Sample records for vitcomic visualization tool

  1. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  2. The Role of Motor Learning in Spatial Adaptation near a Tool

    PubMed Central

    Brown, Liana E.; Doole, Robert; Malfait, Nicole

    2011-01-01

    Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944

  3. Iterating between Tools to Create and Edit Visualizations.

    PubMed

    Bigelow, Alex; Drucker, Steven; Fisher, Danyel; Meyer, Miriah

    2017-01-01

    A common workflow for visualization designers begins with a generative tool, like D3 or Processing, to create the initial visualization; and proceeds to a drawing tool, like Adobe Illustrator or Inkscape, for editing and cleaning. Unfortunately, this is typically a one-way process: once a visualization is exported from the generative tool into a drawing tool, it is difficult to make further, data-driven changes. In this paper, we propose a bridge model to allow designers to bring their work back from the drawing tool to re-edit in the generative tool. Our key insight is to recast this iteration challenge as a merge problem - similar to when two people are editing a document and changes between them need to reconciled. We also present a specific instantiation of this model, a tool called Hanpuku, which bridges between D3 scripts and Illustrator. We show several examples of visualizations that are iteratively created using Hanpuku in order to illustrate the flexibility of the approach. We further describe several hypothetical tools that bridge between other visualization tools to emphasize the generality of the model.

  4. Survey of visualization and analysis tools

    NASA Technical Reports Server (NTRS)

    Meyer, P. J.

    1994-01-01

    A large number of commercially available visualization and analysis tools are available to the researcher. Some of the strengths and limitations of some of these tools, from the viewpoint of the earth sciences discipline, are discussed. Visualization and analysis tools fall into one of two categories: those that are designed to a specific purpose and are non-extensive and those that are generic visual programming tools that are extensible. Most of the extensible packages examined incorporate a data flow paradigm.

  5. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  6. The Development of a Visual-Perceptual Chemistry Specific (VPCS) Assessment Tool

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Sloan, Caroline

    2014-01-01

    The development of the Visual-Perceptual Chemistry Specific (VPCS) assessment tool is based on items that align to eight visual-perceptual skills considered as needed by chemistry students. This tool includes a comprehensive range of visual operations and presents items within a chemistry context without requiring content knowledge to solve…

  7. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    DOT National Transportation Integrated Search

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  8. Communications Effects Server (CES) Model for Systems Engineering Research

    DTIC Science & Technology

    2012-01-31

    Visualization Tool Interface «logical» HLA Tool Interface «logical» DIS Tool Interface «logical» STK Tool Interface «module» Execution Kernels «logical...interoperate with STK when running simulations. GUI Components  Architect – The Architect represents the main network design and visualization ...interest» CES «block» Third Party Visualization Tool «block» Third Party Analysis Tool «block» Third Party Text Editor «block» HLA Tools Analyst User Army

  9. Scalable Visual Analytics of Massive Textual Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Manoj Kumar; Bohn, Shawn J.; Cowley, Wendy E.

    2007-04-01

    This paper describes the first scalable implementation of text processing engine used in Visual Analytics tools. These tools aid information analysts in interacting with and understanding large textual information content through visual interfaces. By developing parallel implementation of the text processing engine, we enabled visual analytics tools to exploit cluster architectures and handle massive dataset. The paper describes key elements of our parallelization approach and demonstrates virtually linear scaling when processing multi-gigabyte data sets such as Pubmed. This approach enables interactive analysis of large datasets beyond capabilities of existing state-of-the art visual analytics tools.

  10. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  11. The Multisensory Attentional Consequences of Tool Use: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Holmes, Nicholas P.; Spence, Charles; Hansen, Peter C.; Mackay, Clare E.; Calvert, Gemma A.

    2008-01-01

    Background Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use. PMID:18958150

  12. Visualization Tools for Teaching Computer Security

    ERIC Educational Resources Information Center

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  13. Visualization and Analytics Tools for Infectious Disease Epidemiology: A Systematic Review

    PubMed Central

    Carroll, Lauren N.; Au, Alan P.; Detwiler, Landon Todd; Fu, Tsung-chieh; Painter, Ian S.; Abernethy, Neil F.

    2014-01-01

    Background A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) Identify public health user needs and preferences for infectious disease information visualization tools; (2) Identify existing infectious disease information visualization tools and characterize their architecture and features; (3) Identify commonalities among approaches applied to different data types; and (4) Describe tool usability evaluation efforts and barriers to the adoption of such tools. Methods We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. Results A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool use. Discussion and Conclusion As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health. Our review identified several themes: consideration of users' needs, preferences, and computer literacy; integration of tools into routine workflow; complications associated with understanding and use of visualizations; and the role of user trust and organizational support in the adoption of these tools. Interoperability also emerged as a prominent theme, highlighting challenges associated with the increasingly collaborative and interdisciplinary nature of infectious disease control and prevention. Future work should address methods for representing uncertainty and missing data to avoid misleading users as well as strategies to minimize cognitive overload. PMID:24747356

  14. Visualization and analytics tools for infectious disease epidemiology: a systematic review.

    PubMed

    Carroll, Lauren N; Au, Alan P; Detwiler, Landon Todd; Fu, Tsung-Chieh; Painter, Ian S; Abernethy, Neil F

    2014-10-01

    A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) identify public health user needs and preferences for infectious disease information visualization tools; (2) identify existing infectious disease information visualization tools and characterize their architecture and features; (3) identify commonalities among approaches applied to different data types; and (4) describe tool usability evaluation efforts and barriers to the adoption of such tools. We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool use. As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health. Our review identified several themes: consideration of users' needs, preferences, and computer literacy; integration of tools into routine workflow; complications associated with understanding and use of visualizations; and the role of user trust and organizational support in the adoption of these tools. Interoperability also emerged as a prominent theme, highlighting challenges associated with the increasingly collaborative and interdisciplinary nature of infectious disease control and prevention. Future work should address methods for representing uncertainty and missing data to avoid misleading users as well as strategies to minimize cognitive overload. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Visual illusion of tool use recalibrates tactile perception

    PubMed Central

    Miller, Luke E.; Longo, Matthew R.; Saygin, Ayse P.

    2018-01-01

    Brief use of a tool recalibrates multisensory representations of the user’s body, a phenomenon called tool embodiment. Despite two decades of research, little is known about its boundary conditions. It has been widely argued that embodiment requires active tool use, suggesting a critical role for somatosensory and motor feedback. The present study used a visual illusion to cast doubt on this view. We used a mirror-based setup to induce a visual experience of tool use with an arm that was in fact stationary. Following illusory tool use, tactile perception was recalibrated on this stationary arm, and with equal magnitude as physical use. Recalibration was not found following illusory passive tool holding, and could not be accounted for by sensory conflict or general interhemispheric plasticity. These results suggest visual tool-use signals play a critical role in driving tool embodiment. PMID:28196765

  16. Screening methods for post-stroke visual impairment: a systematic review.

    PubMed

    Hanna, Kerry Louise; Hepworth, Lauren Rachel; Rowe, Fiona

    2017-12-01

    To provide a systematic overview of the various tools available to screen for post-stroke visual impairment. A review of the literature was conducted including randomised controlled trials, controlled trials, cohort studies, observational studies, systematic reviews and retrospective medical note reviews. All languages were included and translation was obtained. Participants included adults ≥18 years old diagnosed with a visual impairment as a direct cause of a stroke. We searched a broad range of scholarly online resources and hand-searched articles registers of published, unpublished and on-going trials. Search terms included a variety of MESH terms and alternatives in relation to stroke and visual conditions. Study selection was performed by two authors independently. The quality of the evidence and risk of bias were assessed using the STROBE, GRACE and PRISMA statements. A total of 25 articles (n = 2924) were included in this review. Articles appraised reported on tools screening solely for visual impairments or for general post-stroke disabilities inclusive of vision. The majority of identified tools screen for visual perception including visual neglect (VN), with few screening for visual acuity (VA), visual field (VF) loss or ocular motility (OM) defects. Six articles reported on nine screening tools which combined visual screening assessment alongside screening for general stroke disabilities. Of these, three included screening for VA; three screened for VF loss; three screened for OM defects and all screened for VN. Two tools screened for all visual impairments. A further 19 articles were found which reported on individual vision screening tests in stroke populations; two for VF loss; 11 for VN and six for other visual perceptual defects. Most tools cannot accurately account for those with aphasia or communicative deficits, which are common problems following a stroke. There is currently no standardised visual screening tool which can accurately assess all potential post-stroke visual impairments. The current tools screen for only a number of potential stroke-related impairments, which means many visual defects may be missed. The sensitivity of those which screen for all impairments is significantly lowered when patients are unable to report their visual symptoms. Future research is required to develop a tool capable of assessing stroke patients which encompasses all potential visual deficits and can also be easily performed by both the patients and administered by health care professionals in order to ensure all stroke survivors with visual impairment are accurately identified and managed. Implications for Rehabilitation Over 65% of stroke survivors will suffer from a visual impairment, whereas 45% of stroke units do not assess vision. Visual impairment significantly reduces the quality of life, such as being unable to return to work, driving and depression. This review outlines the available screening methods to accurately identify stroke survivors with visual impairments. Identifying visual impairment after stroke can aid general rehabilitation and thus, improve the quality of life for these patients.

  17. Learn to Teach Chemistry Using Visual Media Tools

    ERIC Educational Resources Information Center

    Turkoguz, Suat

    2012-01-01

    The aim of this study was to investigate undergraduate students' attitudes to using visual media tools in the chemistry laboratory. One hundred and fifteen undergraduates studying science education at Dokuz Eylul University, Turkey participated in the study. They video-recorded chemistry experiments with visual media tools and assessed them on a…

  18. Web-based visual analysis for high-throughput genomics

    PubMed Central

    2013-01-01

    Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618

  19. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder

    PubMed Central

    Gori, Simone; Molteni, Massimo; Facoetti, Andrea

    2016-01-01

    A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders. PMID:27199702

  20. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    ERIC Educational Resources Information Center

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  1. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  2. A Visual Training Tool for Teaching Kanji to Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ikeshita-Yamazoe, Hanae; Miyao, Masutomo

    2016-01-01

    We developed a visual training tool to assist children with developmental dyslexia in learning to recognize and understand Chinese characters (kanji). The visual training tool presents the strokes of a kanji character as separate shapes and requires students to use these fragments to construct the character. Two types of experiments were conducted…

  3. An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran

    2010-01-01

    This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…

  4. AR4VI: AR as an Accessibility Tool for People with Visual Impairments

    PubMed Central

    Coughlan, James M.; Miele, Joshua

    2017-01-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well. PMID:29303163

  5. AR4VI: AR as an Accessibility Tool for People with Visual Impairments.

    PubMed

    Coughlan, James M; Miele, Joshua

    2017-10-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.

  6. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.

    PubMed

    Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal

    2014-12-01

    Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

  7. Experiences in using DISCUS for visualizing human communication

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  8. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE PAGES

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  9. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  10. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  11. Survey of Network Visualization Tools

    DTIC Science & Technology

    2007-12-01

    Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to

  12. Do Bedside Visual Tools Improve Patient and Caregiver Satisfaction? A Systematic Review of the Literature.

    PubMed

    Goyal, Anupama A; Tur, Komalpreet; Mann, Jason; Townsend, Whitney; Flanders, Scott A; Chopra, Vineet

    2017-11-01

    Although common, the impact of low-cost bedside visual tools, such as whiteboards, on patient care is unclear. To systematically review the literature and assess the influence of bedside visual tools on patient satisfaction. Medline, Embase, SCOPUS, Web of Science, CINAHL, and CENTRAL. Studies of adult or pediatric hospitalized patients reporting physician identification, understanding of provider roles, patient-provider communication, and satisfaction with care from the use of visual tools were included. Outcomes were categorized as positive, negative, or neutral based on survey responses for identification, communication, and satisfaction. Two reviewers screened studies, extracted data, and assessed the risk of study bias. Sixteen studies met the inclusion criteria. Visual tools included whiteboards (n = 4), physician pictures (n = 7), whiteboard and picture (n = 1), electronic medical record-based patient portals (n = 3), and formatted notepads (n = 1). Tools improved patients' identification of providers (13/13 studies). The impact on understanding the providers' roles was largely positive (8/10 studies). Visual tools improved patient-provider communication (4/5 studies) and satisfaction (6/8 studies). In adults, satisfaction varied between positive with the use of whiteboards (2/5 studies) and neutral with pictures (1/5 studies). Satisfaction related to pictures in pediatric patients was either positive (1/3 studies) or neutral (1/3 studies). Differences in tool format (individual pictures vs handouts with pictures of all providers) and study design (randomized vs cohort) may explain variable outcomes. The use of bedside visual tools appears to improve patient recognition of providers and patient-provider communication. Future studies that include better design and outcome assessment are necessary before widespread use can be recommended. © 2017 Society of Hospital Medicine

  13. Visual Impairment Screening Assessment (VISA) tool: pilot validation.

    PubMed

    Rowe, Fiona J; Hepworth, Lauren R; Hanna, Kerry L; Howard, Claire

    2018-03-06

    To report and evaluate a new Vision Impairment Screening Assessment (VISA) tool intended for use by the stroke team to improve identification of visual impairment in stroke survivors. Prospective case cohort comparative study. Stroke units at two secondary care hospitals and one tertiary centre. 116 stroke survivors were screened, 62 by naïve and 54 by non-naïve screeners. Both the VISA screening tool and the comprehensive specialist vision assessment measured case history, visual acuity, eye alignment, eye movements, visual field and visual inattention. Full completion of VISA tool and specialist vision assessment was achieved for 89 stroke survivors. Missing data for one or more sections typically related to patient's inability to complete the assessment. Sensitivity and specificity of the VISA screening tool were 90.24% and 85.29%, respectively; the positive and negative predictive values were 93.67% and 78.36%, respectively. Overall agreement was significant; k=0.736. Lowest agreement was found for screening of eye movement and visual inattention deficits. This early validation of the VISA screening tool shows promise in improving detection accuracy for clinicians involved in stroke care who are not specialists in vision problems and lack formal eye training, with potential to lead to more prompt referral with fewer false positives and negatives. Pilot validation indicates acceptability of the VISA tool for screening of visual impairment in stroke survivors. Sensitivity and specificity were high indicating the potential accuracy of the VISA tool for screening purposes. Results of this study have guided the revision of the VISA screening tool ahead of full clinical validation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Audio-video decision support for patients: the documentary genré as a basis for decision aids.

    PubMed

    Volandes, Angelo E; Barry, Michael J; Wood, Fiona; Elwyn, Glyn

    2013-09-01

    Decision support tools are increasingly using audio-visual materials. However, disagreement exists about the use of audio-visual materials as they may be subjective and biased. This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio-visual materials. Three concerns arising from documentary film studies as they apply to the use of audio-visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio-visual materials (selection bias) and how to ensure objectivity (editorial bias). Decision science needs to start a debate about how audio-visual materials are to be used in decision support tools. Simply because audio-visual materials may be subjective and open to bias does not mean that we should not use them. Methods need to be found to ensure consensus around balance and editorial control, such that audio-visual materials can be used. © 2011 John Wiley & Sons Ltd.

  15. Audio‐video decision support for patients: the documentary genré as a basis for decision aids

    PubMed Central

    Volandes, Angelo E.; Barry, Michael J.; Wood, Fiona; Elwyn, Glyn

    2011-01-01

    Abstract Objective  Decision support tools are increasingly using audio‐visual materials. However, disagreement exists about the use of audio‐visual materials as they may be subjective and biased. Methods  This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. Results  The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio‐visual materials. Three concerns arising from documentary film studies as they apply to the use of audio‐visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio‐visual materials (selection bias) and how to ensure objectivity (editorial bias). Discussion  Decision science needs to start a debate about how audio‐visual materials are to be used in decision support tools. Simply because audio‐visual materials may be subjective and open to bias does not mean that we should not use them. Conclusion  Methods need to be found to ensure consensus around balance and editorial control, such that audio‐visual materials can be used. PMID:22032516

  16. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  17. Experience Report: Visual Programming in the Real World

    NASA Technical Reports Server (NTRS)

    Baroth, E.; Hartsough, C

    1994-01-01

    This paper reports direct experience with two commercial, widely used visual programming environments. While neither of these systems is object oriented, the tools have transformed the development process and indicate a direction for visual object oriented tools to proceed.

  18. Can Interactive Visualization Tools Engage and Support Pre-University Students in Exploring Non-Trivial Mathematical Concepts?

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2010-01-01

    Many students find it difficult to engage with mathematical concepts. As a relatively new class of learning tools, visualization tools may be able to promote higher levels of engagement with mathematical concepts. Often, development of new tools may outpace empirical evaluations of the effectiveness of these tools, especially in educational…

  19. Got Graphs? An Assessment of Data Visualization Tools

    NASA Technical Reports Server (NTRS)

    Schaefer, C. M.; Foy, M.

    2015-01-01

    Graphs are powerful tools for simplifying complex data. They are useful for quickly assessing patterns and relationships among one or more variables from a dataset. As the amount of data increases, it becomes more difficult to visualize potential associations. Lifetime Surveillance of Astronaut Health (LSAH) was charged with assessing its current visualization tools along with others on the market to determine whether new tools would be useful for supporting NASA's occupational surveillance effort. It was concluded by members of LSAH that the current tools hindered their ability to provide quick results to researchers working with the department. Due to the high volume of data requests and the many iterations of visualizations requested by researchers, software with a better ability to replicate graphs and edit quickly could improve LSAH's efficiency and lead to faster research results.

  20. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  1. Tools for visually exploring biological networks.

    PubMed

    Suderman, Matthew; Hallett, Michael

    2007-10-15

    Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.

  2. Visual quality assessment of alternative silvicultural practices in upland hardwood management

    Treesearch

    Tim McDonald; Bryce Stokes

    1997-01-01

    Visual impacts of forest operations are of increasing concern to forest managers. Tools are available for evaluating, and potentially avoiding, problems in visual quality resulting from poorly designed harvest unit boundaries. One of these visualization tools is applied in comparing various harvest unit shape alternatives in an upland hardwood stand on steeply sloping...

  3. Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…

  4. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS Tool and Interview Data

    ERIC Educational Resources Information Center

    Christian, Caroline

    2010-01-01

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems…

  5. ASCI visualization tool evaluation, Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegelmeyer, P.

    1997-04-01

    The charter of the ASCI Visualization Common Tools subgroup was to investigate and evaluate 3D scientific visualization tools. As part of that effort, a Tri-Lab evaluation effort was launched in February of 1996. The first step was to agree on a thoroughly documented list of 32 features against which all tool candidates would be evaluated. These evaluation criteria were both gleaned from a user survey and determined from informed extrapolation into the future, particularly as concerns the 3D nature and extremely large size of ASCI data sets. The second step was to winnow a field of 41 candidate tools downmore » to 11. The selection principle was to be as inclusive as practical, retaining every tool that seemed to hold any promise of fulfilling all of ASCI`s visualization needs. These 11 tools were then closely investigated by volunteer evaluators distributed across LANL, LLNL, and SNL. This report contains the results of those evaluations, as well as a discussion of the evaluation philosophy and criteria.« less

  6. Coastal On-line Assessment and Synthesis Tool 2.0

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Navard, Andrew; Nguyen, Beth

    2011-01-01

    COAST (Coastal On-line Assessment and Synthesis Tool) is a 3D, open-source Earth data browser developed by leveraging and enhancing previous NASA open-source tools. These tools use satellite imagery and elevation data in a way that allows any user to zoom from orbit view down into any place on Earth, and enables the user to experience Earth terrain in a visually rich 3D view. The benefits associated with taking advantage of an open-source geo-browser are that it is free, extensible, and offers a worldwide developer community that is available to provide additional development and improvement potential. What makes COAST unique is that it simplifies the process of locating and accessing data sources, and allows a user to combine them into a multi-layered and/or multi-temporal visual analytical look into possible data interrelationships and coeffectors for coastal environment phenomenology. COAST provides users with new data visual analytic capabilities. COAST has been upgraded to maximize use of open-source data access, viewing, and data manipulation software tools. The COAST 2.0 toolset has been developed to increase access to a larger realm of the most commonly implemented data formats used by the coastal science community. New and enhanced functionalities that upgrade COAST to COAST 2.0 include the development of the Temporal Visualization Tool (TVT) plug-in, the Recursive Online Remote Data-Data Mapper (RECORD-DM) utility, the Import Data Tool (IDT), and the Add Points Tool (APT). With these improvements, users can integrate their own data with other data sources, and visualize the resulting layers of different data types (such as spatial and spectral, for simultaneous visual analysis), and visualize temporal changes in areas of interest.

  7. WetDATA Hub: Democratizing Access to Water Data to Accelerate Innovation through Data Visualization, Predictive Analytics and Artificial Intelligence Applications

    NASA Astrophysics Data System (ADS)

    Sarni, W.

    2017-12-01

    Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.

  8. Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods, and Results for a User Study

    DTIC Science & Technology

    2016-11-01

    Display Design, Methods , and Results for a User Study by Christopher J Garneau and Robert F Erbacher Approved for public...NOV 2016 US Army Research Laboratory Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods ...January 2013–September 2015 4. TITLE AND SUBTITLE Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods

  9. Visual impairment and traits of autism in children.

    PubMed

    Wrzesińska, Magdalena; Kapias, Joanna; Nowakowska-Domagała, Katarzyna; Kocur, Józef

    2017-04-30

    Visual impairment present from birth or from an early childhood may lead to psychosocial and emotional disorders. 11-40% of children in the group with visual impairment show traits of autism. The aim of this paper was to present the selected examples of how visual impairment in children is related to the occurrence of autism and to describe the available tools for diagnosing autism in children with visual impairment. So far the relation between visual impairment in children and autism has not been sufficiently confirmed. Psychiatric and psychological diagnosis of children with visual impairment has some difficulties in differentiating between "blindism" and traits typical for autism resulting from a lack of standardized diagnostic tools used to diagnosing children with visual impairment. Another difficulty in diagnosing autism in children with visual impairment is the coexistence of other disabilities in case of most children with vision impairment. Additionally, apart from difficulties in diagnosing autistic disorders in children with eye dysfunctions there is also a question of what tools should be used in therapy and rehabilitation of patients.

  10. Comparative analysis and visualization of multiple collinear genomes

    PubMed Central

    2012-01-01

    Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897

  11. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  12. Visualizing Qualitative Information

    ERIC Educational Resources Information Center

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  13. Visualization of protein interaction networks: problems and solutions

    PubMed Central

    2013-01-01

    Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to interact with external databases. Results Currently, many tools are available and it is not easy for the users choosing one of them. Some tools offer sophisticated 2D and 3D network visualization making available many layout algorithms, others tools are more data-oriented and support integration of interaction data coming from different sources and data annotation. Finally, some specialistic tools are dedicated to the analysis of pathways and cellular processes and are oriented toward systems biology studies, where the dynamic aspects of the processes being studied are central. Conclusion A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins. On the other hand, another emerging trend regards the efficient and parallel implementation of the visualization engine that may provide high interactivity and near real-time response time, as in NAViGaTOR. From a technological point of view, open-source, free and extensible tools, like Cytoscape, guarantee a long term sustainability due to the largeness of the developers and users communities, and provide a great flexibility since new functions are continuously added by the developer community through new plug-ins, but the emerging parallel, often closed-source tools like NAViGaTOR, can offer near real-time response time also in the analysis of very huge PINs. PMID:23368786

  14. Accessing and Visualizing scientific spatiotemporal data

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Bergou, Attila; Berriman, Bruce G.; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia; hide

    2004-01-01

    This paper discusses work done by JPL 's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids These tools do one or more of the following tasks visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.

  15. A Data-Driven Approach to Interactive Visualization of Power Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun

    Driven by emerging industry standards, electric utilities and grid coordination organizations are eager to seek advanced tools to assist grid operators to perform mission-critical tasks and enable them to make quick and accurate decisions. The emerging field of visual analytics holds tremendous promise for improving the business practices in today’s electric power industry. The conducted investigation, however, has revealed that the existing commercial power grid visualization tools heavily rely on human designers, hindering user’s ability to discover. Additionally, for a large grid, it is very labor-intensive and costly to build and maintain the pre-designed visual displays. This project proposes amore » data-driven approach to overcome the common challenges. The proposed approach relies on developing powerful data manipulation algorithms to create visualizations based on the characteristics of empirically or mathematically derived data. The resulting visual presentations emphasize what the data is rather than how the data should be presented, thus fostering comprehension and discovery. Furthermore, the data-driven approach formulates visualizations on-the-fly. It does not require a visualization design stage, completely eliminating or significantly reducing the cost for building and maintaining visual displays. The research and development (R&D) conducted in this project is mainly divided into two phases. The first phase (Phase I & II) focuses on developing data driven techniques for visualization of power grid and its operation. Various data-driven visualization techniques were investigated, including pattern recognition for auto-generation of one-line diagrams, fuzzy model based rich data visualization for situational awareness, etc. The R&D conducted during the second phase (Phase IIB) focuses on enhancing the prototyped data driven visualization tool based on the gathered requirements and use cases. The goal is to evolve the prototyped tool developed during the first phase into a commercial grade product. We will use one of the identified application areas as an example to demonstrate how research results achieved in this project are successfully utilized to address an emerging industry need. In summary, the data-driven visualization approach developed in this project has proven to be promising for building the next-generation power grid visualization tools. Application of this approach has resulted in a state-of-the-art commercial tool currently being leveraged by more than 60 utility organizations in North America and Europe .« less

  16. Information visualization of the minority game

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Herbert, R. D.; Webber, R.

    2008-02-01

    Many dynamical systems produce large quantities of data. How can the system be understood from the output data? Often people are simply overwhelmed by the data. Traditional tools such as tables and plots are often not adequate, and new techniques are needed to help people to analyze the system. In this paper, we propose the use of two spacefilling visualization tools to examine the output from a complex agent-based financial model. We measure the effectiveness and performance of these tools through usability experiments. Based on the experimental results, we develop two new visualization techniques that combine the advantages and discard the disadvantages of the information visualization tools. The model we use is an evolutionary version of the Minority Game which simulates a financial market.

  17. Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3

    NASA Astrophysics Data System (ADS)

    Endsley, K. A.; Billmire, M. G.

    2016-01-01

    Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.

  18. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE PAGES

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.; ...

    2017-07-18

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  19. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  20. A web-based data visualization tool for the MIMIC-II database.

    PubMed

    Lee, Joon; Ribey, Evan; Wallace, James R

    2016-02-04

    Although MIMIC-II, a public intensive care database, has been recognized as an invaluable resource for many medical researchers worldwide, becoming a proficient MIMIC-II researcher requires knowledge of SQL programming and an understanding of the MIMIC-II database schema. These are challenging requirements especially for health researchers and clinicians who may have limited computer proficiency. In order to overcome this challenge, our objective was to create an interactive, web-based MIMIC-II data visualization tool that first-time MIMIC-II users can easily use to explore the database. The tool offers two main features: Explore and Compare. The Explore feature enables the user to select a patient cohort within MIMIC-II and visualize the distributions of various administrative, demographic, and clinical variables within the selected cohort. The Compare feature enables the user to select two patient cohorts and visually compare them with respect to a variety of variables. The tool is also helpful to experienced MIMIC-II researchers who can use it to substantially accelerate the cumbersome and time-consuming steps of writing SQL queries and manually visualizing extracted data. Any interested researcher can use the MIMIC-II data visualization tool for free to quickly and conveniently conduct a preliminary investigation on MIMIC-II with a few mouse clicks. Researchers can also use the tool to learn the characteristics of the MIMIC-II patients. Since it is still impossible to conduct multivariable regression inside the tool, future work includes adding analytics capabilities. Also, the next version of the tool will aim to utilize MIMIC-III which contains more data.

