had significantly lower than expected VMI standard scores (median = 49). The scores for all three groups were significantly different from each other (P = 0.0017). The age of sulfonylurea initiation was inversely correlated with VMI scores in the V59M/A group (P < 0.05). CONCLUSIONS Neurodevelopmental disability in KCNJ11-related diabetes includes visuomotor problems that may be ameliorated by early sulfonylurea treatment. Comprehensive longitudinal assessment on larger samples will be imperative. PMID:22855734
Ewolds, Harald E; Bröker, Laura; de Oliveira, Rita F; Raab, Markus; Künzell, Stefan
2017-01-01
The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system.
Ewolds, Harald E.; Bröker, Laura; de Oliveira, Rita F.; Raab, Markus; Künzell, Stefan
2017-01-01
The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system. PMID:29312083
Visuomotor adaptation needs a validation of prediction error by feedback error
Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle
2014-01-01
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly
Improved performance of semiconductor laser tracking frequency gauge
NASA Astrophysics Data System (ADS)
Kaplan, D. M.; Roberts, T. J.; Phillips, J. D.; Reasenberg, R. D.
2018-03-01
We describe new results from the semiconductor-laser tracking frequency gauge, an instrument that can perform sub-picometer distance measurements and has applications in gravity research and in space-based astronomical instruments proposed for the study of light from extrasolar planets. Compared with previous results, we have improved incremental distance accuracy by a factor of two, to 0.9 pm in 80 s averaging time, and absolute distance accuracy by a factor of 20, to 0.17 μm in 1000 s. After an interruption of operation of a tracking frequency gauge used to control a distance, it is now possible, using a nonresonant measurement interferometer, to restore the distance to picometer accuracy by combining absolute and incremental distance measurements.
Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano
2015-01-01
Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. PMID:25808765
Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
Botzer, Lior; Karniel, Amir
2013-07-01
It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Moacdieh, Nadine; Sarter, Nadine
2015-06-01
The objective was to use eye tracking to trace the underlying changes in attention allocation associated with the performance effects of clutter, stress, and task difficulty in visual search and noticing tasks. Clutter can degrade performance in complex domains, yet more needs to be known about the associated changes in attention allocation, particularly in the presence of stress and for different tasks. Frequently used and relatively simple eye tracking metrics do not effectively capture the various effects of clutter, which is critical for comprehensively analyzing clutter and developing targeted, real-time countermeasures. Electronic medical records (EMRs) were chosen as the application domain for this research. Clutter, stress, and task difficulty were manipulated, and physicians' performance on search and noticing tasks was recorded. Several eye tracking metrics were used to trace attention allocation throughout those tasks, and subjective data were gathered via a debriefing questionnaire. Clutter degraded performance in terms of response time and noticing accuracy. These decrements were largely accentuated by high stress and task difficulty. Eye tracking revealed the underlying attentional mechanisms, and several display-independent metrics were shown to be significant indicators of the effects of clutter. Eye tracking provides a promising means to understand in detail (offline) and prevent (in real time) major performance breakdowns due to clutter. Display designers need to be aware of the risks of clutter in EMRs and other complex displays and can use the identified eye tracking metrics to evaluate and/or adjust their display. © 2015, Human Factors and Ergonomics Society.
Modeling track access charge to enhance railway industry performance
NASA Astrophysics Data System (ADS)
Berawi, Mohammed Ali; Miraj, Perdana; Berawi, Abdur Rohim Boy; Susantono, Bambang; Leviakangas, Pekka; Radiansyah, Hendra
2017-11-01
Indonesia attempts to improve nation's competitiveness by increasing the quality and the availability of railway network. However, the infrastructure improperly managed by the operator in terms of the technical issue. One of the reasons for this problem is an unbalanced value of infrastructure charge. In 2000's track access charge and infrastructure maintenance and operation for Indonesia railways are equal and despite current formula of the infrastructure charge, issues of transparency and accountability still in question. This research aims to produce an alternative scheme of track access charge by considering marginal cost plus markup (MC+) approach. The research combines qualitative and quantitative method through an in-depth interview and financial analysis. The result will generate alternative formula of infrastructure charge in Indonesia's railway industry. The simulation also conducted to estimate track access charge for the operator and to forecast government support in terms of subsidy. The result is expected to enhance railway industry performance and competitiveness.
A relationship between eye movement patterns and performance in a precognitive tracking task
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Hartzell, E. J.
1977-01-01
Eye movements made by various subjects in the performance of a precognitive tracking task are studied. The tracking task persented by an antiaircraft artillery (AAA) simulator has an input forcing function represented by a deterministic aircraft fly-by. The performance of subjects is ranked by two metrics. Good, mediocre, and poor trackers are selected for analysis based on performance during the difficult segment of the tracking task and over replications. Using phase planes to characterize both the eye movement patterns and the displayed error signal, a simple metric is developed to study these patterns. Two characterizations of eye movement strategies are defined and quantified. Using these two types of eye strategies, two conclusions are obtained about good, mediocre, and poor trackers. First, the eye tracker who used a fixed strategy will consistently perform better. Secondly, the best fixed strategy is defined as a Crosshair Fixator.
Ocular dynamics and visual tracking performance after Q-switched laser exposure
NASA Astrophysics Data System (ADS)
Zwick, Harry; Stuck, Bruce E.; Lund, David J.; Nawim, Maqsood
2001-05-01
In previous investigations of q-switched laser retinal exposure in awake task oriented non-human primates (NHPs), the threshold for retinal damage occurred well below that of the threshold for permanent visual function loss. Visual function measures used in these studies involved measures of visual acuity and contrast sensitivity. In the present study, we examine the same relationship for q-switched laser exposure using a visual performance task, where task dependency involves more parafoveal than foveal retina. NHPs were trained on a visual pursuit motor tracking performance task that required maintaining a small HeNe laser spot (0.3 degrees) centered in a slowly moving (0.5deg/sec) annulus. When NHPs reliably produced visual target tracking efficiencies > 80%, single q-switched laser exposures (7 nsec) were made coaxially with the line of sight of the moving target. An infrared camera imaged the pupil during exposure to obtain the pupillary response to the laser flash. Retinal images were obtained with a scanning laser ophthalmoscope 3 days post exposure under ketamine and nembutol anesthesia. Q-switched visible laser exposures at twice the damage threshold produced small (about 50mm) retinal lesions temporal to the fovea; deficits in NHP visual pursuit tracking were transient, demonstrating full recovery to baseline within a single tracking session. Post exposure analysis of the pupillary response demonstrated that the exposure flash entered the pupil, followed by 90 msec refractory period and than a 12 % pupillary contraction within 1.5 sec from the onset of laser exposure. At 6 times the morphological threshold damage level for 532 nm q-switched exposure, longer term losses in NHP pursuit tracking performance were observed. In summary, q-switched laser exposure appears to have a higher threshold for permanent visual performance loss than the corresponding threshold to produce retinal threshold injury. Mechanisms of neural plasticity within the retina and at
Allocation Usage Tracking and Management | High-Performance Computing |
NREL's high-performance computing (HPC) systems, learn how to track and manage your allocations. The alloc_tracker script (/usr/local/bin/alloc_tracker) may be used to see what allocations you have access to, how much of the allocation has been used, how much remains and how many node hours will be forfeited at the
Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M
2011-07-15
Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter
Effect of cross-correlation on track-to-track fusion
NASA Astrophysics Data System (ADS)
Saha, Rajat K.
1994-07-01
Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.
Kasuga, Shoko; Ushiba, Junichi
2014-01-01
Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors.
Enhancement of tracking performance in electro-optical system based on servo control algorithm
NASA Astrophysics Data System (ADS)
Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu
2017-10-01
Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.
Videogame training strategy-induced change in brain function during a complex visuomotor task.
Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F
2012-07-01
Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.
Direct visuomotor mapping for fast visually-evoked arm movements.
Reynolds, Raymond F; Day, Brian L
2012-12-01
In contrast to conventional reaction time (RT) tasks, saccadic RT's to visual targets are very fast and unaffected by the number of possible targets. This can be explained by the sub-cortical circuitry underlying eye movements, which involves direct mapping between retinal input and motor output in the superior colliculus. Here we asked if the choice-invariance established for the eyes also applies to a special class of fast visuomotor responses of the upper limb. Using a target-pointing paradigm we observed very fast reaction times (<150 ms) which were completely unaffected as the number of possible target choices was increased from 1 to 4. When we introduced a condition of altered stimulus-response mapping, RT went up and a cost of choice was observed. These results can be explained by direct mapping between visual input and motor output, compatible with a sub-cortical pathway for visual control of the upper limb. Copyright © 2012 Elsevier Ltd. All rights reserved.
Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe
2014-02-01
Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing
2008-02-01
Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.
Isometric Force Regulation in Children.
ERIC Educational Resources Information Center
Lazarus, Jo-Anne C.; And Others
1995-01-01
Isometric pinch force regulation was investigated in children and adults using a visuo-motor tracking paradigm. Younger children aged 5-7 years performed significantly worse than older children aged 9-11 years and adults in terms of an overall error score as well as a correlation score, which is believed to reflect the ability to predict the…
Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M
2016-01-26
Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal
Subtitles and Eye Tracking: Reading and Performance
ERIC Educational Resources Information Center
Kruger, Jan-Louis; Steyn, Faans
2014-01-01
This article presents an experimental study to investigate whether subtitle reading has a positive impact on academic performance. In the absence of reliable indexes of reading behavior in dynamic texts, the article first formulates and validates an index to measure the reading of text, such as subtitles on film. Eye-tracking measures (fixations…
Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas
2018-06-01
This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.
Manual Dexterity in Schizophrenia—A Neglected Clinical Marker?
Térémetz, Maxime; Carment, Loïc; Brénugat-Herne, Lindsay; Croca, Marta; Bleton, Jean-Pierre; Krebs, Marie-Odile; Maier, Marc A.; Amado, Isabelle; Lindberg, Påvel G.
2017-01-01
Impaired manual dexterity is commonly observed in schizophrenia. However, a quantitative description of key sensorimotor components contributing to impaired dexterity is lacking. Whether the key components of dexterity are differentially affected and how they relate to clinical characteristics also remains unclear. We quantified the degree of dexterity in 35 stabilized patients with schizophrenia and in 20 age-matched control subjects using four visuomotor tasks: (i) force tracking to quantify visuomotor precision, (ii) sequential finger tapping to measure motor sequence recall, (iii) single-finger tapping to assess temporal regularity, and (iv) multi-finger tapping to measure independence of finger movements. Diverse clinical and neuropsychological tests were also applied. A patient subgroup (N = 15) participated in a 14-week cognitive remediation protocol and was assessed before and after remediation. Compared to control subjects, patients with schizophrenia showed greater error in force tracking, poorer recall of tapping sequences, decreased tapping regularity, and reduced degree of finger individuation. A composite performance measure discriminated patients from controls with sensitivity = 0.79 and specificity = 0.9. Aside from force-tracking error, no other dexterity components correlated with antipsychotic medication. In patients, some dexterity components correlated with neurological soft signs, Positive and Negative Syndrome Scale (PANSS), or neuropsychological scores. This suggests differential cognitive contributions to these components. Cognitive remediation lead to significant improvement in PANSS, tracking error, and sequence recall (without change in medication). These findings show that multiple aspects of sensorimotor control contribute to impaired manual dexterity in schizophrenia. Only visuomotor precision was related to antipsychotic medication. Good diagnostic accuracy and responsiveness to treatment suggest that manual dexterity may
Report: Performance Track Could Improve Program Design and Management to Ensure Value
Report #2007-P-00013, March 29, 2007. We found that Performance Track did not have clear plans that connected activities with its goals, and did not have performance measures that show if it achieves anticipated results.
Effect of vertical active vibration isolation on tracking performance and on ride qualities
NASA Technical Reports Server (NTRS)
Dimasi, F. P.; Allen, R. E.; Calcaterra, P. C.
1972-01-01
An investigation to determine the effect on pilot performance and comfort of an active vibration isolation system for a commercial transport pilot seat is reported. The test setup consisted of: a hydraulic shaker which produced random vertical vibration inputs; the active vibration isolation system; the pilot seat; the pilot control wheel and column; the side-arm controller; and a two-axis compensatory tracking task. The effects of various degrees of pilot isolation on short-term (two-minute) tracking performance and comfort were determined.
2009-07-01
Performance Analysis of the Probabilistic Multi- Hypothesis Tracking Algorithm On the SEABAR Data Sets Dr. Christian G . Hempel Naval...Hypothesis Tracking,” NUWC-NPT Technical Report 10,428, Naval Undersea Warfare Center Division, Newport, RI, 15 February 1995. [2] G . McLachlan, T...the 9th International Conference on Information Fusion, Florence Italy, July, 2006. [8] C. Hempel, “Track Initialization for Multi-Static Active Sonay
Tracking the NOvA Detectors' Performance
NASA Astrophysics Data System (ADS)
Psihas, Fernanda; NOvA Collaboration
2016-03-01
The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.
A low cost fMRI-compatible tracking system using the Nintendo Wii remote.
Modroño, Cristián; Rodríguez-Hernández, Antonio F; Marcano, Francisco; Navarrete, Gorka; Burunat, Enrique; Ferrer, Marta; Monserrat, Raquel; González-Mora, José L
2011-11-15
It is sometimes necessary during functional magnetic resonance imaging (fMRI) experiments to capture different movements made by the subjects, e.g. to enable them to control an item or to analyze its kinematics. The aim of this work is to present an inexpensive hand tracking system suitable for use in a high field MRI environment. It works by introducing only one light-emitting diode (LED) in the magnet room, and by receiving its signal with a Nintendo Wii remote (the primary controller for the Nintendo Wii console) placed outside in the control room. Thus, it is possible to take high spatial and temporal resolution registers of a moving point that, in this case, is held by the hand. We tested it using a ball and racket virtual game inside a 3 Tesla MRI scanner to demonstrate the usefulness of the system. The results show the involvement of a number of areas (mainly occipital and frontal, but also parietal and temporal) when subjects are trying to stop an object that is approaching from a first person perspective, matching previous studies performed with related visuomotor tasks. The system presented here is easy to implement, easy to operate and does not produce important head movements or artifacts in the acquired images. Given its low cost and ready availability, the method described here is ideal for use in basic and clinical fMRI research to track one or more moving points that can correspond to limbs, fingers or any other object whose position needs to be known. Copyright © 2011 Elsevier B.V. All rights reserved.
Dewar, Michaela T; Carey, David P
2006-01-01
Recent findings of visuomotor immunity to perceptual illusions have been attributed to a perception-action division of labour within two anatomically segregated streams in the visual cortex. However, critics argue that such experimental findings are not valid and have suggested that the perception-action dissociations can be explained away by differential attentional/processing demands, rather than a functional dissociation in the neurologically intact brain: perceptual tasks require processing of the entire illusion display while visuomotor tasks only require processing the target that is acted upon. The present study examined whether grasping of the Müller-Lyer display would remain immune to the illusion when the task required the direction of attention or a related resource towards both Müller-Lyer shafts. Twelve participants were required to match and grasp two Müller-Lyer shafts bimanually (i.e. one with each hand). It was found that bimanual grasping was not significantly affected by the illusion, while there was a highly significant illusion effect on perceptual estimation by matching. Furthermore, it was established that this dissociation did not result from a differing baseline rate of change in manual estimation and grasping aperture to a change in physical object size. These findings provide further support for the postulated perception-action dissociation and fail to uphold the idea that grasping 'immunity' to the Müller-Lyer illusions merely represents an experimental artefact.
The effects of aging on the asymmetry of inter-limb transfer in a visuomotor task.
Pan, Zhujun; Van Gemmert, Arend W A
2013-09-01
The direction of the asymmetry of inter-limb transfer has been suggested to identify the specialization of each hemisphere when performing a motor task. In an earlier study, we showed that trajectory information is only transferred from the right to the left hand, while final movement outcome-associated parameters transferred in both directions when right-hand-dominant individuals perform a motor task with visual distorted feedback. In the current study, we try to replicate this finding in young adults and test whether the asymmetry of inter-limb transfer in visuomotor task reduces in older adults, suggesting that hemispheric lateralization reduces with age. Young and older adults (all right-hand-dominant) performed a multidirectional point-to-point drawing task in which the visual feedback was rotated and the gain was increased. Half of the participants in each age group trained with the right hand and the other half trained with the left hand. Performances of both hands with non-distorted and distorted visual feedback were collected from all participants before and after the training session. The results showed that the pattern of inter-limb transfer was similar between young and older adults, i.e., inter-limb transfer is asymmetric for initial direction and symmetric for movement time and trajectory length. The results suggest that older adults retain the specialized functions of the non-dominant (right) hemisphere allowing them to program movement direction of a graphic aiming task when visual feedback is distorted.
Tracking career performance of successful triathletes.
Malcata, Rita M; Hopkins, Will G; Pearson, Simon N
2014-06-01
Tracking athletes' performances over time is important but problematic for sports with large environmental effects. Here we have developed career performance trajectories for elite triathletes, investigating changes in swim, cycle, run stages, and total performance times while accounting for environmental and other external factors. Performance times of 337 female and 427 male triathletes competing in 419 international races between 2000 and 2012 were obtained from triathlon.org. Athletes were categorized according to any top 16 placing at World Championships or Olympics between 2008 and 2012. A mixed linear model accounting for race distance (sprint and Olympic), level of competition, calendar-year trend, athlete's category, and clustering of times within athletes and races was used to derive athletes' individual quadratic performance trajectories. These trajectories provided estimates of age of peak performance and predictions for the 2012 London Olympic Games. By markedly reducing the scatter of individual race times, the model produced well-fitting trajectories suitable for comparison of triathletes. Trajectories for top 16 triathletes showed different patterns for race stages and differed more among women than among men, but ages of peak total performance were similar for men and women (28 ± 3 yr, mean ± SD). Correlations between observed and predicted placings at Olympics were slightly higher than those provided by placings in races before the Olympics. Athletes' trajectories will help identify talented athletes and their weakest and strongest stages. The wider range of trajectories among women should be taken into account when setting talent identification criteria. Trajectories offer a small advantage over usual race placings for predicting men's performance. Further refinements, such as accounting for individual responses to race conditions, may improve utility of performance trajectories.
Position Affects Performance in Multiple-Object Tracking in Rugby Union Players
Martín, Andrés; Sfer, Ana M.; D'Urso Villar, Marcela A.; Barraza, José F.
2017-01-01
We report an experiment that examines the performance of rugby union players and a control group composed of graduate student with no sport experience, in a multiple-object tracking task. It compares the ability of 86 high level rugby union players grouped as Backs and Forwards and the control group, to track a subset of randomly moving targets amongst the same number of distractors. Several difficulties were included in the experimental design in order to evaluate possible interactions between the relevant variables. Results show that the performance of the Backs is better than that of the other groups, but the occurrence of interactions precludes an isolated groups analysis. We interpret the results within the framework of visual attention and discuss both, the implications of our results and the practical consequences. PMID:28951725
Slab Track at Facility for Accelerated Service Testing: Performance and Serviceability
DOT National Transportation Integrated Search
2018-02-01
The Transportation Technology Center, Inc., with funding by the Portland Cement Association and the Federal Railroad Administration, documented the available records associated with the performance of the concrete slab track section in the High Tonna...
Extensive video-game experience alters cortical networks for complex visuomotor transformations.
Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E
2010-10-01
Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.
NucliTrack: an integrated nuclei tracking application.
Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris
2017-10-15
Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
A Link Between Attentional Function, Effective Eye Movements, and Driving Ability
2016-01-01
The misallocation of driver visual attention has been suggested as a major contributing factor to vehicle accidents. One possible reason is that the relatively high cognitive demands of driving limit the ability to efficiently allocate gaze. We present an experiment that explores the relationship between attentional function and visual performance when driving. Drivers performed 2 variations of a multiple-object tracking task targeting aspects of cognition including sustained attention, dual-tasking, covert attention, and visuomotor skill. They also drove a number of courses in a driving simulator. Eye movements were recorded throughout. We found that individuals who performed better in the cognitive tasks exhibited more effective eye movement strategies when driving, such as scanning more of the road, and they also exhibited better driving performance. We discuss the potential link between an individual’s attentional function, effective eye movements, and driving ability. We also discuss the use of a visuomotor task in assessing driving behavior. PMID:27893270
Pilot performance and workload using simulated GPS track angle error displays
DOT National Transportation Integrated Search
1995-01-01
The effect on simulated GPS instrument approach performance and workload resulting from the addition of Track Angle Error (TAE) information to cockpit RNAV receiver displays in explicit analog form was studied experimentally (S display formats, 6 pil...
Prochnow, D; Bermúdez i Badia, S; Schmidt, J; Duff, A; Brunheim, S; Kleiser, R; Seitz, R J; Verschure, P F M J
2013-05-01
The Rehabilitation Gaming System (RGS) has been designed as a flexible, virtual-reality (VR)-based device for rehabilitation of neurological patients. Recently, training of visuomotor processing with the RGS was shown to effectively improve arm function in acute and chronic stroke patients. It is assumed that the VR-based training protocol related to RGS creates conditions that aid recovery by virtue of the human mirror neuron system. Here, we provide evidence for this assumption by identifying the brain areas involved in controlling the catching of approaching colored balls in the virtual environment of the RGS. We used functional magnetic resonance imaging of 18 right-handed healthy subjects (24 ± 3 years) in both active and imagination conditions. We observed that the imagery of target catching was related to activation of frontal, parietal, temporal, cingulate and cerebellar regions. We interpret these activations in relation to object processing, attention, mirror mechanisms, and motor intention. Active catching followed an anticipatory mode, and resulted in significantly less activity in the motor control areas. Our results provide preliminary support for the hypothesis underlying RGS that this novel neurorehabilitation approach engages human mirror mechanisms that can be employed for visuomotor training. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross
Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.
Performance Analysis of Digital Tracking Loops for Telemetry Ranging Applications
NASA Astrophysics Data System (ADS)
Vilnrotter, V.; Hamkins, J.; Xie, H.; Ashrafi, S.
