Sample records for vitrified waste bdbe

  1. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation tomore » reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.« less

  2. Aging of vitrified wastes: An experimental and analogical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterpenich, J.; Forestier, L. Le; Libourel, G.

    1995-12-31

    In order to tackle the problems of the longevity of vitrified wastes, the authors used two complementary approaches: an analogical approach to examine the leaching processes of vitreous matrices as a function of time and to evaluate the longevity of vitrified wastes, and an experimental approach based on leaching experiments which allowed the determination of the rate and the kinetics of release of each element under well known conditions. Despite the very different durations of alteration, around 1,000 years for the medieval stained glasses and several weeks for leaching experiments, the authors show that the results obtained in laboratory andmore » under natural conditions are comparable. Thus, studies of medieval stained glasses allow prediction of the alteration of vitreous matrices and in particular, of vitrified wastes, and can be used to determine the rates and kinetics of release of pollutants. Medieval stained glasses furnish an excellent model for understanding the aging of vitrified wastes over time periods of up to a thousand years.« less

  3. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence.

    PubMed

    Aouad, Georges; Stille, Peter; Crovisier, Jean-Louis; Geoffroy, Valérie A; Meyer, Jean-Marie; Lahd-Geagea, Majdi

    2006-11-01

    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. (87)Sr/(86)Sr and (143)Nd/(144)Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere.

  4. DOE requests waiver on double containment for HLW canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobsenz, G.

    1994-02-22

    The Energy Department has asked the Nuclear Regulatory Commission to waive double containment requirements for vitrified high-level radioactive waste canisters, saying the additional protection is not necessary and too costly. NRC said it had received a petition from DOE contending that the vitrified waste canisters were durable enough without double containment to prevent any potential plutonium release during handling and shipping. DOE said testing had shown that the vitrified waste canisters were similar - even superior - in durability to spent reactor fuel shipments, which NRC specifically exempted from the double containment requirement.

  5. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  6. Performance of NDA techniques on a vitrified waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Veazey, G.W.; Prettyman, T.H.

    1997-11-01

    Rocky Flats Environmental Technology Site (RFETS) is currently considering the use of vitrified transuranic (TRU)-waste forms for the final disposition of several waste materials. To date, however, little nondestructive assay (NDA) data have been acquired in the general NDA community to assist in this endeavor. This paper describes the efforts to determine constraints and operating parameters for using NDA instrumentation on vitrified waste. The present study was conducted on a sample composed of a plutonium-contaminated ash, similar to that found in the RFETS inventory, and a borosilicate-based glass. The vitrified waste item was fabricated at Los Alamos National Laboratory (LANL)more » using methods and equipment similar to those being proposed by RFETS to treat their ash material. The focus of this study centered on the segmented gamma scanner (SGS) with 1/2-inch collimation, a technique that is presently available at RFETS. The accuracy and precision of SGS technology was evaluated, with particular attention to bias issues involving matrix geometry, homogeneity, and attenuation. Tomographic gamma scanning was utilized in the determination of the waste form homogeneity. A thermal neutron technique was also investigated and comparisons made with the gamma results.« less

  7. Modelling of cementitious backfill interactions with vitrified intermediate-level waste

    NASA Astrophysics Data System (ADS)

    Baston, Graham; Heath, Timothy; Hunter, Fiona; Swanton, Stephen

    2017-06-01

    New types of wasteform are being considered for the geological disposal of radioactive intermediate-level waste (ILW) in the UK. These include vitrified ILW products arising from the application of thermal treatment processes. For disposal of such wasteforms in a geological disposal facility, a range of concepts are under consideration, including those with a high-pH cementitious backfill (the NRVB, Nirex Reference Vault Backfill). Alternatively, a cement-based material that buffers to a less alkaline pH could be used (an LPB, Low-pH Backfill). To assess the compatibility of these potential new wasteforms with cement-based disposal concepts, it is necessary to understand their impacts on the long-term evolution of the backfill. A scoping thermodynamic modelling study was undertaken to help understand the possible effects of these wasteforms on the performance of the backfill. The model primarily considers the interactions occurring between the vitirified waste, the porewater and the backfill, within a static and (in most cases) totally closed system. The approach was simplified by assuming equilibrium between the backfill and the corroded glass available at selected times, rather than involving detailed, reactive transport modelling. The aim was to provide an understanding of whether the impacts of the vitrified wastes on backfill performance are sufficient to compromise disposal in such environments. The calculations indicated that for NRVB, the overall alkaline buffering capacity of the backfill is not expected to be impaired by interactions with vitrified waste; rather the buffering will be to less alkaline pH values (above pH 9) but for a longer period. For the LPB, slightly lower pH values were predicted in some cases. The sorption capacities of the backfills are unlikely to be impaired by interactions with vitrified ILW. Indeed they may be increased, due to the additional C-S-H phase formation. The results of this study suggest that disposal of vitrified ILW in a cement-based disposal system with a high-pH backfill is a potentially viable disposal option.

  8. Plasma vitrification and re-use of non-combustible fiber reinforced plastic, gill net and waste glass.

    PubMed

    Chu, J P; Chen, Y T; Mahalingam, T; Tzeng, C C; Cheng, T W

    2006-12-01

    Fiber reinforced plastic (FRP) composite material has widespread use in general tank, special chemical tank and body of yacht, etc. The purpose of this study is directed towards the volume reduction of non-combustible FRP by thermal plasma and recycling of vitrified slag with specific procedures. In this study, we have employed three main wastes such as, FRP, gill net and waste glass. The thermal molten process was applied to treat vitrified slag at high temperatures whereas in the post-heat treatment vitrified slags were mixed with specific additive and ground into powder form and then heat treated at high temperatures. With a two-stage heat treatment, the treated sample was generated into four crystalline phases, cristobalite, albite, anorthite and wollastonite. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the two-stage heating treatment. Good physical and mechanical properties were achieved after heat treatment, and this study reveals that our results could be comparable with the commercial products.

  9. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less

  10. An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process.

    PubMed

    Lapa, N; Santos, Oliveira J F; Camacho, S L; Circeo, L J

    2002-01-01

    Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.

  11. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rapid immobilization of simulated radioactive soil waste by microwave sintering.

    PubMed

    Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui

    2017-09-05

    A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  14. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  15. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  16. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  17. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  18. Technology Readiness Assessment of a Large DOE Waste Processing Facility

    DTIC Science & Technology

    2007-09-12

    Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters

  19. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  20. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  1. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  2. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  3. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.

  4. Characterization of Radioactive Waste Melter Feed Vitrified By Microwave Energy,

    DTIC Science & Technology

    processed in the Defense Waste Processing Facility ( DWPF ) and poured into stainless steel canisters for eventual disposal in a geologic repository...Vitrification of melter feed samples is necessary for DWPF process and product control. Microwave fusion of melter feed at approximately 12OO deg C for 10

  5. Method of making nanostructured glass-ceramic waste forms

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  6. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M.; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less

  7. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  8. Characterization of off-gases from a small-scale, joule-heated ceramic melter for nuclear waste vitrification. [Ru, Cl, F, /sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, G.B.; Wilhite, E.L.

    1980-01-01

    This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste.

  9. Structural and microstructural aspects of asbestos-cement waste vitrification

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Zawada, Anna; Przerada, Iwona; Lubas, Małgorzata

    2018-04-01

    The main goal of the work was to evaluate the vitrification process of asbestos-cement waste (ACW). A mixture of 50 wt% ACW and 50 wt% glass cullet was melted in an electric furnace at 1400 °C for 90 min and then cast into a steel mold. The vitrified product was subjected to annealing. Optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to evaluate the effects of the vitrification. The chemical constitution of the material before and after the vitrification process was also analyzed. It was found that the vitrified product has an amorphous structure in which the components of asbestos-cement waste are incorporated. MIR spectroscopy showed that the absorption bands of chrysotile completely disappeared after the vitrification process. The results of the spectroscopic studies were confirmed by X-ray studies - no diffraction reflections from the chrysotile crystallographic planes were observed. As a result of the treatment, the fibrous asbestos construction, the main cause of its pathogenic properties, completely disappeared. The vitrified material was characterized by higher resistance to ion leaching in an aquatic environment than ACW and a smaller volume of nearly 72% in relation to the apparent volume of the substrates. The research has confirmed the high effectiveness of vitrification in neutralizing hazardous waste containing asbestos and the FT-IR spectroscopy was found to be useful to identify asbestos varieties and visualizing changes caused by the vitrification process. The work also presents the current situation regarding the utilization of asbestos-containing products.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Pye, Steven; Hardin, Ernest

    This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.

  11. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Edwards, T.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less

  12. Effects of radiation on the leach rates of vitrified radioactive waste

    NASA Astrophysics Data System (ADS)

    Burns, W. G.; Hughes, A. E.; Marples, J. A. C.; Nelson, R. S.; Stoneham, A. M.

    1982-06-01

    This report reviews the possible effects of both radiation damage to the glass and of radiolysis of the leachant on the leaching behaviour of vitrified radioactive waste. It has been stimulated particularly by recent papers, which have suggested that the leach rates of glasses will be enhanced by large factors after a 'critical' dose of radiation from alpha decays. These experiments have been conducted at highly accelerated rates using ion beams. The relationship between these experiments and the situation in vitrified waste has been assessed, taking into account the fact that experiments using alpha emitters incorporated in the glass have failed to find significantly enhanced leach rates after doses about five times larger than those equivalent to this 'critical' dose. It is concluded that these differences are observed partly because the ion beam experiments are carried out at such high dose rates that some recovery effects important at lower rates do not come into play. In the case of experiments with 2 keV argon ions, surface effects other than genuine radiation damage must be taken into account. In practice, if water has penetrated the canister, vitrified waste will be irradiated in the presence of the leaching solution. Enhancements of the leach rate due to the transient effects of radiation in the solid are shown to be completely negligible. The effects of radiolysis of the leaching solution and of any air in contact with the solution have also been considered in some detail and related to recent experiments by McVay and Pederson. It is shown that these radiolysis effects will not lead to any situations requiring special precautions in practice, although changes in surface leach rate by small factors can be expected under some circumstances. Any effect of irradiation on leach rates must be seen in the context of a waste repository. Along with other studies we hold the view that the rate of loss of material will be limited by the access of water to the repository, and will therefore depend on the effective saturation solubility of the glass in the leachant, not on the leach rate as usually determined in laboratory tests. Radiation damage is not expected to change the saturation solubility by more than a factor of two or three.

  13. Crystal-chemistry of alteration products of vitrified wastes: Implications on the retention of polluting elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterpenich, Jerome

    2008-07-01

    Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO{sub 4} . nH{sub 2}O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes themore » altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.« less

  14. NDA issues with RFETS vitrified waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.; Veazey, G.

    1998-12-31

    A study was conducted at Los Alamos National Laboratory (LANL) for the purpose of determining the feasibility of using a segmented gamma scanner (SGS) to accurately perform non-destructive analysis (NDA) on certain Rocky Flats Environmental Technology Site (RFETS) vitrified waste samples. This study was performed on a full-scale vitrified ash sample prepared at LANL according to a procedure similar to that anticipated to be used at RFETS. This sample was composed of a borosilicate-based glass frit, blended with ash to produce a Pu content of {approximately}1 wt %. The glass frit was taken to a degree of melting necessary tomore » achieve a full encapsulation of the ash material. The NDA study performed on this sample showed that SGSs with either {1/2}- or 2-inch collimation can achieve an accuracy better than 6 % relative to calorimetry and {gamma}-ray isotopics. This accuracy is achievable, after application of appropriate bias corrections, for transmissions of about {1/2} % through the waste form and counting times of less than 30 minutes. These results are valid for ash material and graphite fines with the same degree of plutonium particle size, homogeneity, sample density, and sample geometry as the waste form used to obtain the results in this study. A drum-sized thermal neutron counter (TNC) was also included in the study to provide an alternative in the event the SGS failed to meet the required level of accuracy. The preliminary indications are that this method will also achieve the required accuracy with counting times of {approximately}30 minutes and appropriate application of bias corrections. The bias corrections can be avoided in all cases if the instruments are calibrated on standards matching the items.« less

  15. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  16. Ensuring Longevity: Ancient Glasses Help Predict Durability of Vitrified Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jamie L.; McCloy, John S.; Ryan, Joseph V.

    How does glass alter with time? For the last hundred years this has been an important question to the fields of object conservation and archeology to ensure the preservation of glass artifacts. This same question is part of the development and assessment of durable glass waste forms for the immobilization of nuclear wastes. Researchers have developed experiments ranging from simple to highly sophisticated to answer this question, and, as a result, have gained significant insight into the mechanisms that drive glass alteration. However, the gathered data have been predominately applicable to only short-term alteration times, i.e. over the course ofmore » decades. What has remained elusive is the long-term mechanisms of glass alteration[1]. These mechanisms are of particular interest to the international nuclear waste glass community as they strive to ensure that vitrified products will be durable for thousands to tens of thousands of years. For the last thirty years this community has been working to fill this research gap by partnering with archeologists, museum curators, and geologists to identify hundred to million-year old glass analogues that have altered in environments representative of those expected at potential nuclear waste disposal sites. The process of identifying a waste glass relevant analogue is challenging as it requires scientists to relate data collected from short-term laboratory experiments to observations made from long-term analogues and extensive geochemical modeling.« less

  17. Plasma for environment

    NASA Astrophysics Data System (ADS)

    Van Oost, G.

    2017-11-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste, and to convert organic waste into energy or chemical substances as well as to destroy toxic organic compounds, and to vitrify radioactive waste in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  18. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    PubMed

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Vitrification of waste

    DOEpatents

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  20. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  1. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  2. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  3. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    NASA Astrophysics Data System (ADS)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  4. Vitrification of waste

    DOEpatents

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  5. In-situ vitrification of soil

    DOEpatents

    Brouns, Richard A.; Buelt, James L.; Bonner, William F.

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  6. Annual Summary of the Integrated Disposal Facility Performance Assessment 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, L. L.

    2012-03-12

    An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.

  7. Method of making nanostructured glass-ceramic waste forms

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2012-12-18

    A method of rendering hazardous materials less dangerous comprising trapping the hazardous material in nanopores of a nanoporous composite material, reacting the trapped hazardous material to render it less volatile/soluble, sealing the trapped hazardous material, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  8. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  9. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less

  10. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  11. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-06-10

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

  12. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  13. Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.A.; Short, R.J.; Gribble, N.R.

    2013-07-01

    The Waste Vitrification Plant (WVP) converts Highly Active Liquor (HAL) from spent nuclear fuel reprocessing into a stable vitrified product. Recently WVP have been experiencing accumulation of solids in their primary off gas (POG) system leading to potential blockages. Chemical analysis of the blockage material via Laser Induced Breakdown Spectroscopy (LIBS) has shown it to exclusively consist of caesium, technetium and oxygen. The solids are understood to be caesium pertechnetate (CsTcO{sub 4}), resulting from the volatilisation of caesium and technetium from the high level waste glass melt. Using rhenium as a chemical surrogate for technetium, a series of full scalemore » experiments have been performed in order to understand the mechanism of rhenium volatilisation as caesium perrhenate (CsReO{sub 4}), and therefore technetium volatilisation as CsTcO{sub 4}. These experiments explored the factors governing volatilisation rates from the melt, potential methods of minimising the amount of volatilisation, and various strategies for mitigating the deleterious effects of the volatile material on the POG. This paper presents the results from those experiments, and discusses potential methods to minimise blockages that can be implemented on WVP, so that the frequency of the CsTcO{sub 4} blockages can be reduced or even eradicated altogether. (authors)« less

  14. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potentialmore » issues associated with recycling.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Abramowitz, H.; Miller, I. S.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less

  16. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1999-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  17. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1999-03-02

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  18. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  19. Characterization of a mineral waste resulting from the melting treatment of air pollution control residues.

    PubMed

    Trujillo-vazquez, A; Metiver-pignon, H; Tiruta-barna, L; Piantone, P

    2009-02-01

    Air pollution control (APC) residues which are generated by municipal solid waste (MSW) incineration show a high-level of pollution potential. In order to stabilize such APC residues, the French power supply company (EDF) is developing a thermal treatment process which leads to the production of a vitrified material. A structural characterization of the vitrified product was carried out by applying complementary investigation methods: XRD, SEM, Raman spectroscopy, EPMA, and data interpretation methods such as mineralogical analysis and principal component analysis (PCA). The major phase of the material was a solid solution of melilite type composed of five end-members: gehlenite (44%), åkermanite (25%), ferri-gehlenite (5%), sodamelilite (14%) and hardystonite (11%). The minor phases identified were spinels and pyroxenes. An ANC leaching test was performed in order to observe the treatment effect on pollutant release. The natural pH was close to 10, and the major element release was less than in the case of untreated APC. This was a consequence of melilite formation. The effect of pH was fundamental for heavy metals release: lower solubilization occurs at pH 10 than at APC's natural pH (11-12).

  20. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  1. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  2. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  3. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  4. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  5. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Russell Eibling, R; David Koopman, D

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less

  6. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  7. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  8. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  9. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Vitrification of MSWI Fly Ash by Thermal Plasma Melting and Fate of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Zhao, Peng; Jiang, Yiman; Meng, Yuedong

    2012-09-01

    Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.

  11. Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2012-04-01

    A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  13. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  14. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    NASA Astrophysics Data System (ADS)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  15. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  16. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    DOE PAGES

    Wiersma, Bruce J.

    2014-02-08

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore » instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less

  17. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    PubMed Central

    Majidi Gharenaz, Nasrin; Movahedin, Mansoureh; Mazaheri, Zohreh; Pour beiranvand, Shahram

    2016-01-01

    Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240) were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80), vitrified at 8 cell stage (n=80), vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80). Embryos were vitrified by using cryolock, (open system) described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03). In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004), however expression of Bax and Bcl-2 (apoptotic) genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003), but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage. PMID:27679826

  18. Localized chemistry of 99Tc in simulated low activity waste glass

    NASA Astrophysics Data System (ADS)

    Weaver, Jamie L.

    A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.

  19. Generation of rats from vitrified oocytes with surrounding cumulus cells via in vitro fertilization with cryopreserved sperm.

    PubMed

    Fujiwara, Katsuyoshi; Kamoshita, Maki; Kato, Tsubasa; Ito, Junya; Kashiwazaki, Naomi

    2017-01-01

    The objective of this study was to evaluate fertility and full-term development of rat vitrified oocytes after in vitro fertilization (IVF) with cryopreserved sperm. Oocytes with or without surrounding cumulus cells were vitrified with 30% ethylene glycol + 0.5 mol/L sucrose + 20% fetal calf serum by using the Cryotop method. The warmed oocytes were co-cultured with sperm. Although the denuded/vitrified oocytes were not fertilized, some of the oocytes vitrified with cumulus cells were fertilized (32.7%) after IVF with fresh sperm. When IVF was performed with cryopreserved sperm, vitrified or fresh oocytes with cumulus cells were fertilized (62.9% or 41.1%, respectively). In addition, to confirm the full-term development of the vitrified oocytes with surrounding cumulus cells after IVF with cryopreserved sperm, 108 vitrified oocytes with two pronuclei (2PN) were transferred into eight pseudopregnant females, and eight pups were obtained from three recipients. The present work demonstrates that vitrified rat oocytes surrounded by cumulus cells can be fertilized in vitro with cryopreserved sperm, and that 2PN embryos derived from cryopreserved gametes can develop to term. To our knowledge, this is the first report of successful generation of rat offspring derived from vitrified oocytes that were fertilized in vitro with cryopreserved sperm. © 2016 Japanese Society of Animal Science.

  20. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  1. Behavior of TiO₂ nanoparticles during incineration of solid paint waste: a lab-scale test.

    PubMed

    Massari, Andrea; Beggio, Marta; Hreglich, Sandro; Marin, Riccardo; Zuin, Stefano

    2014-10-01

    In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products' life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products. In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950°C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  3. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  4. Remaining Sites Verification Package for the 100-F-26:13, 108-F Drain Pipelines, Waste Site Reclassification Form 2005-011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-03-03

    The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed thatmore » residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  5. The Effect of Vitrification and in vitro Culture on the Adenosine Triphosphate Content and Mitochondrial Distribution of Mouse Pre-Implantation Embryos

    PubMed Central

    Amoushahi, Mahboobeh; Salehnia, Mojdeh; HosseinKhani, Saman

    2013-01-01

    Background: The mitochondria are an important source of adenosine triphosphate (ATP) production in pre-implantation embryo. Therefore, the objective of this study was to investigate the effect of vitrification and in vitro culture of mouse embryos on their mitochondrial distribution and ATP content. Methods: The embryos at 2-PN, 4-cell and blastocyst stages were collected from the oviduct of stimulated pregnant mice and uterine horns. Then, the embryos were vitrified with the cryotop method using ethylene glycol and dimethylsulphoxide. After evaluating the survival rates of vitrified embryos, their development to hatching stages were assessed. The ATP content of collected in vivo and in vitro embryos at different stages was measured by luciferin-luciferase bioluminescence assay. The distribution of mitochondria was studied using Mito-tracker green staining under a fluorescent microscope. Results: The survival rates of vitrified embryos at 2-PN, 4-cell and early blastocyst stages were 84.3, 87.87 and 89.89%, respectively. The hatching rates in previous developmental stages in vitrified group were 57.44, 66.73 and 70.89% and in non-vitrified group were 66.32, 73.25 and 75.89%, respectively (P>0.05). The ATP content of in vivo or in vitro collected embryos was not significantly different in both vitrified and non-vitrified groups (P>0.05). Mitochondrial distribution of vitrified and non-vitrified 2-PN embryos was similar, but some clampings or large aggregation of mitochondria within the vitrified 4-cell embryos was prominent. Conclusions: Vitrification method did not affect the mouse embryo ATP content. Also, the cellular stress was not induced by this procedure and the safety of vitrification was shown. PMID:23748889

  6. Field characterization plan for the 216-U-8 vitrified clay pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, C.A.

    1994-01-21

    The 216-U-8 Crib was constructed in 1952 and received waste from 1952 to 1960 as described in Appendix A. This description of work details the field activities associated with the characterization of the vitrified clay pipe (VCP) delivery line to the 216-U-8 Crib and subsurface soil sampling along the pipe route in the 200 West Area of Hanford U Plant. It will serves as a field guide for those performing the work. Soil sampling locations will be determined by a combination of radiological surface surveys and internal camera surveys of the VCP line. Depending on the condition of the pipelinemore » and field conditions, the objectives are as follows: examine the internal condition of the VCP with a survey camera to the extent allowed by field conditions; determine precise location and depth of the VCP; document VCP integrity; document gamma radiation profile through the VCP; and correlate any relationships between surface contamination zones at grade above the VCP to identify breaches in the pipe integrity.« less

  7. Electrode systems for in situ vitrification

    DOEpatents

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1990-01-01

    An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.

  8. Predictive value of serum HCG concentrations in pregnancies achieved after single fresh or vitrified-warmed blastocyst transfer.

    PubMed

    Oron, Galia; Shavit, Tal; Esh-Broder, Efrat; Weon-Young, Son; Tulandi, Togas; Holzer, Hananel

    2017-09-01

    Possible differences between serum HCG levels in pregnancies achieved after transfer of a single fresh or a vitrified-warmed blastocyst were evaluated. Out of 1130 single blastocyst transfers resulting in positive HCG results, 789 were single fresh blastocyst transfers and 341 single vitrified-warmed blastocyst transfers. The initial serum HCG levels of 869 clinical intrauterine pregnancies were evaluated, 638 after the transfer of a single fresh blastocysts and 231 after the transfer of a single vitrified-warmed blastocysts. The HCG levels from cycles resulting in a clinical intrauterine pregnancy were significantly higher after the transfer of a single vitrified-warmed blastocyst (383 ± 230 IU/l) versus a fresh transfer (334 ± 192 IU/l; P = 0.01). Threshold values for predicting a clinical pregnancy for a fresh blastocyst were 111 IU/l and for a vitrified-warmed blastocyst 137 IU/l. Our study shows that the overall beta-HCG levels are comparable after the transfer of a fresh or vitrified-warmed blastocyst, suggesting that vitrification most probably does not affect the ability of the embryos to produce beta-HCG. This study further shows that when clinicians counsel patients, they should take into account that higher HCG levels are needed after a vitrified-warmed blastocyst transfer to predict a clinical intrauterine pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  10. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  11. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less

  12. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  13. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlquist, D.R.

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less

  14. Comparison of ectopic pregnancy risk among transfers of embryos vitrified on day 3, day 5, and day 6.

    PubMed

    Du, Tong; Chen, Hong; Fu, Rong; Chen, Qiuju; Wang, Yun; Mol, Ben W; Kuang, Yanping; Lyu, Qifeng

    2017-07-01

    To compare ectopic pregnancy risk among transfers of embryos vitrified on day 3, day 5, and day 6. Retrospective cohort study. Academic tertiary-care medical center. A total of 10,736 pregnancies after 23,730 frozen-thawed embryo transfer (FET) cycles of in vitro fertilization/intracytoplasmic sperm injection from March 2003 to May 2015. The ectopic pregnancy rate was compared among pregnancies resulting from transfers of embryos vitrified on day 3, day 5, and day 6. Generalized estimation equation regression models were used to calculate unadjusted and adjusted odds ratios and 95% confidence intervals for the association between ectopic pregnancy and selected patient and treatment characteristics. We studied this association in both the group that achieved pregnancy and the group that underwent an FET cycle. Odds of ectopic pregnancy. The overall rate of ectopic pregnancy was 2.8% (304/10,736). Ectopic pregnancy rates after day-3, day-5, and day-6 vitrified embryo transfers were 3.1% (287/9,224), 2.0% (11/562), and 0.6% (6/950), respectively. After adjusting for confounders, the risks of ectopic pregnancy in day-3 and day-5 vitrified embryo transfers were both significantly higher than in day-6 vitrified embryo transfers. The associations were similar when we did calculations per cycle. In women undergoing FET, day-6 vitrified embryo transfer is associated with a significantly lower risk of ectopic pregnancy than both day-3 and day-5 vitrified embryo transfers. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses.

    PubMed

    López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio

    2009-06-15

    A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.

  16. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  17. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash.

    PubMed

    Huang, Su-Chen; Chang, Fang-Chih; Lo, Shang-Lien; Lee, Ming-Yu; Wang, Chu-Fang; Lin, Jyh-Dong

    2007-06-01

    In this study, artificial lightweight aggregate (LWA) manufactured from recycled resources was investigated. Residues from mining, fly ash from an incinerator and heavy metal sludge from an electronic waste water plant were mixed into raw aggregate pellets and fed into a tunnel kiln to be sintered and finally cooled rapidly. Various feeding and sintering temperatures were employed to examine their impact on the extent of vitrification on the aggregate surface. Microstructural analysis and toxicity characteristic leaching procedure (TCLP) were also performed. The results show that the optimum condition of LWA fabrication is sintering at 1150 degrees C for 15 min with raw aggregate pellets fed at 750 degrees C. The rapidly vitrified surface envelops the gas produced with the increase in internal temperature and cooling by spraying water prevents the aggregates from binding together, thus forming LWA with specific gravity of 0.6. LWA produced by sintering in tunnel kiln shows good vitrified surface, low water absorption rate below 5%, and low cylindrical compressive strength of 4.3 MPa. In addition, only trace amounts of heavy metals were detected, making the LWA non-hazardous for construction use.

  18. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region limits for the durability constraints be incorporated in the next revision of the technical bases for PCCS and then implemented into PCCS. It is also recommended that an reduction of constraints of 4 wt% Al 2O 3 be implemented with no restrictions on the amount of alkali in the glass for TiO 2 values ≥2 wt%. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  19. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  20. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  1. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  2. Short Term Culture of Vitrified Human Ovarian Cortical Tissue to Assess the Cryopreservation Outcome: Molecular and Morphological Analysis.

    PubMed

    Ramezani, Mehdi; Salehnia, Mojdeh; Jafarabadi, Mina

    2017-01-01

    The aim of the present study was to evaluate the effectiveness of human ovarian vitrification protocol followed with in vitro culture at the morphological and molecular levels. Ovarian tissues were obtained from 10 normal transsexual women and cut into small pieces and were divided into non-vitrified and vitrified groups and some of the tissues fragments in both groups were randomly cultured for two weeks. The morphological study using hematoxylin and eosin and Masson's trichrome staining was done. The analysis of mean follicular density, 17-β estradiol (E2) and anti mullerian hormone (AMH), and real-time RT-PCR was down for the evaluation of expression of genes related to folliculogenesis. Data were compared by paired-samples and independent-samples T test. Values of p<0.05 were considered statistically significant. The proportion of normal follicles did not show significant difference between vitrified and non-vitrified groups before and after culture but these rates and the mean follicle density significantly decreased in both cultured tissues (p<0.05). The expression of genes was similar in vitrified and non-vitrified groups but in cultured tissues the expression of GDF9 and FSHR genes increased and the expression of FIGLA and KIT-L genes decreased (p<0.05). An increase in E2 and AMH concentration was observed after 14 days of culture in both groups. In conclusion, the present study indicated that the follicular development and gene expression in vitrified ovarian tissue was not altered before and after in vitro culture, thus this method could be useful for fertility preservation; however, additional studies are needed to improve the culture condition.

  3. Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes.

    PubMed

    Somfai, Tamás; Nakai, Michiko; Tanihara, Fuminori; Noguchi, Junko; Kaneko, Hiroyuki; Kashiwazaki, Naomi; Egerszegi, István; Nagai, Takashi; Kikuchi, Kazuhiro

    2013-01-01

    Our aim was to optimize a cryoprotectant treatment for vitrification of immature porcine cumulus-oocyte complexes (COCs). Immature COCs were vitrified either in 35% ethylene glycol (EG), 35% propylene glycol (PG) or a combination of 17.5% EG and 17.5% PG. After warming, the COCs were in vitro matured (IVM), and surviving oocytes were in vitro fertilized (IVF) and cultured. The mean survival rate of vitrified oocytes in 35% PG (73.9%) was higher (P<0.05) than that in 35% EG (27.8%). Oocyte maturation rates did not differ among vitrified and non-vitrified control groups. Blastocyst formation in the vitrified EG group (10.8%) was higher (P<0.05) than that in the vitrified PG group (2.0%) but was lower than that in the control group (25.0%). Treatment of oocytes with 35% of each cryoprotectant without vitrification revealed a higher toxicity of PG on subsequent blastocyst development compared with EG. The combination of EG and PG resulted in 42.6% survival after vitrification. The maturation and fertilization rates of the surviving oocytes were similar in the vitrified, control and toxicity control (TC; treated with EG+PG combination without cooling) groups. Blastocyst development in the vitrified group was lower (P<0.05) than that in the control and TC groups, which in turn had similar development rates (10.7%, 18.1% and 23.3%, respectively). In conclusion, 35% PG enabled a higher oocyte survival rate after vitrification compared with 35% EG. However, PG was greatly toxic to oocytes. The combination of 17.5% EG and 17.5% PG yielded reasonable survival rates without toxic effects on embryo development.

  4. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    PubMed

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dynamics of intracellular phospholipid membrane organization during oocyte maturation and successful vitrification of immature oocytes retrieved by ovum pick-up in cattle.

    PubMed

    Aono, Akira; Nagatomo, Hiroaki; Takuma, Tetsuya; Nonaka, Rika; Ono, Yoshitaka; Wada, Yasuhiko; Abe, Yasuyuki; Takahashi, Masashi; Watanabe, Tomomasa; Kawahara, Manabu

    2013-05-01

    The objective was to determine if immature bovine oocytes with cumulus cells at the germinal vesicle (GV) stage could be vitrified by aluminum sheets (AS; pieces of sheet-like aluminum foil). Cleavage rates in fertilized oocytes previously vitrified by the AS procedure were higher than those vitrified by a nylon-mesh holder (NM) procedure (89.3 ± 2.1% vs. 65.0 ± 3.7%). Cleaved embryos derived from the AS but not from the NM procedures developed to blastocysts. Furthermore, to investigate the effects of vitrifying GV oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes, the intracellular phospholipid membrane (IM) was stained with the lipophilic fluorescent dye, 3,3'-dioctadecyloxa-carbocyanine perchlorate. After vitrification by AS, the IM remained intact relative to that of oocytes vitrified by NM. During in vitro maturation, reorganization of the IM was also undamaged in oocytes vitrified by AS before oocyte maturation, and the IM within oocytes vitrified by the NM procedure was evidently impaired. Finally, vitrification (AS) was used for GV oocytes collected using the ovum pick-up method. A bull calf was born after in vitro production and subsequent embryo transfer. The vitrification techniques described herein should facilitate generation of viable in vitro production bovine blastocysts using oocytes recovered using the ovum pick-up method. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less

  7. Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gimpel, Rodney F.; Kruger, Albert A.

    2013-12-18

    Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HLmore » W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.« less

  8. Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londe, L.; Seidler, W.K.; Bosgiraud, J.M.

    2007-07-01

    Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less

  9. New approaches for MOX multi-recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gain, T.; Bouvier, E.; Grosman, R.

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less

  10. HLW Return from France to Germany - 15 Years of Experience in Public Acceptance and Technical Aspects - 12149

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Wilhelm

    Since in 1984 the national reprocessing concept was abandoned the reprocessing abroad was the only existing disposal route until 1994. With the amendment of the Atomic Energy Act in 2001 spent fuel management changed completely since from 1 June 2005 any delivery of spent fuel to reprocessing plants was prohibited and the direct disposal of spent fuel became mandatory. Until 2005 the total amount of spent fuel to be reprocessed abroad added up to 6080 t HM, 5309 t HM thereof in France. The waste generated from reprocessing - alternatively an equivalent amount of radioactive material - has to bemore » returned to the country of origin according to the commercial contracts signed between the German utilities and COGEMA, now AREVA NC, in France and BNFL, now INS in UK. In addition the German and the French government exchanged notes with the obligation of both sides to enable and support the return of reprocessing residues or equivalents to Germany. The return of high active vitrified waste from La Hague to the interim storage facility at Gorleben was demanding from the technical view i. e. the cask design and the transport. Unfortunately the Gorleben area served as a target for nuclear opponents from the first transport in 1996 to the latest one in 2011. The protection against sabotage of the railway lines and mass protests needed highly improved security measures. In France and Germany special working forces and projects have been set up to cope with this extraordinary situation. A complex transport organization was established to involve all parties in line with the German and French requirements during transport. The last transport of vitrified residues from France has been completed successfully so far thus confirming the efficiency of the applied measures. Over 15 years there was and still is worldwide no comparable situation it is still unique. Summing up, the exceptional project handling challenge that resulted from the continuous anti-nuclear civil disobedience in Germany over the whole 15-year long project running time could be faced efficiently. It has to be concluded that despite of all problems the anti-nuclear activities have caused so far, all transports of vitrified HLW have always been completed successfully by adapting the commonly established safety, security and public acceptance measures to the special conditions and needs in Germany and coordinating the activities of all parties involved but at the expense of high costs for industry and government and a challenging operational complexity. Apart from an anticipatory project planning a good communication between all involved industrial parties and the French and the German government was the key to the effective management of such shipments and to minimize the radiological, economic, environmental, public and political impact. The future will show how efficiently the gained experience can be used for further return projects which are to be realized since no reprocessed waste has yet been returned from UK and neither the medium-level nor the low-level radioactive waste has been transferred from France to Germany. (author)« less

  11. HIGH INCIDENCE OF POLYSPERMIC FERTILIZATION IN BOVINE OOCYTES MATURED IN VITRO AFTER CRYOTOP VITRIFICATION.

    PubMed

    Hwang, In-Sul; Kwon, Dae-Jin; Im, Gi-Sun; Tashima, Kazuya; Hochi, Shinichi; Hwang, Seongsoo

    2016-01-01

    Vitrification with the Cryotop device is the most promising technique for oocyte cryopreservation, but the high post-warming morphological survival of bovine oocytes does not guarantee high developmental competence after in vitro fertilization (IVF). This study was designed to examine achievement of normal fertilization in bovine oocytes vitrified-warmed with the Cryotop device. Oocytes were matured in vitro and vitrified-warmed after complete removal of the cumulus layers. Distribution of cortical granules (CGs) was assessed by Lens culinaris agglutinin (LCA) lectin staining. Ten hours after IVF, presumptive zygotes were analyzed for pronuclear formation. Day-8 blastocysts were harvested and stained with Hoechst-33342 for total cell counting. Both yield and mean cell number of the blastocysts were impaired by Cryotop vitrification. Incidence of polyspermic fertilization was three-times higher in vitrified oocytes compared to fresh oocytes. No difference in CG distribution was found between vitrified and fresh oocytes. Polyspermic fertilization induced in vitrified-warmed bovine oocytes may be one of the possible causes responsible for their low developmental potential.

  12. Blastocoele expansion degree predicts live birth after single blastocyst transfer for fresh and vitrified/warmed single blastocyst transfer cycles.

    PubMed

    Du, Qing-Yun; Wang, En-Yin; Huang, Yan; Guo, Xiao-Yi; Xiong, Yu-Jing; Yu, Yi-Ping; Yao, Gui-Dong; Shi, Sen-Lin; Sun, Ying-Pu

    2016-04-01

    To evaluate the independent effects of the degree of blastocoele expansion and re-expansion and the inner cell mass (ICM) and trophectoderm (TE) grades on predicting live birth after fresh and vitrified/warmed single blastocyst transfer. Retrospective study. Reproductive medical center. Women undergoing 844 fresh and 370 vitrified/warmed single blastocyst transfer cycles. None. Live-birth rate correlated with blastocyst morphology parameters by logistic regression analysis and Spearman correlations analysis. The degree of blastocoele expansion and re-expansion was the only blastocyst morphology parameter that exhibited a significant ability to predict live birth in both fresh and vitrified/warmed single blastocyst transfer cycles respectively by multivariate logistic regression and Spearman correlations analysis. Although the ICM grade was significantly related to live birth in fresh cycles according to the univariate model, its effect was not maintained in the multivariate logistic analysis. In vitrified/warmed cycles, neither ICM nor TE grade was correlated with live birth by logistic regression analysis. This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade. Copyright © 2016. Published by Elsevier Inc.

  13. Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device.

    PubMed

    Momozawa, Kenji; Matsuzawa, Atsushi; Tokunaga, Yukio; Abe, Shiori; Koyanagi, Yumi; Kurita, Miho; Nakano, Marina; Miyake, Takao

    2017-04-24

    Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. In Experiment 1, blastocysts were vitrified using the KVS. Vitrified blastocysts were warmed and subsequently cultured for 72 h. In Experiment 2, 2-cell-stage embryos were vitrified using the KVS, and vitrified embryos were warmed and subsequently cultured for 96 h. In Experiment 3, we evaluated the in vivo developmental potential of vitrified 2-cell-stage embryos using the KVS, and in Experiment 4, we evaluated the cooling and warming rates for these devices using a numerical simulation. In Experiment 1, there were no significant differences between the survival rates of the KVS and a control device. However, re-expanded (100%) and hatching (91.8%) rates were significantly higher for blastocysts vitrified using the KVS. In Experiment 2, there were no significant differences between the survival rates, or rates of development to the blastocyst stage, of vitrified and fresh embryos. In Experiment 3, after embryo transfer, 41% of the embryos developed into live offspring. In Experiment 4, the cooling and warming rates of the KVS were 683,000 and 612,000 °C/min, respectively, exceeding those of the control device. Our study clearly demonstrates that the KVS is a novel vitrification device for the cryopreservation of mouse embryos at the blastocyst and 2-cell stage.

  14. Thermal properties of simulated Hanford waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less

  15. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal ofmore » spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.« less

  16. Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage

    PubMed Central

    Gupta, Alisha; Singh, Jaswant; Dufort, Isabelle; Robert, Claude; Dias, Fernanda Caminha Faustino

    2017-01-01

    Cryopreservation is known for its marked deleterious effects on embryonic health. Bovine compact morulae were vitrified or slow-frozen, and post-warm morulae were cultured to the expanded blastocyst stage. Blastocysts developed from vitrified and slow-frozen morulae were subjected to microarray analysis and compared with blastocysts developed from unfrozen control morulae for differential gene expression. Morula to blastocyst conversion rate was higher (P < 0.05) in control (72%) and vitrified (77%) than in slow-frozen (34%) morulae. Total 20 genes were upregulated and 44 genes were downregulated in blastocysts developed from vitrified morulae (fold change ≥ ± 2, P < 0.05) in comparison with blastocysts developed from control morulae. In blastocysts developed from slow-frozen morulae, 102 genes were upregulated and 63 genes were downregulated (fold change ≥ ± 1.5, P < 0.05). Blastocysts developed from vitrified morulae exhibited significant changes in gene expression mainly involving embryo implantation (PTGS2, CALB1), lipid peroxidation and reactive oxygen species generation (HSD3B1, AKR1B1, APOA1) and cell differentiation (KRT19, CLDN23). However, blastocysts developed from slow-frozen morulae showed changes in the expression of genes related to cell signaling (SPP1), cell structure and differentiation (DCLK2, JAM2 and VIM), and lipid metabolism (PLA2R1 and SMPD3). In silico comparison between blastocysts developed form vitrified and slow-frozen morulae revealed similar changes in gene expression as between blastocysts developed from vitrified and control morulae. In conclusion, blastocysts developed form vitrified morulae demonstrated better post-warming survival than blastocysts developed from slow-frozen morulae but their gene expression related to lipid metabolism, steroidogenesis, cell differentiation and placentation changed significantly (≥ 2 fold). Slow freezing method killed more morulae than vitrification but those which survived up to blastocyst stage did not express ≥ 2 fold change in their gene expression as compared with blastocysts from control morulae. PMID:29095916

  17. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less

  18. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  19. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith; Woosley, Steve; Campbell, Brett

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less

  20. Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double are plasma torch.

    PubMed

    Pan, Xinchao; Yan, Jianhua; Xie, Zhengmiao

    2013-07-01

    Medical waste incinerator (MWI) fly ash is regarded as a highly toxic waste because it contains high concentrations of heavy metals and dioxins, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Therefore fly ash from MWI must be appropriately treated before being discharged into the environment. A melting process based on a direct current thermal plasma torch has been developed to convert MWI fly ash into harmless slag. The leaching characteristics of heavy metals in fly ash and vitrified slag were investigated using the toxicity characteristic leaching procedure, while the content of PCDD/Fs in the fly ashes and slags was measured using method 1613 of the US EPA. The experimental results show that the decomposition rate of PCDD/Fs is over 99% in toxic equivalent quantity value and the leaching of heavy metals in the slag significantly decreases after the plasma melting process. The produced slag has a compact and homogeneous microstructure with density of up to 2.8 g/cm3.

  1. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  2. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  3. Expression of Folliculogenesis-Related Genes in Vitrified Human Ovarian Tissue after Two Weeks In Vitro Culture.

    PubMed

    Shams Mofarahe, Zahra; Salehnia, Mojdeh; Ghaffari Novin, Marefat; Ghorbanmehr, Nassim; Fesharaki, Mohammad Gholami

    2017-01-01

    This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes. In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha ( FIGLA ), KIT ligand ( KL ), growth differentiation factor 9 ( GDF-9 ) and follicle stimulating hormone receptor ( FSHR ) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture. The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P<0.05). In both cultured groups the rate of primary and secondary follicles was significantly higher than non-cultured tissues (P<0.05). The expression of all examined genes was not significantly altered in both non-cultured groups. Whiles, in comparison with cultured tissues non-cultured tissues, the expression of FIGLA gene was significantly decreased, KL gene was not changed, GDF-9 and FSHR genes was significantly increased (P<0.05). Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.

  4. Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods.

    PubMed

    Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A

    2013-04-01

    This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Efficient Term Development of Vitrified Ferret Embryos Using a Novel Pipette Chamber Technique1

    PubMed Central

    Sun, Xingshen; Li, Ziyi; Yi, Yaling; Chen, Juan; Leno, Gregory H.; Engelhardt, John F.

    2008-01-01

    Development of an efficient cryopreservation technique for the domestic ferret is key for the long-term maintenance of valuable genetic specimens of this species and for the conservation of related endangered species. Unfortunately, current cryopreservation procedures, such as slow-rate freezing and vitrification with open pulled straws, are inefficient. In this report, we describe a pipette tip-based vitrification method that significantly improves the development of thawed ferret embryos following embryo transfer (ET). Ferret embryos at the morula (MR), compact morula (CM), and early blastocyst (EB) stages were vitrified using an Eppendorf microloader pipette tip as the chamber vessel. The rate of in vitro development was significantly (P < 0.05) higher among embryos vitrified at the CM (93.6%) and EB (100%) stages relative to those vitrified at the MR stages (58.7%). No significant developmental differences were observed when comparing CM and EB vitrified embryos with nonvitrified control CM (100%) and EB (100%) embryos. In addition, few differences in the ultrastructure of intracellular lipid droplets or in microfilament structure were observed between control embryos and embryos vitrified at any developmental stage. Vitrified-thawed CM/EB embryos cultured for 2 or 16 h before ET resulted in live birth rates of 71.3% and 77.4%, respectively. These rates were not significantly different from the control live birth rate (79.2%). However, culture for 32 h (25%) or 48 h (7.8%) after vitrification significantly reduced the rate of live births. These data indicate that the pipette chamber vitrification technique significantly improves the live birth rate of transferred ferret embryos relative to current state-of-the-art methods.. PMID:18633142

  6. Niv versus dropping vitrification in cryopreservation of human ovarian tissue.

    PubMed

    Xiao, Z; Li, S W; Zhang, Y Y; Wang, Y; Li, L L; Fan, W

    2014-01-01

    The containers for vitrification of tissues include cryovials, copper grids, Pasteur pipettes, the solid-surface method and etc. Recently the acupuncture needle was used to achieve better result in vitrification of human ovarian tissue. To determine if the needle immersed vitrification method (NIV) is a promising approach to vitrify the human ovarian tissue. Human ovarian biopsies from five patients were vitrified using NIV and Dropping vitrification. After 14 days of in vitro culture, the incidence of apoptotic primordial follicles from fresh and vitrified groups was assessed by TUNEL assay. 17β-estradiol (E2) and progesterone (P4) were detected in the media after culturing of vitrified and fresh ovarian tissues. The incidence of apoptotic primordial follicles was significantly higher in the dropping vitrification group than in the NIV group (P < 0.05). E2 and P4 concentrations were significantly higher in NIV groups than in Dropping vitrification group (P < 0.05). NIV was an appropriate method to vitrify ovarian tissue by improving the growth potential of frozen-warmed ovarian tissue in vitro culture.