  1. Screening for hearing, visual and dual sensory impairment in older adults using behavioural cues: a validation study.

    PubMed

    Roets-Merken, Lieve M; Zuidema, Sytse U; Vernooij-Dassen, Myrra J F J; Kempen, Gertrudis I J M

    2014-11-01

    This study investigated the psychometric properties of the Severe Dual Sensory Loss screening tool, a tool designed to help nurses and care assistants to identify hearing, visual and dual sensory impairment in older adults. Construct validity of the Severe Dual Sensory Loss screening tool was evaluated using Crohnbach's alpha and factor analysis. Interrater reliability was calculated using Kappa statistics. To evaluate the predictive validity, sensitivity and specificity were calculated by comparison with the criterion standard assessment for hearing and vision. The criterion used for hearing impairment was a hearing loss of ≥40 decibel measured by pure-tone audiometry, and the criterion for visual impairment was a visual acuity of ≤0.3 diopter or a visual field of ≤0.3°. Feasibility was evaluated by the time needed to fill in the screening tool and the clarity of the instruction and items. Prevalence of dual sensory impairment was calculated. A total of 56 older adults receiving aged care and 12 of their nurses and care assistants participated in the study. Crohnbach's alpha was 0.81 for the hearing subscale and 0.84 for the visual subscale. Factor analysis showed two constructs for hearing and two for vision. Kappa was 0.71 for the hearing subscale and 0.74 for the visual subscale. The predictive validity showed a sensitivity of 0.71 and a specificity of 0.72 for the hearing subscale; and a sensitivity of 0.69 and a specificity of 0.78 for the visual subscale. The optimum cut-off point for each subscale was score 1. The nurses and care assistants reported that the Severe Dual Sensory Loss screening tool was easy to use. The prevalence of hearing and vision impairment was 55% and 29%, respectively, and that of dual sensory impairment was 20%. The Severe Dual Sensory Loss screening tool was compared with the criterion standards for hearing and visual impairment and was found a valid and reliable tool, enabling nurses and care assistants to identify hearing, visual and dual sensory impairment among older adults. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sinking Maps: A Conceptual Tool for Visual Metaphor

    ERIC Educational Resources Information Center

    Giampa, Joan Marie

    2012-01-01

    Sinking maps, created by Northern Virginia Community College professor Joan Marie Giampa, are tools that teach fine art students how to construct visual metaphor by conceptually mapping sensory perceptions. Her dissertation answers the question, "Can visual metaphor be conceptually mapped in the art classroom?" In the Prologue, Giampa…

  3. An Interior Signage System for the USAF Academy Hospital

    DTIC Science & Technology

    1979-08-01

    manner. Graphic Design - Graphic design is a design for visual communication . Graphic Design Tools - There are four basic graphic design tools available...specializes in the design of two dimensional visual communication components. The graphic designer utilizes the four graphic design tools in developing

  4. Visual-haptic integration with pliers and tongs: signal “weights” take account of changes in haptic sensitivity caused by different tools

    PubMed Central

    Takahashi, Chie; Watt, Simon J.

    2014-01-01

    When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the “weight” given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different “gains” between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual-haptic devices. PMID:24592245

  5. Informing Hospital Change Processes through Visualization and Simulation: A Case Study at a Children's Emergency Clinic.

    PubMed

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Johansson, Gerd

    2014-01-01

    To demonstrate the use of visualization and simulation tools in order to involve stakeholders and inform the process in hospital change processes, illustrated by an empirical study from a children's emergency clinic. Reorganization and redevelopment of a hospital is a complex activity that involves many stakeholders and demands. Visualization and simulation tools have proven useful for involving practitioners and eliciting relevant knowledge. More knowledge is desired about how these tools can be implemented in practice for hospital planning processes. A participatory planning process including practitioners and researchers was executed over a 3-year period to evaluate a combination of visualization and simulation tools to involve stakeholders in the planning process and to elicit knowledge about needs and requirements. The initial clinic proposal from the architect was discarded as a result of the empirical study. Much general knowledge about the needs of the organization was extracted by means of the adopted tools. Some of the tools proved to be more accessible than others for the practitioners participating in the study. The combination of tools added value to the process by presenting information in alternative ways and eliciting questions from different angles. Visualization and simulation tools inform a planning process (or other types of change processes) by providing the means to see beyond present demands and current work structures. Long-term involvement in combination with accessible tools is central for creating a participatory setting where the practitioners' knowledge guides the process. © 2014 Vendome Group, LLC.

  6. Optimal visual-haptic integration with articulated tools.

    PubMed

    Takahashi, Chie; Watt, Simon J

    2017-05-01

    When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.

  7. OpenGl Visualization Tool and Library Version: 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-06-22

    GLVis is an OpenGL tool for visualization of finite element meshes and functions. When started without any options, GLVis starts a server, which waits for a socket connections and visualizes any recieved data. This way the results of simulations on a remote (parallel) machine can be visualized on the lical user desktop. GLVis can also be used to visualize a mesh with or without a finite element function (solution). It can run a batch sequence of commands (GLVis scripts), or display previously saved socket streams.

  8. Software attribute visualization for high integrity software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, G.M.

    1998-03-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification.

  9. VisAdapt: A Visualization Tool to Support Climate Change Adaptation.

    PubMed

    Johansson, Jimmy; Opach, Tomasz; Glaas, Erik; Neset, Tina-Simone; Navarra, Carlo; Linner, Bjorn-Ola; Rod, Jan Ketil

    2017-01-01

    The web-based visualization VisAdapt tool was developed to help laypeople in the Nordic countries assess how anticipated climate change will impact their homes. The tool guides users through a three-step visual process that helps them explore risks and identify adaptive actions specifically modified to their location and house type. This article walks through the tool's multistep, user-centered design process. Although VisAdapt's target end users are Nordic homeowners, the insights gained from the development process and the lessons learned from the project are applicable to a wide range of domains.

  10. Dyspraxia in a patient with corticobasal degeneration: the role of visual and tactile inputs to action

    PubMed Central

    Graham, N.; Zeman, A.; Young, A.; Patterson, K.; Hodges, J.

    1999-01-01

    OBJECTIVES—To investigate the roles of visual and tactile information in a dyspraxic patient with corticobasal degeneration (CBD) who showed dramatic facilitation in miming the use of a tool or object when he was given a tool to manipulate; and to study the nature of the praxic and neuropsychological deficits in CBD.
METHODS—The subject had clinically diagnosed CBD, and exhibited alien limb behaviour and striking ideomotor dyspraxia. General neuropsychological evaluation focused on constructional and visuospatial abilities, calculation, verbal fluency, episodic and semantic memory, plus spelling and writing because impairments in this domain were presenting complaints. Four experiments assessed the roles of visual and tactile information in the facilitation of motor performance by tools. Experiment 1 evaluated the patient's performance of six limb transitive actions under six conditions: (1) after he described the relevant tool from memory, (2) after he was shown a line drawing of the tool, (3) after he was shown a real exemplar of the tool, (4) after he watched the experimenter perform the action, (5) while he was holding the tool, and (6) immediately after he had performed the action with the tool but with the tool removed from his grasp. Experiment 2 evaluated the use of the same six tools when the patient had tactile but no visual information (while he was blindfolded). Experiments 3 and 4 assessed performance of actions appropriate to the same six tools when the patient had either neutral or inappropriate tactile feedback—that is, while he was holding a non-tool object or a different tool.
RESULTS—Miming of tool use was not facilitated by visual input; moreover, lack of visual information in the blindfolded condition did not reduce performance. The principal positive finding was a dramatic facilitation of the patient's ability to demonstrate object use when he was holding either the appropriate tool or a neutral object. Tools inappropriate to the requested action produced involuntary performance of the stimulus relevant action.
CONCLUSIONS—Tactile stimulation was paramount in the facilitation of motor performance in tool use by this patient with CBD. This outcome suggests that tactile information should be included in models which hypothesise modality specific inputs to the action production system. Significant impairments in spelling and letter production that have not previously been reported in CBD have also been documented.

 PMID:10449556

  11. The Mission Planning Lab: A Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.; Cervantes, Benjamin W.

    2009-01-01

    Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).

  12. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  13. BURRITO: An Interactive Multi-Omic Tool for Visualizing Taxa–Function Relationships in Microbiome Data

    PubMed Central

    McNally, Colin P.; Eng, Alexander; Noecker, Cecilia; Gagne-Maynard, William C.; Borenstein, Elhanan

    2018-01-01

    The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes. PMID:29545787

  14. A validated set of tool pictures with matched objects and non-objects for laterality research.

    PubMed

    Verma, Ark; Brysbaert, Marc

    2015-01-01

    Neuropsychological and neuroimaging research has established that knowledge related to tool use and tool recognition is lateralized to the left cerebral hemisphere. Recently, behavioural studies with the visual half-field technique have confirmed the lateralization. A limitation of this research was that different sets of stimuli had to be used for the comparison of tools to other objects and objects to non-objects. Therefore, we developed a new set of stimuli containing matched triplets of tools, other objects and non-objects. With the new stimulus set, we successfully replicated the findings of no visual field advantage for objects in an object recognition task combined with a significant right visual field advantage for tools in a tool recognition task. The set of stimuli is available as supplemental data to this article.

  15. Application of Multimedia Design Principles to Visuals Used in Course-Books: An Evaluation Tool

    ERIC Educational Resources Information Center

    Kuzu, Abdullah; Akbulut, Yavuz; Sahin, Mehmet Can

    2007-01-01

    This paper introduces an evaluation tool prepared to examine the quality of visuals in course-books. The tool is based on Mayer's Cognitive Theory of Multimedia Learning (i.e. Generative Theory) and its principles regarding the correct use of illustrations within text. The reason to generate the tool, the development process along with the…

  16. Cytoscape: the network visualization tool for GenomeSpace workflows.

    PubMed

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  17. Cytoscape: the network visualization tool for GenomeSpace workflows

    PubMed Central

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537

  18. Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment.

    PubMed

    Duer, Zach; Piilonen, Leo; Glasson, George

    2018-05-01

    Belle2VR is an interactive virtual-reality visualization of subatomic particle physics, designed by an interdisciplinary team as an educational tool for learning about and exploring subatomic particle collisions. This article describes the tool, discusses visualization design decisions, and outlines our process for collaborative development.

  19. Learner-Information Interaction: A Macro-Level Framework Characterizing Visual Cognitive Tools

    ERIC Educational Resources Information Center

    Sedig, Kamran; Liang, Hai-Ning

    2008-01-01

    Visual cognitive tools (VCTs) are external mental aids that maintain and display visual representations (VRs) of information (i.e., structures, objects, concepts, ideas, and problems). VCTs allow learners to operate upon the VRs to perform epistemic (i.e., reasoning and knowledge-based) activities. In VCTs, the mechanism by which learners operate…

  20. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  1. Augmenting white cane reliability using smart glove for visually impaired people.

    PubMed

    Bernieri, Giuseppe; Faramondi, Luca; Pascucci, Federica

    2015-08-01

    The independent mobility problem of visually impaired people has been an active research topic in biomedical engineering: although many smart tools have been proposed, traditional tools (e.g., the white cane) continue to play a prominent role. In this paper a low cost smart glove is presented: the key idea is to minimize the impact in using it by combining the traditional tools with a technological device able to improve the movement performance of the visually impaired people.

  2. Spacecraft Guidance, Navigation, and Control Visualization Tool

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.

  3. Interactive visualization of public health indicators to support policymaking: An exploratory study

    PubMed Central

    Zakkar, Moutasem; Sedig, Kamran

    2017-01-01

    Purpose The purpose of this study is to examine the use of interactive visualizations to represent data/information related to social determinants of health and public health indicators, and to investigate the benefits of such visualizations for health policymaking. Methods: The study developed a prototype for an online interactive visualization tool that represents the social determinants of health. The study participants explored and used the tool. The tool was evaluated using the informal user experience evaluation method. This method involves the prospective users of a tool to use and play with it and their feedback to be collected through interviews. Results: Using visualizations to represent and interact with health indicators has advantages over traditional representation techniques that do not allow users to interact with the information. Communicating healthcare indicators to policymakers is a complex task because of the complexity of the indicators, diversity of audiences, and different audience needs. This complexity can lead to information misinterpretation, which occurs when users of the health data ignore or do not know why, where, and how the data has been produced, or where and how it can be used. Conclusions: Public health policymaking is a complex process, and data is only one element among others needed in this complex process. Researchers and healthcare organizations should conduct a strategic evaluation to assess the usability of interactive visualizations and decision support tools before investing in these tools. Such evaluation should take into consideration the cost, ease of use, learnability, and efficiency of those tools, and the factors that influence policymaking. PMID:29026455

  4. Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data

    PubMed Central

    Fernandez, Nicolas F.; Gundersen, Gregory W.; Rahman, Adeeb; Grimes, Mark L.; Rikova, Klarisa; Hornbeck, Peter; Ma’ayan, Avi

    2017-01-01

    Most tools developed to visualize hierarchically clustered heatmaps generate static images. Clustergrammer is a web-based visualization tool with interactive features such as: zooming, panning, filtering, reordering, sharing, performing enrichment analysis, and providing dynamic gene annotations. Clustergrammer can be used to generate shareable interactive visualizations by uploading a data table to a web-site, or by embedding Clustergrammer in Jupyter Notebooks. The Clustergrammer core libraries can also be used as a toolkit by developers to generate visualizations within their own applications. Clustergrammer is demonstrated using gene expression data from the cancer cell line encyclopedia (CCLE), original post-translational modification data collected from lung cancer cells lines by a mass spectrometry approach, and original cytometry by time of flight (CyTOF) single-cell proteomics data from blood. Clustergrammer enables producing interactive web based visualizations for the analysis of diverse biological data. PMID:28994825

  5. Visual analytics for aviation safety: A collaborative approach to sensemaking

    NASA Astrophysics Data System (ADS)

    Wade, Andrew

    Visual analytics, the "science of analytical reasoning facilitated by interactive visual interfaces", is more than just visualization. Understanding the human reasoning process is essential for designing effective visualization tools and providing correct analyses. This thesis describes the evolution, application and evaluation of a new method for studying analytical reasoning that we have labeled paired analysis. Paired analysis combines subject matter experts (SMEs) and tool experts (TE) in an analytic dyad, here used to investigate aircraft maintenance and safety data. The method was developed and evaluated using interviews, pilot studies and analytic sessions during an internship at the Boeing Company. By enabling a collaborative approach to sensemaking that can be captured by researchers, paired analysis yielded rich data on human analytical reasoning that can be used to support analytic tool development and analyst training. Keywords: visual analytics, paired analysis, sensemaking, boeing, collaborative analysis.

  6. Igloo-Plot: a tool for visualization of multidimensional datasets.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2014-01-01

    Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Molecules to maps: tools for visualization and interaction in support of computational biology.

    PubMed

    Kraemer, E T; Ferrin, T E

    1998-01-01

    The volume of data produced by genome projects, X-ray crystallography, NMR spectroscopy, and electron and confocal microscopy present the bioinformatics community with new challenges for analyzing, understanding, and exchanging this data. At the 1998 Pacific Symposium on Biocomputing, a track entitled 'Molecules to Maps: Tools for Visualization and Interaction in Computational Biology' provided tool developers and users with the opportunity to discuss advances in tools and techniques to assist scientists in evaluating, absorbing, navigating, and correlating this sea of information, through visualization and user interaction. In this paper we present these advances and discuss some of the challenges that remain to be solved.

  8. Visual business ecosystem intelligence: lessons from the field.

    PubMed

    Basole, Rahul C

    2014-01-01

    Macroscopic insight into business ecosystems is becoming increasingly important. With the emergence of new digital business data, opportunities exist to develop rich, interactive visual-analytics tools. Georgia Institute of Technology researchers have been developing and implementing visual business ecosystem intelligence tools in corporate settings. This article discusses the challenges they faced, the lessons learned, and opportunities for future research.

  9. Procedures and Tools Used by Teachers When Completing Functional Vision Assessments with Children with Visual Impairments

    ERIC Educational Resources Information Center

    Kaiser, Justin T.; Herzberg, Tina S.

    2017-01-01

    Introduction: This study analyzed survey responses from 314 teachers of students with visual impairments regarding the tools and procedures used in completing functional vision assessments (FVAs). Methods: Teachers of students with visual impairments in the United States and Canada completed an online survey during spring 2016. Results: The…

  10. Uterine Cancer Statistics

    MedlinePlus

    ... Doing AMIGAS Stay Informed Cancer Home Uterine Cancer Statistics Language: English (US) Español (Spanish) Recommend on Facebook ... the most commonly diagnosed gynecologic cancer. U.S. Cancer Statistics Data Visualizations Tool The Data Visualizations tool makes ...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minelli, Annalisa, E-mail: Annalisa.Minelli@univ-brest.fr; Marchesini, Ivan, E-mail: Ivan.Marchesini@irpi.cnr.it; Taylor, Faith E., E-mail: Faith.Taylor@kcl.ac.uk

    Although there are clear economic and environmental incentives for producing energy from solar and wind power, there can be local opposition to their installation due to their impact upon the landscape. To date, no international guidelines exist to guide quantitative visual impact assessment of these facilities, making the planning process somewhat subjective. In this paper we demonstrate the development of a method and an Open Source GIS tool to quantitatively assess the visual impact of these facilities using line-of-site techniques. The methods here build upon previous studies by (i) more accurately representing the shape of energy producing facilities, (ii) takingmore » into account the distortion of the perceived shape and size of facilities caused by the location of the observer, (iii) calculating the possible obscuring of facilities caused by terrain morphology and (iv) allowing the combination of various facilities to more accurately represent the landscape. The tool has been applied to real and synthetic case studies and compared to recently published results from other models, and demonstrates an improvement in accuracy of the calculated visual impact of facilities. The tool is named r.wind.sun and is freely available from GRASS GIS AddOns. - Highlights: • We develop a tool to quantify wind turbine and photovoltaic panel visual impact. • The tool is freely available to download and edit as a module of GRASS GIS. • The tool takes into account visual distortion of the shape and size of objects. • The accuracy of calculation of visual impact is improved over previous methods.« less

  12. Savant Genome Browser 2: visualization and analysis for population-scale genomics.

    PubMed

    Fiume, Marc; Smith, Eric J M; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M; Robinson, Mark D; Wodak, Shoshana J; Brudno, Michael

    2012-07-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.

  13. Savant Genome Browser 2: visualization and analysis for population-scale genomics

    PubMed Central

    Smith, Eric J. M.; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M.; Robinson, Mark D.; Wodak, Shoshana J.; Brudno, Michael

    2012-01-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com. PMID:22638571

  14. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    NASA Astrophysics Data System (ADS)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  15. Monitoring an Online Course with the GISMO Tool: A Case Study

    ERIC Educational Resources Information Center

    Mazza, Riccardo; Botturi, Luca

    2007-01-01

    This article presents GISMO, a novel, open source, graphic student-tracking tool integrated into Moodle. GISMO represents a further step in information visualization applied to education, and also a novelty in the field of learning management systems applications. The visualizations of the tool, its uses and the benefits it can bring are…

  16. Perception, Cognition, and Effectiveness of Visualizations with Applications in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Borkin, Michelle A.

    Visualization is a powerful tool for data exploration and analysis. With data ever-increasing in quantity and becoming integrated into our daily lives, having effective visualizations is necessary. But how does one design an effective visualization? To answer this question we need to understand how humans perceive, process, and understand visualizations. Through visualization evaluation studies we can gain deeper insight into the basic perception and cognition theory of visualizations, both through domain-specific case studies as well as generalized laboratory experiments. This dissertation presents the results of four evaluation studies, each of which contributes new knowledge to the theory of perception and cognition of visualizations. The results of these studies include a deeper clearer understanding of how color, data representation dimensionality, spatial layout, and visual complexity affect a visualization's effectiveness, as well as how visualization types and visual attributes affect the memorability of a visualization. We first present the results of two domain-specific case study evaluations. The first study is in the field of biomedicine in which we developed a new heart disease diagnostic tool, and conducted a study to evaluate the effectiveness of 2D versus 3D data representations as well as color maps. In the second study, we developed a new visualization tool for filesystem provenance data with applications in computer science and the sciences more broadly. We additionally developed a new time-based hierarchical node grouping method. We then conducted a study to evaluate the effectiveness of the new tool with its radial layout versus the conventional node-link diagram, and the new node grouping method. Finally, we discuss the results of two generalized studies designed to understand what makes a visualization memorable. In the first evaluation we focused on visualization memorability and conducted an online study using Amazon's Mechanical Turk with hundreds of users and thousands of visualizations. For the second evaluation we designed an eye-tracking laboratory study to gain insight into precisely which elements of a visualization contribute to memorability as well as visualization recognition and recall.

  17. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  18. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool

    NASA Astrophysics Data System (ADS)

    Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.

    2018-01-01

    The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.

  19. Resilience to the contralateral visual field bias as a window into object representations

    PubMed Central

    Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.

    2016-01-01

    Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998

  20. FPV: fast protein visualization using Java 3D.

    PubMed

    Can, Tolga; Wang, Yujun; Wang, Yuan-Fang; Su, Jianwen

    2003-05-22

    Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/

  1. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, David S.

    Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in thismore » domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.« less

  2. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.

  3. Differential Tuning of Ventral and Dorsal Streams during the Generation of Common and Uncommon Tool Uses.

    PubMed

    Matheson, Heath E; Buxbaum, Laurel J; Thompson-Schill, Sharon L

    2017-11-01

    Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally.

  4. Visual exploration of images

    NASA Astrophysics Data System (ADS)

    Suaste-Gomez, Ernesto; Leybon, Jaime I.; Rodriguez, D.

    1998-07-01

    Visual scanpath has been an important work applied in neuro- ophthalmic and psychological studies. This is because it has been working like a tool to validate some pathologies such as visual perception in color or black/white images; color blindness; etc. On the other hand, this tool has reached a big field of applications such as marketing. The scanpath over a specific picture, shows the observer interest in color, shapes, letter size, etc.; even tough the picture be among a group of images, this tool has demonstrated to be helpful to catch people interest over a specific advertisement.

  5. Design and implementation of visualization methods for the CHANGES Spatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Cristal, Irina; van Westen, Cees; Bakker, Wim; Greiving, Stefan

    2014-05-01

    The CHANGES Spatial Decision Support System (SDSS) is a web-based system aimed for risk assessment and the evaluation of optimal risk reduction alternatives at local level as a decision support tool in long-term natural risk management. The SDSS use multidimensional information, integrating thematic, spatial, temporal and documentary data. The role of visualization in this context becomes of vital importance for efficiently representing each dimension. This multidimensional aspect of the required for the system risk information, combined with the diversity of the end-users imposes the use of sophisticated visualization methods and tools. The key goal of the present work is to exploit efficiently the large amount of data in relation to the needs of the end-user, utilizing proper visualization techniques. Three main tasks have been accomplished for this purpose: categorization of the end-users, the definition of system's modules and the data definition. The graphical representation of the data and the visualization tools were designed to be relevant to the data type and the purpose of the analysis. Depending on the end-users category, each user should have access to different modules of the system and thus, to the proper visualization environment. The technologies used for the development of the visualization component combine the latest and most innovative open source JavaScript frameworks, such as OpenLayers 2.13.1, ExtJS 4 and GeoExt 2. Moreover, the model-view-controller (MVC) pattern is used in order to ensure flexibility of the system at the implementation level. Using the above technologies, the visualization techniques implemented so far offer interactive map navigation, querying and comparison tools. The map comparison tools are of great importance within the SDSS and include the following: swiping tool for comparison of different data of the same location; raster subtraction for comparison of the same phenomena varying in time; linked views for comparison of data from different locations and a time slider tool for monitoring changes in spatio-temporal data. All these techniques are part of the interactive interface of the system and make use of spatial and spatio-temporal data. Further significant aspects of the visualization component include conventional cartographic techniques and visualization of non-spatial data. The main expectation from the present work is to offer efficient visualization of risk-related data in order to facilitate the decision making process, which is the final purpose of the CHANGES SDSS. This work is part of the "CHANGES" project, funded by the European Community's 7th Framework Programme.

  6. The DiaCog: A Prototype Tool for Visualizing Online Dialog Games' Interactions

    ERIC Educational Resources Information Center

    Yengin, Ilker; Lazarevic, Bojan

    2014-01-01

    This paper proposes and explains the design of a prototype learning tool named the DiaCog. The DiaCog visualizes dialog interactions within an online dialog game by using dynamically created cognitive maps. As a purposefully designed tool for enhancing learning effectiveness the DiaCog might be applicable to dialogs at discussion boards within a…

  7. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph

    2014-01-01

    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,…

  8. Data Visualization: An Exploratory Study into the Software Tools Used by Businesses

    ERIC Educational Resources Information Center

    Diamond, Michael; Mattia, Angela

    2017-01-01

    Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…

  9. A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example

    ERIC Educational Resources Information Center

    Elnagar, Ashraf; Lulu, Leena

    2007-01-01

    We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…

  10. The generation of criteria for selecting analytical tools for landscape management

    Treesearch

    Marilyn Duffey-Armstrong

    1979-01-01

    This paper presents an approach to generating criteria for selecting the analytical tools used to assess visual resources for various landscape management tasks. The approach begins by first establishing the overall parameters for the visual assessment task, and follows by defining the primary requirements of the various sets of analytical tools to be used. Finally,...

  11. Data Visualization: An Exploratory Study into the Software Tools Used by Businesses

    ERIC Educational Resources Information Center

    Diamond, Michael; Mattia, Angela

    2015-01-01

    Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…

  12. Data Presentation and Visualization (DPV) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Mazzone, Rebecca A.; Conroy, Michael P.

    2015-01-01

    Data Presentation and Visualization (DPV) is a subset of the modeling and simulation (M&S) capabilities at Kennedy Space Center (KSC) that endeavors to address the challenges of how to present and share simulation output for analysts, stakeholders, decision makers, and other interested parties. DPV activities focus on the development and provision of visualization tools to meet the objectives identified above, as well as providing supporting tools and capabilities required to make its visualization products available and accessible across NASA.

  13. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    PubMed

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  14. A Visualization Tool for Integrating Research Results at an Underground Mine

    NASA Astrophysics Data System (ADS)

    Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.

    2016-12-01

    Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.

  15. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  16. ATS displays: A reasoning visualization tool for expert systems

    NASA Technical Reports Server (NTRS)

    Selig, William John; Johannes, James D.

    1990-01-01

    Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom.

  17. D-peaks: a visual tool to display ChIP-seq peaks along the genome.

    PubMed

    Brohée, Sylvain; Bontempi, Gianluca

    2012-01-01

    ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.