2015-08-01
In this article, we analyze mathematical models of digital loops used to track the phase and timing of communications and navigation signals. The limits on the accuracy of phase and timing estimates play a critical role in the accuracy achievable in telemetry ranging applications. We describe in detail a practical algorithm to compute the loop parameters for discrete update (DU) and continuous update (CU) loop formulations, and we show that a simple power-series approximation to the DU model is valid over a large range of time-bandwidth product . Several numerical examples compare the estimation error variance of the DU and CU models to each other and to Cramer-Rao lower bounds. Finally, the results are applied to the problem of ranging, by evaluating the performance of a phase-locked loop designed to track a typical ambiguity-resolving pseudonoise (PN) code received and demodulated at the spacecraft on the uplink part of the two-way ranging link, and a data transition tracking loop (DTTL) on the downlink part.
Mahé, Sylvain; Braud, Raphaël; Gaussier, Philippe; Quoy, Mathias; Pitti, Alexandre
2015-02-01
The so-called self-other correspondence problem in imitation demands to find the transformation that maps the motor dynamics of one partner to our own. This requires a general purpose sensorimotor mechanism that transforms an external fixation-point (partner's shoulder) reference frame to one's own body-centered reference frame. We propose that the mechanism of gain-modulation observed in parietal neurons may generally serve these types of transformations by binding the sensory signals across the modalities with radial basis functions (tensor products) on the one hand and by permitting the learning of contextual reference frames on the other hand. In a shoulder-elbow robotic experiment, gain-field neurons (GF) intertwine the visuo-motor variables so that their amplitude depends on them all. In situations of modification of the body-centered reference frame, the error detected in the visuo-motor mapping can serve then to learn the transformation between the robot's current sensorimotor space and the new one. These situations occur for instance when we turn the head on its axis (visual transformation), when we use a tool (body modification), or when we interact with a partner (embodied simulation). Our results defend the idea that the biologically-inspired mechanism of gain modulation found in parietal neurons can serve as a basic structure for achieving nonlinear mapping in spatial tasks as well as in cooperative and social functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Computable Definition of Sepsis Facilitates Screening and Performance Improvement Tracking.
Alessi, Lauren J; Warmus, Holly R; Schaffner, Erin K; Kantawala, Sajel; Carcillo, Joseph; Rosen, Johanna; Horvat, Christopher M
2018-03-01
Sepsis kills almost 5,000 children annually, accounting for 16% of pediatric health care spending in the United States. We sought to identify sepsis within the Electronic Health Record (EHR) of a quaternary children's hospital to characterize disease incidence, improve recognition and response, and track performance metrics. Methods are organized in a plan-do-study-act cycle. During the "plan" phase, electronic definitions of sepsis (blood culture and antibiotic within 24 hours) and septic shock (sepsis plus vasoactive medication) were created to establish benchmark data and track progress with statistical process control. The performance of a screening tool was evaluated in the emergency department. During the "do" phase, a novel inpatient workflow is being piloted, which involves regular sepsis screening by nurses using the tool, and a regimented response to high risk patients. Screening tool use in the emergency department reduced time to antibiotics (Fig. 1). Of the 6,159 admissions, EHR definitions identified 1,433 (23.3%) between July and December 2016 with sepsis, of which 159 (11.1%) had septic shock. Hospital mortality for all sepsis patients was 2.2% and 15.7% for septic shock (Table 1). These findings approximate epidemiologic studies of sepsis and severe sepsis, which report a prevalence range of 0.45-8.2% and mortality range of 8.2-25% (Table 2). 1-5 . Implementation of a sepsis screening tool is associated with improved performance. The prevalence of sepsis conditions identified with electronic definitions approximates the epidemiologic landscape characterized by other point-prevalence and administrative studies, providing face validity to this approach, and proving useful for tracking performance improvement.
Performance of the all-digital data-transition tracking loop in the advanced receiver
NASA Astrophysics Data System (ADS)
Cheng, U.; Hinedi, S.
1989-11-01
The performance of the all-digital data-transition tracking loop (DTTL) with coherent or noncoherent sampling is described. The effects of few samples per symbol and of noncommensurate sampling rates and symbol rates are addressed and analyzed. Their impacts on the loop phase-error variance and the mean time to lose lock (MTLL) are quantified through computer simulations. The analysis and preliminary simulations indicate that with three to four samples per symbol, the DTTL can track with negligible jitter because of the presence of earth Doppler rate. Furthermore, the MTLL is also expected to be large engough to maintain lock over a Deep Space Network track.
NucliTrack: an integrated nuclei tracking application
Cooper, Sam; Barr, Alexis R.; Glen, Robert; Bakal, Chris
2017-01-01
Abstract Summary Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack’s interactive, graphical interface makes it significantly more user friendly. Availability and implementation NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. Contact sam@socooper.com Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637183
Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.
Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D
2003-03-01
As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.
Quiet eye training facilitates competitive putting performance in elite golfers.
Vine, Samuel J; Moore, Lee J; Wilson, Mark R
2011-01-01
The aim of this study was to examine the effectiveness of a brief quiet eye (QE) training intervention aimed at optimizing visuomotor control and putting performance of elite golfers under pressure, and in real competition. Twenty-two elite golfers (mean handicap 2.7) recorded putting statistics over 10 rounds of competitive golf before attending training individually. Having been randomly assigned to either a QE training or Control group, participants were fitted with an Applied Science Laboratories Mobile Eye tracker and performed 20 baseline (pre-test) putts from 10 ft. Training consisted of video feedback of their gaze behavior while they completed 20 putts; however the QE-trained group received additional instructions related to maintaining a longer QE period. Participants then recorded their putting statistics over a further 10 competitive rounds and re-visited the laboratory for retention and pressure tests of their visuomotor control and putting performance. Overall, the results were supportive of the efficacy of the QE training intervention. QE duration predicted 43% of the variance in putting performance, underlying its critical role in the visuomotor control of putting. The QE-trained group maintained their optimal QE under pressure conditions, whereas the Control group experienced reductions in QE when anxious, with subsequent effects on performance. Although their performance was similar in the pre-test, the QE-trained group holed more putts and left the ball closer to the hole on missed putts than their Control group counterparts in the pressure test. Importantly, these advantages transferred to the golf course, where QE-trained golfers made 1.9 fewer putts per round, compared to pre-training, whereas the Control group showed no change in their putting statistics. These results reveal that QE training, incorporated into a pre-shot routine, is an effective intervention to help golfers maintain control when anxious.
Quiet Eye Training Facilitates Competitive Putting Performance in Elite Golfers
Vine, Samuel J.; Moore, Lee J.; Wilson, Mark R.
2011-01-01
The aim of this study was to examine the effectiveness of a brief quiet eye (QE) training intervention aimed at optimizing visuomotor control and putting performance of elite golfers under pressure, and in real competition. Twenty-two elite golfers (mean handicap 2.7) recorded putting statistics over 10 rounds of competitive golf before attending training individually. Having been randomly assigned to either a QE training or Control group, participants were fitted with an Applied Science Laboratories Mobile Eye tracker and performed 20 baseline (pre-test) putts from 10 ft. Training consisted of video feedback of their gaze behavior while they completed 20 putts; however the QE-trained group received additional instructions related to maintaining a longer QE period. Participants then recorded their putting statistics over a further 10 competitive rounds and re-visited the laboratory for retention and pressure tests of their visuomotor control and putting performance. Overall, the results were supportive of the efficacy of the QE training intervention. QE duration predicted 43% of the variance in putting performance, underlying its critical role in the visuomotor control of putting. The QE-trained group maintained their optimal QE under pressure conditions, whereas the Control group experienced reductions in QE when anxious, with subsequent effects on performance. Although their performance was similar in the pre-test, the QE-trained group holed more putts and left the ball closer to the hole on missed putts than their Control group counterparts in the pressure test. Importantly, these advantages transferred to the golf course, where QE-trained golfers made 1.9 fewer putts per round, compared to pre-training, whereas the Control group showed no change in their putting statistics. These results reveal that QE training, incorporated into a pre-shot routine, is an effective intervention to help golfers maintain control when anxious. PMID:21713182
Binary sensitivity and specificity metrics are not adequate to describe the performance of quantitative microbial source tracking methods because the estimates depend on the amount of material tested and limit of detection. We introduce a new framework to compare the performance ...
Experimental Study of Lightweight Tracked Vehicle Performance on Dry Granular Materials
2013-11-04
most important factor affecting tractive performance, while track tension does not play a primary role on cohesive soils. The work by Watanabe et al...helping in collecting the experimental data, to Cecilia Cantu, and to Meccanotecnica Riesi SRL for collaborating on designing and manufacturing the
A Computable Definition of Sepsis Facilitates Screening and Performance Improvement Tracking
Warmus, Holly R.; Schaffner, Erin K.; Kantawala, Sajel; Carcillo, Joseph; Rosen, Johanna; Horvat, Christopher M.
2018-01-01
Background: Sepsis kills almost 5,000 children annually, accounting for 16% of pediatric health care spending in the United States. Objectives: We sought to identify sepsis within the Electronic Health Record (EHR) of a quaternary children’s hospital to characterize disease incidence, improve recognition and response, and track performance metrics. Methods: Methods are organized in a plan-do-study-act cycle. During the “plan” phase, electronic definitions of sepsis (blood culture and antibiotic within 24 hours) and septic shock (sepsis plus vasoactive medication) were created to establish benchmark data and track progress with statistical process control. The performance of a screening tool was evaluated in the emergency department. During the “do” phase, a novel inpatient workflow is being piloted, which involves regular sepsis screening by nurses using the tool, and a regimented response to high risk patients. Results: Screening tool use in the emergency department reduced time to antibiotics (Fig. 1). Of the 6,159 admissions, EHR definitions identified 1,433 (23.3%) between July and December 2016 with sepsis, of which 159 (11.1%) had septic shock. Hospital mortality for all sepsis patients was 2.2% and 15.7% for septic shock (Table 1). These findings approximate epidemiologic studies of sepsis and severe sepsis, which report a prevalence range of 0.45–8.2% and mortality range of 8.2–25% (Table 2).1–5 Conclusions/Implications: Implementation of a sepsis screening tool is associated with improved performance. The prevalence of sepsis conditions identified with electronic definitions approximates the epidemiologic landscape characterized by other point-prevalence and administrative studies, providing face validity to this approach, and proving useful for tracking performance improvement. PMID:29732457
Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen
2017-12-06
Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.
Effects of some motion sickness suppressants on tracking performance during angular accelerations.
DOT National Transportation Integrated Search
1982-10-01
The two studies reported here examined the influence of three established antimotion sickness drugs on tracking performance in static (stationary) and dynamic (angular acceleration) conditions and on visual fixation ability during motion. : In Study ...
Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John
2012-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".
Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes
Fragala, Maren S.; Kavouras, Stavros A.; Queen, Robin M.; Pryor, John Luke; Casa, Douglas J.
2017-01-01
Abstract Lee, EC, Fragala, MS, Kavouras, SA, Queen, RM, Pryor, JL, and Casa, DJ. Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. J Strength Cond Res 31(10): 2920–2937, 2017—Biomarker discovery and validation is a critical aim of the medical and scientific community. Research into exercise and diet-related biomarkers aims to improve health, performance, and recovery in military personnel, athletes, and lay persons. Exercise physiology research has identified individual biomarkers for assessing health, performance, and recovery during exercise training. However, there are few recommendations for biomarker panels for tracking changes in individuals participating in physical activity and exercise training programs. Our approach was to review the current literature and recommend a collection of validated biomarkers in key categories of health, performance, and recovery that could be used for this purpose. We determined that a comprehensive performance set of biomarkers should include key markers of (a) nutrition and metabolic health, (b) hydration status, (c) muscle status, (d) endurance performance, (e) injury status and risk, and (f) inflammation. Our review will help coaches, clinical sport professionals, researchers, and athletes better understand how to comprehensively monitor physiologic changes, as they design training cycles that elicit maximal improvements in performance while minimizing overtraining and injury risk. PMID:28737585
Scholey, Andrew B; Sünram-Lea, Sandra I; Greer, Joanna; Elliott, Jade; Kennedy, David O
2009-01-01
The cognition-enhancing effects of glucose administration to humans have been well-documented; however, it remains unclear whether this effect preferentially targets episodic memory or other cognitive domains. The effect of glucose on the allocation of attentional resources during memory encoding was assessed using a sensitive dual-attention paradigm. One hundred and twenty volunteers (mean age 21.60, SD 4.89, 77 females) took part in this randomised, double-blind, placebo-controlled, parallel groups study where each consumed a 25-g glucose drink or a placebo. Half of the participants in each drink condition attempted to track a moving on-screen target during auditory word presentation. The distance between the cursor and the tracking target was used as an index of attentional cost during encoding. Effects of drink and tracking on recognition memory and drink on tracking performance were assessed. Self-rated appetite and mood were co-monitored. Co-performing the tracking task significantly impaired memory performance irrespective of drink condition. In the placebo-tracking condition, there was a cost to tracking manifest as greater deviation from target during and immediately following word presentation. Compared with placebo, the glucose drink significantly improved tracking performance during encoding. There were significant time-related changes in thirst and alertness ratings but these were not differentially affected by drink or tracking conditions. Tracking but not memory was enhanced by glucose. This finding suggests that, under certain task conditions, glucose administrations does not preferentially enhance memory performance. One mechanism through which glucose acts as a cognition enhancer is through allowing greater allocation of attentional resources.
Neural Predictors of Visuomotor Adaptation Rate and Multi-Day Savings
NASA Technical Reports Server (NTRS)
Cassady, Kaitlin; Ruitenberg, Marit; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos Castenada, Roy; Kofman, Igor; Bloomberg, Jacob;
2017-01-01
Recent studies of sensorimotor adaptation have found that individual differences in task-based functional brain activation are associated with the rate of adaptation and savings at subsequent sessions. However, few studies to date have investigated offline neural predictors of adaptation and multi-day savings. In the present study, we explore whether individual differences in the rate of visuomotor adaptation and multi-day savings are associated with differences in resting state functional connectivity and gray matter volume. Thirty-four participants performed a manual adaptation task during two separate test sessions, on average 9 days apart. We found that resting state functional connectivity strength between sensorimotor, anterior cingulate, and temporoparietal areas of the brain was a significant predictor of adaptation rate during the early, cognitive phase of practice. In contrast, default mode network functional connectivity strength was found to predict late adaptation rate and savings on day two, which suggests that these behaviors may rely on overlapping processes. We also found that gray matter volume in temporoparietal and occipital regions was a significant predictor of early learning, whereas gray matter volume in superior posterior regions of the cerebellum was a significant predictor of late adaptation. The results from this study suggest that offline neural predictors of early adaptation facilitate the cognitive mechanisms of sensorimotor adaptation, with support from by the involvement of temporoparietal and cingulate networks. In contrast, the neural predictors of late adaptation and savings, including the default mode network and the cerebellum, likely support the storage and modification of newly acquired sensorimotor representations. These findings provide novel insights into the neural processes associated with individual differences in sensorimotor adaptation.
Computations underlying the visuomotor transformation for smooth pursuit eye movements
Murdison, T. Scott; Leclercq, Guillaume; Lefèvre, Philippe
2014-01-01
Smooth pursuit eye movements are driven by retinal motion and enable us to view moving targets with high acuity. Complicating the generation of these movements is the fact that different eye and head rotations can produce different retinal stimuli but giving rise to identical smooth pursuit trajectories. However, because our eyes accurately pursue targets regardless of eye and head orientation (Blohm G, Lefèvre P. J Neurophysiol 104: 2103–2115, 2010), the brain must somehow take these signals into account. To learn about the neural mechanisms potentially underlying this visual-to-motor transformation, we trained a physiologically inspired neural network model to combine two-dimensional (2D) retinal motion signals with three-dimensional (3D) eye and head orientation and velocity signals to generate a spatially correct 3D pursuit command. We then simulated conditions of 1) head roll-induced ocular counterroll, 2) oblique gaze-induced retinal rotations, 3) eccentric gazes (invoking the half-angle rule), and 4) optokinetic nystagmus to investigate how units in the intermediate layers of the network accounted for different 3D constraints. Simultaneously, we simulated electrophysiological recordings (visual and motor tunings) and microstimulation experiments to quantify the reference frames of signals at each processing stage. We found a gradual retinal-to-intermediate-to-spatial feedforward transformation through the hidden layers. Our model is the first to describe the general 3D transformation for smooth pursuit mediated by eye- and head-dependent gain modulation. Based on several testable experimental predictions, our model provides a mechanism by which the brain could perform the 3D visuomotor transformation for smooth pursuit. PMID:25475344
Implicit transfer of reversed temporal structure in visuomotor sequence learning.
Tanaka, Kanji; Watanabe, Katsumi
2014-04-01
Some spatio-temporal structures are easier to transfer implicitly in sequential learning. In this study, we investigated whether the consistent reversal of triads of learned components would support the implicit transfer of their temporal structure in visuomotor sequence learning. A triad comprised three sequential button presses ([1][2][3]) and seven consecutive triads comprised a sequence. Participants learned sequences by trial and error, until they could complete it 20 times without error. Then, they learned another sequence, in which each triad was reversed ([3][2][1]), partially reversed ([2][1][3]), or switched so as not to overlap with the other conditions ([2][3][1] or [3][1][2]). Even when the participants did not notice the alternation rule, the consistent reversal of the temporal structure of each triad led to better implicit transfer; this was confirmed in a subsequent experiment. These results suggest that the implicit transfer of the temporal structure of a learned sequence can be influenced by both the structure and consistency of the change. Copyright © 2013 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Gopher, D.; Wickens, C. D.
1975-01-01
A one dimensional compensatory tracking task and a digit processing reaction time task were combined in a three phase experiment designed to investigate tracking performance in time sharing. Adaptive techniques, elaborate feedback devices, and on line standardization procedures were used to adjust task difficulty to the ability of each individual subject and manipulate time sharing demands. Feedback control analysis techniques were employed in the description of tracking performance. The experimental results show that when the dynamics of a system are constrained, in such a manner that man machine system stability is no longer a major concern of the operator, he tends to adopt a first order control describing function, even with tracking systems of higher order. Attention diversion to a concurrent task leads to an increase in remnant level, or nonlinear power. This decrease in linearity is reflected both in the output magnitude spectra of the subjects, and in the linear fit of the amplitude ratio functions.
Arnon, S; Rotman, S; Kopeika, N S
1997-08-20
The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.
NASA Technical Reports Server (NTRS)
Hancock, P. A.; Robinson, M. A.
1989-01-01
The present experiment examined the influence of several task-related factors on tracking performance and concomitant workload. The manipulated factors included tracking order, the presence or absence of knowledge of performance, and the control device. Summed root mean square error (rmse) and perceived workload were measured at the termination of each trial. Perceived workload was measured using the NASA Task Load Index (TLX) and the Subjective Workload Assessment Technique (SWAT). Results indicated a large and expected effect for track order on both performance and the perception of load. In general, trackball input was more accurate and judged for lower load than input using a mouse. The presence or absence of knowledge of performance had little effect on either performance or workload. There were a number of interactions between factors shown in performance that were mirrored by perceived workload scores. Results from each workload scale were equivalent in terms of sensitivity to task manipulations. The pattern of results affirm the utility of these workload measures in assessing the imposed load of multiple task-related variables.
Laby, Daniel M
2018-05-17
Despite our inability to attenuate the course of many ocular diseases that can ultimately lead to loss or significantly decreased visual function, this report describes a potential technique to aid such patients in maximizing the use of the vision that remains. The aim of this study was to demonstrate the applicability of utilizing sports vision training to improve objective and subjective visuomotor function in a low-vision patient. A 37-year-old woman with Usher syndrome presented with reduced central visual acuity and visual field. Although we were unable to reverse the damage resulting from her diagnosis, we were able to improve the use of the remaining vision. A 27 to 31% improvement in hand-eye coordination was achieved along with a 41% improvement in object tracking and visual concentration. Most importantly, following the 14-week training period, there was also a subjective improvement in the patient's appreciation of her visual ability. The sports vision literature cites many examples in which sports vision training is useful in improving visuomotor and on-field performance. We hypothesized that these techniques may be used to aid not only athletes but also patients with low vision. Despite suffering from reduced acuity and a limited visual field, these patients often still have a significant amount of vision ability that can be used to guide motor actions. Using techniques to increase the efficient use of this remaining vision may reduce the impact of the reduced visual function and aid in activities of daily living.
Sex-differences in elite-performance track and field competition from 1983 to 2015.
Ospina Betancurt, Jonathan; Zakynthinaki, Maria S; Martínes-Patiño, Maria Jose; Cordente Martinez, Carlos; Rodríguez Fernández, Carmen
2018-06-01
The purpose of this study was to assess the veracity of the Court of Arbitration for Sport's assertion that sex-differences in athletic performance in elite-standard track and field competition is of the order of 10-12%. Exponential curves were fitted to the data of selected track and field events of the finals of all IAAF World Championships and Olympic Games from 1983 to 2016. For each curve, the coefficient of determination R 2 was calculated, in combination the corresponding 95% confidence intervals for the curve constants. Sex-differences were evaluated via differences in the fitted curves between men and women. Mean performances of winners, as well as overall performance means of all participants, were also analyzed. The calculated sex-difference was 8.2 ± 1.0% - 11.8 ± 2.1% for sprints, 10.3 ± 3.3% - 12.8 ± 4.0% for middle and long-distance events, 9.7 ± 2.9% - 13.1 ± 2.9% for relays and 14.2 ± 2.2% - 25.0 ± 4.4% for jumps. This study therefore confirms that the percentage difference accepted by the CAS is appropriate for elite-standard track and field events.
NASA Astrophysics Data System (ADS)
Van Zandt, James R.
2012-05-01
Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.
A novel computational model to probe visual search deficits during motor performance
Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy
2016-01-01
Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We
View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid
Dawood, Farhan; Loo, Chu Kiong
2016-01-01
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923
View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.
Dawood, Farhan; Loo, Chu Kiong
2016-01-01
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.
Prisms for pain. Can visuo-motor rehabilitation strategies alleviate chronic pain?
