Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico
2006-01-01
Background Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). Methods An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. Results The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. Conclusion These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells. PMID:16677386
Suppressive effects of fisetin on mice T lymphocytes in vitro and in vivo.
Song, Bocui; Guan, Shuang; Lu, Jing; Chen, Zhibao; Huang, Guoren; Li, Gen; Xiong, Ying; Zhang, Shuang; Yue, Zhanpeng; Deng, Xuming
2013-11-01
Most of the immunosuppressive drugs have satisfactory therapeutic effects on organ transplantation and autoimmune disease. However, their clinical application is limited by side effects. Therefore, new and safe immunosuppressive drugs against acute and chronic rejections are eagerly awaited. Fisetin, a flavonoid present in various types of vegetables and fruits, has few side effects and low level of toxicity, which would be a desirable clinical feature. In the present study, we investigated the immunosuppressive effects and underlying mechanisms of fisetin against T-cell activation in vitro and in vivo. We measured the effect of fisetin on T-lymphocyte proliferation, T-cell subsets, cell cycle progression, cytokine production, and nuclear factor activation in vitro, as well as its influence on T cell-mediated delayed-type hypersensitivity reaction in vivo. In vitro, the results showed that fisetin significantly suppressed mouse splenocytes proliferation, Th1 and Th2 cytokine production, cell cycle and the ratio of CD4(+)/CD8(+) T cells. Furthermore, fisetin exerts an immunosuppressive effect in mouse T lymphocytes through the suppression of nuclear factor kappa B activation and nuclear factor of activated T cells signaling in a dose-dependent manner. In vivo, fisetin treatment also significantly inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reactions in mice. Fisetin had strong immunosuppressive activity in vitro and in vivo, suggesting a potential role for fisetin as an immunosuppressive agent. Copyright © 2013. Published by Elsevier Inc.
In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid.
Choi, Jun-Hui; Park, Jong-Kook; Kim, Ki-Man; Lee, Hyo-Jeong; Kim, Seung
2018-01-01
We discovered recently in vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. The cytotoxicity assays showed that ferulic acid (∼300 μg/mL) did not cause any significant toxicity on three cell lines, platelets, leukocytes, and erythrocytes. In vitro assays showed inhibitory effects of ferulic acid on thrombin (THR)- or collagen/epinephrine-stimulated platelet activation by inhibiting platelet aggregation, and decreasing clot retraction activity. The in vitro effect of ferulic acid on THR-stimulated platelet activation was proved by the decrease in the secretion of serotonin from the platelets. The anticoagulant effects of ferulic acid were confirmed by the prolongation of the intrinsic or/and extrinsic pathways and the delay of recalcification time in plasma coagulation. Ferulic acid had antithrombotic effect in acute thromboembolism model in vivo, and decreased the expression of α IIb β 3 /FIB and phosphorylation of AKT in THR-stimulated platelet activation in vivo, and their antithrombotic efficacies hold promise for therapeutic targeting in our ongoing studies. © 2017 Wiley Periodicals, Inc.
Jasmine absolute (Jasminum grandiflora L.) and its mode of action on guinea-pig ileum in vitro.
Lis-Balchin, M; Hart, S; Wan Hang Lo, B
2002-08-01
Jasmine (Jasminum grandiflorum L.) is used in aromatherapy as a holistic treatment for apathy, hysteria, uterine disorders and childbirth, muscle relaxation and coughs. Its stimulant nature, on inhalation, has been shown both in animals and man. Jasmine has a spasmolytic activity on guinea-pig ileum and rat uterus in vitro. The mechanism of action of the spasmolytic activity, studied in vitro using a guinea-pig ileum smooth muscle preparation, was postsynaptic and not atropine-like. The spasmolytic effect of jasmine absolute was most likely to be mediated through cAMP, and not through cGMP. The mode of action in vitro resembled that of geranium, lavender and peppermint oils. The contradictory effect in vitro and in vivo is probably due to the solely physiological effects of jasmine absolute in vitro (producing a relaxation) compared with that in vivo, where it has a strong psychological input, producing a stimulant effect in man and enhanced movement in animals. Copyright 2002 John Wiley & Sons, Ltd.