  7. Influence of storage time on vitrified human cleavage-stage embryos froze in open system.

    PubMed

    Li, Wei; Zhao, Wanqiu; Xue, Xia; Zhang, Silin; Zhang, Xin; Shi, Juanzi

    2017-02-01

    During in vitro fertilization, rapid growth of vitrification and liquid nitrogen storage of embryos have been well characterized. However, the effect of storage time on vitrified cleavage-stage embryos in an open system is poorly understood. To investigate the influence of storage time on the survival and pregnancy outcomes of vitrified human cleavage-stage embryos froze and stored in an open system. A retrospective study of 786 vitrified-warmed cycles of 735 patients was performed from January 2013 to October 2013. The cycles were divided into five groups according to storage time: 1-3 months, 4-6 months, 7-12 months, 13-24 and 25-60 months. The clinical outcomes of cycles with different storage time were analyzed. There were no significant differences of the survival rate, clinical pregnancy outcomes, birth rate, gestational weeks and singleton birthweights at various storage times. For vitrified embryos froze and stored in an open system, the storage time would not influence the survival rate and pregnancy outcomes by storage time up to 5 years.

  8. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.

    2016-05-01

    Current plans for nuclear waste vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) lack the capacity to treat all of the low activity waste (LAW) that is not encapsulated in the vitrified product. Fluidized Bed Steam Reforming (FBSR) is one of the supplemental technologies under consideration to fill this gap. The FBSR process results in a granular product mainly composed of feldspathoid mineral phases that encapsulate the LAW and other contaminants of concern (COCs). In order to better understand the characteristics of the FBSR product, characterization testing has been performed on the granular product as well asmore » the granular product encapsulated in a monolithic geopolymer binder. The non-radioactive simulated tank waste samples created for use in this study are the result of a 2008 Department of Energy sponsored Engineering Scale Technology Demonstration (ESTD) in 2008. These samples were created from waste simulant that was chemically shimmed to resemble actual tank waste, and rhenium has been used as a substitute for technetium. Another set of samples was created by the Savannah River Site Bench-Scale Reformer (BSR) using a chemical shim of Savannah River Site Tank 50 waste in order to simulate a blend of 68 Hanford tank wastes. This paper presents results from coal and moisture removal tests along with XRD, SEM, and BET analyses showing that the major mineral components are predominantly sodium aluminosilicate minerals and that the mineral product is highly porous. Results also show that the materials pass the short-term leach tests: the Toxicity Characteristic Leaching Procedure (TCLP) and Product Consistency Test (PCT).« less

  9. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  10. Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods.

    PubMed

    Dos Santos Neto, P C; Vilariño, M; Barrera, N; Cuadro, F; Crispo, M; Menchaca, A

    2015-02-01

    This study was conducted to evaluate the cryotolerance of in vitro produced ovine embryos submitted to vitrification at different developmental stages using two methods of minimum volume and rapid cooling rate. Embryos were vitrified at early stage (2 to 8-cells) on Day 2 or at advanced stage (morulae and blastocysts) on Day 6 after in vitro fertilization. Vitrification procedure consisted of the Cryotop (Day 2, n=165; Day 6, n=174) or the Spatula method (Day 2, n=165; Day 6, n=175). Non vitrified embryos were maintained in in vitro culture as a control group (n=408). Embryo survival was determined at 3h and 24h after warming, development and hatching rates were evaluated on Day 6 and Day 8 after fertilization, and total cell number was determined on expanded blastocysts. Embryo survival at 24h after warming increased as the developmental stage progressed (P<0.05) and was not affected by the vitrification method. The ability for hatching of survived embryos was not affected by the stage of the embryos at vitrification or by the vitrification method. Thus, the proportion of hatching from vitrified embryos was determined by the survival rate and was lower for Day 2 than Day 6 vitrified embryos. The percentage of blastocysts on Day 8 was lower for the embryos vitrified on Day 2 than Day 6 (P<0.05), and was lower for both days of vitrification than for non-vitrified embryos (P<0.05). No interaction of embryo stage by vitrification method was found (P=NS) and no significant difference was found in the blastocyst cell number among vitrified and non-vitrified embryos. In conclusion, both methods using minimum volume and ultra-rapid cooling rate allow acceptable survival and development rates in Day 2 and Day 6 in vitro produced embryos in sheep. Even though early stage embryos showed lower cryotolerance, those embryos that survive the vitrification-warming process show high development and hatching rates, similar to vitrification of morulae or blastocysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin B prior to vitrification.

    PubMed

    Wang, C L; Xu, H Y; Xie, L; Lu, Y Q; Yang, X G; Lu, S S; Lu, K H

    2016-06-01

    Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Enhanced LAW Glass Correlation - Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less

  13. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less

  14. Glass-ceramics from municipal incinerator fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccaccini, A.R.; Petitmermet, M.; Wintermantel, E.

    1997-11-01

    In countries where the population density is high and the availability of space for landfilling is limited, such as the west-European countries and Japan, the significance of municipal solid waste incineration, as part of the waste management strategy, is continuously increasing. In Germany and Switzerland, for example, more than {approximately}40% of unrecycled waste is being or will be incinerated. Also, in other countries, including the US, the importance of waste incineration will increase in the next few years. Although incineration reduces the volume of the waste by {approximately} 90%, it leaves considerable amounts of solid residues, such as bottom andmore » boiler ashes, and filter fly ashes. Consequently, new technological options for the decontamination and/or inertization of incinerator filter fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited in standard landfill sites with no risk. The proposed alternatives include immobilization by cement-based techniques, wet chemical treatments and thermal treatments of vitrification. Of these, vitrification is the most promising solution, because, if residues are melted at temperatures > 1,300 C, a relatively inert glass is produced. In the present investigation, glass-ceramics were obtained by a controlled crystallization heat treatment of vitrified incinerator filter fly ashes. The mechanical and other technical properties of the products were measured with special emphasis on assessing their in vitro toxic potential.« less

  15. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonianmore » slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.« less

  16. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  17. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: a population-based cohort study.

    PubMed

    Li, Z; Wang, Y A; Ledger, W; Edgar, D H; Sullivan, E A

    2014-12-01

    What are the clinical efficacy and perinatal outcomes following transfer of vitrified blastocysts compared with transfer of fresh or of slow frozen blastocysts? Compared with slow frozen blastocysts, vitrified blastocysts resulted in significantly higher clinical pregnancy and live delivery rates with similar perinatal outcomes at population level. Although vitrification has been reported to be associated with significantly increased post-thaw survival rates compared with slow freezing, there has been a lack of general consensus over which method of cryopreservation (vitrification versus slow freezing) is most appropriate for blastocysts. A population-based cohort of autologous fresh and initiated thaw cycles (a cycle where embryos were thawed with intention to transfer) performed between January 2009 and December 2011 in Australia and New Zealand was evaluated retrospectively. A total of 46 890 fresh blastocyst transfer cycles, 12 852 initiated slow frozen blastocyst thaw cycles and 20 887 initiated vitrified blastocyst warming cycles were included in the data analysis. Pairwise comparisons were made between the vitrified blastocyst group and slow frozen or fresh blastocyst group. A Chi-square test was used for categorical variables and t-test was used for continuous variables. Cox regression was used to examine the pregnancy outcomes (clinical pregnancy rate, miscarriage rate and live delivery rate) and perinatal outcomes (preterm delivery, low birthweight births, small for gestational age (SGA) births, large for gestational age (LGA) births and perinatal mortality) following transfer of fresh, slow frozen and vitrified blastocysts. The 46 890 fresh blastocyst transfers, 11 644 slow frozen blastocyst transfers and 19 978 vitrified blastocyst transfers resulted in 16 845, 2766 and 6537 clinical pregnancies, which led to 13 049, 2065 and 4955 live deliveries, respectively. Compared with slow frozen blastocyst transfer cycles, vitrified blastocyst transfer cycles resulted in a significantly higher clinical pregnancy rate (adjusted relative risk (ARR): 1.47, 95% confidence intervals (CI): 1.39-1.55) and live delivery rate (ARR: 1.41, 95% CI: 1.34-1.49). Compared with singletons born after transfer of fresh blastocysts, singletons born after transfer of vitrified blastocysts were at 14% less risk of being born preterm (ARR: 0.86, 95% CI: 0.77-0.96), 33% less risk of being low birthweight (ARR: 0.67, 95% CI: 0.58-0.78) and 40% less risk of being SGA (ARR: 0.60, 95% CI: 0.53-0.68). A limitation of this population-based study is the lack of information available on clinic-specific cryopreservation protocols and processes for slow freezing-thaw and vitrification-warm of blastocysts and the potential impact on outcomes. This study presents population-based evidence on clinical efficacy and perinatal outcomes associated with transfer of fresh, slow frozen and vitrified blastocysts. Vitrified blastocyst transfer resulted in significantly higher clinical pregnancy and live delivery rates with similar perinatal outcomes compared with slow frozen blastocyst transfer. Comparably better perinatal outcomes were reported for singletons born after transfer of vitrified blastocysts than singletons born after transfer of fresh blastocysts. Elective vitrification could be considered as an alternative embryo transfer strategy to achieve better perinatal outcomes following Assisted Reproduction Technology (ART) treatment. No specific funding was obtained. The authors have no conflicts of interest to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Vitrification of incinerated tannery sludge in silicate matrices for chromium stabilization.

    PubMed

    Varitis, S; Kavouras, P; Pavlidou, E; Pantazopoulou, E; Vourlias, G; Chrissafis, K; Zouboulis, A I; Karakostas, Th; Komninou, Ph

    2017-01-01

    The vitrification process was applied for the stabilization and solidification of a rich in chromium ash that was the by-product of incineration of tannery sludge. Six different batch compositions were produced, based on silica as the glass former and sodium and calcium oxides as flux agents. As-vitrified products (monoliths) were either composed of silicate matrices with separated from the melt Eskolaite (Cr 2 O 3 ) crystallites or were homogeneous glasses (in one case). All as-vitrified products were thermally treated in order to transform them to partially crystallized, i.e. devitrified products. Devitrification is an important part of the work since studying the transformation of the initial as-vitrified products into glass-ceramics with better properties could result to stabilized products with potential added value. The devitrified products were diversified by the effective crystallization mode and separated crystal phase composition. These variations originated from differences in: (a) batch composition of the initial as-vitrified products and (b) thermal treatment conditions. In devitrified products crystallization led to the separation of Devitrite (Na 2 Ca 3 Si 6 O 16 ), Combeite (Na 4 Ca 4 Si 6 O 18 ) and Wollastonite (CaSiO 3 ) crystalline phases, while Eskolaite crystallites were not affected by thermal treatment. Leaching test results revealed that chromium was successfully stabilized inside the as-vitrified monoliths. Devitrification impairs chromium stabilization, only in the case where the initial as-vitrified product was a homogeneous glass. In all other cases, devitrification did not affect successful chromium stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Oxygen consumption rate of early pre-antral follicles from vitrified human ovarian cortical tissue

    PubMed Central

    ISHIKAWA, Takayuki; KYOYA, Toshihiko; NAKAMURA, Yusuke; SATO, Eimei; TOMIYAMA, Tatsuhiro; KYONO, Koichi

    2014-01-01

    The study of human ovarian tissue transplantation and cryopreservation has advanced significantly. Autotransplantation of human pre-antral follicles isolated from cryopreserved cortical tissue is a promising option for the preservation of fertility in young cancer patients. The purpose of the present study was to reveal the effect of vitrification after low-temperature transportation of human pre-antral follicles by using the oxygen consumption rate (OCR). Cortical tissues from 9 ovaries of female-to-male transsexuals were vitrified after transportation (6 or 18 h). The follicles were enzymatically isolated from nonvitrified tissue (group I, 18 h of transportation), vitrified-warmed tissue (group II, 6 and 18 h of transportation) and vitrified-warmed tissue that had been incubated for 24 h (group III, 6 and 18 h of transportation). OCR measurement and the LIVE/DEAD viability assay were performed. Despite the ischemic condition, the isolated pre-antral follicles in group I consumed oxygen, and the mean OCRs increased with developmental stage. Neither the transportation time nor patient age seemed to affect the OCR in this group. Meanwhile, the mean OCR was significantly lower (P < 0.05) in group II but was comparable to that of group I after 24 h of incubation. The integrity of vitrified-warmed primordial and primary follicles was clearly corroborated by the LIVE/DEAD viability assay. These results demonstrate that the OCR can be used to directly estimate the effect of vitrification on the viability of primordial and primary follicles and to select the viable primordial and primary follicles from vitrified-warmed follicles. PMID:25262776

  20. Remaining Sites Verification Package for the 100-F-44:2, Discovery Pipeline Near 108-F Building, Waste Site Reclassification Form 2007-006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    2008-05-30

    The 100-F-44:2 waste site is a steel pipeline that was discovered in a junction box during confirmatory sampling of the 100-F-26:4 pipeline from December 2004 through January 2005. The 100-F-44:2 pipeline feeds into the 100-F-26:4 subsite vitrified clay pipe (VCP) process sewer pipeline from the 108-F Biology Laboratory at the junction box. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminantmore » concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  1. Characterization of Low Firing Temperature Ceramic Glaze Using Phuket MSW and Soda Lime Cullet

    NASA Astrophysics Data System (ADS)

    Ketboonruang, P.; Jinawat, S.; Kashima, D. P.; Wasanapiarnpong, T.; Sujaridworakun, P.; Buggakuptav, W.; Traipol, N.; Jiemsirilers, S.

    2011-10-01

    The normal firing temperature of ceramic products is around 1200 °C. In order to reduce firing temperature, industrial wastes were utilized in ceramic glaze. Phuket municipal solid waste (MSW), soda lime cullet, and borax were used as raw materials for low firing temperature glazes. The glaze compositions were designed using a triaxial diagram. Stoneware ceramic body was glazed then fired at 1000 and 1150 °C for 15 minutes. Morphology and phase composition of glazes were analyzed by Scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Thermal expansion compatibility of Stoneware body and glazes were investigated using a dilatometer. Melting behaviour of selected glaze was analyzed by heating stage microscopy. Phuket MSW and Soda lime glass cullet can be used in high percentage as major raw materials for low firing temperature ceramic glaze that show good texture and vitrified at lower firing temperature without using any commercial ceramic frits. The firing temperature can be reduced up to 150 °C in this study.

  2. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Thomas

    Technetium-99 (Tc, t 1/2 = 2.13x10 5 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the offmore » gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.; Crawford, C.; Fox, K.

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for themore » expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.« less

  4. Birth of normal infants after transfer of embryos that were twice vitrified/warmed at cleavage stages: report of two cases.

    PubMed

    Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo

    2012-12-01

    The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. [A prospective study to compare the efficiency of oocyte vitrification using closed or open devices].

    PubMed

    Sarandi, S; Herbemont, C; Sermondade, N; Benoit, A; Sonigo, C; Poncelet, C; Benard, J; Gronier, H; Boujenah, J; Grynberg, M; Sifer, C

    2016-05-01

    Oocyte vitrification using an open device is thought to be a source of microbiological and chemical contaminations that can be avoided using a closed device. The principal purpose of this study was to compare the two vitrification protocols: closed and open system. The secondary aim was to study the effects of the storage in the vapor phase of nitrogen (VPN) on oocytes vitrified using an open system and to compare it to those of a storage in liquid nitrogen (LN). Forty-four patients have been included in our study between November 2014 and May 2015. Two hundred and fourteen oocytes have been vitrified at germinal vesicle (GV), metaphase I (0PB) and metaphase II (1PB) stages. We vitrified 96 oocytes (59 GV/37 0PB) using a closed vitrification device and 118 oocytes (57 GV/31 0PB/30 1PB) using an open device. The vitrified oocytes were then stored either in LN or in VPN. The main outcome measures were the survival rate after warming (SR), meiosis resumption rate (MRR) and maturation rate (MR). The global post-thaw SR was significantly higher for oocytes vitrified using an open system (93.2%) compared to those vitrified using a closed one (64.5%; P<0.001). On the contrary, there was no significant difference in terms of global MRR and MR (82.1% vs. 87.5% and 60.7% vs. 61.2% using closed and open system respectively). The SR, MRR and the MR were not significantly different when vitrified oocytes were stored in VPN or LN (91.6, 83.8, 64.5% vs. 93.9, 89.8, 59.1% respectively). Taking into account the limits of our protocol, the open vitrification system remains the more efficient system. The use of sterile liquid nitrogen for oocyte vitrification and the subsequent storage in vapor phase of nitrogen could minimize the hypothetical risks of biological and chemical contaminations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less

  7. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  8. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    PubMed

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  9. In-vitro development of vitrified-warmed bovine oocytes after activation may be predicted based on mathematical modelling of cooling and warming rates during vitrification, storage and sample removal.

    PubMed

    Sansinena, Marina; Santos, Maria Victoria; Chirife, Jorge; Zaritzky, Noemi

    2018-05-01

    Heat transfer during cooling and warming is difficult to measure in cryo-devices; mathematical modelling is an alternative method that can describe these processes. In this study, we tested the validity of one such model by assessing in-vitro development of vitrified and warmed bovine oocytes after parthenogenetic activation and culture. The viability of oocytes vitrified in four different cryo-devices was assessed. Consistent with modelling predictions, oocytes vitrified using cryo-devices with the highest modelled cooling rates had significantly (P < 0.05) better cleavage and blastocyst formation rates. We then evaluated a two-step sample removal process, in which oocytes were held in nitrogen vapour for 15 s to simulate sample identification during clinical application, before being removed completely and warmed. Oocytes exposed to this procedure showed reduced developmental potential, according to the model, owing to thermodynamic instability and devitrification at relatively low temperatures. These findings suggest that cryo-device selection and handling, including method of removal from nitrogen storage, are critical to survival of vitrified oocytes. Limitations of the study include use of parthenogenetically activated rather than fertilized ova and lack of physical measurement of recrystallization. We suggest mathematical modelling could be used to predict the effect of critical steps in cryopreservation. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Effective combination of DIC, AE, and UPV nondestructive techniques on a scaled model of the Belgian nuclear waste container

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Sokratis N.; Areias, Lou; Pyl, Lincy; Vantomme, John; Van Marcke, Philippe; Coppens, Erik; Aggelis, Dimitrios G.

    2015-03-01

    Protecting the environment and future generations against the potential hazards arising from high-level and heat emitting radioactive waste is a worldwide concern. Following this direction, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the reference design which considers the geological disposal of the waste in purely indurated clay. In this design the wastes are first post-conditioned in massive concrete structures called Supercontainers before being transported to the underground repositories. The Supercontainers are cylindrical structures which consist of four engineering barriers that from the inner to the outer surface are namely: the overpack, the filler, the concrete buffer and possibly the envelope. The overpack, which is made of carbon steel, is the place where the vitrified wastes and spent fuel are stored. The buffer, which is made of concrete, creates a highly alkaline environment ensuring slow and uniform overpack corrosion as well as radiological shielding. In order to evaluate the feasibility to construct such Supercontainers two scaled models have so far been designed and tested. The first scaled model indicated crack formation on the surface of the concrete buffer but the absence of a crack detection and monitoring system precluded defining the exact time of crack initiation, as well as the origin, the penetration depth, the crack path and the propagation history. For this reason, the second scaled model test was performed to obtain further insight by answering to the aforementioned questions using the Digital Image Correlation, Acoustic Emission and Ultrasonic Pulse Velocity nondestructive testing techniques.

  11. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less

  12. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidatemore » alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.« less

  13. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC articlemore » comprising the radioisotope immobilized therein.« less

  14. Live birth in a woman with recurrent implantation failure and adenomyosis following transfer of refrozen-warmed embryos.

    PubMed

    Safari, Somayyeh; Faramarzi, Azita; Agha-Rahimi, Azam; Khalili, Mohammad Ali

    2016-09-01

    The aim was to report a healthy live birth using re-vitrified-warmed cleavage-stage embryos derived from supernumerary warmed embryos after frozen embryo transfer (ET) in a patient with recurrent implantation failure (RIF). The case was a 39-year-old female with a history of polycystic ovarian syndrome and adenomyosis, along with RIF. After ovarian hyperstimulation, 33 cumulus-oocyte complexes were retrieved and fertilized with conventional in vitro fertilization and intracytoplasmic sperm injection. Because of the risk of ovarian hyperstimulation syndrome, 16 grade B and C embryos were vitrified. After 3 and 6 months, 3 and 4 B-C warmed embryos were transferred to the uterus, respectively. However, implantation did not take place. Ten months later, four embryos were warmed, two grade B 8-cell embryos were transferred, and two embryos were re-vitrified. One year later, the two re-vitrified cleavage-stage embryos were warmed, which resulted in a successful live birth. This finding showed that following first warming, it is feasible to refreeze supernumerary warmed embryos for subsequent ET in patients with a history of RIF.

  15. Prognostic factors for patients undergoing vitrified-warmed human embryo transfer cycles: a retrospective cohort study.

    PubMed

    Takahashi, Toshifumi; Hasegawa, Ayumi; Igarashi, Hideki; Amita, Mitsuyoshi; Matsukawa, Jun; Takehara, Isao; Suzuki, Satoko; Nagase, Satoru

    2017-06-01

    We examined the prognostic factors for pregnancy in 210 vitrified-warmed embryo transfer (ET) cycles in 121 patients. The univariate analysis showed that age, gravida, the number of cycles associated with infertility caused by endometriosis, the number of previous assisted reproductive technology (ART) treatment cycles, and the number of ICSI procedures were significantly lower in pregnant cycles compared with non-pregnant cycles. The percentages of ET using at least one intact embryo and of ET using at least one embryo that had developed further after warming were significantly higher in pregnant cycles compared with non-pregnant cycles. Multivariate logistic regression analysis showed that previous ART treatment cycles, ET with at least one intact embryo, and ET using at least one embryo that had developed further were independent prognostic factors for pregnancy in vitrified-warmed ET cycles. We conclude that fewer previous ART treatment cycles, ET using at least one intact embryo, and ET with embryos that have developed further after warming might be favourable prognostic factors for pregnancy in vitrified-warmed ET cycles.

  16. Birth of cloned calves from vitrified-warmed zona-free buffalo (Bubalus bubalis) embryos produced by hand-made cloning.

    PubMed

    Saha, Ambikaprasanna; Panda, Sudeepta K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K

    2013-01-01

    The availability of techniques for the vitrification of cloned blastocysts can improve their effective use. The present study compared the developmental competence of buffalo cloned embryos derived from adult (BAF), newborn (BNF) and fetal fibroblast (BFF) before and after vitrification. Despite similar cleavage rates among the three groups, the blastocyst rate was lower for BAF- than BNF- and BFF-derived embryos (30.2±2.2% vs 41.7±1.7% and 39.1±2.1%, respectively; P<0.01). The total cell number of BNF-derived blastocysts was significantly higher (P<0.01) than that of BFF-derived blastocysts, which, in turn, was higher (P<0.01) than that of BAF-derived blastocysts. Following transfer of vitrified-warmed blastocysts to recipients, no pregnancy was obtained with fresh (n=8) or vitrified-warmed (n=18) BAF-derived blastocysts, whereas transfer of fresh BNF- (n=53) and BFF-derived (n=32) blastocysts resulted in four and three pregnancies, respectively, which aborted within 90 days of gestation. The transfer of vitrified-warmed BNF-derived blastocysts (n=39) resulted in the live birth of a calf weighing 41kg, which is now 23 months old and has no apparent abnormality, whereas the transfer of vitrified-warmed BFF-derived blastocysts (n=18) resulted in one live birth of a calf that died within 6h. These results demonstrate that cloned buffalo embryos cryopreserved by vitrification can be used to obtain live offspring.

  17. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients

    PubMed Central

    2012-01-01

    Objectives This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. Study design We compared the clinical results of embryo transfer on the 3rd (cleavage stage) or 5th (blastocyst stage) day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Results Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05) and implantation rate (31.8% vs 31.2%, p>0.05) in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05). Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8%) and implantation rate (47%) compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively). For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p<0.05). However, the cumulative multiple pregnancy rates showed no significant difference between the two groups. Conclusions In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients. PMID:23039212

  18. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients.

    PubMed

    Tong, Guo Qing; Cao, Shan Ren; Wu, Xun; Zhang, Jun Qiang; Cui, Ji; Heng, Boon Chin; Ling, Xiu Feng

    2012-10-05

    This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. We compared the clinical results of embryo transfer on the 3rd (cleavage stage) or 5th (blastocyst stage) day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05) and implantation rate (31.8% vs 31.2%, p>0.05) in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05). Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8%) and implantation rate (47%) compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively). For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p<0.05). However, the cumulative multiple pregnancy rates showed no significant difference between the two groups. In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients.

  19. Vitrification, in vitro fertilization, and development of Atg7 deficient mouse oocytes.

    PubMed

    Bang, Soyoung; Lee, Geun-Kyung; Shin, Hyejin; Suh, Chang Suk; Lim, Hyunjung Jade

    2016-03-01

    Autophagy contributes to the clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified mouse oocytes show acute increases in autophagy during warming. Herein, we investigate the potential role of Atg7 in oocyte vitrification by using an oocyte-specific deletion model of the Atg7 gene, a crucial upstream gene in the autophagic pathway. Oocyte-specific Atg7 deficient mice were generated by crossing Atg7 floxed mice and Zp3-Cre transgenic mice. The oocytes were vitrified-warmed and then subjected to in vitro fertilization and development. The rates of survival, fertilization, and development were assessed in the Atg7 deficient oocytes in comparison with the wildtype oocytes. Light chain 3 (LC3) immunofluorescence staining was performed to determine whether this method effectively evaluates the autophagy status of oocytes. The survival rate of vitrified-warmed Atg7(f/f) ;Zp3-Cre (Atg7(d/d) ) metaphase II (MII) oocytes was not significantly different from that of the wildtype (Atg7(f/f) ) oocytes. Fertilization and development in the Atg7(d/d) oocytes were significantly lower than the Atg7(f/f) oocytes, comparable to the Atg5(d/d) oocytes previously described. Notably, the developmental rate improved slightly in vitrified-warmed Atg7(d/d) MII oocytes when compared to fresh Atg7(d/d) oocytes. LC3 immunofluorescence staining showed that this method can be reliably used to assess autophagic activation in oocytes. We confirmed that the LC3-positive signal is nearly absent in Atg7(d/d) oocytes. While autophagy is induced during the warming process after vitrification of MII oocytes, the Atg7 gene is not essential for survival of vitrified-warmed oocytes. Thus, induction of autophagy during warming of vitrified MII oocytes seems to be a natural response to manage cold or other cellular stresses.

  20. Back-end of the fuel cycle - Indian scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattal, P.K.

    Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less

  1. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  2. Bio-alteration of metallurgical wastes by Pseudomonas aeruginosa in a semi flow-through reactor.

    PubMed

    van Hullebusch, Eric D; Yin, Nang-Htay; Seignez, Nicolas; Labanowski, Jérôme; Gauthier, Arnaud; Lens, Piet N L; Avril, Caroline; Sivry, Yann

    2015-01-01

    Metallurgical activities can generate a huge amount of partially vitrified waste products which are either landfilled or recycled. Lead Blast Furnace (LBF) slags are often disposed of in the vicinity of metallurgical plants, and are prone to weathering, releasing potentially toxic chemical components into the local environment. To simulate natural weathering in a slag heap, bioweathering of these LBF slags was studied in the presence of a pure heterotrophic bacterial strain (Pseudomonas aeruginosa) and in a semi-flow through reactor with intermittent leachate renewal. The evolution of water chemistry, slag composition and texture were monitored during the experiments. The cumulative bulk release of dissolved Fe, Si, Ca and Mg doubled in the presence of bacteria, probably due to the release of soluble complexing organic molecules (e.g. siderophores). In addition, bacterial biomass served as the bioadsorbent for Pb, Fe and Zn as 70-80% of Pb and Fe, 40-60% of Zn released are attached to and immobilized by the bacterial biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Chemical Composition Measurements of LAWA44 Glass Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.; Riley, W.

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for severalmore » samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B 2O 3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.« less

  4. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.

  5. Vitrified hillforts as anthropogenic analogues for nuclear waste glasses - project planning and initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoblom, Rolf; Weaver, Jamie L.; Peeler, David K.

    Nuclear waste must be deposited in such a manner that it does not cause significant impact on the environment or human health. In some cases, the integrity of the repositories will need to sustain for tens to hundreds of thousands of years. In order to ensure such containment, nuclear waste is frequently converted into a very durable glass. It is fundamentally difficult, however, to assure the validity of such containment based on short-term tests alone. To date, some anthropogenic and natural volcanic glasses have been investigated for this purpose. However, glasses produced by ancient cultures for the purpose of joiningmore » rocks in stonewalls have not yet been utilized in spite of the fact that they might offer significant insight into the long-term durability of glasses in natural environments. Therefore, a project is being initiated with the scope of obtaining samples and characterizing their environment, as well as to investigate them using a suite of advanced materials characterization techniques. It will be analysed how the hillfort glasses may have been prepared, and to what extent they have altered under in-situ conditions. The ultimate goals are to obtain a better understanding of the alteration behaviour of nuclear waste glasses and its compositional dependence, and thus to improve and validate models for nuclear waste glass corrosion. The paper deals with project planning and initiation, and also presents some early findings on fusion of amphibolite and on the process for joining the granite stones in the hillfort walls.« less

  6. Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system

    PubMed Central

    Men, Hongsheng; Zhao, Chongbei; Wei, Si; Murphy, Clifton N.; Spate, Lee; Liu, Yang; Walters, Eric M.; Samuel, Melissa S.; Prather, Randall S.; Critser, John K.

    2011-01-01

    As the importance of swine models in biomedical research increases, it is essential to develop low-cost, high-throughput systems to cryopreserve swine germplasm for maintenance of these models. However, porcine embryos are exceedingly sensitive to low temperature and successful cryopreservation is generally limited to the use of vitrification in open systems that allow direct contact of the embryos with liquid nitrogen (LN2). This creates a high risk of pathogen transmission. Therefore, cryopreservation of porcine embryos in a “closed” system is of very high importance. In this study, in vitro-produced (IVP) porcine embryos were used to investigate cryosurvival and developmental potential of embryos cryopreserved in a closed system. Optimal centrifugal forces to completely disassociate intracellular lipids from blastomeres were investigated using Day-4 embryos. Cryosurvival of delipidated embryos was investigated by vitrifying the embryos immediately after centrifugation, or after development to blastocysts. In this study, centrifugation for 30 min at 13,000 g was adequate to completely delipidate the embryos; furthermore, these embryos were able to survive cryopreservation at a rate comparable to those centrifuged for only 12 min. When delipidated embryos were vitrified at the blastocyst stage, there was no difference in survival between embryos vitrified using OPS and 0.25 mL straws. Some embryos vitrified by each method developed to term. These experiments demonstrated that porcine embryos can be cryopreserved in a closed system after externalizing their intracellular lipids. This has important implications for banking swine models of human health and disease. PMID:21458047

  7. Comparison of the clinical outcomes between fresh blastocyst and vitrified-thawed blastocyst transfer.

    PubMed

    Ku, Pei-Yun; Lee, Robert Kuo-Kuang; Lin, Shyr-Yeu; Lin, Ming-Huei; Hwu, Yuh-Ming

    2012-12-01

    To compare the clinical outcomes between fresh and vitrified-thawed day 5 blastocyst transfers. Retrospective case control study. Tertiary referral center. Patients 38 years of age or less who underwent IVF/ICSI cycles with fresh or frozen-thawed blastocysts transferred from June 1, 2009 to November 30, 2011 Vitrification and thawing of day 5 blastocysts using the Cryotop method. (Kitazato BioPharma Co., Ltd., Fuji city, Shizuoka, Japan) Clinical pregnancy rate, implantation rate, ongoing pregnancy rate, and multiple pregnancy rates. Of the 118 cycles in the fresh transfer group, 234 blastocysts were transferred. The clinical pregnancy rate was 66.1 % and implantation rate was 50.9 %. The ongoing pregnancy rate was 56.8 % and the rates for singleton and twin pregnancies were 53.7 % and 44.8 %. Of the 59 cycles in the vitrified-thawed group, 111 blastocysts were transferred. The clinical pregnancy rate was 59.3 % and implantation rate was 43.2 %. The ongoing pregnancy rate was 47.5 % and the rates for singleton and twin pregnancies were 60.7 % and 39.3 %. The clinical pregnancy rate, implantation rate and ongoing pregnancy rate did not differ significantly between the two groups. The implantation rates were not significantly different between the fresh and the vitrified-thawed groups. Thus, single embryo transfer may be considered in fresh cycles to decrease multiple pregnancy rates. The surplus embryos should be vitrified for the frozen embryo transfer to improve the cumulative pregnancy rate.

  8. Cold cap subsidence for in situ vitrification and electrodes therefor

    DOEpatents

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  9. Geophysical investigation of 216-U-8 clay vitrified pipe transfer line, 200 West Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergstrom, K.A.

    1994-12-05

    Two geophysical surveys were conducted over a vitrified clay pipeline (VCP) that was used to transfer liquid radioactive waste from the 224-U Building to the 216-U-8 and 216-U-12 cribs. The objectives of the surveys were to locate the VCP in the northern site, locate the bends in the VCP in the southern site, and locate possible utilities or pipelines at both sites. Ground-penetrating radar (GPR) was the method chosen for the surveys. Electromagnetic induction (EMI) was also used at the southern site to map the extent of a possible pipeline. It is very difficult to detect most VCPs with GPR,more » however, excavation boundaries for the pipeline are often discernible. The VCP was not identified in the GPR data at the northern site. Its anticipated depth was 10--12 ft. The VCP at the southern site appears to be much shallower. The data suggest it may be 5 ft or less below the surface in places. The edges of the excavation from N100 to N190 are between E120 and E135 and were quite distinct in the data. However, the excavation boundaries weren`t apparent north of N190, suggesting that the VCP bends to the north near N200. Several profiles were extended beyond N200. These profiles detected a linear, with the characteristic signature of a pipeline, approximately 3 ft below the surface. There was no previous knowledge of the pipeline. The linear was traced across the entire surface contamination area with an EMI geophysical tool.« less

  10. Delayed blastulation, multinucleation, and expansion grade are independently associated with live-birth rates in frozen blastocyst transfer cycles.

    PubMed

    Desai, Nina; Ploskonka, Stephanie; Goodman, Linnea; Attaran, Marjan; Goldberg, Jeffrey M; Austin, Cynthia; Falcone, Tommaso

    2016-11-01

    To identify blastocyst features independently predictive of successful pregnancy and live births with vitrified-warmed blastocysts. Retrospective study. Academic hospital. Women undergoing a cycle with transfer of blastocysts vitrified using the Rapid-i closed carrier (n = 358). None. Clinical pregnancy and live-birth rates analyzed using logistic regression analysis. A total of 669 vitrified-warmed blastocysts were assessed. The survival rate was 95%. A mean of 1.7 ± 0.5 embryos were transferred. The clinical pregnancy, live-birth, and implantation rates were 55%, 46%, and 43%, respectively. The odds of clinical pregnancy (odds ratio [OR] 3.08; 95% confidence interval [CI], 1.88-5.12) and live birth (OR 2.93; 95% CI, 1.79-4.85) were three times higher with day-5 blastocysts versus slower-growing day-6 vitrified blastocysts, irrespective of patient age at cryopreservation. Blastocysts from multinucleated embryos were half as likely to result in a live birth (OR 0.46; 95% CI, 0.22-0.91). A four -fold increase in live birth was observed if an expanded blastocyst was available for transfer. The inner cell mass-trophectoderm score correlated to positive outcomes in the univariate analysis. The implantation rate was statistically significantly higher for day-5 versus day-6 vitrified blastocysts (50% vs. 29%, respectively). The blastocyst expansion grade after warming was predictive of successful outcomes independent of the inner cell mass or trophectoderm score. Delayed blastulation and multinucleation were independently associated with lower live-birth rates in frozen cycles. Implantation potential of the frozen blastocysts available should be included in the decision-making process regarding embryo number for transfer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Metabolic changes in droplet vitrified semen of wild endangered Persian sturgeon Acipenser persicus (Borodin, 1997).

    PubMed

    Abed-Elmdoust, Amirreza; Farahmand, Hamid; Mojazi-Amiri, Bagher; Rafiee, Gholamreza; Rahimi, Ruhollah

    2017-06-01

    Comparative quantitative metabolite profiling can be used for better understanding of cell functions and dysfunctions in particular circumstances such as sperm banking which is an important approach for cryopreservation of endangered species. Cryopreservation techniques have some deleterious effects on spermatozoa which put the obtained results in controversy. Therefore, in the present study, quantitative 1 H NMR (Nuclear Magnetic Resonance) based metabolite profiling was conducted to evaluate metabolite changes related to energetics and some other detected metabolites in vitrified semen of critically endangered wild Acipenser persicus. The semen was diluted with extenders containing 0, 5, 10, and 15 μM of fish antifreeze protein (AFP) type III as a cryoprotectant. Semen-extenders were vitrified and stored for two days. Based on post-thaw motility duration and motility percentage assessments, two treatments with 10 μM and 0 μM of AFP had the highest and the lowest motility percentages respectively and they were objected to 1 H NMR spectroscopy investigations in order to reveal the extremes of the metabolites dynamic range. Univariate (ANOVA) and multivariate (PCA) analysis of the resulting metabolic profiles indicated significant changes (P > 0.05) in metabolites. The level of some metabolites including acetate, adenine, creatine, creatine phosphate, lactate, betaine, sarcosine, β-alanine and trimethylamine N-oxide significantly decreased in vitrified semen while some others such as creatinine, guanidinoacetate, N, N-dimethylglycine, and glycine significantly increased. There were also significant differences between vitrified treatments in levels of creatine, creatine phosphate, creatinine, glucose, guanidinoacetate, lactate, N, N-dimethylglycine, and glycine, suggesting how fish AFP type III can be effective as a cryoprotectant. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes.

    PubMed

    Zhang, Zhiguo; Wang, Tianjuan; Hao, Yan; Panhwar, Fazil; Chen, Zhongrong; Zou, Weiwei; Ji, Dongmei; Chen, Beili; Zhou, Ping; Zhao, Gang; Cao, Yunxia

    2017-02-01

    Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    PubMed

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  14. The influence of female age on the cumulative live-birth rate of fresh cycles and subsequent frozen cycles using vitrified blastocysts in hyper-responders.

    PubMed

    Wu, Cheng-Hsuan; Lee, Tsung-Hsien; Chen, Hsiu-Hui; Chen, Chung-I; Huang, Chun-Chia; Lee, Maw-Sheng

    2015-10-01

    The aim of this research was to study the influence of female age on the cumulative live-birth rate of fresh and subsequent frozen cycles using vitrified blastocysts of the same cohort in hyper-responders. This was a retrospective study of 1137 infertile women undergoing their first in vitro fertilization treatment between 2006 and 2013. The main outcome measure was cumulative live births among the fresh and all vitrified blastocyst transfers combined after the same stimulation cycle. The results were also analyzed according to age (i.e., <35 years, 35-39 years, and ≥ 40 years). The mean number of retrieved oocytes was 19.9 ± 8.5 oocytes. The cumulative pregnancy rate was 89.2% and the cumulative live-birth rate was 73.3%. The cumulative live-birth rate declined from 73.9% for women younger than 35 years old to 67.3% for women 35-39 years old to 57.9% for women 40 years or older. Combined fresh and vitrified blastocyst transfer cycles can result in a high cumulative live-birth rate. The cumulative live-birth rates among older women are lower than the rates among younger women when autologous oocytes are used. Copyright © 2015. Published by Elsevier B.V.

  15. Preservation of human ovarian follicles within tissue frozen by vitrification in a xeno-free closed system using only ethylene glycol as a permeating cryoprotectant.

    PubMed

    Sheikhi, Mona; Hultenby, Kjell; Niklasson, Boel; Lundqvist, Monalill; Hovatta, Outi

    2013-07-01

    To study the preservation of follicles within ovarian tissue vitrified using only one or a combination of three permeating cryoprotectants. Experimental study. University hospital. Ovarian tissue was donated by consenting women undergoing elective cesarean section. Ovarian tissue was vitrified in closed sealed vials using either a combination of dimethyl sulfoxide, 1,2-propanediol, and ethylene glycol (EG), or only EG as permeating cryoprotectants. Ovarian tissue was vitrified with the use of two vitrification methods. Tissue from the same donor was used for comparison of two different solutions. The morphology of the follicles was evaluated after vitrification, warming, and culture by light microscopy and transmission electron microscopy. Apoptosis was assessed by immunohistochemistry for active caspase-3 in fresh and vitrified tissue. Light and electron microscopic analysis showed equally well preserved morphology of oocytes, granulosa cells, and ovarian stroma when either of the vitrification solutions was used. No apoptosis was observed in primordial and primary follicles. Using only EG as a permeating cryoprotectant in a closed tube gives as good ultrastructural preservation of ovarian follicles as a more complicated system using several cryoprotectants. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Ultrastructural changes of sheep cumulus-oocyte complexes following different methods of vitrification.

    PubMed

    Ebrahimi, Bita; Valojerdi, Mojtaba Rezazadeh; Eftekhari-Yazdi, Poopak; Baharvand, Hossein

    2012-05-01

    To determine the ultrastructural changes of sheep cumulus-oocyte complexes (COCs) following different methods of vitrification, good quality isolated COCs (GV stage) were randomly divided into the non-vitrified control, conventional straw, cryotop and solid surface vitrification groups. In both conventional and cryotop methods, vitrified COCs were respectively loaded by conventional straws and cryotops, and then plunged directly into liquid nitrogen (LN2); whereas in the solid surface group, vitrified COCs were first loaded by cryotops and then cooled before plunging into LN2. Post-warming survivability and ultrastructural changes of healthy COCs in the cryotop group especially in comparison with the conventional group revealed better viability rate and good preservation of the ooplasm organization. However in all vitrification groups except the cryotop group, mitochondria were clumped. Solely in the conventional straw group, the mitochondria showed different densities and were extremely distended. Moreover in the latter group, plenty of large irregular connected vesicles in the ooplasm were observed and in some parts their membrane ruptured. Also, in the conventional and solid surface vitrification groups, cumulus cells projections became retracted from the zona pellucida in some parts. In conclusion, the cryotop vitrification method as compared with other methods seems to have a good post-warming survivability and shows less deleterious effects on the ultrastructure of healthy vitrified-warmed sheep COCs.

  17. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    NASA Astrophysics Data System (ADS)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  18. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential?

    PubMed

    Desai, Nina; Xu, Jing; Tsulaia, Tamara; Szeptycki-Lawson, Julia; AbdelHafez, Faten; Goldfarb, James; Falcone, Tommaso

    2011-02-01

    Vitrification technology presents new opportunities for preservation of embryo derived stem cells without first establishing a viable ESC line. This study tests the feasibility of cryopreserving ICM cells using vitrification. ICMs from mouse embryos were isolated and vitrified in HSV straws or on cryoloops. Upon warming, the vitrified ICMs were cultured and observed for attachment and morphology. Colonies were passaged every 3-6 days. ICMs and ICM-derived ESC colonies were tested for expression of stem cell specific markers. ICMs vitrified on both the cryoloop and the HSV straw had high survival rates. ICM derived ESCs remained undifferentiated for several passages and demonstrated expression of typical stem cell markers; SSEA-1, Sox-2, Oct 4 and alkaline phosphatase. This is the first report on successful vitrification of isolated ICMs and the subsequent derivation of ESC colonies. Vitrification of isolated ICMs is a novel approach for preservation of the "stem cell source" material.

  19. Cryo-scanning transmission electron tomography of vitrified cells.

    PubMed

    Wolf, Sharon Grayer; Houben, Lothar; Elbaum, Michael

    2014-04-01

    Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography.

  20. Developmental competence of mature yak vitrified-warmed oocytes is enhanced by IGF-I via modulation of CIRP during in vitro maturation.