  18. Getting a handle on virtual tools: An examination of the neuronal activity associated with virtual tool use.

    PubMed

    Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A

    2018-01-31

    Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. C-SPADE: a web-tool for interactive analysis and visualization of drug screening experiments through compound-specific bioactivity dendrograms

    PubMed Central

    Alam, Zaid; Peddinti, Gopal

    2017-01-01

    Abstract The advent of polypharmacology paradigm in drug discovery calls for novel chemoinformatic tools for analyzing compounds’ multi-targeting activities. Such tools should provide an intuitive representation of the chemical space through capturing and visualizing underlying patterns of compound similarities linked to their polypharmacological effects. Most of the existing compound-centric chemoinformatics tools lack interactive options and user interfaces that are critical for the real-time needs of chemical biologists carrying out compound screening experiments. Toward that end, we introduce C-SPADE, an open-source exploratory web-tool for interactive analysis and visualization of drug profiling assays (biochemical, cell-based or cell-free) using compound-centric similarity clustering. C-SPADE allows the users to visually map the chemical diversity of a screening panel, explore investigational compounds in terms of their similarity to the screening panel, perform polypharmacological analyses and guide drug-target interaction predictions. C-SPADE requires only the raw drug profiling data as input, and it automatically retrieves the structural information and constructs the compound clusters in real-time, thereby reducing the time required for manual analysis in drug development or repurposing applications. The web-tool provides a customizable visual workspace that can either be downloaded as figure or Newick tree file or shared as a hyperlink with other users. C-SPADE is freely available at http://cspade.fimm.fi/. PMID:28472495

  20. Experience with Using Multiple Types of Visual Educational Tools during Problem-Based Learning.

    PubMed

    Kang, Bong Jin

    2012-06-01

    This study describes the experience of using multiple types of visual educational tools in the setting of problem-based learning (PBL). The author intends to demonstrate their roles in diverse and efficient ways of clinical reasoning and problem solving. Visual educational tools were introduced in a lecture that included their various types, possible benefits, and some examples. Each group made one mechanistic case diagram per week, and each student designed one diagnostic schema or therapeutic algorithm per week, based on their learning issues. The students were also told to provide commentary, which was intended to give insights into their truthfulness. Subsequently, the author administered a questionnaire about the usefulness and weakness of visual educational tools and the difficulties with performing the work. Also, the qualities of the products were assessed by the author. There were many complaints about the adequacy of the introduction of visual educational tools, also revealed by the many initial inappropriate types of products. However, the exercise presentation in the first week improved the level of understanding regarding their purposes and the method of design. In general, students agreed on the benefits of their help in providing a deep understanding of the cases and the possibility of solving clinical problems efficiently. The commentary was helpful in evaluating the truthfulness of their efforts. Students gave suggestions for increasing the percentage of their scores, considering the efforts. Using multiple types of visual educational tools during PBL can be useful in understanding the diverse routes of clinical reasoning and clinical features.

  1. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Zachary A.; Drager, Andreas; Ebrahim, Ali

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics).more » Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.« less

  2. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    PubMed Central

    King, Zachary A.; Dräger, Andreas; Ebrahim, Ali; Sonnenschein, Nikolaus; Lewis, Nathan E.; Palsson, Bernhard O.

    2015-01-01

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools. PMID:26313928

  3. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  4. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DOE PAGES

    King, Zachary A.; Drager, Andreas; Ebrahim, Ali; ...

    2015-08-27

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics).more » Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.« less

  5. Interactive 3D visualization for theoretical virtual observatories

    NASA Astrophysics Data System (ADS)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  6. Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine.

    PubMed

    Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L

    2018-06-21

    Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.

  7. Developing an Interactive Data Visualization Tool to Assess the Impact of Decision Support on Clinical Operations.

    PubMed

    Huber, Timothy C; Krishnaraj, Arun; Monaghan, Dayna; Gaskin, Cree M

    2018-05-18

    Due to mandates from recent legislation, clinical decision support (CDS) software is being adopted by radiology practices across the country. This software provides imaging study decision support for referring providers at the point of order entry. CDS systems produce a large volume of data, providing opportunities for research and quality improvement. In order to better visualize and analyze trends in this data, an interactive data visualization dashboard was created using a commercially available data visualization platform. Following the integration of a commercially available clinical decision support product into the electronic health record, a dashboard was created using a commercially available data visualization platform (Tableau, Seattle, WA). Data generated by the CDS were exported from the data warehouse, where they were stored, into the platform. This allowed for real-time visualization of the data generated by the decision support software. The creation of the dashboard allowed the output from the CDS platform to be more easily analyzed and facilitated hypothesis generation. Integrating data visualization tools into clinical decision support tools allows for easier data analysis and can streamline research and quality improvement efforts.

  8. Visualizing railroad operations : a tool for planning and monitoring railroad traffic

    DOT National Transportation Integrated Search

    2009-01-01

    This report provides an overview of the development and technology transfer of the Railroad Traffic Planner application, a visualization tool with string line diagrams that show train positions over time. The Railroad Traffic Planner provides support...

  9. Different visual exploration of tool-related gestures in left hemisphere brain damaged patients is associated with poor gestural imitation.

    PubMed

    Vanbellingen, Tim; Schumacher, Rahel; Eggenberger, Noëmi; Hopfner, Simone; Cazzoli, Dario; Preisig, Basil C; Bertschi, Manuel; Nyffeler, Thomas; Gutbrod, Klemens; Bassetti, Claudio L; Bohlhalter, Stephan; Müri, René M

    2015-05-01

    According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer

    PubMed Central

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources. PMID:18974802

  11. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer.

    PubMed

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources.

  12. Visualizing inequality

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-07-01

    The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.

  13. Visual Information for the Desktop, version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2006-03-29

    VZIN integrates visual analytics capabilities into popular desktop tools to aid a user in searching and understanding an information space. VZIN allows users to Drag-Drop-Visualize-Explore-Organize information within tools such as Microsoft Office, Windows Explorer, Excel, and Outlook. VZIN is tailorable to specific client or industry requirements. VZIN follows the desktop metaphors so that advanced analytical capabilities are available with minimal user training.

  14. From a Gloss to a Learning Tool: Does Visual Aids Enhance Better Sentence Comprehension?

    ERIC Educational Resources Information Center

    Sato, Takeshi; Suzuki, Akio

    2012-01-01

    The aim of this study is to optimize CALL environments as a learning tool rather than a gloss, focusing on the learning of polysemous words which refer to spatial relationship between objects. A lot of research has already been conducted to examine the efficacy of visual glosses while reading L2 texts and has reported that visual glosses can be…

  15. Evaluation of the Level of Students with Visual Impairments in Turkey in Terms of the Concepts of Mobility Prerequisites (Body Plane/Traffic)

    ERIC Educational Resources Information Center

    Altunay Arslantekin, Banu

    2017-01-01

    Purpose: Visually impaired people are weak in terms of their learning words and concepts by hearing them and their experience of the world with their bodies. In addition to developing a standardized assessment tool in the Development of Orientation and Mobility Skill Assessment Tool (OMSAT/YOBDA) for Visually Impaired Students Project, supported…

  16. CTViz: A tool for the visualization of transport in nanocomposites.

    PubMed

    Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A

    2016-05-01

    A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Different Strokes for Different Folks: Visual Presentation Design between Disciplines

    PubMed Central

    Gomez, Steven R.; Jianu, Radu; Ziemkiewicz, Caroline; Guo, Hua; Laidlaw, David H.

    2015-01-01

    We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard “chalk talks”. We found design differences in slideshows using two methods – coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant’s own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information. PMID:26357149

  18. Icarus: visualizer for de novo assembly evaluation.

    PubMed

    Mikheenko, Alla; Valin, Gleb; Prjibelski, Andrey; Saveliev, Vladislav; Gurevich, Alexey

    2016-11-01

    : Data visualization plays an increasingly important role in NGS data analysis. With advances in both sequencing and computational technologies, it has become a new bottleneck in genomics studies. Indeed, evaluation of de novo genome assemblies is one of the areas that can benefit from the visualization. However, even though multiple quality assessment methods are now available, existing visualization tools are hardly suitable for this purpose. Here, we present Icarus-a novel genome visualizer for accurate assessment and analysis of genomic draft assemblies, which is based on the tool QUAST. Icarus can be used in studies where a related reference genome is available, as well as for non-model organisms. The tool is available online and as a standalone application. http://cab.spbu.ru/software/icarus CONTACT: aleksey.gurevich@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  20. Different Strokes for Different Folks: Visual Presentation Design between Disciplines.

    PubMed

    Gomez, S R; Jianu, R; Ziemkiewicz, C; Guo, Hua; Laidlaw, D H

    2012-12-01

    We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard "chalk talks". We found design differences in slideshows using two methods - coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant's own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information.

  1. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation.

    PubMed

    Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli

    2016-01-01

    Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications.

  2. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation

    PubMed Central

    Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli

    2016-01-01

    Objects: Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. Methods: The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. Results: The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Conclusions: Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications. PMID:27199729

  3. Tool use and the distalization of the end-effector

    PubMed Central

    Bonaiuto, James B.; Jacobs, Stéphane; Frey, Scott H.

    2009-01-01

    We review recent neurophysiological data from macaques and humans suggesting that the use of tools extends the internal representation of the actor’s hand, and relate it to our modeling of the visual control of grasping. We introduce the idea that, in addition to extending the body schema to incorporate the tool, tool use involves distalization of the end-effector from hand to tool. Different tools extend the body schema in different ways, with a displaced visual target and a novel, task-specific processing of haptic feedback to the hand. This distalization is critical in order to exploit the unique functional capacities engendered by complex tools. PMID:19347356

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springmeyer, R R; Brugger, E; Cook, R

    The Data group provides data analysis and visualization support to its customers. This consists primarily of the development and support of VisIt, a data analysis and visualization tool. Support ranges from answering questions about the tool, providing classes on how to use the tool, and performing data analysis and visualization for customers. The Information Management and Graphics Group supports and develops tools that enhance our ability to access, display, and understand large, complex data sets. Activities include applying visualization software for large scale data exploration; running video production labs on two networks; supporting graphics libraries and tools for end users;more » maintaining PowerWalls and assorted other displays; and developing software for searching and managing scientific data. Researchers in the Center for Applied Scientific Computing (CASC) work on various projects including the development of visualization techniques for large scale data exploration that are funded by the ASC program, among others. The researchers also have LDRD projects and collaborations with other lab researchers, academia, and industry. The IMG group is located in the Terascale Simulation Facility, home to Dawn, Atlas, BGL, and others, which includes both classified and unclassified visualization theaters, a visualization computer floor and deployment workshop, and video production labs. We continued to provide the traditional graphics group consulting and video production support. We maintained five PowerWalls and many other displays. We deployed a 576-node Opteron/IB cluster with 72 TB of memory providing a visualization production server on our classified network. We continue to support a 128-node Opteron/IB cluster providing a visualization production server for our unclassified systems and an older 256-node Opteron/IB cluster for the classified systems, as well as several smaller clusters to drive the PowerWalls. The visualization production systems includes NFS servers to provide dedicated storage for data analysis and visualization. The ASC projects have delivered new versions of visualization and scientific data management tools to end users and continue to refine them. VisIt had 4 releases during the past year, ending with VisIt 2.0. We released version 2.4 of Hopper, a Java application for managing and transferring files. This release included a graphical disk usage view which works on all types of connections and an aggregated copy feature for quickly transferring massive datasets quickly and efficiently to HPSS. We continue to use and develop Blockbuster and Telepath. Both the VisIt and IMG teams were engaged in a variety of movie production efforts during the past year in addition to the development tasks.« less

  5. A Java tool for dynamic web-based 3D visualization of anatomy and overlapping gene or protein expression patterns.

    PubMed

    Gerth, Victor E; Vize, Peter D

    2005-04-01

    The Gene Expression Viewer is a web-launched three-dimensional visualization tool, tailored to compare surface reconstructions of multi-channel image volumes generated by confocal microscopy or micro-CT.

  6. SocialMood: an information visualization tool to measure the mood of the people in social networks

    NASA Astrophysics Data System (ADS)

    Amorim, Guilherme; Franco, Roberto; Moraes, Rodolfo; Figueiredo, Bruno; Miranda, João.; Dobrões, José; Afonso, Ricardo; Meiguins, Bianchi

    2013-12-01

    Based on the arena of social networks, the tool developed in this study aims to identify trends mood among undergraduate students. Combining the methodology Self-Assessment Manikin (SAM), which originated in the field of Psychology, the system filters the content provided on the Web and isolates certain words, establishing a range of values as perceived positive, negative or neutral. A Big Data summarizing the results, assisting in the construction and visualization of behavioral profiles generic, so we have a guideline for the development of information visualization tools for social networks.

  7. Three visualization approaches for communicating and exploring PIT tag data

    USGS Publications Warehouse

    Letcher, Benjamin; Walker, Jeffrey D.; O'Donnell, Matthew; Whiteley, Andrew R.; Nislow, Keith; Coombs, Jason

    2018-01-01

    As the number, size and complexity of ecological datasets has increased, narrative and interactive raw data visualizations have emerged as important tools for exploring and understanding these large datasets. As a demonstration, we developed three visualizations to communicate and explore passive integrated transponder tag data from two long-term field studies. We created three independent visualizations for the same dataset, allowing separate entry points for users with different goals and experience levels. The first visualization uses a narrative approach to introduce users to the study. The second visualization provides interactive cross-filters that allow users to explore multi-variate relationships in the dataset. The last visualization allows users to visualize the movement histories of individual fish within the stream network. This suite of visualization tools allows a progressive discovery of more detailed information and should make the data accessible to users with a wide variety of backgrounds and interests.

  8. A WebGL Tool for Visualizing the Topology of the Sun's Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Duffy, A.; Cheung, C.; DeRosa, M. L.

    2012-12-01

    We present a web-based, topology-viewing tool that allows users to visualize the geometry and topology of the Sun's 3D coronal magnetic field in an interactive manner. The tool is implemented using, open-source, mature, modern web technologies including WebGL, jQuery, HTML 5, and CSS 3, which are compatible with nearly all modern web browsers. As opposed to the traditional method of visualization, which involves the downloading and setup of various software packages-proprietary and otherwise-the tool presents a clean interface that allows the user to easily load and manipulate the model, while also offering great power to choose which topological features are displayed. The tool accepts data encoded in the JSON open format that has libraries available for nearly every major programming language, making it simple to generate the data.

  9. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    NASA Astrophysics Data System (ADS)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  10. A training tool for visual aids. Using tracing techniques to create visual aids.

    PubMed

    Clark, M; Walters, J E; Wileman, R

    1982-01-01

    This training tool explains the use of tracing techniques to create visuals requiring few materials and no training of special skills in drawing. Magazines, books, posters, and many other materials contain photographs and drawings which can be used to create visual aids for health training and public health education. The materials required are pencils, an eraser, crayons or colored marking pens, paper clips, tracing and drawing paper, carbon paper, and sources of visual images. The procedure is described. The material was prepared by INTRAH staff members. Other materials include how to evaluate teaching, how to create a family health case study and training in group dynamics.

  11. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  12. deepTools2: a next generation web server for deep-sequencing data analysis.

    PubMed

    Ramírez, Fidel; Ryan, Devon P; Grüning, Björn; Bhardwaj, Vivek; Kilpert, Fabian; Richter, Andreas S; Heyne, Steffen; Dündar, Friederike; Manke, Thomas

    2016-07-08

    We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Perceptual issues in scientific visualization

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.

    1989-01-01

    In order to develop effective tools for scientific visulaization, consideration must be given to the perceptual competencies, limitations, and biases of the human operator. Perceptual psychology has amassed a rich body of research on these issues and can lend insight to the development of visualization tehcniques. Within a perceptual psychological framework, the computer display screen can best be thought of as a special kind of impoverished visual environemnt. Guidelines can be gleaned from the psychological literature to help visualization tool designers avoid ambiguities and/or illusions in the resulting data displays.

  14. Visualization and Analytics Software Tools for Peregrine System |

    Science.gov Websites

    R is a language and environment for statistical computing and graphics. Go to the R web site for System Visualization and Analytics Software Tools for Peregrine System Learn about the available visualization for OpenGL-based applications. For more information, please go to the FastX page. ParaView An open

  15. Toward a Scalable Visualization System for Network Traffic Monitoring

    NASA Astrophysics Data System (ADS)

    Malécot, Erwan Le; Kohara, Masayoshi; Hori, Yoshiaki; Sakurai, Kouichi

    With the multiplication of attacks against computer networks, system administrators are required to monitor carefully the traffic exchanged by the networks they manage. However, that monitoring task is increasingly laborious because of the augmentation of the amount of data to analyze. And that trend is going to intensify with the explosion of the number of devices connected to computer networks along with the global rise of the available network bandwidth. So system administrators now heavily rely on automated tools to assist them and simplify the analysis of the data. Yet, these tools provide limited support and, most of the time, require highly skilled operators. Recently, some research teams have started to study the application of visualization techniques to the analysis of network traffic data. We believe that this original approach can also allow system administrators to deal with the large amount of data they have to process. In this paper, we introduce a tool for network traffic monitoring using visualization techniques that we developed in order to assist the system administrators of our corporate network. We explain how we designed the tool and some of the choices we made regarding the visualization techniques to use. The resulting tool proposes two linked representations of the network traffic and activity, one in 2D and the other in 3D. As 2D and 3D visualization techniques have different assets, we resulted in combining them in our tool to take advantage of their complementarity. We finally tested our tool in order to evaluate the accuracy of our approach.

  16. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    PubMed

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  17. Energetically optimal travel across terrain: visualizations and a new metric of geographic distance with anthropological applications

    NASA Astrophysics Data System (ADS)

    Wood, Brian M.; Wood, Zoë J.

    2006-01-01

    We present a visualization and computation tool for modeling the caloric cost of pedestrian travel across three dimensional terrains. This tool is being used in ongoing archaeological research that analyzes how costs of locomotion affect the spatial distribution of trails and artifacts across archaeological landscapes. Throughout human history, traveling by foot has been the most common form of transportation, and therefore analyses of pedestrian travel costs are important for understanding prehistoric patterns of resource acquisition, migration, trade, and political interaction. Traditionally, archaeologists have measured geographic proximity based on "as the crow flies" distance. We propose new methods for terrain visualization and analysis based on measuring paths of least caloric expense, calculated using well established metabolic equations. Our approach provides a human centered metric of geographic closeness, and overcomes significant limitations of available Geographic Information System (GIS) software. We demonstrate such path computations and visualizations applied to archaeological research questions. Our system includes tools to visualize: energetic cost surfaces, comparisons of the elevation profiles of shortest paths versus least cost paths, and the display of paths of least caloric effort on Digital Elevation Models (DEMs). These analysis tools can be applied to calculate and visualize 1) likely locations of prehistoric trails and 2) expected ratios of raw material types to be recovered at archaeological sites.

  18. Visualizing vascular structures in virtual environments

    NASA Astrophysics Data System (ADS)

    Wischgoll, Thomas

    2013-01-01

    In order to learn more about the cause of coronary heart diseases and develop diagnostic tools, the extraction and visualization of vascular structures from volumetric scans for further analysis is an important step. By determining a geometric representation of the vasculature, the geometry can be inspected and additional quantitative data calculated and incorporated into the visualization of the vasculature. To provide a more user-friendly visualization tool, virtual environment paradigms can be utilized. This paper describes techniques for interactive rendering of large-scale vascular structures within virtual environments. This can be applied to almost any virtual environment configuration, such as CAVE-type displays. Specifically, the tools presented in this paper were tested on a Barco I-Space and a large 62x108 inch passive projection screen with a Kinect sensor for user tracking.

  19. Visualization of the NASA ICON mission in 3d

    NASA Astrophysics Data System (ADS)

    Mendez, R. A., Jr.; Immel, T. J.; Miller, N.

    2016-12-01

    The ICON Explorer mission (http://icon.ssl.berkeley.edu) will provide several data products for the atmosphere and ionosphere after its launch in 2017. This project will support the mission by investigating the capability of these tools for visualization of current and predicted observatory characteristics and data acquisition. Visualization of this mission can be accomplished using tools like Google Earth or CesiumJS, as well assistance from Java or Python. Ideally we will bring this visualization into the homes of people without the need of additional software. The path of launching a standalone website, building this environment, and a full toolkit will be discussed. Eventually, the initial work could lead to the addition of a downloadable visualization packages for mission demonstration or science visualization.

  20. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. What software tools can I use to view ERBE HDF data products?

    Atmospheric Science Data Center

    2014-12-08

    Visualize ERBE data with view_hdf: view_hdf a visualization and analysis tool for accessing data stored in Hierarchical Data Format (HDF) and HDF-EOS. ... Start HDFView Select File Select Open Select the file to be viewed ERBE: Data Access ...

  2. Visualizing Terrestrial and Aquatic Systems in 3D

    EPA Science Inventory

    The need for better visualization tools for environmental science is well documented, and the Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to both help scientists produce effective environmental science visualizations and to determine which visualizatio...

  3. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  4. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    DTIC Science & Technology

    2015-09-01

    actually feel more comfortable with the black screen and white letters now. I would also like to thank James Calusdian for his tireless efforts in...originally designed by Willow Garage and currently maintained by the Open Source Robotics Foundation, is a powerful tool because it utilizes object...Visualization The Rviz package, developed by Willow Garage, comes standard with ROS and is a powerful visualization tool that allows users to visualize

  5. Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.

  6. A standard-enabled workflow for synthetic biology.

    PubMed

    Myers, Chris J; Beal, Jacob; Gorochowski, Thomas E; Kuwahara, Hiroyuki; Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Nguyen, Tramy; Oberortner, Ernst; Samineni, Meher; Wipat, Anil; Zhang, Michael; Zundel, Zach

    2017-06-15

    A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Dynamic visualization techniques for high consequence software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, G.M.

    1998-02-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification. The prototype tool is described along with the requirements constraint language after a brief literature review is presented. Examples of howmore » the tool can be used are also presented. In conclusion, the most significant advantage of this tool is to provide a first step in evaluating specification completeness, and to provide a more productive method for program comprehension and debugging. The expected payoff is increased software surety confidence, increased program comprehension, and reduced development and debugging time.« less

  8. MATISSE a web-based tool to access, visualize and analyze high resolution minor bodies observation

    NASA Astrophysics Data System (ADS)

    Zinzi, Angelo; Capria, Maria Teresa; Palomba, Ernesto; Antonelli, Lucio Angelo; Giommi, Paolo

    2016-07-01

    In the recent years planetary exploration missions acquired data from minor bodies (i.e., dwarf planets, asteroid and comets) at a detail level never reached before. Since these objects often present very irregular shapes (as in the case of the comet 67P Churyumov-Gerasimenko target of the ESA Rosetta mission) "classical" bidimensional projections of observations are difficult to understand. With the aim of providing the scientific community a tool to access, visualize and analyze data in a new way, ASI Science Data Center started to develop MATISSE (Multi-purposed Advanced Tool for the Instruments for the Solar System Exploration - http://tools.asdc.asi.it/matisse.jsp) in late 2012. This tool allows 3D web-based visualization of data acquired by planetary exploration missions: the output could either be the straightforward projection of the selected observation over the shape model of the target body or the visualization of a high-order product (average/mosaic, difference, ratio, RGB) computed directly online with MATISSE. Standard outputs of the tool also comprise downloadable files to be used with GIS software (GeoTIFF and ENVI format) and 3D very high-resolution files to be viewed by means of the free software Paraview. During this period the first and most frequent exploitation of the tool has been related to visualization of data acquired by VIRTIS-M instruments onboard Rosetta observing the comet 67P. The success of this task, well represented by the good number of published works that used images made with MATISSE confirmed the need of a different approach to correctly visualize data coming from irregular shaped bodies. In the next future the datasets available to MATISSE are planned to be extended, starting from the addition of VIR-Dawn observations of both Vesta and Ceres and also using standard protocols to access data stored in external repositories, such as NASA ODE and Planetary VO.

  9. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  10. Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas

    PubMed Central

    Liu, Daoming; Kenjeres, Sasa

    2017-01-01

    In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD) and computational reaction dynamics (CRD) approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency) of data results in the Keyhole Markup Language (KML) format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands). It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations. PMID:28257078

  11. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  12. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.

    PubMed

    Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

  13. A guide to the visual analysis and communication of biomolecular structural data.

    PubMed

    Johnson, Graham T; Hertig, Samuel

    2014-10-01

    Biologists regularly face an increasingly difficult task - to effectively communicate bigger and more complex structural data using an ever-expanding suite of visualization tools. Whether presenting results to peers or educating an outreach audience, a scientist can achieve maximal impact with minimal production time by systematically identifying an audience's needs, planning solutions from a variety of visual communication techniques and then applying the most appropriate software tools. A guide to available resources that range from software tools to professional illustrators can help researchers to generate better figures and presentations tailored to any audience's needs, and enable artistically inclined scientists to create captivating outreach imagery.

  14. Tool use in left-brain-damaged patients: Difficulties in reasoning but not in estimating the physical properties of objects.

    PubMed

    Faye, Alexandrine; Jacquin-Courtois, Sophie; Osiurak, François

    2018-03-01

    The purpose of this study was to deepen our understanding of the cognitive bases of human tool use based on the technical reasoning hypothesis (i.e., the reasoning-based approach). This approach assumes that tool use is supported by the ability to reason about an object's physical properties (e.g., length, weight, strength, etc.) to perform mechanical actions (e.g., lever). In this framework, an important issue is to understand whether left-brain-damaged (LBD) individuals with tool-use deficits are still able to estimate the physical object's properties necessary to use the tool. Eleven LBD patients and 12 control participants performed 3 original experimental tasks: Use-Length (visual evaluation of the length of a stick to bring down a target), Visual-Length (to visually compare objects of different lengths) and Addition-Length (to visually compare added lengths). Participants were also tested on conventional tasks: Familiar Tool Use and Mechanical Problem-Solving (novel tools). LBD patients had more difficulties than controls on both conventional tasks. No significant differences were observed for the 3 experimental tasks. These results extend the reasoning-based approach, stressing that it might not be the representation of length that is impaired in LBD patients, but rather the ability to generate mechanical actions based on physical object properties. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Instant Gratification: Striking a Balance Between Rich Interactive Visualization and Ease of Use for Casual Web Surfers

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.

    2004-12-01

    Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.

  16. BilKristal 2.0: A tool for pattern information extraction from crystal structures

    NASA Astrophysics Data System (ADS)

    Okuyan, Erhan; Güdükbay, Uğur

    2014-01-01

    We present a revised version of the BilKristal tool of Okuyan et al. (2007). We converted the development environment into Microsoft Visual Studio 2005 in order to resolve compatibility issues. We added multi-core CPU support and improvements are made to graphics functions in order to improve performance. Discovered bugs are fixed and exporting functionality to a material visualization tool is added.

  17. VStar: Variable star data visualization and analysis tool

    NASA Astrophysics Data System (ADS)

    VStar Team

    2014-07-01

    VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.

  18. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  19. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  20. A Multidimensional Analysis Tool for Visualizing Online Interactions

    ERIC Educational Resources Information Center

    Kim, Minjeong; Lee, Eunchul

    2012-01-01

    This study proposes and verifies the performance of an analysis tool for visualizing online interactions. A review of the most widely used methods for analyzing online interactions, including quantitative analysis, content analysis, and social network analysis methods, indicates these analysis methods have some limitations resulting from their…

  1. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    EPA Science Inventory

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  2. The Odd Fish Story

    ERIC Educational Resources Information Center

    Essley, Roger

    2005-01-01

    Essley was a "different learner," and now he works in schools showing teachers how visual/verbal tools can help all students, including their "different learners," succeed. One valuable tool is storyboarding, a process by which students build a story through visual stages--drafts, conferences, revisions--before writing even begins. Essley shares…

  3. A Survey of Educational Uses of Molecular Visualization Freeware†

    PubMed Central

    Craig, Paul A.; Michel, Lea Vacca; Bateman, Robert C.

    2014-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization. Participants (n = 116) were asked to complete 11 multiple choice and 3 open ended questions. To provide more depth to these results, interviews were conducted with 12 of the participants. Many common themes arose in the survey and the interviews: a shared passion for the use of molecular visualization in teaching, broad diversity in software preference, the lack of uniform standards for assessment, a desire for more quality resources, and the challenge of enabling students to incorporate visualization in their learning. The majority of respondents had used molecular visualization for more than 5 years and mentioned 32 different visualization tools used, with Jmol and PyMOL clearly standing out as the most frequently used programs at the present time. The most common uses of molecular visualization in teaching were lecture and lab illustrations, followed by exam questions, in-class or in-laboratory exercises, and student projects, which frequently included presentations. While a minority of instructors used a grading rubric/scoring matrix for assessment of student learning with molecular visualization, many expressed a desire for common use assessment tools. PMID:23649886

  4. Applying Pragmatics Principles for Interaction with Visual Analytics.

    PubMed

    Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac

    2018-01-01

    Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.