Torta, DM; Legrain, V; Rossetti, Y; Mouraux, A
2017-01-01
Background and aims Prism adaptation (PA) is a non-invasive procedure in which participants perform a visuo-motor pointing task while wearing prism goggles inducing a lateral displacement of the visual field and a mismatch between the seen and felt position of the pointing hand. PA is thought to induce a reorganization of sensorimotor coordination, and has been used successfully to rehabilitate neglect following right-hemisphere lesions. Because studies have shown that complex regional pain syndrome (CRPS) is associated with neglect-like symptoms, it was proposed that PA could be used to alleviate pain in these patients. Database A search for peer-reviewed articles on neglect-like symptoms in CRPS and on the use of prisms in CRPS was conducted using the PubMed database. Results There is still no agreement as to whether CRPS patients really present neglect symptoms and, if they do, what it is that they neglect. Furthermore, there is insufficient data to determine whether PA exerts an effect on CRPS symptoms. Finally, it remains unknown whether neglect can be observed in other types of lateralized pain, or whether PA could be useful for these patients. Conclusion By highlighting open issues, our review provides guidelines for future studies on the use of prisms in pain. The assessment of neglect in patients with CRPS as well as other types of lateralized chronic pain should be characterized using a combination of neuropsychological methods assessing the multiple aspects of neglect in a more refined manner. In addition, further studies should investigate the mechanisms through which PA may modulate pain. PMID:26095341
Radiosonde pressure sensor performance - Evaluation using tracking radars
NASA Technical Reports Server (NTRS)
Parsons, C. L.; Norcross, G. A.; Brooks, R. L.
1984-01-01
The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.
The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments
NASA Astrophysics Data System (ADS)
Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.
1992-08-01
The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.
ERIC Educational Resources Information Center
Liu, Yuanlong; Paul, Stanley; Fu, Frank H.
2012-01-01
The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…
NASA Astrophysics Data System (ADS)
Matthews, Megan; Sponberg, Simon
2017-11-01
Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.
NASA Astrophysics Data System (ADS)
Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.
2015-03-01
For motion adaptive radiotherapy, dynamic multileaf collimator tracking can be employed to reduce treatment margins by steering the beam according to the organ motion. The Elekta Agility 160 MLC has hitherto not been evaluated for its tracking suitability. Both dosimetric performance and latency are key figures and need to be assessed generically, independent of the used motion sensor. In this paper, we propose the use of harmonic functions directly fed to the MLC to determine its latency during continuous motion. Furthermore, a control variable is extracted from a camera system and fed to the MLC. Using this setup, film dosimetry and subsequent γ statistics are performed, evaluating the response when tracking (MRI)-based physiologic motion in a closed-loop. The delay attributed to the MLC itself was shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging components such as MRI sequences. Delay showed a linear phase behaviour of the MLC employed in continuously dynamic applications, which enables a general MLC-characterization. Using the exemplary feedback chain, dosimetry showed a vast increase in pass rate employing γ statistics. In this early stage, the tracking performance of the Agility using the test bench yielded promising results, making the technique eligible for translation to tracking using clinical imaging modalities.
NASA Astrophysics Data System (ADS)
Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng
This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).
Visual tracking speed is related to basketball-specific measures of performance in NBA players.
Mangine, Gerald T; Hoffman, Jay R; Wells, Adam J; Gonzalez, Adam M; Rogowski, Joseph P; Townsend, Jeremy R; Jajtner, Adam R; Beyer, Kyle S; Bohner, Jonathan D; Pruna, Gabriel J; Fragala, Maren S; Stout, Jeffrey R
2014-09-01
The purpose of this study was to determine the relationship between visual tracking speed (VTS) and reaction time (RT) on basketball-specific measures of performance. Twelve professional basketball players were tested before the 2012-13 season. Visual tracking speed was obtained from 1 core session (20 trials) of the multiple object tracking test, whereas RT was measured by fixed- and variable-region choice reaction tests, using a light-based testing device. Performance in VTS and RT was compared with basketball-specific measures of performance (assists [AST]; turnovers [TO]; assist-to-turnover ratio [AST/TO]; steals [STL]) during the regular basketball season. All performance measures were reported per 100 minutes played. Performance differences between backcourt (guards; n = 5) and frontcourt (forward/centers; n = 7) positions were also examined. Relationships were most likely present between VTS and AST (r = 0.78; p < 0.003), STL (r = 0.77; p < 0.003), and AST/TO (r = 0.78; p < 0.003), whereas a likely relationship was also observed with TO (r = 0.49; p < 0.109). Reaction time was not related to any of the basketball-specific performance measures. Backcourt players were most likely to outperform frontcourt players in AST and very likely to do so for VTS, TO, and AST/TO. In conclusion, VTS seems to be related to a basketball player's ability to see and respond to various stimuli on the basketball court that results in more positive plays as reflected by greater number of AST and STL and lower turnovers.
Instrument performance of a radon measuring system with the alpha-track detection technique.
Tokonami, S; Zhuo, W; Ryuo, H; Yonehara, H; Yamada, Y; Shimo, M
2003-01-01
An instrument performance test has been carried out for a radon measuring system made in Hungary. The system measures radon using the alpha-track detection technique. It consists of three parts: the passive detector, the etching unit and the evaluation unit. A CR-39 detector is used as the radiation detector. Alpha-track reading and data analysis are carried out after chemical etching. The following subjects were examined in the present study: (1) radon sensitivity, (2) performance of etching and evaluation processes and (3) thoron sensitivity. The radon sensitivity of 6.9 x 10(-4) mm(-2) (Bq m(-3) d)(-1) was acceptable for practical application. The thoron sensitivity was estimated to be as low as 3.3 x 10(-5) mm(-2) (Bq m(-3) d)(-1) from the experimental study.
Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.
Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan
2018-04-01
In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.
Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.
Varlet, Manuel; Schmidt, R C; Richardson, Michael J
2016-01-01
Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.
A direct comparison of short-term audiomotor and visuomotor memory.
Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J
2014-04-01
Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.
Rapid visuomotor processing of phobic images in spider- and snake-fearful participants.
Haberkamp, Anke; Schmidt, Filipp; Schmidt, Thomas
2013-10-01
This study investigates enhanced visuomotor processing of phobic compared to fear-relevant and neutral stimuli. We used a response priming design to measure rapid, automatic motor activation by natural images (spiders, snakes, mushrooms, and flowers) in spider-fearful, snake-fearful, and control participants. We found strong priming effects in all tasks and conditions; however, results showed marked differences between groups. Most importantly, in the group of spider-fearful individuals, spider pictures had a strong and specific influence on even the fastest motor responses: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants, this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. We conclude that spider phobia leads to enhanced processing capacity for phobic images. We argue that this is enabled by long-term perceptual learning processes. © 2013.
Exploring Game Performance in the National Basketball Association Using Player Tracking Data
Calleja-González, Julio; Jiménez Sáiz, Sergio; Schelling i del Alcázar, Xavi; Balciunas, Mindaugas
2015-01-01
Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams. PMID:26171606
Exploring Game Performance in the National Basketball Association Using Player Tracking Data.
Sampaio, Jaime; McGarry, Tim; Calleja-González, Julio; Jiménez Sáiz, Sergio; Schelling I Del Alcázar, Xavi; Balciunas, Mindaugas
2015-01-01
Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.
Ice tracking techniques, implementation, performance, and applications
NASA Technical Reports Server (NTRS)
Rothrock, D. A.; Carsey, F. D.; Curlander, J. C.; Holt, B.; Kwok, R.; Weeks, W. F.
1992-01-01
Present techniques of ice tracking make use both of cross-correlation and of edge tracking, the former being more successful in heavy pack ice, the latter being critical for the broken ice of the pack margins. Algorithms must assume some constraints on the spatial variations of displacements to eliminate fliers, but must avoid introducing any errors into the spatial statistics of the measured displacement field. We draw our illustrations from the implementation of an automated tracking system for kinematic analyses of ERS-1 and JERS-1 SAR imagery at the University of Alaska - the Alaska SAR Facility's Geophysical Processor System. Analyses of the ice kinematic data that might have some general interest to analysts of cloud-derived wind fields are the spatial structure of the fields, and the evaluation and variability of average deformation and its invariants: divergence, vorticity and shear. Many problems in sea ice dynamics and mechanics can be addressed with the kinematic data from SAR.
Simulation and performance of an artificial retina for 40 MHz track reconstruction
Abba, A.; Bedeschi, F.; Citterio, M.; ...
2015-03-05
We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.
Some effects of sleep deprivation on tracking performance in static and dynamic environments.
DOT National Transportation Integrated Search
1976-01-01
The influence of approximately 34 and 55 h of sleep deprivation on performance scores derived from manually tracking the localizer needle on an aircraft instrument was assessed under both static (no motion) and dynamic (whole-body angular acceleratio...
Optical communication system performance with tracking error induced signal fading.
NASA Technical Reports Server (NTRS)
Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.
1973-01-01
System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.
Karampatsos, Giorgos P; Korfiatis, Panagiotis G; Zaras, Nikolaos D; Georgiadis, Giorgos V; Terzis, Gerasimos D
2017-02-01
Karampatsos, GP, Korfiatis, PG, Zaras, ND, Georgiadis, GV, and Terzis, GD. Acute effect of countermovement jumping on throwing performance in track and field athletes during competition. J Strength Cond Res 32(1): 359-364, 2017-The purpose of the study was to investigate whether performing 3 consecutive countermovement jumps (CMJs) just before an attempt enhances performance in track and field throwers during competition. Twelve shot putters, 8 hammer throwers, 9 discus throwers, and 3 javelin throwers of both sexes participated in the study. They performed 3 maximal CMJs 85 ± 12 seconds before the second, fourth, and sixth attempt during 3 different official competitions of national level. Maximal strength (1 repetition maximum [1RM]) in squat and bench press was measured 1 week after the competition. Mean throwing performance was significantly higher after the CMJs intervention (2.66 ± 4.3%, range of increase 0.02-18.98%, p = 0.0001). Similarly, maximum throwing performance was significantly higher after the CMJs (2.76 ± 3.29%, range of increase 0.09-13.93%, p = 0.0009). All but 2 athletes increased their best performance after the CMJs. The percentage increase in performance was similar between sexes (male athletes 2.56 ± 3.01%; female athletes 3.06 ± 3.76%, p = 0.677), but it was higher for the "lighter throws" (discus and javelin throw: 4.66 ± 4.11%) compared with the "heavier throws" (shot and hammer throw: 1.62 ± 2.04%, p = 0.008). The percentage increase in performance was not significantly correlated with 1RM squat or bench press, anthropometric characteristics, and personal best performance. These results suggest that performing 3 CMJs approximately 1 minute before an attempt may increase track and field throwing performance during competition.
Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns
Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske
2013-01-01
A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851
Arzuman, H; Ja'afar, R; Fakri, N M R M
2012-11-01
An aim of medical schools is to select the most suitable candidates who are more likely to become good doctors, fulfilling societal expectations. It is imperative to better understand the influence of 'selection' variables on students' academic performance. We conducted a retrospective record review (3R) to examine the predictive power of pre-admission tracks on academic performance in the medical programme at the Universiti Sains Malaysia. Data were collected on medical graduates' of the university for the years 2003 through 2007. This represented 805 graduates after exclusion of 42 for incomplete and inconsistent data related to the analysis. A total of 95% of the graduates were included in this analysis; 67% were female. Of the 805 graduates, 75% were from the Matriculation course track, 22% from the High School Certificate (HSC) course and 1% from other pre-admission tracks. There was 2% missing information. The majority (79%) were Biology majors and 13% were Physics majors. Graduates from the HSC course and with a Biology background demonstrated a strong correlation with positive academic performance (P < 0.05) compared with other groups. The HSC track and Biology background may be helpful for the medical school in selecting future students.
Accounting for direction and speed of eye motion in planning visually guided manual tracking.
Leclercq, Guillaume; Blohm, Gunnar; Lefèvre, Philippe
2013-10-01
Accurate motor planning in a dynamic environment is a critical skill for humans because we are often required to react quickly and adequately to the visual motion of objects. Moreover, we are often in motion ourselves, and this complicates motor planning. Indeed, the retinal and spatial motions of an object are different because of the retinal motion component induced by self-motion. Many studies have investigated motion perception during smooth pursuit and concluded that eye velocity is partially taken into account by the brain. Here we investigate whether the eye velocity during ongoing smooth pursuit is taken into account for the planning of visually guided manual tracking. We had 10 human participants manually track a target while in steady-state smooth pursuit toward another target such that the difference between the retinal and spatial target motion directions could be large, depending on both the direction and the speed of the eye. We used a measure of initial arm movement direction to quantify whether motor planning occurred in retinal coordinates (not accounting for eye motion) or was spatially correct (incorporating eye velocity). Results showed that the eye velocity was nearly fully taken into account by the neuronal areas involved in the visuomotor velocity transformation (between 75% and 102%). In particular, these neuronal pathways accounted for the nonlinear effects due to the relative velocity between the target and the eye. In conclusion, the brain network transforming visual motion into a motor plan for manual tracking adequately uses extraretinal signals about eye velocity.
NASA Astrophysics Data System (ADS)
Belyaev, N.; Krasnopevtsev, D.; Smirnov, N.
2018-01-01
The ATLAS Transition Radiation Tracker (TRT) contains more than 350000 large straw tubes and it is the outermost of the three subsystems of the ATLAS Inner Detector (ID). The TRT contributes substantially to the ATLAS ID resolution for the tracks of high-energy particles, providing excellent particle identification capabilities and electron-pion separation. Basic performance parameters of the TRT related to its tracking function are described in this paper. The data used in this study were collected during the first period of the Large Hadron Collider (LHC) operation in 2012 with a proton collision energy of 8 TeV. The tracking performance of the TRT has been studied in the case of operating with a Xe-based gas mixture and as a function of the straw occupancy. Special attention was paid to investigation of tracking parameters inside hadronic jets. The experimental data and simulation are in reasonable agreement, even within the dense cores of the most energetic jets.
Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad
2016-04-01
Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.
The design of high performance, low power triple-track magnetic sensor chip.
Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning
2013-07-09
This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target.
The Design of High Performance, Low Power Triple-Track Magnetic Sensor Chip
Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning
2013-01-01
This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target. PMID:23839231
NASA Astrophysics Data System (ADS)
Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han
2017-05-01
Feedforward-feedback control is widely used in motion control of piezoactuator systems. Due to the phase lag caused by incomplete dynamics compensation, the performance of the composite controller is greatly limited at high frequency. This paper proposes a new rate-dependent model to improve the high-frequency tracking performance by reducing dynamics compensation error. The rate-dependent model is designed as a function of the input and input variation rate to describe the input-output relationship of the residual system dynamics which mainly performs as phase lag in a wide frequency band. Then the direct inversion of the proposed rate-dependent model is used to compensate the residual system dynamics. Using the proposed rate-dependent model as feedforward term, the open loop performance can be improved significantly at medium-high frequency. Then, combining the with feedback controller, the composite controller can provide enhanced close loop performance from low frequency to high frequency. At the frequency of 1 Hz, the proposed controller presents the same performance as previous methods. However, at the frequency of 900 Hz, the tracking error is reduced to be 30.7% of the decoupled approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney
2016-06-15
Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in
Multisensor fusion for 3D target tracking using track-before-detect particle filter
NASA Astrophysics Data System (ADS)
Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.
2015-05-01
This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.
Assessing the performance of a motion tracking system based on optical joint transform correlation
NASA Astrophysics Data System (ADS)
Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.
2015-08-01
We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.
Description and performance of track and primary-vertex reconstruction with the CMS tracker
Chatrchyan, Serguei
2014-10-16
A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p T > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5.more » The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p T = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p T, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.« less
NASA Technical Reports Server (NTRS)
Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.
1992-01-01
Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.
Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A
2017-11-01
Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.
Virtual Hand Illusion Induced by Visuomotor Correlations
Sanchez-Vives, Maria V.; Spanlang, Bernhard; Frisoli, Antonio; Bergamasco, Massimo; Slater, Mel
2010-01-01
Background Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement) can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation. Methodology/Principal Findings To achieve this we used a data-glove that uses sensors transmitting the positions of fingers to a virtually projected hand in the synchronous but not in the asynchronous condition. The illusion of ownership was measured by means of questionnaires. Questions related to ownership gave significantly larger values for the synchronous than for the asynchronous condition. Proprioceptive displacement provided an objective measure of the illusion and had a median value of 3.5 cm difference between the synchronous and asynchronous conditions. In addition, the correlation between the feeling of ownership of the virtual arm and the size of the drift was significant. Conclusions/Significance We conclude that synchrony between visual and proprioceptive information along with motor activity is able to induce an illusion of ownership over a virtual arm. This has implications regarding the brain mechanisms underlying body ownership as well as the use of virtual bodies in therapies and rehabilitation. PMID:20454463
Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking
Ge, Quanbo; Wei, Zhongliang; Cheng, Tianfa; Chen, Shaodong; Wang, Xiangfeng
2017-01-01
Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion methods has better adjustment performance for the complex air task network systems, and it can effectively help the system to achieve the goal under the given constraints. Because of the time-varying situation of the task network system induced by moving nodes and non-cooperative target, and limitations such as communication bandwidth and measurement distance, it is necessary to dynamically adjust the system fusion structure including sensors and fusion methods in a given adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by using an optimization learning technology. The purpose is to dynamically determine the sensors’ numbers and the associated sensors to take part in the centralized and distributed fusion processes, respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are introduced. Especially, the survivability index is presented and defined. Secondly, based on the two indexes and considering other conditions such as communication bandwidth and measurement distance, optimization models for both single target tracking and multi-target tracking are established. Correspondingly, solution steps are given for the two optimization models in detail. Simulation examples are demonstrated to validate the proposed algorithms. PMID:28481243
Wang, Minlin; Ren, Xuemei; Chen, Qiang
2018-01-01
The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Tanaka, Kanji; Watanabe, Katsumi
2016-02-01
The present study examined whether sequence learning led to more accurate and shorter performance time if people who are learning a sequence start over from the beginning when they make an error (i.e., practice the whole sequence) or only from the point of error (i.e., practice a part of the sequence). We used a visuomotor sequence learning paradigm with a trial-and-error procedure. In Experiment 1, we found fewer errors, and shorter performance time for those who restarted their performance from the beginning of the sequence as compared to those who restarted from the point at which an error occurred, indicating better learning of spatial and motor representations of the sequence. This might be because the learned elements were repeated when the next performance started over from the beginning. In subsequent experiments, we increased the occasions for the repetitions of learned elements by modulating the number of fresh start points in the sequence after errors. The results showed that fewer fresh start points were likely to lead to fewer errors and shorter performance time, indicating that the repetitions of learned elements enabled participants to develop stronger spatial and motor representations of the sequence. Thus, a single or two fresh start points in the sequence (i.e., starting over only from the beginning or from the beginning or midpoint of the sequence after errors) is likely to lead to more accurate and faster performance. Copyright © 2016 Elsevier B.V. All rights reserved.
From self-observation to imitation: visuomotor association on a robotic hand.
Chaminade, Thierry; Oztop, Erhan; Cheng, Gordon; Kawato, Mitsuo
2008-04-15
Being at the crux of human cognition and behaviour, imitation has become the target of investigations ranging from experimental psychology and neurophysiology to computational sciences and robotics. It is often assumed that the imitation is innate, but it has more recently been argued, both theoretically and experimentally, that basic forms of imitation could emerge as a result of self-observation. Here, we tested this proposal on a realistic experimental platform, comprising an associative network linking a 16 degrees of freedom robotic hand and a simple visual system. We report that this minimal visuomotor association is sufficient to bootstrap basic imitation. Our results indicate that crucial features of human imitation, such as generalization to new actions, may emerge from a connectionist associative network. Therefore, we suggest that a behaviour as complex as imitation could be, at the neuronal level, founded on basic mechanisms of associative learning, a notion supported by a recent proposal on the developmental origin of mirror neurons. Our approach can be applied to the development of realistic cognitive architectures for humanoid robots as well as to shed new light on the cognitive processes at play in early human cognitive development.
Neurophysiological correlates of visuo-motor learning through mental and physical practice.
Allami, Nadia; Brovelli, Andrea; Hamzaoui, El Mehdi; Regragui, Fakhita; Paulignan, Yves; Boussaoud, Driss
2014-03-01
We have previously shown that mental rehearsal can replace up to 75% of physical practice for learning a visuomotor task (Allami, Paulignan, Brovelli, & Boussaoud, (2008). Experimental Brain Research, 184, 105-113). Presumably, mental rehearsal must induce brain changes that facilitate motor learning. We tested this hypothesis by recording scalp electroencephalographic activity (EEG) in two groups of subjects. In one group, subjects executed a reach to grasp task for 240 trials. In the second group, subjects learned the task through a combination of mental rehearsal for the initial 180 trials followed by the execution of 60 trials. Thus, one group physically executed the task for 240 trials, the other only for 60 trials. Amplitudes and latencies of event-related potentials (ERPs) were compared across groups at different stages during learning. We found that ERP activity increases dramatically with training and reaches the same amplitude over the premotor regions in the two groups, despite large differences in physically executed trials. These findings suggest that during mental rehearsal, neuronal changes occur in the motor networks that make physical practice after mental rehearsal more effective in configuring functional networks for skilful behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.
Changes in muscle directional tuning parallel feedforward adaptation to a visuomotor rotation.
de Rugy, Aymar; Carroll, Timothy J
2010-06-01
When people learn to reach in a novel sensorimotor environment, there are changes in the muscle activity required to achieve task goals. Here, we assessed the time course of changes in muscle directional tuning during acquisition of a new mapping between visual information and isometric force production in the absence of feedback-based error corrections. We also measured the influence of visuomotor adaptation on corticospinal excitability, to test whether any changes in muscle directional tuning are associated with adaptations in the final output components of the sensorimotor control system. Nine right-handed subjects performed a ballistic, center-out isometric target acquisition task with the right wrist (16 targets spaced every 22.5 degrees in the joint space). Surface electromyography was recorded from four major wrist muscles, and motor evoked potentials induced by transcranial magnetic stimulation were measured at baseline, after task execution in the absence of the rotation (A1), after adaptation to the rotation (B), and after a final block of trials without rotation (A2). Changes in the directional tuning of muscles closely matched the rotation of the directional error in force, indicating that the functional contribution of muscles remained consistent over the adaptation period. In contrast to previous motor learning studies, we found only minor changes in the amount of muscular activity and no increase in corticospinal excitability. These results suggest that increased muscle co-activation occurs only when the dynamics of the limb are perturbed and/or that online error corrections or altered force requirements are necessary to elicit a component of the adaptation in the final steps of the transformation between motor goal and muscle activation.