    PubMed

    Pan, Yangyang; Cui, Yan; He, Honghong; Baloch, Abdul Rasheed; Fan, Jiangfeng; Xu, Gengquan; He, Junfeng; Yang, Kun; Li, Guyue; Yu, Sijiu

    2015-12-01

    The objective of this study was to investigate whether developmental competence of mature vitrified-warmed yak (Bos grunniens) oocytes can be enhanced by supplemented insulin-like growth factor I (IGF-1) during in vitro maturation (IVM), and its relationship with the expression of cold-inducible RNA-binding protein (CIRP). In experiment 1, immature yak oocytes were divided into four groups, and IVM supplemented with 0, 50, 100 and 200 ng/mL IGF-1 was evaluated; the mRNA and protein expression levels of CIRP in mature oocytes in the four groups were evaluated using quantitative real-time PCR and western blotting analyses. In experiment 2, the mature yak oocytes in the four groups were cryopreserved using the Cryotop (CT) method, followed by chemical activation and in vitro culture for two days and eight days to determine cleavage, blastocyst rates, and total cell number in the blastocysts. Mature yak oocytes without vitrification served as a control group. The outcomes were as following: (1) the expression of CIRP in the matured oocytes was up-regulated in the IGF-1 groups and was highest expression was observed in the 100 ng/mL IGF-1 treatment group. (2) In the vitrified-warmed groups, the rates of cleavage and blastocyst were also highest in the 100 ng/mL IGF-1 treatment group (81.04 ± 1.06%% and 32.16 ± 1.01%), which were close to the rates observed in groups without vitrification (83.25 ± 0.85% and 32.54 ± 0.34%). The rates of cleavage and blastocyst in the other vitrified-warmed groups were 70.92 ± 1.32% and 27.33 ± 1.31% (0 ng/mL); 72.73 ± 0.74% and 29.41 ± 0.84% (50 ng/mL); 72.43 ± 0.61% and 27.61 ± 0.59% (200 ng/mL), respectively. There was no significant difference in the total cell number per blastocysts between the vitrified-warmed groups and group without vitrification. Thus, we conclude that the enhancement in developmental competence of mature yak vitrified-warmed oocytes after the addition of IGF-1 during IVM might result from the regulation of CIRP expression in mature yak oocytes prior to vitrification. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika

    The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threatmore » to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of WTP. - Construct a supplemental low-activity waste (LAW) vitrification facility for the two-thirds balance of LAW that will not be treated by the vitrification facility under construction. - Prepare infrastructure for waste feed from the tanks and facilities to handle the WTP waste streams. To support this project track, Ecology expedites dangerous waste permitting by using a design-build approach to integrate WTP into the Resource Conservation and Recovery Act permit for Hanford. (authors)« less

  2. Effects of polyethylene glycol and a synthetic ice blocker during vitrification of immature porcine oocytes on survival and subsequent embryo development.

    PubMed

    Santos, Elisa Caroline da Silva; Somfai, Tamas; Appeltant, Ruth; Dang-Nguyen, Thanh Quang; Noguchi, Junko; Kaneko, Hiroyuki; Kikuchi, Kazuhiro

    2017-08-01

    We evaluated the effects of polyethylene glycol (PEG) and Supercool X-1000 (SC) as supplements during the vitrification of immature cumulus-enclosed porcine oocytes in a solution based on 17.5% ethylene glycol + 17.5% propylene glycol. After warming, the oocytes were subjected to in vitro maturation, fertilization and embryo culture. In Experiment 1, equilibration and vitrification solutions were supplemented with or without 2% (w/v) PEG (PEG+ and PEG-, respectively). The survival rate, cleavage and blastocyst development were similar between PEG+ and PEG- groups; however, all values were lower than those in the non-vitrified control. In Experiment 2, vitrification solution was supplemented with or without 1% (v/v) SC (SC+ and SC-, respectively). The percentages of survival and blastocyst development were similar between SC+ and SC- groups but lower than those in the non-vitrified control. The percentage of cleavage in the SC- group was significantly lower than the control and the SC+ groups, which were in turn similar to one another. In both experiments, the cell numbers in blastocysts were not significantly different among the non-vitrified and vitrified groups. In conclusion, PEG did not improve oocyte survival and embryo development, whereas SC improved the ability of surviving oocytes to cleave but not to develop into blastocysts. © 2016 Japanese Society of Animal Science.

  3. Cryostorage duration does not affect pregnancy and neonatal outcomes: a retrospective single-centre cohort study of vitrified-warmed blastocysts.

    PubMed

    Ueno, Satoshi; Uchiyama, Kazuo; Kuroda, Tomoko; Yabuuchi, Akiko; Ezoe, Kenji; Okimura, Tadashi; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2018-06-01

    A retrospective cohort study of 8736 autologous single vitrified-warmed blastocyst transfer cycles was conducted in a single centre to investigate the effect of cryostorage on clinical and neonatal outcomes. Cryostorage duration was classified into three groups: (A) 0-2 months (n = 4702); (B) 2-13 months (n = 2853) and (C) 13-97 months (n = 1181). Blastocysts were vitrified using the Cryotop method. No significant differences were observed in live birth rates: (A) 37.3%; (B) 34.9%; (C) (35.2%). Gestational period was significantly shorter in group C: (A) 38.7 ± 1.8; (B) 38.6 ± 1.6; (C) 38.1 ± 1.7; P < 0.05. This was clinically unimportant as the average gestational age was more than 38 weeks. No significant differences between groups were observed in birth weight: (A) 3060 ± 455 g; (B) 3052 ± 449 g; (C) 2992 ± 445 g, or congenital malformation rates: (A) 2.2%; (B) 1.9%; (C) 1.8%. The limitation of this study was that maximum storage duration was 8 years; most blastocysts were in cryostorage for much shorter periods. Long-term storage of blastocysts that are vitrified using an open device vitrification system has no negative effect on pregnancy and neonatal outcomes. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification.

    PubMed

    Liu, Yangsheng; Liu, Yushan

    2005-05-15

    The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.

  5. Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos.

    PubMed

    Van Landuyt, L; Van de Velde, H; De Vos, A; Haentjens, P; Blockeel, C; Tournaye, H; Verheyen, G

    2013-11-01

    Is the effect of cell loss on further cleavage and implantation different for vitrified than for slowly frozen Day 3 embryos? Vitrified embryos develop better overnight than slowly frozen embryos, regardless of the number of cells lost, but have similar implantation potential if further cleavage occurs overnight. After slow-freezing, similar implantation rates have been obtained for intact 4-cell embryos or 4-cell embryos with 1 cell damaged. For slowly frozen Day 3 embryos, lower implantation rates have been observed when at least 25% of cells were lost. Other studies reported similar implantation potential for 7- to 8-cell embryos with 0, 1 or 2 cells damaged. No data are available on further development of vitrified embryos in relation to cell damage. Survival and overnight cleavage were retrospectively assessed for 7664 slowly frozen Day 3 embryos (study period: January 2004-December 2008) and 1827 vitrified embryos (study period: April 2010-September 2011). Overnight cleavage was assessed according to cell stage at cryopreservation and post-thaw cell loss for both protocols. The relationship between cell loss and implantation rate was analysed in a subgroup of single-embryo transfers (SETs) with 780 slowly frozen and 294 vitrified embryos. Embryos with ≥6 blastomeres and ≤20% fragmentation were cryopreserved using slow controlled freezing [with dimethyl sulphoxide (DMSO) as cryoprotectant] or closed vitrification [with DMSO-ethylene glycol (EG)-sucrose (S) as cryoprotectants]. Only embryos with ≥50% of cells intact after thawing were cultured overnight and were only transferred if further cleaved. For each outcome, logistic regression analysis was performed. Survival was 94 and 64% after vitrification and slow-freezing respectively. Logistic regression analysis showed that overnight cleavage of surviving embryos was higher after vitrification than after slow-freezing (P < 0.001) and decreased according to the degree of cell damage (P < 0.001). If the embryo continued to cleave after thawing, there was no effect of the number of cells lost or the cryopreservation method on its implantation potential. The implantation rates of embryos with 0, 1 or 2 cells damaged were, respectively, 21% (n = 114), 21% (n = 28) and 20% (n = 12) after slow-freezing and 20% (n = 50), 21% (n = 5) and 27% (n = 4) after vitrification. This analysis is retrospective and study periods for vitrification and slow-freezing are different. The number of SETs with vitrified embryos is limited. However, a large number of vitrified embryos were available to analyse the further cleavage of surviving embryos. Although it is not proved that vitrified embryos are more viable than slowly frozen embryos in terms of pregnancy outcome, vitrification yields higher survival rates, better overnight development and higher transfer rates per embryo warmed. This increases the number of frozen transfer cycles originating from a single treatment and might result in a better cumulative clinical outcome. Based on the present data, the policy to warm an extra embryo before overnight culture depends on the cell stage at cryopreservation and the cell damage after warming. For 8-cell embryos, up to two cells may be damaged compared with only one cell for 6- to 7-cell embryos, before an additional embryo is warmed. none.

  6. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  7. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  8. Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste

    NASA Astrophysics Data System (ADS)

    Trnovcevic, J.; Schneider, F.; Scherer, U. W.

    2017-02-01

    The production of nuclear energy and the application of other nuclear technologies produce large volumes of low- and intermediate-level radioactive wastes. To investigate a novel means of treating such wastes, plasma is investigated for its efficacy. Plasma treatment promises to simultaneously treat all waste types without any previous sorting or pre-treatment. Microwave-driven plasma torches have the advantage of high-energy efficiency and low-electrode wear. In small-scale experiments, several design variations of an open plasma oven were assembled in order to investigate constraints caused by the materials and oven geometry. The experimental set-up was modified several times in order to test the design characteristics and the variation of plasma-specific proprieties related to the radioactive waste treatment and in order to find a suitable solution with the minimum complexity that allows a representative reproducibility of the results obtained. A plasma torch controlled by a 2.45 GHz microwave signal of up to 200 W was used, employing air as the primary plasma gas with a flow rate of ∼2 L/min. Different organic and inorganic materials in different shapes and sizes were treated besides a standardized mixture resembling mixed wastes from nuclear plants. The results prove that the chosen microwave plasma torch is suitable for a combined combustion and melting of organic and in-organic materials. Investigation of the specimen size to be treated is influential in this process: the power is still too low to melt larger samples, but the temperature is sufficient to treat all kinds of material. When glass particles are added, materials melt together to form an amorphous substance, proving the possibility to vitrify material with this plasma torch. By optimization of the oven configuration, the time needed to combust 25 g of standard sample was reduced by ∼50%. Typical energy efficiencies were found in the range of 8-20% for melting of metal chipping, and ∼90% for melting of zinc powder.

  9. Impact of vitrification on human oocytes before and after in vitro maturation: A systematic review and meta-analysis.

    PubMed

    Mohsenzadeh, Mehdi; Salehi-Abargouei, Amin; Tabibnejad, Nasim; Karimi-Zarchi, Mojgan; Khalili, Mohammad Ali

    2018-05-21

    There are controversies regarding in vitro maturation (IVM) procedure, the time of storing frozen oocytes and maturation stage of vitrified oocytes and its impact on oocytes fertilization capability. The aim of this systematic review and meta-analysis was to evaluate the impact of vitrification on human oocytes during IVM procedure. A systematic review with meta-analysis was undertaken. Main search terms were those related key words. We searched Medline, Embase, Scopus and ISI web of science to detect English-language studies. The final search was performed on 27 January 2018. The original articles which studied laboratory outcomes after vitrification of MII or GV oocytes before or after IVM were included. Exclusion criteria were animal trials and the studies that performed cryopreservation using slow-freeze method. Oocyte maturation, survival, fertilization and cleavage rates were assessed. Bias and quality assessments were applied. 2476 articles were screened and after duplicates removing together with application of inclusion and exclusion criteria, 14 studies assessed for eligibility. Finally 5 studies included for analysis. All studies compared laboratory outcomes between oocytes that vitrified at the GV stage and those which firstly matured in vitro, and then vitrified. Meta-analysis showed that vitrification of oocytes at GV stage had a negative impact on maturation rate (RR = 1.28, 95% CI: 0.96-1.70); but not on cleavage rate (RR = 1.07, 95% CI: 0.70-1.64); fertilization rate (RR = 0.99, 95% CI: 0.85-1.14) and survival rate(RR = 1.01, 95% CI: 0.96-1.06). In general, Based on our results, oocyte vitrification decreases the maturation rate. In addition, survival, fertilization as well as cleavage rates did not significantly differ between the oocytes vitrified before IVM versus oocytes vitrified after IVM. Copyright © 2018. Published by Elsevier B.V.

  10. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes

    PubMed Central

    De Canditiis, Carolina; Zito, Gianluigi; Rubessa, Marcello; Roca, Maria Serena; Carotenuto, Rosa; Sasso, Antonio; Gasparrini, Bianca

    2017-01-01

    Although oocyte cryopreservation has great potentials in the field of reproductive technologies, it still is an open challenge in the majority of domestic animals and little is known on the biochemical transformation induced by this process in the different cellular compartments. Raman micro-spectroscopy allows the non-invasive evaluation of the molecular composition of cells, based on the inelastic scattering of laser photons by vibrating molecules. The aim of this work was to assess the biochemical modifications of both the zona pellucida and cytoplasm of vitrified/warmed in vitro matured bovine oocytes at different post-warming times. By taking advantage of Principal Component Analysis, we were able to shed light on the biochemical transformation induced by the cryogenic treatment, also pointing out the specific role of cryoprotective agents (CPs). Our results suggest that vitrification induces a transformation of the protein secondary structure from the α-helices to the β-sheet form, while lipids tend to assume a more packed configuration in the zona pellucida. Both modifications result in a mechanical hardening of this cellular compartment, which could account for the reduced fertility rates of vitrified oocytes. Furthermore, biochemical modifications were observed at the cytoplasmic level in the protein secondary structure, with α-helices loss, suggesting cold protein denaturation. In addition, a decrease of lipid unsaturation was found in vitrified oocytes, suggesting oxidative damages. Interestingly, most modifications were not observed in oocytes exposed to CPs, suggesting that they do not severely affect the biochemical architecture of the oocyte. Nevertheless, in oocytes exposed to CPs decreased developmental competence and increased reactive oxygen species production were observed compared to the control. A more severe reduction of cleavage and blastocyst rates after in vitro fertilization was obtained from vitrified oocytes. Our experimental outcomes also suggest a certain degree of reversibility of the induced transformations, which renders vitrified oocytes more similar to untreated cells after 2 h warming. PMID:28531193

  11. Massachusetts Institute of Technology Lincoln Laboratory Facilities Replacement on Hanscom Air Force Base Phase 1 Final Environmental Assessment

    DTIC Science & Technology

    2014-07-24

    Service UST Underground Storage Tank VC Vitrified Clay VOCs Volatile Organic Compounds W Watts 1 1.0 PURPOSE AND NEED FOR ACTION 1.1 INTRODUCTION The...discharged to sanitary drain and the solids slurry is hauled off site for disposal Fluoride drain: welded stainless steel drain piping from wet...diameter vitrified clay (VC) gravity sewer collection pipe, flowing north/northeast to the upper pumping station at Building 1306, is located within the

  12. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  13. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Soler, Josep M.

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  14. Thermal and clinical performance of a closed device designed for human oocyte vitrification based on the optimization of the warming rate.

    PubMed

    Gallardo, Miguel; Hebles, María; Migueles, Beatriz; Dorado, Mónica; Aguilera, Laura; González, Mercedes; Piqueras, Paloma; Montero, Lorena; Sánchez-Martín, Pascual; Sánchez-Martín, Fernando; Risco, Ramón

    2016-08-01

    Although it was qualitatively pointed out by Fahy et al. (1984), the key role of the warming rates in non-equillibrium vitrification has only recently been quantitatively established for murine oocytes by Mazur and Seki (2011). In this work we study the performance of a closed vitrification device designed under the new paradigm, for the vitrification of human oocytes. The vitrification carrier consists of a main straw in which a specifically designed capillary is mounted and where the oocytes are loaded by aspiration. It can be hermetically sealed before immersion in liquid nitrogen for vitrification, and it is warmed in a sterile water bath at 37 °C. Measured warming rates achieved with this design were of 600.000 ºC/min for a standard DMEM solution and 200.000 ºC/min with the vitrification solution for human oocytes. A cohort of 143 donor MII sibling human oocytes was split into two groups: control (fresh) and vitrified with SafeSpeed device. Similar results were found in both groups: survival (97.1%), fertilization after ICSI (74.7% in control vs. 77.3% in vitrified) and good quality embryos at day three (54.3% in control vs. 58.1% in vitrified) were settled as performance indicators. The pregnancy rate was 3/6 (50%) for the control, 2/3 (66%) for vitrified and 4/5 (80%) for mixed transfers. Copyright © 2016. Published by Elsevier Inc.

  15. Vitrified-warmed embryo transfer is associated with mean higher singleton birth weight compared to fresh embryo transfer.

    PubMed

    Beyer, Daniel Alexander; Griesinger, Georg

    2016-08-01

    To test for differences in birth weight between singletons born after IVF with fresh embryo transfer vs. vitrified-warmed 2PN embryo transfer (vitrification protocol). Retrospective analysis of 464 singleton live births after IVF or ICSI during a 12 year period. University hospital. Fresh embryo transfer, vitrified-warmed 2PN embryo transfer (vitrification protocol). Birth weight standardized as a z-score, adjusting for gestational week at delivery and fetal sex. As a reference, birth weight means from regular deliveries from the same hospital were used. Multivariate regression analysis was used to investigate the relationship between the dependent variable z-score (fetal birth weight) and the independent predictor variables maternal age, weight, height, body mass index, RDS prophylaxis, transfer protocol, number of embryos transferred, indication for IVF treatment and sperm quality. The mean z-score was significantly lower after fresh transfer (-0.11±92) as compared to vitrification transfer (0.72±83) (p<0.001). Multivariate regression analysis indicated that only maternal height and maternal body mass index, but not type of cryopreservation protocol, was a significant predictor of birth weight. In this analysis focusing on 2PN oocytes, vitrified-warmed embryo transfer is associated with mean higher birth weight compared to fresh embryo transfer. Maternal height and body mass index are significant confounders of fetal birth weight and need to be taken into account when studying birth weight differences between ART protocols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Options for the Separation and Immobilization of Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R Jeffrey; Crum, Jarrod V.; Riley, Brian J.

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glassmore » melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the processing of ion exchange eluate. The second objective of this report is to assess the compatibility of the available waste forms with the anticipated waste streams. Two major categories of Tc-specific waste forms are considered in this report including mineral and metal waste forms. Overall, it is concluded that a metal alloy waste form is the most promising and mature Tc-specific waste form and offers several benefits. One obvious advantage of the disposition of Tc in the metal alloy waste form is the significant reduction of the generated waste form volume, which leads to a reduction of the required storage facility footprint. Among mineral waste forms, glass-bonded sodalite and possibly goethite should also be considered for the immobilization of Tc.« less

  17. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    PubMed

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P < 0.05) although the corresponding rates in both treated groups decreased compared with the control group (100%, 75.0%, 64.9%, and 40.8%; P < 0.05). Normal calves were obtained after the transfer of blastocysts derived from LHe- and LN2-vitrified oocytes. The effects of the different vitrification solutions (EDS30, EDS35, EDS40, EDS45, and EDS50) in LHe vitrification for bovine immature oocytes vitrification were examined. No difference was found in the rates of morphologically normal oocytes among the EDS30 (87.9%), EDS35 (90.1%), EDS40 (89.4%), and EDS45 (87.2%) groups (P > 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P < 0.05). No significant differences were observed in the cleavage and blastocyst rates between the EDS35 (49.0% and 12.1%) and EDS40 (41.7% and 10.2%) groups. However, the cleavage and blastocyst rates in the EDS35 group were higher (P < 0.05) than those of the EDS30 (36.2% and 6.8%), EDS45 (35.9% and 5.8%), and EDS50 (16.6% and 2.2%) groups. In conclusion, LHe can be used as a cryogenic liquid for vitrification of bovine immature oocytes, and it is more efficient than LN2-vitrified oocytes in terms of blastocyst production. EDS35 was the optimal cryoprotectant agent combination for LHe vitrification in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ion Exchange Column Tests Supporting Technetium Removal Resin Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; McCabe, D.; Hamm, L.

    2013-12-20

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant, currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed on site. There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the soluble properties of pertechnetate and long half-life ofmore » 99Tc, effective management of 99Tc is important. Options are being explored to immobilize the supplemental LAW portion of the tank waste, as well as to examine the volatility of 99Tc during the vitrification process. Removal of 99Tc, followed by off-site disposal has potential to reduce treatment and disposal costs. A conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. SuperLig® 639 is an elutable ion exchange resin. In the tank waste, 99Tc is predominantly found in the tank supernate as pertechnetate (TcO 4 -). Perrhenate (ReO 4 -) has been shown to be a good non-radioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin. This report contains results of experimental ion exchange distribution coefficient and column resin maturation kinetics testing using the resin SuperLig® 639a to selectively remove perrhenate from simulated LAW. This revision includes results from testing to determine effective resin operating temperature range. Loading tests were performed at 45°C, and the computer modeling was updated to include the temperature effects. Equilibrium contact testing indicated that this batch of SuperLig® 639 resin has good performance, with an average perrhenate distribution coefficient of 291 mL/g at a 100:1 phase ratio. This slightly exceeds the computer-modeled equilibrium distribution. The modeling agreed well with the experimental data for perrhenate removal with minor adjustments. Predicted breakthrough performance was on average within about 20% of measured values.« less

  19. Production of blastocysts following in vitro maturation and fertilization of dromedary camel oocytes vitrified at the germinal vesicle stage.

    PubMed

    Fathi, Mohamed; Moawad, Adel R; Badr, Magdy R

    2018-01-01

    Cryopreservation of oocytes would serve as an alternative to overcome the limited availability of dromedary camel oocytes and facilitate improvements in IVP techniques in this species. Our goal was to develop a protocol for the vitrification of camel oocytes at the germinal vesicle (GV) stage using different cryoprotectant combinations: 20% EG and 20% DMSO (VS1), 25% EG plus 25% DMSO (VS2) or 25% EG and 25% glycerol (VS3) and various cryo-carriers; straws or open pulled-straw (OPS) or solid surface vitrification (SSV); and Cryotop. Viable oocytes were cultured in vitro for 30 h. Matured oocytes were fertilized with epididymal spermatozoa and then cultured in vitro in modified KSOMaa medium for 7 days. Survival and nuclear maturation rates were significantly lower (P ≤ 0.05) in oocytes exposed to VS3 (44.8% and 34.0%, respectively) than those exposed to VS1 (68.2% and 48.0%, respectively) and VS2 (79.3% and 56.9%, respectively). Although recovery rates were significantly lower (P ≤ 0.05) in SSV and Cryotop vitrified oocytes (66.9% to 71.1%) than those vitrified by straws with VS1 or VS2 solutions (86.3% to 91.0%), survival rates were higher in the SSV and Cryotop groups (90.7% to 94.8%) than in the straw and OPS groups (68.2% to 86.5%). Among vitrified groups, maturation and fertilization rates were the highest in the Cryotop-VS2 group (51.8% and 39.2%, respectively). These values were comparable to those seen in the controls (59.2% and 44.6%, respectively). Cleavage (22.5% to 27.9%), morula (13.2% to 14.5%), and blastocyst (6.4% to 8.5%) rates were significantly higher (P ≤ 0.05) in SSV and Cryotop groups than in straws. No significant differences were observed in these parameters between the Cryotop and control groups. We report for the first time that dromedary oocytes vitrified at the GV-stage have the ability to be matured, fertilized and subsequently develop in vitro to produce blastocysts at frequencies comparable to those obtained using fresh oocytes.

  20. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification

    PubMed Central

    Mahmoud, K. Gh. M; Scholkamy, T. H; Darwish, S. F

    2015-01-01

    Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos. PMID:27175197

  2. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less

  3. Hydration reactivity of crystalline and vitrified diopside under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzeszczyk, S.; Szuba, J.

    1990-07-01

    Hydration reactivity of diopside in both the crystalline and amorphous (glassy) phase was studied under hydrothermal conditions. Samples were treated in an autoclave at 200{degrees}C in saturated vapor for 24 and 72 h. The progress of hydration was determined by X-ray powder diffractometry and IR spectroscopy. Results indicate that crystalline diopside possessed poor hydraulic activity. However, once vitrified it proved to be much more reactive. The principal hydration products found for the glassy diopside after 24 and 72 h of treatment were calcium silicate hydrate (xonotlite) and magnesium silicate hydrates (chrysotile and tremolite).

  4. Comparison of sucrose and trehalose media modification as an update of oocyte vitrification: A study of apoptotic level

    NASA Astrophysics Data System (ADS)

    Lestari, Silvia W.; Fitriyah, Nurin N.; Pangestu, Mulyoto; Pratama, Gita; Margiana, Ria

    2018-02-01

    Number of women who are not being able to have offspring in their reproductive life is increasing which might be influenced by several factors. As a consequence, oocyte cryopreservation could be an ensuring solution for women fertility preservation. A good vitrification could be conducted by combining an appropriate of type and concentration of cryoprotectants. One of the marks of successful vitrification is the vitrified oocytes could avoid apoptosis. This study aimed to evaluate the modification of cryoprotectant media as un update of oocyte vitrification as follow: the combination and the concentration of cryoprotectant media of oocytes vitrification, based on their effects on the apoptosis or DNA damage of oocytes. A total of 84 MII stage oocytes from adult female Deutschland, Denken and Yoken (DDY) mice (7-8 weeks old) were used in this study. Vitrification procedure was performed by using VS1 contained 15% EG, 15% DMSO, 0.5 mol/l sucrose (Merck, Darmstadt, Germany) and VS2 contained 15% EG, 15% DMSO, 0.5 mol/l trehalose (Merck, Darmstadt, Germany) in HM. Furthermore, warming solution (WS) was divided into four groups. There were: WS1a contained 0.3 mol/l sucrose, WS1b contained 0.15 mol/l sucrose, WS2a contained 0.3 mol/l trehalose, and WS2b contained 0.15 mol/l trehalose. Apoptotic level was performed by staining the oocytes with TUNEL and propidium iodide (PI) based on Brison and Schultz method then examined under confocal microscope. The rate of apoptosis in oocytes after vitrification and warming was higher compared to the fresh control oocytes. Furthermore, the rate of apoptosis in the vitrified oocytes by sucrose media (28%) was higher compared to the vitrified oocytes by trehalose media (16%). The results of this study indicated that vitrification increased apoptosis in the vitrified oocytes related to the oocyte injury after vitrification. Moreover, the vitrification increased apoptosis more in the vitrified oocytes by sucrose media than the vitrified oocytes by trehalose media. The exposure to the 16.5% EG, 16.5% DMSO and 0.5 mol/l trehalose as cryoprotectant media decreased their viability and increased the number of DNA-fragmented nuclei in the oocytes, lesser than sucrose. Trehalose was proved to be the more suitable extracellular cryoprotectant media in oocyte vitrification based on the apoptotic level, compared to that of sucrose. A modification of cryoprotectant media as an update of oocyte vitrification consisted 0.5 mol/l trehalose concentration as extracellular cryoprotectant and combined with 16.5% EG and 16.5% DMSO as intracellular cryoprotectant has produced.

  5. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastesmore » for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.« less

  6. Fertility and neonatal outcomes of embryos achieving blastulation on Day 7: are they of clinical value?

    PubMed

    Du, Tong; Wang, Yun; Fan, Yong; Zhang, Shiyi; Yan, Zhiguang; Yu, Weina; Xi, Qianwen; Chen, Qiuju; Mol, Ben W; Lyu, Qifeng; Kuang, Yanping

    2018-06-01

    Is transferring embryos that achieve blastulation on Day 7 effective and safe? Embryos that achieve blastulation on Day 7 resulted in clinically relevant rates of clinical pregnancy (32.5%) and live birth (25.2%), and newborns have a similar risk of low birth weight, congenital malformations or early neonatal death compared with those derived from Days 5 and 6 blastocysts. Potential advantages of blastocyst transfer over cleavage embryo transfer have led to a shift toward the former in IVF practice. However, published data about the fertility outcomes of transferring embryos with a delayed blastulation on Day 7 are scarce and controversial. Moreover, there are few data available on the neonatal outcomes of Day 7 blastocysts. As a result, the clinical value of Day 7 blastocysts is uncertain. This was a retrospective cohort study that included 2908 women undergoing frozen-thawed embryo transfer cycles of IVF/ICSI from January 2006 to May 2015, and reported on the 1518 live born infants from those cycles. We used propensity score matching to compare the fertility outcomes of women undergoing Day-5, Day-6 and Day-7 vitrified embryo transfers in three matched comparisons (Day 5 vs Day 6, Day 5 vs Day 7 and Day 6 vs Day 7). We also compared neonatal outcomes among babies derived from Day-5, Day-6 and Day-7 vitrified embryo transfers. We studied 922 Day-5, 1752 Day-6 and 234 Day-7 vitrified embryo transfers. Day-7 vitrified embryo transfers had significantly lower implantation, clinical pregnancy and live birth rates than both Day-5 (23.9 vs 49.9%, 31.7 vs 58.1% and 25.1 vs 46.5%, all P < 0.001, respectively) and Day-6 (24.7 vs 42.3%, 33.0 vs 53.2% and 25.6 vs 41.4%, all P < 0.001, respectively) vitrified embryo transfers. Assessment of babies showed no statistically significant difference in the rates of low birth weight, congenital malformations and early neonatal death among the 585, 869 and 64 babies born from Day-5, Day-6 and Day-7 vitrified embryo transfer groups, respectively. This was a single center retrospective study, and most of the neonatal data were extracted from parental questionnaires. Besides, the number of Day-7 vitrified embryo transfer cycles and babies born from these cycles was still limited, thus reducing the power of our study in assessing neonatal outcomes. In addition, only the morphologically poorer Day 3 embryos were extendedly cultured, and poorer blastocysts were qualified for vitrification on Day 7 than on Day 5 or 6, both of which might bias clinical pregnancy rates. Transfer of embryos that reach the blastocyst stage on Day 7 results in lower but still acceptable live birth rate, and seems to be safe for the offspring. Extension of the culture time in embryos that do not reach blastocyst stage by Day 6 should be assessed in randomized clinical trials. This work was supported by the National Nature Science Foundation of China (Grant nos. 81771533, 81571397, 81571486, 31770989 and 81501319), the Nature Science Foundation of Shanghai (Grant nos. 15ZR1424900 and 1441196300), and the Foundation of Health and Family Planning Commission of Shanghai (Grant no. 201540237). B.W.M is supported by the National Health and Medical Research Council (NHMRC) Practitioner Fellowship (GNT1082548), B.W.M reports consultancy for ObsEva, Merck and Guerbet. Not applicable.

  7. Vitamin A prevents round spermatid nuclear damage and promotes the production of motile sperm during in vitro maturation of vitrified pre-pubertal mouse testicular tissue.

    PubMed

    Dumont, L; Oblette, A; Rondanino, C; Jumeau, F; Bironneau, A; Liot, D; Duchesne, V; Wils, J; Rives, N

    2016-12-01

    Does vitamin A (retinol, Rol) prevent round spermatid nuclear damage and increase the production of motile sperm during in vitro maturation of vitrified pre-pubertal mouse testicular tissue? The supplementation of an in vitro culture of ~0.75 mm 3 testicular explants from pre-pubertal mice with Rol enhances spermatogenesis progression during the first spermatogenic wave. The production of functional spermatozoa in vitro has only been achieved in the mouse model and remains a rare event. Establishing an efficient culture medium for vitrified pre-pubertal testicular tissue is now a crucial step to improve the spermatic yield obtained in vitro. The role of Rol in promoting the differentiation of spermatogonia and their entry into meiosis is well established; however, it has been postulated that Rol is also required to support their full development into elongated spermatids. A total of 60 testes from 6.5 days post-partum (dpp) mice were vitrified/warmed, cut into fragments and cultured for 30 days: 20 testes were used for light microscopy and histological analyses, 20 testes for DNA fragmentation assessment in round spermatids and 20 testes for induced sperm motility assessment. Overall, 16 testes of 6.5 dpp were used as in vitro fresh tissue controls and 12 testes of 36.5 dpp mice as in vivo controls. Testes were vitrified with the optimal solid surface vitrification procedure and cultured with an in vitro organ culture system until Day 30 (D30). Histological analysis, cell death, degenerating round spermatids, DNA fragmentation in round spermatids and induced sperm motility were assessed. Testosterone levels were measured in media throughout the culture by radioimmunoassay. At D30, better tissue development together with higher differentiation of spermatogonial stem cells, and higher global cell division ability were observed for vitrified/warmed testicular fragments of ~0.75 mm 3 with a culture medium supplemented with Rol compared to controls. During in vitro culture of vitrified pre-pubertal testicular tissue, Rol enhanced and maintained the entry of spermatogonia into meiosis and promoted a higher spermatic yield. Furthermore, decreased round spermatid nuclear alterations and DNA damage combined with induced sperm motility comparable to in vivo highlight the crucial role of Rol in the progression of spermatogenesis during the first wave. Despite our promising results, the culture media will have to be further improved and adapted within the context of a human application. The results have potential implications for the handling of human pre-pubertal testicular tissues cryopreserved for fertility preservation. However, because some alterations in round spermatids persist after in vitro culture with Rol, the procedure needs to be optimized before human application, bearing in mind that the murine and human spermatogenic processes differ in many respects. None. This study was supported by a Ph.D. grant from the Normandy University and a financial support from 'la Ligue nationale contre le cancer' (both awarded to L.D.), funding from Rouen University Hospital, Institute for Research and Innovation in Biomedicine (IRIB) and Agence de la Biomédecine. The authors declare that there is no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.

  8. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    PubMed

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cosmetic micromanipulation of vitrified-warmed cleavage stage embryos does not improve ART outcomes: An ultrastructural study of fragments.

    PubMed

    Safari, Somayyeh; Khalili, Mohammad Ali; Barekati, Zeinab; Halvaei, Iman; Anvari, Morteza; Nottola, Stefania A

    2017-09-01

    The aim was to study the ultrastructure of cytoplasmic fragments along with the effect of cosmetic micromanipulation (CM) on the morphology and development of vitrified-warmed embryos as well as assisted reproductive technology (ART) outcomes. A total of 96 frozen embryo transfer (FET) cycles were included in this prospective randomized study. They were divided into three groups of CM (n=32), sham (n=32) and control (n=32). In the CM group, the vitrified- warmed embryos were subjected to fragments and coarse granules removal (cosmetic micromanipulation) after laser assisted zona hatching (LAH); sham group subjected only to LAH and no intervention was taken for the control group. Fragmented embryo was evaluated by transmission electron microscopy (TEM). Significant improvement was observed in the morphological parameters, such as fragmentation degrees, evenness of the blastomeres and embryo grade during the subsequent development, after applying cosmetic micromanipulation, when compared to sham or control groups (P=0.00001). However, there were no differences in the clinical outcomes amongst the three studied groups e.g. the rates of clinical, ongoing and multiple pregnancies, implantation, delivery and live birth. In fine structure view, fragments exhibited uniform cytoplasmic texture containing majority of organelles that were observed in normal blastomeres including mitochondria. In conclusion, application of cosmetic micromanipulation in low-grade vitrified-warmed embryos showed significant improvement on embryo morphology parameters; however, did not result in noticeable improvements in clinical outcomes of the patients undergoing ART program. In addition, embryo vitrification had no adverse effects on fine structure of the fragments. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Vitrification of oocytes from endangered Mexican gray wolves (Canis lupus baileyi).

    PubMed

    Boutelle, S; Lenahan, K; Krisher, R; Bauman, K L; Asa, C S; Silber, S

    2011-03-01

    Careful genetic management, including cryopreservation of genetic material, is central to conservation of the endangered Mexican gray wolf. We tested a technique, previously used to vitrify human and domestic animal oocytes, on oocytes from domestic dogs as a model and from the endangered Mexican wolf. This method provided a way to conserve oocytes from genetically valuable older female Mexican wolves as an alternative to embryos for preserving female genes. Oocytes were aspirated from ovaries of 36 female dogs in December and March (0 to 65 oocytes per female) and from six female wolves (4 to 73 per female) during their physiologic breeding season, or following stimulation with the GnRH agonist deslorelin. Oocytes from dogs were pooled; half were immediately tested for viability and the remainder vitrified, then warmed and tested for viability. All oocytes were vitrified by being moved through media of increasing cryoprotectant concentration, placed on Cryotops, and plunged into liquid nitrogen. There was no difference in viability (propidium iodide staining) between fresh and vitrified, warmed dog oocytes (65.7 and 61.0%, respectively, P = 0.27). Oocyte viability after warming was similarly assessed in a subset of wolves (4 to 15 oocytes from each of three females; total 29 oocytes). Of these, 57.1% of the post-thaw intact oocytes were viable, which was 41.4% of all oocytes warmed. These were the first oocytes from a canid or an endangered species demonstrated to have maintained viability after vitrification and warming. Furthermore, our results demonstrated that vitrification of oocytes with the Cryotop technique was an option for preserving female gametes from Mexican wolves for future use in captive breeding programs, although in vitro embryo production techniques must first be developed in canids for this technique to be used. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Surface grinding of space materials using specially formulated vitrified grinding wheels

    NASA Astrophysics Data System (ADS)

    Jackson, M. J.; Robinson, G.

    2006-04-01

    The quantum leap that is expected in the reliability and safety of machined engineering components over the next 20 years, especially in the space industries, will require improvements in the quality of cutting tools if science-based manufacturing is the goal for manufacturing by 2020. Significant improvements have been made in the past 10 years by understanding the properties of vitrified bonding systems used to bond conventional and superabrasive materials in grinding tools. The nature of the bonding system is of paramount importance if next-generation cutting tools are to be used for aerospace materials, especially if they are dressed using laser beams.

  12. Local geology controlled the feasibility of vitrifying Iron Age buildings.

    PubMed

    Wadsworth, Fabian B; Heap, Michael J; Damby, David E; Hess, Kai-Uwe; Najorka, Jens; Vasseur, Jérémie; Fahrner, Dominik; Dingwell, Donald B

    2017-01-12

    During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called 'vitrified forts'. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.

  13. Influence of Meiotic Stages on Developmental Competence of Goat’ Oocyte After Vitrification

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ihsan, M. N.

    2018-02-01

    This objective of this research was to investigate effect of goat oocyte meiotic stages on developmental competence after cryopreservation. Ovaries were collected from slaugterhouse and oocytes was aspirated from2-6 mm of follicles. Oocyte with compacted cumulus cells and evenly granulated ooplasm were selected for this experiment. The lenght of in vitro maturation before vitrification was 8 or 22 h in IVM media TCM 199 + FCS 10 % + PMSG 10 IU + hCG 10 IU at 38.5 °C in a humidified atmosphere of 5 % CO2 in air and were vitrified. After vitrification process, GVBD and MII oocyte were matured for 18 or 4 h to fullfill 26 h maturation requirement and then oocytes were subjected to IVF and culture. Cleavage and blastocyst formation rate were to asses their developmental competence. Cleavage rates were obtained for both GVBD ( 56.78 %) and MII (69.64 % ) oocytes (P<0.05). Proportion of cleaved embryos from vitrified MII oocytes develop into blastocysts higher (P<0.05) than those from vitrified GVBD oocytes (10.25% vs 3.54%) repectively. Goat oocytes in different maturation stages response to vitrification differently and MII stages have better developmental competence than GVBD.

  14. Ovine secondary follicles vitrified out the ovarian tissue grow and develop in vitro better than those vitrified into the ovarian fragments.

    PubMed

    Lunardi, Franciele Osmarini; de Aguiar, Francisco Leo Nascimento; Duarte, Ana Beatriz Graça; Araújo, Valdevane Rocha; de Lima, Laritza Ferreira; Ribeiro de Sá, Naiza Arcângela; Vieira Correia, Hudson Henrique; Domingues, Sheyla Farhayldes Souza; Campello, Cláudio Cabral; Smitz, Johan; de Figueiredo, José Ricardo; Ribeiro Rodrigues, Ana Paula

    2016-04-15

    Cryopreservation of preantral follicles is a promising technique to preserve female fertility. The aim of this study was to evaluate the effect of vitrification on the development of secondary follicles included in ovarian tissue or isolated after microdissection. An important end point included is the capacity of grown oocytes to resume meiosis. Sheep ovarian cortexes were cut into fragments and split into three different groups: (1) fresh (control): secondary follicles isolated without any previous vitrification; (2) follicle-vitrification (follicle-vit): secondary follicles vitrified in isolated form; and (3) tissue-vitrification (tissue-vit): secondary follicles vitrified within fragments of ovarian tissue (in situ former) and subsequently subjected to isolation. From the three groups, isolated secondary follicles were submitted to IVC for 18 days. After IVC, cumulus-oocyte complexes (COCs) were harvested from follicles. As an additional control group, in vivo grown, in vivo-grown COCs were collected from antral ovarian follicles. All, recovered COCs were matured and the chromatin configuration was evaluated. Data were analyzed by ANOVA, and the means were compared by Student-Newman-Keuls test, and by chi-square. Differences were considered to be significant when P < 0.05. Isolated preantral follicles from all treatments had normal morphology, antrum formation, and low follicle degeneration after IVC. The growth rate between control and follicle-vit did not differ (P > 0.05), and was higher (P < 0.05) than for tissue-vit. The percentage of follicles that decreased diameter during IVC was significantly higher in tissue-vit than the in follicle-vit. Recovery rate of oocytes from normal follicles was higher in follicle-vit than in tissue-vit. Furthermore, oocyte viability was lower in tissue-vit than other treatments, and follicle-vit did not differ from control and in vivo grown. The percentage of oocytes meiosis resuming was not different between treatments except for in vivo grown. After vitrification, only follicle-vit showed metaphase I oocyte. We conclude that secondary follicles vitrified after isolation displayed a better follicular growth rate, oocyte viability, percentage of oocytes reaching the metaphase I stage, and fewer follicles with decreased diameter after IVC. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    PubMed

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  16. Educational Activity for the Radiation Emergency System in the Northern Part of Japan: Meeting Report on "The 3rd Educational Symposium on Radiation and Health (ESRAH) by Young Scientists in 2016".

    PubMed

    Matsuya, Yusuke; Tsujiguchi, Takakiyo; Yamaguchi, Masaru; Kimura, Takaaki; Mori, Ryosuke; Yamada, Ryota; Saga, Ryo; Fujishima, Yohei; Date, Hiroyuki

    2017-06-01

    In the northern part of Japan, close cooperation is essential in preparing for any possible emergency response to radiation accidents because several facilities, such as the Low-Level Radioactive Waste Disposal Facility, the MOX Fuel Fabrication Plant and the Vitrified Waste Storage Center, exist in Rokkasho Village (Aomori Prefecture). After the accident at Fukushima Daiichi Nuclear Power Plant in 2011, special attention should be given to the relationship between radiation and human health, as well as establishing a system for managing with a radiation emergency. In the area of Hokkaido and Aomori prefectures in Japan, since 2008 an exchange meeting between Hokkaido University and Hirosaki University has been held every year to have opportunities to discuss radiation effects on human health and to collect the latest news on monitoring environmental radiation. This meeting was elevated to an international meeting in 2014 titled "Educational Symposium on Radiation and Health (ESRAH) by Young Scientists". The 3rd ESRAH meeting took place in 2016, with the theme "Investigating Radiation Impact on the Environmental and Health". Here we report the meeting findings on the continuing educational efforts after the Fukushima incident, what was accomplished in terms of building a community educational approaches, and future goals.

  17. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelisti, Sara; Tagliaferri, Carla; Advanced Plasma Power

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially formore » biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams considered, mainly due to the avoided burdens associated with the production of electricity from the plant. The plasma convertor, key characteristic of the thermal process investigated, although utilising electricity shows a relatively small contribution to the overall environmental impact of the plant. The results do not significantly vary in the scenario analysis. Accounting for biogenic carbon enhanced the performance of biomass and refuse-derived fuel in terms of global warming potential. The main analysis of this study has been performed from a waste management perspective, using 1 ton of waste as functional unit. A comparison of the results when 1 kWhe of electricity produced is used as functional unit shows similar trends for the environmental impact categories considered.« less

  18. Vitrification as an alternative to landfilling of tannery sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses amore » potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals.« less

  19. Depleted uranium hexafluoride: The source material for advanced shielding systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 andmore » $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.« less

  20. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  1. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall missionmore » as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other supplemental treatment alternatives as provided in M-62-08.« less

  2. [Pregnancy and delivery with transfer of vitrified blastocysts following trophectoderm biopsy].

    PubMed

    Mátyás, Szabolcs; Varga, Tünde; Kovács, Péter; Kónya, Márton; Rajczy, Klára; Babenko, Éva; Szabó, Barbara; Kaali, G Steven; Szentirmay, Zoltán

    2015-11-01

    Application of preimplantation genetic diagnosis makes it possible to transfer only embryos unaffected by a certain genetic disorder. The authors have applied the combination of trophectoderm biopsy and vitrification in order to detect a monogenic disorder. Previously diagnosed type 1 neurofibromatosis of the woman was the indication for genetic examination. In vitro fertilisation and embryo culture was performed using sequential culture mediums. Seven blastocysts could be sampled on the fifth day and were vitrified subsequently. Two blastocysts turned out to be genetically normal based on the result of genetic examination using polimerase chain reaction. A healthy boy was delivered following the transfer of warmed blastocysts and an uneventful singleton pregnancy.

  3. Zinc supplementation of vitrification medium improves in vitro maturation and fertilization of oocytes derived from vitrified-warmed mouse ovaries.