  5. Multi-Spacecraft Analysis with Generic Visualization Tools

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Vela, L.; Gonzalez, C.; Jeffers, S.

    2010-12-01

    To handle the needs of scientists today and in the future, software tools are going to have to take better advantage of the currently available hardware. Specifically, computing power, memory, and disk space have become cheaper, while bandwidth has become more expensive due to the explosion of online applications. To overcome these limitations, we have enhanced our Southwest Data Display and Analysis System (SDDAS) to take better advantage of the hardware by utilizing threads and data caching. Furthermore, the system was enhanced to support a framework for adding data formats and data visualization methods without costly rewrites. Visualization tools can speed analysis of many common scientific tasks and we will present a suite of tools that encompass the entire process of retrieving data from multiple data stores to common visualizations of the data. The goals for the end user are ease of use and interactivity with the data and the resulting plots. The data can be simultaneously plotted in a variety of formats and/or time and spatial resolutions. The software will allow one to slice and separate data to achieve other visualizations. Furthermore, one can interact with the data using the GUI or through an embedded language based on the Lua scripting language. The data presented will be primarily from the Cluster and Mars Express missions; however, the tools are data type agnostic and can be used for virtually any type of data.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachuilo, Andrew R; Ragan, Eric; Goodall, John R

    Visualization tools can take advantage of multiple coordinated views to support analysis of large, multidimensional data sets. Effective design of such views and layouts can be challenging, but understanding users analysis strategies can inform design improvements. We outline an approach for intelligent design configuration of visualization tools with multiple coordinated views, and we discuss a proposed software framework to support the approach. The proposed software framework could capture and learn from user interaction data to automate new compositions of views and widgets. Such a framework could reduce the time needed for meta analysis of the visualization use and lead tomore » more effective visualization design.« less

  7. PhyloDet: a scalable visualization tool for mapping multiple traits to large evolutionary trees

    PubMed Central

    Lee, Bongshin; Nachmanson, Lev; Robertson, George; Carlson, Jonathan M.; Heckerman, David

    2009-01-01

    Summary: Evolutionary biologists are often interested in finding correlations among biological traits across a number of species, as such correlations may lead to testable hypotheses about the underlying function. Because some species are more closely related than others, computing and visualizing these correlations must be done in the context of the evolutionary tree that relates species. In this note, we introduce PhyloDet (short for PhyloDetective), an evolutionary tree visualization tool that enables biologists to visualize multiple traits mapped to the tree. Availability: http://research.microsoft.com/cue/phylodet/ Contact: bongshin@microsoft.com. PMID:19633096

  8. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Duggirala, Vedavyas; Correa, Ricardo

    2007-04-17

    Abstract: "This paper presents a new direction in security awareness tools for system administration--the Host-Network (HoNe) Visualizer. Our requirements for the HoNe Visualizer come from needs system administrators expressed in interviews, from reviewing the literature, and from conducting usability studies with prototypes. We present a tool taxonomy that serves as a framework for our literature review, and we use the taxonomy to show what is missing in the administrator's arsenal. Then we unveil our tool and its supporting infrastructure that we believe will fill the empty niche. We found that most security tools provide either an internal view of amore » host or an external view of traffic on a network. Our interviewees revealed how they must construct a mental end-to-end view from separate tools that individually give an incomplete view, expending valuable time and mental effort. Because of limitations designed into TCP/IP [RFC-791, RFC-793], no tool can effectively correlate host and network data into an end-to-end view without kernel modifications. Currently, no other visualization exists to support end-to-end analysis. But HoNe's infrastructure overcomes TCP/IP's limitations bridging the network and transport layers in the network stack and making end-to-end correlation possible. The capstone is the HoNe Visualizer that amplifies the users' cognitive power and reduces their mental workload by illustrating the correlated data graphically. Users said HoNe would be particularly good for discovering day-zero exploits. Our usability study revealed that users performed better on intrusion detection tasks using our visualization than with tools they were accustomed to using regardless of their experience level."« less

  9. Applying the metro map to software development management

    NASA Astrophysics Data System (ADS)

    Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción

    2010-01-01

    This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.

  10. Real-Time Visualization of Network Behaviors for Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.

    Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less

  11. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  12. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data.

    PubMed

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-10-15

    Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  13. Visualization of JPEG Metadata

    NASA Astrophysics Data System (ADS)

    Malik Mohamad, Kamaruddin; Deris, Mustafa Mat

    There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.

  14. Global Precipitation Mission Visualization Tool

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  15. Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    ERIC Educational Resources Information Center

    McClean, Phillip; Johnson, Christina; Rogers, Roxanne; Daniels, Lisa; Reber, John; Slator, Brian M.; Terpstra, Jeff; White, Alan

    2005-01-01

    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners…

  16. Visual Tools as Mediational Means: A Methodological Investigation

    ERIC Educational Resources Information Center

    Hilppö, Jaakko; Lipponen, Lasse; Kumpulainen, Kristiina; Rajala, Antti

    2017-01-01

    In this study, we investigated how Finnish children used photographs and drawings to discuss their preschool day experiences in focus groups. Building on sociocultural perspectives on mediated action, we specifically focused on how these visual tools were used as mediational means in sharing experiences. The results of our embodied interaction…

  17. Efficacy of Handheld Electronic Visual Supports to Enhance Vocabulary in Children with ASD

    ERIC Educational Resources Information Center

    Ganz, Jennifer B.; Boles, Margot B.; Goodwyn, Fara D.; Flores, Margaret M.

    2014-01-01

    Although electronic tools such as handheld computers have become increasingly common throughout society, implementation of such tools to improve skills in individuals with intellectual and developmental disabilities has lagged in the professional literature. However, the use of visual scripts for individuals with disabilities, particularly those…

  18. Using a Self-Administered Visual Basic Software Tool To Teach Psychological Concepts.

    ERIC Educational Resources Information Center

    Strang, Harold R.; Sullivan, Amie K.; Schoeny, Zahrl G.

    2002-01-01

    Introduces LearningLinks, a Visual Basic software tool that allows teachers to create individualized learning modules that use constructivist and behavioral learning principles. Describes field testing of undergraduates at the University of Virginia that tested a module designed to improve understanding of the psychological concepts of…

  19. Applying Dataflow Architecture and Visualization Tools to In Vitro Pharmacology Data Automation.

    PubMed

    Pechter, David; Xu, Serena; Kurtz, Marc; Williams, Steven; Sonatore, Lisa; Villafania, Artjohn; Agrawal, Sony

    2016-12-01

    The pace and complexity of modern drug discovery places ever-increasing demands on scientists for data analysis and interpretation. Data flow programming and modern visualization tools address these demands directly. Three different requirements-one for allosteric modulator analysis, one for a specialized clotting analysis, and one for enzyme global progress curve analysis-are reviewed, and their execution in a combined data flow/visualization environment is outlined. © 2016 Society for Laboratory Automation and Screening.

  20. Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity

    NASA Astrophysics Data System (ADS)

    Longobardo, Andrea; Capria, Maria Teresa; Zinzi, Angelo; Ivanovski, Stavro; Giardino, Marco; di Persio, Giuseppe; Fonte, Sergio; Palomba, Ernesto; Antonelli, Lucio Angelo; Fonte, Sergio; Giommi, Paolo; Europlanet VESPA 2020 Team

    2017-06-01

    This paper presents the VESPA (Virtual European Solar and Planetary Access) activity, developed in the context of the Europlanet 2020 Horizon project, aimed at providing tools for analysis and visualization of planetary data provided by space missions. In particular, the activity is focused on minor bodies of the Solar System.The structure of the computation node, the algorithms developed for analysis of planetary surfaces and cometary comae and the tools for data visualization are presented.

  1. EINVis: a visualization tool for analyzing and exploring genetic interactions in large-scale association studies.

    PubMed

    Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang

    2013-11-01

    Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.

  2. Raising parents' awareness of the benefits of immunization by using a visual aid tool.

    PubMed

    Mulumba, Jose Gaby Tshikuka; Daoud, Saada; Kabang, Bandé

    2007-07-01

    A visual aid tool was used in two communities of Chad to raise parents' awareness of the benefits of immunization. In one community, the tool was administered by social workers two weeks before national immunization days (NIDs) and in the other community by vaccinators during NIDs. Parents' awareness significantly rose in both communities but was more significant in the community where the tool was administered by social workers. A significant association was found between parents' unawareness and children who missed immunization in both communities.

  3. Visual Learning in Application of Integration

    NASA Astrophysics Data System (ADS)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  4. A Visualization-Based Tutoring Tool for Engineering Education

    NASA Astrophysics Data System (ADS)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  5. Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Domik, Gitta; Alam, Salim; Pinkney, Paul

    1992-01-01

    This report describes our project activities for the period Sep. 1991 - Oct. 1992. Our activities included stabilizing the software system STAR, porting STAR to IDL/widgets (improved user interface), targeting new visualization techniques for multi-dimensional data visualization (emphasizing 3D visualization), and exploring leading-edge 3D interface devices. During the past project year we emphasized high-end visualization techniques, by exploring new tools offered by state-of-the-art visualization software (such as AVS3 and IDL4/widgets), by experimenting with tools still under research at the Department of Computer Science (e.g., use of glyphs for multidimensional data visualization), and by researching current 3D input/output devices as they could be used to explore 3D astrophysical data. As always, any project activity is driven by the need to interpret astrophysical data more effectively.

  6. Visualizing Matrix Multiplication

    ERIC Educational Resources Information Center

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  7. Visualizing Terrestrial and Aquatic Systems in 3D - in IEEE VisWeek 2014

    EPA Science Inventory

    The need for better visualization tools for environmental science is well documented, and the Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to both help scientists produce effective environmental science visualizations and to determine which visualizatio...

  8. Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain

    NASA Technical Reports Server (NTRS)

    Kao, David; Kramer, Marc; Chaderjian, Neal

    2005-01-01

    Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.

  9. OnSight: Multi-platform Visualization of the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Abercrombie, S. P.; Menzies, A.; Winter, A.; Clausen, M.; Duran, B.; Jorritsma, M.; Goddard, C.; Lidawer, A.

    2017-12-01

    A key challenge of planetary geology is to develop an understanding of an environment that humans cannot (yet) visit. Instead, scientists rely on visualizations created from images sent back by robotic explorers, such as the Curiosity Mars rover. OnSight is a multi-platform visualization tool that helps scientists and engineers to visualize the surface of Mars. Terrain visualization allows scientists to understand the scale and geometric relationships of the environment around the Curiosity rover, both for scientific understanding and for tactical consideration in safely operating the rover. OnSight includes a web-based 2D/3D visualization tool, as well as an immersive mixed reality visualization. In addition, OnSight offers a novel feature for communication among the science team. Using the multiuser feature of OnSight, scientists can meet virtually on Mars, to discuss geology in a shared spatial context. Combining web-based visualization with immersive visualization allows OnSight to leverage strengths of both platforms. This project demonstrates how 3D visualization can be adapted to either an immersive environment or a computer screen, and will discuss advantages and disadvantages of both platforms.

  10. Unlocking User-Centered Design Methods for Building Cyber Security Visualizations

    DTIC Science & Technology

    2015-10-03

    a final, deployed tool. Goodall et al. interviewed analysts to derive requirements for a network security tool [14], while Stoll et al. explain the...4673-7599-3/15/$31.00 c©2015 IEEE 2015 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC) [14] J. R. Goodall , A. A. Ozok, W. G. Lutters, P...Visualization for Cyber Security, pages 91–98. IEEE, 2005. [19] A. Komlodi, P. Rheingans, U. Ayachit, J. Goodall , and A. Joshi. A user- centered look at

  11. An overview of 3D software visualization.

    PubMed

    Teyseyre, Alfredo R; Campo, Marcelo R

    2009-01-01

    Software visualization studies techniques and methods for graphically representing different aspects of software. Its main goal is to enhance, simplify and clarify the mental representation a software engineer has of a computer system. During many years, visualization in 2D space has been actively studied, but in the last decade, researchers have begun to explore new 3D representations for visualizing software. In this article, we present an overview of current research in the area, describing several major aspects like: visual representations, interaction issues, evaluation methods and development tools. We also perform a survey of some representative tools to support different tasks, i.e., software maintenance and comprehension, requirements validation and algorithm animation for educational purposes, among others. Finally, we conclude identifying future research directions.

  12. fluff: exploratory analysis and visualization of high-throughput sequencing data

    PubMed Central

    Georgiou, Georgios

    2016-01-01

    Summary. In this article we describe fluff, a software package that allows for simple exploration, clustering and visualization of high-throughput sequencing data mapped to a reference genome. The package contains three command-line tools to generate publication-quality figures in an uncomplicated manner using sensible defaults. Genome-wide data can be aggregated, clustered and visualized in a heatmap, according to different clustering methods. This includes a predefined setting to identify dynamic clusters between different conditions or developmental stages. Alternatively, clustered data can be visualized in a bandplot. Finally, fluff includes a tool to generate genomic profiles. As command-line tools, the fluff programs can easily be integrated into standard analysis pipelines. The installation is straightforward and documentation is available at http://fluff.readthedocs.org. Availability. fluff is implemented in Python and runs on Linux. The source code is freely available for download at https://github.com/simonvh/fluff. PMID:27547532

  13. Beyond engagement in working with children in eight Nairobi slums to address safety, security, and housing: Digital tools for policy and community dialogue.

    PubMed

    Mitchell, Claudia; Chege, Fatuma; Maina, Lucy; Rothman, Margot

    2016-01-01

    This article studies the ways in which researchers working in the area of health and social research and using participatory visual methods might extend the reach of participant-generated creations such as photos and drawings to engage community leaders and policy-makers. Framed as going 'beyond engagement', the article explores the idea of the production of researcher-led digital dialogue tools, focusing on one example, based on a series of visual arts-based workshops with children from eight slums in Nairobi addressing issues of safety, security, and well-being in relation to housing. The authors conclude that there is a need for researchers to embark upon the use of visual tools to expand the life and use of visual productions, and in particular to ensure meaningful participation of communities in social change.

  14. Evaluation of Visual Computer Simulator for Computer Architecture Education

    ERIC Educational Resources Information Center

    Imai, Yoshiro; Imai, Masatoshi; Moritoh, Yoshio

    2013-01-01

    This paper presents trial evaluation of a visual computer simulator in 2009-2011, which has been developed to play some roles of both instruction facility and learning tool simultaneously. And it illustrates an example of Computer Architecture education for University students and usage of e-Learning tool for Assembly Programming in order to…

  15. Visual Tools for Eliciting Connections and Cohesiveness in Mixed Methods Research

    ERIC Educational Resources Information Center

    Murawska, Jaclyn M.; Walker, David A.

    2017-01-01

    In this commentary, we offer a set of visual tools that can assist education researchers, especially those in the field of mathematics, in developing cohesiveness from a mixed methods perspective, commencing at a study's research questions and literature review, through its data collection and analysis, and finally to its results. This expounds…

  16. Surveying the maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    USDA-ARS?s Scientific Manuscript database

    The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data, and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on beh...

  17. Generating and Analyzing Visual Representations of Conic Sections with the Use of Technological Tools

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron

    2006-01-01

    Technological tools have the potential to offer students the possibility to represent information and relationships embedded in problems and concepts in ways that involve numerical, algebraic, geometric, and visual approaches. In this paper, the authors present and discuss an example in which an initial representation of a mathematical object…

  18. The Film as Visual Aided Learning Tool in Classroom Management Course

    ERIC Educational Resources Information Center

    Altinay Gazi, Zehra; Altinay Aksal, Fahriye

    2011-01-01

    This research aims to investigate the impact of the visual aided learning on pre-service teachers' co-construction of subject matter knowledge in teaching practice. The study revealed the examination of film as an active cognizing and learning tool in classroom management course within teacher education programme. Within the framework of action…

  19. The Computer: An Art Tool for the Visually Gifted. A Curriculum Guide.

    ERIC Educational Resources Information Center

    Suter, Thomas E.; Bibbey, Melissa R.

    This curriculum guide, developed and used in Wheelersburg (Ohio) with visually talented students, shows how such students can be taught to utilize computers as an art medium and tool. An initial section covers program implementation including setup, class structure and scheduling, teaching strategies, and housecleaning and maintenance. Seventeen…

  20. Development of a community sustainability visualization tool through integration of US EPA’s Sustainable and Health Community Research Program tasks

    EPA Science Inventory

    We propose a 2-day session combining multiple components of an ongoing integrative research program in USEPA’s Office of Research and Development into a functional community sustainability visualization and assessment tool. The working group will include project leads for a US H...

  1. Development and methods for an open-sourced data visualization tool

    USDA-ARS?s Scientific Manuscript database

    This paper presents an open source on-demand web tool, which is specifically addressed to scientists and researchers that are non-expert in converting time series data into a time surface visualization. Similar to a GIS environment the time surface shows time on two axes; time of day vs. day of year...

  2. Tools and procedures for visualization of proteins and other biomolecules.

    PubMed

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  3. A survey of educational uses of molecular visualization freeware.

    PubMed

    Craig, Paul A; Michel, Lea Vacca; Bateman, Robert C

    2013-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization. Participants (n = 116) were asked to complete 11 multiple choice and 3 open ended questions. To provide more depth to these results, interviews were conducted with 12 of the participants. Many common themes arose in the survey and the interviews: a shared passion for the use of molecular visualization in teaching, broad diversity in software preference, the lack of uniform standards for assessment, a desire for more quality resources, and the challenge of enabling students to incorporate visualization in their learning. The majority of respondents had used molecular visualization for more than 5 years and mentioned 32 different visualization tools used, with Jmol and PyMOL clearly standing out as the most frequently used programs at the present time. The most common uses of molecular visualization in teaching were lecture and lab illustrations, followed by exam questions, in-class or in-laboratory exercises, and student projects, which frequently included presentations. While a minority of instructors used a grading rubric/scoring matrix for assessment of student learning with molecular visualization, many expressed a desire for common use assessment tools. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  4. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology[OPEN

    PubMed Central

    Waese, Jamie; Fan, Jim; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Town, Chris; Stuerzlinger, Wolfgang

    2017-01-01

    A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an “app” on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. PMID:28808136

  5. Toward a Visualization-Supported Workflow for Cyber Alert Management using Threat Models and Human-Centered Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.

    Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less

  6. Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database

    NASA Astrophysics Data System (ADS)

    Trumpy, Eugenio; Manzella, Adele

    2017-02-01

    The Italian National Geothermal Database (BDNG), is the largest collection of Italian Geothermal data and was set up in the 1980s. It has since been updated both in terms of content and management tools: information on deep wells and thermal springs (with temperature > 30 °C) are currently organized and stored in a PostgreSQL relational database management system, which guarantees high performance, data security and easy access through different client applications. The BDNG is the core of the Geothopica web site, whose webGIS tool allows different types of user to access geothermal data, to visualize multiple types of datasets, and to perform integrated analyses. The webGIS tool has been recently improved by two specially designed, programmed and implemented visualization tools to display data on well lithology and underground temperatures. This paper describes the contents of the database and its software and data update, as well as the webGIS tool including the new tools for data lithology and temperature visualization. The geoinformation organized in the database and accessible through Geothopica is of use not only for geothermal purposes, but also for any kind of georesource and CO2 storage project requiring the organization of, and access to, deep underground data. Geothopica also supports project developers, researchers, and decision makers in the assessment, management and sustainable deployment of georesources.

  7. CellMap visualizes protein-protein interactions and subcellular localization

    PubMed Central

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  8. Not Just a Game … When We Play Together, We Learn Together: Interactive Virtual Environments and Gaming Engines for Geospatial Visualization

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Anderson, J. W.

    2017-12-01

    An ideal tool for ecologists and land managers to investigate the impacts of both projected environmental changes and policy alternatives is the creation of immersive, interactive, virtual landscapes. As a new frontier in visualizing and understanding geospatial data, virtual landscapes require a new toolbox for data visualization that includes traditional GIS tools and uncommon tools such as the Unity3d game engine. Game engines provide capabilities to not only explore data but to build and interact with dynamic models collaboratively. These virtual worlds can be used to display and illustrate data that is often more understandable and plausible to both stakeholders and policy makers than is achieved using traditional maps.Within this context we will present funded research that has been developed utilizing virtual landscapes for geographic visualization and decision support among varied stakeholders. We will highlight the challenges and lessons learned when developing interactive virtual environments that require large multidisciplinary team efforts with varied competences. The results will emphasize the importance of visualization and interactive virtual environments and the link with emerging research disciplines within Visual Analytics.

  9. NaviCell Web Service for network-based data visualization.

    PubMed

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei

    2015-07-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space.

    PubMed

    Ma, Chihua; Luciani, Timothy; Terebus, Anna; Liang, Jie; Marai, G Elisabeta

    2017-02-15

    Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes. We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.

  11. Interactive visualization of vegetation dynamics

    USGS Publications Warehouse

    Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, James

    2001-01-01

    Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.

  12. NaviCell Web Service for network-based data visualization

    PubMed Central

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P. A.; Barillot, Emmanuel; Zinovyev, Andrei

    2015-01-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. PMID:25958393

  13. Computer-Based Tools for Inquiry in Undergraduate Classrooms: Results from the VGEE

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Bramer, D. J.; Elliott, D.; Hay, K. E.; Mallaiahgari, L.; Marlino, M. R.; Middleton, D.; Ramamurhty, M. K.; Scheitlin, T.; Weingroff, M.; Wilhelmson, R.; Yoder, J.

    2002-05-01

    The Visual Geophysical Exploration Environment (VGEE) is a suite of computer-based tools designed to help learners connect observable, large-scale geophysical phenomena to underlying physical principles. Technologically, this connection is mediated by java-based interactive tools: a multi-dimensional visualization environment, authentic scientific data-sets, concept models that illustrate fundamental physical principles, and an interactive web-based work management system for archiving and evaluating learners' progress. Our preliminary investigations showed, however, that the tools alone are not sufficient to empower undergraduate learners; learners have trouble in organizing inquiry and using the visualization tools effectively. To address these issues, the VGEE includes an inquiry strategy and scaffolding activities that are similar to strategies used successfully in K-12 classrooms. The strategy is organized around the steps: identify, relate, explain, and integrate. In the first step, students construct visualizations from data to try to identify salient features of a particular phenomenon. They compare their previous conceptions of a phenomenon to the data examine their current knowledge and motivate investigation. Next, students use the multivariable functionality of the visualization environment to relate the different features they identified. Explain moves the learner temporarily outside the visualization to the concept models, where they explore fundamental physical principles. Finally, in integrate, learners use these fundamental principles within the visualization environment by literally placing the concept model within the visualization environment as a probe and watching it respond to larger-scale patterns. This capability, unique to the VGEE, addresses the disconnect that novice learners often experience between fundamental physics and observable phenomena. It also allows learners the opportunity to reflect on and refine their knowledge as well as anchor it within a context for long-term retention. We are implementing the VGEE in one of two otherwise identical entry-level atmospheric courses. In addition to comparing student learning and attitudes in the two courses, we are analyzing student participation with the VGEE to evaluate the effectiveness and usability of the VGEE. In particular, we seek to identify the scaffolding students need to construct physically meaningful multi-dimensional visualizations, and evaluate the effectiveness of the visualization-embedded concept-models in addressing inert knowledge. We will also examine the utility of the inquiry strategy in developing content knowledge, process-of-science knowledge, and discipline-specific investigatory skills. Our presentation will include video examples of student use to illustrate our findings.

  14. Early visual analysis tool using magnetoencephalography for treatment and recovery of neuronal dysfunction.

    PubMed

    Rasheed, Waqas; Neoh, Yee Yik; Bin Hamid, Nor Hisham; Reza, Faruque; Idris, Zamzuri; Tang, Tong Boon

    2017-10-01

    Functional neuroimaging modalities play an important role in deciding the diagnosis and course of treatment of neuronal dysfunction and degeneration. This article presents an analytical tool with visualization by exploiting the strengths of the MEG (magnetoencephalographic) neuroimaging technique. The tool automates MEG data import (in tSSS format), channel information extraction, time/frequency decomposition, and circular graph visualization (connectogram) for simple result inspection. For advanced users, the tool also provides magnitude squared coherence (MSC) values allowing personalized threshold levels, and the computation of default model from MEG data of control population. Default model obtained from healthy population data serves as a useful benchmark to diagnose and monitor neuronal recovery during treatment. The proposed tool further provides optional labels with international 10-10 system nomenclature in order to facilitate comparison studies with EEG (electroencephalography) sensor space. Potential applications in epilepsy and traumatic brain injury studies are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    NASA Astrophysics Data System (ADS)

    Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2005-05-01

    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.

  16. Interactive metagenomic visualization in a Web browser.

    PubMed

    Ondov, Brian D; Bergman, Nicholas H; Phillippy, Adam M

    2011-09-30

    A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.

  17. A reference guide for tree analysis and visualization

    PubMed Central

    2010-01-01

    The quantities of data obtained by the new high-throughput technologies, such as microarrays or ChIP-Chip arrays, and the large-scale OMICS-approaches, such as genomics, proteomics and transcriptomics, are becoming vast. Sequencing technologies become cheaper and easier to use and, thus, large-scale evolutionary studies towards the origins of life for all species and their evolution becomes more and more challenging. Databases holding information about how data are related and how they are hierarchically organized expand rapidly. Clustering analysis is becoming more and more difficult to be applied on very large amounts of data since the results of these algorithms cannot be efficiently visualized. Most of the available visualization tools that are able to represent such hierarchies, project data in 2D and are lacking often the necessary user friendliness and interactivity. For example, the current phylogenetic tree visualization tools are not able to display easy to understand large scale trees with more than a few thousand nodes. In this study, we review tools that are currently available for the visualization of biological trees and analysis, mainly developed during the last decade. We describe the uniform and standard computer readable formats to represent tree hierarchies and we comment on the functionality and the limitations of these tools. We also discuss on how these tools can be developed further and should become integrated with various data sources. Here we focus on freely available software that offers to the users various tree-representation methodologies for biological data analysis. PMID:20175922

  18. Beyond simple charts: Design of visualizations for big health data

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2016-01-01

    Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data’s utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data. PMID:28210416

  19. Beyond simple charts: Design of visualizations for big health data.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2016-01-01

    Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data's utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data.

  20. Data, Analysis, and Visualization | Computational Science | NREL

    Science.gov Websites

    Data, Analysis, and Visualization Data, Analysis, and Visualization Data management, data analysis . At NREL, our data management, data analysis, and scientific visualization capabilities help move the approaches to image analysis and computer vision. Data Management and Big Data Systems, software, and tools

  1. Creating Visual Materials for Multi-Handicapped Deaf Learners.

    ERIC Educational Resources Information Center

    Hack, Carole; Brosmith, Susan

    1980-01-01

    The article describes two groups of visual materials developed for multiply handicapped deaf teenagers. The daily living skills project includes vocabulary lists, visuals, games and a model related to household cleaning, personal grooming, or consumer skills. The occupational information project includes visuals of tools, materials, and clothing…

  2. Using Visual Imagery in the Classroom.

    ERIC Educational Resources Information Center

    Grabow, Beverly

    1981-01-01

    The use of visual imagery, visualization, and guided and unguided fantasy has potential as a teaching tool for use with learning disabled children. Visualization utilized in a gamelike atmosphere can help the student learn new concepts, can positively effect social behaviors, and can help with emotional control. (SB)

  3. How Scientists Develop Competence in Visual Communication

    ERIC Educational Resources Information Center

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  4. Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    NASA Technical Reports Server (NTRS)

    French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory

    2005-01-01

    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.