François, G; Passreiter, C M; Woerdenbag, H J; Van Looveren, M
1996-04-01
Aqueous and lipophilic extracts of Neurolaena lobata (Asteraceae), obtained from Guatemala, were tested against Plasmodium falciparum in vitro. Moreover, sesquiterpene lactones, of the germacranolide and furanoheliangolide type, isolated from N. lobata, were shown to be active against P. falciparum in vitro. In addition to their antiplasmodial activity, their cytotoxic effects on human carcinoma cell lines were evaluated. Structure-activity relationships are discussed.
In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a suite of chemical a...
Mody, M; Lazarus, A H; Semple, J W; Freedman, J
1999-06-01
Accurate assessment of in vivo or in vitro platelet activation requires optimal preanalytical conditions to prevent artefactual in vitro activation of the platelets. The choice of anticoagulant is one of the critical preanalytical conditions as anticoagulants exert different effects on the activation of platelets ex vivo. We tested the effectiveness of Diatube-H (also known as CTAD; sodium citrate, theophylline, adenosine and dipyridamole) and citrate vacutainer tubes in preventing artefactual activation of platelets and preserving functional reserve. Platelet surface expression of the CD62P (reflecting alpha granule release), CD63 (reflecting lysosomal release) and modulation of normal platelet membrane glycoproteins CD41a and CD42b, were measured in whole blood and in isolated platelets immediately after collection and at 6, 24 and 48 h after venipuncture. Samples taken into Diatube-H showed less spontaneous platelet activation than did those taken into citrate. To measure in vitro platelet functional reserve, thrombin was added as agonist to blood stored for varying periods up to 48 h. Although Diatube-H suppressed in vitro platelet activation for up to 4 h, in samples kept for 6-24 h before thrombin addition, the inhibitory effect was lost and platelets responded fully to agonist activation. Hence, Diatube-H preserved platelets and allowed for measurement of in vivo platelet activation as well as thrombin-induced in vitro platelet activation after 6-24 h, in both whole blood and isolated platelets.
ACE2-Independent Action Of Presumed ACE2 Activators: Studies In Vivo, Ex Vivo and In Vitro
Haber, Philipp K.; Ye, Minghao; Wysocki, Jan; Maier, Christoph; Haque, Syed K.; Batlle, Daniel
2014-01-01
Angiotensin converting enzyme 2, (ACE2), is a key enzyme in the metabolism of angiotensin II. 1-[[2-(dimetilamino)ethyl]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT)and Diminazene (DIZE)have been reported to exert various organ-protective effects that have been attributed to activation of ACE2. To test the effect of these compounds we studied Ang II degradation in vivo and in vitro as well as their effect on ACE2 activity in vivo and in vitro. In a model of Ang II induced acute hypertension, blood pressure recovery was markedly enhanced by XNT (slope with XNT -3.26±0.2 vs.-1.6±0.2 mmHg/min without XNT, p<0.01). After Ang II infusion, neither plasma nor kidney ACE2 activity was affected by XNT. Plasma Ang II and Ang (1-7) levels also were not significantly affected by XNT. The blood pressure lowering effect of XNT seen in WT animals was also observed in ACE2 KO mice (slope with XNT -3.09±0.30 mmHg/min vs. -1.28±0.22 mmHg/min without XNT, p<0.001). These findings show that the blood pressure lowering effect of XNT in Ang II induced hypertension cannot be due to activation of ACE2. In vitro and ex vivo experiments in both mice and rat kidney confirmed a lack of enhancement of ACE2 enzymatic activity by XNT and DIZE. Moreover, Ang II degradation in vitro and ex vivo was unaffected by XNT and DIZE. We conclude that the biologic effects of these compounds are ACE2 independent and should not be attributed to activation of this enzyme. PMID:24446061
Bagley, Kenneth C; Abdelwahab, Sayed F; Tuskan, Robert G; Lewis, George K
2005-01-01
Pasteurella multocida toxin (PMT) is a potent mitogen for fibroblasts and osteoblastic cells. PMT activates phospholipase C-beta through G(q)alpha, and the activation of this pathway is responsible for its mitogenic activity. Here, we investigated the effects of PMT on human monocyte-derived dendritic cells (MDDC) in vitro and show a novel activity for PMT. In this regard, PMT activates MDDC to mature in a dose-dependent manner through the activation of phospholipase C and subsequent mobilization of calcium. This activation was accompanied by enhanced stimulation of naive alloreactive T cells and dominant inhibition of interleukin-12 production in the presence of saturating concentrations of lipopolysaccharide. Surprisingly, although PMT mimics the activating effects of cholera toxin on human MDDC and mouse bone marrow-derived dendritic cells, we found that PMT is not a mucosal adjuvant and that it suppresses the adjuvant effects of cholera toxin in mice. Together, these results indicate discordant effects for PMT in vitro compared to those in vivo.