    PubMed

    Geravandi, Shirin; Azadbakht, Mehri; Pourmoradi, Mahsa; Nowrouzi, Fatemeh

    2017-02-01

    Oocyte cryopreservation is an approach for fertility preservation for normal women and cancer patients facing chemo and radiotherapy. The present study evaluated the effect of adding zinc chloride to the vitrification medium used for whole mouse ovaries and then assessing the in vitro maturation and fertilization of oocytes when they were subsequently extracted from these vitrified ovarian tissues. Four vitrification solutions with 0, 100,150 and 200 μg/dl zinc (V0, V1, V2 and V3 respectively) were compared. The viability of oocytes isolated from ovaries vitrified-warmed in the highest concentration of zinc (V3) was significantly higher after 24 than in the control V0 group (72.99 vs 85.97). Progression to the MII stage, fertilization and cleavage by 48 h was also higher in the V3 than V0 control group (35.55 vs 44.73), (47.67 vs 63.74), (28.72 vs 43.03) (P < 0.05) respectively. These results indicate that supplementation of vitrification medium for intact ovaries with zinc can improve the oocyte viability and in vitro maturation-fertilization rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    PubMed Central

    Cobo, Ana Cristina; Milán, Miguel; Al-Asmar, Nasser; García-Herrero, Sandra; Mir, Pere; Simón, Carlos

    2014-01-01

    The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2%) and pregnancy rates per transfer (range: 46.0–62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation. PMID:24877108

  5. Local geology controlled the feasibility of vitrifying Iron Age buildings

    USGS Publications Warehouse

    Fabian B Wadsworth,; Michael J Heap,; Damby, David; Kai-Uwe Hess,; Jens Najorka,; Jérémie Vasseur,; Dominik Fahrner,; Donald B Dingwell,

    2017-01-01

    During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called ‘vitrified forts’. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.

  6. Recrystallization and Water Absorption Properties of Vitrified Trehalose Near Room Temperature.

    PubMed

    Shirakashi, Ryo; Takano, Kiyoshi

    2018-05-10

    To provide the physicochemical properties of vitrified trehalose for predicting its recrystallization. Thin films of vitrified trehalose solutions were prepared at room temperature and exposed to various humid and temperature atmospheres. The in-situ amount of retained water in the vacuum-dried trehalose thin film during exposure was determined using its FTIR spectrum by quantifying the extremely infinitesimal amount of retained water in the trehalose solution. Recrystallization of the sample was also assessed by the FTIR spectrum of trehalose dihydrate. The effective water absorption coefficient, h meff , exponentially increased to the water activity of the trehalose sample, A w , at 25°C and 40°C at which the increasing rates are comparable. The surface energy of trehalose dihydrate, γ, was found to be lower than the value calculated from the reported equation, neglecting the effects of the activity of the solute and solvent water. The retained water in trehalose considerably increases its affinity for water vapor, and the change in this affinity with regard to the water activity is nearly independent of temperature. The dihydrate nucleation rate of trehalose-water system is maximal when trehalose weight ratio is ~0.8 at 25°C and is slightly higher (~0.85) at 40°C.

  7. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  8. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  9. Pregnancy and fetal characteristics after transfer of vitrified in vivo and cloned bovine embryos.

    PubMed

    Lonergan, P; Evans, A C O; Boland, E; Rizos, D; Fair, T; Duffy, P; Sung, L-Y; Du, F; Chaubal, S; Xu, J; Yang, X; Tian, X C

    2007-11-01

    This study was conducted to examine pregnancy progression and fetal characteristics following transfer of vitrified bovine nuclear transfer versus in vivo-derived embryos. Nuclear transfer (NT) was conducted using cumulus cells collected from an elite Holstein-Friesian dairy cow. Expanding and hatching blastocysts on Day 7 were vitrified using liquid nitrogen surface vitrification. Day 7 in vivo embryos, produced using standard superovulation procedures applied to Holstein-Friesian heifers (n=6), were vitrified in the same way. Following warming, embryos were transferred to synchronized recipients (NT: n=65 recipients; Vivo: n=20 recipients). Pregnancies were monitored by ultrasound scanning on Days 25, 45 and 75 and a sample of animals were slaughtered at each time point to recover the fetus/placenta for further analyses. Significantly more animals remained pregnant after transfer of in vivo-derived embryos than NT embryos at all time points: Day 25 (95.0 versus 67.7%, P<0.05), Day 45 (92.8 versus 49.1%, P<0.01) and Day 75 (70.0 versus 20.8%, P<0.0). There was no significant difference (P=0.10) in the weight of the conceptus on Day 25 from NT transfers (1.14+/-0.23 g, n=8) versus in vivo transfers (0.75+/-0.19 g, n=8). On Day 45, there was no significant difference in the weight of either fetus (P=0.393) or membranes (P=0.167) between NT embryos (fetus: 2.76+/-0.40, n=12; membranes: 59.0+/-10.0, n=11) or in vivo-derived embryos (fetus: 2.60+/-0.15, n=6; membranes: 41.8+/-5.2, n=4). However, on Day 75 the weight of the fetus and several of the major organs were heavier from NT embryos. These data suggest that morphological abnormalities involving the fetus and the placenta of cloned pregnancies are manifested after Day 45.

  10. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  11. Radioactive Waste Management, its Global Implication on Societies, and Political Impact

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuaki

    2009-05-01

    Reprocessing plant in Rokkasho, Japan is under commissioning at the end of 2008, and it starts soon to reprocess about 800 Mt of spent fuel per annum, which have been stored at each nuclear power plant sites in Japan. Fission products together with minor actinides separated from uranium and plutonium in the spent fuel contain almost all radioactivity of it and will be vitrified with glass matrix, which then will fill the canisters. The canisters with the high level radioactive waste (HLW) are so hot in both thermal and radiological meanings that they have to be cooled off for decades before bringing out to any destination. Where is the final destination for HLW in Japan, which is located at the rim of the Pacific Ocean with volcanoes? Although geological formation in Japan is not so static and rather active as the other parts of the planet, experts concluded with some intensive studies and researches that there will be a lot of variety of geological formations even in Japan which can host the HLW for so long times of more than million years. Then an organization to implement HLW disposal program was set up and started to campaign for volunteers to accept the survey on geological suitability for HLW disposal. Some local governments wanted to apply, but were crashed down by local and neighbor governments and residents. The above development is not peculiar only to Japan, but generally speaking more or less common for those with radioactive waste programs. This is why the radioactive waste management is not any more science and technology issue but socio-political one. It does not mean further R&D on geological disposal is not any more necessary, but rather we, each of us, should face much more sincerely the societal and political issues caused by the development of the science and technology. Second topic might be how effective partitioning and transformation technology may be to reduce the burden of waste disposal and denature the waste toxicity? The third one might be the proposal of international nuclear fuel centers which supply nuclear fuel to the nuclear power plants in the region and take back spent fuel which will be reprocessed to recover useful energy resources of uranium and plutonium. This may help non proliferation issue due to world nuclear development beyond renaissance.

  12. Small Column Ion Exchange Design and Safety Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, T.; Rios-Armstrong, M.; Edwards, R.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streamsmore » for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust set of nuclear safety controls compliant with DOE Standard (STD)-1189, Integration of Safety into the Design Process. The controls cover explosions, spills, boiling, aerosolization, and criticality. Natural Phenomena Hazards (NPH) including seismic event, tornado/high wind, and wildland fire are considered. In addition, the SCIX process equipment was evaluated for impact to existing facility safety equipment including the waste tank itself. SCIX is an innovative program which leverages DOE's technology development capabilities to provide a basis for a successful field deployment.« less

  13. Initiation criteria for crevice corrosion of titanium alloys used for HLW disposal overpack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akashi, Masatsune; Nakayama, Guen; Fukuda, Takanori

    1998-12-31

    The overpack that geologically stores the canisters containing vitrified high-level radioactive waste (HLW) for super-long term disposal is demanded of being able to hold the canisters securely for at least 1,000 years. For such a service, the greatest as well as essentially the sole factor that can mar the overpack`s working is corrosion by the groundwater. This paper discusses the notion and the methodology to prove for overpacks made of titanium (Ti) alloys that they are capable of stably maintaining the state of passivity indefinitely long time so as to be immune to the initiation of localized corrosion. it ismore » shown that (1) the critical potential for corrosion-crevice initiation, V{sub C,CREV}, can be substituted rationally by the corrosion-crevice repassivation potential, E{sub R,CREV}, which can be determined by the cyclic polarization test, and (2) the limits of safety usage of Ti alloys can be determined quantitatively by comparing E{sub R,CREV} and E{sub SP}, the steady-state corrosion potential.« less

  14. Glass ceramics for incinerator ash immobilization

    NASA Astrophysics Data System (ADS)

    Malinina, G. A.; Stefanovsky, O. I.; Stefanovsky, S. V.

    2011-09-01

    Calcined solid radioactive waste (incinerator slag) surrogate and either Na 2Si 2O 5 or Na 2B 4O 7 (borax) at various mass ratios were melted in silicon carbide crucibles in a resistive furnace at temperatures of up to 1775 K (slag without additives). Portions of the melts were poured onto a metal plate; the residues were slowly cooled in turned-off furnace. Both quenched and slowly cooled materials were composed of the same phases. At high slag contents in silicate-based materials nepheline and britholite were found to be major phases. Britholite formed at higher slag content (85 wt.%) became major phase in the vitrified slag. In the system with borax at low slag contents (25 and 50 wt.%) material are composed of predominant vitreous and minor calcium silicate larnite type phase Ca 2SiO 4 where Ca 2+ ions are replaced by different cations. The materials containing slag in amount of 75 wt.% and more are chemically durable. The changes in the structure of anionic motif of quenched samples depending on slag loading were studied by IR spectroscopy.

  15. Impact of uncertainties in the uranium 235 cross section resonance structure on characteristics measured in the BFS-79 critical assemblies

    NASA Astrophysics Data System (ADS)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005) carried out at the the SSC RF - IPPE in cooperation with the Idaho National Laboratory (INL, USA) applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.

  16. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification.

    PubMed

    Smith, Gary D; Serafini, Paulo C; Fioravanti, Joyce; Yadid, Isaac; Coslovsky, Marcio; Hassun, Pericles; Alegretti, José Roberto; Motta, Eduardo L

    2010-11-01

    To compare cryopreservation of mature human oocytes with slow-rate freezing and vitrification and determine which is most efficient at establishing a pregnancy. Prospective randomized. Academically affiliated, private fertility center. Consenting patients with concerns about embryo cryopreservation and more than nine mature oocytes at retrieval were randomized to slow-rate freezing or vitrification of supernumerary (more than nine) oocytes. Oocytes were frozen or vitrified, and upon request oocytes were thawed or warmed, respectively. Oocyte survival, fertilization, embryo development, and clinical pregnancy. Patient use has resulted in 30 thaws and 48 warmings. Women's age at time of cryopreservation was similar. Oocyte survival was significantly higher following vitrification/warming (81%) compared with freezing/thawing (67%). Fertilization was more successful in oocytes vitrified/warmed compared with frozen/thawed. Fertilized oocytes from vitrification/warming had significantly better cleavage rates (84%) compared with freezing/thawing (71%) and resulted in embryos with significantly better morphology. Although similar numbers of embryos were transferred, embryos resulting from vitrified oocytes had significantly enhanced clinical (38%) pregnancy rates compared with embryos resulting from frozen oocyte (13%). Miscarriage and/or spontaneous abortion rates were similar. Our results suggest that vitrification/warming is currently the most efficient means of oocyte cryopreservation in relation to subsequent success in establishing pregnancy. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies.

    PubMed

    Mori, Chiemi; Yabuuchi, Akiko; Ezoe, Kenji; Murata, Nana; Takayama, Yuko; Okimura, Tadashi; Uchiyama, Kazuo; Takakura, Kei; Abe, Hiroyuki; Wada, Keiko; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2015-06-01

    Hydroxypropyl cellulose (HPC) was investigated as a replacement for serum substitute supplement (SSS) for use in cryoprotectant solutions for embryo vitrification. Mouse blastocysts from inbred (n = 1056), hybrid (n = 128) strains, and 121 vitrified blastocysts donated by infertile patients (n = 102) were used. Mouse and human blastocysts, with or without zona pellucida, were vitrified and warmed in either 1% or 5% HPC or in 5% or 20% SSS-supplemented media using the Cryotop (Kitazato BioPharma Co. Ltd, Fuji, Japan) method, and the survival and oxygen consumption rates were assessed. Viscosity of each vitrification solution was compared. Survival rates of mouse hybrid blastocysts and human zona pellucida-intact blastocysts were comparable among the groups. Mouse and human zona pellucida-free blastocysts, which normally exhibit poor cryoresistance, showed significantly higher survival rates in 5% HPC than 5% SSS (P < 0.05). The 5% HPC-supplemented vitrification solution showed a significantly higher viscosity (P < 0.05). The blastocysts were easily detached from the Cryotop strip during warming when HPC-supplemented vitrification solution was used. The oxygen consumption rates were similar between non-vitrified and 5% HPC groups. The results suggest possible use of HPC for supplementation of cryoprotectant solutions and provide useful information to improve vitrification protocols. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. A comparison of the survival and implantation rates of blastocysts that were vitrified on post-fertilization day five, six and seven.

    PubMed

    Berrin, Avci; Isıl, Kasapoglu; Baris, Ata; Goktan, Kuspinar; Seda, Saribal; Gurkan, Uncu

    2018-05-03

    The goal of this retrospective cohort study was to compare survival, implantation, clinical and ongoing pregnancy rates between blastocysts that were vitrified on post-fertilization days 5, 6 and 7. Before vitrification, blastocysts were evaluated in terms of morphology and blastocyst expansion, inner cell mass and trophectoderm quality. They were thawed and transfered in a subsequent artificial cycle. Embryo implantation rates were 39%, 25% and 25% for blastocysts that were vitrified on days 5, 6, and 7, respectively (p = 0.006). Clinical and ongoing pregnancy rates were 19%, 12%, 13% (p = 0.100) and 9%, 7%, 12% (p = 0.99) for days 5, 6 and 7 blastocysts, respectively. Day 5 blastocysts had significantly higher full-collapsing score after assisted-hatching compared to days 6 and 7 blastocysts (p = 0.014). As blastocyst quality increased, implantation and clinical pregnancy rates increased in all groups and both parameters were statistically significantly higher on day 5 blastocysts than on days 6 or 7 (p = 0.001). It was clearly found that good quality blastocysts obtained on day 5 have higher implantation and clinical pregnancy rates than 6th and 7th day cryopreserved embryos. There were no statistically significant differences between the cryopreserved embryos on days 6 and 7 regarding the implantation, clinic and ongoing pregnancy rates.

  19. Effect of Nanoparticles on the Survival and Development of Vitrified Porcine GV Oocytes.

    PubMed

    Li, W J; Zhou, X L; Liu, B L; Dai, J J; Song, P; Teng, Y

    BACKGROUND: Some mammalian oocytes have been successfully cryopreserved by vitrification. However, the survival and developmental rate of vitrified oocytes is still low. The incorporation of nanoparticles into cryoprotectant (CPA) may improve the efficiency of vitrification by changing the properties of solutions. The toxicity of different concentrations of hydroxy apatite (HA), silica dioxide (SO 2 ), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) nanoparticles (20 nm in diameter) to oocytes was tested and the toxicity threshold value of each nanoparticle was determined. Porcine GV oocytes were vitrified in optimized nano-CPA, and effects of diameter and concentration of nanoparticles on the survival rate and developmental rate of porcine GV oocytes were compared. HA nanoparticles have demonstrated the least toxicity among four nanoparticles and the developmental rate of GV-stage porcine oocytes was 100% when its concentration was lower than 0.5%. By adding 0.1% HA into VS, the developmental rate of GV-stage porcine oocytes (22%) was significantly higher than other groups. The effect of vitrification in nano-CPA on oocytes was related to the concentration of HA nanoparticles rather than their size. By adding 0.05% HA nanoparticles (60nm in diameter), the developmental rate increased dramatically from 14.7% to 30.4%. Nano-cryopreservation offers a new way to improve the effect of survival and development of oocytes, but the limitation of this technology shall not be ignored.

  20. Prooxidant Effects of Verbascoside, a Bioactive Compound from Olive Oil Mill Wastewater, on In Vitro Developmental Potential of Ovine Prepubertal Oocytes and Bioenergetic/Oxidative Stress Parameters of Fresh and Vitrified Oocytes

    PubMed Central

    Dell'Aquila, M. E.; Bogliolo, L.; Russo, R.; Martino, N. A.; Filioli Uranio, M.; Ariu, F.; Amati, F.; Sardanelli, A. M.; Linsalata, V.; Ferruzzi, M. G.; Cardinali, A.; Minervini, F.

    2014-01-01

    Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs. PMID:24719893

  1. Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Chris; Willis, William; Carter, Robert

    2013-07-01

    Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less

  2. Isothermal transitions of a thermosetting system

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.; Benci, J. A.; Noshay, A.

    1974-01-01

    A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.

  3. Abiotic hydrogen production in fresh and altered MSWI-residues: texture and microstructure investigation.

    PubMed

    Heuss-Assbichler, S; Magel, G; Fehr, K T

    2010-10-01

    Long-term hydrogen generation was observed in a Bavarian mono-landfill for municipal solid waste incineration (MSWI) residues. Hydration reactions of non-noble metals, especially aluminum, predominantly produce hydrogen at alkaline reaction conditions. Microscopic investigations show that aluminum metal may occur in different forms: as larger single grains, as small particles embedded in a vitrified matrix or less frequently in blowholes together with metallic silica. Four types of corrosion texture were observed, indicating different reaction mechanisms: aluminum hydroxide rims caused by hydration reactions at alkaline reaction conditions (reaction type 1) and multiphase rims with ettringite and hydrocalumite due to the reaction of aluminum hydroxide with sulfate and chloride ions which are solved in the pore water (reaction type 2). Galvanic corrosion textures due to the electric potential difference between aluminum and embedded intermetallic Fe- or Cu-rich exsolution phases lead to two further corrosion textures: Strong hydration effects of aluminum except a border of aluminum remnant directly beside the Fe- or Cu-rich segregations were only observed in fresh samples (reaction type 3). The reaction type 4 shows a network of Al-hydroxide veins occurring along the embedded intermetallic Fe- or Cu-rich exsolution segregation pattern within the metallic aluminum grain. Metal particles enclosed in vitrified particles offers the potential for future corrosion processes. The occurrence of corrosion types 1, 2 and 3 in fresh bottom ashes indicates that these reaction mechanisms predominate during the first reaction period in the presence of chlorine in an alkaline solution. Corrosion type 4, however, was additionally observed in aged samples. Here aluminum acts as sacrificed anode implying electrochemical reaction due to electrolytic pore water. Chloride in the system keeps the reaction alive as Al-hydroxide is solved which normally builds a protection shield around the aluminum metal particles. Due to field observations and experimental results we have reasonable indications that after an initial strong formation of hydrogen the reaction time for hydrogen production in the landfill is lengthened for several decades by the presence of chloride in the alkaline pore water. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.; Hamm, L. Larry; Smith, Frank G.

    2014-12-19

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Duemore » to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig ® 639 a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste stream without dilution and to minimize the volume of the final wasteform. This work examined the impact of high ionic strength, high density, and high viscosity if higher concentration LAW feed solution is used. Perrhenate (ReO 4 -) has been shown to be a good nonradioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin, and the performance bias is well established. Equilibrium contact testing with 7.8 M [Na +] average simulant concentrations indicated that the SuperLig ® 639 resin average perrhenate distribution coefficient was 368 mL/g at a 100:1 phase ratio. Although this indicates good performance at high ionic strength, an equilibrium test cannot examine the impact of liquid viscosity, which impacts the diffusivity of ions and therefore the loading kinetics. To get an understanding of the effect of diffusivity, modeling was performed, which will be followed up with column tests in the future.« less

  5. Fast Cooling and Vitrification of Aqueous Solutions for Cryopreservation

    NASA Astrophysics Data System (ADS)

    Warkentin, Matt; Husseini, Naji; Berejnov, Viatcheslav; Thorne, Robert

    2006-03-01

    In many applications, a small volume of aqueous solution must be cooled at a rate sufficient to produce amorphous solid water. Two prominent examples include flash-freezing of protein crystals for X-ray data collection and freezing of cells (i.e. spermatozoa) for cryopreservation. The cooling rate required to vitrify pure water (˜10^6 K/s) is unattainable for volumes that might contain cells or protein crystals, but the required rate can be reduced by adding cryoprotectants. We report the first measurements of the critical concentration required to produce a vitrified sample as a function of the sample's volume, the cryogen into which the sample is plunged, and the temperature of the cryogen, for a wide range of cryoprotectants. These experiments have broad practical consequences for cryopreservation, and provide insight into the physics of glass formation in aqueous systems.

  6. Partial Recovery of Mitochondrial Function of Vitrified Porcine MII Stage Oocytes During Post-Thaw Incubation.

    PubMed

    Dai, J J; Yang, J H; Zhang, S S; Niu, Y F; Chen, Y N; Wu, C F; Zhang, D F

      The survival of porcine oocytes is still very low after cryopreservation. To investigate whether and when the mitochondrial function of vitrified porcine oocytes could be recovered post-thaw. Mitochondrial potential, ROS level, ATP content, apoptotic rate, caspase activity, and parthenogenetics developmental ability of thawed porcine oocytes were measured after culture in vitro for 0, 1, 2 or 4 h. Mitochondrial potential after 2 h and 4 h post-thaw culture were 1.19 and 1.26, significantly lower than that of fresh oocytes but much higher than the groups cultured for 0 h and 1 h (P<0.05). Cryopreservation increased the ROS level in oocytes considerably, which decreased only after 2 to 4 h incubation following thaw. ATP content increased gradually over time and recovered to the level comparable to that of fresh oocytes after 4 h. Pan caspase levels increased after cryopreservation and reached the highest level at 1 h incubation. Thereafter it decreased to a low value, but still higher than fresh oocytes. Oocytes showing an early apoptotic event decreased upon 2 to 4 h incubation. The parthenogenetic cleavage and blastocyst rates were the highest (19.8% and 5.6%) after 2 h incubation. The recovery of mitochondrial function could complete after 2 to 4 h post-thaw incubation. Post-thaw incubation for 2 to 4 h reduced apoptotic events and improved parthenogenetic developmental ability of vitrified porcine MII stage oocytes.

  7. First live offspring born in superovulated sika deer (Cervus nippon) after embryo vitrification.

    PubMed

    Wang, L; Zhou, G B; Shi, W Q; Shi, J M; Tian, X Z; Gao, C; Zhang, L; Zhu, S E; Zhang, T T; Zeng, S M; Liu, G S

    2012-10-15

    The rapid growth in sika deer (Cervus nippon) farming and interest in their conservation is an impetus for development of embryo transfer (ET) procedures. However, a paucity of research has prevented widespread application of ET in this species. The objective of the present study was to establish a multiple ovulation and ET procedure with both fresh and vitrified embryos in sika deer. Multiparous weaned hinds (N = 18) were used as embryo donors during the reproductive season of 2008 at a local breeding farm in China. Estrus was synchronized in donors and recipients (N = 38) by inserting a controlled internal drug release for 12 days (insertion = Day 0). Superovulation was induced with a total of 320 mg of NIH-FSH-P1 (Folltropin-V; Bioniche, Belleville, ON, Canada) given as 40 mg im every 12 h from the afternoon of Day 9 to the morning of Day 13. After estrus was detected, donors were artificially inseminated using a transcervical technique. The embryo recovery rate was 76.8% (63/82), including 1.6% (1/63), 77.8% (49/63), and 1.6% (1/63) blastocysts, morula, and eight-cell embryos, respectively. After transfer of fresh and vitrified embryos, pregnancy rates were 85.7% and 61.6% and birth rates were 64.3% and 53.9% (P > 0.05). In conclusion, we developed a satisfactory multiple ovulation and ET procedure in farmed sika deer using vitrified embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility.more » Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.« less

  9. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processedmore » into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.« less

  10. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are addedmore » to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.« less

  11. Development of a requirements management system for technical decision - making processes in the geological disposal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama

    2007-07-01

    NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help formore » comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the initial stage including work analysis/modeling and the system conceptualization. (authors)« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release frommore » Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design or Safety Analyses.”« less

  13. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign andmore » if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.« less

  14. Waste Preparation and Transport Chemistry: Results of the FY 2001 Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R.D.

    2002-03-25

    During FY 2001, tank farm operations at Hanford and the Savannah River Site (SRS) continued to be negatively impacted by the unintended formation of solids. At Hanford, the primary solids formation problem involves a series of plugged pipes and pumps during the saltwell pumping activities of the interim stabilization program. For example, transfers of tank S-102 waste were suspended due to a plugged pipeline or a mechanical problem with the transfer pump. The replacement pump then failed within 2 weeks. In contrast, since full-scale waste remediation activities such as vitrification were initiated, the SRS has encountered a wider range ofmore » problems due to unwanted solids. The 2H evaporator system was shut down because of the formation of aluminosilicate deposits with enriched uranium in the evaporator pot. While high concentrations of aluminum are expected in the tank waste due to previous canyon operations, the primary source of silicon is the recycle stream from the vitrifier. While solids formation can be expected when waste streams are combined, the formation of the aluminosilicate deposits required an elevated temperature within the evaporator. The shutdown of the 2H evaporator led to a severe shortage of tank space. Therefore, the SRS tank farm was forced to transfer highly concentrated waste, which led to a plugged transfer pump in tank 32. For each of the proposed cesium removal technologies for the SRS, unwanted solids formation occurred during the large laboratory-scale tests prior to the final selection of the solvent extraction process. It can be expected that further problems will be encountered as more unit operations of the remediation effort are deployed and as more waste streams are combined. Since these problems have already led to costly schedule delays, the tank farm operators at both sites have identified the prevention of solids formation as a high-priority need. In response to this need, the Tank Focus Area has assembled a team of researchers of researchers from AEA Technology, Florida International University (FIU), Fluor Hanford, Mississippi State University (MSU), Oak Ridge National Laboratory (ORNL), and Savannah River Technology Center (SRTC) to evaluate various aspects of the waste preparation and transport chemistry. The majority of this effort was focused on saltcake dissolution and saltwell pumping. The results of the AEA Technology, FIU, and MSU studies of saltcake dissolution and slurry transfers for Hanford are discussed in detail in a companion report prepared by T. D. Welch in 2001 (ORNIJTM-2001097). Staff members at Fluor Hanford have continued to conduct saltcake dissolution tests on actual tank waste (documented in reports prepared by D. L. Herting in 2000 and 2001). It should be noted that full-scale saltcake dissolution at Hanford is scheduled to begin in FY 2002. While the Hanford effort is focused on the transfer of waste from one tank to another, the objective of the SRTC study is the formation of aluminosilicates at elevated temperatures, which are present in the waste evaporator.« less

  15. Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svitak, F.; Broz, V.; Hrehor, M.

    2008-07-15

    The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF formore » transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)« less

  16. Leaching behaviour of bottom ash from RDF high-temperature gasification plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gori, M., E-mail: manuela.gori@dicea.unifi.it; Pifferi, L.; Sirini, P.

    2011-07-15

    This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions. Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2.more » In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni. Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.« less

  17. Metal behavior during vitrification of incinerator ash in a coke bed furnace.

    PubMed

    Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy

    2004-06-18

    In this study, municipal waste incinerator ash was vitrified in a coke bed furnace system and the behavior of metals was investigated. Coke and lime were added to provide heat which facilitated vitrification. Ash contributed more than 90% of metal (except for Ca) input-mass. Metal species with low boiling points accounted for the major fraction of their input-mass adsorbed by air pollution control devices (APCDs) fly ash. Among the remaining metals, those species with light specific weights in this furnace tended to be encapsulated in slag, while heavier species were mainly discharged by ingot. Meanwhile, the leachability of hazardous metals in slag was significantly reduced. The distribution index (DI) was defined and used as an index for distribution of heavy metals in the system. A high DI assures safe slag reuse and implies feasibility of recovering hazardous heavy metals such as Cr, Cu, Fe, Pb and Zn. The vitrification in a coke bed furnace proved to be a useful technology for the final disposal of MSW incinerator ash. The heavy metals are separated into the slag, ingot and fly ash, allowing safe reuse of the slag and possible recovery of the metals contained in the ingot and ash fractions.

  18. Inhibiting the oxidation of diamond during preparing the vitrified dental grinding tools by depositing a ZnO coating using direct urea precipitation method.

    PubMed

    Wang, Yanhui; Yuan, Yungang; Cheng, Xiaozhe; Li, Xiaohu; Zang, Jianbing; Lu, Jing; Yu, Yiqing; Xu, Xipeng

    2015-08-01

    Oxidation of diamond during the manufacturing of vitrified dental grinding tools would reduce the strength and sharpness of tools. Zinc oxide (ZnO) coating was deposited on diamond particles by urea precipitation method to protect diamond in borosilicate glass. The FESEM results showed that the ZnO coating was formed by plate-shaped particles. According to the TG results, the onset oxidation temperature of the ZnO-coated diamond was about 70 °C higher than the pristine diamond. The EDS results showed that ZnO diffused into the borosilicate glass during sintering. As the result, the bending strength of the composites containing ZnO-coated diamond was increased by 24% compared to that of the composites containing pristine diamond. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hydroxypropyl cellulose supplementation in vitrification solutions: a prospective study with donor oocytes.

    PubMed

    Gallardo, Miguel; Hebles, María; Migueles, Beatriz; Dorado, Mónica; Aguilera, Laura; González, Mercedes; Piqueras, Paloma; Lucas, Alejandro; Montero, Lorena; Sánchez-Martín, Pascual; Sánchez-Martín, Fernando; Risco, Ramón

    2017-03-01

    Hydroxypropyl cellulose (HPC), a polysaccharide that forms a viscous gel under low temperatures, is a promising substitute of the blood-derived macromolecules traditionally used in cryopreservation solutions. The performance of a protein-free, fully synthetic set of vitrification and warming solutions was assessed in a matched pair analysis with donor oocytes. A prospective study including 219 donor MII oocytes was carried out, comparing the laboratory outcomes of oocytes vitrified with HPC-based solutions and their fresh counterparts. The primary performance endpoint was the fertilization rate. Secondary parameters assessed were embryo quality on days 2 and 3. 70/73 (95.9%) vitrified MII oocytes exhibited morphologic survival 2 h post-warming, with 49 (70.0%) presented normal fertilization, compared to 105 of 146 (71.9%) MII fresh oocytes. Similar embryo quality was observed in both groups. A total of 18 embryos implanted, out of 38 embryos transferred (47.3%), resulting in 13 newborns.

  20. Successful pregnancies from vitrified embryos in the dromedary camel: Avoidance of a possible toxic effect of sucrose on embryos.

    PubMed

    Herrid, M; Billah, M; Skidmore, J A

    2017-12-01

    Successful embryo cryopreservation facilitates the wider application of assisted reproduction technologies and also provides a useful method for gene banking of valuable genetics. Unfortunately attempts to establish an effective cryopreservation protocol for camelid embryos have been unsuccessful. In the current study, a modified vitrification protocol with three steps was investigated, whereby embryos were exposed to solutions containing increasing amounts of glycerol and ethylene glycol for fixed time periods. Embryos were then loaded into an Open Pull Straw (OPS) and plunged directly into liquid nitrogen for storage. Three experiments were designed to investigate the effect of 1) artificial shrinkage (AS) of embryos, 2) the addition of sucrose to the vitrification solutions, and 3) the replacement of sucrose by galactose in the warming solution, on the outcome of vitrification. The results showed that neither AS of hatched embryos prior to vitrification, nor the addition of sucrose into vitrification solutions improves the outcome of vitrification, while replacement of sucrose with galactose in warming solution increases the survival and developmental rates of vitrified embryos in culture. Transfer of vitrified embryos that were warmed in galactose resulted in a pregnancy rate of 42.8% per embryo or 46.1% per recipient. Collectively, these results suggest a possible species-specific toxic effect of sucrose on camel embryos, and that avoiding its use either in vitrification or warming solution is critical for establishing an effective protocol. This study may also be applicable to the vitrification of embryos of other camelid species including alpaca and llamas. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of Warming Rate on the Survival of Vitrified Mouse Oocytes and on the Recrystallization of Intracellular Ice1

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2008-01-01

    Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at −25°C. They were then cooled rapidly to −70°C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to −196°C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140°C/min to 3300°C/min. Survivals after warming at 140°C/min and 250°C/min were low (<30%). Survivals after warming at ≥2200°C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed. PMID:18562703

  2. Sex and PRNP genotype determination in preimplantation caprine embryos.

    PubMed

    Guignot, F; Perreau, C; Cavarroc, C; Touzé, J-L; Pougnard, J-L; Dupont, F; Beckers, J-F; Rémy, B; Babilliot, J-M; Bed'Hom, B; Lamorinière, J M; Mermillod, P; Baril, G

    2011-08-01

    The objective of this study was to test the accuracy of genotype diagnosis after whole amplification of DNA extracted from biopsies obtained by trimming goat embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer. Whole genome amplification (WGA) was performed using Multiple Displacement Amplification (MDA). Sex and prion protein (PRNP) genotypes were determined. Sex diagnosis was carried out by PCR amplification of ZFX/ZFY and Y chromosome-specific sequences. Prion protein genotype determination was performed on codons 142, 154, 211, 222 and 240. Embryos were collected at day 7 after oestrus and biopsied either immediately after collection (blastocysts and expanded blastocysts) or after 24 h of in vitro culture (compacted morulae). Biopsied embryos were frozen by vitrification. Vitrified whole embryos were kept as control. DNA of biopsies was extracted and amplified using MDA. Sex diagnosis was efficient for 97.4% of biopsies and PRNP genotyping was determined in 78.7% of biopsies. After embryo transfer, no significant difference was observed in kidding rate between biopsied and vitrified control embryos, whereas embryo survival rate was different between biopsied and whole vitrified embryos (p = 0.032). At birth, 100% of diagnosed sex and 98.2% of predetermined codons were correct. Offspring PRNP profiles were in agreement with parental genotype. Whole genome amplification with MDA kit coupled with sex diagnosis and PRNP genotype predetermination are very accurate techniques to genotype goat embryos before transfer. These novel results allow us to plan selection of scrapie-resistant genotypes and kid sex before transfer of cryopreserved embryo. © 2010 Blackwell Verlag GmbH.

  3. Ultrarapid Inductive Rewarming of Vitrified Biomaterials with Thin Metal Forms.

    PubMed

    Manuchehrabadi, Navid; Shi, Meng; Roy, Priyatanu; Han, Zonghu; Qiu, Jinbin; Xu, Feng; Lu, Tian Jian; Bischof, John

    2018-06-19

    Arteries with 1-mm thick walls can be successfully vitrified by loading cryoprotective agents (CPAs) such as VS55 (8.4 M) or less concentrated DP6 (6 M) and cooling at or beyond their critical cooling rates of 2.5 and 40 °C/min, respectively. Successful warming from this vitrified state, however, can be challenging. For example, convective warming by simple warm-bath immersion achieves 70 °C/min, which is faster than VS55's critical warming rate of 55 °C/min, but remains far below that of DP6 (185 °C/min). Here we present a new method that can dramatically increase the warming rates within either a solution or tissue by inductively warming commercially available metal components placed within solutions or in proximity to tissues with non-invasive radiofrequency fields (360 kHz, 20 kA/m). Directly measured warming rates within solutions exceeded 1000 °C/min with specific absorption rates (W/g) of 100, 450 and 1000 for copper foam, aluminum foil, and nitinol mesh, respectively. As proof of principle, a carotid artery diffusively loaded with VS55 and DP6 CPA was successfully warmed with high viability using aluminum foil, while standard convection failed for the DP6 loaded tissue. Modeling suggests this approach can improve warming in tissues up to 4-mm thick where diffusive loading of CPA may be incomplete. Finally, this technology is not dependent on the size of the system and should therefore scale up where convection cannot.

  4. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro}m quartz particles substantially increased because of foaming. The extent of foaming decreased as the particle size of quartz increased. Moreover, samples containing quartz particles 195 {micro}m formed agglomerates at temperatures above 900 C that only slowly dissolved in the melt. This study continues previous work on the feed-melting process, specifically on the effects of the size of silica particles on the formation of nuclear-waste glasses to determine a suitable range of silica particle sizes that causes neither excessive foaming nor undesirable agglomeration. Apart from varying the silica-particle size, carbon was added in the form of sucrose. Sucrose has been used to accelerate the rate of melting. In this study, we have observed its impact on feed foaming and quartz dissolution.« less

  5. DEMONSTRATION BULLETIN: IN SITU VITRIFICATION - GEOSAFE CORPORATION

    EPA Science Inventory

    in Situ Vitrification (ISV) is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic and inorganic compounds. The process uses electrical current to heat (mett) and vitrify the soil in place. Organic contaminants are decomposed by the extreme h...

  6. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  7. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    NASA Astrophysics Data System (ADS)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie

    2016-05-01

    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  8. Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa.

    PubMed

    Soni, Madhvi; Kaur, Rajinder

    2014-01-01

    A protocol for in vitro propagation was developed for Viola pilosa, a plant of immense medicinal value. To start with in vitro propagation, the sterilized explants (buds) were cultured on MS basal medium supplemented with various concentrations of growth regulators. One of the medium compositions MS basal + 0.5 mg/l BA + 0.5 mg/l TDZ + 0.5 mg/l GA3 gave best results for in vitro shoot bud establishment. Although the problem of shoot vitrification occurred on this medium but this was overcome by transferring the vitrified shoots on MS medium supplemented with 1 mg/l BA and 0.25 mg/l Kn. The same medium was found to be the best medium for further in vitro shoot multiplication. 100 % root induction from in vitro grown shoots was obtained on half strength MS medium supplemented with 1 mg/l IBA. In vitro formed plantlets were hardened and transferred to soil with 83 % survival. Additionally, conservation of in vitro multiplying shoots was also attempted using two different approaches namely slowing down the growth at low temperature and cryopreservation following vitrification. At low temperature retrieval rate was better at 10 °C than at 4 °C after conservation of in vitro multiplying shoots. In cryopreservation-vitrification studies, the vitrified shoot buds gave maximum retrieval of 41.66 % when they were precooled at 4 °C, while only 16.66 % vitrified shoots were retrieved from those precooled at 10 °C. Genetic stability of the in vitro grown plants was analysed by RAPD and ISSR markers which indicated no somaclonal variation among in vitro grown plants demonstrating the feasibility of using the protocol without any adverse genetical effects.

  9. Vitrification of zona-free rabbit expanded or hatching blastocysts: a possible model for human blastocysts.

    PubMed

    Cervera, R P; Garcia-Ximénez, F

    2003-10-01

    The purpose of this study was to test the effectiveness of one two-step (A) and two one-step (B1 and B2) vitrification procedures on denuded expanded or hatching rabbit blastocysts held in standard sealed plastic straws as a possible model for human blastocysts. The effect of blastocyst size was also studied on the basis of three size categories (I: diameter <200 micro m; II: diameter 200-299 micro m; III: diameter >/==" BORDER="0">300 micro m). Rabbit expanded or hatching blastocysts were vitrified at day 4 or 5. Before vitrification, the zona pellucida was removed using acidic phosphate buffered saline. For the two-step procedure, prior to vitrification, blastocysts were pre- equilibrated in a solution containing 10% dimethyl sulphoxide (DMSO) and 10% ethylene glycol (EG) for 1 min. Different final vitrification solutions were compared: 20% DMSO and 20% EG with (A and B1) or without (B2) 0.5 mol/l sucrose. Of 198 vitrified blastocysts, 181 (91%) survived, regardless of the vitrification procedure applied. Vitrification procedure A showed significantly higher re-expansion (88%), attachment (86%) and trophectoderm outgrowth (80%) rates than the two one-step vitrification procedures, B1 and B2 (46 and 21%, 20 and 33%, and 18 and 23%, respectively). After warming, blastocysts of greater size (II and III) showed significantly higher attachment (54 and 64%) and trophectoderm outgrowth (44 and 58%) rates than smaller blastocysts (I, attachment: 29%; trophectoderm outgrowth: 25%). These result demonstrate that denuded expanded or hatching rabbit blastocysts of greater size can be satisfactorily vitrified by use of a two-step procedure. The similarity of vitrification solutions used in humans could make it feasible to test such a procedure on human denuded blastocysts of different sizes.

  10. Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes

    PubMed Central

    2010-01-01

    Background Cryopreservation of oocytes, which is an interesting procedure to conserve female gametes, is an essential part of reproductive biotechnology. The objective of the present study was to investigate the effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Methods Immature oocytes (germinal vesicles) isolated from ovaries of normal bitches (> 6 months of age) were either vitrified in open pulled straw (OPS) using 20% ethylene glycol (EG) and 20% dimethyl sulfoxide (DMSO) as vitrification solution or exposed to vitrification solution without subjected to liquid nitrogen. After warming, oocytes were investigated for nuclear maturation following in vitro maturation (IVM), ultrastructural changes using transmission electron microscopy (TEM) and gene expression using RT-PCR. Fresh immature oocytes were used as the control group. Results The rate of resumption of meiosis in vitrified-warmed oocytes (53.4%) was significantly (P < 0.05) lower than those of control (93.8%) and exposure (91.4%) groups. However, there were no statistically significant differences among groups in the rates of GV oocytes reaching the maturation stage (metaphase II, MII). The ultrastructural alterations revealed by TEM showed that cortical granules, mitochondria, lipid droplets and smooth endoplasmic reticulum (SER) were affected by vitrification procedures. RT-PCR analysis for gene expression revealed no differences in HSP70, Dnmt1, SOD1 and BAX genes among groups, whereas Bcl2 was strongly expressed in vitrified-warmed group when compared to the control. Conclusion Immature canine oocytes were successfully cryopreserved, resumed meiosis and developed to the MII stage. The information obtained in this study is crucial for the development of an effective method to cryopreserve canine oocytes for establishment of genetic banks of endangered canid species. PMID:20565987

  11. Synthetic polymers improve vitrification outcomes of macaque ovarian tissue as assessed by histological integrity and the in vitro development of secondary follicles☆

    PubMed Central

    Ting, Alison Y.; Yeoman, Richard R.; Lawson, Maralee S.; Zelinski, Mary B.

    2013-01-01

    Ovarian tissue cryopreservation is the only proven option for fertility preservation in female cancer patients who are prepubertal or require immediate treatment. However it remains unclear which cryopreservation protocol is best in cases where the tissue may contain cancerous cells, as these should be matured in vitro rather than autografted. This study evaluated different cryoprotectant exposure times and whether the addition of synthetic polymers (Supercool X-1000, Z-1000 and polyvinylpyrrolidone [PVP K-12]) to the vitrification solution is beneficial to tissue morphology, cellular proliferation and subsequent in vitro function of secondary follicles. Pieces of macaque (n = 4) ovarian cortex were exposed to vitrification solution containing glycerol (25%, v/v) and ethylene glycol (25%, v/v) for 3 or 8 min, without (V3, V8) or with (VP3, VP8) polymers (0.2% [v/v] X-1000, 0.4% Z-1000 and 0.2% PVP). Fresh and vitrified tissues were fixed for histology and phosphohistone H3 (PPH3) analysis, or used for secondary follicle isolation followed by encapsulated 3D culture. Five-week follicle survival and growth, as well as steroid hormones (estradiol [E2], progesterone, androstenedione) were measured weekly. Morphology of the stroma and preantral follicles as well as PPH3 expression, was preserved in all vitrified tissues. Vitrification with polymers and shorter incubation time (VP3) increased in vitro follicle survival and E2 production compared to other vitrified groups. Thus, a short exposure of macaque ovarian tissue to a vitrification solution containing synthetic polymers preserves morphology and improves in vitro function of secondary follicles. PMID:22569078

  12. Solids Erosion Patterns Developed by Pulse Jet Mixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Pease, Leonard F.; Minette, Michael J.