  5. Genovar: a detection and visualization tool for genomic variants.

    PubMed

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  6. Experimenting with Visual Storytelling in Students' Portfolios: Narratives of Visual Pedagogy for Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Rifa-Valls, Montserrat

    2011-01-01

    This article interprets the repercussions of visual storytelling for art education and arts-based narrative research and, particularly, it approaches visual storytelling as a critical tool for pre-service teacher education. After reinterpreting storytelling from the perspective of visual critical pedagogy, I will narratively reconstruct the use of…

  7. Research on the Intensity Analysis and Result Visualization of Construction Land in Urban Planning

    NASA Astrophysics Data System (ADS)

    Cui, J.; Dong, B.; Li, J.; Li, L.

    2017-09-01

    As a fundamental work of urban planning, the intensity analysis of construction land involves many repetitive data processing works that are prone to cause errors or data precision loss, and the lack of efficient methods and tools to visualizing the analysis results in current urban planning. In the research a portable tool is developed by using the Model Builder technique embedded in ArcGIS to provide automatic data processing and rapid result visualization for the works. A series of basic modules provided by ArcGIS are linked together to shape a whole data processing chain in the tool. Once the required data is imported, the analysis results and related maps and graphs including the intensity values and zoning map, the skyline analysis map etc. are produced automatically. Finally the tool is installation-free and can be dispatched quickly between planning teams.

  8. Applying open source data visualization tools to standard based medical data.

    PubMed

    Kopanitsa, Georgy; Taranik, Maxim

    2014-01-01

    Presentation of medical data in personal health records (PHRs) requires flexible platform independent tools to ensure easy access to the information. Different backgrounds of the patients, especially elder people require simple graphical presentation of the data. Data in PHRs can be collected from heterogeneous sources. Application of standard based medical data allows development of generic visualization methods. Focusing on the deployment of Open Source Tools, in this paper we applied Java Script libraries to create data presentations for standard based medical data.

  9. BlueJ Visual Debugger for Learning the Execution of Object-Oriented Programs?

    ERIC Educational Resources Information Center

    Bennedsen, Jens; Schulte, Carsten

    2010-01-01

    This article reports on an experiment undertaken in order to evaluate the effect of a program visualization tool for helping students to better understand the dynamics of object-oriented programs. The concrete tool used was BlueJ's debugger and object inspector. The study was done as a control-group experiment in an introductory programming…

  10. A visual training tool for the Photoload sampling technique

    Treesearch

    Violet J. Holley; Robert E. Keane

    2010-01-01

    This visual training aid is designed to provide Photoload users a tool to increase the accuracy of fuel loading estimations when using the Photoload technique. The Photoload Sampling Technique (RMRS-GTR-190) provides fire managers a sampling method for obtaining consistent, accurate, inexpensive, and quick estimates of fuel loading. It is designed to require only one...

  11. Using computer visualizations to help understand how forests change and develop

    Treesearch

    Brian Orland; Cenk Ursavas

    2006-01-01

    Probably a first question people ask when they hear about proposed forest management actions to address fire hazard or forest health concerns is "what will the forest look like"? The recent advent of powerful computer visualization tools has provided one means of answering that question. The resultant images can be a powerful tool for communicating the...

  12. Viewing Objects and Planning Actions: On the Potentiation of Grasping Behaviours by Visual Objects

    ERIC Educational Resources Information Center

    Makris, Stergios; Hadar, Aviad A.; Yarrow, Kielan

    2011-01-01

    How do humans interact with tools? Gibson (1979) suggested that humans perceive directly what tools afford in terms of meaningful actions. This "affordances" hypothesis implies that visual objects can potentiate motor responses even in the absence of an intention to act. Here we explore the temporal evolution of motor plans afforded by common…

  13. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    ERIC Educational Resources Information Center

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  14. Continuous Symmetry and Chemistry Teachers: Learning Advanced Chemistry Content through Novel Visualization Tools

    ERIC Educational Resources Information Center

    Tuvi-Arad, Inbal; Blonder, Ron

    2010-01-01

    In this paper we describe the learning process of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The workshop was based on interactive visualization tools that allow molecules and their symmetry elements to be rotated in three dimensions. The topic of continuous symmetry is…

  15. The Efficacy of a Low-Level Program Visualization Tool for Teaching Programming Concepts to Novice C Programmers.

    ERIC Educational Resources Information Center

    Smith, Philip A.; Webb, Geoffrey I.

    2000-01-01

    Describes "Glass-box Interpreter" a low-level program visualization tool called Bradman designed to provide a conceptual model of C program execution for novice programmers and makes visible aspects of the programming process normally hidden from the user. Presents an experiment that tests the efficacy of Bradman, and provides…

  16. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  17. A Novel Web-Based Approach for Visualization and Inspection of Reading Difficulties on University Students

    ERIC Educational Resources Information Center

    Mejia, Carolina; Florian, Beatriz; Vatrapu, Ravi; Bull, Susan; Gomez, Sergio; Fabregat, Ramon

    2017-01-01

    Existing tools aim to detect university students with early diagnosis of dyslexia or reading difficulties, but there are not developed tools that let those students better understand some aspects of their difficulties. In this paper, a dashboard for visualizing and inspecting early detected reading difficulties and their characteristics, called…

  18. Physics-based subsurface visualization of human tissue.

    PubMed

    Sharp, Richard; Adams, Jacob; Machiraju, Raghu; Lee, Robert; Crane, Robert

    2007-01-01

    In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.

  19. MFV-class: a multi-faceted visualization tool of object classes.

    PubMed

    Zhang, Zhi-meng; Pan, Yun-he; Zhuang, Yue-ting

    2004-11-01

    Classes are key software components in an object-oriented software system. In many industrial OO software systems, there are some classes that have complicated structure and relationships. So in the processes of software maintenance, testing, software reengineering, software reuse and software restructure, it is a challenge for software engineers to understand these classes thoroughly. This paper proposes a class comprehension model based on constructivist learning theory, and implements a software visualization tool (MFV-Class) to help in the comprehension of a class. The tool provides multiple views of class to uncover manifold facets of class contents. It enables visualizing three object-oriented metrics of classes to help users focus on the understanding process. A case study was conducted to evaluate our approach and the toolkit.

  20. Freiburg RNA tools: a central online resource for RNA-focused research and teaching.

    PubMed

    Raden, Martin; Ali, Syed M; Alkhnbashi, Omer S; Busch, Anke; Costa, Fabrizio; Davis, Jason A; Eggenhofer, Florian; Gelhausen, Rick; Georg, Jens; Heyne, Steffen; Hiller, Michael; Kundu, Kousik; Kleinkauf, Robert; Lott, Steffen C; Mohamed, Mostafa M; Mattheis, Alexander; Miladi, Milad; Richter, Andreas S; Will, Sebastian; Wolff, Joachim; Wright, Patrick R; Backofen, Rolf

    2018-05-21

    The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.

  1. Textile Visual Materials: Appropriate Technology in Action.

    ERIC Educational Resources Information Center

    Donoghue, Beverly Emerson

    An innovative educational medium--screenprinted visual aids on cloth--is one alternative to conventional media in Africa, where visual materials are important communication tools but conventional media and materials are often scarce. A production process for cloth visual aids was developed and evaluated in Ghana and Sudan through the…

  2. PREDICT: Pattern Representation and Evaluation of Data through Integration, Correlation, and Transformation

    DTIC Science & Technology

    2015-10-01

    overview visualization to help clinicians identify patients that are changing and inserted these indices into the sepsis specific decision support...visualization, 4) Created a sepsis identification visualization tool to help clinicians identify patients headed for septic shock, and 5) Generated a...5 Sepsis Visualization

  3. Virtual Reality: Visualization in Three Dimensions.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Virtual reality is a newly emerging tool for scientific visualization that makes possible multisensory, three-dimensional modeling of scientific data. While the emphasis is on visualization, the other senses are added to enhance what the scientist can visualize. Researchers are working to extend the sensory range of what can be perceived in…

  4. Visualization Skills: A Prerequisite to Advanced Solid Modeling

    ERIC Educational Resources Information Center

    Gow, George

    2007-01-01

    Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…

  5. Visual Programming: A Programming Tool for Increasing Mathematics Achivement

    ERIC Educational Resources Information Center

    Swanier, Cheryl A.; Seals, Cheryl D.; Billionniere, Elodie V.

    2009-01-01

    This paper aims to address the need of increasing student achievement in mathematics using a visual programming language such as Scratch. This visual programming language facilitates creating an environment where students in K-12 education can develop mathematical simulations while learning a visual programming language at the same time.…

  6. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data.

    PubMed

    Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M

    2012-04-05

    The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.

  7. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    PubMed Central

    2012-01-01

    Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257

  8. 3D Visualization for Planetary Missions

    NASA Astrophysics Data System (ADS)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  9. Visualization of Multi-mission Astronomical Data with ESASky

    NASA Astrophysics Data System (ADS)

    Baines, Deborah; Giordano, Fabrizio; Racero, Elena; Salgado, Jesús; López Martí, Belén; Merín, Bruno; Sarmiento, María-Henar; Gutiérrez, Raúl; Ortiz de Landaluce, Iñaki; León, Ignacio; de Teodoro, Pilar; González, Juan; Nieto, Sara; Segovia, Juan Carlos; Pollock, Andy; Rosa, Michael; Arviset, Christophe; Lennon, Daniel; O'Mullane, William; de Marchi, Guido

    2017-02-01

    ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualize and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogs. The first public release of ESASky features interfaces for the visualization of the sky in multiple wavelengths, the visualization of query results summaries, and the visualization of observations and catalog sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualization of large amounts of data and the technologies used were made to maximize the responsiveness of the application and to keep the tool as useful and intuitive as possible.

  10. Voxel Datacubes for 3D Visualization in Blender

    NASA Astrophysics Data System (ADS)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  11. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  12. Antigen Receptor Galaxy: A User-Friendly, Web-Based Tool for Analysis and Visualization of T and B Cell Receptor Repertoire Data

    PubMed Central

    IJspeert, Hanna; van Schouwenburg, Pauline A.; van Zessen, David; Pico-Knijnenburg, Ingrid

    2017-01-01

    Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection. PMID:28416602

  13. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks.

    PubMed

    Maere, Steven; Heymans, Karel; Kuiper, Martin

    2005-08-15

    The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results.

  14. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    PubMed

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  15. Trend-Centric Motion Visualization: Designing and Applying a New Strategy for Analyzing Scientific Motion Collections.

    PubMed

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F

    2014-12-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.

  16. Large Terrain Continuous Level of Detail 3D Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  17. Interactive displays in medical art

    NASA Technical Reports Server (NTRS)

    Mcconathy, Deirdre Alla; Doyle, Michael

    1989-01-01

    Medical illustration is a field of visual communication with a long history. Traditional medical illustrations are static, 2-D, printed images; highly realistic depictions of the gross morphology of anatomical structures. Today medicine requires the visualization of structures and processes that have never before been seen. Complex 3-D spatial relationships require interpretation from 2-D diagnostic imagery. Pictures that move in real time have become clinical and research tools for physicians. Medical illustrators are involved with the development of interactive visual displays for three different, but not discrete, functions: as educational materials, as clinical and research tools, and as data bases of standard imagery used to produce visuals. The production of interactive displays in the medical arts is examined.

  18. Dependency visualization for complex system understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, J. Allison Cory

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impairedmore » as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.« less

  19. Interactive metagenomic visualization in a Web browser

    PubMed Central

    2011-01-01

    Background A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Results Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Conclusions Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net. PMID:21961884

  20. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-09-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  1. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-04-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  2. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology.

    PubMed

    Waese, Jamie; Fan, Jim; Pasha, Asher; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Kelley, Lawrence A; Sternberg, Michael J; Krishnakumar, Vivek; Ferlanti, Erik; Miller, Jason; Town, Chris; Stuerzlinger, Wolfgang; Provart, Nicholas J

    2017-08-01

    A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an "app" on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. © 2017 American Society of Plant Biologists. All rights reserved.

  3. Comparing Learning Performance of Students Using Algorithm Visualizations Collaboratively on Different Engagement Levels

    ERIC Educational Resources Information Center

    Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari

    2009-01-01

    In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…

  4. Effectiveness of Program Visualization: A Case Study with the ViLLE Tool

    ERIC Educational Resources Information Center

    Rajala, Teemu; Laakso, Mikko-Jussi; Kaila, Erkki; Salakoski, Tapio

    2008-01-01

    Program visualization is one of the various methods developed over the years to aid novices with their difficulties in learning to program. It consists of different graphical--often animated--and textual objects, visualizing the execution of programs. The aim of program visualization is to enhance students' understanding of different areas of…

  5. Translating the Verbal to the Visual

    ERIC Educational Resources Information Center

    Engbers, Susanna Kelly

    2012-01-01

    Communication has always been at least partly a visual experience--insofar as the speaker's appearance on a stage or the text's appearance on the page. Certainly, however, the experience is becoming more and more visual. Thus, equipping students with the tools necessary to analyze and evaluate the visual rhetoric that surrounds everyone is a task…

  6. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  7. TrAVis to Enhance Online Tutoring and Learning Activities: Real-Time Visualization of Students Tracking Data

    ERIC Educational Resources Information Center

    May, Madeth; George, Sebastien; Prevot, Patrick

    2011-01-01

    Purpose: This paper presents a part of our research work that places an emphasis on Tracking Data Analysis and Visualization (TrAVis) tools, a web-based system, designed to enhance online tutoring and learning activities, supported by computer-mediated communication (CMC) tools. TrAVis is particularly dedicated to assist both tutors and students…

  8. Using Social Network Graphs as Visualization Tools to Influence Peer Selection Decision-Making Strategies to Access Information about Complex Socioscientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan A.

    2011-01-01

    This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…

  9. The Skeletons in Our Closet: E-Learning Tools and What Happens When One Side Does Not Fit All

    ERIC Educational Resources Information Center

    Van Nuland, Sonya E.; Rogers, Kem A.

    2017-01-01

    In the anatomical sciences, e-learning tools have become a critical component of teaching anatomy when physical space and cadaveric resources are limited. However, studies that use empirical evidence to compare their efficacy to visual-kinesthetic learning modalities are scarce. The study examined how a visual-kinesthetic experience, involving a…

  10. The Effects of Visual Magnification and Physical Movement Scale on the Manipulation of a Tool with Indirect Vision

    ERIC Educational Resources Information Center

    Bohan, Michael; McConnell, Daniel S.; Chaparro, Alex; Thompson, Shelby G.

    2010-01-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the…

  11. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    ERIC Educational Resources Information Center

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  12. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  13. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States. (UNH)

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  14. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS tool and Interview Data

    NASA Astrophysics Data System (ADS)

    Christian, Caroline

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems students might have with each skill set. Factor analysis was used to analyze the results during the validation process of the VSCS. Results showed that the eight factors could not be separated from each other, but instead two factors emerged as significant to the data. These two factors have been defined and described as a general visual-perceptual skill (factor 1) and a skill that adds on a second level of complexity by involving multiple viewpoints such as changing frames of reference. The questions included in the factor analysis were bolstered by the addition of an item response theory (IRT) analysis. Interviews were also conducted with twenty novice students to test face validity of the tool, and to document student approaches at solving visualization problems of this type. Students used five main physical resources or processes to solve the questions, but the resource that was the most successful was handling or building a physical representation of an object.

  15. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  16. Using Interactive Data Visualizations for Exploratory Analysis in Undergraduate Genomics Coursework: Field Study Findings and Guidelines

    NASA Astrophysics Data System (ADS)

    Mirel, Barbara; Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan

    2016-02-01

    Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors conducting exploratory analysis using the same interactive data visualizations as practicing scientists. We examined 22 upper level undergraduates in a genomics course as they engaged in a case-based inquiry with an interactive heat map. We qualitatively and quantitatively analyzed students' visual analytic behaviors, reasoning and outcomes to identify student performance patterns, commonly shared efficiencies and task completion. We analyzed students' successes and difficulties in applying knowledge and skills relevant to the visual analytics case and related gaps in knowledge and skill to associated tool designs. Findings show that undergraduate engagement in visual analytics is feasible and could be further strengthened through tool usability improvements. We identify these improvements. We speculate, as well, on instructional considerations that our findings suggested may also enhance visual analytics in case-based modules.

  17. Using Interactive Data Visualizations for Exploratory Analysis in Undergraduate Genomics Coursework: Field Study Findings and Guidelines

    PubMed Central

    Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan

    2016-01-01

    Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors conducting exploratory analysis using the same interactive data visualizations as practicing scientists. We examined 22 upper level undergraduates in a genomics course as they engaged in a case-based inquiry with an interactive heat map. We qualitatively and quantitatively analyzed students’ visual analytic behaviors, reasoning and outcomes to identify student performance patterns, commonly shared efficiencies and task completion. We analyzed students’ successes and difficulties in applying knowledge and skills relevant to the visual analytics case and related gaps in knowledge and skill to associated tool designs. Findings show that undergraduate engagement in visual analytics is feasible and could be further strengthened through tool usability improvements. We identify these improvements. We speculate, as well, on instructional considerations that our findings suggested may also enhance visual analytics in case-based modules. PMID:26877625

  18. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes.

    PubMed

    Nussbaumer, Thomas; Kugler, Karl G; Schweiger, Wolfgang; Bader, Kai C; Gundlach, Heidrun; Spannagl, Manuel; Poursarebani, Naser; Pfeifer, Matthias; Mayer, Klaus F X

    2014-12-10

    Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.

  19. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  20. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    NASA Technical Reports Server (NTRS)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  1. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  2. Geoscience data visualization and analysis using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D visualizations into common formats including grids, images, text files, spreadsheets, etc. Examples of interdisciplinary investigations that make use of GeoMapApp visualization and analysis functionality will be provided.

  3. Panoramic-image-based rendering solutions for visualizing remote locations via the web

    NASA Astrophysics Data System (ADS)

    Obeysekare, Upul R.; Egts, David; Bethmann, John

    2000-05-01

    With advances in panoramic image-based rendering techniques and the rapid expansion of web advertising, new techniques are emerging for visualizing remote locations on the WWW. Success of these techniques depends on how easy and inexpensive it is to develop a new type of web content that provides pseudo 3D visualization at home, 24-hours a day. Furthermore, the acceptance of this new visualization medium depends on the effectiveness of the familiarization tools by a segment of the population that was never exposed to this type of visualization. This paper addresses various hardware and software solutions available to collect, produce, and view panoramic content. While cost and effectiveness of building the content is being addressed using a few commercial hardware solutions, effectiveness of familiarization tools is evaluated using a few sample data sets.

  4. Defibulation: A Visual Reference and Learning Tool.

    PubMed

    Abdulcadir, Jasmine; Marras, Sandra; Catania, Lucrezia; Abdulcadir, Omar; Petignat, Patrick

    2018-04-01

    Female genital mutilation type III (infibulation) is achieved by narrowing the vaginal orifice by creating a covering seal, accomplished by cutting and appositioning the labia minora and/or labia majora, with or without clitoral excision. Infibulation is responsible for significant urogynecological, obstetrical, and psychosexual consequences that can be treated with defibulation (or de-infibulation), an operation that opens the infibulation scar, exposing the vulvar vestibule, vaginal orifice, external urethral meatus, and eventually the clitoris. This article provides a practical comprehensive, up-to-date visual learning tool on defibulation, with information on pre-operative, post-operative, and follow-up information. Abdulcadir J, Marras S, Catania L, et al. Defibulation: a visual reference and learning tool. J Sex Med 2018;15:601-611. Copyright © 2018 International Society for Sexual Medicine. All rights reserved.

  5. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.

    PubMed

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua

    2012-07-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.

  6. Book4All: A Tool to Make an e-Book More Accessible to Students with Vision/Visual-Impairments

    NASA Astrophysics Data System (ADS)

    Calabrò, Antonello; Contini, Elia; Leporini, Barbara

    Empowering people who are blind or otherwise visually impaired includes ensuring that products and electronic materials incorporate a broad range of accessibility features and work well with screen readers and other assistive technology devices. This is particularly important for students with vision impairments. Unfortunately, authors and publishers often do not include specific criteria when preparing the contents. Consequently, e-books can be inadequate for blind and low vision users, especially for students. In this paper we describe a semi-automatic tool developed to support operators who adapt e-documents for visually impaired students. The proposed tool can be used to convert a PDF e-book into a more suitable accessible and usable format readable on desktop computer or on mobile devices.

  7. Interactive visualization of multi-data-set Rietveld analyses using Cinema:Debye-Scherrer.

    PubMed

    Vogel, Sven C; Biwer, Chris M; Rogers, David H; Ahrens, James P; Hackenberg, Robert E; Onken, Drew; Zhang, Jianzhong

    2018-06-01

    A tool named Cinema:Debye-Scherrer to visualize the results of a series of Rietveld analyses is presented. The multi-axis visualization of the high-dimensional data sets resulting from powder diffraction analyses allows identification of analysis problems, prediction of suitable starting values, identification of gaps in the experimental parameter space and acceleration of scientific insight from the experimental data. The tool is demonstrated with analysis results from 59 U-Nb alloy samples with different compositions, annealing times and annealing temperatures as well as with a high-temperature study of the crystal structure of CsPbBr 3 . A script to extract parameters from a series of Rietveld analyses employing the widely used GSAS Rietveld software is also described. Both software tools are available for download.

  8. Interactive visualization of multi-data-set Rietveld analyses using Cinema:Debye-Scherrer

    PubMed Central

    Biwer, Chris M.; Rogers, David H.; Ahrens, James P.; Hackenberg, Robert E.; Onken, Drew; Zhang, Jianzhong

    2018-01-01

    A tool named Cinema:Debye-Scherrer to visualize the results of a series of Rietveld analyses is presented. The multi-axis visualization of the high-dimensional data sets resulting from powder diffraction analyses allows identification of analysis problems, prediction of suitable starting values, identification of gaps in the experimental parameter space and acceleration of scientific insight from the experimental data. The tool is demonstrated with analysis results from 59 U–Nb alloy samples with different compositions, annealing times and annealing temperatures as well as with a high-temperature study of the crystal structure of CsPbBr3. A script to extract parameters from a series of Rietveld analyses employing the widely used GSAS Rietveld software is also described. Both software tools are available for download. PMID:29896062

  9. Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.

    PubMed

    Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong

    2016-08-01

    The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.

  10. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees

    PubMed Central

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Hu, Songnian; Chen, Wei-Hua

    2012-01-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796

  11. Scientists' sense making when hypothesizing about disease mechanisms from expression data and their needs for visualization support.

    PubMed

    Mirel, Barbara; Görg, Carsten

    2014-04-26

    A common class of biomedical analysis is to explore expression data from high throughput experiments for the purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We call this analysis expression driven, -omics hypothesizing. In it, scientists use interactive data visualizations and read deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other domains have been developed and used to inform the design of useful and usable tools. We believe they would be helpful in bioinformatics. To characterize the sense making involved in expression-driven, -omics hypothesizing, we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months. From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and further research in the bioinformatics field on scientists' analytical workflows and their implications for tool design.

  12. Scientists’ sense making when hypothesizing about disease mechanisms from expression data and their needs for visualization support

    PubMed Central

    2014-01-01

    A common class of biomedical analysis is to explore expression data from high throughput experiments for the purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We call this analysis expression driven, -omics hypothesizing. In it, scientists use interactive data visualizations and read deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other domains have been developed and used to inform the design of useful and usable tools. We believe they would be helpful in bioinformatics. To characterize the sense making involved in expression-driven, -omics hypothesizing, we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months. From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and further research in the bioinformatics field on scientists’ analytical workflows and their implications for tool design. PMID:24766796

  13. Dynamic Visualization of Co-expression in Systems Genetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less

  14. Instruments of scientific visual representation in atomic databases

    NASA Astrophysics Data System (ADS)

    Kazakov, V. V.; Kazakov, V. G.; Meshkov, O. I.

    2017-10-01

    Graphic tools of spectral data representation provided by operating information systems on atomic spectroscopy—ASD NIST, VAMDC, SPECTR-W3, and Electronic Structure of Atoms—for the support of scientific-research and human-resource development are presented. Such tools of visual representation of scientific data as those of the spectrogram and Grotrian diagram plotting are considered. The possibility of comparative analysis of the experimentally obtained spectra and reference spectra of atomic systems formed according to the database of a resource is described. The access techniques to the mentioned graphic tools are presented.

  15. Visual information mining in remote sensing image archives

    NASA Astrophysics Data System (ADS)

    Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.

    2002-01-01

    The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.

  16. METHODS FOR MONITORING THE EFFECTS OF ENVIRONMENTAL TOXINS ON THE VISUAL SYSTEM.

    EPA Science Inventory

    A high percentage of neurotoxic compounds adversely effect the visual system. Our goal is to apply the tools of vision science to problems of toxicological import, exposure-related alterations in visual physiology, psychophysical function, and ocular development. Methods can ...

  17. Visualizing Terrestrial and Aquatic Systems in 3-D

    EPA Science Inventory

    The environmental modeling community has a long-standing need for affordable, easy-to-use tools that support 3-D visualization of complex spatial and temporal model output. The Visualization of Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effe...

  18. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    PubMed

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  19. Data Visualization in Sociology

    PubMed Central

    Healy, Kieran; Moody, James

    2014-01-01

    Visualizing data is central to social scientific work. Despite a promising early beginning, sociology has lagged in the use of visual tools. We review the history and current state of visualization in sociology. Using examples throughout, we discuss recent developments in ways of seeing raw data and presenting the results of statistical modeling. We make a general distinction between those methods and tools designed to help explore datasets, and those designed to help present results to others. We argue that recent advances should be seen as part of a broader shift towards easier sharing of the code and data both between researchers and with wider publics, and encourage practitioners and publishers to work toward a higher and more consistent standard for the graphical display of sociological insights. PMID:25342872

  20. Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2005-01-01

    Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities.

  1. Object-Based Visual Attention in 8-Month-Old Infants: Evidence from an Eye-Tracking Study

    ERIC Educational Resources Information Center

    Bulf, Hermann; Valenza, Eloisa

    2013-01-01

    Visual attention is one of the infant's primary tools for gathering relevant information from the environment for further processing and learning. The space-based component of visual attention in infants has been widely investigated; however, the object-based component of visual attention has received scarce interest. This scarcity is…

  2. Developing a Schedule to Identify Social Communication Difficulties and Autism Spectrum Disorder in Young Children with Visual Impairment

    ERIC Educational Resources Information Center

    Absoud, Michael; Parr, Jeremy R.; Salt, Alison; Dale, Naomi

    2011-01-01

    Available observational tools used in the identification of social communication difficulties and diagnosis of autism spectrum disorder (ASD) rely partly on visual behaviours and therefore may not be valid in children with visual impairment. A pilot observational instrument, the Visual Impairment and Social Communication Schedule (VISS), was…

  3. Using Open Source Software in Visual Simulation Development

    DTIC Science & Technology

    2005-09-01

    increased the use of the technology in training activities. Using open source/free software tools in the process can expand these possibilities...resulting in even greater cost reduction and allowing the flexibility needed in a training environment. This thesis presents a configuration and architecture...to be used when developing training visual simulations using both personal computers and open source tools. Aspects of the requirements needed in a

  4. Neural Bases of Peri-Hand Space Plasticity through Tool-Use: Insights from a Combined Computational-Experimental Approach

    ERIC Educational Resources Information Center

    Magosso, Elisa; Ursino, Mauro; di Pellegrino, Giuseppe; Ladavas, Elisabetta; Serino, Andrea

    2010-01-01

    Visual peripersonal space (i.e., the space immediately surrounding the body) is represented by multimodal neurons integrating tactile stimuli applied on a body part with visual stimuli delivered near the same body part, e.g., the hand. Tool use may modify the boundaries of the peri-hand area, where vision and touch are integrated. The neural…

  5. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    ERIC Educational Resources Information Center

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2017-01-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool--an interaction diagram (ID)--highlighting…

  6. Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2007-01-01

    Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

  7. Effects of Online Visual and Interactive Technological Tool (OVITT) on Early Adolescent Students' Mathematics Performance, Math Anxiety and Attitudes toward Math

    ERIC Educational Resources Information Center

    Orabuchi, Nkechi

    2013-01-01

    This study reported the results of a 3-month quasi-experimental study that determined the effectiveness of an online visual and interactive technological tool on sixth grade students' mathematics performance, math anxiety and attitudes towards math. There were 155 sixth grade students from a middle school in the North Texas area who participated…

  8. Radio Frequency Ablation Registration, Segmentation, and Fusion Tool

    PubMed Central

    McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.