Approved oncology drugs lack in vivo activity against Trichuris muris despite in vitro activity.
Cowan, Noemi; Raimondo, Alessia; Keiser, Jennifer
2016-11-01
Infections with soil-transmitted helminths (STHs) are considered among the most persistent global health problems. The few available drugs have limitations including low efficacy against Trichuris trichiura infections. As a starting point toward drug repositioning, we studied a set of FDA-approved oncology drugs for activity against Trichuris muris since targets relevant to cancer therapy might have a function in helminth biology. Drugs were tested in vitro on the larval and adult stage of T. muris. Compounds active in vitro were tested in the T. muris mouse model at single oral dosages of 200-400 mg/kg. Of the 114 drugs tested in vitro, 12 showed activity against T. muris larvae (>80 % drug effect at 50 μM). Ten of these drugs were also active on the adult worm stage (>80 % drug effect at 50 μM), of which six revealed IC 50 values between 1.8 and 5.0 μM. Except for tamoxifen citrate, all in vitro active drugs were protein kinase inhibitors. None of the drugs tested in vivo showed efficacy, revealing worm burden reductions of 0-24 % and worm expulsion rates of 0-7.9 %. The promising in vitro activities of protein kinases could not be confirmed in vivo. Drug discovery against STH should be strengthened including the definition of compound progression criteria. Follow-up structure-activity relationship studies with modified compounds might be considered.
Antidyslipidemic and antioxidant effects of novel Lupeol-derived chalcones.
Srivastava, Shishir; Sonkar, Ravi; Mishra, Sunil Kumar; Tiwari, Avinash; Balaramnavar, Vishal M; Balramnavar, Vishal; Mir, Snober; Bhatia, Gitika; Saxena, Anil K; Lakshmi, Vijai
2013-10-01
A series of Lupeol-based chalcones have been synthesized aiming to enhance the therapeutic efficacy of parent compound, the novel compounds were evaluated for their antidyslipidemic activity in triton-WR 1339 induced hyperlipidemic rats. Among the ten synthesized chalcones, the most active K4, K8, and K9 reversed the plasma levels of TC by (24, 25, 27 %), phospholipid by (25, 26, 25 %) and triacylglycerol by (27, 24, 24 %) respectively. In addition, the compounds showed significant in vitro antioxidant activity. The lipid lowering activity of these compounds were mediated through lipoprotein lipase activation (12-21 %) and enhanced post-heparin lipolytic activity (15-16 %). The compounds also displayed noteworthy inhibitory effect on 3-hydroxy-3-methyl-glutaryl reductase activity (in vitro). The in vitro effect of the most active compounds on MDI-induced adipogenesis using 3T3-L1 preadipocytes at 10 and 20 μM concentrations showed significant inhibition (20-32 %) of adipogenesis.
Gupta, B B P; Yanthan, L; Singh, Ksh Manisana
2010-08-01
Arylalkylamine N-acetyltransferase (AA-NAT) is the rate-limiting enzyme of melatonin biosynthetic pathway. In vitro effects of 5-hydroxytryptophan (5-HTP) and indoleamines (serotonin, N-acetylserotonin and melatonin) were studied on AA-NAT activity in the pineal organ of the fish, C. gariepinus during different phases of its annual breeding cycle. Further, in vitro effects of leptin on AA-NAT activity in the pineal organ were studied in fed and fasted fishes during summer and winter seasons. Treatments with 5-HTP and indoleamines invariably stimulated pineal AA-NAT activity in a dose-dependent manner during all the phases. However, leptin increased AA-NAT activity in a dose-dependent manner only in the pineal organ of the fed fishes, but not of the fasted fishes irrespective of the seasons.