    Millions of gallons of radioactive waste are stored in underground storage tanks at the Hanford Site in Washington State. This waste will be vitrified at the Waste Treatment and Immobilization Plant that is under construction. Vessels in the pretreatment portion of the plant are being configured for processing waste slurries with challenging physical and rheological properties that range from Newtonian slurries to non-Newtonian sludge. Pulse jet mixing technology has been selected for mobilizing and mixing this waste. In the pulse jet mixing process, slurry is expelled from pulse tube nozzles directed towards the vessel floor. The expelled fluid forms amore » radial jet that erodes the settled layer of solids. The pulse tubes are configured in a ring or multiple rings and operate concurrently. The expelled fluid and mobilized solids traverse toward the center of the tank. At the tank center the jets from pulse tubes in the ring collide and lift solids upward in a central plume. At the end of the pulse, when the desired fluid volume is expelled from the pulse tube, the applied pressure switches to suction and the pulse tube is refilled. This cycle is used to mobilize and mix the tank contents. An initial step of the process is the erosion of solids from the vessel floor by the radial jets that form on the vessel flow beneath each pulse tube. Experiments have been conducted using simulants to evaluate the ability of the pulse jet mixing system radial jets to combine to develop the central upwell and lift solids into the vessel. These experiments have been conducted at three scales using a range of granular simulants over a range of concentrations. The vessels have elliptical, spherical, or flanged and dished bottoms. Process parameters evaluated include the velocity of fluid expelled from the pulse tube, the duration of the pulse and the duty cycle, the ratio of pulse duration to cycle time. Videos taken from beneath the vessel show the growth of the cleared area from each pulse tube as a function of time. All solids are lifted from the vessel bottom when the system is operating at the critical suspension velocity. The focus of this paper is to compare and contrast erosion patterns developed from different simulants and pulse tube configurations. The cases are evaluated to determine how changes in process parameters affects the PJM ability to mobilize solids from the vessel floor.« less

  13. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MJ Fayer; EM Murphy; JL Downs

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation thatmore » the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and time periods evaluated. The most important feature, the surface cover, is expected to be the modified RCRA Subtitle C design. This design uses a 1-m-thick silt loam layer above sand and gravel filter layers to create a capillary break. A 0.15-m-thick asphalt layer underlies the filter layers to function as a backup barrier and to promote lateral drainage. Cover sideslopes are expected to be constructed with 1V:10H slopes using sandy gravel. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the ILAW PA and other projects and from modeling analyses.« less

  14. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage [ANIMMA--2015-IO-337

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinet, Damien; Chah, Karima; Megret, Patrice

    Nuclear power plants have been generating electricity for more than 50 years. In Belgium, 55% of the current energy supply comes from nuclear power. Providing for the safe storage of nuclear waste, including spent fuel (SF) and vitrified high level radioactive waste (HLW), remains an important challenge in the life cycle of nuclear fuel. In this context, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) is investigating a reference conceptual design called the Supercontainer (SC) for the packaging of SF and HLW. This conceptual design is based on a multiple-barrier system consisting of a hermetically-sealed carbon steelmore » overpack and a surrounding highly-alkaline concrete buffer. The first one is developed to retain the radionuclides. The two main functions of the buffer are (a) to create a high pH environment around the carbon steel overpack in order to passivate the metal surface and so to slow down the corrosion propagation during the thermal phase and (b) to provide a radiological shielding during the construction and the handling of the Supercontainer. A recent test has been performed to investigate the feasibility to construct the SC. This test incorporated several kinds of sensors including Digital Image Correlation (DIC), Acoustic Emission (AE), corrosion sensing techniques and optical fibers with and without fiber Bragg gratings (FBGs). In particular, several single-mode optical fibers with 4 mm long FBGs with different Bragg wavelengths and distributed along the optical fibers were used. For casting and curing condition monitoring, a number of gratings were incorporated inside the concrete buffer during the first stage of construction. Then other sensors were embedded near a heat source installed in the second stage to simulate the effects of heat generated by radioactive waste. The FBGs were designed to measure both temperature and strain effects in the concrete. To discriminate between these effects special packaging was used for some sensors that were installed very close to the unpackaged ones. Sensors placed in plastic tubes have reduced sensitivity to strain, while the ones inserted in metal tubes are only temperature sensitive and their readings can be directly compared with those obtained from thermocouples located nearby. In addition to monitoring temperature and strain behaviour, embedding also had as objective to determine the impact of the high alkaline environment on the silica fibers over a very long time. This article presents the preliminary results obtained with the different FBGs and provides recommendations for future improvement. (authors)« less

  15. Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation.

    PubMed

    Boothby, Thomas C; Tapia, Hugo; Brozena, Alexandra H; Piszkiewicz, Samantha; Smith, Austin E; Giovannini, Ilaria; Rebecchi, Lorena; Pielak, Gary J; Koshland, Doug; Goldstein, Bob

    2017-03-16

    Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, Mark William

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the moltenmore » material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.« less

  17. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    PubMed

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  18. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    PubMed Central

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  19. 76 FR 26583 - Implementation of the Understandings Reached at the 2010 Australia Group (AG) Plenary Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ..., instruction 4.c. is corrected to read as follows: c. By removing the phrase ``Glass or glasslined (including... ``Glass (including vitrified or enameled coating or glass lining);'' and [FR Doc. C1-2011-9613 Filed 5-6...

  20. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beittel, R.; Ruth, L.A.

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (coppermore » oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.« less

  1. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. BABCOCK & WILCOX CYCLONE VITRIFICATION TECHNOLOGY FOR CONTAMINATED SOIL

    EPA Science Inventory

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-yr Superfund Innovative Technology Evaluation (SITE) Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,5...

  3. Ovarian injury during cryopreservation and transplantation in mice: a comparative study between cryoinjury and ischemic injury.

    PubMed

    Lee, Jaewang; Kong, Hyun Sun; Kim, Eun Jung; Youm, Hye Won; Lee, Jung Ryeol; Suh, Chang Suk; Kim, Seok Hyun

    2016-08-01

    What is the main cause of ovarian injury during cryopreservation and transplantation in mice: cryoinjury or ischemic injury? Post-transplantation ischemia is the main cause of ovarian injury during cryopreservation and transplantation for restoring ovarian function. During cryopreservation and the transplantation of ovaries, cryoinjury and ischemic injury inevitably occur, which has a detrimental effect on ovarian quality and reserve. A total of 80 B6D2F1 female mice were randomly allocated to 2 control and 6 experimental groups according to the presence or the absence of transplantation (n = 10/group). The control groups consisted of fresh or vitrified-warmed controls that had the whole ovary fixed without transplantation (fresh and vitri-con, respectively). The experimental groups were further divided according to the presence of vitrification (fresh or vitrified-warmed) and the transplantation period (2 [D2], 7 [D7] or 21 [D21] days). In the control groups, fresh and vitrified-warmed ovaries were immediately fixed after the collection (fresh) and the vitrification-warming process (vitrification control, vitri-con), respectively. Of those experimental groups, three were auto-transplanted with fresh whole ovary (FrOT; FrOT-D2, FrOT-D7 and FrOT-D21). For the other three groups, the ovaries were harvested and stored in liquid nitrogen for 1 week after vitrification and then warmed to auto-transplant the vitrified whole ovaries (vitrified ovary [VtOT]; VtOT-D2, VtOT-D7 and VtOT-D21). After 2, 7 or 21 days of grafting, the grafts and blood sera were collected for analysis by hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, CD31 immunohistochemistry and follicle-stimulating hormone enzyme-linked immunosorbent assay. The vitrification-warming procedure decreased the proportion of intact follicles (Grade 1, G1) (vitri-con 50.3% versus fresh 64.2%) but there was a larger decrease due to ischemic injury after transplantation (FrOT-D2: 42.5%). The percentage of apoptotic follicles was significantly increased in the vitrified-warmed ovary group compared with the fresh control, but it increased more after transplantation without vitrification (fresh: 0.9%, vitri-con: 6.0% and FrOT-D2: 26.8%). The mean number of follicles per section and percentage of CD31-positive area significantly decreased after vitrification but decreased to a larger extent after transplantation (number of follicles, fresh: 30.3 ± 3.6, vitri-con: 20.6 ± 2.9, FrOT-D2: 17.9 ± 2.1; CD31-positive area, fresh: 10.6 ± 1.3%, vitri-con: 5.7 ± 0.9% and FrOT-D2: 4.2 ± 0.4%). Regarding the G1 follicle ratio and CD31-positive area per graft, only the FrOT groups significantly recovered with time after transplantation (G1 follicle ratio, FrOT-D2: 42.5%, FrOT-D7: 56.1% and FrOT-D21: 70.7%; CD31-positive area, FrOT-D2: 4.2 ± 0.4%, FrOT-D7: 5.4 ± 0.6% and FrOT-D21: 7.5 ± 0.8%). Although there was no significant difference between the two transplantation groups at each evaluation, the serum follicle-stimulating hormone level of both groups significantly decreased over time. It is unclear how far these results can be extrapolated from mice to the human ovary. Minimizing ischemic injury should be the first priority rather than preventing cryoinjury alone, and decreasing the combination of cryoinjury and ischemic injury is necessary to improve ovarian quality after cryopreservation and transplantation. This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI12C0055). The authors have no conflict of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Analysis of grinding of superalloys and ceramics for off-line process optimization

    NASA Astrophysics Data System (ADS)

    Sathyanarayanan, G.

    The present study has compared the performances of resinoid, vitrified, and electroplated CBN wheels in creep feed grinding of M42 and D2 tool steels. Responses such as a specific energy, normal and tangential forces, and surface roughness were used as measures of performance. It was found that creep feed grinding with resinoid, vitrified, and electroplated CBN wheels has its own advantages, but no single wheel could provide good finish, lower specific energy, and high material removal rates simultaneously. To optimize the CBN grinding with different bonded wheels, a Multiple Criteria Decision Making (MCDM) methodology was used. Creep feed grinding of superalloys, Ti-6Al-4V and Inconel 718, has been modeled by utilizing neural networks to optimize the grinding process. A parallel effort was directed at creep feed grinding of alumina ceramics with diamond wheels to investigate the influence of process variables on responses based on experimental results and statistical analysis. The conflicting influence of variables was observed. This led to the formulation of ceramic grinding process as a multi-objective nonlinear mixed integer problem.

  5. Phosphorus detection in vitrified bacteria by cryo-STEM annular dark-field analysis.

    PubMed

    Wolf, Sharon Grayer; Rez, Peter; Elbaum, Michael

    2015-11-01

    Bacterial cells often contain dense granules. Among these, polyphosphate bodies (PPBs) store inorganic phosphate for a variety of essential functions. Identification of PPBs has until now been accomplished by analytical methods that required drying or chemically fixing the cells. These methods entail large electron doses that are incompatible with low-dose imaging of cryogenic specimens. We show here that Scanning Transmission Electron Microscopy (STEM) of fully hydrated, intact, vitrified bacteria provides a simple means for mapping of phosphorus-containing dense granules based on quantitative sensitivity of the electron scattering to atomic number. A coarse resolution of the scattering angles distinguishes phosphorus from the abundant lighter atoms: carbon, nitrogen and oxygen. The theoretical basis is similar to Z contrast of materials science. EDX provides a positive identification of phosphorus, but importantly, the method need not involve a more severe electron dose than that required for imaging. The approach should prove useful in general for mapping of heavy elements in cryopreserved specimens when the element identity is known from the biological context. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.; Crawford, C.; Duignan, M.

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less

  7. A Low Temperature Limit for Life on Earth

    PubMed Central

    Clarke, Andrew; Morris, G. John; Fonseca, Fernanda; Murray, Benjamin J.; Price, Hannah C.

    2013-01-01

    There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between −10°C and −26°C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below −50°C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above −20°C) and multicellular organisms (typically below −20°C). Few multicellular organisms can, however, complete their life cycle at temperatures below ∼−2°C. PMID:23840425

  8. Applying embryo cryopreservation technologies to the production of domestic and black-footed cats.

    PubMed

    Pope, C E; Gómez, M C; Galiguis, J; Dresser, B l

    2012-12-01

    Our objectives were (i) compare in vitro development of early cleavage stage domestic cat embryos after cryopreservation by minimal volume vitrification vs a standard slow, controlled-rate method, (ii) determine viability of vitrified domestic cat embryos by oviductal transfer into synchronous recipients and (iii) evaluate in vivo survival of black-footed cat (BFC, Felis nigripes) embryos after intra- and inter-species transfer. In vitro-derived (IVM/IVF) cat embryos were used to evaluate in vitro development after controlled-rate cryopreservation vs vitrification vs controls. Blastocyst development was similar in both groups of cryopreserved embryos (22-26%), but it was lower (p < 0.05) than that of fresh embryos (50%). After embryo transfer, four of eight recipients of vitrified embryos established pregnancies--three of six (50%) and one of two (50%) that received embryos from in vivo- and in vitro-matured oocytes, respectively. Three male and two female kittens weighing from 51 to 124 g (mean = 88 g) were delivered on days 61-65 of gestation. In BFC, four intra-species embryo transfer procedures were carried out--two recipients received fresh day 2 embryos (n = 5, 8) and two recipients received embryos that had been cryopreserved on day 1 (n = 6) or 2 (n = 8). A 2-year-old recipient of cryopreserved embryos established pregnancy and delivered two live male kittens. Subsequently, five cryopreserved BFC embryos were transferred to a domestic cat recipient. On day 29, the recipient was determined to be pregnant and delivered naturally a live, healthy female BFC kitten on day 66. In summary, in vivo survival of vitrified domestic cat embryos was shown by the births of kittens after transfer into recipients. Also, we demonstrated that sperm and embryo cryopreservation could be combined with intra- and inter-species embryo transfer and integrated into the array of assisted reproductive techniques used successfully for propagation of a rare and vulnerable felid species, the black-footed cat. © 2012 Blackwell Verlag GmbH.

  9. Cryopreservation of feline oocytes by vitrification using commercial kits and slush nitrogen technique.

    PubMed

    Fernandez-Gonzalez, L; Jewgenow, K

    2017-04-01

    Assisted reproductive techniques are a valuable tool for conservation breeding of endangered species. Cryopreservation methods are the basis of gamete banks, supporting genetic diversity preservation. Unfortunately, cryopreservation of feline oocytes is still considered an experimental technique. The aim of this study was to compare two commercial kits, with our protocol for vitrification of cat oocytes (IZW), which comprises a three-step method with ethylene glycol, DMSO, fetal calf serum, trehalose and Ficoll PM-70. Furthermore, we applied slush nitrogen (SN 2 ) for ultra-rapid freezing to improve survival rates. Cumulus-oocyte complexes were collected from domestic cat ovaries by slicing and vitrified at immature stage using Cryotop as storage device. Vit Kit ® Freeze/Thaw (n = 89) showed the lowest maturation percentage obtained after warming (10.1%). A significant difference in maturation percentage of oocytes was found between Kitazato ® kit (38.7%, n = 137) and IZW protocol (24.5%, n = 143). The cleavage after ICSI of warmed and matured oocytes (20.7% and 28.6%, respectively) and the morula percentage (18. 2% and 22.5%, respectively), however, did not reveal any significant difference between the two methods. Application of SN 2 did not result in any improvement of oocytes' cryopreservation. Maturation percentage of the oocytes vitrified by IZW method with SN 2 (n = 144) decreased until 6.1%, without any cleavage after fertilization. For Kitazato ® (n = 62), only 17.7% were able to undergo maturation and cleavage percentage dropped to 18.2%, not reaching morula stage. These data demonstrate that feline oocytes can be vitrified either by our IZW method or by commercial Kitazato ® kit, but the use of SN 2 is improving neither maturation nor cleavage percentages when combined with these procedures. © 2016 Blackwell Verlag GmbH.

  10. A Low Temperature Limit for Life on Earth.

    PubMed

    Clarke, Andrew; Morris, G John; Fonseca, Fernanda; Murray, Benjamin J; Acton, Elizabeth; Price, Hannah C

    2013-01-01

    There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between -10°C and -26°C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below -50°C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above -20°C) and multicellular organisms (typically below -20°C). Few multicellular organisms can, however, complete their life cycle at temperatures below ∼-2°C.

  11. Timing of The First Zygotic Cleavage Affects Post-Vitrification Viability of Murine Embryos Produced In Vivo

    PubMed Central

    Jusof, Wan-Hafizah Wan; Khan, Nor-Ashikin Mohamed Noor; Rajikin, Mohd Hamim; Satar, Nuraliza Abdul; Mustafa, Mohd-Fazirul; Jusoh, Norhazlin; Dasiman, Razif

    2015-01-01

    Background Timing of the first zygotic cleavage is an accurate predictor of embryo quality. Embryos that cleaved early (EC) have been shown to exhibit higher develop- mental viability compared to those that cleaved at a later period (LC). However, the vi- ability of EC embryos in comparison to LC embryos after vitrification is unknown. The present study aims to investigate the post-vitrification developmental viability of murine EC versus LC embryos. Materials and Methods In this experimental study, female ICR mice (6-8 weeks old) were superovulated and cohabited with fertile males for 24 hours. Afterwards, their ovi- ducts were excised and embryos harvested. Embryos at the 2-cell stage were catego- rized as EC embryos, while zygotes with two pronuclei were categorized as LC embryos. Embryos were cultured in M16 medium supplemented with 3% bovine serum albumin (BSA) in a humidified 5% CO2atmosphere. Control embryos were cultured until the blastocyst stage without vitrification. Experimental embryos at the 2-cell stage were vitri- fied for one hour using 40% v/v ethylene glycol, 18% w/v Ficoll-70 and 0.5 M sucrose as the cryoprotectant. We recorded the numbers of surviving embryos from the control and experimental groups and their development until the blastocyst stage. Results were analyzed using the chi-square test. Results A significantly higher proportion of EC embryos (96.7%) from the control group developed to the blastocyst stage compared with LC embryos (57.5%, P<0.0001). Similarly, in the experimental group, a significantly higher percentage of vitrified EC embryos (69.4%) reached the blastocyst stage compared to vitrified LC embryos (27.1%, P<0.0001). Conclusion Vitrified EC embryos are more vitrification tolerant than LC embryos. Prese- lection of EC embryos may be used as a tool for selection of embryos that exhibit higher developmental competence after vitrification. PMID:26246881

  12. Species Origin of Genomic Factors in Nicotiana nudicaulis Watson Controlling Hybrid Lethality in Interspecific Hybrids between N. nudicaulis Watson and N. tabacum L

    PubMed Central

    Liu, Hongshuo; Marubashi, Wataru

    2014-01-01

    Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis×N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris×N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris×N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla×N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla×N. tabacum and N. sylvestris×N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis. PMID:24806486

  13. Energy Dissipation in Calico Hills Tuff due to Pore Collapse

    NASA Astrophysics Data System (ADS)

    Lockner, D. A.; Morrow, C. A.

    2008-12-01

    Laboratory tests indicate that the weakest portions of the Calico Hills tuff formation are at or near yield stress under in situ conditions and that the energy expended during incremental loading can be more than 90 percent irrecoverable. The Calico Hills tuff underlies the Yucca Mountain waste repository site at a depth of 400 to 500 m within the unsaturated zone. The formation is highly variable in the degree of both vitrification and zeolitization. Since 1980, a number of boreholes penetrated this formation to provide site characterization for the YM repository. In the past, standard strength measurements were conducted on core samples from the drillholes. However, a significant sampling bias occurred in that tests were preferentially conducted on highly vitrified, higher-strength samples. In fact, the most recent holes were drilled with a dry coring technique that would pulverize the weakest layers, leaving none of this material for testing. We have re-examined Calico Hills samples preserved at the YM Core Facility and selected the least vitrified examples (some cores exceeded 50 percent porosity) for mechanical testing. Three basic tests were performed: (i) hydrostatic crushing tests (to 350 MPa), (ii) standard triaxial deformation tests at constant effective confining pressure (to 70 MPa), and (iii) plane strain tests with initial conditions similar to in situ stresses. In all cases, constant pore pressure of 10 MPa was maintained using argon gas as a pore fluid and pore volume loss was monitored during deformation. The strongest samples typically failed along discrete fractures in agreement with standard Mohr-Coulomb failure. The weaker, high porosity samples, however, would fail by pure pore collapse or by a combined shear-induced compaction mechanism similar to failure mechanisms described for porous sandstones and carbonates. In the plane-strain experiments, energy dissipation due to pore collapse was determined for eventual input into dynamic wave calculations. These calculations will simulate ground accelerations at the YM repository due to propagation of high-amplitude compressional waves generated by scenario earthquakes. As an example, in one typical test on a sample with 43 percent starting porosity, an axial stress increase of 25 MPa resulted from 6 percent shortening and energy dissipation (due to grain crushing and pore collapse) of approximately 1.5x106 J/m3. Under proper conditions, this dissipation mechanism could represent a significant absorption of radiated seismic energy and the possible shielding of the repository from extreme ground shaking.

  14. The Influence of Glass Leachate on the Hydraulic, Physical, Mineralogical and Sorptive Properties of Hanford Sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.; Serne, R. Jeffrey; Schaef, Herbert T.

    2003-08-26

    The Immobilized Low Activity Waste (ILAW) generated from the Hanford Site will be disposed of in a vitrified form. It is expected that leachate from the vitrified waste will have a high pH and high ionic strength. The objective of this study was to determine the influence of glass leachate on the hydraulic, physical, mineralogical, and sorptive properties of Hanford sediments. Our approach was to put solutions of NaOH, a simplified surrogate for glass leachate, in contact with quartz sand, a simplified surrogate for the Hanford subsurface sediment, and Warden soil, an actual Hanford sediment. Following contact with three differentmore » concentrations of sodium hydroxide solutions, changes in hydraulic conductivity, porosity, moisture retention, mineralogy, aqueous chemistry, and soil-radionuclide distribution coefficients were determined. Under chemical conditions approaching the most caustic glass leachate conditions predicted in the near-field of the ILAW disposal site, approximated by 0.3 M NaOH, significant changes in mineralogy were observed. The clay minerals of the Hanford sediment evidenced the greatest dissolution thereby increasing the relative proportions of the more resistant minerals, e.g., quartz, feldspar, and calcite, in the remaining mass. Some re-precipitation of solids (mostly amorphous gels) was observed after caustic contact with both solids; these precipitates increased the moisture retention in both sediments, likely because of water retained within the gel coatings. The hydraulic conductivities were slightly lower but, because of experimental artifacts, these reductions should not be considered significant. Thus, there does not seem to be large differences in the hydraulic properties of the quartz sand or Warden silt loam soil after 192 days of contact with caustic fluids similar to glass leachate. The long term projected impact of the increased moisture retention has not been evaluated but likely will not make past simplified performance projections invalid. Despite the fact that some clay minerals, smectites and kaolinite, almost totally dissolved within a year of contact with 3.0 M NaOH (and by inference after longer time frames for 0.3 M NaOH, a more realistic surrogate for ILAW glass leachate) other sorbing minerals such as illite and chlorite do not appreciably react. The net result on sorption of common and risk relevant mobile radionuclides is not expected to be significant. Specifically, little change in Cs-Kd values and a significant increase in Sr-Kd values were measured in the simulated glass leachates versus natural groundwater. The difference in the sorptive responses of the radionuclides was attributed to differences in sorption mechanisms (Cs sorbs strongly to high-energy sites, whereas Sr sorbs primarily by cation exchange but also is sensitive to pH mediated precipitation reactions). Caustic treated sediments contacted with NaOH solutions radiotraced with Sr exhibited high Kd’s likely because of precipitation with CaCO3. In caustic solutions there was no appreciable adsorption for the three anions I-, SeO42-, or TcO4-. In the “far field” vadose zone in past performance projections, some sorption has been allowed for selenate. Even if the caustic glass leachate completely dominates the entire vadose zone below the repository, such that there will be no sorption of selenate, the dilution and pH neutralization that will occur in the upper unconfined aquifer will allow selenate adsorption to occur onto the aquifer sediments. It is recommended that a future performance assessment sensitivity run be performed to address this point.« less

  15. Tertiary Treatment and Recycling of Wastewater

    DTIC Science & Technology

    2015-05-18

    of the Worrell design (Figure 2.1) illustrates the modular treatment cells filled with vitrified expanded clay (or similar media) and planted with...General Construction Storm Water permit Sanitary / Storm Drainage Restriction: Absolutely no materials are to be disposed of via the sanitary ...sewer or storm water systems without consulting the Environmental Office. Exception: Water may be discharged down the sanitary sewer when:  The

  16. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  17. Effect of open pulled straw (OPS) vitrification on the fertilisation rate and developmental competence of porcine oocytes.

    PubMed

    Varga, Erika; Gardón, J C; Papp, Agnes Bali

    2006-03-01

    Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.

  18. Effect of Americium-241 Content on Plutonium Radiation Source Terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    1998-12-28

    The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials andmore » will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.« less

  19. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  20. Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.

    PubMed

    Dubochet, J; Adrian, M; Schultz, P; Oudet, P

    1986-03-01

    The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.

  1. Successful ongoing pregnancies after vitrification of oocytes.

    PubMed

    Lucena, Elkin; Bernal, Diana Patricia; Lucena, Carolina; Rojas, Alejandro; Moran, Abby; Lucena, Andrés

    2006-01-01

    To demonstrate the efficiency of vitrifying mature human oocytes for different clinical indications. Descriptive case series. Cryobiology laboratory, Centro Colombiano de Fertilidad y Esterilidad-CECOLFES LTDA. (Bogotá, Colombia). Oocyte vitrification was offered as an alternative management for patients undergoing infertility treatment because of ovarian hyperstimulation syndrome, premature ovarian failure, natural ovarian failure, male factor, poor response, or oocyte donation. Mature oocytes were obtained from 33 donor women and 40 patients undergoing infertility treatment. Oocytes were retrieved by ultrasound-guided transvaginal aspiration and vitrified with the Cryotops method, with 30% ethylene glycol, 30% dimethyl sulfoxide, and 0.5 mol/L sucrose. Viability was assessed 3 hours after thawing. The surviving oocytes were inseminated by intracytoplasmic sperm injection. Fertilization was evaluated after 24 hours. The zygotes were further cultured in vitro for up to 72 hours until time of embryo transfer. Recovery, viability, fertilization, and pregnancy rates. Oocyte vitrification with the Cryotop method resulted in high rates of recovery, viability, fertilization, cleavage, and ongoing pregnancy. Vitrification with the Cryotop method is an efficient, fast, and economical method for oocyte cryopreservation that offers high rates of survival, fertilization, embryo development, and ongoing normal pregnancies, providing a new alternative for the management of female infertility.

  2. Cryopreservation of rabbit semen: comparing the effects of different cryoprotectants, cryoprotectant-free vitrification, and the use of albumin plus osmoprotectants on sperm survival and fertility after standard vapor freezing and vitrification.

    PubMed

    Rosato, Maria Pina; Iaffaldano, Nicolaia

    2013-02-01

    This study was designed to improve current freezing protocols for rabbit sperm by examining: (1) the toxicity of different permeable cryoprotectants (CPAs) used for standard vapor freezing (conventional freezing); (2) the feasibility of ultrarapid nonequilibrium freezing (vitrification) of sperm in the absence of permeating CPAs; and (3), the addition of bovine serum albumin (BSA), alone or with sucrose or trehalose as osmoprotectants. First, we evaluated the effects on sperm motility of the incubation time (5 to 60 minutes) with different final concentrations (5% to 20%) of glycerol, N-N-dimethylacetamide, dimethylsulfoxide (DMSO), ethylene glycol, propylene glycol, and methanol. N-N-dimethylacetamide (5%) and DMSO (5% and 10%) showed the least toxic effects; the use of 10% DMSO producing the best postthaw sperm motility and membrane integrity results (P < 0.05) after conventional freezing. For vitrification, semen was diluted in the absence of permeable CPAs and frozen by dropping semen directly in liquid nitrogen. However, this led to the low or null cryosurvival of sperm postvitrification (0.16 ± 0.4%, 1.8 ± 1.6%, and 94.5 ± 1.4% of motile, membrane-, and DNA-intact sperm cells, respectively). To assess the effects of albumin and osmoprotectants on sperm cryosurvival, sperm was conventionally frozen with 10% DMSO or vitrified in the absence of permeable CPAs without or with 0.5% BSA alone or combined with sucrose or trehalose (range, 0-0.25 M). In the conventional freezing procedure, the addition of BSA alone failed to improve sperm cryosurvival, however, in the presence of BSA plus either sucrose or trehalose, the postthaw motility (using 0.1 M sucrose or trehalose) and DNA integrity (using all additive concentrations) of sperm were significantly better (P < 0.05) than control. Higher numbers of motile and membrane-intact cells were observed when semen was vitrified with BSA alone or with BSA and sucrose (0.1 and 0.25 M) or BSA and trehalose (0.25 M) and a best recovery of DNA-intact sperm was recorded for BSA plus sucrose compared with semen vitrified without osmoprotectants (P < 0.05). Finally, the cryodiluent combinations BSA/sucrose and BSA/trehalose were compared in an insemination trial. Rabbit does were inseminated with fresh semen (N = 56), semen conventionally cryopreserved in the BSA-based cryodiluents containing 0.1 M sucrose or trehalose (N = 56 per group), or semen vitrified in the presence of 0.25 M sucrose or trehalose (N = 8 per group). Fertility rates and live born kids were similar for semen cryopreserved with BSA/sucrose (77% and 7.6) compared with fresh semen (84% and 8.1) and significantly higher than the figures recorded for the conventionally frozen semen in the BSA/trehalose group (52% and 6.1; P ≤ 0.05). In contrast, only one doe inseminated with semen vitrified in the presence of BSA/sucrose became pregnant, though no kids were delivered. The conclusions to be drawn from our study are: (1) incubation times and concentration toxicities established for the main permeable CPAs used for conventional freezing of rabbit sperm indicated that DMSO 10% was the least damaging; (2) CPA-free vitrification of rabbit semen led to a low or null sperm cryosurvival; and (3) enriching the freezing medium with BSA plus adequate amounts of sucrose or trehalose can improve the cryosurvival of rabbit sperm after conventional freezing or vitrification. In our working conditions, BSA/sucrose was more effective than BSA/trehalose at preserving the in vivo fertilization capacity of rabbit sperm cryopreserved using the standard procedure. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0.2%, <0.5% and <0.6%, respectively. These performances meet the requirements of the studies of nuclear glasses alteration and open up possibilities to use this method for precise determination of silicon content in natural samples by Isotope Dilution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  5. Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin.

    PubMed

    Paschoal, Daniela Martins; Sudano, Mateus José; Schwarz, Kátia Regina Lancellotti; Maziero, Rosiára Rosário Dias; Guastali, Midyan Daroz; Crocomo, Letícia Ferrari; Magalhães, Luis Carlos Oña; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2017-01-01

    The presence of fetal calf serum in culture medium influences embryo quality, causing a reduction in postcryopreservation survival. Forskolin has been used to induce lipolysis and increase cryotolerance, functioning as an activator of adenylate cyclase and elevating cAMP levels. In the present experiment, bovine zygotes were cultured in synthetic oviduct fluid with amino acid plus 2.5% fetal calf serum for 6 days, when forskolin was added in three concentrations: 2.5, 5, and 10 μM. Treatment with forskolin lasted for 24 hours. Blastocyst formation rate, quantification of lipid granules, total cell numbers, and apoptosis rate were evaluated. In a second assessment, embryos were vitrified, and warming, re-expansion rate, total cell numbers, and apoptosis rate were also evaluated. There was no difference due to forskolin in blastocyst formation or re-expansion rates after vitrification. However, lipid measurements were lower (control: 136.8 and F 2.5 μM: 128.5; P < 0.05), and number of cells per embryo higher (control: 140.1 and F 2.5 μM: 173.5; P < 0.05) than controls for 2.5 μM forskolin but not for higher forskolin concentrations. The number of intact cells per embryo was higher, and the rate of apoptosis was lower in fresh than in vitrified embryos (number of cells of warmed embryos, control: 104.1, F 2.5 μM: 101.3, F 5 μM: 115.4, F 10 μM: 95.1; apoptotic of fresh cells, control: 12.1%, F 2.5 μM: 16.7%, F 5 μM: 11.1%, F 10 μM: 14.2%; and apoptotic warmed embryos, control: 22.3%, F 2.5 μM: 37.3%, F 5 μM: 33.2%, F 10 μM: 30.3%; P < 0.05). It was concluded that forskolin is an effective lipolytic agent even at low concentrations, leading to formation of blastocysts with a comparatively larger number of cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparison of different cryopreservation methods for horse and donkey embryos.

    PubMed

    Pérez-Marín, C C; Vizuete, G; Vazquez-Martinez, R; Galisteo, J J

    2018-05-01

    Few studies have been published about cryopreservation and embryo assessment in horses and donkeys. To evaluate the viability of embryos collected from mares and jennies that were cryopreserved by slow freezing or by vitrification. Randomised controlled experiment. Horse (n=19) and donkey (n=16) embryos (≤300 μm) were recovered on days 6.5-7.5 post-ovulation and assigned to control or cryopreservation protocols of slow freezing or vitrification. For slow freezing, 1.5 mol/L ethylene glycol (EG) was used. For vitrification, horse embryos were exposed to 1.4 mol/L glycerol, 1.4 mol/L glycerol + 3.6 mol/L EG and 3.4 mol/L glycerol + 4.6 mol/L EG, using Fibreplug or a 0.25 mL straw; donkey embryos were vitrified using Fibreplug with similar EG-glycerol solutions to above or 7.0 mol/L EG. Dead cells, apoptotic and fragmented nuclei, and cytoskeleton quality were assessed on thawed/warmed embryos. A significant decrease in embryo quality was observed after cryopreservation (P<0.05). Although the percentage of dead cells was lower (P<0.05) in control than in cryopreserved embryos, no differences were observed between freezing protocols used for horse or donkey embryos. While no differences were detected in the number of apoptotic cells in warmed horse embryos, in donkey embryos a higher incidence of apoptosis was measured after vitrification with EG-glycerol in Fibreplug (P<0.05). Vitrified horse embryos had a significantly (P<0.05) higher percentage of nonviable cells than donkey embryo. Actin cytoskeleton quality did not differ between treatments. Difficulties in obtaining a large number of embryos meant that the number of embryos per group was low. Vitrified horse and donkey embryos did not show higher susceptibility to cell damage than those preserved by slow freezing, whether using straws or Fibreplug. However, Fibreplug with EG 7 mol/L resulted in fewer nonviable and apoptotic cells in donkey embryos. Donkey embryos showed lower susceptibility to vitrification than horse embryos. THE SUMMARY IS AVAILABLE IN SPANISH - SEE SUPPORTING INFORMATION. © 2017 EVJ Ltd.

  7. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DI Kaplan; RJ Serne

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste ismore » protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.« less

  8. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  9. In-service Inspection of Radioactive Waste Tanks at the Savannah River Site – 15410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Bruce; Maryak, Matthew; Baxter, Lindsay

    2015-01-12

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. The high level wastes are processed in several of the tanks and then transferred by piping to other site facilities for further processing before they are stabilized in a vitrified or grout waste form. Based on waste removal and processing schedules, many of the tanks will be required to be in service for times exceeding the initial intended life. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement functionmore » by providing a barrier to the environment and by maintaining acceptable structural stability during design basis events, which include loadings from both normal service and abnormal (e.g., earthquake) conditions. A structural integrity program is in place to maintain the structural and leak integrity functions of these waste tanks throughout their intended service life. In-service inspection (ISI) is an essential element of a comprehensive structural integrity program for the waste tanks at the Savannah River Site (SRS). The ISI program was developed to determine the degree of degradation the waste tanks have experienced due to service conditions. As a result of the inspections, an assessment can be made of the effectiveness of corrosion controls for the waste chemistry, which precludes accelerated localized and general corrosion of the waste tanks. Ultrasonic inspections (UT) are performed to detect and quantify the degree of general wall thinning, pitting and cracking as a measure of tank degradation. The results from these inspections through 2013, for the 27 Type III/IIIA tanks, indicate no reportable in-service corrosion degradation in the primary tank (i.e., general, pitting, or cracking). The average wall thickness for all tanks remains above the manufactured nominal thickness minus 0.25 millimeter and the largest pit identified is approximately 1.70 millimeter deep (i.e., less than 10% through-wall). Improvements to the inspection program were recently instituted to provide additional confidence in the degradation rates. Thickness measurements from a single vertical strip along the accessible height of the primary tank have been used as a baseline to compare historical measurements. Changes in wall thickness and pit depths along this vertical strip are utilized to estimate the rate of corrosion degradation. An independent review of the ISI program methodology, results, and path forward was held in August 2009. The review recommended statistical sampling of the tanks to improve the confidence of the single strip inspection program. The statistical sampling plan required that SRS increase the amount of area scanned per tank. Therefore, in addition to the baseline vertical strip that is obtained for historical comparisons, four additional randomly selected vertical strips are inspected. To date, a total of 104 independent vertical strips along the height of the primary tank have been completed. A statistical analysis of the data indicates that at this coverage level there is a 99.5% confidence level that one of the worst 5% of all the vertical strips was inspected. That is, there is a relatively high likelihood that the SRS inspection program has covered one of the most corroded areas of any of the Type III/IIIA waste tanks. These data further support the conclusion that there are no significant indications of wall thinning or pitting. Random sampling will continue to increase the confidence that one of the worst 5% has been inspected. In order to obtain the additional vertical strips, and minimize budget and schedule impacts, data collection speed for the UT system was optimized. Prior to 2009, the system collected data at a rate of 32 square centimeters per minute. The scan rate was increased to 129 - 160 square centimeters per minute by increasing the scanner step and pixel sizes in the data acquisition set-up. Laboratory testing was utilized to optimize the scan index/pixel size such that the requirements for wall thinning and pit detection were still maintained. SRS continues to evaluate improvements to ultrasonic equipment.« less

  10. Deployment of Cesium Recovered from High Level Liquid Waste for Irradiation - Indian Scenario - 13128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Tessy; Shah, J.G.; Kumar, Amar

    2013-07-01

    Recovery of Cs-137 from HLW and its utilisation as source pencil in place of Co-60 is vital for medical and sewage treatment applications in India. For separation of Cs, specific ion exchange resins as well as 'Calyx crown' solvent have been developed and synthesized indigenously. A flow sheet involving separation of Cs from acidic HLW using Ammonium Molybdo Phosphate (AMP) resins, recovery of Cs from the loaded AMP column by dissolving it in alkali, ion exchange purification of Cs rich alkaline solution using Resorcinol-Formaldehyde Poly condensate (RF) resins and its elution in cesium nitrate form was developed and demonstrated. Solventmore » extraction route employing 0.03 Molar, 1-3-octyl oxy Calyx (4) arene crown-6 in 30% isodecyl alcohol and dodecane was also established using mixer settlers. Cesium lithium borosilicate glass based formulations have been considered as a glass matrix for Cs irradiation pencils. While choosing this vitreous matrix, attributes addressing maximum possible Cs-137 loading, low glass pouring temperature to minimise Cs volatility, reasonably good mechanical strength and good chemical durability have been considered. Recovered cesium nitrate solution was vitrified along with glass additives in an induction heated metallic melter and subsequently poured into 12 numbers of Cs irradiation pencils positioned on turn-table equipped with the load cell. The complete cycle involving recovery of Cs from HLW followed by its conversion into Cs pencil was demonstrated. (authors)« less

  11. External Performance Evaluation Program Participation at Fluor Hanford (FH) 222S Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, G.A.

    2002-06-01

    Fluor Hanford operates the U. S. Department of Energy's (DOE) 2224 Laboratory on the Hanford Site in Southeastern Washington State. 222-S Laboratory recently celebrated its 50th anniversary of providing laboratory services to DOE and DOE contractors on the Hanford Site. The laboratory operated for many years as a production support analytical laboratory, but in the last two decades has supported the Hanford Site cleanup mission. The laboratory performs radioanalytical, inorganic, and organic characterization analyses on highly radioactive liquid and solid tank waste that will eventually be vitrified for long-term storage and or disposal. It is essential that the laboratory reportmore » defensible, highly credible data in its role as a service provider to DOE and DOE contractors. Among other things, the participation in a number of performance evaluation (PE) programs helps to ensure the credibility of the laboratory. The laboratory currently participates in Environmental Resource Associates' Water Pollution (WP) Studies and the DOE Environmental Management Laboratory (EML) Quality Assessment Program (QAP). DOE has mandated participation of the laboratory in the EML QAP. This EML program evaluates the competence of laboratories performing environmental radioanalytical measurements for DOE, and is the most comprehensive and well-established PE program in the DOE community for radiochemical laboratories. Samples are received and analyzed for radionuclides in air filter, soil, vegetation, and water matrices on a semiannual basis. The 222-S Laboratory has performed well in this program over the years as evidenced by the scores in the chart below.« less

  12. Sintering of MSW fly ash for reuse as a concrete aggregate.

    PubMed

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  13. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  14. Vitrification of mouse embryos using the thin plastic strip method

    PubMed Central

    Hur, Yong Soo; Ann, Ji Young; Maeng, Ja Young; Park, Miji; Park, Jeong Hyun; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho

    2012-01-01

    Objective The aim of this study was to compare vitrification optimization of mouse embryos using electron microscopy (EM) grid, cryotop, and thin plastic strip (TPS) containers by evaluating developmental competence and apoptosis rates. Methods Mouse embryos were obtained from superovulated mice. Mouse cleavage-stage, expanded, hatching-stage, and hatched-stage embryos were cryopreserved in EM grid, cryotop, and TPS containers by vitrification in 15% ethylene glycol, 15% dimethylsulfoxide, 10 µg/mL Ficoll, and 0.65 M sucrose, and 20% serum substitute supplement (SSS) with basal medium, respectively. For the three groups in which the embryos were thawed in the EM grid, cryotop, and TPS containers, the thawing solution consisted of 0.25 M sucrose, 0.125 M sucrose, and 20% SSS with basal medium, respectively. Rates of survival, re-expansion, reaching the hatched stage, and apoptosis after thawing were compared among the three groups. Results Developmental competence after thawing of vitrified expanded and hatching-stage blastocysts using cryotop and TPS methods were significantly higher than survival using the EM grid (p<0.05). Also, apoptosis positive nuclei rates after thawing of vitrified expanded blastocysts using cryotop and TPS were significantly lower than when using the EM grid (p<0.05). Conclusion The TPS vitrification method has the advantages of achieving a high developmental ability and effective preservation. PMID:23346525

  15. Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes.

    PubMed

    Cremades, N; Sousa, M; Silva, J; Viana, P; Sousa, S; Oliveira, C; Teixeira da Silva, J; Barros, A

    2004-02-01

    Vitrification of human blastocysts has been successfully applied using grids, straws and cryoloops. We assessed the survival rate of human compacted morulae and early blastocysts vitrified in pipette tips with a smaller inner diameter and solution volume than the previously described open pulled straw (OPS) method. Excess day 5 human embryos (n = 63) were experimentally vitrified in vessels. Embryos were incubated at 37 degrees C with sperm preparation medium (SPM) for 1 min, SPM + 7.5% ethylene glycol (EG)/dimethylsulphoxide (DMSO) for 3 min, and SPM + 16.5% EG + 16.5% DMSO + 0.67 mol/l sucrose for 25 s. They were then aspirated (0.5 microl) into a plastic micropipette tip (0.36 mm inner diameter), exposed to liquid nitrogen (LN(2)) vapour for 2 min before being placed into a pre-cooled cryotube, which was then closed and plunged into LN(2). Embryos were warmed and diluted using 0.33 mol/l and 0.2 mol/l sucrose. The survival rate for compacted morulae was 73% (22/30) and 82% (27/33) for early blastocysts. The survival rates of human compacted morulae and early blastocysts after vitrification with this simple technique are similar to those reported in the literature achieved by slow cooling and other vitrification protocols.

  16. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    PubMed Central

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  17. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.

    PubMed

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming

    2015-11-25

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).

  18. Teeing Off With an Entirely New Material

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Liquidmetal(R) alloy is part of an entirely new class of vitrified metals, and is also known as metallic glass, or Vitreloy(R). A vitrified metal is a frozen liquid that fails to crystallize during solidification, unlike common metals such as titanium, steel, and aluminum. The technology takes the non-crystalline structure of glass and combines it with the properties of metal, a combination not found in nature, allowing for a product that offers the strength of a metal with the elasticity of a polymer. This unique technology is more than twice as strong as titanium and has a higher elastic limit. Liquidmetal(R) Golf presents this space-age development in a complete line golf clubs. Clubs made with this technology have a lower vibration response along with a softer, more solid feel. Because less energy is absorbed by the club's head upon impact, more energy is transferred directly to the ball. Vitreloy has potential commercial uses in sporting equipment: tennis rackets, bicycle frames, and baseball bats. The material may find applications in the medical industry for the manufacturing of surgical instruments and prosthetics. The Liquidmetal alloy is projected to replace many high performance materials, such as titanium, in the industries of aerospace, defense, military, automotives, medical instrumentation, and sporting goods

  19. Cryo-survival, fertilization and early embryonic development of vitrified oocytes derived from mice of different reproductive age

    PubMed Central

    Yan, Jie; Suzuki, Joao; Yu, Xiaomin; Kan, Frederick W. K.