    2008-01-01

    The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716

  9. Jupiter Environment Tool

    NASA Technical Reports Server (NTRS)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  10. Real-Time Visualization Tool Integrating STEREO, ACE, SOHO and the SDO

    NASA Astrophysics Data System (ADS)

    Schroeder, P. C.; Luhmann, J. G.; Marchant, W.

    2011-12-01

    The STEREO/IMPACT team has developed a new web-based visualization tool for near real-time data from the STEREO instruments, ACE and SOHO as well as relevant models of solar activity. This site integrates images, solar energetic particle, solar wind plasma and magnetic field measurements in an intuitive way using near real-time products from NOAA and other sources to give an overview of recent space weather events. This site enhances the browse tools already available at UC Berkeley, UCLA and Caltech which allow users to visualize similar data from the start of the STEREO mission. Our new near real-time tool utilizes publicly available real-time data products from a number of missions and instruments, including SOHO LASCO C2 images from the SOHO team's NASA site, SDO AIA images from the SDO team's NASA site, STEREO IMPACT SEP data plots and ACE EPAM data plots from the NOAA Space Weather Prediction Center and STEREO spacecraft positions from the STEREO Science Center.

  11. CRF: detection of CRISPR arrays using random forest.

    PubMed

    Wang, Kai; Liang, Chun

    2017-01-01

    CRISPRs (clustered regularly interspaced short palindromic repeats) are particular repeat sequences found in wide range of bacteria and archaea genomes. Several tools are available for detecting CRISPR arrays in the genomes of both domains. Here we developed a new web-based CRISPR detection tool named CRF (CRISPR Finder by Random Forest). Different from other CRISPR detection tools, a random forest classifier was used in CRF to filter out invalid CRISPR arrays from all putative candidates and accordingly enhanced detection accuracy. In CRF, particularly, triplet elements that combine both sequence content and structure information were extracted from CRISPR repeats for classifier training. The classifier achieved high accuracy and sensitivity. Moreover, CRF offers a highly interactive web interface for robust data visualization that is not available among other CRISPR detection tools. After detection, the query sequence, CRISPR array architecture, and the sequences and secondary structures of CRISPR repeats and spacers can be visualized for visual examination and validation. CRF is freely available at http://bioinfolab.miamioh.edu/crf/home.php.

  12. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  13. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    PubMed

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. GAC: Gene Associations with Clinical, a web based application.

    PubMed

    Zhang, Xinyan; Rupji, Manali; Kowalski, Jeanne

    2017-01-01

    We present GAC, a shiny R based tool for interactive visualization of clinical associations based on high-dimensional data. The tool provides a web-based suite to perform supervised principal component analysis (SuperPC), an approach that uses both high-dimensional data, such as gene expression, combined with clinical data to infer clinical associations. We extended the approach to address binary outcomes, in addition to continuous and time-to-event data in our package, thereby increasing the use and flexibility of SuperPC.  Additionally, the tool provides an interactive visualization for summarizing results based on a forest plot for both binary and time-to-event data.  In summary, the GAC suite of tools provide a one stop shop for conducting statistical analysis to identify and visualize the association between a clinical outcome of interest and high-dimensional data types, such as genomic data. Our GAC package has been implemented in R and is available via http://shinygispa.winship.emory.edu/GAC/. The developmental repository is available at https://github.com/manalirupji/GAC.

  15. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.

  16. PAVA: Physiological and Anatomical Visual Analytics for Mapping of Tissue-Specific Concentration and Time-Course Data

    EPA Science Inventory

    We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data ...

  17. AstroBlend: An astrophysical visualization package for Blender

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.

    2016-04-01

    The rapid growth in scale and complexity of both computational and observational astrophysics over the past decade necessitates efficient and intuitive methods for examining and visualizing large datasets. Here, I present AstroBlend, an open-source Python library for use within the three dimensional modeling software, Blender. While Blender has been a popular open-source software among animators and visual effects artists, in recent years it has also become a tool for visualizing astrophysical datasets. AstroBlend combines the three dimensional capabilities of Blender with the analysis tools of the widely used astrophysical toolset, yt, to afford both computational and observational astrophysicists the ability to simultaneously analyze their data and create informative and appealing visualizations. The introduction of this package includes a description of features, work flow, and various example visualizations. A website - www.astroblend.com - has been developed which includes tutorials, and a gallery of example images and movies, along with links to downloadable data, three dimensional artistic models, and various other resources.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorier, Matthieu; Sisneros, Roberto; Bautista Gomez, Leonard

    While many parallel visualization tools now provide in situ visualization capabilities, the trend has been to feed such tools with large amounts of unprocessed output data and let them render everything at the highest possible resolution. This leads to an increased run time of simulations that still have to complete within a fixed-length job allocation. In this paper, we tackle the challenge of enabling in situ visualization under performance constraints. Our approach shuffles data across processes according to its content and filters out part of it in order to feed a visualization pipeline with only a reorganized subset of themore » data produced by the simulation. Our framework leverages fast, generic evaluation procedures to score blocks of data, using information theory, statistics, and linear algebra. It monitors its own performance and adapts dynamically to achieve appropriate visual fidelity within predefined performance constraints. Experiments on the Blue Waters supercomputer with the CM1 simulation show that our approach enables a 5 speedup with respect to the initial visualization pipeline and is able to meet performance constraints.« less

  19. Interactive Visualization of Large-Scale Hydrological Data using Emerging Technologies in Web Systems and Parallel Programming

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2013-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.

  20. Developing, deploying and reflecting on a web-based geologic simulation tool

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2015-12-01

    Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.

  1. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility wasmore » needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)« less

  2. Assocplots: a Python package for static and interactive visualization of multiple-group GWAS results.

    PubMed

    Khramtsova, Ekaterina A; Stranger, Barbara E

    2017-02-01

    Over the last decade, genome-wide association studies (GWAS) have generated vast amounts of analysis results, requiring development of novel tools for data visualization. Quantile–quantile (QQ) plots and Manhattan plots are classical tools which have been utilized to visually summarize GWAS results and identify genetic variants significantly associated with traits of interest. However, static visualizations are limiting in the information that can be shown. Here, we present Assocplots, a Python package for viewing and exploring GWAS results not only using classic static Manhattan and QQ plots, but also through a dynamic extension which allows to interactively visualize the relationships between GWAS results from multiple cohorts or studies. The Assocplots package is open source and distributed under the MIT license via GitHub (https://github.com/khramts/assocplots) along with examples, documentation and installation instructions. ekhramts@medicine.bsd.uchicago.edu or bstranger@medicine.bsd.uchicago.edu

  3. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    PubMed

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  4. TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.

    PubMed

    Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han

    2017-03-01

    High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

  5. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  6. IViPP: A Tool for Visualization in Particle Physics

    NASA Astrophysics Data System (ADS)

    Tran, Hieu; Skiba, Elizabeth; Baldwin, Doug

    2011-10-01

    Experiments and simulations in physics generate a lot of data; visualization is helpful to prepare that data for analysis. IViPP (Interactive Visualizations in Particle Physics) is an interactive computer program that visualizes results of particle physics simulations or experiments. IViPP can handle data from different simulators, such as SRIM or MCNP. It can display relevant geometry and measured scalar data; it can do simple selection from the visualized data. In order to be an effective visualization tool, IViPP must have a software architecture that can flexibly adapt to new data sources and display styles. It must be able to display complicated geometry and measured data with a high dynamic range. We therefore organize it in a highly modular structure, we develop libraries to describe geometry algorithmically, use rendering algorithms running on the powerful GPU to display 3-D geometry at interactive rates, and we represent scalar values in a visual form of scientific notation that shows both mantissa and exponent. This work was supported in part by the US Department of Energy through the Laboratory for Laser Energetics (LLE), with special thanks to Craig Sangster at LLE.

  7. Interactive and coordinated visualization approaches for biological data analysis.

    PubMed

    Cruz, António; Arrais, Joel P; Machado, Penousal

    2018-03-26

    The field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone. In this article, we present a survey of visualization approaches applied to the analysis of biological data. We focus on graph-based visualizations and tools that use coordinated multiple views to represent high-dimensional multivariate data, in particular time series gene expression, protein-protein interaction networks and biological pathways. We then discuss how these methods can be used to help solve the current challenges surrounding the visualization of complex biological data sets.

  8. Visual impact of wind farms on cultural heritage: A Norwegian case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerpasen, Gro B., E-mail: gro.jerpasen@niku.no; Larsen, Kari C., E-mail: kari.larsen@niku.n

    2011-04-15

    This paper discusses different approaches of how visual impact on cultural heritage can be methodologically improved within Environmental Impact Assessment (EIA). During the recent decade, visual impact on cultural heritage and heritage sites has become a more frequent but contentious issue in public and academic discussions. Yet, within EIA issues relating to heritage sites and visual impact are rarely debated or critically reflected upon. Today most methods and theories on visual impact and cultural heritage within EIA are transferred from disciplines such as landscape architecture, architecture and geography. The article suggests how working with the concepts and definitions of sitemore » and setting can be a methodological tool for delimiting and clarifying visual impact on cultural heritage sites. The article also presents ways of how public participation can be a tool to start exploring the field of what the visual impact on cultural heritage implies and how it effects upon our understanding and appreciation of heritage sites. Examples from a Norwegian case are taken as illustrations to highlight these issues.« less

  9. Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects.

    PubMed

    Ambrosini, Ettore; Costantini, Marcello

    2017-02-01

    Viewed objects have been shown to afford suitable actions, even in the absence of any intention to act. However, little is known as to whether gaze behavior (i.e., the way we simply look at objects) is sensitive to action afforded by the seen object and how our actual motor possibilities affect this behavior. We recorded participants' eye movements during the observation of tools, graspable and ungraspable objects, while their hands were either freely resting on the table or tied behind their back. The effects of the observed object and hand posture on gaze behavior were measured by comparing the actual fixation distribution with that predicted by 2 widely supported models of visual attention, namely the Graph-Based Visual Saliency and the Adaptive Whitening Salience models. Results showed that saliency models did not accurately predict participants' fixation distributions for tools. Indeed, participants mostly fixated the action-related, functional part of the tools, regardless of its visual saliency. Critically, the restriction of the participants' action possibility led to a significant reduction of this effect and significantly improved the model prediction of the participants' gaze behavior. We suggest, first, that action-relevant object information at least in part guides gaze behavior. Second, postural information interacts with visual information to the generation of priority maps of fixation behavior. We support the view that the kind of information we access from the environment is constrained by our readiness to act. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design.

    PubMed

    Yuan, Shuguang; Chan, H C Stephen; Hu, Zhenquan

    2017-06-01

    Web browsers have long been recognized as potential platforms for remote macromolecule visualization. However, the difficulty in transferring large-scale data to clients and the lack of native support for hardware-accelerated applications in the local browser undermine the feasibility of such utilities. With the introduction of WebGL and HTML5 technologies in recent years, it is now possible to exploit the power of a graphics-processing unit (GPU) from a browser without any third-party plugin. Many new tools have been developed for biological molecule visualization and modern drug discovery. In contrast to traditional offline tools, real-time computing, interactive data analysis, and cross-platform analyses feature WebGL- and HTML5-based tools, facilitating biological research in a more efficient and user-friendly way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Tan, J; Kavanaugh, J

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less

  12. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.

    PubMed

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; Del-Toro, Noemi; Dianes, Jose A; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE.The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX "complete" submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The adenosine triphosphate method as a quality control tool to assess 'cleanliness' of frequently touched hospital surfaces.

    PubMed

    Knape, L; Hambraeus, A; Lytsy, B

    2015-10-01

    The adenosine triphosphate (ATP) method is widely accepted as a quality control method to complement visual assessment, in the specifications of requirements, when purchasing cleaning contractors in Swedish hospitals. To examine whether the amount of biological load, as measured by ATP on frequently touched near-patient surfaces, had been reduced after an intervention; to evaluate the correlation between visual assessment and ATP levels on the same surfaces; to identify aspects of the performance of the ATP method as a tool in evaluating hospital cleanliness. A prospective intervention study in three phases was carried out in a medical ward and an intensive care unit (ICU) at a regional hospital in mid-Sweden between 2012 and 2013. Existing cleaning procedures were defined and baseline tests were sampled by visual inspection and ATP measurements of ten frequently touched surfaces in patients' rooms before and after intervention. The intervention consisted of educating nursing staff about the importance of hospital cleaning and direct feedback of ATP levels before and after cleaning. The mixed model showed a significant decrease in ATP levels after the intervention (P < 0.001). Relative light unit values were lower in the ICU. Cleanliness as judged by visual assessments improved. In the logistic regression analysis, there was a significant association between visual assessments and ATP levels. Direct feedback of ATP levels, together with education and introduction of written cleaning protocols, were effective tools to improve cleanliness. Visual assessment correlated with the level of ATP but the correlation was not absolute. The ATP method could serve as an educational tool for staff, but is not enough to assess hospital cleanliness in general as only a limited part of a large area is covered. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets*

    PubMed Central

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; del-Toro, Noemi; Dianes, Jose A.; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE. The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX “complete” submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. PMID:26545397

  15. Experimental assessment of energy requirements and tool tip visibility for photoacoustic-guided endonasal surgery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Dagle, Alicia B.; Kazanzides, Peter; Boctor, Emad M.

    2016-03-01

    Endonasal transsphenoidal surgery is an effective approach for pituitary adenoma resection, yet it poses the serious risk of internal carotid artery injury. We propose to visualize these carotid arteries, which are hidden by bone, with an optical fiber attached to a surgical tool and a transcranial ultrasound probe placed on the patient's temple (i.e. intraoperative photoacoustic imaging). To investigate energy requirements for vessel visualization, experiments were conducted with a phantom containing ex vivo sheep brain, ex vivo bovine blood, and 0.5-2.5 mm thick human cadaveric skull specimens. Photoacoustic images were acquired with 1.2-9.3 mJ laser energy, and the resulting vessel contrast was measured at each energy level. The distal vessel boundary was difficult to distinguish at the chosen contrast threshold for visibility (4.5 dB), which was used to determine the minimum energies for vessel visualization. The blood vessel was successfully visualized in the presence of the 0-2.0 mm thick sphenoid and temporal bones with up to 19.2 dB contrast. The minimum energy required ranged from 1.2-5.0 mJ, 4.2-5.9 mJ, and 4.6-5.2 mJ for the 1.0 temporal and 0-1.5 mm sphenoid bones, 1.5 mm temporal and 0-0.5 mm sphenoid bones, and 2.0 mm temporal and 0-0.5 mm sphenoid bones, respectively, which corresponds to a fluence range of 4-21 mJ/cm2. These results hold promise for vessel visualization within safety limits. In a separate experiment, a mock tool tip was placed, providing satisfactory preliminary evidence that surgical tool tips can be visualized simultaneously with blood vessels.

  16. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data

    PubMed Central

    2015-01-01

    Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893

  17. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    PubMed

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  18. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  19. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  20. Visual Communication: Integrating Visual Instruction into Business Communication Courses

    ERIC Educational Resources Information Center

    Baker, William H.

    2006-01-01

    Business communication courses are ideal for teaching visual communication principles and techniques. Many assignments lend themselves to graphic enrichment, such as flyers, handouts, slide shows, Web sites, and newsletters. Microsoft Publisher and Microsoft PowerPoint are excellent tools for these assignments, with Publisher being best for…

  1. Overview of Human-Centric Space Situational Awareness Science and Technology

    DTIC Science & Technology

    2012-09-01

    AGI), the developers of Satellite Tool Kit ( STK ), has provided demonstrations of innovative SSA visualization concepts that take advantage of the...needs inherent with SSA. RH has conducted CTAs and developed work-centered human-computer interfaces, visualizations , and collaboration technologies...all end users. RH’s Battlespace Visualization Branch researches methods to exploit the visual channel primarily to improve decision making and

  2. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  3. Visualizing Decision-making Behaviours in Agent-based Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    North, Steve; Hennessy, Joseph F. (Technical Monitor)

    2003-01-01

    The authors will report initial progress on the PIAudit project as a Research Resident Associate Program. The objective of this research is to prototype a tool for visualizing decision-making behaviours in autonomous spacecraft. This visualization will serve as an information source for human analysts. The current visualization prototype for PIAudit combines traditional Decision Trees with Weights of Evidence.

  4. Visualizing Without Vision at the Microscale: Students With Visual Impairments Explore Cells With Touch

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany

    2006-12-01

    Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This study explored the efficacy of new haptic (simulated tactile feedback and kinesthetics) instructional technology for teaching cell morphology and function to middle and high school students with visual impairments. The study examined students' prior experiences learning about the cell and cell functions in classroom instruction, as well as how haptic feedback technology impacted students' awareness of the 3-D nature of an animal cell, the morphology and function of cell organelles, and students' interest in the haptic technology as an instructional tool. Twenty-one students with visual impairment participated in the study. Students explored a tactile model of the cell with a haptic point probe that allowed them to feel the cell and its organelles. Results showed that students made significant gains in their ability to identify cell organelles and found the technology to be highly interesting as an instructional tool. The need for additional adaptive technology for students with visual impairments is discussed.

  5. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    NASA Astrophysics Data System (ADS)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  6. WebScope: A New Tool for Fusion Data Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Dang, Ningning; Xiao, Bingjia

    2010-04-01

    A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.

  7. Navigation Constellation Design Using a Multi-Objective Genetic Algorithm

    DTIC Science & Technology

    2015-03-26

    programs. This specific tool not only offers high fidelity simulations, but it also offers the visual aid provided by STK . The ability to...MATLAB and STK . STK is a program that allows users to model, analyze, and visualize space systems. Users can create objects such as satellites and...position dilution of precision (PDOP) and system cost. This thesis utilized Satellite Tool Kit ( STK ) to calculate PDOP values of navigation

  8. Making sense from space-time data in laboratory experiments on space plasma processes

    NASA Technical Reports Server (NTRS)

    Gekelman, Walter; Bamber, James; Leneman, David; Vincena, Steve; Maggs, James; Rosenberg, Steve

    1995-01-01

    A number of visualization techniques are discussed in a laboratory experiment designed to study phenomena that occur in space. Visualization tools are used to design the apparatus, collect data, and make one-, two-, and three-dimensional plots of the results. These tools are an indispensable part of the experiment because the data sets are hundreds of megabytes in size and rapid turnaround is required.

  9. Effects of visualization on algorithm comprehension

    NASA Astrophysics Data System (ADS)

    Mulvey, Matthew

    Computer science students are expected to learn and apply a variety of core algorithms which are an essential part of the field. Any one of these algorithms by itself is not necessarily extremely complex, but remembering the large variety of algorithms and the differences between them is challenging. To address this challenge, we present a novel algorithm visualization tool designed to enhance students understanding of Dijkstra's algorithm by allowing them to discover the rules of the algorithm for themselves. It is hoped that a deeper understanding of the algorithm will help students correctly select, adapt and apply the appropriate algorithm when presented with a problem to solve, and that what is learned here will be applicable to the design of other visualization tools designed to teach different algorithms. Our visualization tool is currently in the prototype stage, and this thesis will discuss the pedagogical approach that informs its design, as well as the results of some initial usability testing. Finally, to clarify the direction for further development of the tool, four different variations of the prototype were implemented, and the instructional effectiveness of each was assessed by having a small sample participants use the different versions of the prototype and then take a quiz to assess their comprehension of the algorithm.

  10. User-Driven Sampling Strategies in Image Exploitation

    DOE PAGES

    Harvey, Neal R.; Porter, Reid B.

    2013-12-23

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less

  11. VRML and Collaborative Environments: New Tools for Networked Visualization

    NASA Astrophysics Data System (ADS)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  12. BMDExpress Data Viewer: A Visualization Tool to Analyze ...

    EPA Pesticide Factsheets

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure in human risk assessments. BMDExpress applies BMD modeling to transcriptomics datasets and groups genes to biological processes and pathways for rapid assessment of doses at which biological perturbations occur. However, graphing and analytical capabilities within BMDExpress are limited, and the analysis of output files is challenging. We developed a web-based application, BMDExpress Data Viewer, for visualization and graphical analyses of BMDExpress output files. The software application consists of two main components: ‘Summary Visualization Tools’ and ‘Dataset Exploratory Tools’. We demonstrate through two case studies that the ‘Summary Visualization Tools’ can be used to examine and assess the distributions of probe and pathway BMD outputs, as well as derive a potential regulatory BMD through the modes or means of the distributions. The ‘Functional Enrichment Analysis’ tool presents biological processes in a two-dimensional bubble chart view. By applying filters of pathway enrichment p-value and minimum number of significant genes, we showed that the Functional Enrichment Analysis tool can be applied to select pathways that are potentially sensitive to chemical perturbations. The ‘Multiple Dataset Comparison’ tool enables comparison of BMDs across multiple experiments (e.g., across time points, tissues, or organisms, etc.). The ‘BMDL-BM

  13. User-driven sampling strategies in image exploitation

    NASA Astrophysics Data System (ADS)

    Harvey, Neal; Porter, Reid

    2013-12-01

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.

  14. Data Visualization Challenges and Opportunities in User-Oriented Application Development

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2015-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  15. Teaching Tectonics to Undergraduates with Web GIS

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  16. Applying a visual language for image processing as a graphical teaching tool in medical imaging

    NASA Astrophysics Data System (ADS)

    Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.

  17. Software applications to three-dimensional visualization of forest landscapes -- A case study demontrating the use of visual nature studio (VNS) in visualizing fire spread in forest landscapes

    Treesearch

    Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom

    2010-01-01

    Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...

  18. Modeling human comprehension of data visualizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Haass, Michael Joseph; Divis, Kristin Marie

    This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need formore » cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.« less

  19. Multi-tool accessibility assessment of government department websites:a case-study with JKGAD.

    PubMed

    Ismail, Abid; Kuppusamy, K S; Nengroo, Ab Shakoor

    2017-08-02

    Nature of being accessible to all categories of users is one of the primary factors for enabling the wider reach of the resources published through World Wide Web. The accessibility of websites has been analyzed through W3C guidelines with the help of various tools. This paper presents a multi-tool accessibility assessment of government department websites belonging to the Indian state of Jammu and Kashmir. A comparative analysis of six accessibility tools is also presented with 14 different parameters. The accessibility analysis tools used in this study for analysis are aChecker, Cynthia Says, Tenon, wave, Mauve, and Hera. These tools provide us the results of selected websites accessibility status on Web Content Accessibility Guidelines (WCAG) 1.0 and 2.0. It was found that there are variations in accessibility analysis results when using different accessibility metrics to measure the accessibility of websites. In addition to this, we have identified the guidelines which have frequently been violated. It was observed that there is a need for incorporating the accessibility component features among the selected websites. This paper presents a set of suggestions to improve the accessibility status of these sites so that the information and services provided by these sites shall reach a wider spectrum of audience without any barrier. Implications for rehabilitation The following points indicates that this case study of JKGAD websites comes under Rehabilitation focused on Visually Impaired users. Due to the universal nature of web, it should be accessible to all according to WCAG guidelines framed by World Wide Web Consortium. In this paper we have identified multiple accessibility barriers for persons with visual impairment while browsing the Jammu and Kashmir Government websites. Multi-tool analysis has been done to pin-point the potential barriers for persons with visually Impaired. Usability analysis has been performed to check whether these websites are suitable for persons with visual impairment. We provide some valuable suggestions which can be followed by developers and designers to minimize these potential accessibility barriers.Based on aforementioned key points, this article helps the persons with disability especially Visually Impaired Users to access the web resources better with the implementation of identified suggestions.

  20. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  1. kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences

    PubMed Central

    2017-01-01

    Abstract Motifs of only 1–4 letters can play important roles when present at key locations within macromolecules. Because existing motif-discovery tools typically miss these position-specific short motifs, we developed kpLogo, a probability-based logo tool for integrated detection and visualization of position-specific ultra-short motifs from a set of aligned sequences. kpLogo also overcomes the limitations of conventional motif-visualization tools in handling positional interdependencies and utilizing ranked or weighted sequences increasingly available from high-throughput assays. kpLogo can be found at http://kplogo.wi.mit.edu/. PMID:28460012

  2. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.

    PubMed

    Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.

  3. Geoscience Through the Lens of Art: a collaborative course of science and art for undergraduates of various disciplines

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.

    2017-12-01

    A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.

  4. Interactive Learning Modules: Enabling Near Real-Time Oceanographic Data Use In Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Fundis, A. T.; Risien, C. M.

    2012-12-01

    The focus of the Education and Public Engagement (EPE) component of the NSF's Ocean Observatories Initiative (OOI) is to provide a new layer of cyber-interactivity for undergraduate educators to bring near real-time data from the global ocean into learning environments. To accomplish this, we are designing six online services including: 1) visualization tools, 2) a lesson builder, 3) a concept map builder, 4) educational web services (middleware), 5) collaboration tools and 6) an educational resource database. Here, we report on our Fall 2012 release that includes the first four of these services: 1) Interactive visualization tools allow users to interactively select data of interest, display the data in various views (e.g., maps, time-series and scatter plots) and obtain statistical measures such as mean, standard deviation and a regression line fit to select data. Specific visualization tools include a tool to compare different months of data, a time series explorer tool to investigate the temporal evolution of select data parameters (e.g., sea water temperature or salinity), a glider profile tool that displays ocean glider tracks and associated transects, and a data comparison tool that allows users to view the data either in scatter plot view comparing one parameter with another, or in time series view. 2) Our interactive lesson builder tool allows users to develop a library of online lesson units, which are collaboratively editable and sharable and provides starter templates designed from learning theory knowledge. 3) Our interactive concept map tool allows the user to build and use concept maps, a graphical interface to map the connection between concepts and ideas. This tool also provides semantic-based recommendations, and allows for embedding of associated resources such as movies, images and blogs. 4) Education web services (middleware) will provide an educational resource database API.

  5. Simulation environment and graphical visualization environment: a COPD use-case.

    PubMed

    Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip

    2014-11-28

    Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.

  6. OpenEIS. Developer Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.

    2015-03-31

    The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less

  7. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  8. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    PubMed

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  9. RNA-SSPT: RNA Secondary Structure Prediction Tools

    PubMed Central

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  10. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  11. Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data

    PubMed Central

    2011-01-01

    The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper. PMID:21410968

  12. Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data.

    PubMed

    Kamel Boulos, Maged N; Viangteeravat, Teeradache; Anyanwu, Matthew N; Ra Nagisetty, Venkateswara; Kuscu, Emin

    2011-03-16

    The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper.