Borsa, J; Sargent, M D; Long, D G; Chapman, J D
1973-02-01
Activation of reovirus transcriptase activity, latent in intact virions, by digestion of purified virions with chymotrypsin (CHT) in vitro shows a stringent requirement for specific monovalent cations. Cs(+), Rb(+), or K(+) ions are capable of facilitating activation by chymotryptic digestion. Na(+), Li(+), or NH(4) (+) ions are not capable of facilitating the CHT activation of polymerase activity and are antagonistic towards the effects of the facilitating ions. The data indicate that the effect of the cations is exerted on activation of the polymerase activity by CHT as opposed to an effect on polymerization per se. This effect may be important biologically in that it provides a mechanism whereby the virion can sense whether it is in an intracellular or an extracellular environment and thereby can avoid premature uncoating.
Borsa, J.; Sargent, M. D.; Long, D. G.; Chapman, J. D.
1973-01-01
Activation of reovirus transcriptase activity, latent in intact virions, by digestion of purified virions with chymotrypsin (CHT) in vitro shows a stringent requirement for specific monovalent cations. Cs+, Rb+, or K+ ions are capable of facilitating activation by chymotryptic digestion. Na+, Li+, or NH4+ ions are not capable of facilitating the CHT activation of polymerase activity and are antagonistic towards the effects of the facilitating ions. The data indicate that the effect of the cations is exerted on activation of the polymerase activity by CHT as opposed to an effect on polymerization per se. This effect may be important biologically in that it provides a mechanism whereby the virion can sense whether it is in an intracellular or an extracellular environment and thereby can avoid premature uncoating. PMID:4347424
Benzil, a potent activator of microsomal epoxide hydrolase in vitro.
Seidegård, J; DePierre, J W
1980-12-01
Benzil was found to be a very potent activator of microsomal epoxide hydrolase activity (measured with styrene oxide as substrate) in vitro. The activating effect was uncompetitive and benzil causes approximately ninefold increases in both the apparent V and the apparent Km of the enzyme(s). The half-maximal effect on activity was obtained as a 0.3 mM concentration of benzil. The activating effect obtained with benzil was found to be very specific, since a variety of structurally related compounds had little or no effect on microsomal epoxide hydrolase activity. In order to obtain indications for the existence of more than one microsomal epoxide hydrolase the effect of benzil on this activity from rats induced with phenobarbital, 3-methylcholanthrene, 2-acetylaminofluorene, trans-stilbene oxide, and benzil was tested. The differences observed were minor.
Park, Jin Young; Kim, Su Hyeon; Kim, Na Hee; Lee, Sang Woo; Jeun, Yong-Chull; Hong, Jeum Kyu
2017-12-01
The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil) on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.
In vitro function of the aryl hydrocarbon receptor predicts in ...
Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investigations demonstrated that sensitivity to activation of the AHR1 (50% effect concentration; EC50) in an in vitro luciferase reporter gene (LRG) assay was predictive of the sensitivity of embryos (lethal dose to cause 50% lethality; LD50) across all species of birds for all DLCs. However, nothing was known about whether sensitivity to activation of the AHR is predictive of sensitivity of embryos of fishes to DLCs. Therefore, this study investigated in vitro sensitivities of AHR1s and AHR2s to the model DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), among eight species of fish of known sensitivities of embryos to TCDD. AHR1s and AHR2s of all fishes were activated by TCDD in vitro. There was no significant linear relationship between in vitro sensitivity of AHR1 and in vivo sensitivity among the investigated fishes (R2 = 0.33, p = 0.23). However, there was a significant linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity among the investigated fishes (R2 = 0.97, p = < 0.0001). The linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity of embryos among fishes was compared to the previously generated linear relationship between in vitro s
NASA Astrophysics Data System (ADS)
Faezeh, Fatema; Salome, Dini; Abolfazl, Dadkhah; Reza, Zolfaghari Mohammad
2015-01-01
The aim of the present study was to evaluate the antibacterial activities of essential oils (EOs) obtained from the aerial parts of Zataria multiflora Boiss against Bacillus cereus, Pseudomonas aeroginosa, Escherichia coli and Staphylococcus aureus by in vivo and in vitro methods. Also, the effects of gamma-irradiation (0, 10 and 25 kGy) as a new microbial decontamination on the antibacterial activities of Z. multiflora were examined. For this purpose, the collected herbs were exposed to radiation at doses of 0, 10 and 25 kGy following essential oil (EOs) extraction by steam distillation. Then, the in vitro antibacterial potency of the irradiated and non-irradiated oils was determined by using disc diffusion, agar well diffusion and MIC and MBC determination assays. The in vivo antibacterial activity was also studied in sepsis model induced by CLP surgery by Colony forming units (CFUs) determination. The results showed that the extracted oils were discovered to be effective against all the gram positive and gram negative pathogens in vitro system. In addition, the oil significantly diminished the increased CFU count observed in CLP group. Moreover, the irradiated samples were found to possess the antibacterial activities as the non-irradiated ones both in vitro and in vivo systems. These data indicated the potential use of gamma-irradiation as a safe technique for preservation of Z. multiflora as a medicinal plant with effective antibacterial activities.