    2010-01-01

    Purpose To evaluate the effect of female reproductive age on oocyte cryo-survival, fertilization and the subsequent embryonic development following vitrification using the mouse model in order to address the question of how maternal reproductive age is related to fertility preservation. Methods Oocytes were collected from mice of different reproductive age: (1) 8–10 weeks, (2) 16–20 weeks, (3) 32–36 weeks, and (4) 44–48 weeks. Following vitrification and warming, the oocytes in each group were assessed for cryo-survival, fertilization and embryonic development as well as for the quality of blastocysts. Fresh oocytes without undergoing vitrification were used in each age group as controls. Results The mean number of oocytes retrieved following superovulation was found to reduce significantly (P < 0.05) in mice from 32–36 weeks of age (18.1 ± 8.5) compared with 8–10 weeks of age (26.8 ± 9.8) and 16–20 weeks of age (23.9 ± 4.2) respectively. The cryo-survival rate of oocytes was reduced significantly (P < 0.05) in mice of 44–48 weeks of age (90.4% ± 7.9) compared with the other 3 groups (98.8% ± 2.1, 98.0% ± 3.3 and 98.5% ± 2.2, respectively). The cleavage rate of vitrified oocytes declined significantly following the increase in maternal age in mice of 32–36 weeks of age (69.7% ± 20.8) forward (63.6% ± 9.2). However, no significant difference in the cleavage rate was found among the control groups of different maternal ages. The rate of embryo development to the blastocyst stage in the vitrified oocytes also significantly declined following the increase in maternal age (71.8% ± 8.8, 66.4% ± 10.7, 64.2% ± 17.4 and 4.1% ± 8.3 respectively). There were no such differences in the rates of embryo development to the blastocyst stage among the control groups following the increase in maternal age (75.9% ± 12.2, 79.5% ± 28.9, 70.2% ± 17.4 and 69.3% ± 19.0 respectively). However, the quality of blastocysts produced from 32–36 weeks and 44–48 weeks of ages was significantly poor in term of total cell numbers and the ratio of inner cell mass(ICM) / trophectoderm (TE) compared to younger age in both vitrified and control groups Conclusions Cryo-survival of oocytes following vitrification and warming procedures is associated with female reproductive age. There is a more negative impact on the oocytes following vitrification and warming with the increase of maternal age. PMID:20640502

  20. F-35A Training Basing Environmental Impact Statement. Volume 1

    DTIC Science & Technology

    2012-06-01

    Global Change Research Program USMC U.S. Marine Corps USN U.S. Navy UTTR Utah Test and Training Range VCP vitrified clay pipe VFR Visual Flight...burning flare struck the ground, it could result in a fire, with potential environmental consequences. The design , manufacturing, and testing process...C–6, and C–7). Of these, 14 are considered to have the potential to be designated as an NRHP Missile Test Stands Historic District. Premilitary

  1. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    NASA Astrophysics Data System (ADS)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and particles such as clay). The surface of micro-particles captured by aerogel is often vitrified. The non-specific fluorescent light is often observed from vitrified materials. Therefore, we need to distinguish fluorescent light of stained microbes from that of vitrified ma-terials. We are going to use two types of differences (wavelength dependence and attenuation rate of fluorescent) between stained microbes with DNA-specific fluorescent dye and other ma-terials such as clay and aerogel. Fluorescent light of stained microbes shows attenuation faster than that of vitrified materials. Fluorescent light of vitrified materials shows broader range of emission spectra than that of stained microbes. In addition, we simulated the high-speed collision experiment of micro-particles to the aerogel with the two stage light gas gun (ca. 4 km/s). The micro-particles containing pre-stained and dried cells of Deinococcus radiodurans mixed with clay material were used for the collision experiment, and the captured particles were observed with fluorescence microscope. This experiment suggests that the captured microbes can be detected and be distinguished from clay materials. Reference [1] Yang, Y. et al. (2009) Biol. Sci. Space, 23, 151-163. [2] Yang, Y., et al. (2008) Biol. Sci. Space 22:18-25. [3] Yang, Y., et al. (2008) JAXA-RR-08-001: 34-42. [4] Yang, Y., et al. (2009) Internatl. J. Syst. Evol. Bacteriol., 59: 1862-1866. [5] Yang, Y. et al. (2010) Internatl. J. Syst. Evol. Bacteriol. (in press). [6] Arrhenius, S. (1908) Worlds in the Making-the Evolution of the Universe (translation to English by H. Borns) Harper and Brothers Publishers, New York. [7]Crick, F. (1981) Life Itself. Simon Schuster, New York. [8] W.L. Nicholson et al., Microbiol. Mol. Biol. Rev. 64 (2000) 548. [9] G. Horneck et al., Orig. Life Evol. Biosph. 31 (2001) 527. [10] Chyba, C. and C. Sagan (1992) Nature 355: 125-132. [11] Sandford, S. A., et al. (2006) Science 314: 1720-1724. [12] Yamagishi, A., et al. (2008) International Symposium on Space Technology and Science (ISTS) Web Paper Archives. 2008-k-05.

  2. Immobilization of Cr6+ in an urban and industrial soil from Mexico

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel Miguel; Ballesteros, Sergio; María Rincón, Jesus; Rincón-Mora, Beatriz; Pardo, Francisco; Bech, Jaume

    2017-04-01

    In Mexico, some areas are highly contaminated by heavy metals. Currently, there are more than 75,000 tons of untreated residues in the form of slags and sludges containing high concentrations of hexavalent chromium, Cr6+, in densely populated zones very near Mexico City. Capillary migration of Cr6+ and its concentration towards the surface at landfill or confinement sites is variable due to the presence of slowly soluble chromium salts and changes in meteorological conditions. Due to these phenomena, concentrations a few centimeters from the ground surface can vary from just a few parts per million to percentage levels that are many times greater than the concentration at the very confinement site. At these sites, chromate enrichment is evident at the subsoil surface or confinement areas as outcrops in the form of greenish-yellow stains extending along constructed walls and confinement installations or processing areas. This research describes the characteristics, formation mechanisms, and leaching of Cr6+ wastes that are contaminating a Mexican urban soil (Ballesteros et al, 2016). By means of a vitrification process, a method has been proposed that transforms Cr6+ to Cr3+ and achieves effective immobilization of this highly toxic industrial waste affecting an urban area. By various physicochemical techniques, such as XRD, DTA, and SEM/EDS, carrying out complete characterization of these new materials was possible. The final vitrified or glassy products of silicate composition lead to a glass ceramic material that is environmentally very stable, showing high chemical and mechanical stability where all Cr6+ was reduced to Cr3+ in the residual glass network, as well as other chromium oxidation states confined in the crystalline phases formed in the final glass-ceramic. The leaching tests on samples stabilized by vitrification have shown that the release of ions from the structure of these new materials was negligible, yielding values less than 0.5 mg/l with respect to current international and domestic environmental regulations. References Ballesteros; S, Rincón, J.Ma; Rincón-Mora, B.; Jordán, M.M. (2016). Vitrification of Urban Soil Contamination by Hexavalent Chromium. Journal of Geochemical Exploration. In press.

  3. Laser-assisted in vitro fertilization facilitates fertilization of vitrified-warmed C57BL/6 mouse oocytes with fresh and frozen-thawed spermatozoa, producing live pups.

    PubMed

    Woods, Stephanie E; Qi, Peimin; Rosalia, Elizabeth; Chavarria, Tony; Discua, Allan; Mkandawire, John; Fox, James G; García, Alexis

    2014-01-01

    The utility of cryopreserved mouse gametes for reproduction of transgenic mice depends on development of assisted reproductive technologies, including vitrification of unfertilized mouse oocytes. Due to hardening of the zona pellucida, spermatozoa are often unable to penetrate vitrified-warmed (V-W) oocytes. Laser-assisted in vitro fertilization (LAIVF) facilitates fertilization by allowing easier penetration of spermatozoa through a perforation in the zona. We investigated the efficiency of V-W C57BL/6NTac oocytes drilled by the XYClone laser, compared to fresh oocytes. By using DAP213 for cryoprotection, 83% (1,470/1,762) of vitrified oocytes were recovered after warming and 78% were viable. Four groups were evaluated for two-cell embryo and live offspring efficiency: 1) LAIVF using V-W oocytes, 2) LAIVF using fresh oocytes, 3) conventional IVF using V-W oocytes and 4) conventional IVF using fresh oocytes. First, the groups were tested using fresh C57BL/6NTac spermatozoa (74% motile, 15 million/ml). LAIVF markedly improved the two-cell embryo efficiency using both V-W (76%, 229/298) and fresh oocytes (69%, 135/197), compared to conventional IVF (7%, 12/182; 6%, 14/235, respectively). Then, frozen-thawed C57BL/6NTac spermatozoa (35% motile, 15 million/ml) were used and LAIVF was again found to enhance fertilization efficiency, with two-cell embryo rates of 87% (298/343) using V-W oocytes (P<0.05, compared to fresh spermatozoa), and 73% (195/266) using fresh oocytes. Conventional IVF with frozen-thawed spermatozoa using V-W (6%, 10/168) and fresh (5%, 15/323) oocytes produced few two-cell embryos. Although live offspring efficiency following embryo transfer was greater with conventional IVF (35%, 18/51; LAIVF: 6%, 50/784), advantage was seen with LAIVF in live offspring obtained from total oocytes (5%, 50/1,010; conventional IVF: 2%, 18/908). Our results demonstrated that zona-drilled V-W mouse oocytes can be used for IVF procedures using both fresh and frozen-thawed spermatozoa, producing live pups. The ability to cryopreserve mouse gametes for LAIVF may facilitate management of large-scale transgenic mouse production facilities.

  4. Vitrification of ovarian tissue of Brazilian North-eastern donkeys (Equus asinus) using different cryoprotectants.

    PubMed

    Lopes, Kátia Regina F; Praxedes, Erica Camila G; Campos, Livia B; Bezerra, Marcelo B; Lima, Gabriela L; Saraiva, Márcia Viviane A; Silva, Alexandre R

    2018-05-29

    The aim of this study was to assess a vitrification protocol for asinine ovarian tissue, to preserve preantral follicles using different cryoprotectant solutions, composed of various concentrations (EG 3 M or 6 M) of dimethyl sulfoxide or ethylene glycol isolate, or as a combination (DMSO 3 M + EG 3 M). Ten pairs of ovaries from Brazilian north-eastern breed jennies were obtained through videolaparoscopy, and cortical fragments were submitted to a solid-surface vitrification (SSV) using each cryoprotectant solution. The ovarian tissue was evaluated for follicular morphology and viability, DNA integrity (TUNEL technique) and the presence of nucleolar organizing regions in granulosa cells (AgNOR technique). After thawing, the percentage of normal preantral follicles was significantly reduced in the vitrified ovarian tissue fragments compared to the fresh control (p < 0.05). When comparing treatments, the use of DMSO 3 M (81.7 ± 37.5%), EG 3 M (83.7 ± 27.4%) and the combination of both DMSO 3 M + EG 3 M (81.8 ± 46.8%) allowed a greater percentage of follicular survival in contrast to DMSO 6 M (69.8 ± 16.5%) and EG 6 M (72.3 ± 18.0%; p < 0.05). When vitrified using the DMSO + EG combination, a higher percentage (62.5 ± 29.1%) of viable follicles (trypan blue) was observed in relation to the other vitrification treatments (p < 0.05). The TUNEL technique identified that all treatments tested showed DNA fragmentation in the follicular cells, except in the case of the DMSO 3 M + EG 3 M treatment. When evaluating the presence of NORs, no significant differences were observed in the amount of NORs between the fresh and vitrified groups using DMSO 3 M + EG 3 M (p > 0.05). We concluded that the combination DMSO 3 M + EG was more efficient for the vitrification of ovarian tissue taken from Equus asinus, allowing adequate preservation of PAFs morphology, viability, DNA integrity and cell proliferative capacity. © 2018 Blackwell Verlag GmbH.

  5. Perspectives of Future R and D on HLW Disposal in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steininger, W.J.

    2008-07-01

    The 5. Energy Research Program of the Federal Government 'Innovation and New Technology' is the general framework for R and D activities in radioactive waste disposal. The Ministry of Economics and Technology (BMWi), the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the Ministry of Education and Research (BMBF) apply the Research Program concerning their respective responsibilities and competences. With regard to the Government's obligation to provide repositories for HLW (spent fuel and vitrified HAW) radioactive waste basic and applied R and D is needed in order to make adequate knowledge available to implementers, decision makersmore » and stakeholders in general. Non-site specific R and D projects are funded by BMWi on the basis of its Research Concept. In the first stage (1998 -2001) most R and D issues were focused on R and D activities related to HLW disposal in rock salt. By that time the R and D program had to be revised and some prioritization was demanded due to changes in politics. In the current version (2001 -2006) emphasize was put on non-saline rocks. The current Research Concept of BMWi is presently subjected to a sort of revision, evaluation, and discussion, inter alia, by experts from several German research institutions. This activity is of special importance against the background of streamlining and focusing the research activities to future demands, priorities and perspectives with regard to the salt concept and the option of disposing of HLW in argillaceous media. Because the status of knowledge on disposal in rock salt is well advanced, it is necessary to take stock of the current state-of-the-art. In this framework some key projects are being currently carried out. The results may contribute to future decisions to be made in Germany with respect to HLW disposal. The first project deals with the development of an advanced safety concept for a HLW waste repository in rock salt. The second project (also carried out in the frame of the 6. Framework Program of the European Commission) aims at completing and optimizing the direct disposal concept for spent fuel by a full-scale demonstration of the technology of emplacement in vertical boreholes. The third project is devoted to the development of a reference concept to dispose of HLW in deep geological repository in clay in Germany. In the following a brief overview is given on the achievements, the projects, and ideas about the consequences for HLW disposal in Germany. (author)« less

  6. Time-lapse monitoring of zona pellucida-free embryos obtained through in vitro fertilization: a retrospective case series.

    PubMed

    Bodri, Daniel; Kato, Ryutaro; Kondo, Masae; Hosomi, Naoko; Katsumata, Yoshinari; Kawachiya, Satoshi; Matsumoto, Tsunekazu

    2015-05-01

    To report time-lapse monitoring of human oocytes in which the damaged zona pellucida was removed, producing zona-free (ZF) oocytes that were cultured until the blastocyst stage in time-lapse incubators. Retrospective case series. Private infertility clinic. Infertile patients (n = 32) undergoing minimal ovarian stimulation or natural cycle IVF treatment between October 2012 and June 2014. Intracytoplasmic sperm injection (ICSI) fertilization of ZF oocytes, prolonged embryo culture in time-lapse incubators, elective vitrification, and subsequent single vitrified-thawed blastocyst transfer (SVBT). Rate of fertilization, cleavage and blastocyst development, live-birth rate per SVBT cycle. In spite of advanced maternal age (39 ± 4.2; range, 30-46 years), good fertilization (94%), cleavage (94%), and blastocyst development rates (38%) were reached after fertilization and culturing of ZF oocytes/embryos. All thawed ZF blastocysts survived, and up to this date seven SVBT transfers were performed, yielding three (43%) term live births with healthy newborns. Time-lapse imagery gives a unique insight into the dynamics of embryo development in ZF embryos. Moreover, our case series demonstrate that an oocyte with a damaged zona pellucida that has been removed could be successfully fertilized with ICSI, cultured until blastocyst stage in a time-lapse incubator and vitrified electively for subsequent use. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Positive effect of resveratrol against preantral follicles degeneration after ovarian tissue vitrification.

    PubMed

    Rocha, Carina Diniz; Soares, Mayara Mafra; de Cássia Antonino, Deize; Júnior, Jairo Melo; Freitas Mohallem, Renata Ferreira; Ribeiro Rodrigues, Ana Paula; Figueiredo, José Ricardo; Beletti, Marcelo Emílio; Jacomini, José Octavio; Alves, Benner Geraldo; Alves, Kele Amaral

    2018-07-01

    This study aimed to evaluate whether the addition of resveratrol to vitrification/thawing medium improves the cryotolerance of preantral follicles enclosed in bovine ovarian fragments. Ovarian fragments were obtained from bovine fetuses and distributed to the following groups: fresh ovarian fragments (control), vitrified (VIT), and vitrified with resveratrol (VIT + RESV). Overall, the mean percentage of normal follicles was greater (P < 0.05) in the VIT + RESV compared to the VIT group. Moreover, the probability of finding normal follicles was 2.5 greater (P < 0.05) in the VIT + RESV group. In class comparison, the primordial and transitional follicles have ∼3.0 times (P < 0.05) greater odds of being normal after vitrification compared to the secondary follicles. Additionally, a negative association (P < 0.05) was observed between the proportion of viable follicles and the stage of follicular development. ROS levels were similar (P > 0.05) between the VIT and VIT + RESV groups, and both were lower (P < 0.05) than the control group. The tissue viability in the VIT + RESV group was similar (P > 0.05) to the control group. In summary, the resveratrol provided greater ovarian tissue viability and has a positive effect against degeneration of preantral follicles enclosed in ovarian fragments. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts

    PubMed Central

    Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L.; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun (Cindy)

    2016-01-01

    High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes. PMID:26883277

  9. Vitrification, a complementary cryopreservation method for Betula pendula Roth.

    PubMed

    Ryynänen, Leena; Aronen, Tuija

    2005-10-01

    Cryopreservation--the storage of plant germplasm in liquid nitrogen--provides a modern tool for the conservation of forest genetic resources. It is especially applicable for species in which their micropropagation can be initiated from mature tree buds, e.g., silver birch (Betula pendula Roth), thus enabling the conservation of specific genotypes: endangered elite trees and trees expressing rare, valuable or interesting characteristics. The aim of the present study was to develop a vitrification protocol applicable for the cryostorage of silver birch that avoids the use of expensive sophisticated freezers. The average recovery of vitrified axillary silver birch buds was 71% using a protocol that started with four-week cold hardening of bud-bearing in vitro donor shoots on modified medium under short day conditions. After cold hardening, the excised axillary buds were precultivated on medium containing 0.7 M sucrose for 24 h under the same conditions as during the cold hardening period. Following preculture, the buds were treated with loading solution containing 2M glycerol and 0.4 M sucrose for 20 min at room temperature. Finally, the buds were dehydrated with PVS2 cryoprotectant for 120 min followed by direct immersion in liquid nitrogen. According to the morphology and the RAPD profiles of regenerated plants in the greenhouse, the genetic fidelity of the vitrified birch material seems to have remained unchanged.

  10. Successful slush nitrogen vitrification of human ovarian tissue.

    PubMed

    Talevi, Riccardo; Barbato, Vincenza; Fiorentino, Ilaria; Braun, Sabrina; De Stefano, Cristofaro; Ferraro, Raffaele; Sudhakaran, Sam; Gualtieri, Roberto

    2016-06-01

    To study whether slush nitrogen vitrification improves the preservation of human ovarian tissue. Control vs. treatment study. University research laboratory. Ovarian biopsies collected from nine women (aged 14-35 years) during laparoscopic surgery for benign gynecologic conditions. None. Ovarian cortical strips of 2 × 5 × 1 mm were vitrified with liquid or slush nitrogen. Fresh and vitrified cortical strips were analyzed for cryodamage and viability under light, confocal, and transmission electron microscopy. Compared with liquid nitrogen, vitrification with slush nitrogen preserves [1] follicle quality (grade 1 follicles: fresh control, 50%; liquid nitrogen, 27%; slush nitrogen, 48%); [2] granulosa cell ultrastructure (intact cells: fresh control, 92%; liquid nitrogen, 45%; slush nitrogen, 73%), stromal cell ultrastructure (intact cells: fresh control, 59.8%; liquid nitrogen, 24%; slush nitrogen, 48.7%), and DNA integrity (TUNEL-positive cells: fresh control, 0.5%; liquid nitrogen, 2.3%; slush nitrogen, 0.4%); and [3] oocyte, granulosa, and stromal cell viability (oocyte: fresh control, 90%; liquid nitrogen, 63%; slush nitrogen, 87%; granulosa cells: fresh control, 93%; liquid nitrogen, 53%; slush nitrogen, 81%; stromal cells: fresh control, 63%; liquid nitrogen, 30%; slush nitrogen, 52%). The histology, ultrastructure, and viability of follicles and stromal cells are better preserved after vitrification with slush nitrogen compared with liquid nitrogen. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone

    PubMed Central

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects. PMID:26539488

  12. Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice.

    PubMed

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi

    2017-05-15

    Robust reproductive engineering techniques are required for the efficient and rapid production of genetically modified mice. We have reported the efficient production of genome-edited mice using reproductive engineering techniques, such as ultra-superovulation, in vitro fertilization (IVF) and vitrification/warming of zygotes. We usually use vitrified/warmed fertilized oocytes created by IVF for microinjection because of work efficiency and flexible scheduling. Here, we investigated whether the culture time of zygotes before microinjection influences the efficiency of producing knock-in mice. Knock-in mice were generated using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system and single-stranded oligodeoxynucleotide (ssODN) or PITCh (Precise Integration into Target Chromosome) system, a method of integrating a donor vector assisted by microhomology-mediated end-joining. The cryopreserved fertilized oocytes were warmed, cultured for several hours and microinjected at different timings. Microinjection was performed with Cas9 protein, guide RNA(s), and an ssODN or PITCh donor plasmid for the ssODN knock-in and the PITCh knock-in, respectively. Different production efficiencies of knock-in mice were observed by changing the timing of microinjection. Our study provides useful information for the CRISPR-Cas9-based generation of knock-in mice. © 2017. Published by The Company of Biologists Ltd.

  13. The influence of cumulus cells during in vitro fertilization of buffalo (Bubalus bubalis) denuded oocytes that have undergone vitrification.

    PubMed

    Attanasio, Laura; De Rosa, Anna; De Blasi, Marina; Neglia, Gianluca; Zicarelli, Luigi; Campanile, Giuseppe; Gasparrini, Bianca

    2010-11-01

    The aim of this work was to evaluate whether providing a support of cumulus cells during IVF of buffalo denuded oocytes submitted to vitrification-warming enhances their fertilizing ability. In vitro matured denuded oocytes were vitrified by Cryotop in 20% EG + 20% of DMSO and 0.5 M sucrose and warmed into decreasing concentrations of sucrose (1.25 M-0.3M). Oocytes that survived vitrification were fertilized: 1) in the absence of a somatic support (DOs); 2) in the presence of bovine cumulus cells in suspension (DOs+susp); 3) on a bovine cumulus monolayer (DOs+monol); and 4) with intact bovine COCs in a 1:1 ratio (DOs+COCs). In vitro matured oocytes were fertilized and cultured to the blastocyst stage as a control. An increased cleavage rate was obtained from DOs+COCs (60.9%) compared to DOs, DOs+susp (43.6 and 38.4, respectively; P < 0.01) and DOs+monol (47.5%; P < 0.05). Interestingly, cleavage rate of DOs+COCs was similar to that of fresh control oocytes (67.8%). However, development to blastocysts significantly decreased in all vitrification groups compared to the control (P < 0.01). In conclusion the co-culture with intact COCs during IVF completely restores fertilizing capability of buffalo denuded vitrified oocytes, without improving blastocyst development. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107 day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing.« less

  15. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified-warmed ovarian tissue survival.

    PubMed

    Youm, Hye Won; Lee, Jung Ryeol; Lee, Jaewang; Jee, Byung Chul; Suh, Chang Suk; Kim, Seok Hyun

    2014-04-01

    What is the optimal vitrification protocol according to the cryoprotective agent (CPA) for ovarian tissue (OT) cryopreservation? The two-step protocol with 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for 10 min then 20% EG, 20% DMSO and 0.5 M sucrose for 5 min showed the best results in mouse OT vitrification. Establishing the optimal cryopreservation protocol is one of the most important steps to improve OT survival. However, only a few studies have compared vitrification protocols with different CPAs and investigated the effect of in vitro culture (IVC) on vitrified-warmed OT survival. Some recent papers proposed that a combination of CPAs has less toxicity than one type of CPA. However, the efficacy of different types and concentrations of CPA are not yet well documented. A total of 644 ovaries were collected from 4-week-old BDF1 mice, of which 571 ovaries were randomly assigned to 8 groups and vitrified using different protocols according to CPA composition and the remaining 73 ovaries were used as controls. After warming, each of the eight groups of ovaries was further randomly divided into four subgroups and in vitro cultured for 0, 0.5, 2 and 4 h, respectively. Ovaries of the best two groups among the eight groups were autotransplanted after IVC. The CPA solutions for the eight groups were composed of EDS, ES, ED, EPS, EF, EFS, E and EP, respectively (E, EG; D, DMSO; P, propanediol; S, sucrose; F, Ficoll). The IVC medium was composed of α-minimal essential medium, 10% fetal bovine serum and 10 mIU/ml follicle-stimulating hormone (FSH). Autotransplantation of vitrified-warmed OTs after IVC (0 to 4 h) using the EDS or ES protocol was performed, and the grafts were recovered after 3 weeks. Ovarian follicles were assessed for morphology, apoptosis, proliferation and FSH level. The percentages of the morphologically intact (G1) and apoptotic follicles in each group at 0, 0.5, 2 and 4 h of IVC were compared. For G1 follicles at 0 and 4 h of IVC, the EDS group showed the best results at 63.8 and 46.6%, respectively, whereas the EP group showed the worst results at 42.2 and 12.8%, respectively. The apoptotic follicle ratio was lowest in the EDS group at 0 h (8.1%) and 0.5 h (12.7%) of IVC. All of the eight groups showed significant decreases in G1 follicles and increases in apoptotic follicles as IVC duration progressed. After autotransplantation, the EDS 0 h group showed a significantly higher G1 percentage (84.9%) than did the other groups (42.4-58.8%), while only the ES 4 h group showed a significant decrease in the number of proliferative cells (80.6%, 87.6-92.9%). However, no significant differences in apoptotic rates and FSH levels were observed between the groups after autotransplantation. The limitation of this study was the absence of in vitro fertilization using oocytes obtained from OT grafts, which should be performed to confirm the outcomes of ovarian cryopreservation and transplantation. We compared eight vitrification protocols according to CPA composition and found the EDS protocol to be the optimal method among them. The data presented herein will help improve OT cryopreservation protocols for humans or other animals.

  16. The Preparation and Characterization of INTEC HAW Phase I Composition Variation Study Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C. A.; Peeler, D. K.; Piepel, G. F.

    1999-03-01

    A glass composition variation study (CVS) is in progress to define formulations for the vitrification of high activity waste (HAW) proposed to be separated from dissolved calcine stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Estimates of calcine and HAW compositions prepared in FY97 were used to define test matrix glasses. The HAW composition is of particular interest because high aluminum, zirconium, phosphorous and potassium, and low iron and sodium content places it outside the realm of vitrification experience in the Department of Energy (DOE) complex. Through application of statistical techniques, a test matrix was defined for Phasemore » 1 of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to homogeneity, viscosity, liquidus temperature (TL), and leaching response when subjected to the Product Consistency Test (PCT). Based on the properties determined, certain formulations appear suitable for further development including use in planning Phase 2 of the study. It is recommended that glasses to be investigated in Phase 2 be limited to 3-5 wt % phosphate. The results of characterizing the Phase 1 glasses are presented in this document. A full analysis of the composition-property relationships of glasses being developed for immobilizing HAWs will be performing at the completion of CVS phases. This analysis will be needed for the optimization of the glass formulations of vitrifying HAW. Contributions were made to this document by personnel working at the INEEL, Pacific Northwest National Laboratories (PNNL), and the Savannah River Technology Center (SRTC).« less

  17. Distribution coefficient values describing iodine, neptunium, selenium, technetium, and uranium sorption to Hanford sediments. Supplement 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.I.; Seme, R.J.

    1995-03-01

    Burial of vitrified low-level waste (LLW) in the vadose zone of the Hanford Site is being considered as a long-term disposal option. Regulations dealing with LLW disposal require that performance assessment (PA) analyses be conducted. Preliminary modeling efforts for the Hanford Site LLW PA were conducted to evaluate the potential health risk of a number of radionuclides, including Ac, Am, C, Ce, Cm, Co, Cs, Eu, 1, Nb, Ni, Np, Pa, Pb, Pu, Ra, Ru, Se, Sn, Sr, Tc, Th, U, and Zr (Piepho et al. 1994). The radionuclides, {sup 129}I, {sup 237}Np, {sup 79}Se, {sup 99}Tc, and {sup 234,235,238}U,more » were identified as posing the greatest potential health hazard. It was also determined that the outcome of these simulations were very sensitive to the parameter describing the extent to which radionuclides sorbed to the subsurface matrix, described as a distribution coefficient (K{sub d}). The distribution coefficient is a ratio of the radionuclide concentration associated with the solid phase to that in the liquid phase. The literature-derived K{sub d} values used in these simulations were conservative, i.e., lowest values within the range of reasonable values used to provide an estimate of the maximum health threat. Thus, these preliminary modeling results reflect a conservative estimate rather than a best estimate of what is likely to occur. The potential problem with providing only a conservative estimate is that it may mislead us into directing resources to resolve nonexisting problems.« less

  18. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was anmore » investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.« less

  19. Blood Banking in Living Droplets

    PubMed Central

    Shao, Lei; Zhang, Xiaohui; Xu, Feng; Song, YoungSeok; Keles, Hasan Onur; Matloff, Laura; Markel, Jordan; Demirci, Utkan

    2011-01-01

    Blood banking has a broad public health impact influencing millions of lives daily. It could potentially benefit from emerging biopreservation technologies. However, although vitrification has shown advantages over traditional cryopreservation techniques, it has not been incorporated into transfusion medicine mainly due to throughput challenges. Here, we present a scalable method that can vitrify red blood cells in microdroplets. This approach enables the vitrification of large volumes of blood in a short amount of time, and makes it a viable and scalable biotechnology tool for blood cryopreservation. PMID:21412411

  20. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the releasemore » rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change the alteration mechanisms. The recommended characterization tests are single-pass flow-through tests using a batch reactor design, Accelerated and service conditions tests include product consistency and pressurized unsaturated flow (PUF) tests. Nonradioactive glasses will be used for the majority of the laboratory testing (-80%), with the remainder performed with glasses containing a selected set of key radionuclides. Additionally, a series of PUF experiments with a natural analog of basaltic glass is recommended to confirm that the alteration products observed under accelerated conditions in the PUF tests are similar to those found associated with the natural analog. This will provide additional confidence in using the PUF test results to infer long-term corrosion behavior. Field tests are proposed as a unique way to validate the glass corrosion and contaminant transport models being used in the performance assessment. To better control the test conditions, the field tests are to be performed in lysimeters (corrugated steel containers buried flush with the ground surface). Lysimeters provide a way to combine a glass, Hanford soil, and perhaps other engineered materials in a well-controlled test, but on a scale that is not practicable in the laboratory. The recommended field tests include some experiments where a steady flow rate of water is artificially applied. These tests use a glass designed to have a high corrosion rate so that it is easier to monitor contaminant release and transport. Existing lysimeters at the Hanford Site can be used for these experiments or new lysimeters that have been equipped with the latest in monitoring equipment and located near the proposed disposal site.« less

  1. Simple, efficient and successful vitrification of bovine blastocysts using electron microscope grids.

    PubMed

    Park, S P; Kim, E Y; Kim, D I; Park, N H; Won, Y S; Yoon, S H; Chung, K S; Lim, J H

    1999-11-01

    This study demonstrates that higher survival of vitrified-thawed bovine blastocysts can be obtained using electron microscope (EM) grids as embryo containers at freezing, rather than plastic straws. In-vitro produced day 7 bovine blastocysts after in-vitro fertilization (IVF) were vitrified on grids or in straws with EFS40 freezing solution and their survival after thawing was compared. Embryo survival was assessed as re-expanded and hatched rates at 24 and 48 h after thawing respectively. When the effects of exposure to vitrification solution and chilling injury from the freezing procedure were examined, embryo survival in the exposure group (24 h: 100, 48 h: 73.3%) was not different compared with that in the control group (100, 84.4%). After vitrification, the hatched rate of the EM grid group 48 h after thawing (67.8%) was significantly higher than that of the straw group (53.3%) (P < 0.05). Fast developing embryos (expanded blastocyst and early hatching blastocyst stage) showed better resistance to freezing than delayed ones (early blastocyst stage), irrespective of embryo containers (early: 24 h, 57.1 and 48 h, 24.4%; expanded: 84.7 and 60.6%; early hatching: 91.7 and 80.0%) (P < 0.001). When using expanded and early hatching blastocysts, embryo survival rates in the vitrification-EM grid group (67.8, 95.0% respectively) were significantly higher than that of the vitrification-straw group (53.0, 65.0%) at 48 h.

  2. Minimal volume vitrification of epididymal spermatozoa results in successful in vitro fertilization and embryo development in mice

    PubMed Central

    Horta, Fabrizzio; Alzobi, Hamida; Jitanantawittaya, Sutthipat; Catt, Sally; Chen, Penny; Pangestu, Mulyoto; Temple-Smith, Peter

    2017-01-01

    This study compared three cryopreservation protocols on sperm functions, IVF outcomes, and embryo development. Epididymal spermatozoa cryopreserved using slow-cooling (18% w/v raffinose, RS-C) were compared with spermatozoa vitrified using 0.25 M sucrose (SV) or 18% w/v raffinose (RV). The motility, vitality, and DNA damage (TUNEL assay) of fresh control (FC) spermatozoa were compared with post-thawed or warmed RS-C, RV, and SV samples. Mouse oocytes (n = 267) were randomly assigned into three groups for insemination: RV (n = 102), RS-C (n = 86), and FC (n = 79). The number and the proportion of two-cell embryos and blastocysts from each treatment were assessed. Sperm motility (P < 0.01) and vitality (P < 0.05) were significantly reduced after vitrification compared with slow-cooled spermatozoa. However, DNA fragmentation was significantly reduced in spermatozoa vitrified using sucrose (15 ± 1.8% [SV] vs 26 ± 2.8% [RV] and 27 ± 1.2% [RS-C]; P < 0.01). Although the number of two-cell embryos produced by RS-C, RV, and FC spermatozoa was not significantly different, the number of blastocysts produced from two-cell embryos using RV spermatozoa was significantly higher than FC spermatozoa (P = 0.0053). This simple, small volume vitrification protocol and standard insemination method allows successful embryo production from small numbers of epididymal spermatozoa and may be applied clinically to circumvent the need for ICSI, which has the disadvantage of bypassing sperm selection. PMID:27427551

  3. Influence of Alkali Resistant (Ar) Fibreglass in Porcelain Clay for Manufacturing Vitrified Clay Pipes

    NASA Astrophysics Data System (ADS)

    Ikhmal Hanapi, Muhammad; Ahmad, Sufizar; Taib, Hariati; Ismail, Al Emran; Nasrull Abdol Rahman, Mohd; Salleh, Salihatun Md; Sadikin, Azmahani; Mahzan, Shahruddin

    2017-10-01

    The aim of this work is to determine the characteristics of porcelain ceramic with influence of milled Alkali Resistant (AR) fiberglass for manufacturing vitrified clay pipes. In this study, raw materials consist of porcelain clay and AR fiberglass were refined into powders less than 90μm. Subsequently, these samples were compacted into cylindrical pellet for chemical analysis using X-Ray Fluorescence (XRF). The ceramic sample was produced by mixing different weight percentage of AR glass to porcelain ceramic with 3 wt%, 6 wt%, 9 wt% and 12 wt%. Subsequently, the sample was compacted with 3 ton of pressure load and sintered at 900 °C, 1000 °C, 1100 °C and 1200 °C. The phase identification by using X-Ray Diffraction (XRD) and microstructural analysis were performed for the sintered sample. Chemical analysis revealed that the significant element for all raw material are SiO2, Al2O3, Na2O and K2O. Phase identification analysis shown that sample sintered at 1000 °C produces quartz (SiO2), berlinite (AlPO4), albite (NaAlSi3O8) and calcium-magnesium-aluminum-silicate (CaMgAlSiO). The formation of primary mullite was observed in sample sintered at 1100 °C. The image of microstructural morphology denoted that the formation of glassy phase with decreasing amount of void when sintering temperature and addition of AR glass were increased, which correspond well to phase identification analysis.

  4. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  5. Wistar rats immature testicular tissue vitrification and heterotopic grafting.

    PubMed

    Benvenutti, Larissa; Salvador, Rafael Alonso; Til, David; Senn, Alfred Paul; Tames, David Rivero; Amaral, Nicole Louise Lângaro; Amaral, Vera Lúcia Lângaro

    2018-04-25

    To evaluate the efficiency of two vitrification protocols for rat immature testicular tissue and heterotopic transplantation. Twenty-four pre-pubertal Wistar rats were divided into three groups (n=8). After orchiectomy, testicular fragments (3mm) from Groups 1 and 2 were vitrified with different cryoprotectant concentration solutions, using sterile inoculation loops as support. After warming up, the fragments were submitted to cell viability assessment by Trypan blue and histological evaluation. Vitrified (Groups 1 and 2) and fresh (Group 3) fragments were grafted to the animals periauricular region. After 8 weeks of grafting, the implant site was histologically analyzed. The viability recovery rate from Group 1 (72.09%) was higher (p=0.02) than that from Group 2 (59.19%). Histological analysis showed similar tubular integrity between fresh fragments from Groups 1 and 3. Group 2 samples presented lower tubular integrity. We ran histological analyses in the grafts from the Groups. In all groups, it was possible to see the implant site, however, no fragment of testicular tissue or signs of inflammation were histologically found in most samples from Groups 1 and 3. In one sample from Group 2, we found degenerated seminiferous tubules with necrosis and signs of an inflammatory process. In another sample from Group 2, we found seminiferous tubules in the implant site. The vitrification of pre-pubertal testicular tissue of rats showed little damage to cell viability through histological analysis when we used cryoprotectants in a lower concentration. Heterotopic transplantation could not preserve the structural organization of the testicular tissue.

  6. Incipient Melt Formation and Devitrification at the Wanapitei Impact Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Schuraytz, B. C.; Crabtree, D.

    1997-01-01

    The Wanapitei impact structure is approximately 8 km in diameter and lies within Wanapitei Lake, approximately 34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of approximately 50-60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 C and 800 C.

  7. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This indicates that the bead slurry would not require higher flows rates than frit slurry at DWPF during transfers. Another key finding was that the pump impeller was not significantly damaged by the bead slurry, while the Frit 320 slurry rapidly destroyed the impeller. Evidence of this was first observed when black particles were seen in the Frit 320 slurry being recirculated and then confirmed by a post-test inspection of the impeller. Finally, the pumping of bead slurry could be recovered even if flow is stopped. The Frit 320 slurry could not be restarted after stopping flow due to the nature of the frit to pack tightly when settled. Beads were shown to represent a significant process improvement versus frit for the DWPF process in lowering yield stress of the melter feed. Lower erosion of process equipment is another expected benefit.« less

  8. Rewriting magnetic phase change memory by laser heating

    NASA Astrophysics Data System (ADS)

    Timmerwilke, John; Liou, Sy-Hwang; Cheng, Shu Fan; Edelstein, Alan S.

    2016-04-01

    Magnetic phase change memory (MAG PCM) consists of bits with different magnetic permeability values. The bits are read by measuring their effect on a magnetic probe field. Previously low permeability crystalline bits had been written in high permeability amorphous films of Metglas via laser heating. Here data is presented showing that by applying short laser pulses with the appropriate power to previously crystallized regions they can first be vitrified and then again crystallized. Thus, MAG PCM is rewriteable. Technical issues in processing the bits are discussed and results on thermal modeling are presented.

  9. Effect of CO2 laser on Class V cavities of human molar teeth under a scanning electron microscope.

    PubMed

    Watanabe, I; Lopes, R A; Brugnera, A; Katayama, A Y; Gardini, A E

    1996-01-01

    The purpose of this study was to evaluate the effects of CO2 laser on dentin of class V cavities of extracted human molar teeth using a scanning electron microscope. SEM showed a smooth area with concentric lines formed by melting with subsequent recrystallization of dentin, areas of granulation, vitrified surface, numerous cracks, and irregular areas of descamative dentin. These data indicate that CO2 laser (4 and 6 watts) produces dentin alterations and limit its clinical applications.

  10. ADS Model in the TIRELIRE-STRATEGIE Fuel Cycle Simulation Code Application to Minor Actinides Transmutation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzenne, Claude; Massara, Simone; Tetart, Philippe

    2006-07-01

    Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less

  11. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.

    2008-02-22

    The GeoMelt® In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILLmore » Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV™ melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.« less

  12. Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification.

    PubMed

    Ehrlich, Lili E; Fahy, Gregory M; Wowk, Brian G; Malen, Jonathan A; Rabin, Yoed

    2018-01-01

    This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below -100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.

  13. The effect of abrading and cutting instruments on machinability of dental ceramics.

    PubMed

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  14. Successful vitrification of human amnion-derived mesenchymal stem cells.

    PubMed

    Moon, Jeong Hee; Lee, Jung Ryeol; Jee, Byung Chul; Suh, Chang Suk; Kim, Seok Hyun; Lim, Hyun Jung; Kim, Hae Kwon

    2008-08-01

    A cryopreservation protocol for human amnion-derived mesenchymal stem cells (HAMs) is required because these cells cannot survive for long periods in culture. The aim of this study was to determine whether vitrification is a useful freezing method for storage of HAMs. HAMs were cryopreserved using vitrification method. The morphology and viability of thawed HAMs was evaluated by Trypan Blue staining. The expression of several embryonic stem cell (ESC) markers was evaluated using flow cytometry, RT-PCR and immunocytochemistry. Von Kossa, Oil Red O and Alcian Blue staining were used to asses the differentiation potential of thawed HAMs. The post-thawing viability of HAMs was 84.3 +/- 3.2% (Mean +/- SD, n = 10). The thawed HAMs showed morphological characteristics indistinguishable from the non-vitrified fresh HAMs. The expression of surface antigens (strong positive for CD44, CD49d, CD59, CD90, CD105 and HLA-ABC; weak positive for HLA-G; negative for CD31, CD34, CD45, CD106, CD117 and HLA-DR) and the expression of ESC markers [CK18, fibroblast growth factor-5, GATA-4, neural cell adhesion molecule, Nestin, Oct-4, stem cell factor, HLA-ABC, Vimentin, bone morphogenetic protein (BMP) 4, hepatocyte nuclear factor 4 alpha (HNF-4 alpha), Pax-6, alpha-fetoprotein, Brachyury, BMP-2, TRA-1-60, stage-specific embryonic antigen (SSEA-3, SSEA-4)] were maintained in the vitrified-thawed HAMs. The thawed HAMs retained ability to differentiate into osteoblasts, adipocytes and chondrocytes under appropriate culture conditions. Our results suggest that vitrification is a reliable and effective method for cryopreservation of HAMs.

  15. The evaluation of xenotransplantation of feline ovarian tissue vitrified by needle immersed vitrification technique into male immunodeficient mice.

    PubMed

    Demirel, Mürşide Ayşe; Acar, Duygu Baki; Ekim, Burcu; Çelikkan, Ferda Topal; Alkan, Kübra Karakaş; Salar, Seçkin; Erdemli, Esra Atabenli; Özkavukçu, Sinan; Yar, Seda Sağlam; Kanca, Halit; Baştan, Ayhan

    2018-03-01

    In this study, the efficiency of the "Needle Immersed Vitrification" technique was tested on cryopreserved feline ovarian tissue. For vitrification, ovarian fragments (0.5-1.5 mm 2 ) from each ovary were collected; the grafts were exposed to 7.5-15% ethylene glycol and 7.5-15% dimethyl sulfoxide at room temperature and stored in liquid nitrogen at least 1 week. Morphologic examinations, expression of genes such as B cell lymphoma 2, B-cell lymphoma-2-associated X protein, Bone morphogenetic protein 15, zone of polarizing activity, zona pellucida C protein and DNA (cytosine-5)-methyltransferase 1, ultrastructural analysis and viability tests were carried out from collected grafts. Light microscopy examinations revealed the percentage of morphologically normal primordial follicles in a fresh group which was significantly higher than the treatment groups (p < 0.001). Terminal deoxynucleotidyl transferase dUTP nick end labeling and anti-caspase-3 staining observed in oocytes, follicle cells, interstitial tissue showed higher rates of apoptosis for post-vitrification and -transplantation groups than freshly grafted ovarian tissues. Furthermore, we observed significant downregulation of zone of polarizing activity and zona pellucida C protein gene expression in vitrified ovarian tissue grafts than in the fresh grafts (p < 0.05). In conclusion, we suggest that the needle immersed vitrification method is a convenient, cheap, and feasible vitrification method for cat ovarian tissues. However, further studies need to be performed to determine more optimal vitrification solutions and equilibration times for the needle immersed vitrification method in order to adapt it for cat ovaries.

  16. Controlled environment vitrification system for preparation of liquids

    DOEpatents

    Bellare, Jayesh R.; Davis, Howard T.; Scriven, II, L. Edward; Talmon, Yeshayahu

    1988-01-01

    A system for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath.

  17. Controlled environment vitrification system for preparation of liquids

    DOEpatents

    Bellare, J.R.; Davis, H.T.; Scriven, L.E. II; Talmon, Y.

    1988-06-28

    A system is described for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath. 7 figs.

  18. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy.

    PubMed

    Abir, R; Ben-Aharon, I; Garor, R; Yaniv, I; Ash, S; Stemmer, S M; Ben-Haroush, A; Freud, E; Kravarusic, D; Sapir, O; Fisch, B

    2016-04-01

    Is a protocol that combines in vitro maturation of germinal vesicle-stage oocytes and their vitrification with freezing of cortical ovarian tissue feasible for use in fertility preservation for both chemotherapy-naive paediatric patients as well as patients after initiation of cancer therapy? Follicle-containing ovarian tissue as well as oocytes that can undergo maturation in vitro can be obtained from paediatric patients (including prepubertal girls) both before and after cancer therapy. Anticancer therapy reduces the number of follicles/oocytes but this effect is less severe in young patients, particularly the paediatric age group. Autotransplantation of ovarian tissue has yielded to date 60 live births, including one from tissue that was cryostored in adolescence. However, it is assumed that autografting cryopreserved-thawed ovarian cortical tissue poses a risk of reseeding the malignancy. Immature oocytes can be collected from very young girls without hormonal stimulation and then matured in vitro and vitrified. We have previously shown that there is no difference in the number of ovarian cortical follicles between paediatric patients before and after chemotherapy. A prospective study was conducted in a cohort of 42 paediatric females with cancer (before and after therapy initiation) who underwent fertility preservation procedures in 2007-2014 at a single tertiary medical centre. The study group included girls and adolescent females with cancer: 22 before and 20 after chemotherapy. Following partial or complete oophorectomy, immature oocytes were either aspirated manually ex vivo from visible small antral follicles or filtered from spent media. Oocytes were incubated in oocyte maturation medium, and those that matured at 24 or 48 h were vitrified. Ovarian cortical tissue was cut and prepared for slow-gradual cryopreservation. Anti-Mullerian hormone (AMH) levels were measured in serum before and after oophorectomy. Ovarian tissue was successfully collected from 78.7% of the 42 patients. Oocytes were obtained from 20 patients before chemotherapy and 13 after chemotherapy. The youngest patients from whom oocytes were retrieved were aged 2 years (two atretic follicles) and 3 years. Of the 395 oocytes collected, ∼30% were atretic (29.6% in the pre-chemotherapy group, 37% in the post-chemotherapy group). One hundred twenty-one oocytes (31%) were matured in vitro and vitrified: 67.8% from patients before chemotherapy, the rest after chemotherapy. Mature oocytes suitable for vitrification were obtained from 16/20 patients before chemotherapy and from 12/13 patients after chemotherapy (maturation rate, 32 and 26.4%, respectively). There were significant correlations of the number of vitrified oocytes with patient age (more matured oocytes with older age) (P = 0.001) and with pre-oophorectomy AMH levels (P = 0.038 pre-chemotherapy group, P = 0.029 post-chemotherapy group). Oocytes suitable for vitrification were obtained both by manual aspiration of antral follicles (45%) and from rinse solutions after dissection. There were significantly more matured oocytes in the pre-chemotherapy group from aspiration than in the post-chemotherapy group after both aspiration (P < 0.033) and retrieval from rinsing fluids (P < 0.044). The number of pre-antral follicles per histological section did not differ in the pre- versus post-chemotherapy. AMH levels dropped by approximately 50% after ovarian removal in both groups, with a significant correlation between pre- and post-oophorectomy levels (P = 0.002 pre-chemotherapy group, P = 0.001 post-chemotherapy group). There were no patients between 5 years and 10 years old in the post-chemotherapy group, which might have affected some results and correlations. Oocytes from patients soon after chemotherapy might be damaged, and caution is advised when using them for fertility-restoration purposes. The viability, development capability and fertilization potential of oocytes from paediatric patients, especially prepubertal and after chemotherapy, are unknown, in particular oocytes recovered from the media after the tissue dissection step. Although more oocytes were collected and matured from chemotherapy-naïve paediatric patients, ovarian tissue and immature oocytes were also retrieved from young girls in whom cancer therapy has already been initiated. Our centre has established a protocol for potential maximal fertility preservation in paediatric female patients with cancer. Vitrified-in vitro-matured oocytes may serve as an important gamete source in paediatric female patients with cancer because the risk of reseeding the disease is avoided. Further studies are needed on the fertility-restoring potential of oocytes from paediatric and prepubertal patients, especially after exposure to chemotherapy. The study was conducted as part of the routine procedures for fertility preservation at our IVF unit. No funding outside of the IVF laboratory was received. Funding for the AMH measurements was obtained by a research grant from the Israel Science Foundation (to B.-A.I., ISF 13-1873). None of the authors have competing interests. N/A. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. CRYOPRESERVATION STRATEGY FOR TISSUE ENGINEERING CONSTRUCTS CONSISTING OF HUMAN MESENHYMAL STEM CELLS AND HYDROGEL BIOMATERIALS.