Souza, Michele; Eisenmann, Joey; Chaves, Raquel; Santos, Daniel; Pereira, Sara; Forjaz, Cláudia; Maia, José
2016-10-01
In this paper, three different statistical approaches were used to investigate short-term tracking of cardiorespiratory and performance-related physical fitness among adolescents. Data were obtained from the Oporto Growth, Health and Performance Study and comprised 1203 adolescents (549 girls) divided into two age cohorts (10-12 and 12-14 years) followed for three consecutive years, with annual assessment. Cardiorespiratory fitness was assessed with 1-mile run/walk test; 50-yard dash, standing long jump, handgrip, and shuttle run test were used to rate performance-related physical fitness. Tracking was expressed in three different ways: auto-correlations, multilevel modelling with crude and adjusted model (for biological maturation, body mass index, and physical activity), and Cohen's Kappa (κ) computed in IBM SPSS 20.0, HLM 7.01 and Longitudinal Data Analysis software, respectively. Tracking of physical fitness components was (1) moderate-to-high when described by auto-correlations; (2) low-to-moderate when crude and adjusted models were used; and (3) low according to Cohen's Kappa (κ). These results demonstrate that when describing tracking, different methods should be considered since they provide distinct and more comprehensive views about physical fitness stability patterns.
2008-05-01
AFRL-RH-WP-SR-2009-0002 The Influence of Tactual Seat-motion Cues on Training and Performance in a Roll-axis Compensatory Tracking Task...and Performance in a Roll-axis Compensatory Tracking Task Setting 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S...simulated vehicle having aircraft-like dynamics. A centrally located compensatory display, subtending about nine degrees, provided visual roll error
Wu, Howard G.
2013-01-01
The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099
Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi
2017-01-01
Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to
Performance studies of the P barANDA planar GEM-tracking detector in physics simulations
NASA Astrophysics Data System (ADS)
Divani Veis, Nazila; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Takehiko R.; Voss, Bernd; ̅PANDA Gem-Tracker Subgroup
2018-03-01
The P barANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P barANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P barANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-tracking detectors in the forward region of interest can improve the results in the hyperon physics-benchmark channel. The current conceptual designed P barANDA GEM-tracking stations contribute the measurement of the particles emitted in the polar angles between about 2 to 22 degrees. For this designed detector performance and acceptance, studies have been performed using one of the important hyperonic decay channel p bar p → Λ bar Λ → p bar pπ+π- in physics simulations. The simulations were carried out using the PandaRoot software packages based on the FairRoot framework.
A Track Initiation Method for the Underwater Target Tracking Environment
NASA Astrophysics Data System (ADS)
Li, Dong-dong; Lin, Yang; Zhang, Yao
2018-04-01
A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.
ERIC Educational Resources Information Center
van der Gijp, A.; Ravesloot, C. J.; Jarodzka, H.; van der Schaaf, M. F.; van der Schaaf, I. C.; van Schaik, J. P.; ten Cate, Th. J.
2017-01-01
Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology…
The effect of massage on acceleration and sprint performance in track & field athletes.
Moran, Ryan N; Hauth, John M; Rabena, Robert
2018-02-01
To examine the acute effects of pre-competition massage on acceleration and sprint performance in collegiate track and field athletes. Seventeen collegiate male (n = 9) and female (N = 8) track and field athletes participated in the study. Athletes were assigned to a counterbalanced, repeated measures designed experiment testing four treatment conditions of a pre-competition massage, dynamic warm-up, combination of a massage and warm-up, and a placebo ultrasound. The reliability between treatments was very high (ICC range: 0.94-0.98) and displayed a high internal consistency (Cronbach α = 0.96). Inter-item correlations for treatments were strong at all time intervals (20-m r = 0.74-0.90; 30-m r = 0.87-0.95; 60-m r = 0.88-0.95). There were no significant differences between the four treatments and performance (p = 0.70). Massage decreased 60-meter sprint performance in comparison to the traditional warm-up, although the combination of the massage and warm-up appeared to have no greater difference than the warm-up alone. Massage prior to competition remains questionable due to a lack of effectiveness in improving sprint performance. Further, pre-competition massage may not be more effective as a pre-event modality, over a traditional warm-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking
NASA Technical Reports Server (NTRS)
Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)
2001-01-01
In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange,, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide CIA code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets [Bull, ION-GPS-2000]. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance [Montenbruck et al., ION-GPS-2000]. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly 17g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached a maximum altitude of over 80 km. A detailed analysis of the attained flight data will be given in the paper together with a evaluation of different receiver designs and antenna concepts.
Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking
NASA Technical Reports Server (NTRS)
Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)
2002-01-01
In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.
NASA Astrophysics Data System (ADS)
Bender, Angela D.; Filmer, Hannah L.; Naughtin, Claire K.; Dux, Paul E.
2017-12-01
The ability to perform multiple tasks concurrently is an ever-increasing requirement in our information-rich world. Despite this, multitasking typically compromises performance due to the processing limitations associated with cognitive control and decision-making. While intensive dual-task training is known to improve multitasking performance, only limited evidence suggests that training-related performance benefits can transfer to untrained tasks that share overlapping processes. In the real world, however, coordinating and selecting several responses within close temporal proximity will often occur in high-interference environments. Over the last decade, there have been notable reports that training on video action games that require dynamic multitasking in a demanding environment can lead to transfer effects on aspects of cognition such as attention and working memory. Here, we asked whether continuous and dynamic multitasking training extends benefits to tasks that are theoretically related to the trained tasks. To examine this issue, we asked a group of participants to train on a combined continuous visuomotor tracking task and a perceptual discrimination task for six sessions, while an active control group practiced the component tasks in isolation. A battery of tests measuring response selection, response inhibition, and spatial attention was administered before and immediately after training to investigate transfer. Multitasking training resulted in substantial, task-specific gains in dual-task ability, but there was no evidence that these benefits generalized to other action control tasks. The findings suggest that training on a combined visuomotor tracking and discrimination task results in task-specific benefits but provides no additional value for untrained action selection tasks.
Dennis, Andrea; Bosnell, Rose; Dawes, Helen; Howells, Ken; Cockburn, Janet; Kischka, Udo; Matthews, Paul; Johansen-Berg, Heidi
2011-04-01
Stroke patients often have difficulties in simultaneously performing a motor and cognitive task. Functional imaging studies have shown that movement of an affected hand after stroke is associated with increased activity in multiple cortical areas, particularly in the contralesional hemisphere. We hypothesized patients for whom executing simple movements demands greater selective attention will show greater brain activity during movement. Eight chronic stroke patients performed a behavioral interference test using a visuo-motor tracking with and without a simultaneous cognitive task. The magnitude of behavioral task decrement under cognitive motor interference (CMI) conditions was calculated for each subject. Functional MRI was used to assess brain activity in the same patients during performance of a visuo-motor tracking task alone; correlations between CMI score and movement-related brain activation were then explored. Movement-related activation in the dorsal precentral gyrus of the contralesional hemisphere correlated strongly and positively with CMI score (r(2) at peak voxel=0.92; P<0.05). Similar but weaker relationships were observed in the ventral precentral and middle frontal gyrus. There was no independent relationship between hand motor impairment and CMI. Results suggest that variations in the degree to which a cognitive task interferes with performance of a concurrent motor task explains a substantial proportion of the variations in movement-related brain activity in patients after stroke. The results emphasize the importance of considering cognitive context when interpreting brain activity patterns and provide a rationale for further evaluation of integrated cognitive and movement interventions for rehabilitation in stroke.
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2.
Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Beyer, J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bolz, A E; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burch, T J; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrá, S; Carrillo-Montoya, G D; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castelijn, R; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Christodoulou, V; Chromek-Burckhart, D; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'eramo, L; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daneri, M F; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davies, M; Davis, D R; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vasconcelos Corga, K; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Prete, T Del; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Devesa, M R; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Bello, F A; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Dubreuil, A; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Kosseifi, R El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, M; Errede, S; Escalier, M; Escobar, C; Esposito, B; Estrada Pastor, O; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenton, M J; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Förster, F A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, J; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Geßner, G; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gkountoumis, P; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Gottardo, C A; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellman, S; Helsens, C; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herr, H; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hils, M; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hrdinka, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Isacson, M F; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, P; Jacobs, R M; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S D; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kendrick, J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitali, V; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kremer, J A; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kupfer, T; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Langenberg, R J; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, H; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo, C Y; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loesle, A; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Mateos, D; Lopez Paz, I; Solis, A Lopez; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magerl, V; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majersky, O; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Goldrick, G Mc; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McNamara, P C; McPherson, R A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meirose, B; Melini, D; Mellado Garcia, B R; Mellenthin, J D; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mkrtchyan, T; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, M E; Nemecek, S; Nemethy, P; Nessi, M; Neubauer, M S; Neumann, M; Newman, P R; Ng, T Y; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nitsche, I; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oppen, H; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pataraia, S; Pater, J R; Pauly, T; Pearson, B; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, F H; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Ponomarenko, D; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Poulard, G; Poulsen, T; Poveda, J; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puri, A; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rangel-Smith, C; Rashid, T; Raspopov, S; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ripellino, G; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocco, E; Roda, C; Rodina, Y; Rodriguez Bosca, S; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salazar Loyola, J E; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sampsonidou, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Sciandra, A; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Senkin, S; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherafati, N; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shipsey, I P J; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Søgaard, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Sopczak, A; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapf, B S; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultan, Dms; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Tahirovic, E; Taiblum, N; Takai, H; Takashima, R; Takasugi, E H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Vadla, K O H; Vaidya, A; Valderanis, C; Valdes Santurio, E; Valente, M; Valentinetti, S; Valero, A; Valéry, L; Valkar, S; Vallier, A; Valls Ferrer, J A; Van Den Wollenberg, W; van der Graaf, H; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, A T; Vermeulen, J C; Vetterli, M C; Viaux Maira, N; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weirich, M; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Weston, T D; Whalen, K; Whallon, N L; Wharton, A M; White, A S; White, A; White, M J; White, R; Whiteson, D; Whitmore, B W; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winkels, E; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Wong, V W S; Worm, S D; Wosiek, B K; Wotschack, J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamatani, M; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Yu, J; Yu, J; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zemaityte, G; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, P; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zou, R; Zur Nedden, M; Zwalinski, L
2017-01-01
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 [Formula: see text] for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb[Formula: see text] of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 [Formula: see text]. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 [Formula: see text] is quantified using a novel, data-driven, method. The method uses the energy loss, [Formula: see text], to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is [Formula: see text] and [Formula: see text] for jet transverse momenta of 200-400 [Formula: see text] and 1400-1600 [Formula: see text], respectively.
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor
2013-01-01
There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.
NASA Astrophysics Data System (ADS)
Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.
2016-09-01
Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.
Skinner, Brian; Guy, Stephen J
2015-01-01
Player tracking data represents a revolutionary new data source for basketball analysis, in which essentially every aspect of a player's performance is tracked and can be analyzed numerically. We suggest a way by which this data set, when coupled with a network-style model of the offense that relates players' skills to the team's success at running different plays, can be used to automatically learn players' skills and predict the performance of untested 5-man lineups in a way that accounts for the interaction between players' respective skill sets. After developing a general analysis procedure, we present as an example a specific implementation of our method using a simplified network model. While player tracking data is not yet available in the public domain, we evaluate our model using simulated data and show that player skills can be accurately inferred by a simple statistical inference scheme. Finally, we use the model to analyze games from the 2011 playoff series between the Memphis Grizzlies and the Oklahoma City Thunder and we show that, even with a very limited data set, the model can consistently describe a player's interactions with a given lineup based only on his performance with a different lineup.
Study on the performance of the articulated mechanism of tracked all-terrain vehicle
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.
Multiple-object tracking while driving: the multiple-vehicle tracking task.
Lochner, Martin J; Trick, Lana M
2014-11-01
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.
Visuomotor training improves stroke-related ipsilesional upper extremity impairments.
Quaney, Barbara M; He, Jianghua; Timberlake, George; Dodd, Kevin; Carr, Caitlin
2010-01-01
Unilateral middle cerebral artery infarction has been reported to impair bilateral hand grasp. Individuals (5 males and 5 females; age 33-86 years) with chronic unilateral middle cerebral artery stroke (4 right lesions and 6 left lesions) repeatedly lifted a 260-g object. Participants were then trained to lift the object using visuomotor feedback via an oscilloscope that displayed their actual grip force (GF) and a target GF, which roughly matched the physical properties of the object. The subjects failed to accurately modulate the predictive GF when relying on somatosensory information from the previous lifts. Instead, for all the lifts, they programmed excessive GF equivalent to the force used for the first lift. The predictive GF was lowered for lifts following the removal of the visual feedback. The mean difference in predictive GF between the lifts before and after visual training was significant (4.35 +/- 0.027 N; P
Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.
Allgöwer, Kathrin; Hermsdörfer, Joachim
2017-10-01
To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Lysaker, Paul H; Bryson, Gary J; Davis, Louanne W; Bell, Morris D
2005-06-15
Vocational impairments in schizophrenia have been widely linked to deficits in neurocognition. This study examined the possibility that deficits in visuomotor processing speed and flexibility in abstract thought may in combination be an especially potent risk factor for poorer levels of work performance in rehabilitation. Fifty-seven participants with confirmed diagnoses of schizophrenia spectrum disorders were administered the Digit Symbol Subtest and the Wisconsin Card Sorting Test and then offered work placements in a vocational rehabilitation program. Work performance was assessed biweekly over two months using the Work Behavior Inventory. Multivariate and univariate repeated ANOVA revealed that participants classified as having no impairments in either visuomotor processing speed and flexibility in abstract thought (n=14) had superior work performance compared to participants with deficits in either one area (n=20) or both areas (n=23). Additionally, participants with no impairments were the only group to show significant improvement in work performance over 7 weeks of rehabilitation. Participants with only one deficit had significantly better work performance than participants with both deficits but showed no statistically significant improvement in work performance. Results suggest assessments of these domains of neurocognition may provide important information about individual needs for adjunct services.
Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.
Karok, Sophia; Fletcher, David; Witney, Alice G
2017-01-08
Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.
Tombu, Michael; Seiffert, Adriane E
2011-04-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-10-11
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan
2016-09-01
The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.
The use of decay rates to analyse the performance of railway track in rolling noise generation
NASA Astrophysics Data System (ADS)
Jones, C. J. C.; Thompson, D. J.; Diehl, R. J.
2006-06-01
Through the development and testing of theoretical models for rolling noise in the past, it has been well demonstrated that the rate of decay of vibration along the rail is closely linked to the noise performance of the track, since it controls the effective radiating length of the rail. The decay rates of vibration along the rail have long been used by researchers as an intermediate, measurable parameter by which to test and improve the accuracy of prediction models. Recently, it has been suggested that the decay rates should be used as a criterion for the selection of track for noise measurements that are part of the acceptance testing of interoperable trains in Europe. In this context, a more detailed understanding of the factors that affect the measurement of decay rates and a consistent approach to the data processing have become important topics. Here, a method is suggested for the calculation of decay rates from frequency response measurements. Different effects are shown in the measured decay rates of a ballasted track with mono-bloc sleepers, a slab track and a ballasted track with bi-bloc sleepers. In the last case, a model for a periodically supported track is used to study the effects observed. It is shown that a peak in the decay rate just above the pinned-pinned frequency may be overestimated because of the measurement procedure that has been used.
Skinner, Brian; Guy, Stephen J.
2015-01-01
Player tracking data represents a revolutionary new data source for basketball analysis, in which essentially every aspect of a player’s performance is tracked and can be analyzed numerically. We suggest a way by which this data set, when coupled with a network-style model of the offense that relates players’ skills to the team’s success at running different plays, can be used to automatically learn players’ skills and predict the performance of untested 5-man lineups in a way that accounts for the interaction between players’ respective skill sets. After developing a general analysis procedure, we present as an example a specific implementation of our method using a simplified network model. While player tracking data is not yet available in the public domain, we evaluate our model using simulated data and show that player skills can be accurately inferred by a simple statistical inference scheme. Finally, we use the model to analyze games from the 2011 playoff series between the Memphis Grizzlies and the Oklahoma City Thunder and we show that, even with a very limited data set, the model can consistently describe a player’s interactions with a given lineup based only on his performance with a different lineup. PMID:26351846
Performance comparison of single axis tracking and 40° solar panels for sunny weather
NASA Astrophysics Data System (ADS)
Chua, Yaw Long; Yong, Yoon Kuang; Koh, Yit Yan
2017-09-01
The rapid increment in human population and economy growth had led to the rise of the energy demand globally. With the rapid diminishing fossil fuels based energy sources, renewable energy sources had been introduced due to its unlimited availability especially solar energy which is a sustainable and reliable energy. This research was conducted to study and compare the efficiency of the single axis tracking solar panel with a 40° inclined angle solar panel in sunny weather condition. The results indicated that the output generated by the solar panel was directly affected by the angle which the solar panel facing the sun. In terms of performance the single axis tracking solar panel emerged to be more efficient with greater energy generated.
Principles and Practices for Championship Performances in Wheelchair Track Events.
ERIC Educational Resources Information Center
Practical Pointers, 1979
1979-01-01
The booklet discusses training methods and approaches for wheelchair track and field. Detailed information and charts are presented on types of workouts (such as interval, distance, rhythm, speed play, and pace work) and mechanics of track events. A section on relay strategy and coaching approaches concludes the document. (CL)
Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2005-01-01
NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will
NASA Technical Reports Server (NTRS)
Uhlemann, H.; Geiser, G.
1975-01-01
Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.
Meier, Frederick A; Souers, Rhona J; Howanitz, Peter J; Tworek, Joseph A; Perrotta, Peter L; Nakhleh, Raouf E; Karcher, Donald S; Bashleben, Christine; Darcy, Teresa P; Schifman, Ron B; Jones, Bruce A
2015-06-01
Many production systems employ standardized statistical monitors that measure defect rates and cycle times, as indices of performance quality. Clinical laboratory testing, a system that produces test results, is amenable to such monitoring. To demonstrate patterns in clinical laboratory testing defect rates and cycle time using 7 College of American Pathologists Q-Tracks program monitors. Subscribers measured monthly rates of outpatient order-entry errors, identification band defects, and specimen rejections; median troponin order-to-report cycle times and rates of STAT test receipt-to-report turnaround time outliers; and critical values reporting event defects, and corrected reports. From these submissions Q-Tracks program staff produced quarterly and annual reports. These charted each subscriber's performance relative to other participating laboratories and aggregate and subgroup performance over time, dividing participants into best and median performers and performers with the most room to improve. Each monitor's patterns of change present percentile distributions of subscribers' performance in relation to monitoring durations and numbers of participating subscribers. Changes over time in defect frequencies and the cycle duration quantify effects on performance of monitor participation. All monitors showed significant decreases in defect rates as the 7 monitors ran variously for 6, 6, 7, 11, 12, 13, and 13 years. The most striking decreases occurred among performers who initially had the most room to improve and among subscribers who participated the longest. All 7 monitors registered significant improvement. Participation effects improved between 0.85% and 5.1% per quarter of participation. Using statistical quality measures, collecting data monthly, and receiving reports quarterly and yearly, subscribers to a comparative monitoring program documented significant decreases in defect rates and shortening of a cycle time for 6 to 13 years in all 7 ongoing
NASA Technical Reports Server (NTRS)
Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.
2012-01-01
This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/ deviation so that further analysis can be directed and corrective actions followed.
NASA Technical Reports Server (NTRS)
Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.
2012-01-01
This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/deviation so that further analysis can be directed and corrective actions followed.
Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A
2015-01-01
Research has attempted to address what characteristics benefit from transfer of learning; however, it is still unclear which characteristics are effector dependent or independent. Furthermore, it is not clear if intralimb transfer shows, similarly to interlimb transfer, an asymmetry of benefits between the upper limbs. The purpose of the current study is to examine if effector independence effects emerge, as observed in interlimb transfer studies, when transfer to new effector group within the same limb occurs, and whether the pattern of intralimb transfer benefits differ between the limbs. Our results suggest that a visuomotor task transfers within both limbs, even though the transfer benefits within the limbs seem to differ. This was supported by more transfer occurring in the dominant limb than the nondominant limb. Potential control mechanisms used for intralimb transfer are discussed.
Self-Motion Impairs Multiple-Object Tracking
ERIC Educational Resources Information Center
Thomas, Laura E.; Seiffert, Adriane E.
2010-01-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset
NASA Astrophysics Data System (ADS)
Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi
2017-11-01
Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.
Haffenden, Angela M; Goodale, Melvyn A
2002-12-01
Previous findings have suggested that visuomotor programming can make use of learned size information in experimental paradigms where movement kinematics are quite consistent from trial to trial. The present experiment was designed to test whether or not this conclusion could be generalized to a different manipulation of kinematic variability. As in previous work, an association was established between the size and colour of square blocks (e.g. red = large; yellow = small, or vice versa). Associating size and colour in this fashion has been shown to reliably alter the perceived size of two test blocks halfway in size between the large and small blocks: estimations of the test block matched in colour to the group of large blocks are smaller than estimations of the test block matched to the group of small blocks. Subjects grasped the blocks, and on other trials estimated the size of the blocks. These changes in perceived block size were incorporated into grip scaling only when movement kinematics were highly consistent from trial to trial; that is, when the blocks were presented in the same location on each trial. When the blocks were presented in different locations grip scaling remained true to the metrics of the test blocks despite the changes in perceptual estimates of block size. These results support previous findings suggesting that kinematic consistency facilitates the incorporation of learned perceptual information into grip scaling.
Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes.
Lee, Elaine C; Fragala, Maren S; Kavouras, Stavros A; Queen, Robin M; Pryor, John Luke; Casa, Douglas J
2017-10-01
Biomarker discovery and validation is a critical aim of the medical and scientific community. Research into exercise and diet-related biomarkers aims to improve health, performance, and recovery in military personnel, athletes, and lay persons. Exercise physiology research has identified individual biomarkers for assessing health, performance, and recovery during exercise training. However, there are few recommendations for biomarker panels for tracking changes in individuals participating in physical activity and exercise training programs. Our approach was to review the current literature and recommend a collection of validated biomarkers in key categories of health, performance, and recovery that could be used for this purpose. We determined that a comprehensive performance set of biomarkers should include key markers of (a) nutrition and metabolic health, (b) hydration status, (c) muscle status, (d) endurance performance, (e) injury status and risk, and (f) inflammation. Our review will help coaches, clinical sport professionals, researchers, and athletes better understand how to comprehensively monitor physiologic changes, as they design training cycles that elicit maximal improvements in performance while minimizing overtraining and injury risk.
Langford, Seth T.; Wiggins, Cody S.; Santos, Roque; ...
2017-07-06
A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, Seth T.; Wiggins, Cody S.; Santos, Roque
A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less
State-Based Delay Representation and Its Transfer from a Game of Pong to Reaching and Tracking
Leib, Raz; Pressman, Assaf; Simo, Lucia S.; Karniel, Amir
2017-01-01
Abstract To accurately estimate the state of the body, the nervous system needs to account for delays between signals from different sensory modalities. To investigate how such delays may be represented in the sensorimotor system, we asked human participants to play a virtual pong game in which the movement of the virtual paddle was delayed with respect to their hand movement. We tested the representation of this new mapping between the hand and the delayed paddle by examining transfer of adaptation to blind reaching and blind tracking tasks. These blind tasks enabled to capture the representation in feedforward mechanisms of movement control. A Time Representation of the delay is an estimation of the actual time lag between hand and paddle movements. A State Representation is a representation of delay using current state variables: the distance between the paddle and the ball originating from the delay may be considered as a spatial shift; the low sensitivity in the response of the paddle may be interpreted as a minifying gain; and the lag may be attributed to a mechanical resistance that influences paddle’s movement. We found that the effects of prolonged exposure to the delayed feedback transferred to blind reaching and tracking tasks and caused participants to exhibit hypermetric movements. These results, together with simulations of our representation models, suggest that delay is not represented based on time, but rather as a spatial gain change in visuomotor mapping. PMID:29379875
Zhang, Hang; Wu, Shih-Wei; Maloney, Laurence T.
2010-01-01
S.-W. Wu, M. F. Dal Martello, and L. T. Maloney (2009) evaluated subjects' performance in a visuo-motor task where subjects were asked to hit two targets in sequence within a fixed time limit. Hitting targets earned rewards and Wu et al. varied rewards associated with targets. They found that subjects failed to maximize expected gain; they failed to invest more time in the movement to the more valuable target. What could explain this lack of response to reward? We first considered the possibility that subjects require training in allocating time between two movements. In Experiment 1, we found that, after extensive training, subjects still failed: They did not vary time allocation with changes in payoff. However, their actual gains equaled or exceeded the expected gain of an ideal time allocator, indicating that constraining time itself has a cost for motor accuracy. In a second experiment, we found that movements made under externally imposed time limits were less accurate than movements made with the same timing freely selected by the mover. Constrained time allocation cost about 17% in expected gain. These results suggest that there is no single speed–accuracy tradeoff for movement in our task and that subjects pursued different motor strategies with distinct speed–accuracy tradeoffs in different conditions. PMID:20884550
Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.
Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C
2017-03-01
Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Roberge, D
Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron
Robust tracking control of a magnetically suspended rigid body
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Cox, David E.
1994-01-01
This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm
Tombu, Michael
2014-01-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target–distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking—one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone. PMID:21264704
Performance characteristics of long-track speed skaters: a literature review.
Konings, Marco J; Elferink-Gemser, Marije T; Stoter, Inge K; van der Meer, Dirk; Otten, Egbert; Hettinga, Florentina J
2015-04-01
Speed skating is an intriguing sport to study from different perspectives due to the peculiar way of motion and the multiple determinants for performance. This review aimed to identify what is known on (long-track) speed skating, and which individual characteristics determine speed skating performance. A total of 49 studies were included. Based on a multidimensional performance model, person-related performance characteristics were categorized in anthropometrical, technical, physiological, tactical, and psychological characteristics. Literature was found on anthropometry, technique, physiology, and tactics. However, psychological studies were clearly under-represented. In particular, the role of self-regulation might deserve more attention to further understand mechanisms relevant for optimal performance and for instance pacing. Another remarkable finding was that the technically/biomechanically favourable crouched skating technique (i.e. small knee and trunk angle) leads to a physiological disadvantage: a smaller knee angle may increase the deoxygenation of the working muscles. This is an important underlying aspect for the pacing tactics in speed skating. Elite speed skaters need to find the optimal balance between obtaining a fast start and preventing negative technical adaptations later on in the race by distributing their available energy over the race in an optimal way. More research is required to gain more insight into how this impacts on the processes of fatigue and coordination during speed skating races. This can lead to a better understanding on how elite speed skaters can maintain the optimal technical characteristics throughout the entire race, and how they can adapt their pacing to optimize all identified aspects that determine performance.
van der Gijp, A; Ravesloot, C J; Jarodzka, H; van der Schaaf, M F; van der Schaaf, I C; van Schaik, J P J; Ten Cate, Th J
2017-08-01
Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology domain aims to identify visual search patterns associated with high perceptual performance. Databases PubMed, EMBASE, ERIC, PsycINFO, Scopus and Web of Science were searched using 'visual perception' OR 'eye tracking' AND 'radiology' and synonyms. Two authors independently screened search results and included eye tracking studies concerning visual skills in radiology published between January 1, 1994 and July 31, 2015. Two authors independently assessed study quality with the Medical Education Research Study Quality Instrument, and extracted study data with respect to design, participant and task characteristics, and variables. A thematic analysis was conducted to extract and arrange study results, and a textual narrative synthesis was applied for data integration and interpretation. The search resulted in 22 relevant full-text articles. Thematic analysis resulted in six themes that informed the relation between visual search and level of expertise: (1) time on task, (2) eye movement characteristics of experts, (3) differences in visual attention, (4) visual search patterns, (5) search patterns in cross sectional stack imaging, and (6) teaching visual search strategies. Expert search was found to be characterized by a global-focal search pattern, which represents an initial global impression, followed by a detailed, focal search-to-find mode. Specific task-related search patterns, like drilling through CT scans and systematic search in chest X-rays, were found to be related to high expert levels. One study investigated teaching of visual search strategies, and did not find a significant effect on perceptual performance. Eye
Can Tracking Improve Learning?
ERIC Educational Resources Information Center
Duflo, Esther; Dupas, Pascaline; Kremer, Michael
2009-01-01
Tracking students into different classrooms according to their prior academic performance is controversial among both scholars and policymakers. If teachers find it easier to teach a homogeneous group of students, tracking could enhance school effectiveness and raise test scores of both low- and high-ability students. If students benefit from…
Aupperle, Robin L; Allard, Carolyn B; Grimes, Erin M; Simmons, Alan N; Flagan, Taru; Behrooznia, Michelle; Cissell, Shadha H; Twamley, Elizabeth W; Thorp, Steven R; Norman, Sonya B; Paulus, Martin P; Stein, Murray B
2012-04-01
Posttraumatic stress disorder (PTSD) has been associated with executive or attentional dysfunction and problems in emotion processing. However, it is unclear whether these two domains of dysfunction are related to common or distinct neurophysiological substrates. To examine the hypothesis that greater neuropsychological impairment in PTSD relates to greater disruption in prefrontal-subcortical networks during emotional anticipation. Case-control, cross-sectional study. General community and hospital and community psychiatric clinics. Volunteer sample of 37 women with PTSD related to intimate partner violence and 34 age-comparable healthy control women. We used functional magnetic resonance imaging (fMRI) to examine neural responses during anticipation of negative and positive emotional images. The Clinician-Administered PTSD Scale was used to characterize PTSD symptom severity. The Wechsler Adult Intelligence Scale, Third Edition, Digit Symbol Test, Delis-Kaplan Executive Function System Color-Word Interference Test, and Wisconsin Card Sorting Test were used to characterize neuropsychological performance. Women with PTSD performed worse on complex visuomotor processing speed (Digit Symbol Test) and executive function (Color-Word Interference Inhibition/Switching subtest) measures compared with control subjects. Posttraumatic stress disorder was associated with greater anterior insula and attenuated lateral prefrontal cortex (PFC) activation during emotional anticipation. Greater dorsolateral PFC activation (anticipation of negative images minus anticipation of positive images) was associated with lower PTSD symptom severity and better visuomotor processing speed and executive functioning. Greater medial PFC and amygdala activation related to slower visuomotor processing speed. During emotional anticipation, women with PTSD show exaggerated activation in the anterior insula, a region important for monitoring internal bodily state. Greater dorsolateral PFC response
TrackMate: An open and extensible platform for single-particle tracking.
Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W
2017-02-15
We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menasce, D.; et al.
2013-06-01
We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was aboutmore » 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke $-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.« less
Flower tracking in hawkmoths: behavior and energetics.
Sprayberry, Jordanna D H; Daniel, Thomas L
2007-01-01
As hovering feeders, hawkmoths cope with flower motions by tracking those motions to maintain contact with the nectary. This study examined the tracking, feeding and energetic performance of Manduca sexta feeding from flowers moving at varied frequencies and in different directions. In general we found that tracking performance decreased as frequency increased; M. sexta tracked flowers moving at 1 Hz best. While feeding rates were highest for stationary flowers, they remained relatively constant for all tested frequencies of flower motion. Calculations of net energy gain showed that energy expenditure to track flowers is minimal compared to energy intake; therefore, patterns of net energy gain mimicked patterns of feeding rate. The direction effects of flower motion were greater than the frequency effects. While M. sexta appeared equally capable of tracking flowers moving in the horizontal and vertical motion axes, they demonstrated poor ability to track flowers moving in the looming axis. Additionally, both feeding rates and net energy gain were lower for looming axis flower motions.
Single wheel testers, single track testers, and instrumented tractors
USDA-ARS?s Scientific Manuscript database
Single wheel testers and single track testers are used for determining tractive performance characteristics of tires and tracks. Instrumented tractors are useful in determining the tractive performance of tractors. These machines are also used for determining soil-tire and soil-track interactions,...
Microcomputer aided tracking (MCAT)
NASA Astrophysics Data System (ADS)
Mays, A. B.; Cross, D. C.; Walters, J. L.
1983-07-01
The goal of the MCAT project was to investigate the effectiveness of operator initiated tracks followed by automatic tracking. Adding this capability to a display was intended to relieve operator overload and fatigue which results when the operator is limited to grease pencil tracking. MCAT combines several microprocessors and a microcomputer-driven PPI(Plan Position Indications) with graphics capability. The operator is required to make the initial detection and MCAT then performs automatic detection and tracking in a limited area centered around the detection. This approach was chosen because it is far less costly than a full-up auto detect and track approach. MCAT is intended for use in a non-NTDS (Naval Tactical Data System) environment where operator aids are minimal at best. There are approximately 200 non-NTDS ships in today's Navy. Each of these ships has a combat information center (CIC) which includes numerous PPIs typically SPA-25s, SPA-66s, SPA-50s) and various manual means (e.g., air summary plotboards, NC-2 plotters) of producing summary plots and performing calculations (e.g., maneuvering board paper) pertinent to tracks in progress. The operator's duties are time-consuming and there are many things that could be done via computer control and graphics displays that the non-NTDS operate must now do manually. Because there is much manual information handling, accumulation of data is slow and there is a large probability of error.
Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio
2016-04-01
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.
Precision laser automatic tracking system.
Lucy, R F; Peters, C J; McGann, E J; Lang, K T
1966-04-01
A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.
Reallocating attention during multiple object tracking.
Ericson, Justin M; Christensen, James C
2012-07-01
Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.
ArF scanner performance improvement by using track integrated CD optimization
NASA Astrophysics Data System (ADS)
Huang, Jacky; Yu, Shinn-Sheng; Ke, Chih-Ming; Wu, Timothy; Wang, Yu-Hsi; Gau, Tsai-Sheng; Wang, Dennis; Li, Allen; Yang, Wenge; Kaoru, Araki
2006-03-01
In advanced semiconductor processing, shrinking CD is one of the main objectives when moving to the next generation technology. Improving CD uniformity (CDU) with shrinking CD is one of the biggest challenges. From ArF lithography CD error budget analysis, PEB (post exposure bake) contributes more than 40% CD variations. It turns out that hot plate performance such as CD matching and within-plate temperature control play key roles in litho cell wafer per hour (WPH). Traditionally wired or wireless thermal sensor wafers were used to match and optimize hot plates. However, sensor-to-sensor matching and sensor data quality vs. sensor lifetime or sensor thermal history are still unknown. These concerns make sensor wafers more suitable for coarse mean-temperature adjustment. For precise temperature adjustment, especially within-hot-plate temperature uniformity, using CD instead of sensor wafer temperature is a better and more straightforward metrology to calibrate hot plates. In this study, we evaluated TEL clean track integrated optical CD metrology (IM) combined with TEL CD Optimizer (CDO) software to improve 193-nm resist within-wafer and wafer-to-wafer CD uniformity. Within-wafer CD uniformity is mainly affected by the temperature non-uniformity on the PEB hot plate. Based on CD and PEB sensitivity of photo resists, a physical model has been established to control the CD uniformity through fine-tuning PEB temperature settings. CD data collected by track integrated CD metrology was fed into this model, and the adjustment of PEB setting was calculated and executed through track internal APC system. This auto measurement, auto feed forward, auto calibration and auto adjustment system can reduce the engineer key-in error and improve the hot plate calibration cycle time. And this PEB auto calibration system can easily bring hot-plate-to-hot-plate CD matching to within 0.5nm and within-wafer CDU (3σ) to less than 1.5nm.
The effect of visual-motion time delays on pilot performance in a pursuit tracking task
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Riley, D. R.
1976-01-01
A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.
Kalman Filter Tracking on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2016-11-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.
Kalman Filter Tracking on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-12-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter [2]. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.
Advanced tracking systems design and analysis
NASA Technical Reports Server (NTRS)
Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.
1989-01-01
The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.
Skull registration for prone patient position using tracked ultrasound
NASA Astrophysics Data System (ADS)
Underwood, Grace; Ungi, Tamas; Baum, Zachary; Lasso, Andras; Kronreif, Gernot; Fichtinger, Gabor
2017-03-01
PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6+/-0.1mm and the average distance of points off the skull surface was 0.6+/-0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.
Performance of a Tracked Feller-Buncher with a Shear Head Operating in Small-Diameter Pine
J. Klepac
2013-01-01
A Tigercat 845D tracked feller-buncher equipped with a shear head was evaluated while performing a clearcut in a 15-year old Loblolly pine (Pinus taeda) plantation and a 18-year old natural stand. Mean density of the plantation was 573 TPA (Trees per Acre) while the natural stand averaged 328 TPA, with a slightly higher density of 390 TPA in the study area. Total cycle...
Velazquez-Pupo, Roxana; Sierra-Romero, Alberto; Torres-Roman, Deni; Shkvarko, Yuriy V.; Romero-Delgado, Misael
2018-01-01
This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. PMID:29382078
The performance of matched-field track-before-detect methods using shallow-water Pacific data.
Tantum, Stacy L; Nolte, Loren W; Krolik, Jeffrey L; Harmanci, Kerem
2002-07-01
Matched-field track-before-detect processing, which extends the concept of matched-field processing to include modeling of the source dynamics, has recently emerged as a promising approach for maintaining the track of a moving source. In this paper, optimal Bayesian and minimum variance beamforming track-before-detect algorithms which incorporate a priori knowledge of the source dynamics in addition to the underlying uncertainties in the ocean environment are presented. A Markov model is utilized for the source motion as a means of capturing the stochastic nature of the source dynamics without assuming uniform motion. In addition, the relationship between optimal Bayesian track-before-detect processing and minimum variance track-before-detect beamforming is examined, revealing how an optimal tracking philosophy may be used to guide the modification of existing beamforming techniques to incorporate track-before-detect capabilities. Further, the benefits of implementing an optimal approach over conventional methods are illustrated through application of these methods to shallow-water Pacific data collected as part of the SWellEX-1 experiment. The results show that incorporating Markovian dynamics for the source motion provides marked improvement in the ability to maintain target track without the use of a uniform velocity hypothesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.290 Tracking. (a) General. If you perform any... designed to facilitate effective tracking, using the distinct identification code, from the donor to the... for recording the distinct identification code and type of each HCT/P distributed to a consignee to...
Holcombe, Alex O; Chen, Wei-Ying
2013-01-09
Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.
Kim, Hyoung F.; Hikosaka, Okihide
2013-01-01
A goal-directed action aiming at an incentive outcome, if repeated, becomes a skill that may be initiated automatically. We now report that the tail of the caudate nucleus (CDt) may serve to control a visuomotor skill. Monkeys looked at many fractal objects, half of which were always associated with a large reward (high-valued objects) and the other half with a small reward (low-valued objects). After several daily sessions, they developed a gaze bias, looking at high-valued objects even when no reward was associated. CDt neurons developed a response bias, typically showing stronger responses to high-valued objects. In contrast, their responses showed no change when object values were reversed frequently, although monkeys showed a strong gaze bias, looking at high-valued objects in a goal-directed manner. The biased activity of CDt neurons may be transmitted to the oculomotor region so that animals can choose high-valued objects automatically based on stable reward experiences. PMID:23825426
Race Factors Affecting Performance Times in Elite Long-Track Speed Skating.
Noordhof, Dionne A; Mulder, Roy C; de Koning, Jos J; Hopkins, Will G
2016-05-01
Analysis of sport performance can provide effects of environmental and other venue-specific factors in addition to estimates of within-athlete variability between competitions, which determines smallest worthwhile effects. To analyze elite long-track speed-skating events. Log-transformed performance times were analyzed with a mixed linear model that estimated percentage mean effects for altitude, barometric pressure, type of rink, and competition importance. In addition, coefficients of variation representing residual venue-related differences and within-athlete variability between races within clusters spanning ~8 d were determined. Effects and variability were assessed with magnitude-based inference. A 1000-m increase in altitude resulted in very large mean performance improvements of 2.8% in juniors and 2.1% in seniors. An increase in barometric pressure of 100 hPa resulted in a moderate reduction in performance of 1.1% for juniors but an unclear effect for seniors. Only juniors competed at open rinks, resulting in a very large reduction in performance of 3.4%. Juniors and seniors showed small performance improvements (0.4% and 0.3%) at the more important competitions. After accounting for these effects, residual venue-related variability was still moderate to large. The within-athlete within-cluster race-to-race variability was 0.3-1.3%, with a small difference in variability between male (0.8%) and female juniors (1.0%) and no difference between male and female seniors (both 0.6%). The variability in performance times of skaters is similar to that of athletes in other sports in which air or water resistance limits speed. A performance enhancement of 0.1-0.4% by top-10 athletes is necessary to increase medal-winning chances by 10%.
Reducing Delay in Diagnosis: Multistage Recommendation Tracking.
Wandtke, Ben; Gallagher, Sarah
2017-11-01
The purpose of this study was to determine whether a multistage tracking system could improve communication between health care providers, reducing the risk of delay in diagnosis related to inconsistent communication and tracking of radiology follow-up recommendations. Unconditional recommendations for imaging follow-up of all diagnostic imaging modalities excluding mammography (n = 589) were entered into a database and tracked through a multistage tracking system for 13 months. Tracking interventions were performed for patients for whom completion of recommended follow-up imaging could not be identified 1 month after the recommendation due date. Postintervention compliance with the follow-up recommendation required examination completion or clinical closure (i.e., biopsy, limited life expectancy or death, or subspecialist referral). Baseline radiology information system checks performed 1 month after the recommendation due date revealed timely completion of 43.1% of recommended imaging studies at our institution before intervention. Three separate tracking interventions were studied, showing effectiveness between 29.0% and 57.8%. The multistage tracking system increased the examination completion rate to 70.5% (a 52% increase) and reduced the rate of unknown follow-up compliance and the associated risk of delay in diagnosis to 13.9% (a 74% decrease). Examinations completed after tracking intervention generated revenue of 4.1 times greater than the labor cost. Performing sequential radiology recommendation tracking interventions can substantially reduce the rate of unknown follow-up compliance and add value to the health system. Unknown follow-up compliance is a risk factor for delay in diagnosis, a form of preventable medical error commonly identified in malpractice claims involving radiologists and office-based practitioners.
Object tracking on mobile devices using binary descriptors
NASA Astrophysics Data System (ADS)
Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton
2015-03-01
With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.
The direction of bilateral transfer depends on the performance parameter.
Pan, Zhujun; van Gemmert, Arend W A
2013-10-01
To acquire a more comprehensive understanding of the learning benefits associated with bilateral transfer and to gain knowledge of possible mechanisms behind bilateral transfer, we investigated the transfer direction of several parameters which are assumed to represent important features of movement control in a visuo-motor task. During the study, participants learned a multidirectional point-to-point drawing task in which the visual feedback was rotated 45° and the gain was increased. Performance changes of the untrained hand in movement time, trajectory length, normalized jerk, initial direction error, ratio of the primary sub-movement time to the total movement time, and the accuracy of the aiming movement after the primary sub-movement were investigated as indices of learning from bilateral transfer. The results showed that performance parameters related to the initial production of the movement, such as the initial direction, ratio of primary sub-movement to the total movement time, and movement accuracy after the primary sub-movement, only transferred to the non-dominant, while hand performance variables related to the overall outcome, such as movement duration, movement smoothness, and trajectory length, transferred in both directions. The findings of the current study support the basic principle of the "dynamic dominance model" because it is suggested that overall improvements in the non-dominant system are controlled by trajectory parameters in visuo-motor tasks, which resulted in transference of the afore mentioned production parameters to rather occur to the non-dominant hand as opposed to transference to the dominant hand. Published by Elsevier B.V.