  13. Prototyping Visual Learning Analytics Guided by an Educational Theory Informed Goal

    ERIC Educational Resources Information Center

    Hillaire, Garron; Rappolt-Schlichtmann, Gabrielle; Ducharme, Kim

    2016-01-01

    Prototype work can support the creation of data visualizations throughout the research and development process through paper prototypes with sketching, designed prototypes with graphic design tools, and functional prototypes to explore how the implementation will work. One challenging aspect of data visualization work is coordinating the expertise…

  14. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  15. Can Visualizing Document Space Improve Users' Information Foraging?

    ERIC Educational Resources Information Center

    Song, Min

    1998-01-01

    This study shows how users access relevant information in a visualized document space and determine whether BiblioMapper, a visualization tool, strengthens an information retrieval (IR) system and makes it more usable. BiblioMapper, developed for a CISI collection, was evaluated by accuracy, time, and user satisfaction. Users' navigation…

  16. Identifying Secondary-School Students' Difficulties When Reading Visual Representations Displayed in Physics Simulations

    ERIC Educational Resources Information Center

    López, Víctor; Pintó, Roser

    2017-01-01

    Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic…

  17. Artificial neural network models: A decision support tool for enhancing seedling selection in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Currently, sugarcane selection begins at the seedling stage with visual selection for cane yield and other yield-related traits. Although subjective and inefficient, visual selection remains the primary method for selection. Visual selection is inefficient because of the confounding effect of genoty...

  18. Visualizing the Heliosphere

    NASA Technical Reports Server (NTRS)

    Bridgman, William T.; Shirah, Greg W.; Mitchell, Horace G.

    2008-01-01

    Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.

  19. Progression of a Data Visualization Assignment

    ERIC Educational Resources Information Center

    Adkins, Joni K.

    2016-01-01

    The growing popularity of data visualization due to increased amounts of data and easier-to-use software tools creates an information literacy skill gap for students. Students in an Information Technology Management graduate course were exposed to data visualization not only through their textbook reading but also through a data visualization…

  20. Biochemical Visual Literacy with Constructive Alignment: Outcomes, Assessment, and Activities

    ERIC Educational Resources Information Center

    Herraez, Angel; Costa, Manuel Joao

    2013-01-01

    Several contributions in "Biochemistry and Molecular Biology Education" have highlighted the role of visualization tools and the importance of developing students' visual literacy in biochemistry education. In this forum, the authors suggest that more focus is needed on the assessment of student learning, and they advance…

  1. Modeling Spatial and Temporal Aspects of Visual Backward Masking

    ERIC Educational Resources Information Center

    Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo

    2008-01-01

    Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…

  2. Triage Visualization for Digital Media Exploitation

    DTIC Science & Technology

    2013-09-01

    and responding to threats. Previous work includes NVisionIP [17], a network visualization 8 tool that processes Argus NetFlow [18] data. NVisionIP...2012.02.021 [17] K. Lakkaraju et al., “Nvisionip: netflow visualizations of system state for security situational awareness,” in Proceedings of the 2004 ACM

  3. A low complexity visualization tool that helps to perform complex systems analysis

    NASA Astrophysics Data System (ADS)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  4. Data Visualization Using Immersive Virtual Reality Tools

    NASA Astrophysics Data System (ADS)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this visualization tool freely available to the academic community within a few months, on an experimental (beta testing) basis.

  5. Improving Visual Communication.

    PubMed

    Singh, Gary

    2018-01-01

    A tool that creates realtime interactive color maps for scientific visualization helped enhance the dynamics of a major research project for the Climate, Ocean, and Sea Ice Modeling team at Los Alamos National Laboratory.

  6. Multimodal visualization interface for data management, self-learning and data presentation.

    PubMed

    Van Sint Jan, S; Demondion, X; Clapworthy, G; Louryan, S; Rooze, M; Cotten, A; Viceconti, M

    2006-10-01

    A multimodal visualization software, called the Data Manager (DM), has been developed to increase interdisciplinary communication around the topic of visualization and modeling of various aspects of the human anatomy. Numerous tools used in Radiology are integrated in the interface that runs on standard personal computers. The available tools, combined to hierarchical data management and custom layouts, allow analyzing of medical imaging data using advanced features outside radiological premises (for example, for patient review, conference presentation or tutorial preparation). The system is free, and based on an open-source software development architecture, and therefore updates of the system for custom applications are possible.

  7. Visualization for genomics: the Microbial Genome Viewer.

    PubMed

    Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J

    2004-07-22

    A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV

  8. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  9. From sense of place to visualization of place: examining people-place relationships for insight on developing geovisualizations.

    PubMed

    Newell, Robert; Canessa, Rosaline

    2018-02-01

    Effective resource planning incorporates people-place relationships, allowing these efforts to be inclusive of the different local beliefs, interests, activities and needs. 'Geovisualizations' can serve as potentially powerful tools for facilitating 'place-conscious' resource planning, as they can be developed with high degrees of realism and accuracy, allowing people to recognize and relate to them as 'real places'. However, little research has been done on this potential, and the place-based applications of these visual tools are poorly understood. This study takes steps toward addressing this gap by exploring the relationship between sense of place and 'visualization of place'. Residents of the Capital Regional District of BC, Canada, were surveyed about their relationship with local coastal places, concerns for the coast, and how they mentally visualize these places. Factor analysis identified four sense of place dimensions - nature protection values, community and economic well-being values, place identity and place dependence, and four coastal concerns dimensions - ecological, private opportunities, public space and boating impacts. Visualization data were coded and treated as dependent variables in a series of logistic regressions that used sense of place and coastal concerns dimensions as predictors. Results indicated that different aspects of sense of place and (to a lesser degree) concerns for places influence the types of elements people include in their mental visualization of place. In addition, sense of place influenced the position and perspective people assume in these visualizations. These findings suggest that key visual elements and perspectives speak to different place relationships, which has implications for developing and using geovisualizations in terms of what elements should be included in tools and (if appropriate) depicted as affected by potential management or development scenarios.

  10. An introduction to Space Weather Integrated Modeling

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  11. Increasing awareness and preparedness by an exhibition and studying the effect of visuals

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Malet, Jean-Philippe; Mostert, Erik

    2013-04-01

    Damages caused by natural hazards can be reduced not only by protection, management and intervention activities, but also by information and communication to improve awareness and preparedness of local communities and tourists. Risk communication is particularly crucial for mountainous areas, such as the Ubaye Valley (France), as they are affected by multiple hazards and are particularly sensitive to the potential effects of climate and socio-economic changes which may increase the risk associated with natural hazards significantly. An exhibition is a powerful tool to communicate with the general public. It allows1: (1) targeting specific audiences, (2) transmitting technical and scientific knowledge using a suitable language, (3) anchoring the collective memory of past events, (4) visualize and emotionalize the topic of natural hazards, (5) strengthening the communication between peers, and (6) highlighting local resources and knowledge. In addition to these theoretical advantages, an exhibition may fulfill the requirements of a community. In the Ubaye Valley (France), this tool was proposed by the stakeholders themselves to increase awareness and preparedness of the general public. To meet this demand, the exhibition was designed following three general topics: (1) the natural phenomena and their potential consequences on the elements at risk, (2) the management and protection measures (individual and collective) and (3) the evolution of events and knowledge throughout past up to the present and the anticipation of the future situations. Besides being a real risk communication practice, this exhibition will be the setting for an extensive research project studying the effect of the use of visualization tools on the awareness and preparedness of a community. A wide range of visuals (photos, videos, maps, models, animations, multimedia, etc.) will present many dimensions of locally occurring natural hazards and risk problems. The aim of the research is (1) to verify the theoretical advantages of visual communication, such as conveying strong messages and making them easy to remember2, (2) to measure the change of awareness and preparedness after being exposed to such media, and (3) to propose guidelines for further development and use of visual tools for natural hazard risk communication. To conduct this analysis, questionnaires and direct observation will be applied. The first method will allow to measure changes in knowledge and perceptions as the same questionnaire will be filled by visitors prior and after their attendance to the exhibition. Additional items of the questionnaire will deal with the opinions on the different visualization tools, i.e. fulfillment of needs and requirements of the visitors. Direct observation will be used for analyzing the relative attraction of each of the visualization tools. This research will help to determine which tool is more suitable to communicate to the community not only as a whole, but also by its sub-groups, i.e. children or adults, locals or tourists, etc.

  12. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    NASA Astrophysics Data System (ADS)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  13. Implicit and Explicit Representations of Hand Position in Tool Use

    PubMed Central

    Rand, Miya K.; Heuer, Herbert

    2013-01-01

    Understanding the interactions of visual and proprioceptive information in tool use is important as it is the basis for learning of the tool's kinematic transformation and thus skilled performance. This study investigated how the CNS combines seen cursor positions and felt hand positions under a visuo-motor rotation paradigm. Young and older adult participants performed aiming movements on a digitizer while looking at rotated visual feedback on a monitor. After each movement, they judged either the proprioceptively sensed hand direction or the visually sensed cursor direction. We identified asymmetric mutual biases with a strong visual dominance. Furthermore, we found a number of differences between explicit and implicit judgments of hand directions. The explicit judgments had considerably larger variability than the implicit judgments. The bias toward the cursor direction for the explicit judgments was about twice as strong as for the implicit judgments. The individual biases of explicit and implicit judgments were uncorrelated. Biases of these judgments exhibited opposite sequential effects. Moreover, age-related changes were also different between these judgments. The judgment variability was decreased and the bias toward the cursor direction was increased with increasing age only for the explicit judgments. These results indicate distinct explicit and implicit neural representations of hand direction, similar to the notion of distinct visual systems. PMID:23894307

  14. I See What You Mean: Visual Literacy, K-8. Second Edition

    ERIC Educational Resources Information Center

    Moline, Steve

    2011-01-01

    Some educators may view diagrams, pictures, and charts as nice add-on tools for students who are visual thinkers. But Steve Moline sees visual literacy as fundamental to learning and to what it means to be human. In Moline's view, we are all bilingual. Our second language, which we do not speak but which we read and write every day, is visual.…

  15. Do Visual Aids Really Matter? A Comparison of Student Evaluations before and after Embedding Visuals into Video Lectures

    ERIC Educational Resources Information Center

    Fish, Kristine; Mun, Jungwon; A'Jontue, RoseAnn

    2016-01-01

    Educational webcasts or video lectures as a teaching tool and a form of visual aid have become widely used with the rising prevalence of online and blended courses and with the increase of web-based video materials. Thus, research pertaining to factors enhancing the effectiveness of video lectures, such as number of visual aids, is critical. This…

  16. Visual DMDX: A web-based authoring tool for DMDX, a Windows display program with millisecond accuracy.

    PubMed

    Garaizar, Pablo; Reips, Ulf-Dietrich

    2015-09-01

    DMDX is a software package for the experimental control and timing of stimulus display for Microsoft Windows systems. DMDX is reliable, flexible, millisecond accurate, and can be downloaded free of charge; therefore it has become very popular among experimental researchers. However, setting up a DMDX-based experiment is burdensome because of its command-based interface. Further, DMDX relies on RTF files in which parts of the stimuli, design, and procedure of an experiment are defined in a complicated (DMASTR-compatible) syntax. Other experiment software, such as E-Prime, Psychopy, and WEXTOR, became successful as a result of integrated visual authoring tools. Such an intuitive interface was lacking for DMDX. We therefore created and present here Visual DMDX (http://visualdmdx.com/), a HTML5-based web interface to set up experiments and export them to DMDX item files format in RTF. Visual DMDX offers most of the features available from the rich DMDX/DMASTR syntax, and it is a useful tool to support researchers who are new to DMDX. Both old and modern versions of DMDX syntax are supported. Further, with Visual DMDX, we go beyond DMDX by having added export to JSON (a versatile web format), easy backup, and a preview option for experiments. In two examples, one experiment each on lexical decision making and affective priming, we explain in a step-by-step fashion how to create experiments using Visual DMDX. We release Visual DMDX under an open-source license to foster collaboration in its continuous improvement.

  17. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    PubMed

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  18. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Hank; Brugger, Eric; Whitlock, Brad

    2012-11-01

    VisIt is a popular open source tool for visualizing and analyzing big data. It owes its success to its foci of increasing data understanding, large data support, and providing a robust and usable product, as well as its underlying design that fits today's supercomputing landscape. This report, which draws heavily from an earlier publication at the SciDAC Conference in 2011 describes the VisIt project and its accomplishments.

  19. Health Indicators: A Tool for Program Review

    ERIC Educational Resources Information Center

    Abou-Sayf, Frank K.

    2006-01-01

    A visual tool used to evaluate instructional program performance has been designed by the University of Hawaii Community College system. The tool combines features from traffic lights, blood-chemistry test reports, and industry production control charts, and is labeled the Program Health-Indicator Chart. The tool was designed to minimize the labor…

  20. Interactive Tools for Measuring Visual Scanning Performance and Reaction Time

    PubMed Central

    Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie

    2017-01-01

    Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598

  1. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion

    PubMed Central

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.

    2017-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564

  2. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    PubMed

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  3. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradel, Lauren; Endert, Alexander; Koch, Kristen

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less

  4. PROVAT: a tool for Voronoi tessellation analysis of protein structures and complexes.

    PubMed

    Gore, Swanand P; Burke, David F; Blundell, Tom L

    2005-08-01

    Voronoi tessellation has proved to be a useful tool in protein structure analysis. We have developed PROVAT, a versatile public domain software that enables computation and visualization of Voronoi tessellations of proteins and protein complexes. It is a set of Python scripts that integrate freely available specialized software (Qhull, Pymol etc.) into a pipeline. The calculation component of the tool computes Voronoi tessellation of a given protein system in a way described by a user-supplied XML recipe and stores resulting neighbourhood information as text files with various styles. The Python pickle file generated in the process is used by the visualization component, a Pymol plug-in, that offers a GUI to explore the tessellation visually. PROVAT source code can be downloaded from http://raven.bioc.cam.ac.uk/~swanand/Provat1, which also provides a webserver for its calculation component, documentation and examples.

  5. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters

    PubMed Central

    Ono, Keiichiro; Demchak, Barry; Ideker, Trey

    2014-01-01

    In this paper we present new data export modules for Cytoscape 3 that can generate network files for Cytoscape.js and D3.js. Cytoscape.js exporter is implemented as a core feature of Cytoscape 3, and D3.js exporter is available as a Cytoscape 3 app. These modules enable users to seamlessly export network and table data sets generated in Cytoscape to popular JavaScript library readable formats. In addition, we implemented template web applications for browser-based interactive network visualization that can be used as basis for complex data visualization applications for bioinformatics research. Example web applications created with these tools demonstrate how Cytoscape works in modern data visualization workflows built with traditional desktop tools and emerging web-based technologies. This interactivity enables researchers more flexibility than with static images, thereby greatly improving the quality of insights researchers can gain from them. PMID:25520778

  6. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters.

    PubMed

    Ono, Keiichiro; Demchak, Barry; Ideker, Trey

    2014-01-01

    In this paper we present new data export modules for Cytoscape 3 that can generate network files for Cytoscape.js and D3.js. Cytoscape.js exporter is implemented as a core feature of Cytoscape 3, and D3.js exporter is available as a Cytoscape 3 app. These modules enable users to seamlessly export network and table data sets generated in Cytoscape to popular JavaScript library readable formats. In addition, we implemented template web applications for browser-based interactive network visualization that can be used as basis for complex data visualization applications for bioinformatics research. Example web applications created with these tools demonstrate how Cytoscape works in modern data visualization workflows built with traditional desktop tools and emerging web-based technologies. This interactivity enables researchers more flexibility than with static images, thereby greatly improving the quality of insights researchers can gain from them.

  7. Near Real Time Integration of Satellite and Radar Data for Probabilistic Nearcasting of Severe Weather

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2014-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  8. IPAT: a freely accessible software tool for analyzing multiple patent documents with inbuilt landscape visualizer.

    PubMed

    Ajay, Dara; Gangwal, Rahul P; Sangamwar, Abhay T

    2015-01-01

    Intelligent Patent Analysis Tool (IPAT) is an online data retrieval tool, operated based on text mining algorithm to extract specific patent information in a predetermined pattern into an Excel sheet. The software is designed and developed to retrieve and analyze technology information from multiple patent documents and generate various patent landscape graphs and charts. The software is C# coded in visual studio 2010, which extracts the publicly available patent information from the web pages like Google Patent and simultaneously study the various technology trends based on user-defined parameters. In other words, IPAT combined with the manual categorization will act as an excellent technology assessment tool in competitive intelligence and due diligence for predicting the future R&D forecast.

  9. Scalable data management, analysis and visualization (SDAV) Institute. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveci, Berk

    The purpose of the SDAV institute is to provide tools and expertise in scientific data management, analysis, and visualization to DOE’s application scientists. Our goal is to actively work with application teams to assist them in achieving breakthrough science, and to provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community. Over the last 5 years members of our institute worked directly with application scientists and DOE leadership-class facilities to assist them by applying the best tools and technologies at our disposal. We also enhanced our tools based on inputmore » from scientists on their needs. Many of the applications we have been working with are based on connections with scientists established in previous years. However, we contacted additional scientists though our outreach activities, as well as engaging application teams running on leading DOE computing systems. Our approach is to employ an evolutionary development and deployment process: first considering the application of existing tools, followed by the customization necessary for each particular application, and then the deployment in real frameworks and infrastructures. The institute is organized into three areas, each with area leaders, who keep track of progress, engagement of application scientists, and results. The areas are: (1) Data Management, (2) Data Analysis, and (3) Visualization. Kitware has been involved in the Visualization area. This report covers Kitware’s contributions over the last 5 years (February 2012 – February 2017). For details on the work performed by the SDAV institute as a whole, please see the SDAV final report.« less

  10. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    PubMed

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  11. My child at mealtime: A visually enhanced self-assessment of feeding styles for low-income parents of preschoolers.

    PubMed

    Ontai, Lenna L; Sitnick, Stephanie L; Shilts, Mical K; Townsend, Marilyn S

    2016-04-01

    The importance of caregiver feeding styles on children's dietary outcomes is well documented. However, the instruments used to assess feeding style are limited by high literacy demands, making selfassessment with low-income audiences challenging. The purpose of the current study is to report on the development of My Child at Mealtime (MCMT), a self-assessment tool with reduced literacy demands, designed to measure feeding styles with parents of preschool-aged children. Cognitive interviews were conducted with 44 Head Start parents of 2-5 year old children to develop question wording and identify appropriate visuals. The resulting tool was administered to 119 ethnically diverse, low-income parents of 2-5 year old children. Factor analysis resulted in a two-factor structure that reflects responsiveness and demandingness in a manner consistent with existing assessment tools. Results indicate the final visually enhanced MCMT self-assessment tool provides a measure of parenting style consistent with existing measures, while reducing the literacy demand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Interactive 3D visualization tools for stereotactic atlas-based functional neurosurgery

    NASA Astrophysics Data System (ADS)

    St. Jean, Philippe; Kasrai, Reza; Clonda, Diego; Sadikot, Abbas F.; Evans, Alan C.; Peters, Terence M.

    1998-06-01

    Many of the critical basal ganglia structures are not distinguishable on anatomical magnetic resonance imaging (MRI) scans, even though they differ in functionality. In order to provide the neurosurgeon with this missing information, a deformable volumetric atlas of the basal ganglia has been created from the Shaltenbrand and Wahren atlas of cryogenic slices. The volumetric atlas can be non-linearly deformed to an individual patient's MRI. To facilitate the clinical use of the atlas, a visualization platform has been developed for pre- and intra-operative use which permits manipulation of the merged atlas and MRI data sets in two- and three-dimensional views. The platform includes graphical tools which allow the visualization of projections of the leukotome and other surgical tools with respect to the atlas data, as well as pre- registered images from any other imaging modality. In addition, a graphical interface has been designed to create custom virtual lesions using computer models of neurosurgical tools for intra-operative planning. To date 17 clinical cases have been successfully performed using the described system.

  13. GAC: Gene Associations with Clinical, a web based application

    PubMed Central

    Zhang, Xinyan; Rupji, Manali; Kowalski, Jeanne

    2018-01-01

    We present GAC, a shiny R based tool for interactive visualization of clinical associations based on high-dimensional data. The tool provides a web-based suite to perform supervised principal component analysis (SuperPC), an approach that uses both high-dimensional data, such as gene expression, combined with clinical data to infer clinical associations. We extended the approach to address binary outcomes, in addition to continuous and time-to-event data in our package, thereby increasing the use and flexibility of SuperPC.  Additionally, the tool provides an interactive visualization for summarizing results based on a forest plot for both binary and time-to-event data.  In summary, the GAC suite of tools provide a one stop shop for conducting statistical analysis to identify and visualize the association between a clinical outcome of interest and high-dimensional data types, such as genomic data. Our GAC package has been implemented in R and is available via http://shinygispa.winship.emory.edu/GAC/. The developmental repository is available at https://github.com/manalirupji/GAC. PMID:29263780

  14. Rocker: Open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization.

    PubMed

    Lätti, Sakari; Niinivehmas, Sanna; Pentikäinen, Olli T

    2016-01-01

    Receiver operating characteristics (ROC) curve with the calculation of area under curve (AUC) is a useful tool to evaluate the performance of biomedical and chemoinformatics data. For example, in virtual drug screening ROC curves are very often used to visualize the efficiency of the used application to separate active ligands from inactive molecules. Unfortunately, most of the available tools for ROC analysis are implemented into commercially available software packages, or are plugins in statistical software, which are not always the easiest to use. Here, we present Rocker, a simple ROC curve visualization tool that can be used for the generation of publication quality images. Rocker also includes an automatic calculation of the AUC for the ROC curve and Boltzmann-enhanced discrimination of ROC (BEDROC). Furthermore, in virtual screening campaigns it is often important to understand the early enrichment of active ligand identification, for this Rocker offers automated calculation routine. To enable further development of Rocker, it is freely available (MIT-GPL license) for use and modifications from our web-site (http://www.jyu.fi/rocker).

  15. Perceptual learning in visual search: fast, enduring, but non-specific.

    PubMed

    Sireteanu, R; Rettenbach, R

    1995-07-01

    Visual search has been suggested as a tool for isolating visual primitives. Elementary "features" were proposed to involve parallel search, while serial search is necessary for items without a "feature" status, or, in some cases, for conjunctions of "features". In this study, we investigated the role of practice in visual search tasks. We found that, under some circumstances, initially serial tasks can become parallel after a few hundred trials. Learning in visual search is far less specific than learning of visual discriminations and hyperacuity, suggesting that it takes place at another level in the central visual pathway, involving different neural circuits.

  16. The Small Body Mapping Tool (SBMT) for Accessing, Visualizing, and Analyzing Spacecraft Data in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Barnouin, O. S.; Ernst, C. M.; Daly, R. T.

    2018-04-01

    The free, publicly available Small Body Mapping Tool (SBMT) developed at the Johns Hopkins University Applied Physics Laboratory is a powerful, easy-to-use tool for accessing and analyzing data from small bodies.

  17. An Empirical Comparison of Visualization Tools To Assist Information Retrieval on the Web.

    ERIC Educational Resources Information Center

    Heo, Misook; Hirtle, Stephen C.

    2001-01-01

    Discusses problems with navigation in hypertext systems, including cognitive overload, and describes a study that tested information visualization techniques to see which best represented the underlying structure of Web space. Considers the effects of visualization techniques on user performance on information searching tasks and the effects of…

  18. Educating Immigrant Hispanic Foodservice Workers about Food Safety Using Visual-Based Training

    ERIC Educational Resources Information Center

    Rajagopal, Lakshman

    2013-01-01

    Providing food safety training to a diverse workforce brings with it opportunities and challenges that must be addressed. The study reported here provides evidence for benefits of using visual-based tools for food safety training when educating immigrant, Hispanic foodservice workers with no or minimal English language skills. Using visual tools…

  19. Role of Visualization in Mathematical Abstraction: The Case of Congruence Concept

    ERIC Educational Resources Information Center

    Yilmaz, Rezan; Argun, Ziya

    2018-01-01

    Mathematical abstraction is an important process in mathematical thinking. Also, visualization is a strong tool for searching mathematical problems, giving meaning to mathematical concepts and the relationships between them. In this paper, we aim to investigate the role of visualizations in mathematical abstraction through a case study on five…

  20. Visualization as an Aid to Problem-Solving: Examples from History.

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.

    This paper presents a historical overview of visualization as a human problem-solving tool. Visualization strategies, such as mental imagery, pervade historical accounts of scientific discovery and invention. A selected number of historical examples are presented and discussed on a wide range of topics such as physics, aviation, and the science of…

  1. Factors Related to Impaired Visual Orienting Behavior in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Boot, F. H.; Pel, J .J. M.; Evenhuis, H. M.; van der Steen, J.

    2012-01-01

    It is generally assumed that children with intellectual disabilities (ID) have an increased risk of impaired visual information processing due to brain damage or brain development disorder. So far little evidence has been presented to support this assumption. Abnormal visual orienting behavior is a sensitive tool to evaluate impaired visual…

  2. Virtual Laboratory as an Element of Visualization When Teaching Chemical Contents in Science Class

    ERIC Educational Resources Information Center

    Herga, Nataša Rizman; Grmek, Milena Ivanuš; Dinevski, Dejan

    2014-01-01

    Using a variety of visualization tools for teaching and learning science and chemistry is necessary because pupils better understand chemical phenomena and formulate appropriate mental models. The purpose of the presented study was to determine the importance of a virtual laboratory as a visualization element when addressing chemical contents…

  3. DanceChemistry: Helping Students Visualize Chemistry Concepts through Dance Videos

    ERIC Educational Resources Information Center

    Tay, Gidget C.; Edwards, Kimberly D.

    2015-01-01

    A visual aid teaching tool, the DanceChemistry video series, has been developed to teach fundamental chemistry concepts through dance. These educational videos portray chemical interactions at the molecular level using dancers to represent chemical species. Students reported that the DanceChemistry videos helped them visualize chemistry ideas in a…

  4. Imaging Girls: Visual Methodologies and Messages for Girls' Education

    ERIC Educational Resources Information Center

    Magno, Cathryn; Kirk, Jackie

    2008-01-01

    This article describes the use of visual methodologies to examine images of girls used by development agencies to portray and promote their work in girls' education, and provides a detailed discussion of three report cover images. It details the processes of methodology and tool development for the visual analysis and presents initial 'readings'…

  5. Design Criteria for Visual Cues Used in Disruptive Learning Interventions within Sustainability Education

    ERIC Educational Resources Information Center

    Tillmanns, Tanja; Holland, Charlotte; Filho, Alfredo Salomão

    2017-01-01

    This paper presents the design criteria for Visual Cues--visual stimuli that are used in combination with other pedagogical processes and tools in Disruptive Learning interventions in sustainability education--to disrupt learners' existing frames of mind and help re-orient learners' mind-sets towards sustainability. The theory of Disruptive…

  6. Perception of Elementary Students of Visuals on the Web.

    ERIC Educational Resources Information Center

    El-Tigi, Manal A.; And Others

    The way information is visually designed and synthesized greatly affects how people understand and use that information. Increased use of the World Wide Web as a teaching tool makes it imperative to question how visual/verbal information presented via the Web can increase or restrict understanding. The purpose of this study was to examine…

  7. Query2Question: Translating Visualization Interaction into Natural Language.

    PubMed

    Nafari, Maryam; Weaver, Chris

    2015-06-01

    Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.

  8. PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.

    PubMed

    Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir

    2007-01-01

    The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.

  9. Planetary Surface Visualization and Analytics

    NASA Astrophysics Data System (ADS)

    Law, E. S.; Solar System Treks Team

    2018-04-01

    An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.

  10. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  11. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  12. Living Liquid: Design and Evaluation of an Exploratory Visualization Tool for Museum Visitors.