    PubMed

    Wu, Y; Wen, F; Gouk, S S; Lee, E H; Kuleshova, L

    2015-01-01

    The development of vitrification strategy for cell-biomaterial constructs, particularly biologically inspired nanoscale materials and hydrogels mimicking the in vivo environment is an active area. A cryopreservation strategy mimicking the in vivo environment for cell-hydrogel constructs may enhance cell proliferation and biological function. To demonstrate the efficacy of vitrification as a platform technology involving tissue engineering and human mesenchymal stem cells (hMSCs). Microcarriers made from alginate coated with chitosan and collagen are used. Conventional freezing and vitrification were compared. The vitrification strategy includes 10 min step-wise exposure to a vitrification solution (40% v/v EG, 0.6M sucrose) and immersion into liquid nitrogen. Confocal imaging of live/dead staining of hMSCs cultured on the surface of microcarriers demonstrated that vitrified cells had excellent appearance and prolonged spindle shape morphology. The proliferation ability of post-vitrified cells arbitrated to protein Ki-67 gene expression was not significantly different in comparison to untreated control, while that of post-freezing cells was almost lost. The ability of hMSCs cultured on the surface of microcarriers to proliferate has been not affected by vitrification and it was significantly better after vitrification than after conventional freezing during continuous culture. Collagen II related mRNA expression by 4 weeks post-vitrification and post-freezing showed that ability to differentiate into cartilage was sustained during vitrification and reduced during conventional freezing. No significant difference was found between control and vitrification groups only. Vitrification strategy coupled with advances in hMSC-expansion platform that completely preserves the ability of stem cells to proliferate and subsequently differentiate allows not only to reach a critical cell number, but also demonstrate prospects for effective utilization and transportation of cells with their support system, creating demand for novel biodegradable materials.

  20. In vitro production and cryotolerance of prepubertal and adult goat blastocysts obtained from oocytes collected by laparoscopic oocyte-pick-up (LOPU) after FSH treatment.

    PubMed

    Leoni, Giovanni Giuseppe; Succu, Sara; Satta, Valentina; Paolo, Mereu; Bogliolo, Luisa; Bebbere, Daniela; Spezzigu, Antonio; Madeddu, Manuela; Berlinguer, Fiammetta; Ledda, Sergio; Naitana, Salvatore

    2009-01-01

    This study compares the developmental capacity and cryotolerance of embryos produced from oocytes of stimulated prepubertal and adult Sarda goats. Twelve prepubertal and 13 adult goats were each given 110 and 175 IU FSH, respectively, and cumulus-oocyte complexes (COCs) were collected by laparoscopic oocyte-pick-up (LOPU). After in vitro maturation, fertilisation and culture (IVMFC), blastocysts were vitrified, warmed and blastocoel re-expansion and gene expression were evaluated. Prepubertal goats produced a higher COCs number than adults (mean +/- s.e.m., 89.67 +/- 5.74 and 26.69 +/- 3.66, respectively; P < 0.01). Lower developmental competence was demonstrated in the prepubertal oocytes as shown by a higher number of COCs discarded before IVM (21.1% and 14.7% for prepubertals and adults, respectively; P < 0.01) and IVF (23.4% v. 9.1%; P < 0.01) and by the lower cleavage (55.6% and 70.3%, respectively; P < 0.01) and blastocyst rates (24.2% and 33.9%, respectively; P < 0.05). Compared with the adult, prepubertal vitrified/warmed blastocysts showed significantly (P < 0.05) lower in vitro viability, as determined by the re-expansion rate (62.5% and 40.3%). No differences were observed in the time required for blastocoel re-expansion or in cyclin B1, E-cadherin, Na/K ATPase, HSP90beta and aquaporin 3 messenger RNA quantity. These results show that in vitro-produced embryos produced from prepubertal goat oocytes have a lower developmental rate and cryotolerance compared with their adult counterparts. However, we can assume that the quality of re-expanded embryos does not differ between the two groups.

  1. Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos.

    PubMed

    Cuello, C; Gomis, J; Almiñana, C; Maside, C; Sanchez-Osorio, J; Gil, M A; Sánchez, A; Parrilla, I; Vazquez, J M; Roca, J; Martinez, E A

    2013-01-30

    The aims of this study were (1) to determine the effect of in vitro maturation (IVM) medium supplementation with MEM vitamins on in vitro embryo development and sensitivity to vitrification of Day 6 blastocysts and (2) to evaluate whether the addition of forskolin to in vitro culture (IVC) medium enhances blastocyst survival following Super Open Pulled Straw (SOPS) vitrification. Cumulus-oocyte complexes (COCs; n=4000) were matured with 0.0% or 0.05% (v/v) MEM vitamins. After 44h of IVM, the oocytes were in vitro fertilized, and presumptive zygotes were cultured. At Day 5 of IVC, embryos from both experimental groups were cultured for 24h with 0 or 10μM forskolin, achieving a 2×2 factorial design. The blastocyst formation rate was assessed on Day 6, and subsets of samples from the four experimental groups were vitrified (n=469) or kept fresh (n=546). Fresh and vitrified-warmed blastocysts were cultured for 24h prior to embryo survival and total blastocyst cell number assessment. The MEM vitamins increased (P<0.001) the blastocyst formation rate at Day 6, but they did not affect embryo survival after vitrification. In contrast, the addition of forskolin to the culture medium enhanced (P<0.05) the blastocyst vitrification tolerance. The total blastocyst cell number was similar among the groups. In conclusion, supplementation with 0.05% MEM vitamins improved the blastocyst formation rate, and the addition of 10μM forskolin to the culture medium increased survival in Day 6 in vitro-produced blastocysts after SOPS vitrification. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Developmental capacity of in vitro-matured human oocytes retrieved from polycystic ovary syndrome ovaries containing no follicles larger than 6 mm.

    PubMed

    Guzman, Luis; Ortega-Hrepich, Carolina; Albuz, Firas K; Verheyen, Greta; Devroey, Paul; Smitz, Johan; De Vos, Michel

    2012-08-01

    To test the developmental competence of oocytes in a nonhCG-triggered in vitro maturation (IVM) system when oocyte-cumulus complexes (OCC) are retrieved from antral follicles with a diameter of <6 mm. Prospective cohort study. Tertiary university-based referral center. From January 2010 to September 2011, 121 patients with polycystic ovaries/polycystic ovary syndrome underwent 239 IVM cycles in total. In 58 of these cycles (44 patients), all antral follicles had a diameter of <6 mm on the day of oocyte retrieval. NonhCG-triggered IVM of oocytes, fresh or vitrified/warmed embryo transfer (ET). Oocyte diameter, maturation rate, fertilization rate, embryo development and morphology, implantation rate, clinical pregnancy rate, ongoing pregnancy rate. Oocyte retrieval yielded 16.7 OCC/cycle, and 50.8% of oocytes completed IVM. The mean oocyte diameter increased from 108.8 ± 4.3 μm to 111.9 ± 4.1 μm after IVM. Mean fertilization rate was 63.7%, and 45.4% of 2-pronuclei oocytes developed into a morphologically good-quality embryo on day 3 after intracytoplasmic sperm injection. Fresh ET resulted in two ongoing pregnancies (2/37; 5.4%). Deferred vitrified-warmed ET led to an ongoing pregnancy rate of 34.6% (9/24). Three healthy babies were born and eight pregnancies were still ongoing. Oocytes retrieved from follicles with a diameter of <6 mm grow during a 40-hour IVM culture can acquire full competence in vitro, as illustrated by their development into healthy offspring. Endometrial quality appears to be a crucial determinant of pregnancy after nonhCG-triggered IVM. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Vitrification-based cryopreservation of Drosophila embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreuders, P.D.; Mazur, P.

    1994-12-31

    Currently, over 30,000 strains of Drosophila melanogaster are maintained by geneticists through regular transfer of breeding stocks. A more cost effective solution is to cryopreserve their embryos. Cooling and warming rates >10,000{degrees}C/min. are required to prevent chilling injury. To avoid the lethal intracellular ice normally produced at such high cooling rates, it is necessary to use {ge}50% (w/w) concentrations of glass-inducing solutes to vitrify the embryos. Differential scanning calorimetry (DSC) is used to develop and evaluate ethylene glycol and polyvinyl pyrrolidone based vitrification solutions. The resulting solution consists of 8.5M ethylene glycol + 10% polyvinylpyrrolidone in D-20 Drosophila culture medium.more » A two stage method is used for the introduction and concentration of these solutes within the embryo. The method reduces the exposure time to the solution and, consequently, reduces toxicity. Both DSC and freezing experiments suggest that, while twelve-hour embryos will vitrify using cooling rates >200{degrees}C/min., they will devitrify and be killed with even moderately rapid warming rates of {approximately}1,900{degrees}C/min. Very rapid warming ({approximately}100,000{degrees}C/min.) results in variable numbers of successfully cryopreserved embryos. This sensitivity to warming rite is typical of devitrification. The variability in survival is reduced using embryos of a precisely determined embryonic stage. The vitrification of the older, fifteen-hour, embryos yields an optimized hatching rate of 68%, with 35 - 40% of the resulting larvae developing to normal adults. This Success rite in embryos of this age may reflect a reduced sensitivity to limited devitrification or a more even distribution of the ethylene glycol within the embryo.« less

  4. In vitro penetration of swine oocytes by homologous spermatozoa: Distinct systems for gamete's co-incubation and oocyte's cryopreservation.

    PubMed

    Macedo, M C; Lucia, T; Rambo, G; Ferreira Filho, E B; Rosa, A P; Fabiane, C; Cabral, M; Deschamps, J C

    2010-02-01

    In vitro penetration (IVP) of swine oocytes by homologous spermatozoa was evaluated in two experiments using four boars as semen donors. In experiment 1, the IVP rate and the number of penetrating spermatozoa (PSP) were compared using three co-incubation systems for vitrified oocytes and fresh sperm: (1) 35mL petri dishes in a CO(2) incubator, (2) 35mL petri dishes in bags (submarine system) and (3) glass flasks partially submerged in water bath with the same gas mixture used for the bag system. Mean PSP was 8.2+/-10.1 and the IVP rate was 90.5%. The PSP differed across all systems (P=0.0006): 15.5+/-0.5 for flasks, 6.3+/-0.4 for CO(2), and 3.9+/-0.4 for bags. The IVP rate for flasks (95.0%) was greater (P=0.01) than for CO(2) and bags (90.8% and 85.0%, respectively), but it did not differ between flasks and CO(2) for three boars (P>0.05). In experiment 2, co-incubation was done as described for glass flasks in experiment 1. The IVP rate and PSP were compared for cryopreserved oocytes: either vitrified in open pulled straws (OPS), or frozen in cryotubes. Mean PSP was 5.4+/-6.5 and IVP rate was 89.6%. Both PSP and IVP rate were greater (P<0.0001) for oocytes frozen in cryotubes (7.0+/-0.3% and 95.8%, respectively) than those frozen in OPS (3.7+/-0.3% and 83.4%, respectively), with no differences found for three boars (P>0.05). In summary, successful IVP of swine oocytes by homologous spermatozoa can be achieved using gametes incubated in glass flasks and oocytes frozen in cryotubes.

  5. No difference in mitochondrial distribution is observed in human oocytes after cryopreservation.

    PubMed

    Stimpfel, Martin; Vrtacnik-Bokal, Eda; Virant-Klun, Irma

    2017-08-01

    The primary aim of this study was to determine if any difference in mitochondrial distribution can be observed between fresh and cryopreserved (slow-frozen/thawed and vitrified/warmed) oocytes when oocytes are stained with Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Additionally, the influence of cryopreservation procedure on the viable rates of oocytes at different maturation stages was evaluated. The germinal vesicle (GV) and MII oocytes were cryopreserved with slow-freezing and vitrification. After thawing/warming, oocytes were stained using Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Mitotracker staining revealed that in GV oocytes the pattern of mitochondrial distribution appeared as aggregated clusters around the whole oocyte. In mature MII oocytes, three different patterns of mitochondrial distribution were observed; a smooth pattern around the polar body with aggregated clusters at the opposite side of the polar body, a smooth pattern throughout the whole cell, and aggregated clusters as can be seen in GV oocytes. There were no significant differences in the observed patterns between fresh, vitrified/warmed and frozen/thawed oocytes. When comparing the viable rates of oocytes after two different cryopreservation procedures, the results showed no significant differences, although the trend of viable MII oocytes tends to be higher after vitrification/warming and for viable GV oocytes it tends to be higher after slow-freezing/thawing. Mitotracker Red CMXRos staining of mitochondria in oocytes did not reveal differences in mitochondrial distribution between fresh and cryopreserved oocytes at different maturity stages. Additionally, no difference was observed in the viable rates of GV and MII oocytes after slow-freezing/thawing and vitrification/warming.

  6. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    PubMed

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p < 0.05). Embryonic development rate, two cell embryos to blastocyst, as well as hatching rate were higher in the control group compared to the EM-grid group and OPS group (p < 0.05), yet no difference was noted between the control group and cryo-loop group. Development rate and hatching rate of eight cell morulae and blastocysts were all lower in the treatment groups than the control group whilst hatching rate of blastocysts was higher in the control group compared to the groups of EM-grid and OPS (p < 0.05); although the cryo-loop group was shown to be slightly higher than other groups, it was not statistically significant. In the study, we investigate effects of freezing containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  7. High-Energy Ball Milling as Green Process To Vitrify Tadalafil and Improve Bioavailability.

    PubMed

    Krupa, Anna; Descamps, Marc; Willart, Jean-François; Strach, Beata; Wyska, Elżbieta; Jachowicz, Renata; Danède, Florence

    2016-11-07

    In this study, the suitability of high-energy ball milling was investigated with the aim to vitrify tadalafil (TD) and improve its bioavailability. To achieve this goal, pure TD as well as binary mixtures composed of the drug and Soluplus (SL) were coprocessed by high-energy ball milling. Modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD) demonstrated that after such coprocessing, the crystalline form of TD was transformed into an amorphous form. The presence of a single glass transition (T g ) for all the comilled formulations indicated that TD was dispersed into SL at the molecular level, forming amorphous molecular alloys, regardless of the drug concentration. The high values of T g determined for amorphous formulations, ranging from 70 to 147 °C, foreshow their high stability during storage at room temperature, which was verified by XRD and MDSC studies. The stabilizing effect of SL on the amorphous form of TD in comilled formulations was confirmed. Dissolution tests showed immediate drug release with sustained supersaturation in either simulated gastric fluid of pH 1.2 or in phosphate buffer of pH 7.2. The beneficial effect of both amorphization and coamorphization on the bioavailability of TD was found. In comparison to aqueous suspension, the relative bioavailability of TD was only 11% for its crystalline form and 53% for the crystalline physical mixture, whereas the bioavailability of milled amorphous TD and the comilled solid dispersion was 128% and 289%, respectively. Thus, the results provide evidence that not only the presence of polymeric surfactant but also the vitrification of TD is necessary to improve bioavailability.

  8. Pre-clinical validation of a closed surface system (Cryotop SC) for the vitrification of oocytes and embryos in the mouse model.

    PubMed

    Castelló, Damià; Cobo, Ana; Mestres, Enric; Garcia, Maria; Vanrell, Ivette; Alejandro Remohí, José; Calderón, Gloria; Costa-Borges, Nuno

    2018-04-01

    Vitrification is currently a well-established technique for the cryopreservation of oocytes and embryos. It can be achieved either by direct (open systems) or indirect (closed systems) contact with liquid nitrogen. While there is not a direct evidence of disease transmission by transferred cryopreserved embryos, it was experimentally demonstrated that cross-contamination between liquid nitrogen and embryos may occur, and thus, the use of closed devices has been recommended to avoid the risk of contamination. Unfortunately, closed systems may result in lower cooling rates compared to open systems, due to the thermal insulation of the samples, which may cause ice crystal formation resulting in impaired results. In our study, we aimed to validate a newly developed vitrification device (Cryotop SC) that has been specifically designed for being used as a closed system. The cooling and warming rates calculated for the closed system were 5.254 °C/min and 43.522 °C/min, respectively. Results obtained with the closed system were equivalent to those with the classic Cryotop (open system), with survival rates in oocytes close to 100%. Similarly, the potential of the survived oocytes to develop up to good quality blastocysts after parthenogenetic activation between both groups was statistically equivalent. Assessment of the meiotic spindle and chromosome distribution by fluorescence microscopy in vitrified oocytes showed alike morphologies between the open and closed system. No differences were found either between the both systems in terms of survival rates of one-cell stage embryos or blastocysts, as well as, in the potential of the vitrified/warmed blastocysts to develop to full-term after transferred to surrogate females. Copyright © 2018. Published by Elsevier Inc.

  9. Maturation capacity, morphology and morphometric assessment of human immature oocytes after vitrification and in-vitro maturation

    PubMed Central

    Nazari, Saeedeh; Khalili, Mohammad Ali; Esmaielzadeh, Forouzan; Mohsenzadeh, Mehdi

    2011-01-01

    Background: In general, 15% of oocytes collected in ART cycles are immature. These oocytes may be cryopreserved further for use in in-vitro maturation (IVM) program. Objective: The aim of this study was to determine maturation capacity, morphometric parameters and morphology of human immature oocytes in both fresh IVM (fIVM) and vitrified-IVM (vIVM) oocytes. Materials and Methods: 93 women who underwent controlled ovarian stimulation for ART were included. The immature oocytes (n=203) were divided into two groups: the first group (n=101) directly matured in vitro; and the second group (n=102) first vitrified, then matured in vitro. All oocytes underwent IVM in Ham’s F10 supplemented with LH+FSH and human follicular fluid. After 48h of incubation, the oocyte maturation rates, as well as morphometric and morphologic characteristics were assessed using cornus imaging and were compared. Results: Oocyte maturation rates were reduced in vIVM, (40.4%), in comparison with fIVM (59.4%, p<0.001). Following morphometric assessment, there was no difference in the mean oocyte diameters (µm) between fIVM and vIVM, 156.3±6.8 and 154.07±9.9, respectively. Other parameters of perimeters, egg areas, as well as oocyte and ooplasm volumes were similar in two groups. In addition, more morphologic abnormalities, such as, vacuole, and dark oocyte were observed in vIVM oocytes. Conclusion: fIVM was more successful than vIVM groups. No statistical differences were noticed in morphometry assessment in two groups. This suggests that morphometric parameters can not be applied as prognosis factor in oocyte maturation outcome in IVM program. PMID:26396566

  10. Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification

    PubMed Central

    Cha, Soo Kyung; Kim, Bo Yeun; Kim, Mi Kyung; Kim, You Shin; Lee, Woo Sik

    2011-01-01

    Objective The objectives of this study were to analyze efficacy of immature and mature mouse oocytes after vitrification and warming by applying various combinations of cryoprotectants (CPAs) and/or super-rapid cooling using slush nitrogen (SN2). Methods Four-week old ICR female mice were superovulated for GV- and MII-stage oocytes. Experimental groups were divided into two groups. Ethylene glycol (EG) only group: pre-equilibrated with 1.5 M EG for 2.5 minutes and then equilibrated with 5.5 M EG and 1.0 M sucrose for 20 seconds. EG+dimethylsulfoxide (DMSO) group: pre-equilibrated with 1.3 M EG+1.1 M DMSO for 2.5 minutes and equilibrated with 2.7 M EG+2.1 M DMSO+0.5 M sucrose for 20 seconds. The oocytes were loaded onto grids and plunged into SN2 or liquid nitrogen (LN2). Stored oocytes were warmed by a five-step method, and then their survival, maturation, cleavage, and developmental rates were observed. Results The EG only and EG+DMSO groups showed no significant difference in survival of immature oocytes vitrified after warming. However, maturation and cleavage rates after conventional insemination were greater in the EG only group than in the EG+DMSO group. In mature oocytes, survival, cleavage, and blastocyst formation rates after warming showed no significant difference when EG only or EG+DMSO was applied. Furthermore, cleavage and blastocyst formation rates of MII oocytes vitrified using SN2 were increased in both the EG only and EG+DMSO groups. Conclusion A combination of CPAs in oocyte cryopreservation could be formulated according to the oocyte stage. In addition, SN2 may improve the efficiency of vitrification by reducing cryoinjury. PMID:22384414

  11. Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E.

    1997-12-31

    Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples.more » Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available.« less

  12. Barite recrystallization in the presence of 226Ra and 133Ba

    NASA Astrophysics Data System (ADS)

    Heberling, Frank; Metz, Volker; Böttle, Melanie; Curti, Enzo; Geckeis, Horst

    2018-07-01

    Despite the long history of studies on (Ba,Ra)SO4, various recent investigations aimed at improving our understanding of its formation processes and thermodynamics. Accumulation of natural Ra isotopes (mainly 226Ra and 228Ra) in (Ba,Ra)SO4 plays an important role in many geotechnical applications and water desalination facilities. In the near field of a nuclear waste repository, barite formation may be expected e.g. as a consequence of contact of spent nuclear fuel or vitrified high level waste with sulfate containing ground water, and may control the potential release of Ra from waste forms upon leakage. Here, we present results of long term batch-type barite recrystallization experiments conducted in the simultaneous presence of 226Ra and 133Ba as a function of initial Ra2+ concentration and pH with the same type and charge of barite powder as used in previous studies (Curti et al., 2010; Klinkenberg et al., 2014; Brandt et al., 2015). Due to the simultaneous measurement of 133Ba and 226Ra our data allow for a direct relation of 226Ra uptake with barite recrystallization, which leads to more accurate partition coefficients compared to previous studies. During a reaction period of five years, barite is continuously recrystallizing. Within the investigated radium concentration range (Ba(1-X)RaXSO4 with X < 0.0006), we measure a partition coefficient of D = 2.1 ± 0.5. The partition coefficient is constant within uncertainty during almost five years (1793 days) of experimental duration. This value is in line with a description of (Ba,Ra)SO4 as an ideal solid solution based on the solubility products (KSP) of the endmembers barite (log10(KSP(barite)) = -9.97) and radium sulfate (log10(KSP(RaSO4)) = -10.26; dimensionless Guggenheim parameter, a0 = 0.0 ± 0.3). Apparent discrepancies to previous theoretical results (a0 = 1.0 ± 0.4) may be resolved when the uncertainties related to the solubility of RaSO4 are considered. Compared to results of previous publications, recrystallization is extremely slow in the experiments presented here. While previous authors suggested complete equilibration of bulk microcrystalline barite within less than three years, a recrystallization of less than 7% of the barite mass is observed within five years. We describe the progress of recrystallization with a new modified homogeneous recrystallization model. Observed recrystallization rates are in the range 0.11-1.5 nmol/(m2 s) and increase with decreasing pH. According to this modified homogeneous recrystallization model, complete bulk barite equilibration is expected in about 1400-16,900 years. The strongly decreased recrystallization kinetics in our experiments is likely related to a strongly prolonged pre-equilibration time (0.8 years), which according to XRD investigations, leads to a higher crystallinity (higher crystal domain size and lower Debye-Waller parameters) of the barite powder.

  13. Simultaneously Synchrotron X-ray Fluorescence and Ptychographic Imaging of Frozen Biological Single Cells

    DOE PAGES

    Chen, S.; Deng, J.; Nashed, Y. S. G.; ...

    2016-07-25

    Bionanoprobe (BNP), a hard x-ray fluorescence sample-scanning nanoprobe at the Advanced Photon Source of Argonne National Laboratory, has been used to quantitatively study elemental distributions in biological cells with sub-100 nm spatial resolution and high sensitivity. Cryogenic conditions enable biological samples to be studied in their frozen-hydrated state with both ultrastructure and elemental distributions more faithfully preserved compared to conventional chemical fixation or dehydration methods. Furthermore, radiation damage is reduced in two ways: the diffusion rate of free radicals is decreased at low temperatures; and the sample is embedded in vitrified ice, which reduces mass loss.

  14. Influent of Borax Decahydrate Composition as Additional Flux into Stoneware Bodies

    NASA Astrophysics Data System (ADS)

    Bakil, Siti Natrah Abd; Hussin, Rosniza; Bakar Aramjat, Abu

    2017-08-01

    Stoneware is vitrified, has less porosity and requires high sintering temperature. The influent of borax decahydrate composition at sintering temperature 1050°C and 1150°C on the thermal analysis, fracture surface, linear shrinkage, water absorption and modular of rapture (MOR) were investigated. Rectangular sample were produced by uniaxially pressing at 40MPa. The thermal behavior was determined by thermogravimetric and different thermal analysis (TGA-DTA). The Scanning electron microscopy (SEM) was used for fracture surface analysis. The water absorption (%) of the sample were determined using Archimedes’ method. The experimental result showed that content of borax decahydrate have influent the properties of stoneware bodies.

  15. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection andmore » administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)« less

  16. Effect of Low-Temperature Sensitization on the Corrosion Behavior of AISI Type 304L SS Weld Metal in Simulated Groundwater

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Nandakumar, T.; Viswanath, A.

    2018-04-01

    The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite (δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.

  17. Effect of Low-Temperature Sensitization on the Corrosion Behavior of AISI Type 304L SS Weld Metal in Simulated Groundwater

    NASA Astrophysics Data System (ADS)

    Suresh, Girija; Nandakumar, T.; Viswanath, A.

    2018-05-01

    The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite ( δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.

  18. Crystal-to-Crystal Transition of Ultrasoft Colloids under Shear

    NASA Astrophysics Data System (ADS)

    Ruiz-Franco, J.; Marakis, J.; Gnan, N.; Kohlbrecher, J.; Gauthier, M.; Lettinga, M. P.; Vlassopoulos, D.; Zaccarelli, E.

    2018-02-01

    Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concentrations. Combining in situ rheo-small-angle-neutron-scattering experiments and numerical simulations we show that shear facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results provide a new avenue to tailor colloidal crystallization and the crystal-to-crystal transition at the molecular level by coupling softness and shear.

  19. Some less conventional options for plutonium disposal

    NASA Astrophysics Data System (ADS)

    Stoll, Dr. Wolfgang, Prof.

    2000-07-01

    Disposition of weapons Pu (W-Pu) aims at the replacement of military access restrictions by inherent longlasting technical barriers to make the return into the weapons state difficult and not rewarding anymore. At the time of the NAS-study in 1994, two ways were perceived to be mature and selected: Fissioning of W-Pu as LWR-MOX and the disposal in a vitrified radionuclide-spiked form.1 Both options since have been questioned for equality, met different acceptance at both superpowers and showed slow progress. A criterion to measure disarmament would be the amount of W-Pu in the different proliferation resistant forms, multiplied by the effort needed for each form to return to weapons quality.

  20. Impact of delipidated estrous sheep serum supplementation on in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes

    PubMed Central

    dos Santos Neto, Pedro C.; Cuadro, Federico; Bosolasco, Diego; Mulet, Ana P.; Crispo, Martina

    2018-01-01

    High lipid content of oocytes and embryos in domestic animals is one of the well-known factors associated with poor cryosurvival. Herein, we wanted to determine whether the use of delipidated estrous sheep serum during in vitro maturation (IVM) of ovine oocytes reduces the cytoplasmic lipid droplets content and improves embryo development and cryotolerance after vitrification. Cumulus oocytes complexes (COCs) were matured in vitro for 24 h in medium supplemented with whole or delipidated estrous sheep serum prior to vitrification. Neutral lipid present in lipid droplets of COCs, cleavage rate, embryo development rate on Day 6 and Day 8, and hatching rate on Day 8, were compared among experimental groups. Endoplasmic reticulum stress genes were evaluated in in vitro matured COCs under different lipid conditions prior to vitrification. The lipid droplets’ content (mean fluorescence intensity) of oocytes cultured with IVM media supplemented with delipidated serum was lower than COCs matured with whole serum (7.6 ± 1.7 vs. 22.8 ± 5.0 arbitrary units, respectively; P< 0.05). Despite IVM treatment, oocytes subjected to vitrification showed impaired competence compared with the non-vitrified groups (P<0.05). No significant differences in embryo production were observed in non-vitrified COCs after maturation in delipidated or whole serum (33.4±4.9 vs 31.9 ±4.2). COCs matured in delipidated serum and subjected to vitrification showed increased expression of ATF4, ATF6, GRP78, and CHOP10 genes (ER stress markers). Collectively, our results demonstrate that although supplementation of IVM medium with delipidated estrous sheep serum reduces the presence of cytoplasmic lipid droplets in oocytes after maturation, oocyte cryotolerance is not improved. Notably, the expression of genes associated with the unfolded protein response (UPR) was increased in COCs, with fewer lipid droplets subjected to vitrification, suggesting that oocyte cryopreservation is associated with ER stress and activation of adaptive responses. PMID:29912910

  1. Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification.

    PubMed

    Sanches, B V; Marinho, L S R; Filho, B D O; Pontes, J H F; Basso, A C; Meirinhos, M L G; Silva-Santos, K C; Ferreira, C R; Seneda, M M

    2013-09-01

    In vitro-produced (IVP) bovine embryos are more sensitive to cryopreservation than their in vivo counterparts due to their higher lipid concentrations, whereas Bos indicus IVP embryos are even more sensitive than Bos taurus IVP embryos. To examine the effects of a lipolytic agent, before vitrification of Bos indicus IVP embryos, on embryo survival, viability, and pregnancy rates, two experiments were conducted. In experiment 1, Bos indicus (Nelore) embryos were produced from abattoir-derived ovaries and allocated into two groups. In the treatment group, 10 μM of forskolin was added to the in vitro culture medium on Day 5 and incubated for 48 hours. On Day 7 of culture, IVP-expanded blastocysts from both the control (n = 101) and treatment (n = 112) groups were vitrified with ethylene glycol and DMSO via the Cryotop procedure. Although there was no significant difference between the rates of blastocoel reexpansion and hatching of the embryos exposed to forskolin (87.5% and 70.5%, respectively) compared with the control embryos (79.2% and 63.3%, respectively), the numerically superior rates of the embryos exposed to forskolin led to another experiment. In experiment 2, blastocysts produced from the ovum pick up were exposed or not exposed to the lipolytic agent and vitrified as in experiment 1. Embryos treated with forskolin had higher pregnancy rates than the control group (48.8% vs. 18.5%). In view of these results, 1908 Bos indicus embryos were produced from ovum pick up, exposed to the lipolytic agent, and blastocysts were transferred to recipients, and the pregnancy rates of the embryos of various breeds were compared. The mean pregnancy rate obtained was 43.2%. All data were analyzed by chi-square or by binary logistic regression (P ≤ 0.05). In conclusion, treatment with forskolin before vitrification improved cryotolerance of Bos indicus IVP embryos, resulting in good post-transfer pregnancy rates. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods.

    PubMed

    Ha, A-Na; Lee, Sang-Ryeul; Jeon, Jeong-Seon; Park, Han-Seul; Lee, Sang-Ho; Jin, Jong-In; Sessions, Benjamin R; Wang, Zhongde; White, Kenneth L; Kong, Il-Keun

    2014-02-01

    This study evaluated a modified plastic straw loading method for vitrification of in vitro-produced bovine blastocysts. A modified straw was used with a depressed area on its inner surface to which embryos attach. In vitro-produced blastocysts were randomly assigned into three groups: (i) blastocysts attached to the inner surface of a plastic straw (aV), (ii) blastocysts attached to the inner surface of a modified plastic straw (maV), and (iii) non-vitrified blastocysts (control). The recovery rates were not significantly different between aV and maV groups (95.8% vs. 94.3%). The post-thaw survival rate did not significantly differ between aV and maV groups (86.4% vs. 88.2%). The total cell numbers of blastocyst was higher in control than in aV and maV groups (142 ± 21.8 vs. 117 ± 29.7 and 120 ± 25.2; P < 0.05), but not significantly differ between aV and maV groups. The mRNA levels of pro-apoptosis related genes Bax and Caspase-3 were higher in aV and maV than in control (P < 0.05). By contrast, the mRNA levels of anti-apoptotic genes Bcl-2 and Mcl-1 and of antioxidant-related genes MnSOD and Prdx5 were lower in aV and maV than in control (P < 0.05). Confocal microscopy analysis of Golgi apparatus and mitochondria showed that the fluorescence intensity of Golgi apparatus and mitochondria was higher in control than in aV and maV groups. In conclusion, both aV and maV methods can be used to successfully vitrify IVP blastocysts, with maV method to be preferable because of its easiness in embryo loading. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Modeling the transport of cryoprotective agents in articular cartilage for cryopreservation

    NASA Astrophysics Data System (ADS)

    Torqabeh, Alireza Abazari

    Loading vitrifiable concentrations of cryoprotective agents is an important step for cryopreservation of biological tissues by vitrification for research and transplantation purposes. This may be done by immersing the tissue in a cryoprotective agent (CPA) solution, and increasing the concentration, continuously or in multiple steps, and simultaneously decreasing the temperature to decrease the toxicity effects of the cryoprotective agent on the tissue cellular system. During cryoprotective agent loading, osmotic water movement from the tissue to the surrounding solution, and the resultant tissue shrinkage and stress-strain in the tissue matrix as well as on the cellular system can significantly alter the outcome of the cryopreservation protocol. In this thesis, a biomechanical model for articular cartilage is developed to account for the transport of the cryoprotective agent, the nonideal-nondilute properties of the vitrifiable solutions, the osmotic water movement and the resultant tissue shrinkage and stress-strain in the tissue matrix, and the osmotic volume change of the chondrocytes, during cryoprotective agent loading in the cartilage matrix. Four essential transport parameters needed for the model were specified, the values of which were obtained uniquely by fitting the model to experimental data from porcine articular cartilage. Then, it was shown that using real nonuniform initial distributions of water and fixed charges in cartilage, measured separately in this thesis using MRI, in the model can significantly affect the model predictions. The model predictions for dimethyl sulfoxide diffusion in porcine articular cartilage were verified by comparing to spatially and temporally resolved measurements of dimethyl sulfoxide concentration in porcine articular cartilage using a spectral MRI technique, developed for this purpose and novel to the field of cryobiology. It was demonstrated in this thesis that the developed mathematical model provides a novel tool for studying transport phenomena in cartilage during cryopreservation protocols, and can make accurate predictions for the quantities of interest for applications in the cryopreservation of articular cartilage.

  4. Vitrification of human pronuclear oocytes by direct plunging into cooling agent: Non sterile liquid nitrogen vs. sterile liquid air.

    PubMed

    Isachenko, Vladimir; Todorov, Plamen; Seisenbayeva, Akerke; Toishibekov, Yerzhan; Isachenko, Evgenia; Rahimi, Gohar; Mallmann, Peter; Foth, Dolores; Merzenich, Markus

    2018-02-01

    In fact, a full sterilization of commercially-produced liquid nitrogen contaminated with different pathogens is not possible. The aim of this study was to compare the viability of human pronuclear oocytes subjected to cooling by direct submerging of open carrier in liquid nitrogen versus submerging in clean liquid air (aseptic system). One- and three-pronuclei stage embryos (n = 444) were cryopreserved by direct plunging into liquid nitrogen (vitrified) in ethylene glycol (15%), dimethylsulphoxide (15%) and 0.2M sucrose. Oocytes were exposed in 20, 33, 50 and 100% vitrification solution for 2, 1 and 1 min, and 30-50 s, respectively at room temperature. Then first part of oocytes (n = 225) were directly plunged into liquid nitrogen, and second part of oocytes (n = 219) into liquid air. Oocytes were thawed rapidly at a speed of 20,000 °C/min and then subsequently were placed into a graded series of sucrose solutions (0.5, 0.25, 0.12 and 0.06M) at 2.5 min intervals and cultured in vitro for 3 days. In both groups, the rate of high-quality embryos (Grade 6A: 6 blastomeres, no fragmentation; Grade 8A: 8 blastomeres, no fragmentation; Grade 8A compacting: 8 blastomeres, beginning of compacting) was noted. The rates of high-quality embryos developed from one-pronuclear oocytes vitrified by cooling in liquid nitrogen and liquid air were: 39.4% ± 0.6 and 38.7% ± 0.8, respectively (P > 0.1). These rates for three-pronuclear oocytes were: 45.8 ± 0.8% and 52.0 ± 0.7%, respectively (P < 0.05). In conclusion, vitrification by direct submerging of oocytes in clean liquid air (aseptic system) is a good alternative for using of not sterile liquid nitrogen. Copyright © 2017. Published by Elsevier Inc.

  5. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos.

    PubMed

    Rios, G L; Mucci, N C; Kaiser, G G; Alberio, R H

    2010-03-01

    The aim of the present research was to develop a low cost and easy to perform vitrification method for in vitro-produced cattle embryos. Effect of container material was evaluated (plastic straw compared to glass capillary, experiment 1), two volume sample (1 compared to 0.5 microL, experiment 2) and warming solution composition medium (Tissue Culture Medium 199 (TCM-199) compared to phosphate buffered saline (PBS), experiment 3) as modifications of the open pulled straw (OPS) system in order to reduce embryo damage caused by exposure to cold. In all experiments, day 7 and expanded blastocysts of cattle were exposed to the vitrification solution 1 for 3 min and 30s in solution 2. After this, embryos were placed in a droplet and loaded in a narrow end container, and immediately submerged into liquid nitrogen. For warming, vitrified embryos were plunged into warming solution 1 for 3 min, and transferred into warming solution 2 for 1 min. Fresh embryos kept in culture were used as control group. Hatching rates were recorded in all cases at day 13. In experiment 1 there was no significant effect of container material on hatching rates. Postwarming survival rate of vitrified embryos was lower than control (27.5% plastic straws, 18.9% glass capillary and 80.5% control, P<0.05). In experiment 2, there was no significant effect of volume in hatching rates (58.3% 1 microL, 61.3% 0.5 microL and 80.5% control, P<0.05). In experiment 3, the composition of the holding medium of warming solution influenced hatching rates (84.1% TCM-199, 74.8% PBS and 91.1% control P<0.05). These data suggest that neither glass capillaries nor reduced sample volume could improve hatching rates after vitrification-warming with open pulled straw (OPS) procedure, and that PBS can replace TCM-199 in warming solutions, but lesser hatching rates should be expected.

  6. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.

  7. Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms

    PubMed Central

    Fernandez, Jose-Jesus; Laugks, Ulrike; Schaffer, Miroslava; Bäuerlein, Felix J.B.; Khoshouei, Maryam; Baumeister, Wolfgang; Lucic, Vladan

    2016-01-01

    Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation. PMID:26743046

  8. Vitrification-based cryopreservation of shoot-tips of Pinus kesiya Royle ex. Gord.

    PubMed

    Kalita, V; Choudhury, H; Kumaria, S; Tandon, P

    2012-01-01

    The present investigation was aimed at developing a protocol for long-term preservation of germplasm of Pinus kesiya Royle ex. Gord. through vitrification. Some of the critical components affecting explant tolerance to cryopreservation, such as effects of preculture, vitrification solutions, exposure time to vitrification solutions, volume of vitrification solution and its toxicity, washing of vitrified tissues after thawing, were analysed. The results showed that shoot regrowth of P. kesiya shoot-tips was considerably affected when exposed to cryoprotectants for longer periods of time (longer than 10 min). Among different vitrification solutions studied, maximum survival (76 percent) of shoot-tips was achieved with mVSL (using 0.6 ml of the solution) in MS basal medium containing 4.0 mg l-1 N6-benzyladenine (BA).

  9. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    PubMed

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.

  10. Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration.

    PubMed

    Tian, Shu-Jun; Yan, Chang-Liang; Yang, Hui-Xin; Zhou, Guang-Bin; Yang, Zhong-Qiang; Zhu, Shi-En

    2007-10-01

    This study was designed to examine the reduced incidence of normal fertilization in vitrified ovine oocytes. After in vitro maturation for 24 h, the oocytes were randomly allocated into three groups: (1) untreated (control), (2) exposed to vitrification solution (VS) without being plunged into liquid nitrogen (toxicity), or (3) vitrified by open-pulled straw method (vitrification). In experiment 1, the treated and control oocytes were matured for another 2 h, and the oocytes were then in vitro fertilized for 12 h to examine sperm penetration. The percentage of monospermy in toxicity group (29.3%) and vitrification group (28.2%) dramatically decreased compared to the control group (45.0%) (P<0.05). To find the mechanism that the VS decreased the monospermy, some treated and control oocytes were used to test the distribution of CG and the resistance of zona pellucida (ZP) to 0.1% pronase E immediately (IVM 24 h), after another 2 h of maturation (IVM 26 h), and after 12 h of in vitro fertilization (IVF 12 h) respectively. Others were used to examine female pronucleus formation after 12 h of culture in fertilization medium with the absence of sperm. The results showed that the percentage of CG completely release in the oocytes (IVM 24 and 26 h) of toxicity group (41.2% and 39.9%) and vitrification group (41.7% and 51.7%) was significantly higher than that of control group (7.1% and 18.4%) (P<0.05). The ZP digestion duration in the oocytes (IVM 26 h) of the toxicity group (435.6 s) and vitrification group (422.3 s) was longer than that of control group (381.6 s) (P<0.05). The percentage of female pronucleus formation in toxicity group (58.7%) and vitrification group (63.9%) was higher than that (8.2%) of control group (P<0.05). The data above demonstrated that the VS containing DMSO and EG could parthenogenetically activate in vitro matured ovine oocytes, resulting in ZP hardening and decreased sperm penetration.

  11. Efficiency of metaphase II oocytes following minimal/mild ovarian stimulation in vitro fertilization.

    PubMed

    Zhang, John J; Yang, Mingxue; Merhi, Zaher

    2016-01-01

    An inverse relationship between oocyte efficiency and ovarian response was reported in conventional IVF. The purpose of this study was to report metaphase II (MII) oocyte efficiency according to oocyte yield in minimal/mild stimulation IVF (mIVF) and to assess whether oocyte yield affects live birth rate (LBR). Infertile women ( n  = 264) aged < 39 years old with normal ovarian reserve who had mIVF were recruited. All participants received the same protocol for ovarian stimulation. All the embryos were cultured to the blastocyst stage and vitrified using a freeze-all approach. This was followed by a single blastocyst transferred to each participant in subsequent cycles over a 6-month period. Ovarian response was categorized according to the number of MII oocyte yield (low: 1-2, intermediate: 3-6 and high ≥ 7 MII oocytes). MII oocyte utilization rate was calculated as the number of live births divided by the number of MII oocytes produced after only one oocyte retrieval and subsequent transfers of vitrified/warmed blastocysts. The main outcome measure was cumulative LBR over a 6-month period. Among all the participants, 1173 total retrieved oocytes (4.4 ± 0.2 per patient) resulted in 1019 (3.9 ± 0.2 per patient) total MII oocytes, a clinical pregnancy rate of 48.1 % and a LBR of 41.2 %. Oocyte utilization rate was inversely related to ovarian response where it was 30.3 % in the "low" vs. 9.3 % in the "intermediate" vs. 4.3 % in the "high" oocyte yield groups ( p  < 0.05). Implantation rate significantly dropped as the number of MII oocytes increased and was highest in the "low" oocyte yield group ( p  < 0.0001). Cumulative LBR was similar in "low," "intermediate," and "high" oocyte yield groups ( p  > 0.05). The number of MII oocytes had poor sensitivity and specificity for predicting a live birth. These data extend the hypothesis of oocyte efficiency reported in conventional IVF protocols to mIVF protocols. Registration clinicaltrials.gov: NCT00799929.

  12. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  13. Vitrification of erythrocytes, cryoprotective solutions and pure water by rapid solidification

    NASA Astrophysics Data System (ADS)

    Schedgick, David J.