Discriminative correlation filter tracking with occlusion detection
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Chen, Zhong; Yu, XiPeng; Zhang, Ting; He, Jing
2018-03-01
Aiming at the problem that the correlation filter-based tracking algorithm can not track the target of severe occlusion, a target re-detection mechanism is proposed. First of all, based on the ECO, we propose the multi-peak detection model and the response value to distinguish the occlusion and deformation in the target tracking, which improve the success rate of tracking. And then we add the confidence model to update the mechanism to effectively prevent the model offset problem which due to similar targets or background during the tracking process. Finally, the redetection mechanism of the target is added, and the relocation is performed after the target is lost, which increases the accuracy of the target positioning. The experimental results demonstrate that the proposed tracker performs favorably against state-of-the-art methods in terms of robustness and accuracy.
Digital accumulators in phase and frequency tracking loops
NASA Technical Reports Server (NTRS)
Hinedi, Sami; Statman, Joseph I.
1990-01-01
Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.
Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing
2009-02-01
Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.
Abedi, Maryam; Jin, Tian; Sun, Kewen
2015-01-01
In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver’s reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σFLL). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σFLL). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers. PMID:26404286
Abedi, Maryam; Jin, Tian; Sun, Kewen
2015-08-31
In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.
Lockey, Jacob K; Willis, Mark A
2015-07-01
Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina
2016-06-01
Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.
Moro, Sara Basso; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina
2016-06-01
In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.
NASA Astrophysics Data System (ADS)
Xu, Lei; Zhai, Wanming; Chen, Zhaowei
2018-05-01
The dynamic performance of the railway vehicles and the guiding tracks is mainly governed by the wheel-rail interactions, particularly in cases of track irregularities. In this work, a united model was developed to investigate the track portions subject to violent wheel/rail forces triggered by track irregularities at middle-low frequencies. In the modeling procedures, a time-frequency unification method combining wavelet transform and Wigner-Ville distribution for characterizing time-frequency characteristics of track irregularities and a three-dimensional nonlinear model for describing vehicle-track interaction signatures were developed and coupled, based on which the method for predicting track portions subject to deteriorated wheel/rail forces was proposed. The theoretical models developed in this paper were comprehensively validated by numerical investigations. The significance of this present study mainly lies on offering a new path to establish correlation and realize mutual prediction between track irregularity and railway system dynamics.
Probabilistic track coverage in cooperative sensor networks.
Ferrari, Silvia; Zhang, Guoxian; Wettergren, Thomas A
2010-12-01
The quality of service of a network performing cooperative track detection is represented by the probability of obtaining multiple elementary detections over time along a target track. Recently, two different lines of research, namely, distributed-search theory and geometric transversals, have been used in the literature for deriving the probability of track detection as a function of random and deterministic sensors' positions, respectively. In this paper, we prove that these two approaches are equivalent under the same problem formulation. Also, we present a new performance function that is derived by extending the geometric-transversal approach to the case of random sensors' positions using Poisson flats. As a result, a unified approach for addressing track detection in both deterministic and probabilistic sensor networks is obtained. The new performance function is validated through numerical simulations and is shown to bring about considerable computational savings for both deterministic and probabilistic sensor networks.
An objective comparison of cell-tracking algorithms.
Ulman, Vladimír; Maška, Martin; Magnusson, Klas E G; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C; Solis-Lemus, Jose A; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred A; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos
2017-12-01
We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.
NASA Technical Reports Server (NTRS)
Little, G. R.
1976-01-01
The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.
Liu, Hua; Wu, Wen
2017-03-31
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking
Liu, Hua; Wu, Wen
2017-01-01
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347
Good Features to Correlate for Visual Tracking
NASA Astrophysics Data System (ADS)
Gundogdu, Erhan; Alatan, A. Aydin
2018-05-01
During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.
NASA Technical Reports Server (NTRS)
Siapkaras, A.
1977-01-01
A computational method to deal with the multidimensional nature of tracking and/or monitoring tasks is developed. Operator centered variables, including the operator's perception of the task, are considered. Matrix ratings are defined based on multidimensional scaling techniques and multivariate analysis. The method consists of two distinct steps: (1) to determine the mathematical space of subjective judgements of a certain individual (or group of evaluators) for a given set of tasks and experimental conditionings; and (2) to relate this space with respect to both the task variables and the objective performance criteria used. Results for a variety of second-order trackings with smoothed noise-driven inputs indicate that: (1) many of the internally perceived task variables form a nonorthogonal set; and (2) the structure of the subjective space varies among groups of individuals according to the degree of familiarity they have with such tasks.
Saga, Yosuke; Nakayama, Yoshihisa; Inoue, Ken-Ichi; Yamagata, Tomoko; Hashimoto, Masashi; Tremblay, Léon; Takada, Masahiko; Hoshi, Eiji
2017-05-01
The thalamic reticular nucleus (TRN) collects inputs from the cerebral cortex and thalamus and, in turn, sends inhibitory outputs to the thalamic relay nuclei. This unique connectivity suggests that the TRN plays a pivotal role in regulating information flow through the thalamus. Here, we analyzed the roles of TRN neurons in visually guided reaching movements. We first used retrograde transneuronal labeling with rabies virus, and showed that the rostro-dorsal sector of the TRN (TRNrd) projected disynaptically to the ventral premotor cortex (PMv). In other experiments, we recorded neurons from the TRNrd or PMv while monkeys performed a visuomotor task. We found that neurons in the TRNrd and PMv showed visual-, set-, and movement-related activity modulation. These results indicate that the TRNrd, as well as the PMv, is involved in the reception of visual signals and in the preparation and execution of reaching movements. The fraction of neurons that were non-selective for the location of visual signals or the direction of reaching movements was greater in the TRNrd than in the PMv. Furthermore, the fraction of neurons whose activity increased from the baseline was greater in the TRNrd than in the PMv. The timing of activity modulation of visual-related and movement-related neurons was similar in TRNrd and PMv neurons. Overall, our data suggest that TRNrd neurons provide motor thalamic nuclei with inhibitory inputs that are predominantly devoid of spatial selectivity, and that these signals modulate how these nuclei engage in both sensory processing and motor output during visually guided reaching behavior. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
1971-07-01
A previous CAMI laboratory investigation showed that alcohol impairs the ability of men to suppress vestibular nystagmus while visually fixating on a cockpit instrument, thus degrading visual tracking performance (eye-hand coordination) during angula...
Keogh, Ruth; Frost, Chris; Owen, Gail; Daniel, Rhian M; Langbehn, Doug R; Leavitt, Blair; Durr, Alexandra; Roos, Raymund A C; Landwehrmeyer, G Bernhard; Reilmann, Ralf; Borowsky, Beth; Stout, Julie; Craufurd, David; Tabrizi, Sarah J
2016-01-11
Insufficient evidence exists to guide the long-term pharmacological management of Huntington's disease (HD) although most current interventions rely on symptomatic management. The effect of many frontline treatments on potential endpoints for HD clinical trials remains unknown. Our objective was to investigate how therapies widely used to manage HD affect the symptom for which they are prescribed and other endpoints using data from TRACK-HD. We used longitudinal models to estimate effects of medication use on performance on tests of motor, cognitive and neuropsychiatric function using data from 123 TRACK-HD stage 1/2 participants across four study visits. Adjustment for confounding by prior medication use, prior clinical performance, concomitant use of other medications, and baseline variables (sex, disease group, age, CAG, study site, education) enabled a closer-to-causal interpretation of the associations. Adjusting for baseline variables only, medication use was typically associated with worse clinical performance, reflecting greater medication use in more advanced patients. After additional adjustment for longitudinal confounders such "inverse" associations were generally eliminated and in the expected directions: participants taking neuroleptics tended to have better motor performance, improved affect and poorer cognitive performance, and those taking SSRI/SNRIs had less apathy, less affect and better total behaviour scores. However, we uncovered few statistically significant associations. Limitations include sample size and unmeasured confounding. In conclusion, adjustment for confounding by prior measurements largely eliminated associations between medication use and poorer clinical performance from simple analyses. However, there was little convincing evidence of causal effects of medication on clinical performance and larger cohorts or trials are needed.
An advanced arc track resistant airframe wire
NASA Technical Reports Server (NTRS)
Beatty, J.
1995-01-01
Tensolite, a custom cable manufacturer specializing in high temperature materials as the dielectric medium, develops an advance arc track resistant airframe wire called Tufflite 2000. Tufflite 2000 has the following advantages over the other traditional wires: lighter weight and smaller in diameter; excellent wet and dry arc track resistance; superior dynamic cut-through performance even at elevated temperatures; flight proven performance on Boeing 737 and 757 airplanes; and true 260 C performance by utilizing Nickel plated copper conductors. This paper reports the different tests performed on Tufflite 2000: accelerated aging, arc resistance (wet and dry), dynamic cut through, humidity resistance, wire-to-wire abrasion, flammability, smoke, weight, notch sensitivity, flexibility, and markability. It particularly focuses on the BSI (British Standards Institute) dry arc resistance test and BSI wet arc tracking.
Sheehan Suicidality Tracking Scale (Sheehan-STS)
2009-01-01
Objective: Accurate and prospective assessments of treatment-emergent suicidal thoughts and behaviors are essential to both clinical care and randomized clinical trials. The Sheehan Suicidality Tracking Scale is a prospective, patient self-report or clinician-administered rating scale that tracks both treatment-emergent suicidal ideation and behaviors. The Sheehan Suicidality Tracking Scale was incorporated into a multicenter, randomized, double-blind, placebo-controlled, and active comparator study examining the efficacy of an experimental corticotropin-releasing factor antagonist (BMS-562086) for the treatment of generalized anxiety disorder. Method: The Sheehan Suicidality Tracking Scale was administered to subjects at baseline, Week 2, Week 4, and Week 8 or early termination. Subjects completed theSheehan Suicidality Tracking Scale by self report. The Sheehan Suicidality Tracking Scale was designated as an exploratory outcome measure in the study protocol, and post-hoc analyses were performed to examine the performance of the Sheehan Suicidality Tracking Scale. Results: A total of 82 subjects completed the Sheehan Suicidality Tracking Scale during the course of the study. Altogether, these subjects provided 297 completed Sheehan Suicidality Tracking Scale ratings across the study time points. Sixty-one subjects (n=25 placebo, n=24 BMS-562086, and n=12 escitalopram) had a baseline and at least one post-baseline Sheehan Suicidality Tracking Scale measurement. The mean change from baseline at Week 8 in the Sheehan Suicidality Tracking Scale total score was -0.10, -0.02, and -0.06 for escitalopram, placebo, and BMS-562086 groups, respectively. The sensitivity of the Sheehan Suicidality Tracking Scale and HAM-D Item #3 (suicide) for identifying subjects with suicidal thoughts or behaviors was 100 percent and 63 percent, respectively. Conclusions: The Sheehan Suicidality Tracking Scale may be a sensitive psychometric tool to prospectively assess for treatment
Gao, Han; Li, Jingwen
2014-06-19
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.
Gao, Han; Li, Jingwen
2014-01-01
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640
Infrared search and track performance estimates for detection of commercial unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Nicholas, Robert; Driggers, Ronald; Shelton, David; Furxhi, Orges
2018-04-01
Unmanned aerial vehicles (UAVs) have become more readily available in the past 5 years and are proliferating rapidly. New aviation regulations are accelerating the use of UAVs in many applications. As a result, there are increasing concerns of potential air threats in situational environments including commercial airport security and drug trafficking. In this study, radiometric signatures of commercially available miniature UAVs is determined for long-wave infrared (LWIR) bands in both clear sky and partial cloudy conditions. Results are presented that compare LWIR performance estimates for the detection of commercial UAVs via infrared search and track (IRST) systems with two candidate sensors.
Graci, Valentina
2011-10-01
It has been previously suggested that coupled upper and limb movements need visuomotor coordination to be achieved. Previous studies have not investigated the role that visual cues may play in the coordination of locomotion and prehension. The aim of this study was to investigate if lower peripheral visual cues provide online control of the coordination of locomotion and prehension as they have been showed to do during adaptive gait and level walking. Twelve subjects reached a semi-empty or a full glass with their dominant or non-dominant hand at gait termination. Two binocular visual conditions were investigated: normal vision and lower visual occlusion. Outcome measures were determined using 3D motion capture techniques. Results showed that although the subjects were able to successfully complete the task without spilling the water from the glass under lower visual occlusion, they increased the margin of safety between final foot placements and glass. These findings suggest that lower visual cues are mainly used online to fine tune the trajectory of the upper and lower limbs moving toward the target. Copyright © 2011 Elsevier B.V. All rights reserved.
An Objective Comparison of Cell Tracking Algorithms
Ulman, Vladimír; Maška, Martin; Magnusson, Klas E. G.; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C.; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C.; Solis-Lemus, Jose A.; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred. A.; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos
2017-01-01
We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell tracking algorithms. With twenty-one participating algorithms and a data repository consisting of thirteen datasets of various microscopy modalities, the challenge displays today’s state of the art in the field. We analyze the results using performance measures for segmentation and tracking that rank all participating methods. We also analyze the performance of all algorithms in terms of biological measures and their practical usability. Even though some methods score high in all technical aspects, not a single one obtains fully correct solutions. We show that methods that either take prior information into account using learning strategies or analyze cells in a global spatio-temporal video context perform better than other methods under the segmentation and tracking scenarios included in the challenge. PMID:29083403
NASA Astrophysics Data System (ADS)
Wang, Rui
It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well as the dynamics of the closed-loop system. In this dissertation, theoretical tools are presented to analyze the relationship between the design choices for a class of distributed recoverable computing platforms and the tracking performance degradation of a digital flight control system implemented on such a platform while operating in a HIRF environment. Specifically, a tractable hybrid performance model is developed for a digital flight control system implemented on a computing platform inspired largely by the NASA family of fault-tolerant, reconfigurable computer architectures known as SPIDER (scalable processor-independent design for enhanced reliability). The focus will be on the SPIDER implementation, which uses the computer communication system known as ROBUS-2 (reliable optical bus). A physical HIRF experiment was conducted at the NASA Langley Research Center in order to validate the theoretical tracking performance degradation predictions for a distributed Boeing 747 flight control system subject to a HIRF environment. An extrapolation of these results for scenarios that could not be physically tested is also presented.
The effects of working memory resource depletion and training on sensorimotor adaptation
Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.
2011-01-01
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489
Multi-Complementary Model for Long-Term Tracking
Zhang, Deng; Zhang, Junchang; Xia, Chenyang
2018-01-01
In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170
Evaluation of Hands-On Clinical Exam Performance Using Marker-less Video Tracking.
Azari, David; Pugh, Carla; Laufer, Shlomi; Cohen, Elaine; Kwan, Calvin; Chen, Chia-Hsiung Eric; Yen, Thomas Y; Hu, Yu Hen; Radwin, Robert
2014-09-01
This study investigates the potential of using marker-less video tracking of the hands for evaluating hands-on clinical skills. Experienced family practitioners attending a national conference were recruited and asked to conduct a breast examination on a simulator that simulates different clinical presentations. Videos were made of the clinician's hands during the exam and video processing software for tracking hand motion to quantify hand motion kinematics was used. Practitioner motion patterns indicated consistent behavior of participants across multiple pathologies. Different pathologies exhibited characteristic motion patterns in the aggregate at specific parts of an exam, indicating consistent inter-participant behavior. Marker-less video kinematic tracking therefore shows promise in discriminating between different examination procedures, clinicians, and pathologies.
B-spline based image tracking by detection
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman
2016-05-01
Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X; Lin, J; Diwanji, T
2014-06-01
Purpose: Recently, template matching has been shown to be able to track tumor motion on cine-MRI images. However, artifacts such as deformation, rotation, and/or out-of-plane movement could seriously degrade the performance of this technique. In this work, we demonstrate the utility of multiple templates derived from different phases of tumor motion in reducing the negative effects of artifacts and improving the accuracy of template matching methods. Methods: Data from 2 patients with large tumors and significant tumor deformation were analyzed from a group of 12 patients from an earlier study. Cine-MRI (200 frames) imaging was performed while the patients weremore » instructed to breathe normally. Ground truth tumor position was established on each frame manually by a radiation oncologist. Tumor positions were also automatically determined using template matching with either single or multiple (5) templates. The tracking errors, defined as the absolute differences in tumor positions determined by the manual and automated methods, when using either single or multiple templates were compared in both the AP and SI directions, respectively. Results: Using multiple templates reduced the tracking error of template matching. In the SI direction where the tumor movement and deformation were significant, the mean tracking error decreased from 1.94 mm to 0.91 mm (Patient 1) and from 6.61 mm to 2.06 mm (Patient 2). In the AP direction where the tumor movement was small, the reduction of the mean tracking error was significant in Patient 1 (from 3.36 mm to 1.04 mm), but not in Patient 2 ( from 3.86 mm to 3.80 mm). Conclusion: This study shows the effectiveness of using multiple templates in improving the performance of template matching when artifacts like large tumor deformation or out-of-plane motion exists. Accurate tumor tracking capabilities can be integrated with MRI guided radiation therapy systems. This work was supported in part by grants from NIH/NCI CA 124766 and
Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe
2015-04-01
That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.
Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang
2016-09-27
Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.
A particle filter for multi-target tracking in track before detect context
NASA Astrophysics Data System (ADS)
Amrouche, Naima; Khenchaf, Ali; Berkani, Daoud
2016-10-01
The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). This paper proposes the recursive PF-TBD approach to detect multiple targets in low-signal-to noise ratios (SNR). The algorithm's successful performance is demonstrated using a simulated two target example.
Knowledge-based tracking algorithm
NASA Astrophysics Data System (ADS)
Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.
1990-10-01
This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.
Performance analysis of a new positron camera geometry for high speed, fine particle tracking
NASA Astrophysics Data System (ADS)
Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.
2017-09-01
A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (<10-2 MBq), the error was more sensitive to increases in speed, increasing to 28 mm (at 4 m · s-1), indicating that at these conditions a reliable trajectory is not possible. These results expanded on, but correlated well with, previous literature that only contained location errors for tracer speeds up to 1.5 m · s-1. The camera was also used to track directly activated mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a -212 + 106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.
Underwater Acoustic Target Tracking: A Review
Han, Ying; Fan, Liying
2018-01-01
Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper. PMID:29301318
MRI-guided tumor tracking in lung cancer radiotherapy
NASA Astrophysics Data System (ADS)
Cerviño, Laura I.; Du, Jiang; Jiang, Steve B.
2011-07-01
Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error ē and the error at 95% confidence level e95 were evaluated for each model. The ANN model led to ē = 1.5 mm and e95 = 4.2 mm, while TM led to ē = 0.6 mm and e95 = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.
High-Performance Reactive Particle Tracking with Adaptive Representation
NASA Astrophysics Data System (ADS)
Schmidt, M.; Benson, D. A.; Pankavich, S.
2017-12-01
Lagrangian particle tracking algorithms have been shown to be effective tools for modeling chemical reactions in imperfectly-mixed media. One disadvantage of these algorithms is the possible need to employ large numbers of particles in simulations, depending on the concentration covariance structure, and these large particle numbers can lead to long computation times. Two distinct approaches have recently arisen to overcome this. One method employs spatial kernels that are related to a specified, reduced particle number; however, over-wide kernels, dictated by a very low particle number, lead to an excess of reaction calculations and cause a reduction in performance. Another formulation involves hybrid particles that carry multiple species of reactant, wherein each particle is treated as its own well-mixed volume, obviating the need for large numbers of particles for each species but still requiring a fixed number of hybrid particles. Here, we combine these two approaches and demonstrate an improved method for simulating a given system in a computationally efficient manner. Additionally, the independent nature of transport and reaction calculations in this approach allows for significant gains via parallelization in an MPI or OpenMP context. For benchmarking, we choose a CO2 injection simulation with dissolution and precipitation of calcite and dolomite, allowing us to derive the proper treatment of interaction between solid and aqueous phases.
Comparative study of performance of neutral axis tracking based damage detection
NASA Astrophysics Data System (ADS)
Soman, R.; Malinowski, P.; Ostachowicz, W.