    PubMed

    Ma, J; Liao, I; Ma, Kwan-Liu; Frazier, J

    2012-12-01

    Interactive visualizations can allow science museum visitors to explore new worlds by seeing and interacting with scientific data. However, designing interactive visualizations for informal learning environments, such as museums, presents several challenges. First, visualizations must engage visitors on a personal level. Second, visitors often lack the background to interpret visualizations of scientific data. Third, visitors have very limited time at individual exhibits in museums. This paper examines these design considerations through the iterative development and evaluation of an interactive exhibit as a visualization tool that gives museumgoers access to scientific data generated and used by researchers. The exhibit prototype, Living Liquid, encourages visitors to ask and answer their own questions while exploring the time-varying global distribution of simulated marine microbes using a touchscreen interface. Iterative development proceeded through three rounds of formative evaluations using think-aloud protocols and interviews, each round informing a key visualization design decision: (1) what to visualize to initiate inquiry, (2) how to link data at the microscopic scale to global patterns, and (3) how to include additional data that allows visitors to pursue their own questions. Data from visitor evaluations suggests that, when designing visualizations for public audiences, one should (1) avoid distracting visitors from data that they should explore, (2) incorporate background information into the visualization, (3) favor understandability over scientific accuracy, and (4) layer data accessibility to structure inquiry. Lessons learned from this case study add to our growing understanding of how to use visualizations to actively engage learners with scientific data.

  13. The development and discussion of computerized visual perception assessment tool for Chinese characters structures - Concurrent estimation of the overall ability and the domain ability in item response theory approach.

    PubMed

    Wu, Huey-Min; Lin, Chin-Kai; Yang, Yu-Mao; Kuo, Bor-Chen

    2014-11-12

    Visual perception is the fundamental skill required for a child to recognize words, and to read and write. There was no visual perception assessment tool developed for preschool children based on Chinese characters in Taiwan. The purposes were to develop the computerized visual perception assessment tool for Chinese Characters Structures and to explore the psychometrical characteristic of assessment tool. This study adopted purposive sampling. The study evaluated 551 kindergarten-age children (293 boys, 258 girls) ranging from 46 to 81 months of age. The test instrument used in this study consisted of three subtests and 58 items, including tests of basic strokes, single-component characters, and compound characters. Based on the results of model fit analysis, the higher-order item response theory was used to estimate the performance in visual perception, basic strokes, single-component characters, and compound characters simultaneously. Analyses of variance were used to detect significant difference in age groups and gender groups. The difficulty of identifying items in a visual perception test ranged from -2 to 1. The visual perception ability of 4- to 6-year-old children ranged from -1.66 to 2.19. Gender did not have significant effects on performance. However, there were significant differences among the different age groups. The performance of 6-year-olds was better than that of 5-year-olds, which was better than that of 4-year-olds. This study obtained detailed diagnostic scores by using a higher-order item response theory model to understand the visual perception of basic strokes, single-component characters, and compound characters. Further statistical analysis showed that, for basic strokes and compound characters, girls performed better than did boys; there also were differences within each age group. For single-component characters, there was no difference in performance between boys and girls. However, again the performance of 6-year-olds was better than that of 4-year-olds, but there were no statistical differences between the performance of 5-year-olds and 6-year-olds. Results of tests with basic strokes, single-component characters and compound characters tests had good reliability and validity. Therefore, it can be apply to diagnose the problem of visual perception at preschool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Interactive visualization of numerical simulation results: A tool for mission planning and data analysis

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.

    1995-01-01

    We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.

  15. Visualization for Molecular Dynamics Simulation of Gas and Metal Surface Interaction

    NASA Astrophysics Data System (ADS)

    Puzyrkov, D.; Polyakov, S.; Podryga, V.

    2016-02-01

    The development of methods, algorithms and applications for visualization of molecular dynamics simulation outputs is discussed. The visual analysis of the results of such calculations is a complex and actual problem especially in case of the large scale simulations. To solve this challenging task it is necessary to decide on: 1) what data parameters to render, 2) what type of visualization to choose, 3) what development tools to use. In the present work an attempt to answer these questions was made. For visualization it was offered to draw particles in the corresponding 3D coordinates and also their velocity vectors, trajectories and volume density in the form of isosurfaces or fog. We tested the way of post-processing and visualization based on the Python language with use of additional libraries. Also parallel software was developed that allows processing large volumes of data in the 3D regions of the examined system. This software gives the opportunity to achieve desired results that are obtained in parallel with the calculations, and at the end to collect discrete received frames into a video file. The software package "Enthought Mayavi2" was used as the tool for visualization. This visualization application gave us the opportunity to study the interaction of a gas with a metal surface and to closely observe the adsorption effect.

  16. Resources for Designing, Selecting and Teaching with Visualizations in the Geoscience Classroom

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Ormand, C. J.; McDaris, J. R.

    2009-12-01

    Geoscience is a highly visual field, and effective use of visualizations can enhance student learning, appeal to students’ emotions and help them acquire skills for interpreting visual information. The On the Cutting Edge website, “Teaching Geoscience with Visualizations” presents information of interest to faculty who are teaching with visualizations, as well as those who are designing visualizations. The website contains best practices for effective visualizations, drawn from the educational literature and from experts in the field. For example, a case is made for careful selection of visualizations so that faculty can align the correct visualization with their teaching goals and audience level. Appropriate visualizations will contain the desired geoscience content without adding extraneous information that may distract or confuse students. Features such as labels, arrows and contextual information can help guide students through imagery and help to explain the relevant concepts. Because students learn by constructing their own mental image of processes, it is helpful to select visualizations that reflect the same type of mental picture that students should create. A host of recommended readings and presentations from the On the Cutting Edge visualization workshops can provide further grounding for the educational uses of visualizations. Several different collections of visualizations, datasets with visualizations and visualization tools are available on the website. Examples include animations of tsunamis, El Nino conditions, braided stream formation and mountain uplift. These collections are grouped by topic and range from simple animations to interactive models. A series of example activities that incorporate visualizations into classroom and laboratory activities illustrate various tactics for using these materials in different types of settings. Activities cover topics such as ocean circulation, land use changes, earthquake simulations and the use of Google Earth to explore geologic processes. These materials can be found at http://serc.carleton.edu/NAGTWorkshops/visualization. Faculty and developers of visualization tools are encouraged to submit teaching activities, references or visualizations to the collections.

  17. Fuzzy-based simulation of real color blindness.

    PubMed

    Lee, Jinmi; dos Santos, Wellington P

    2010-01-01

    About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.

  18. A boxplot for circular data.

    PubMed

    Buttarazzi, Davide; Pandolfo, Giuseppe; Porzio, Giovanni C

    2018-05-21

    The box-and-whiskers plot is an extraordinary graphical tool that provides a quick visual summary of an observed distribution. In spite of its many extensions, a really suitable boxplot to display circular data is not yet available. Thanks to its simplicity and strong visual impact, such a tool would be especially useful in all fields where circular measures arise: biometrics, astronomy, environmetrics, Earth sciences, to cite just a few. For this reason, in line with Tukey's original idea, a Tukey-like circular boxplot is introduced. Several simulated and real datasets arising in biology are used to illustrate the proposed graphical tool. © 2018, The International Biometric Society.

  19. CMS Configuration Editor: GUI based application for user analysis job

    NASA Astrophysics Data System (ADS)

    de Cosa, A.

    2011-12-01

    We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.

  20. Driving on the surface of Mars with the rover sequencing and visualization program

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2005-01-01

    Operating a rover on Mars is not possible using teleoperations due to the distance involved and the bandwith limitations. To operate these rovers requires sophisticated tools to make operators knowledgeable of the terrain, hazards, features of interest, and rover state and limitations, and to support building command sequences and rehearsing expected operations. This paper discusses how the Rover Sequencing and Visualization program and a small set of associated tools support this requirement.

  1. Unlocking User-Centered Design Methods for Building Cyber Security Visualizations

    DTIC Science & Technology

    2015-08-07

    have rarely linked these methods to a final, deployed tool. Goodall et al. interviewed analysts to derive requirements for a network security tool [14... Goodall , W. Lutters, and A. Komlodi. The work of intrusion detec- tion: rethinking the role of security analysts. AMCIS 2004 Proceed- ings, 2004. [14] J. R... Goodall , A. A. Ozok, W. G. Lutters, P. Rheingans, and A. Kom- lodi. A user-centered approach to visualizing network traffic for intru- sion

  2. Knowledge Visualizations: A Tool to Achieve Optimized Operational Decision Making and Data Integration

    DTIC Science & Technology

    2015-06-01

    Hadoop Distributed File System (HDFS) without any integration with Accumulo-based Knowledge Stores based on OWL/RDF. 4. Cloud Based The Apache Software...BTW, 7(12), pp. 227–241. Godin, A. & Akins, D. (2014). Extending DCGS-N naval tactical clouds from in-storage to in-memory for the integrated fires...VISUALIZATIONS: A TOOL TO ACHIEVE OPTIMIZED OPERATIONAL DECISION MAKING AND DATA INTEGRATION by Paul C. Hudson Jeffrey A. Rzasa June 2015 Thesis

  3. In situ visualization and data analysis for turbidity currents simulation

    NASA Astrophysics Data System (ADS)

    Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.

    2018-01-01

    Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

  4. ESTEEM: A Novel Framework for Qualitatively Evaluating and Visualizing Spatiotemporal Embeddings in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Volkova, Svitlana

    Analyzing and visualizing large amounts of social media communications and contrasting short-term conversation changes over time and geo-locations is extremely important for commercial and government applications. Earlier approaches for large-scale text stream summarization used dynamic topic models and trending words. Instead, we rely on text embeddings – low-dimensional word representations in a continuous vector space where similar words are embedded nearby each other. This paper presents ESTEEM,1 a novel tool for visualizing and evaluating spatiotemporal embeddings learned from streaming social media texts. Our tool allows users to monitor and analyze query words and their closest neighbors with an interactive interface.more » We used state-of- the-art techniques to learn embeddings and developed a visualization to represent dynamically changing relations between words in social media over time and other dimensions. This is the first interactive visualization of streaming text representations learned from social media texts that also allows users to contrast differences across multiple dimensions of the data.« less

  5. LSSGalPy: Interactive Visualization of the Large-scale Environment Around Galaxies

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Duarte Puertas, S.; Ruiz, J. E.; Sabater, J.; Verley, S.; Bergond, G.

    2017-05-01

    New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects. .

  6. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  7. Validity and Interrater Reliability of the Visual Quarter-Waste Method for Assessing Food Waste in Middle School and High School Cafeteria Settings.

    PubMed

    Getts, Katherine M; Quinn, Emilee L; Johnson, Donna B; Otten, Jennifer J

    2017-11-01

    Measuring food waste (ie, plate waste) in school cafeterias is an important tool to evaluate the effectiveness of school nutrition policies and interventions aimed at increasing consumption of healthier meals. Visual assessment methods are frequently applied in plate waste studies because they are more convenient than weighing. The visual quarter-waste method has become a common tool in studies of school meal waste and consumption, but previous studies of its validity and reliability have used correlation coefficients, which measure association but not necessarily agreement. The aims of this study were to determine, using a statistic measuring interrater agreement, whether the visual quarter-waste method is valid and reliable for assessing food waste in a school cafeteria setting when compared with the gold standard of weighed plate waste. To evaluate validity, researchers used the visual quarter-waste method and weighed food waste from 748 trays at four middle schools and five high schools in one school district in Washington State during May 2014. To assess interrater reliability, researcher pairs independently assessed 59 of the same trays using the visual quarter-waste method. Both validity and reliability were assessed using a weighted κ coefficient. For validity, as compared with the measured weight, 45% of foods assessed using the visual quarter-waste method were in almost perfect agreement, 42% of foods were in substantial agreement, 10% were in moderate agreement, and 3% were in slight agreement. For interrater reliability between pairs of visual assessors, 46% of foods were in perfect agreement, 31% were in almost perfect agreement, 15% were in substantial agreement, and 8% were in moderate agreement. These results suggest that the visual quarter-waste method is a valid and reliable tool for measuring plate waste in school cafeteria settings. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  8. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.

    PubMed

    Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M

    2016-01-01

    Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with <2 years of laparoscopic surgery) and expert surgeons (N = 25; surgeons with >4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers (p < 0.001). Modern day curriculum-based training should evaluate the skills of residents with robust force and psychomotor-based exercises for proficient laparoscopy. Visual feedback on force and motion during training has the potential to enhance the learning curve of residents. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Visualization Tools for Lattice QCD - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge,more » our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.« less

  10. The challenge of big data in public health: an opportunity for visual analytics.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data's volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research.

  11. The Challenge of Big Data in Public Health: An Opportunity for Visual Analytics

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data’s volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research. PMID:24678376

  12. GIS-based interactive tool to map the advent of world conquerors

    NASA Astrophysics Data System (ADS)

    Lakkaraju, Mahesh

    The objective of this thesis is to show the scale and extent of some of the greatest empires the world has ever seen. This is a hybrid project between the GIS based interactive tool and the web-based JavaScript tool. This approach lets the students learn effectively about the emperors themselves while understanding how long and far their empires spread. In the GIS based tool, a map is displayed with various points on it, and when a user clicks on one point, the relevant information of what happened at that particular place is displayed. Apart from this information, users can also select the interactive animation button and can walk through a set of battles in chronological order. As mentioned, this uses Java as the main programming language, and MOJO (Map Objects Java Objects) provided by ESRI. MOJO is very effective as its GIS related features can be included in the application itself. This app. is a simple tool and has been developed for university or high school level students. D3.js is an interactive animation and visualization platform built on the Javascript framework. Though HTML5, CSS3, Javascript and SVG animations can be used to derive custom animations, this tool can help bring out results with less effort and more ease of use. Hence, it has become the most sought after visualization tool for multiple applications. D3.js has provided a map-based visualization feature so that we can easily display text-based data in a map-based interface. To draw the map and the points on it, D3.js uses data rendered in TOPO JSON format. The latitudes and longitudes can be provided, which are interpolated into the Map svg. One of the main advantages of doing it this way is that more information is retained when we use a visual medium.

  13. Making Your Tools Useful to a Broader Audience

    NASA Astrophysics Data System (ADS)

    Lyness, M. D.; Broten, M. J.

    2006-12-01

    With the increasing growth of Web Services and SOAP the ability to connect and reuse computational and also visualization tools from all over the world via Web Interfaces that can be easily displayed in any current browser has provided the means to construct an ideal online research environment. The age-old question of usability is a major determining factor whether a particular tool would find great success in its community. An interface that can be understood purely by a user's intuition is desirable and more closely obtainable than ever before. Through the use of increasingly sophisticated web-oriented technologies including JavaScript, AJAX, and the DOM, web interfaces are able to harness the advantages of the Internet along with the functional capabilities of native applications such as menus, partial page changes, background processing, and visual effects to name a few. Also, with computers becoming a normal part of the educational process companies, such as Google and Microsoft, give us a synthetic intuition as a foundation for new designs. Understanding the way earth science researchers know how to use computers will allow the VLab portal (http://vlab.msi.umn.edu) and other projects to create interfaces that will get used. To provide detailed communication with the users of VLab's computational tools, projects like the Porky Portlet (http://www.gorerle.com/vlab-wiki/index.php?title=Porky_Portlet) spawned to empower users with a fully- detailed, interactive visual representation of progressing workflows. With the well-thought design of such tools and interfaces, researchers around the world will become accustomed to new highly engaging, visual web- based research environments.

  14. The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers.

    PubMed

    Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Putman, Rachel K; Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; Estepar, Raul San Jose; Washko, George R

    2017-08-01

    Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Bridging Theory with Practice: An Exploratory Study of Visualization Use and Design for Climate Model Comparison

    DOE PAGES

    Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing; ...

    2015-03-16

    Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less

  16. Bridging Theory with Practice: An Exploratory Study of Visualization Use and Design for Climate Model Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing

    Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less

  17. Immersive visualization for navigation and control of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Hartman, Frank R.; Cooper, Brian; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    The Rover Sequencing and Visualization Program (RSVP) is a suite of tools for sequencing of planetary rovers, which are subject to significant light time delay and thus are unsuitable for teleoperation.

  18. Identifying persistent and characteristic features in firearm tool marks on cartridge cases

    NASA Astrophysics Data System (ADS)

    Ott, Daniel; Soons, Johannes; Thompson, Robert; Song, John

    2017-12-01

    Recent concerns about subjectivity in forensic firearm identification have motivated the development of algorithms to compare firearm tool marks that are imparted on ammunition and to generate quantitative measures of similarity. In this paper, we describe an algorithm that identifies impressed tool marks on a cartridge case that are both consistent between firings and contribute strongly to a surface similarity metric. The result is a representation of the tool mark topography that emphasizes both significant and persistent features across firings. This characteristic surface map is useful for understanding the variability and persistence of the tool marks created by a firearm and can provide improved discrimination between the comparison scores of samples fired from the same firearm and the scores of samples fired from different firearms. The algorithm also provides a convenient method for visualizing areas of similarity that may be useful in providing quantitative support for visual comparisons by trained examiners.

  19. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  20. On the road to a stronger public health workforce: visual tools to address complex challenges.

    PubMed

    Drehobl, Patricia; Stover, Beth H; Koo, Denise

    2014-11-01

    The public health workforce is vital to protecting the health and safety of the public, yet for years, state and local governmental public health agencies have reported substantial workforce losses and other challenges to the workforce that threaten the public's health. These challenges are complex, often involve multiple influencing or related causal factors, and demand comprehensive solutions. However, proposed solutions often focus on selected factors and might be fragmented rather than comprehensive. This paper describes approaches to characterizing the situation more comprehensively and includes two visual tools: (1) a fishbone, or Ishikawa, diagram that depicts multiple factors affecting the public health workforce; and (2) a roadmap that displays key elements-goals and strategies-to strengthen the public health workforce, thus moving from the problems depicted in the fishbone toward solutions. The visual tools aid thinking about ways to strengthen the public health workforce through collective solutions and to help leverage resources and build on each other's work. The strategic roadmap is intended to serve as a dynamic tool for partnership, prioritization, and gap assessment. These tools reflect and support CDC's commitment to working with partners on the highest priorities for strengthening the workforce to improve the public's health. Published by Elsevier Inc.

  1. MATISSE: A novel tool to access, visualize and analyse data from planetary exploration missions

    NASA Astrophysics Data System (ADS)

    Zinzi, A.; Capria, M. T.; Palomba, E.; Giommi, P.; Antonelli, L. A.

    2016-04-01

    The increasing number and complexity of planetary exploration space missions require new tools to access, visualize and analyse data to improve their scientific return. ASI Science Data Center (ASDC) addresses this request with the web-tool MATISSE (Multi-purpose Advanced Tool for the Instruments of the Solar System Exploration), allowing the visualization of single observation or real-time computed high-order products, directly projected on the three-dimensional model of the selected target body. Using MATISSE it will be no longer needed to download huge quantity of data or to write down a specific code for every instrument analysed, greatly encouraging studies based on joint analysis of different datasets. In addition the extremely high-resolution output, to be used offline with a Python-based free software, together with the files to be read with specific GIS software, makes it a valuable tool to further process the data at the best spatial accuracy available. MATISSE modular structure permits addition of new missions or tasks and, thanks to dedicated future developments, it would be possible to make it compliant to the Planetary Virtual Observatory standards currently under definition. In this context the recent development of an interface to the NASA ODE REST API by which it is possible to access to public repositories is set.

  2. NASA's Lunar and Planetary Mapping and Modeling Program

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  3. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    NASA Astrophysics Data System (ADS)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets containing the same object in different LoD may be combined and integrated. In this study GIS tools used for 3D modeling issues were examined. In this context, the availability of the GIS tools for obtaining different LoDs of CityGML standard. Additionally a 3D GIS application that covers a small part of the city of Istanbul was implemented for communicating the thematic information rather than photorealistic visualization by using 3D model. An abstract model was created by using a commercial GIS software modeling tools and the results of the implementation were also presented in the study.

  4. Solar System Treks: Interactive Web Portals or STEM, Exploration and Beyond

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Viotti, M.

    2017-12-01

    NASA's Solar System Treks project produces a suite of online visualization and analysis tools for lunar and planetary mapping and modeling. These portals offer great benefits for education and public outreach, providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's STEM Activation Infrastructure, they are available as resources for NASA STEM programs, and to the greater STEM community. As new missions are planned to a variety of planetary bodies, these tools facilitate public understanding of the missions and engage the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: Moon Trek (https://moontrek.jpl.nasa.gov), Mars Trek (https://marstrek.jpl.nasa.gov), and Vesta Trek (https://vestatrek.jpl.nasa.gov). A new release of Mars Trek includes new tools and data products focusing on human landing site selection. Backed by evidence-based cognitive and computer science findings, an additional version is available for educational and public audiences in support of earning along novice-to-expert pathways, enabling authentic, real-world interaction with planetary data. Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL/OBJ files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. The program supports additional clients, web services, and APIs facilitating dissemination of planetary data to external applications and venues. NASA challenges and hackathons also provide members of the software development community opportunities to participate in tool development and leverage data from the portals.

  5. Automated visualization of rule-based models

    PubMed Central

    Tapia, Jose-Juan; Faeder, James R.

    2017-01-01

    Frameworks such as BioNetGen, Kappa and Simmune use “reaction rules” to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models. PMID:29131816

  6. Assessing visual function in children with complex disabilities: the Bradford visual function box.

    PubMed

    Pilling, Rachel F; Outhwaite, Louise; Bruce, Alison

    2016-08-01

    Assessment of children with complex and severe learning disabilities is challenging and the children may not respond to the monochrome stimuli of traditional tests. The International Association of Scientific Studies on Intellectual Disability recommends that visual function assessment in poorly or non-cooperative children should be undertaken in an objective manner. We have developed a functional visual assessment tool to assess vision in children with complex and multiple disabilities. The Bradford visual function box (BVFB) comprises a selection of items (small toys) of different size and colour, which are presented to the child and the response observed. The aim of this study is to establish its intertester validity in children with severe learning disability. The visual function of 22 children with severe learning disability was assessed using the BVFB. The children were assessed by experienced practitioners on two separate occasions. The assessors were unaware of each other's findings. In 15/22 of the children, no difference was found in the results of the two assessors. The test was shown to have a good intertester agreement, weighted κ=0.768. The results of this clinical study show that the BVFB is a reliable tool for assessing the visual function in children with severe learning disability in whom other tests fail to elicit a response. The need for a tool which is quick to administer and portable has previously been highlighted. The BVFB offers an option for children for whom other formal tests are unsuccessful in eliciting a response. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Visualization of Concurrent Program Executions

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus; Honiden, Shinichi

    2007-01-01

    Various program analysis techniques are efficient at discovering failures and properties. However, it is often difficult to evaluate results, such as program traces. This calls for abstraction and visualization tools. We propose an approach based on UML sequence diagrams, addressing shortcomings of such diagrams for concurrency. The resulting visualization is expressive and provides all the necessary information at a glance.

  8. Improving Readability of an Evaluation Tool for Low-Income Clients Using Visual Information Processing Theories

    ERIC Educational Resources Information Center

    Townsend, Marilyn S.; Sylva, Kathryn; Martin, Anna; Metz, Diane; Wooten-Swanson, Patti

    2008-01-01

    Literacy is an issue for many low-income audiences. Using visual information processing theories, the goal was improving readability of a food behavior checklist and ultimately improving its ability to accurately capture existing changes in dietary behaviors. Using group interviews, low-income clients (n = 18) evaluated 4 visual styles. The text…

  9. Visualization of time-varying natural tree data

    Treesearch

    S. Brasch; L. Linsen; E.G. McPherson

    2007-01-01

    Given a set of global (natural) tree parameters measured for many specimens of different ages for a range of species, we have developed a tool that visualizes these parameters over time. The parameters include measures of tree dimensions like heights, diameters, and crown shape, and measures of costs and benefits for growing the tree. We visualize the tree dimensions...

  10. The world of geography: Visualizing a knowledge domain with cartographic means

    PubMed Central

    Skupin, André

    2004-01-01

    From an informed critique of existing methods to the development of original tools, cartographic engagement can provide a unique perspective on knowledge domain visualization. Along with a discussion of some principles underlying a cartographically informed visualization methodology, results of experiments involving several thousand conference abstracts will be sketched and their plausibility reflected on. PMID:14764896

  11. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    ERIC Educational Resources Information Center

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  12. Visual simulations of forest wildlife habitat structure, change, and landscape context in New England

    Treesearch

    Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak

    2007-01-01

    Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...

  13. Visual Barriers to Prevent Ambulatory ALzheimer's Patients from Exiting through an Emergency Door.

    ERIC Educational Resources Information Center

    Namazi, Kevan H.; And Others

    1989-01-01

    Conducted study on Alzheimer's unit to test seven different visual barrier conditions for reducing patient exits. Findings indicated that exiting was eliminated under two conditions. Results suggest visual agnosia, the inability to interpret what the eye sees, may be used as tool in managing wandering behavior of Alzheimer's patients. (Author/NB)

  14. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  15. A Virtual World of Visualization

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In 1990, Sterling Software, Inc., developed the Flow Analysis Software Toolkit (FAST) for NASA Ames on contract. FAST is a workstation based modular analysis and visualization tool. It is used to visualize and animate grids and grid oriented data, typically generated by finite difference, finite element and other analytical methods. FAST is now available through COSMIC, NASA's software storehouse.

  16. Promoting Inclusive Chemistry Teaching by Developing an Accessible Thermometer for Students with Visual Disabilities

    ERIC Educational Resources Information Center

    Vitoriano, Felipe A.; Teles, Vânia L. G.; Rizzatti, Ivanise M.; Pesssoa de Lima, Régia C.

    2016-01-01

    This work discusses the construction and evaluation of a digital thermometer especially designed to be operated by people with visual disabilities. The accessibility thermometer can be used as an educational tool in practical activities in classes for sighted and visually impaired students, with the aim of helping those with special needs gain…

  17. Visualizing Time: How Linguistic Metaphors Are Incorporated into Displaying Instruments in the Process of Interpreting Time-Varying Signals

    ERIC Educational Resources Information Center

    Garcia-Belmonte, Germà

    2017-01-01

    Spatial visualization is a well-established topic of education research that has allowed improving science and engineering students' skills on spatial relations. Connections have been established between visualization as a comprehension tool and instruction in several scientific fields. Learning about dynamic processes mainly relies upon static…

  18. Visualization Forms in the Cross-Cultural Collaborative Activities of Design and Development of a Digital Resource for Education

    ERIC Educational Resources Information Center

    Quan, Guolong; Gu, Xiaoqing

    2018-01-01

    Recent studies have demonstrated the integration of visualization technology to support collaboration and stimulate learning performance. The use of visualization tools during the collaborative activities of international students is a worthy topic for further exploration. Based on grounded and activity theories, this research uses observation and…

  19. Ingredients to Successful Students Presentations: It's More Than Just a Sum of Raw Materials.

    ERIC Educational Resources Information Center

    Kerns, H. Dan; Johnson, Nial

    Recognizing the decline in student visual communication skills, faculty from different disciplines collaborated in the design of a visual literacy course. The visual literacy skills developed in the course are that students learn in the following ways: (1) through faculty presentation and demonstration of the various tools available; (2) with…

  20. Adaptation of Psychological Assessment Tools for Administration by Blind and Visually Impaired Psychologists and Trainees.

    ERIC Educational Resources Information Center

    Keller, Richard M.

    This paper focuses on challenges to psychologists and psychology graduate students who are blind or visually impaired in the administration and scoring of various psychological tests. Organized by specific tests, the paper highlights those aspects of testing which pose particular difficulty to testers with visual impairments and also describes…

Top