    2003-06-01

    Vitrification has been used successfully in the past to cryopreserve biologically active materials in the presence of high concentrations of cryoprotectants. Rapid cooling and rapid rewarming were investigated to reduce or eliminate the concentrations of cryoprotectant necessary for cryopreservation. Glycerol based cryoprotectants were unidirectionally quenched and rewarmed to determine the depth at which a glass could form upon quenching while also avoiding subsequent crystallization upon rewarming. It was determined that, at sufficient cooling rates, pure water could be vitrified in thicknesses of 700 microns by quenching on free standing diamond wafers, and that solutions of greater than 50% glycerol are required to vitrify thicknesses equivalent to that of a human kidney. This process has been adapted to cryopreserve erythrocytes resuspended in isotonic saline. The cell suspensions were either drawn into small diameter glass tubes (500 micron inner diameter), loaded between thin glass plates (130--170 micron plate thickness), or formed into thin discs by shearing a drop of the suspension on a diamond film. The tubes, plates and sheared droplets were then quenched by immersion into liquid nitrogen. Erythrocyte survival after rewarming was measured at up to 97% of the unfrozen controls. Additionally, erythrocyte intracellular 2,3-DPG, ATP, and K+ were measured for the quenched cells and compared to the unfrozen controls. 2,3-DPG levels dropped 17.9% +/- 16.3%, ATP decreased 46.8% +/- 13.4%, and 52.8% +/- 3.4% of intracellular K+ remained after cryopreservation. The changes in intracellular indicators were similar to the changes observed in erythrocytes cryopreserved using the conventional glycerolized cryopreservation technique. Glass formation in erythrocyte suspensions upon cooling has been confirmed by differential scanning calorimetry (DS). Samples quenched in tubes, plates and on diamond films showed glass transition endotherms and crystallization exotherms, which were completely absent in the slowly cooled sample, indicating a partially, if not totally, glassy as quenched structure. This dissertation marks the first successful vitrification of liquid water in volumes large enough to contain biologically active materials as well as the first time erythrocytes have been successfully cryopreserved by vitrification through conductive heat transfer without the aid of cryoprotectants.

  14. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryo-crystallography

    NASA Technical Reports Server (NTRS)

    Snell, E. H.; vanderWoerd, M. J.; Deacon, A.

    2003-01-01

    In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.

  15. Hot Stuff? Thermal Imaging Applied to Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, E. H.

    2004-01-01

    In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.

  16. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, Eddie H.

    2003-01-01

    In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo- loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied .

  17. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, Eddie

    2003-01-01

    We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.

  18. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    DOE PAGES

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; ...

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are D Li = 1.5 × 10 -22 m 2.s -1 and D H = 6.8 × 10 -23 m 2.s -1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals.« less

  19. Acoustic properties and density of polyurea at pressure up to 13.5 GPa through Brillouin scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Ransom, T. C.; Ahart, Muhtar; Hemley, Russell J.; Roland, C. M.

    2018-05-01

    Brillouin scattering was performed on an elastomeric polyurea, an important technological polymer. Being widely used for impact modification, of particular interest is its response to extreme pressure conditions. We applied pressures up to 13.5 GPa using a diamond anvil cell and measured the longitudinal and transverse sound velocities via Brillouin light scattering. From these data, the equation of state, the elastic moduli, and Poisson's ratio were obtained. By comparison with previous dilatometry measurements up to 1 GPa, we show how viscoelastic effects can be accounted for in order to obtain an accurate equation of state. Because of the extreme strain-rate hardening of vitrifying polyurea, the property changes associated with its solidification are more subtle in the high frequency Brillouin data than observed in conventional mechanical testing and dilatometry.

  20. The Vitrification and Determination of the Crystallization Time Scales of a Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 Bulk Metallic Glass Forming Liquid

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Zr58.5Nb2.8Cul5.6Nil2.8All0.3 is the first bulk glass forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the containerless electrostatic levitation process. The measured critical cooling rate is 1.75 K/s. The sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. At the nose of the TTT diagram, the shortest time to reach crystallization in an isothermal experiment is 32 seconds. In contrast to other bulk metallic glasses the scatter in the crystallization onset times are small at both high and low temperatures.

  1. Optimizing "self-wicking" nanowire grids.

    PubMed

    Wei, Hui; Dandey, Venkata P; Zhang, Zhening; Raczkowski, Ashleigh; Rice, Willam J; Carragher, Bridget; Potter, Clinton S

    2018-05-01

    We have developed a self-blotting TEM grid for use with a novel instrument for vitrifying samples for cryo-electron microscopy (cryoEM). Nanowires are grown on the copper surface of the grid using a simple chemical reaction and the opposite smooth side is used to adhere to a holey sample substrate support, for example carbon or gold. When small volumes of sample are applied to the nanowire grids the wires effectively act as blotting paper to rapidly wick away the liquid, leaving behind a thin film. In this technical note, we present a detailed description of how we make these grids using a variety of substrates fenestrated with either lacey or regularly spaced holes. We explain how we characterize the quality of the grids and we describe their behavior under a variety of conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai

    2017-09-01

    Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.

  3. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”

    PubMed Central

    2015-01-01

    We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103–104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water’s diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106–107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed “fragile-to-strong” transition anomaly in water. PMID:26207172

  4. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  5. The thermal and deformational history of apollo 15418, A partly shock-melted lunar breccia

    USGS Publications Warehouse

    Nord, G.L.; Christie, J.M.; Lally, J.S.; Heuer, A.H.

    1977-01-01

    A thermal and mechanical history of lunar gabbroic anorthosite 15418 (1140g) has been deduced from petrographic examination of both exterior and interior thin sections and electron microprobe analysis and transmission electron microscopy of interior thin sections. We suggest that the rock underwent two major shock events - an early brecciation and annealing that produced a recrystallized breccia, followed by a second shock event that melted the surface of the rock, vitrified the interior plagioclase and heavily deformed the mafic phases. This latter shock even was also followed by annealing which crystallized the shock-produced glass and promoted recovery and recrystallization of the deformed crystalline phases. The complex mechanical and thermal history of 15418 compared with other ANT suite rocks at Spur Crater suggests that it had a different provenance. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.

  6. Emission properties of Ce3+ centers in barium borate glasses prepared from different precursor materials

    NASA Astrophysics Data System (ADS)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro

    2017-10-01

    The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.

  7. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less

  8. Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.

    PubMed

    Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor

    2011-01-01

    Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.

  9. Field investigation on structural performance of the buried UPVC pipes with and without geogrid reinforcement

    NASA Astrophysics Data System (ADS)

    Teja, Akkineni Surya; Rajkumar, R.; Gokula Krishnan, B.; Aravindh, R.

    2018-02-01

    Buried pipes are used mainly for water supply and drainage besides many other applications such as oil, liquefied natural gas, coal slurries and mine tailings. The pipes used may be rigid (reinforced concrete, vitrified clay and ductile iron) or flexible (Steel, UPVC, aluminium, Fiber glass and High-density polyethylene) although the distinction between them is blurring. Flexible pipe design is governed by deflection or buckling. UPVC pipes are preferred due to light weight, long term chemical stability and cost efficiency. This project aims to study the load deformation behaviour of the buried pipe and stress variation across the cross section of the pipe under static loading along with the influence of depth of embedment, density of backfill on the deformation and stresses in pipe and the deformation behaviour of buried pipe when soil is reinforced with geogrid reinforcement and evaluate the structural performance of the pipe.

  10. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells

    PubMed Central

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2016-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021

  11. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  12. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  13. Safety of stationary grinding machines - impact resistance of work zone enclosures.

    PubMed

    Mewes, Detlef; Adler, Christian

    2017-09-01

    Guards on machine tools are intended to protect persons from being injured by parts ejected with high kinetic energy from the work zone of the machine. Stationary grinding machines are a typical example. Generally such machines are provided with abrasive product guards closely enveloping the grinding wheel. However, many machining tasks do not allow the use of abrasive product guards. In such cases, the work zone enclosure has to be dimensioned so that, in case of failure, grinding wheel fragments remain inside the machine's working zone. To obtain data for the dimensioning of work zone enclosures on stationary grinding machines, which must be operated without an abrasive product guard, burst tests were conducted with vitrified grinding wheels. The studies show that, contrary to widely held opinion, narrower grinding wheels can be more critical concerning the impact resistance than wider wheels although their fragment energy is smaller.

  14. Anomalous behavior of the homogeneous ice nucleation rate in “No-Man’s Land”

    DOE PAGES

    Laksmono, Hartawan; McQueen, Trevor A.; Sellberg, Jonas A.; ...

    2015-07-02

    We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit T H by cooling micrometer-sized droplets (microdroplets) evaporatively at 10³-10⁴ K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10⁶–10⁷more » K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed "fragile-to-strong" transition anomaly in water.« less

  15. Production of Synthetic Nuclear Melt Glass

    PubMed Central

    Molgaard, Joshua J.; Auxier, John D.; Giminaro, Andrew V.; Oldham, Colton J.; Gill, Jonathan; Hall, Howard L.

    2016-01-01

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition. PMID:26779720

  16. Nano-defect management in directed self-assembly of block copolymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Azuma, Tsukasa; Seino, Yuriko; Sato, Hironobu; Kasahara, Yusuke; Kodera, Katsuyoshi; Jiravanichsakul, Phubes; Hayakawa, Teruaki; Yoshimoto, Kenji; Takenaka, Mikihito

    2017-03-01

    Directed self-assembly (DSA) of block copolymers (BCPs) has been expected to become one of the most promising next generation lithography candidates for sub-15 nm line patterning and sub-20 nm contact hole patterning. In order to provide the DSA lithography to practical use in advanced semiconductor device manufacturing, defect mitigation in the DSA materials and processes is the primary challenge. We need to clarify the defect generation mechanism using in-situ measurement of self-assembling processes of BCPs in cooperation with modeling approaches to attain the DSA defect mitigation. In this work, we thus employed in-situ atomic force microscope (AFM) and grazing-incidence small angle X-ray scattering (GI-SAXS) and investigated development of surface morphology as well as internal structure during annealing processes. Figure 1 shows series of the AFM images of PMAPOSS-b-PTFEMA films during annealing processes. The images clearly show that vitrified sponge-like structure without long-range order in as-spun film transforms into lamellar structure and that the long range order of the lamellar structure increases with annealing temperature. It is well-known that ordering processes of BCPs from disordered state in bulk progress via nucleation and growth. In contrary to the case of bulk, the observed processes seem to be spinodal decomposition. This is because the structure in as-spun film is not the concentration fluctuation of disordered state but the vitrified sponge-like structure. The annealing processes induce order-order transition from non-equilibrium ordered-state to the lamellar structure. The surface tension assists the transition and directs the orientation. Figure 2 shows scattering patterns of (a) vicinity of film top and (b) whole sample of the GI-SAXS. We can find vertically oriented lamellar structure in the vicinity of film top while horizontally oriented lamellar structures in the vicinity of film bottom, indicating that the GI-SAXS measurement can clarify the variation of the morphologies in depth direction and that the surface tension affects the orientation of the lamellar structure. Finally a combination of the time development data in the in-situ AFM and the GI-SAXS is used to develop a kinetic modeling for prediction of dynamical change in three-dimensional nano-structures. A part of this work was funded by the New Energy and Industrial Technology Development Organization (NEDO) in Japan under the EIDEC project.

  17. Comparison of apoptosis pathway following the use of two protocols for vitrification of immature mouse testicular tissue.

    PubMed

    Hajiaghalou, Samira; Ebrahimi, Bita; Shahverdi, Abdolhossein; Sharbatoghli, Mina; Beigi Boroujeni, Nasim

    2016-11-01

    Our objective was to evaluate the apoptosis incidence in immature mouse testicular tissue after two different protocols of vitrification and short-term culture. Testes of 7-day-old Naval Medical Research Institute mice were isolated and distributed into control and vitrification groups. In vitrification 1 group, testes were vitrified using a combination of ethylene glycol and DMSO in three steps, and in vitrification 2 group, testes were vitrified using a combination of ethylene glycol and sucrose in five steps. Then, fresh and vitrified-warmed testis fragments were cultured for 20 hours. Morphology, cell viability, apoptosis incidence, and apoptosis gene expression (BAX, BCL2, Caspase 3, Fas, Fas ligand, p53) were evaluated at 0, 3, and 20 hours of culture by light microscopy, flow cytometry, and real-time polymerase chain reaction, respectively. Significant decrease of early apoptosis (annexin V+/PI- cells in vitrification 1 and 2 groups at 0 hours of culture, 37.34 ± 0.91 and 30.72 ± 2.2, and at 20 hours of culture, 1.46 ± 0.28 and 0.76 ± 0.11, respectively), increase of late apoptosis (annexin V+/PI+ cells in vitrification 1 group at 0 hours of culture, 14.46 ± 0.86, and at 20 hours of culture, 37.18 ± 2.34), and BAX/BCL-2 ratio (in vitrification 1 and 2 groups at 0 hours of culture, 7.31 ± 0.31 and 6.83 ± 1.38, and at 20 hours of culture, 24.08 ± 4.32 and 9.35 ± 1.91, respectively) were observed in vitrification groups during culture period. Caspase 3 expression was significantly decreased in all groups after 3 hours of culture (in control, vitrification 1, and vitrification 2 groups at 0 hours of culture, 1.00 ± 0.0, 1.56 ± 0.09, and 0.79 ± 0.06, and at 20 hours of culture, 0.37 ± 0.0, 0.96 ± 0.10, and 0.12 ± 0.03, respectively). Expression of p53 was significantly lower in vitrification 1 (0.32 ± 0.02) and control (0.50 ± 0.03) groups in 20 hours of culture as compared with vitrification 2 (0.88 ± 0.14) group. Fas (in vitrification 1 and 2 groups at 0 hours of culture, 2.29 ± 0.23 and 1.14 ± 0.15, and at 20 hours of culture, 12.43 ± 0.46 and 6.7 ± 0.48, respectively) and Fas Ligand (in vitrification 1 and 2 groups at 0 hours of culture, 1.2 ± 0.28 and 5.24 ± 0.32, and at 20 hours of culture, 21.75 ± 2.00 and 25.82 ± 2.15, respectively) expressions significantly increased in vitrification groups after 20 hours of culture. Although both vitrification protocols cause cell death via apoptotic and necrotic pathway, it seems that vitrification 1 protocol induces cell death more via apoptotic pathway than via necrosis. The apoptosis incidence after vitrification may have occurred independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Barcode tagging of human oocytes and embryos to prevent mix-ups in assisted reproduction technologies.

    PubMed

    Novo, Sergi; Nogués, Carme; Penon, Oriol; Barrios, Leonardo; Santaló, Josep; Gómez-Martínez, Rodrigo; Esteve, Jaume; Errachid, Abdelhamid; Plaza, José Antonio; Pérez-García, Lluïsa; Ibáñez, Elena

    2014-01-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time-lapse monitoring. Injected oocytes were parthenogenetically activated using ionomycin and 6-dimethylaminopurine. Blastocyst development rates of tagged (27/58) and non-tagged embryos (24/51) were equivalent, and no significant differences in the timing of key morphokinetic parameters and the number of inner cell mass cells were detected between the two groups (tagged: 24.7 ± 2.5; non-tagged: 22.3 ± 1.9), indicating that preimplantation embryo potential and quality are not affected by the barcodes. Similarly, re-expansion rates of vitrified-warmed tagged (19/21) and non-tagged (16/19) blastocysts were similar. Global identification rates of 96.9 and 89.5% were obtained in fresh (mean barcode retention: 9.22 ± 0.13) and vitrified-warmed (mean barcode retention: 7.79 ± 0.35) tagged embryos, respectively, when simulating an automatic barcode reading process, though these rates were increased to 100% just by rotating the embryos during barcode reading. Only one of the oocytes lost one barcode during intracytoplasmic injection (100% identification rate) and all oocytes retained all the barcodes after parthenogenetic activation. Although the direct embryo tagging system developed is effective, it only allows the identification and traceability of oocytes destined for ICSI and embryos. Thus, the traceability of all reproductive samples (oocytes destined for IVF and sperm) is not yet ensured. The direct embryo tagging system developed here provides fertility clinics with a novel tool to reduce the risk of mix-ups in human ARTs. The system can also be useful in research studies that require the individual identification of oocytes or embryos and their individual tracking. This study was supported by the Sociedad Española de Fertilidad, the Spanish Ministry of Education and Science (TEC2011-29140-C03) and the Generalitat de Catalunya (2009SGR-00282 and 2009SGR-00158). The authors do not have any competing interests.

  19. Excavation Induced Hydraulic Response of Opalinus Clay - Investigations of the FE-Experiment at the Mont Terri URL in Switzerland

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Müller, H. R.; Garitte, B.; Sakaki, T.; Vietor, T.

    2013-12-01

    The Full-Scale Emplacement (FE) Experiment at the Mont Terri underground research laboratory in Switzerland is a full-scale heater test in a clay-rich formation (Opalinus Clay). Based on the Swiss disposal concept it simulates the construction, emplacement, backfilling, and post-closure thermo-hydro-mechanical (THM) evolution of a spent fuel / vitrified high-level waste (SF / HLW) repository tunnel in a realistic manner. The main aim of this experiment is to investigate SF / HLW repository-induced THM coupled effects mainly in the host rock but also in the engineered barrier system (EBS), which consists of bentonite pellets and blocks. A further aim is to gather experience with full-scale tunnel construction and associated hydro-mechanical (HM) processes in the host rock. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors (state-of-the-art sensors and measurement systems as well as fiber-optic sensors). The sensors are distributed in the host rock's near- and far-field, the tunnel lining, the EBS, and on the heaters. The heater emplacement and backfilling has not started yet, therefore only the host rock instrumentation is installed at the moment and is currently generating data. We will present the instrumentation concept and rationale as well as the first monitoring results of the excavation and ventilation phase. In particular, we investigated the excavation induced hydraulic response of the host rock. Therefore, the spatiotemporal evolution of porewater-pressure time series was analyzed to get a better understanding of HM coupled processes during and after the excavation phase as well as the impact of anisotropic geomechanic and hydraulic properties of the clay-rich formation on its hydraulic behavior. Excavation related investigations were completed by means of inclinometer data to characterize the non-elastic and time-dependent deformations. In addition, we evaluated the effect of drainage and suction processes during the ventilation phase on the pressure distribution in the host rock. Based on our results the conceptual models of HM processes and hydraulic behavior of clay rich formations during excavation and ventilation phases could be improved.

  20. Lauriston S. Taylor Lecture: Yucca mountain radiation standards, dose/risk assessments, thinking outside the box, evaluations, and recommendations.

    PubMed

    Moeller, Dade W

    2009-11-01

    The Yucca Mountain high-level radioactive waste repository is designed to contain spent nuclear fuel and vitrified fission products. Due to the fact that it will be the first such facility constructed anywhere in the world, it has proved to be one in which multiple organizations, most prominently the U.S. Congress, are exercising a role. In addition to selecting a site for the facility, Congress specified that the U.S. Environmental Protection Agency (U.S. EPA) promulgate the associated Standards, the U.S. Nuclear Regulatory Commission establish applicable Regulations to implement the Standards, and the U.S. Department of Energy (U.S. DOE) design, construct, and operate the repository. Congress also specified that U.S. EPA request that the National Academy of Sciences (NAS) provide them guidance on the form and nature of the Standards. In so doing, Congress also stipulated that the Standards be expressed in terms of an "equivalent dose rate." As will be noted, this subsequently introduced serious complications. Due to the inputs of so many groups, and the fact that the NAS recommendations conflicted with the Congressional stipulation that the limits be expressed in terms of a dose rate, the outcome is a set of Standards that not only does not comply with the NAS recommendations, but also is neither integrated, nor consistent. The initial goals of this paper are to provide an independent risk/dose analysis for each of the eight radionuclides that are to be regulated, and to evaluate them in terms of the Standards. These efforts reveal that the Standards are neither workable nor capable of being implemented. The concluding portions of the paper provide guidance that, if successfully implemented, would enable U.S. DOE to complete the construction of the repository and operate it in accordance with the recommendations of NAS while, at the same time, provide a better, more accurate, understanding of its potential risks to the public. This facility is too important to the U.S. nuclear energy program to be impeded by inappropriate Standards and unnecessary regulatory restrictions. As will be noted, the sources of essentially all of the recommendations suggested in this paper were derived through applications of the principles of good science, and the benefits of "thinking outside the box."

  1. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    PubMed

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  2. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification.

    PubMed

    Sakai, A; Kobayashi, S; Oiyama, I

    1990-06-01

    The nucellar cells of navel orange(Citrus sinensis Osb. var. brasiliensis Tanaka) were successfully cryopreserved by vitrification. In this method, cells were sufficiently dehydrated with highly concentrated cryoprotective solution(PVS2) prior to direct plunge in liquid nitrogen. The PVS2 contains(w/v) 30% glycerol, 15% ethylene glycol and 15% DMSO in Murashige-Tucker medium(MT) containing 0.15 M sucrose. Cells were treated with 60% PVS2 at 25°C for 5 min and then chilled PVS2 at 0°C for 3 min. The cell suspension of about 0.1 ml was loaded in a 0.5 ml transparent plastic straw and directly plunged in liquid nitrogen for 30 min. After rapid warming, the cell suspension was expelled in 2 ml of MT medium containing 1.2 M sucrose. The average rate of survival was about 80%. The vitrified cells regenerated plantlets. This method is very simple and the time required for cryopreservation is only about 10 min.

  3. Thermal insulation of pipelines by foamed glass-ceramic

    NASA Astrophysics Data System (ADS)

    Apkaryan, A. S.; Kudyakov, A. I.

    2015-01-01

    Based on broken glass, clay and organic additives granular insulating glass crystalline material and technology of its receipt are developed. The regularities of the effect of composition and firing temperature on the properties of the granules are specified. The resulting granular thermally insulating material is produced with a bulk density of 260-280 kg/m3 pellet strength - 1.74 MPa, thermal conductivity - 0.075 W/m °C, water absorption - 2.6 % by weight. The effect of the basic physical characteristics of the components of the charge on the process of pore formation is studied. According to the research results, basic parameters affecting the sustainability of the swelling glass are specified. Rational charge composition, thermal and gas synthesis mode are chosen so that the partial pressure of gases is below the surface tension of the melt. This enables the formation of granules with small closed pores and vitrified surface. The article is the result of studies on the application of materials for pipe insulation of heating mains with foamed glass ceramics.

  4. Truncated Cross Effect Dynamic Nuclear Polarization: An Overhauser Effect Doppelgänger.

    PubMed

    Equbal, Asif; Li, Yuanxin; Leavesley, Alisa; Huang, Shengdian; Rajca, Suchada; Rajca, Andrzej; Han, Songi

    2018-05-03

    The discovery of a truncated cross-effect (CE) in dynamic nuclear polarization (DNP) NMR that has the features of an Overhauser-effect DNP (OE-DNP) is reported here. The apparent OE-DNP, where minimal μw power achieved optimum enhancement, was observed when doping Trityl-OX063 with a pyrroline nitroxide radical that possesses electron-withdrawing tetracarboxylate substituents (tetracarboxylate-ester-pyrroline or TCP) in vitrified water/glycerol at 6.9 T and at 3.3 to 85 K, in apparent contradiction to expectations. While the observations are fully consistent with OE-DNP, we discover that a truncated cross-effect ( tCE) is the underlying mechanism, owing to TCP's shortened T 1e . We take this observation as a guideline and demonstrate that a crossover from CE to tCE can be replicated by simulating the CE of a narrow-line (Trityl-OX063) and a broad-line (TCP) radical pair, with a significantly shortened T 1e of the broad-line radical.

  5. Cryopreservation of day 2-3 embryos by vitrification yields better outcome than slow freezing.

    PubMed

    Levron, Jacob; Leibovitz, Oshrit; Brengauz, Masha; Gitman, Hila; Yerushalmi, Gil M; Katorza, Eldad; Gat, Itai; Elizur, Shai E

    2014-03-01

    To compare the outcome of vitrification versus slow freezing cryopreservation for cleavage stage day 2-3 embryos. A retrospective observational study. All thawed embryos assisted reproduction cycles between January 2010 and December 2012 at a single IVF laboratory of a Tertiary Medical Center. Five hundred and thirty-nine cycles of day 2-3 thawed embryos. In 327 of the thawed cycles, the embryos were vitrified and in 212 of the cycles the embryos were derived from slow freezing embryos. Embryo survival rate, blastomere surviving rate and pregnancy rate. Embryo survival rate was significantly higher after vitrification compared with slow freezing (81.6%, 647/793 versus 70.0%, 393/562 embryos, p < 0.0001). The clinical pregnancy rate per ET was significantly higher following vitrification compared to slow freezing, 20.0%, 63/314 versus 11.9%, 23/193, respectively (p = 0.02). Vitrification of day 2-3 cleavage stage embryos yields better cycle outcome in all the parameters compared to slow freezing.

  6. Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines

    PubMed Central

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically idengified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  7. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    PubMed Central

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  8. Chapter 17 Sterile Plate-Based Vitrification of Adherent Human Pluripotent Stem Cells and Their Derivatives Using the TWIST Method.

    PubMed

    Neubauer, Julia C; Stracke, Frank; Zimmermann, Heiko

    2017-01-01

    Due to their high biological complexity, e.g., their close cell-to-cell contacts, cryopreservation of human pluripotent stem cells with standard slow-rate protocols often is inefficient and can hardly be standardized. Vitrification that means ultrafast freezing already showed very good viability and recovery rates for this sensitive cell system, but is only applicable for low cell numbers, bears a high risk of contamination, and can hardly be implemented under GxP regulations. In this chapter, a sterile plate-based vitrification method for adherent pluripotent stem cells and their derivatives is presented based on a procedure and device for human embryonic stem cells developed by Beier et al. (Cryobiology 66:8-16, 2013). This protocol overcomes the limitations of conventional vitrification procedures resulting in the highly efficient preservation of ready-to-use adherent pluripotent stem cells with the possibility of vitrifying cells in multi-well formats for direct application in high-throughput screenings.

  9. Physical Parameters, Modeling, and Methodological Details in Using IR Laser Pulses to Warm Frozen or Vitrified Cells Ultra-Rapidly†

    PubMed Central

    Kleinhans, F.W.; Mazur, Peter

    2015-01-01

    We report additional details of the thermal modeling, selection of the laser, and construction of the Cryo Jig used for our ultra-rapid warming studies of mouse oocytes (B Jin, FW Kleinhans, Peter Mazur, Cryobiology 68 (2014) 419–430). A Nd:YAG laser operating at 1064 nm was selected to deliver short 1 msec pulses of sufficient power to produce a warming rate of 1 × 107 °C/min from –190°C to 0°C. A special Cryo Jig was designed and built to rapidly remove the sample from LN2 and expose it to the laser pulse. India ink carbon black particles were required to increase the laser energy absorption of the sample. The thermal model reported here is more general than that previously reported. The modeling reveals that the maximum warming rate achievable via external warming across the cell membrane is proportional to (1/R2) where R is the cell radius. PMID:25724528

  10. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    PubMed

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  11. Specimen preparation for high-resolution cryo-EM

    PubMed Central

    Passmore, Lori A.; Russo, Christopher J.

    2016-01-01

    Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various specimen supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector and support technology. PMID:27572723

  12. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.

    PubMed

    Choi, Jung Kyu; Huang, Haishui; He, Xiaoming

    2015-06-01

    Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The role of troublesome components in plutonium vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong; Vienna, J.D.; Peeler, D.K.

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issuesmore » associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.« less

  14. [IVF and endometriosis, oocyte donation and fertility preservation].

    PubMed

    d'Argent, Emmanuelle Mathieu; Antoine, Jean-Marie

    2017-12-01

    Endometriosis is a common condition, causing pain and infertility. In infertile woman with superficial peritoneal endometriosis and patent tubes, laparoscopy is recommended, followed by ovarian stimulation alone or in combination with intrauterine inseminations. In case of ovarian or deep endometriosis, the indications of surgery and assisted reproductive technologies remain to be defined precisely. In vitro fertilization is generally proposed after the failure of up to three inseminations, directly for ovarian or deep endometriosis, or in case of an associated factor of infertility, mainly male. Before ovarian stimulation in view to in vitro fertilization, a pretreatment by GnRH agonist for 2 to 6 months or combined contraceptive for 6 to 8 weeks would improve the pregnancy rate. Egg donation is effective in patients with advanced ovarian failure or lack of ovarian response to stimulation. Fertility preservation, especially by oocytes vitrified, must be proposed preventively to women with endometriosis at risk of ovarian failure, without close wish to be pregnant. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions.

  16. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  17. Optimization of Water Content for the Cryopreservation Of Allium sativum In Vitro Cultures by Encapsulation-Dehydration.

    PubMed

    Lynch, P T; Souch, G R; Zamecnik, J; Harding, K

    There is a general requirement to determine and correlate water content to viability for the standardization of conservation protocols to facilitate effective cryostorage of plant germplasm. This study examined water content as a critical factor to optimize the cryostorage of Allium sativum. Stem discs were excised from post-harvest, stored bulbs prior to cryopreservation by encapsulation-dehydration and water content was determined gravimetrically. Survival of cryopreserved stem discs was 42.5 %, with 22.5 % exhibiting shoot regrowth following 6 h desiccation. Gravimetric data demonstrated a correlation between water content corresponding with survival / regrowth from desiccated, cryopreserved stem discs. For encapsulated stem discs a 25 % residual moisture and corresponding water content of 0.36 g H2O g -1 d.wt correlated with maximal survival following ~6.5 h of desiccation. The data concurs with the literature suggesting the formation of a stable vitrified state and a 'window' for optimal survival and regrowth that is between 6 - 10 h desiccation. Further studies using differential scanning calorimetry (DSC) are suggested to substantiate these findings.

  18. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.

    PubMed

    Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

    2014-06-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Continuum mechanics analysis of fracture progression in the vitrified cryoprotective agent DP6

    PubMed Central

    Steif, Paul S.; Palastro, Matthew C.; Rabin, Yoed

    2008-01-01

    As part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on the prediction of fracture formation in cryoprotective agents. Fractures had been previously observed in 1 mℓ samples of the cryoprotective agent cocktail DP6, contained in a standard 15 mℓ glass vial, and subjected to various cooling rates. These experimental observations were obtained by means of a cryomacroscope, which has been recently presented by the current research team. High and low cooling rates were found to produce very distinct patterns of cracking. The current study seeks to explain the observed patterns on the basis of stresses predicted from finite element analysis, which relies on a simple viscoelastic constitutive model and on estimates of the critical stress for cracking. The current study demonstrates that the stress which results in instantaneous fracture at low cooling rates is consistent with the stress to initiate fracture at high cooling rate. This consistency supports the credibility of the proposed constitutive model and analysis, and the unified criterion for fracturing, that is, a critical stress threshold. PMID:18412493

  20. What does the cryopreserved oocyte look like? A fresh look at the characteristic oocyte features following cryopreservation.

    PubMed

    Hosseini, Sayyed Morteza; Nasr-Esfahani, Mohammad Hossein

    2016-04-01

    In October 2012, the American Society for Reproductive Medicine (ASRM) and, in March 2012, the European Society of Human Reproduction and Embryology (ESHRE), lifted the categorization of oocyte cryopreservation as being "experimental" and endorsed its entrance into the mainstream of assisted reproductive techniques. This change in policy, with the considerable advantages that oocytes offer over embryos for cryopreservation, has increased applications of oocyte cryopreservation in assisted reproduction techniques. A deep understanding of oocyte cryobiology, however, is lagging behind the forces propelling the clinical application of oocyte cryopreservation. We have drawn attention to this shortcoming by initiating a debate on whether a vitrified-warmed oocyte has the same characteristics as its fresh sibling. The answer to this question may explain why the oocyte cryopreservation success rate is as yet far from satisfactory and why cryopreserved oocytes should be treated differently from their fresh siblings. A fresh look at the characteristic features of oocytes after cryopreservation is the main scope of this review as a stimulus to further improvement of oocyte cryopreservation. Copyright © 2016. Published by Elsevier Ltd.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Mamontov, Eugene

    Here, the calorimetric glass-transition temperature of water is 136 K, but extrapolation of thermodynamic and relaxation properties of water from ambient temperature to below its homogeneous nucleation temperature T H = 235 K predicts divergence at T S = 228 K. The “no-man’s land” between the T H and glassy water crystallization temperature of 150 K, which is encountered on warming up from the vitrified state, precludes a straightforward reconciliation of the two incompatible temperature dependences of water properties, above 235 K and below 150 K. The addition of lithium chloride to water allows bypassing both T H and Tmore » S on cooling, resulting in the dynamics with no features except the calorimetric glass transition, still at 136 K. We show that lithium chloride prevents hydrogen-bonding network completion in water on cooling, as manifested, in particular, in changing microscopic diffusion mechanism of the water molecules. Thus thermodynamic and relaxation peculiarities exhibited by pure water on cooling to its glass transition, such as the existence of the T H and T S, must be associated specifically with the hydrogen-bonding network.« less

  2. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.

    PubMed

    Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo

    2018-01-01

    The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.

  3. A new approach for in vitro regeneration of tomato plants devoid of exogenous plant growth hormones.

    PubMed

    Plana, Dagmara; Fuentes, Alejandro; Alvarez, Marta; Lara, Regla M; Alvarez, Félix; Pujol, Merardo

    2006-10-01

    Many available methodologies for in vitro regeneration of commercial tomato varieties promote not only the production of normal shoots but also individual leaves, shoots without apical meristems and vitrified structures. All these abnormal formations influence and diminish the regeneration efficiency. At the basis of this phenomenon lies callus development. We optimized an alternative procedure by which the regeneration occurs without abnormal shoot formation. The portion including the proximal part of hypocotyls and the radicle was cultured on medium consisting of Murashige and Skoog salts, 4 mg/L thiamine, 100 mg/L mio-inositol and 3% sucrose. After two-three weeks, 60% explants showed adventitious shoot formation. No changes in the morphological characteristics of regenerated plants and fruits were observed as compared with parents. Karyotypic analysis of regenerated plants showed no variations in chromosome number. The optimized procedure offers the advantage of tomato plant regeneration avoiding callus formation, which enables normal plant recovery with an efficiency ranging from 1.45 +/- 0.05 to 2.57 +/- 0.06 shoots per explant in Campbell-28, Amalia, Lignon, and Floradel cultivars.

  4. Tailoring of the care concept for practicality, safety and robustness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Hideki; McKinley, Ian G

    2013-07-01

    The Cavern Retrievable (CARE) concept was originally developed to provide flexibility in tailoring disposal of vitrified HLW to small volunteer host sites, where high emplacement density leads to significant challenges in terms of the management of radiogenic heat. Including an extended storage period in underground caverns prior to sealing solved the heat issue, but also provided benefits in terms of a slow decision-making process that provided more opportunities to engage stakeholders. Recently, direct disposal of spent fuel is being considered in Japan and this gives more severe challenges for heat management, even for conventional disposal concepts. Due to great uncertaintiesmore » in the future of nuclear power in Japan, this may also be associated with a desire to preserve the option of retrieval for extended periods. The basic CARE concept has thus been re-assessed to consider these aspects - and also the need to be able to develop a robust safety case that can be readily communicated to stakeholders, who are more sensitive to nuclear issues than they were in the past. (authors)« less

  5. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    PubMed

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  6. Vitrification and levitation of a liquid droplet on liquid nitrogen

    PubMed Central

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  7. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration.

    PubMed

    Matsumoto, T; Sakai, A; Yamada, K

    1994-05-01

    In vitro-grown apical meristems of wasabi (Wasabia japonica Matsumura) were successfully cryopreserved by vitrification. Excised apical meristems precultured on solidified M S medium containing 0.3M sucrose at 20°C for 1 day were loaded with a mixture of 2M glycerol and 0.4M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) for 10 min at 25°C prior to a plunge into liquid nitrogen. After rapid warming, the meristems were expelled into 2 ml of 1.2M sucrose for 20 min and then plated on solidified culture medium. Successfully vitrified and warmed meristems remained green after plating, resumed growth within 3 days, and directly developed shoots within two weeks. The average rate of normal shoot formation amounted to about 80 to 90% in the cryopreserved meristems. This method was successfully applied to three other cultivars of wasabi. This vitrification procedure promises to become a routine method for cryopreserving meristems of wasabi.

  8. Finding the Cold Needle in a Warm Haystack: Infrared Imaging Applied to Locating Cryo-cooled Crystals in Loops

    NASA Technical Reports Server (NTRS)

    Snell, Edward; vanderWoerd, Mark

    2003-01-01

    Thermally imaging the cryocooling processes of crystals has been demonstrated showing the progression of a cold wave through a crystal from the face closest to the origin of the coldstream ending at the point furthest away. During these studies large volume crystals were clearly distinguished from the loop holding them. Large volume crystals, used for neutron studies, were chosen deliberately to enhance the imaging. The different infrared transmission and reflectance properties of the crystal in comparison to the cryo-protectant are thought to be the parameter that produces the contrast making the crystal visible. As an application of the technology to locating crystals, more small crystals of lysozyme and a bFGF/dna complex were cryo-protected and imaged in large loops. The crystals were clearly distinguished from the vitrified solution. In the case of the bFGF/dna complex the illumination had to be carefully manipulated to enable the crystal to be seen in the visible spectrum. These preliminary results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.

  9. Application of complex macromolecular architectures for advanced microelectronic materials.

    PubMed

    Hedrick, James L; Magbitang, Teddie; Connor, Eric F; Glauser, Thierry; Volksen, Willi; Hawker, Craig J; Lee, Victor Y; Miller, Robert D

    2002-08-02

    The distinctive features of well-defined, three-dimensional macromolecules with topologies designed to enhance solubility and amplify end-group functionality facilitated nanophase morphologies in mixtures with organosilicates and ultimately nanoporous organosilicate networks. Novel macromolecular architectures including dendritic and star-shaped polymers and organic nanoparticles were prepared by a modular approach from several libraries of building blocks including various generations of dendritic initiators and dendrons, selectively placed to amplify functionality and/or arm number, coupled with living polymerization techniques. Mixtures of an organosilicate and the macromolecular template were deposited, cured, and the phase separation of the organic component, organized the vitrifying organosilicate into nanostructures. Removal of the sacrificial macromolecular template, also denoted as porogen, by thermolysis, yielded the desired nanoporous organosilicate, and the size scale of phase separation was strongly dependent on the chain topology. These materials were designed for use as interlayer, ultra-low dielectric insulators for on-chip applications with dielectric constant values as low as 1.5. The porogen design, chemistry and role of polymer architecture on hybrid and pore morphology will be emphasized.

  10. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  11. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  12. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  13. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  14. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  15. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators formore » all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)« less

  16. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  17. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  18. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  19. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  20. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy; Lasaridi, Katia, E-mail: klasaridi@hua.gr; Voukkali, Irene

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impactmore » on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.« less

  1. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  2. In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up-derived oocytes have different kinetics and requirements regarding maturation media.

    PubMed

    Souza-Fabjan, Joanna Maria G; Locatelli, Yann; Duffard, Nicolas; Corbin, Emilie; Touzé, Jean-Luc; Perreau, Christine; Beckers, Jean François; Freitas, Vicente José F; Mermillod, Pascal

    2014-05-01

    A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the oocytes (P > 0.05). Therefore, slaughterhouse oocytes developed a greater proportion of blastocysts than LOPU ones, expressed as the percentage of total cumulus oocyte complexes entering to IVM. Vitrified-thawed blastocysts presented similar survival and hatching rates between the oocyte origin, media, or method of activation. In conclusion, slaughterhouse and LOPU derived oocytes may have different IVM kinetics and require different IVM and IVF conditions. Although the IVM and IVF systems still need improvements to enhance embryo yield, the in vitro development step is able to generate good quality embryos from LOPU-derived oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Glass polymorphism in glycerol–water mixtures: II. Experimental studies

    PubMed Central

    Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A.; Wong, Jessina; Giovambattista, Nicolas

    2016-01-01

    We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s–1–10 K h–1) and for the whole range of glycerol mole fractions, χ g. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χ g ≥ 0.20), ice (χ g ≤ 0.32), and/or “distorted ice” (0 < χ g ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χ g ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol–water mixtures is shown to be possible only up to χ g ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ g < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χ g ≈ 0.38. Accordingly, in the range 0.32 < χ g < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ g ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χ g ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χ g ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol–water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex “phase” behavior of glassy binary mixtures due to phase-separation (ice formation) and polyamorphism, and the relevance of sample preparation, concentration as well as cooling rates. The presence of the distorted ice (called “interphase” by us) also explains the debated “drift anomaly” upon melting. These results are compatible with the high-pressure study by Suzuki and Mishima indicating disappearance of polyamorphism at P ≈ 0.03–0.05 GPa at χ g ≈ 0.12–0.15 [J. Chem. Phys., 2014, 141, 094505]. PMID:27044677

  4. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  5. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  6. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  7. 40 CFR 261.30 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...

  8. 40 CFR 261.30 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...

  9. 40 CFR 261.30 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...

  10. 40 CFR 261.30 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...

  11. 40 CFR 261.30 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Corrosive Waste (C) Reactive Waste (R) Toxicity Characteristic Waste (E) Acute Hazardous Waste (H) Toxic... Toxicity Characteristic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32. (c) Each hazardous waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION...

  12. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  13. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  14. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  15. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  16. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  17. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parizeau, Kate, E-mail: kate.parizeau@uoguelph.ca; Massow, Mike von; Martin, Ralph

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, andmore » source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.« less

  18. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the wastes...

  19. 49 CFR 173.197 - Regulated medical waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (bio) medical waste must be rigid containers meeting the provisions of subpart B of this part. (b) Non... medical waste or clinical waste or (bio) medical waste must be UN standard packagings conforming to the... filled. (2) Liquids. Liquid regulated medical waste or clinical waste or (bio) medical waste transported...

  20. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  1. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  2. Incident Waste Decision Support Tool - Waste Materials ...

    EPA Pesticide Factsheets

    Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.

  3. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  4. 40 CFR 264.256 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND DISPOSAL FACILITIES Waste Piles § 264.256 Special requirements for ignitable or reactive waste. Ignitable or reactive waste must not be placed in a waste pile unless the waste and waste pile satisfy all... immediately after placement in the pile so that: (1) The resulting waste, mixture, or dissolution of material...

  5. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...

  6. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...

  7. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...

  8. Comparison between students and residents on determinants of willingness to separate waste and waste separation behaviour in Zhengzhou, China.

    PubMed

    Dai, Xiaoping; Han, Yuping; Zhang, Xiaohong; Hu, Wei; Huang, Liangji; Duan, Wenpei; Li, Siyi; Liu, Xiaolu; Wang, Qian

    2017-09-01

    A better understanding of willingness to separate waste and waste separation behaviour can aid the design and improvement of waste management policies. Based on the intercept questionnaire survey data of undergraduate students and residents in Zhengzhou City of China, this article compared factors affecting the willingness and behaviour of students and residents to participate in waste separation using two binary logistic regression models. Improvement opportunities for waste separation were also discussed. Binary logistic regression results indicate that knowledge of and attitude to waste separation and acceptance of waste education significantly affect the willingness of undergraduate students to separate waste, and demographic factors, such as gender, age, education level, and income, significantly affect the willingness of residents to do so. Presence of waste-specific bins and attitude to waste separation are drivers of waste separation behaviour for both students and residents. Improved education about waste separation and facilities are effective to stimulate waste separation, and charging on unsorted waste may be an effective way to improve it in Zhengzhou.

  9. Composition and parameters of household bio-waste in four seasons.

    PubMed

    Hanc, Ales; Novak, Pavel; Dvorak, Milan; Habart, Jan; Svehla, Pavel

    2011-07-01

    Bio-waste makes up almost half portion of municipal solid waste. The characterization of household bio-waste is important in determining the most appropriate treatment method. The differences in composition and parameters of bio-waste derived from urban settlement (U-bio-waste) and family houses (F-bio-waste) during the four climate seasons are described in this paper. Twelve components and 20 parameters for bio-waste were evaluated. The composition of U-bio-waste was almost steady over those seasons, unlike F-bio-waste. U-bio-waste was comprised mainly (58.2%) of fruit and vegetable debris. F-bio-waste was primarily made up of seasonal garden components. The amount of variation among seasons in both type of bio-waste increased in sequence: basic parameters

  10. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  11. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  13. An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector.

    PubMed

    Baird, J; Curry, R; Cruz, P

    2014-02-01

    While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.

  14. Understanding the role of waste prevention in local waste management: A literature review.

    PubMed

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less

  16. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  17. Characteristics and Classification of Solid Radioactive Waste From the Front-End of the Uranium Fuel Cycle.

    PubMed

    Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing

    2015-09-01

    The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.

  18. 40 CFR 63.1200 - Who is subject to these regulations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... period of time greater than the hazardous waste residence time (i.e., hazardous waste no longer resides... (CONTINUED) National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors General... waste combustors: hazardous waste incinerators, hazardous waste cement kilns, hazardous waste...

  19. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  20. A total quality management approach to healthcare waste management in Namazi Hospital, Iran.

    PubMed

    Askarian, Mehrdad; Heidarpoor, Peigham; Assadian, Ojan

    2010-11-01

    Healthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75-90% of these wastes are classified as household waste posing no potential risk, 10-25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran. Namazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period. Before the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste. A structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings. Copyright © 2010 Elsevier Ltd. All rights reserved.

Top