2015-07-01
This paper presents a comparative study of a novel SHM technique for damage isolation. The performance of the Neutral Axis (NA) tracking based damage detection strategy is compared to other popularly used vibration based damage detection methods viz. ECOMAC, Mode Shape Curvature Method and Strain Flexibility Index Method. The sensitivity of the novel method is compared under changing ambient temperature conditions and in the presence of measurement noise. Finite Element Analysis (FEA) of the DTU 10 MW Wind Turbine was conducted to compare the local damage identification capability of each method and the results are presented. Under the conditions examined, the proposed method was found to be robust to ambient condition changes and measurement noise. The damage identification in some is either at par with the methods mentioned in the literature or better under the investigated damage scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y; Rottmann, J; Myronakis, M
2016-06-15
Purpose: The purpose of this study was to quantify the improvement in tumor tracking, with and without fiducial markers, afforded by employing a multi-layer (MLI) electronic portal imaging device (EPID) over the current state-of-the-art, single-layer, digital megavolt imager (DMI) architecture. Methods: An ideal observer signal-to-noise ratio (d’) approach was used to quantify the ability of an MLI EPID and a current, state-of-the-art DMI EPID to track lung tumors from the treatment beam’s-eye-view. Using each detector modulation transfer function (MTF) and noise power spectrum (NPS) as inputs, a detection task was employed with object functions describing simple three-dimensional Cartesian shapes (spheresmore » and cylinders). Marker-less tumor tracking algorithms often use texture discrimination to differentiate benign and malignant tissue. The performance of such algorithms is simulated by employing a discrimination task for the ideal observer, which measures the ability of a system to differentiate two image quantities. These were defined as the measured textures for benign and malignant lung tissue. Results: The NNPS of the MLI ∼25% of that of the DMI at the expense of decreased MTF at intermediate frequencies (0.25≤« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-Ping; Chughtai, Aamer
2014-08-15
Purpose: The authors are developing a computer-aided detection system to assist radiologists in analysis of coronary artery disease in coronary CT angiograms (cCTA). This study evaluated the accuracy of the authors’ coronary artery segmentation and tracking method which are the essential steps to define the search space for the detection of atherosclerotic plaques. Methods: The heart region in cCTA is segmented and the vascular structures are enhanced using the authors’ multiscale coronary artery response (MSCAR) method that performed 3D multiscale filtering and analysis of the eigenvalues of Hessian matrices. Starting from seed points at the origins of the left andmore » right coronary arteries, a 3D rolling balloon region growing (RBG) method that adapts to the local vessel size segmented and tracked each of the coronary arteries and identifies the branches along the tracked vessels. The branches are queued and subsequently tracked until the queue is exhausted. With Institutional Review Board approval, 62 cCTA were collected retrospectively from the authors’ patient files. Three experienced cardiothoracic radiologists manually tracked and marked center points of the coronary arteries as reference standard following the 17-segment model that includes clinically significant coronary arteries. Two radiologists visually examined the computer-segmented vessels and marked the mistakenly tracked veins and noisy structures as false positives (FPs). For the 62 cases, the radiologists marked a total of 10191 center points on 865 visible coronary artery segments. Results: The computer-segmented vessels overlapped with 83.6% (8520/10191) of the center points. Relative to the 865 radiologist-marked segments, the sensitivity reached 91.9% (795/865) if a true positive is defined as a computer-segmented vessel that overlapped with at least 10% of the reference center points marked on the segment. When the overlap threshold is increased to 50% and 100%, the sensitivities
Momentum--"Evaluating Your Marketing Program: Measuring and Tracking Techniques."
ERIC Educational Resources Information Center
Meservey, Lynne D.
1990-01-01
Suggests 10 tracking techniques for evaluating marketing performance. Techniques involve utilization rate, inquiry and source of inquiry tracking, appointment and interview tracking, enrollment conversion, cost per inquiry and per enrollment, retention rate, survey results, and "mystery shopper." (RJC)
On charged particle tracks in cellulose nitrate and Lexan
NASA Technical Reports Server (NTRS)
Benton, E. V.; Henke, R. P.
1972-01-01
Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.
DoE Phase II SBIR: Spectrally-Assisted Vehicle Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villeneuve, Pierre V.
2013-02-28
The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided vehicle tracking performance. The primary application is to demonstrate improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison ofmore » new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. Figure 3 shows a number of example spectral signatures from a variety of natural and man-made materials. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II to accomplish the program goals were as follows: 1. Acquire relevant vehicle target datasets to support prototype. 2. Refine algorithms for target spectral feature exploitation. 3. Implement a prototype multi-hypothesis target tracking software package. 4. Demonstrate and quantify tracking performance using relevant data.« less
Schobersberger, Wolfgang; Blank, Cornelia; Hanser, Friedrich; Griesmacher, Andrea; Canazei, Markus; Leichtfried, Veronika
2018-04-23
Bright light (BL) has been shown to be effective in enhancing both cognitive and physical performances. Alterations in nighttime melatonin levels have also been observed. However, evaluations of light-induced changes in the preceding biochemical processes are absent. Therefore, the impact of a single morning BL exposure on sensorimotor and visuomotor performance, as well as tryptophan (trp) and trp metabolites, was evaluated in this study. In a crossover design, 33 healthy volunteers were randomly exposed to 30 min of < 150 lx at eye level (office light, OL) and 5000 lx at eye level (bright light, BL) of 6500 K in the morning hours. Trp, sulfatoxymelatonin (aMT6s), and kynurenine (kyn) courses over the morning hours were analyzed, and changes in sensori- and visuomotor measures were examined. Motoric performance increased in both setups, independent of light intensity. aMT6s and kyn decreased equally under both lighting conditions. Trp levels decreased from a mean (95% confidence interval) of 82.0 (77.2-86.9) to 66.5 (62.5-70.1) in the OL setup only. These data suggest that BL in the morning hours has a limited effect on visuo- and sensorimotor performance. Nevertheless, trp degradation pathways in the morning show diverse courses after OL and BL exposure. This suggests that trp courses can potentially be altered by BL exposure.
The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Riley, D. R.
1977-01-01
An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.
Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan
2014-10-01
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.
An extended Kalman filter for mouse tracking.
Choi, Hongjun; Kim, Mingi; Lee, Onseok
2018-05-19
Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.
Experimental investigation of control/display augmentation effects in a compensatory tracking task
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Schmidt, David K.
1988-01-01
The effects of control/display augmentation on human performance and workload have been investigated for closed-loop, continuous-tracking tasks by a real-time, man-in-the-loop simulation study. The experimental results obtained indicate that only limited improvement in actual tracking performance is obtainable through display augmentation alone; with a very high level of display augmentation, tracking error will actually deteriorate. Tracking performance improves when status information is furnished for reasonable levels of display quickening; again, very high quickening levels lead to tracking error deterioration due to the incompatibility between the status information and the quickened signal.
Enhancement of sun-tracking with optoelectronic devices
NASA Astrophysics Data System (ADS)
Wu, Jiunn-Chi
2015-09-01
Sun-tracking is one of the most challenging tasks in implementing CPV. In order to justify the additional complexity of sun-tracking, careful assessment of performance of CPV by monitoring the performance of sun-tracking is vital. Measurement of accuracy of sun-tracking is one of the important tasks in an outdoor test. This study examines techniques with three optoelectronic devices (i.e. position sensitive device (PSD), CCD and webcam). Outdoor measurements indicated that during sunny days (global horizontal insolation (GHI) > 700 W/m2), three devices recorded comparable tracking accuracy of 0.16˜0.3°. The method using a PSD has fastest sampling rate and is able to detect the sun's position without additional image processing. Yet, it cannot identify the sunlight effectively during low insolation. The techniques with a CCD and a webcam enhance the accuracy of centroid of sunlight via the optical lens and image processing. The image quality acquired using a webcam and a CCD is comparable but the webcam is more affordable than that of CCD because it can be assembled with consumer-graded products.
Auditory Task Irrelevance: A Basis for Inattentional Deafness
Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.
2018-01-01
Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754
Liese C. Dean
2007-01-01
The USDA Forest Service applied a performance management/ accountability system to the 407 wildernesses it oversees by defining and tracking critical work. Work elements were consolidated and packaged into the â10 Year Wilderness Stewardship Challenge.â The goal of the Challenge is to have 100 percent of wildernesses administered by the Forest Service managed to a...
Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle
NASA Astrophysics Data System (ADS)
Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan
2018-05-01
We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.
Multiple objects tracking with HOGs matching in circular windows
NASA Astrophysics Data System (ADS)
Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.
2014-09-01
In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.
Track and track-side video survey technology development.
DOT National Transportation Integrated Search
2015-05-01
Researchers at HiDef/Createc have completed prototype development and testing of a novel track video surveying technology : called Track and Track-Side Video Survey (TTVS). TTVS is designed to capture clear video images of the track and track side : ...
Galilean Tracks in the Physics Lab
ERIC Educational Resources Information Center
Hellman, Walter
2011-01-01
Variations of Galileo's famous track experiments in acceleration are commonly performed in high school and college. The purpose of this article is to present a sequence of three low-tech basic kinematics experiments using Galilean tracks that can be set up extremely quickly and yet generally yield excellent results. A low-cost construction method…
Situation awareness measures for simulated submarine track management.
Loft, Shayne; Bowden, Vanessa; Braithwaite, Janelle; Morrell, Daniel B; Huf, Samuel; Durso, Francis T
2015-03-01
The aim of this study was to examine whether the Situation Present Assessment Method (SPAM) and the Situation Awareness Global Assessment Technique (SAGAT) predict incremental variance in performance on a simulated submarine track management task and to measure the potential disruptive effect of these situation awareness (SA) measures. Submarine track managers use various displays to localize and track contacts detected by own-ship sensors. The measurement of SA is crucial for designing effective submarine display interfaces and training programs. Participants monitored a tactical display and sonar bearing-history display to track the cumulative behaviors of contacts in relationship to own-ship position and landmarks. SPAM (or SAGAT) and the Air Traffic Workload Input Technique (ATWIT) were administered during each scenario, and the NASA Task Load Index (NASA-TLX) and Situation Awareness Rating Technique were administered postscenario. SPAM and SAGAT predicted variance in performance after controlling for subjective measures of SA and workload, and SA for past information was a stronger predictor than SA for current/future information. The NASA-TLX predicted performance on some tasks. Only SAGAT predicted variance in performance on all three tasks but marginally increased subjective workload. SPAM, SAGAT, and the NASA-TLX can predict unique variance in submarine track management performance. SAGAT marginally increased subjective workload, but this increase did not lead to any performance decrement. Defense researchers have identified SPAM as an alternative to SAGAT because it would not require field exercises involving submarines to be paused. SPAM was not disruptive, but it is potentially problematic that SPAM did not predict variance in all three performance tasks. © 2014, Human Factors and Ergonomics Society.
Villalta, Jorge I.; Landi, Sofia M.; Fló, Ana; Della-Maggiore, Valeria
2015-01-01
Savings is a fundamental property of learning. In motor adaptation, it refers to the improvement in learning observed when adaptation to a perturbation A (A1) is followed by re-adaptation to the same perturbation (A2). A common procedure to equate the initial level of error across sessions consists of restoring native sensorimotor coordinates by inserting null—unperturbed—trials (N) just before re-adaptation (washout). Here, we hypothesized that the washout is not innocuous but interferes with the expression of the new memory at recall. To assess this possibility, we measured savings following the A1NA2 protocol, where A was a 40° visual rotation. In Experiment 1, we increased the time window between N and A2 from 1 min to 24 h. This manipulation increased the amount of savings during middle to late phases of adaptation, suggesting that N interfered with the retrieval of A. In Experiment 2, we used repetitive TMS to evaluate if this interference was partly mediated by the sensorimotor cortex (SM). We conclude that the washout does not just restore the unperturbed sensorimotor coordinates, but inhibits the expression of the recently acquired visuomotor map through a mechanism involving SM. Our results resemble the phenomenon of extinction in classical conditioning. PMID:24363266
Ferreira-Júnior, João B; Guttierres, Ana P M; Encarnação, Irismar G A; Lima, Jorge R P; Borba, Diego A; Freitas, Eduardo D S; Bemben, Michael G; Vieira, Carlos A; Bottaro, Martim
2018-06-01
This study compared the effects of different conditioning activities on the 100-m dash performance of 11 male, high school track and field athletes (mean age = 16.3; SD = 1.2 years). Participants performed a 100-m dash seven minutes after each of four randomized conditioning protocols, with each condition and 100-m dash separated by 3-10 days. The conditioning protocols were (a) control, no conditioning activity; (b) weighted plyometric, three sets of 10 repetitions of alternate leg bounding with additional load of 10% of the body mass; (c) free sprint, two 20-m sprints; and (d) resisted sprint (RS), two 20-m resisted sprints using an elastic tubing tool. We obtained session ratings of perceived exertion (SRPE) immediately after each conditioning protocol. There were no significant differences between any of the three experimental conditioning activities on 100-m sprint time, but the RS protocol improved 100-m sprint time compared with the control (no conditioning) protocol ( p < .001). The RS also led to greater sprint velocity and higher SRPE compared with the control condition ( p < .01). There was no significant association between SRPE and 100-m performance ( p = .77, r = .05). These results suggest a benefit for young male track and field athletes to the elastic tubing warm-up activities prior to the 100-m dash.
Analog track angle error displays improve simulated GPS approach performance
DOT National Transportation Integrated Search
1996-01-01
Pilots flying non-precision instrument approaches traditionally rely on a course deviation indicator (CDI) analog display of cross track error (XTE) information. THe new generation of GPS based area navigation (RNAV) receivers can also compute accura...
ERIC Educational Resources Information Center
Lavrijsen, Jeroen; Nicaise, Ides
2016-01-01
One of the important differences between educational systems from different countries is the age at which students are placed into separate tracks. We examined the effects of the age at which tracking occurred on student achievement in a comparative perspective, making use of recent waves of three internationally standardized student assessments…
Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou
2017-01-01
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.
Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou
2017-01-01
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637
An improved multi-domain convolution tracking algorithm
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Haiying; Zeng, Yingsen
2018-04-01
Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.
Robust infrared targets tracking with covariance matrix representation
NASA Astrophysics Data System (ADS)
Cheng, Jian
2009-07-01
Robust infrared target tracking is an important and challenging research topic in many military and security applications, such as infrared imaging guidance, infrared reconnaissance, scene surveillance, etc. To effectively tackle the nonlinear and non-Gaussian state estimation problems, particle filtering is introduced to construct the theory framework of infrared target tracking. Under this framework, the observation probabilistic model is one of main factors for infrared targets tracking performance. In order to improve the tracking performance, covariance matrices are introduced to represent infrared targets with the multi-features. The observation probabilistic model can be constructed by computing the distance between the reference target's and the target samples' covariance matrix. Because the covariance matrix provides a natural tool for integrating multiple features, and is scale and illumination independent, target representation with covariance matrices can hold strong discriminating ability and robustness. Two experimental results demonstrate the proposed method is effective and robust for different infrared target tracking, such as the sensor ego-motion scene, and the sea-clutter scene.
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K
2013-03-20
Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.
NASA Astrophysics Data System (ADS)
Shao, Xingling; Liu, Jun; Wang, Honglun
2018-05-01
In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.
NASA Technical Reports Server (NTRS)
Ziff, Howard L; Rathert, George A; Gadeberg, Burnett L
1953-01-01
Standard air-to-air-gunnery tracking runs were conducted with F-51H, F8F-1, F-86A, and F-86E airplanes equipped with fixed gunsights. The tracking performances were documented over the normal operating range of altitude, Mach number, and normal acceleration factor for each airplane. The sources of error were studied by statistical analyses of the aim wander.
Analysis of a spatial tracking subsystem for optical communications
NASA Technical Reports Server (NTRS)
Win, Moe Z.; Chen, CHIEN-C.
1992-01-01
Spatial tracking plays a very critical role in designing optical communication systems because of the small angular beamwidth associated with the optical signal. One possible solution for spatial tracking is to use a nutating mirror which dithers the incoming beam at a rate much higher than the mechanical disturbances. A power detector then senses the change in detected power as the signal is reflected off the nutating mirror. This signal is then correlated with the nutator driver signals to obtain estimates of the azimuth and elevation tracking signals to control the fast scanning mirrors. A theoretical analysis is performed for a spatial tracking system using a nutator disturbed by shot noise and mechanical vibrations. Contributions of shot noise and mechanical vibrations to the total tracking error variance are derived. Given the vibration spectrum and the expected signal power, there exists an optimal amplitude for the nutation which optimizes the receiver performance. The expected performance of a nutator based system is estimated based on the choice of nutation amplitude.
GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems
NASA Astrophysics Data System (ADS)
Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.
2009-05-01
Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.
Jongsma, Marijtje L A; Gerrits, Niels J H M; van Rijn, Clementina M; Quiroga, Rodrigo Quian; Maes, Joseph H R
2012-07-01
The aim of this study was to track recall performance and event-related potentials (ERPs) across multiple trials in a digit-learning task. When a sequence is practiced by repetition, the number of errors typically decreases and a learning curve emerges. Until now, almost all ERP learning and memory research has focused on effects after a single presentation and, therefore, fails to capture the dynamic changes that characterize a learning process. However, the current study used a free-recall task in which a sequence of ten auditory digits was presented repeatedly. Auditory sequences of ten digits were presented in a logical order (control sequences) or in a random order (experimental sequences). Each sequence was presented six times. Participants had to reproduce the sequence after each presentation. EEG recordings were made at the time of the digit presentations. Recall performance for the control sequences was close to asymptote right after the first learning trial, whereas performance for the experimental sequences initially displayed primacy and recency effects. However, these latter effects gradually disappeared over the six repetitions, resulting in near-asymptotic recall performance for all digits. The performance improvement for the middle items of the list was accompanied by an increase in P300 amplitude, implying a close correspondence between this ERP component and the behavioral data. These results, which were discussed in the framework of theories on the functional significance of the P300 amplitude, add to the scarce empirical data on the dynamics of ERP responses in the process of intentional learning. Copyright © 2011 Elsevier B.V. All rights reserved.
Accelerated Performance Testing on the 2006 NCAT Pavement Test Track
DOT National Transportation Integrated Search
2009-12-01
The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...
Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Gao, Changsheng; Jing, Wuxing
2018-03-01
Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.
GNSS triple-frequency geometry-free and ionosphere-free track-to-track ambiguities
NASA Astrophysics Data System (ADS)
Wang, Kan; Rothacher, Markus
2015-06-01
During the last few years, more and more GNSS satellites have become available sending signals on three or even more frequencies. Examples are the GPS Block IIF and the Galileo In-Orbit-Validation (IOV) satellites. Various investigations have been performed to make use of the increasing number of frequencies to find a compromise between eliminating different error sources and minimizing the noise level, including the investigations in the triple-frequency geometry-free (GF) and ionosphere-free (IF) linear combinations, which eliminate all the geometry-related errors and the first-order term of the ionospheric delays. In contrast to the double-difference GF and IF ambiguity resolution, the resolution of the so-called track-to-track GF and IF ambiguities between two tracks of a satellite observed by the same station only requires one receiver and one satellite. Most of the remaining errors like receiver and satellite delays (electronics, cables, etc.) are eliminated, if they are not changing rapidly in time, and the noise level is reduced theoretically by a factor of square root of two compared to double-differences. This paper presents first results concerning track-to-track ambiguity resolution using triple-frequency GF and IF linear combinations based on data from the Multi-GNSS Experiment (MGEX) from April 29 to May 9, 2012 and from December 23 to December 29, 2012. This includes triple-frequency phase and code observations with different combinations of receiver tracking modes. The results show that it is possible to resolve the combined track-to-track ambiguities of the best two triple-frequency GF and IF linear combinations for the Galileo frequency triplet E1, E5b and E5a with more than 99.6% of the fractional ambiguities for the best linear combination being located within ± 0.03 cycles and more than 98.8% of the fractional ambiguities for the second best linear combination within ± 0.2 cycles, while the fractional parts of the ambiguities for the GPS
Tracking accuracy assessment for concentrator photovoltaic systems
NASA Astrophysics Data System (ADS)
Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.
2010-10-01
The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.
Tracking techniques for space shuttle rendezvous
NASA Technical Reports Server (NTRS)
1975-01-01
The space shuttle rendezvous radar has a requirement to track cooperative and non-cooperative targets. For this reason the Lunar Module (LM) Rendezvous Radar was modified to incorporate the capability of tracking a non-cooperative target. The modifications are discussed. All modifications except those relating to frequency diversity were completed, and system tests were performed to confirm proper performance in the non-cooperative mode. Frequency diversity was added to the radar and to the special test equipment, and then system tests were performed. This last set of tests included re-running the tests of the non-cooperative mode without frequency diversity, followed by tests with frequency diversity and tests of operation in the original cooperative mode.
A gunner model for an AAA tracking task with interrupted observations
NASA Technical Reports Server (NTRS)
Yu, C. F.; Wei, K. C.; Vikmanis, M.
1982-01-01
The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.
Effects of maintenance operations on track buckling potential
DOT National Transportation Integrated Search
2003-05-04
This paper presents the results of buckling analyses based on data from recent tests determining the influence of track maintenance and consolidation on track lateral resistance. The buckling analyses were performed using the USDOT/Volpe "CWR-SAFE" m...
Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun
2018-05-19
Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.
Siamese convolutional networks for tracking the spine motion
NASA Astrophysics Data System (ADS)
Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong
2017-09-01
Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.
Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper
2016-01-01
To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality
Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper
2016-01-01
Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic
2018-04-11
iss055e018653 (April 11, 2018) --- NASA astronaut Scott Tingle performs research operations with the Microgravity Sciences Glovebox inside the U.S. Destiny laboratory module. Tingle was working on the Metabolic Tracking experiment that looks at a particular type of medicine and how it interacts with human tissue cultures. Results could improve therapies in space and lead to better, cheaper drugs on Earth.
Tracking-integrated systems for concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo
2016-04-01
Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.
Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.
Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin
2018-06-22
Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
Coded excitation ultrasonic needle tracking: An in vivo study.
Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E
2016-07-01
Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded
UWB Tracking System Design for Lunar/Mars Exploration
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia
2006-01-01
This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.
Airborne optical tracking control system design study
NASA Astrophysics Data System (ADS)
1992-09-01
The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.
Computer-aided target tracking in motion analysis studies
NASA Astrophysics Data System (ADS)
Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.
1990-08-01
Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.
NASA Astrophysics Data System (ADS)
Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert
2017-03-01
Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.
Three dimensional tracking with misalignment between display and control axes
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence
1992-01-01
Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.
Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob
2010-11-23
People's time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people's time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. The battery life of our tested instruments ranged from <9 hours to 48 hours. The acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%-95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%-80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. All the tested GPS devices had limitations, but we identified several devices which showed promising performance for tracking subjects' time
Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob
2010-01-01
Background: People’s time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people’s time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. Methods: We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. Results: The battery life of our tested instruments ranged from <9 hours to 48 hours. The acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%–95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%–80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. Conclusions: All the tested GPS devices had limitations, but we identified several devices which showed
The shape of ion tracks in natural apatite
NASA Astrophysics Data System (ADS)
Schauries, D.; Afra, B.; Bierschenk, T.; Lang, M.; Rodriguez, M. D.; Trautmann, C.; Li, W.; Ewing, R. C.; Kluth, P.
2014-05-01
Small angle X-ray scattering measurements were performed on natural apatite of different thickness irradiated with 2.2 GeV Au swift heavy ions. The evolution of the track radius along the full ion track length was estimated by considering the electronic energy loss and the velocity of the ions. The shape of the track is nearly cylindrical, slightly widening with a maximum diameter approximately 30 μm before the ions come to rest, followed by a rapid narrowing towards the end within a cigar-like contour. Measurements of average ion track radii in samples of different thicknesses, i.e. containing different sections of the tracks are in good agreement with the shape estimate.
Fast Deep Tracking via Semi-Online Domain Adaptation
NASA Astrophysics Data System (ADS)
Li, Xiaoping; Luo, Wenbing; Zhu, Yi; Li, Hanxi; Wang, Mingwen
2018-04-01
Deep tracking has been illustrating overwhelming superiorities over the shallow methods. Unfortunately, it also suffers from low FPS rates. To alleviate the problem, a number of real-time deep trackers have been proposed via removing the online updating procedure on the CNN model. However, the absent of the online update leads to a significant drop on tracking accuracy. In this work, we propose to perform the domain adaptation for visual tracking in two stages for transferring the information from the visual tracking domain and the instance domain respectively. In this way, the proposed visual tracker achieves comparable tracking accuracy to the state-of-the-art trackers and runs at real-time speed on an average consuming GPU.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
Interactive Multiple Object Tracking (iMOT)
Thornton, Ian M.; Bülthoff, Heinrich H.; Horowitz, Todd S.; Rynning, Aksel; Lee, Seong-Whan
2014-01-01
We introduce a new task for exploring the relationship between action and attention. In this interactive multiple object tracking (iMOT) task, implemented as an iPad app, participants were presented with a display of multiple, visually identical disks which moved independently. The task was to prevent any collisions during a fixed duration. Participants could perturb object trajectories via the touchscreen. In Experiment 1, we used a staircase procedure to measure the ability to control moving objects. Object speed was set to 1°/s. On average participants could control 8.4 items without collision. Individual control strategies were quite variable, but did not predict overall performance. In Experiment 2, we compared iMOT with standard MOT performance using identical displays. Object speed was set to 2°/s. Participants could reliably control more objects (M = 6.6) than they could track (M = 4.0), but performance in the two tasks was positively correlated. In Experiment 3, we used a dual-task design. Compared to single-task baseline, iMOT performance decreased and MOT performance increased when the two tasks had to be completed together. Overall, these findings suggest: 1) There is a clear limit to the number of items that can be simultaneously controlled, for a given speed and display density; 2) participants can control more items than they can track; 3) task-relevant action appears not to disrupt MOT performance in the current experimental context. PMID:24498288
Lower body symmetry and running performance in elite Jamaican track and field athletes.
Trivers, Robert; Fink, Bernhard; Russell, Mark; McCarty, Kristofor; James, Bruce; Palestis, Brian G
2014-01-01
In a study of degree of lower body symmetry in 73 elite Jamaican track and field athletes we show that both their knees and ankles (but not their feet) are-on average-significantly more symmetrical than those of 116 similarly aged controls from the rural Jamaican countryside. Within the elite athletes, events ranged from the 100 to the 800 m, and knee and ankle asymmetry was lower for those running the 100 m dashes than those running the longer events with turns. Nevertheless, across all events those with more symmetrical knees and ankles (but not feet) had better results compared to international standards. Regression models considering lower body symmetry combined with gender, age and weight explain 27 to 28% of the variation in performance among athletes, with symmetry related to about 5% of this variation. Within 100 m sprinters, the results suggest that those with more symmetrical knees and ankles ran faster. Altogether, our work confirms earlier findings that knee and probably ankle symmetry are positively associated with sprinting performance, while extending these findings to elite athletes.
Lower Body Symmetry and Running Performance in Elite Jamaican Track and Field Athletes
Trivers, Robert; Fink, Bernhard; Russell, Mark; McCarty, Kristofor; James, Bruce; Palestis, Brian G.
2014-01-01
In a study of degree of lower body symmetry in 73 elite Jamaican track and field athletes we show that both their knees and ankles (but not their feet) are–on average–significantly more symmetrical than those of 116 similarly aged controls from the rural Jamaican countryside. Within the elite athletes, events ranged from the 100 to the 800 m, and knee and ankle asymmetry was lower for those running the 100 m dashes than those running the longer events with turns. Nevertheless, across all events those with more symmetrical knees and ankles (but not feet) had better results compared to international standards. Regression models considering lower body symmetry combined with gender, age and weight explain 27 to 28% of the variation in performance among athletes, with symmetry related to about 5% of this variation. Within 100 m sprinters, the results suggest that those with more symmetrical knees and ankles ran faster. Altogether, our work confirms earlier findings that knee and probably ankle symmetry are positively associated with sprinting performance, while extending these findings to elite athletes. PMID:25401732
A visual tracking method based on deep learning without online model updating
NASA Astrophysics Data System (ADS)
Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei
2018-02-01
The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.
Robust multiperson detection and tracking for mobile service and social robots.
Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou
2012-10-01
This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jun; Sebastian, Evelyn; Mangona, Victor
2013-02-15
Purpose: In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. Methods: A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For themore » static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. Results: When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 {+-} 1.3 vs 1.8 {+-} 0.9 mm at bottom and 1.7 {+-} 1.0 mm at middle, p < 0.001), at catheter end position (3.1 {+-} 1.1 vs 1.4 {+-} 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 {+-} 1.1 vs 2.4 {+-} 1.5 mm at 80 Hz and 1.8 {+-} 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 {+-} 1.4 vs 0.4 {+-} 0.5 mm in AP and
The neural substrates of driving at a safe distance: a functional MRI study.
Uchiyama, Yuji; Ebe, Kazutoshi; Kozato, Akio; Okada, Tomohisa; Sadato, Norihiro
2003-12-11
An important driving skill is the ability to maintain a safe distance from a preceding car. To determine the neural substrates of this skill we performed functional magnetic resonance imaging of simulated driving in 21 subjects. Subjects used a joystick to adjust their own driving speed in order to maintain a constant distance from a preceding car traveling at varying speeds. The task activated multiple brain regions. Activation of the cerebellum may reflect visual feedback during smooth tracking of the preceding car. Co-activation of the basal ganglia, thalamus and premotor cortex is related to movement selection. Activation of a premotor-parietal network is related to visuo-motor co-ordination. Task performance was negatively correlated with anterior cingulate activity, consistent with the role of this region in error detection and response selection.
NASA Astrophysics Data System (ADS)
Webster, Jordan
2017-01-01
Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.
Evaluating Silent Reading Performance with an Eye Tracking System in Patients with Glaucoma
Murata, Noriaki; Fukuchi, Takeo
2017-01-01
Objective To investigate the relationship between silent reading performance and visual field defects in patients with glaucoma using an eye tracking system. Methods Fifty glaucoma patients (Group G; mean age, 52.2 years, standard deviation: 11.4 years) and 20 normal controls (Group N; mean age, 46.9 years; standard deviation: 17.2 years) were included in the study. All participants in Group G had early to advanced glaucomatous visual field defects but better than 20/20 visual acuity in both eyes. Participants silently read Japanese articles written horizontally while the eye tracking system monitored and calculated reading duration per 100 characters, number of fixations per 100 characters, and mean fixation duration, which were compared with mean deviation and visual field index values from Humphrey visual field testing (24–2 and 10–2 Swedish interactive threshold algorithm standard) of the right versus left eye and the better versus worse eye. Results There was a statistically significant difference between Groups G and N in mean fixation duration (G, 233.4 msec; N, 215.7 msec; P = 0.010). Within Group G, significant correlations were observed between reading duration and 24–2 right mean deviation (rs = -0.280, P = 0.049), 24–2 right visual field index (rs = -0.306, P = 0.030), 24–2 worse visual field index (rs = -0.304, P = 0.032), and 10–2 worse mean deviation (rs = -0.326, P = 0.025). Significant correlations were observed between mean fixation duration and 10–2 left mean deviation (rs = -0.294, P = 0.045) and 10–2 worse mean deviation (rs = -0.306, P = 0.037), respectively. Conclusions The severity of visual field defects may influence some aspects of reading performance. At least concerning silent reading, the visual field of the worse eye is an essential element of smoothness of reading. PMID:28095478
Karilampi, Ulla; Helldin, Lars; Hjärthag, Fredrik; Norlander, Torsten; Archer, Trevor
2007-02-01
The aim was to analyze and compare neurocognitive test profiles related to different levels of verbal learning performance among schizopsychotic patients and healthy volunteers. A single-center patient cohort of 196 participants was compared with an equal-sized volunteer group to form three cognitive subgroups based on the shared verbal learning performance. 43.9% of the patients had normal learning ability. Despite this, all patients underperformed the volunteers on all subtests with the exception of working memory, and, for those with high learning ability, even verbal facility. All patients also presented equally poor visuomotor processing speed/efficacy. A global neurocognitive retardation of speed-related processing in schizophrenia is suggested.
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.
Franconeri, S L; Jonathan, S V; Scimeca, J M
2010-07-01
In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.
Characterization of a Track-and-Hold Amplifier for Application to a High Performance SAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUBBERT, DALE F.; HARDIN, TERRY LYNN; DELAPLAIN, GILBERT G.
2002-07-01
A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-ordermore » intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.« less
Dual linear structured support vector machine tracking method via scale correlation filter
NASA Astrophysics Data System (ADS)
Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen
2018-01-01
Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.
Tracking scanning laser ophthalmoscope (TSLO)
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.
2003-07-01
The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.
Track classification within wireless sensor network
NASA Astrophysics Data System (ADS)
Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic
2017-05-01
In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Nanoscale measurements of proton tracks using fluorescent nuclear track detectors
Sawakuchi, Gabriel O.; Ferreira, Felisberto A.; McFadden, Conor H.; Hallacy, Timothy M.; Granville, Dal A.; Sahoo, Narayan; Akselrod, Mark S.
2016-01-01
Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments. PMID:27147359
Nanoscale measurements of proton tracks using fluorescent nuclear track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan; Ferreira, Felisberto A.
Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared withmore » LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowdell, S; Paganetti, H; Schuemann, J
Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed usingmore » TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.« less
Hardware accelerator design for tracking in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil
2011-10-01
Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.
NASA Astrophysics Data System (ADS)
Abdulsalam, Alrowashed; Idris, Azni Bin; Ahmad, Thamer; Ahsan, Amimul
2017-01-01
This work overviews the solar radiation basics and insolation of different surfaces is presented. A complete solar radiation modelling and investigation on the effect of horizontal plate, yearly tilt, monthly tilt, and single-axis and double-axis tracking surface on the insolation are carried out to conduct performance evaluation using the case study in Dhahran city of Saudi Arabia. The increments received by insolation for the yearly tilt, monthly tilt, and single-axis and dual-axis tracking surface with respect to traditional flat-plate collector is estimated. The results show that the yearly optimal tilt angle due to the south is close to the 0.913 time latitude of Dhahran. It is found that the yearly irradiation gains using yearly and monthly optimal tilts relative to flat panel installation are 7% and 14%, respectively. The yearly insulation gains made by single-axis and dual-axis continuous tracking surfaces are 33% and 48%, respectively.
NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism
NASA Technical Reports Server (NTRS)
Mobley, R. E.; Brown, T. M.
1979-01-01
A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.
RATT: RFID Assisted Tracking Tile. Preliminary results.
Quinones, Dario R; Cuevas, Aaron; Cambra, Javier; Canals, Santiago; Moratal, David
2017-07-01
Behavior is one of the most important aspects of animal life. This behavior depends on the link between animals, their nervous systems and their environment. In order to study the behavior of laboratory animals several tools are needed, but a tracking tool is essential to perform a thorough behavioral study. Currently, several visual tracking tools are available. However, they have some drawbacks. For instance, when an animal is inside a cave, or is close to other animals, the tracking cameras cannot always detect the location or movement of this animal. This paper presents RFID Assisted Tracking Tile (RATT), a tracking system based on passive Radio Frequency Identification (RFID) technology in high frequency band according to ISO/IEC 15693. The RATT system is composed of electronic tiles that have nine active RFID antennas attached; in addition, it contains several overlapping passive coils to improve the magnetic field characteristics. Using several tiles, a large surface can be built on which the animals can move, allowing identification and tracking of their movements. This system, that could also be combined with a visual tracking system, paves the way for complete behavioral studies.
Visual tracking using objectness-bounding box regression and correlation filters
NASA Astrophysics Data System (ADS)
Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy
2018-03-01
Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.
A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration
2004-09-01
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha
Automated tracking for advanced satellite laser ranging systems
NASA Astrophysics Data System (ADS)
McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.
1996-06-01
NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.
Confalonieri, Linda; Pagnoni, Giuseppe; Barsalou, Lawrence W.; Rajendra, Justin; Eickhoff, Simon B.; Butler, Andrew J.
2012-01-01
Aims. While studies on healthy subjects have shown a partial overlap between the motor execution and motor imagery neural circuits, few have investigated brain activity during motor imagery in stroke patients with hemiparesis. This work is aimed at examining similarities between motor imagery and execution in a group of stroke patients. Materials and Methods. Eleven patients were asked to perform a visuomotor tracking task by either physically or mentally tracking a sine wave force target using their thumb and index finger during fMRI scanning. MIQ-RS questionnaire has been administered. Results and Conclusion. Whole-brain analyses confirmed shared neural substrates between motor imagery and motor execution in bilateral premotor cortex, SMA, and in the contralesional inferior parietal lobule. Additional region of interest-based analyses revealed a negative correlation between kinaesthetic imagery ability and percentage BOLD change in areas 4p and 3a; higher imagery ability was associated with negative and lower percentage BOLD change in primary sensorimotor areas during motor imagery. PMID:23378930
Tape tracking and handling for magnetic tape recorders. [aboard spacecraft
NASA Technical Reports Server (NTRS)
Paroby, W.; Disilvestre, R.
1975-01-01
One of the critical performance and life limiting elements of a spacecraft tape recorder instrumentation system which has received little attention in technical literature is magnetic tape tracking and handling technology. This technology is required to understand how to gently transfer tape from one reel to another with proper alignment and a desirable uniform velocity at the read and write transducer heads. The increased demand for high data rate (i.e., multi-track spacecraft recording instrumentation systems), coupled with performance under extreme environmental conditions, requires a thorough knowledge of the various parameters which establish an optimum designed tape tracking and handling system. Stress analysis techniques are required to evaluate these parameters substantiated with test tape tracking data, to show the effect of each parameter on a tape recorder instrumentation tracking system. The technology is applicable to ground type tape recorders where the detrimental effects of edge guidance can be eliminated.
Adaptive particle filter for robust visual tracking
NASA Astrophysics Data System (ADS)
Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai
2009-10-01
Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.
2006-11-01
Asset tracking systems are used in healthcare to find objects--medical devices and other hospital equipment--and to record the physical location of those objects over time. Interest in asset tracking is growing daily, but the technology is still evolving, and so far very few systems have been implemented in hospitals. This situation is likely to change over the next few years, at which point many hospitals will be faced with choosing a system. We evaluated four asset tracking systems from four suppliers: Agility Healthcare Solutions, Ekahau, Radianse, and Versus Technology. We judged the systems' performance for two "levels" of asset tracking. The first level is basic locating--simply determining where in the facility an item can be found. This may be done because the equipment needs routine inspection and preventive maintenance or because it is required for recall purposes; or the equipment may be needed, often urgently, for clinical use. The second level, which is much more involved, is inventory optimization and workflow improvement. This entails analyzing asset utilization based on historical location data to improve the use, distribution, and processing of equipment. None of the evaluated products is ideal for all uses--each has strengths and weaknesses. In many cases, hospitals will have to select a product based on their specific needs. For example, they may need to choose between a supplier whose system is easy to install and a supplier whose tags have a long battery operating life.
Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners
Huang, Wen-Ching; Chang, Yung-Cheng; Chen, Yi-Ming; Hsu, Yi-Ju; Huang, Chi-Chang; Kan, Nai-Wen; Chen, Sheng-Shih
2017-01-01
Whey protein has been widely applied to athletes and the fitness field for muscle growth and performance improvement. Limited studies focused on the beneficial effects of whey on aerobic exercise according to biochemical assessments. In the current study, 12 elite male track runners were randomly assigned to whey and maltodextrin groups for 5 weeks' supplementation. The aim of this study was to investigate the effect of whey protein on physiological adaptions and exercise performance. During this period, three time points (pre-, post-, and end-test) were used to evaluate related biochemical parameters, body composition, and performance. The post-test was set 1 day after a marathon for injury status evaluation and the end-test was also assessed after 1-week recovery from endurance test. The results showed that the whey group exhibited significantly lower aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatine kinase indicators after the marathon (post-test), as well as at the end-test (p<0.016). The endurance performance in twelve-minute walk/run was also significantly elevated (p<0.012) possibly due to an increase in the muscle mass and amelioration of exercise injuries. In the current study, we demonstrated that whey protein can also be used for aerobic exercise for better physiological adaptation, in addition to resistance training. Whey protein could be also a potential nutrient supplement with a variety of benefits for amateur runners. PMID:28824296
Homography-based multiple-camera person-tracking
NASA Astrophysics Data System (ADS)
Turk, Matthew R.
2009-01-01
Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of
Acoustic tracking of woodhead seabed drifters
NASA Technical Reports Server (NTRS)
Mayhue, R. J.; Lovelady, R. W.
1977-01-01
An investigation was conducted to determine the feasibility of tracking Woodhead seabed drifters that were instrumented with miniature acoustic transmitters having a range in water in excess of 1.0 n.mi. A trial cruise at the entrance of Delaware Bay, with the R.V. Annandale as the sonar-tracking vessel, verified acoustic communications and positioning of the bottom drifters. A demonstration cruise with the R.V. Annandale was also performed in the New York Bight to attempt to collect information on bottom water movement near the sewage-sluge dump site. Results from the tracking mission in the New York Bight suggested that bottom water currents were negligible near the dump site during the time interval from November 7-12, 1975, and that shipboard sonar tracking of acoustic Woodhead seabed drifters could provide useful Lagragian information on bottom water movement caused by tidal and other nonstorm effects.
Sarter, Nadine B; Mumaw, Randall J; Wickens, Christopher D
2007-06-01
The objective of the study was to examine pilots' automation monitoring strategies and performance on highly automated commercial flight decks. A considerable body of research and operational experience has documented breakdowns in pilot-automation coordination on modern flight decks. These breakdowns are often considered symptoms of monitoring failures even though, to date, only limited and mostly anecdotal data exist concerning pilots' monitoring strategies and performance. Twenty experienced B-747-400 airline pilots flew a 1-hr scenario involving challenging automation-related events on a full-mission simulator. Behavioral, mental model, and eye-tracking data were collected. The findings from this study confirm that pilots monitor basic flight parameters to a much greater extent than visual indications of the automation configuration. More specifically, they frequently fail to verify manual mode selections or notice automatic mode changes. In other cases, they do not process mode annunciations in sufficient depth to understand their implications for aircraft behavior. Low system observability and gaps in pilots' understanding of complex automation modes were shown to contribute to these problems. Our findings describe and explain shortcomings in pilot's automation monitoring strategies and performance based on converging behavioral, eye-tracking, and mental model data. They confirm that monitoring failures are one major contributor to breakdowns in pilot-automation interaction. The findings from this research can inform the design of improved training programs and automation interfaces that support more effective system monitoring.
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.
Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae
2013-01-01
Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.
Pilot Study for Definition of Track Component Load Environments
DOT National Transportation Integrated Search
1981-02-01
This report describes the results of an experimental and analytical effort to define the vehicle induced load environment in an at-grade, concrete tie/ballast transit track structure. The experiment was performed on the UMTA transit track oval at the...
Model-based approach to partial tracking for musical transcription
NASA Astrophysics Data System (ADS)
Sterian, Andrew; Wakefield, Gregory H.
1998-10-01
We present a new method for musical partial tracking in the context of musical transcription using a time-frequency Kalman filter structure. The filter is based upon a model for the evolution of a partial behavior across a wide range of pitch from four brass instruments. Statistics are computed independently for the partial attributes of frequency and log-power first differences. We present observed power spectral density shapes, total powers, and histograms, as well as least-squares approximations to these. We demonstrate that a Kalman filter tracker using this partial model is capable of tracking partials in music. We discuss how the filter structure naturally provides quality-of-fit information about the data for use in further processing and how this information can be used to perform partial track initiation and termination within a common framework. We propose that a model-based approach to partial tracking is preferable to existing approaches which generally use heuristic rules or birth/death notions over a small time neighborhood. The advantages include better performance in the presence of cluttered data and simplified tracking over missed observations.
Comparison between goal programming and cointegration approaches in enhanced index tracking
NASA Astrophysics Data System (ADS)
Lam, Weng Siew; Jamaan, Saiful Hafizah Hj.
2013-04-01
Index tracking is a popular form of passive fund management in stock market. Passive management is a buy-and-hold strategy that aims to achieve rate of return similar to the market return. Index tracking problem is a problem of reproducing the performance of a stock market index, without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio that minimizes risk or tracking error. An improved index tracking (enhanced index tracking) is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the tracking error. Enhanced index tracking aims to generate excess return over the return achieved by the index. The objective of this study is to compare the portfolio compositions and performances by using two different approaches in enhanced index tracking problem, which are goal programming and cointegration. The result of this study shows that the optimal portfolios for both approaches are able to outperform the Malaysia market index which is Kuala Lumpur Composite Index. Both approaches give different optimal portfolio compositions. Besides, the cointegration approach outperforms the goal programming approach because the cointegration approach gives higher mean return and lower risk or tracking error. Therefore, the cointegration approach is more appropriate for the investors in Malaysia.
49 CFR 214.337 - On-track safety procedures for lone workers.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-track equipment is not impaired by background noise, lights, precipitation, fog, passing trains, or any... performing routine inspection or minor correction may use individual train detection to establish on-track... worker retains an absolute right to use on-track safety procedures other than individual train detection...
Formation of cortical plasticity in older adults following tDCS and motor training
Goodwill, Alicia M.; Reynolds, John; Daly, Robin M.; Kidgell, Dawson J.
2013-01-01
Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults. PMID:24367333
Determination of feature generation methods for PTZ camera object tracking
NASA Astrophysics Data System (ADS)
Doyle, Daniel D.; Black, Jonathan T.
2012-06-01
Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.