Puapermpoonsiri, S; Watanabe, K; Kato, N; Ueno, K
1997-10-01
The in vitro activities of 10 antimicrobial agents against 159 bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women were determined. Clindamycin, imipenem, cefmetazole, amoxicillin, amoxicillin-clavulanate, and metronidazole were highly active against all anaerobic isolates except Prevotella bivia and Mobiluncus species, which were resistant to amoxicillin and metronidazole, respectively. Cefotiam, ceftazidime, and ofloxacin were variably effective, while cefaclor was the least effective agent.
Silva, A P dos S; Cerqueira, G S; Nunes, L C C; de Freitas, R M
2012-03-01
The antioxidant activities of aqueous extract (AE) of Orbignya phalerata were assessed in vitro as well as its effect on locomotor activity and motor coordination in mice. AE does not possesses a strong antioxidant potential according to the scavenging assays; it also did not present scavenger activity in vitro. Following oral administration, AE (1, 2 and 3 g/kg) did not significantly change the motor activity of animals when compared with the control group, up to 24 h after administration and did not alter the remaining time of the animals on the Rota-rod apparatus. Further studies currently in progress will enable us to understand the mechanisms of action of the aqueous extract of Orbignya phalerata widely used in Brazilian flok medicine.
An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae
2013-02-01
Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.
Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula
2015-08-01
In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of mycotoxins on in vitro movement of tracheal cilia from one-day-old chicks.
Jesenská, Z; Bernát, D
1994-01-01
The effect of 11 mycotoxins on the ciliary movement of tracheal epithelium from one-day-old chicks in vitro was examined. Sterigmatocystin and diacetoxyscirpenol were most ciliostatically active in vitro; the ciliostatic effect was observed after 2 d if the amount concentration was 30 micrograms/L. In contrast, patulin stopped the movement of cilia after 2 d only if its concentration was 20 mg/L.
Wolf, G; Müller, G M; Kehrberg, G
1989-01-01
From numerous investigations it is known that lithium carbonate promotes granulocytopoiesis by stimulation of CSF (colony stimulating factor) in bone marrow. To prove if no immature, in their functions restricted cells are delivered from bone marrow, the activity of granulocytes was tested in vitro in patients with lithium therapy. It could be seen that granulocytes of peripheral blood show an increased in-vitro-activation after lithium influence in vivo.
Antitumor and immunomodulating activity of a polysaccharide from Sophora flavescens Ait.
Bai, Lu; Zhu, Li-Ying; Yang, Bao-Shan; Shi, Li-Jun; Liu, Yong; Jiang, Ai-Min; Zhao, Li-Li; Song, Guang; Liu, Tie-Fu
2012-12-01
The immunostimulatory activity of Sophora flavescens polysaccharide (SFPW1) was evaluated by using in vitro cell models and in vivo animal models. The results demonstrated that SFPW1 could effectively inhibit the tumor growth in H22 tumor-bearing mice and promote the splenocyte proliferation, thus resulting in a prolonged life survival. For assay in vitro, SFPW1 significantly strengthened peritoneal macrophages to devour H22 tumor cells and stimulated macrophages to produce nitric oxide (NO) via up-regulation of inducible NO synthase (iNOS) activity. However, no direct cytotoxicity against H22 tumor cells was observed in vitro. These results suggest that SFPW1 might be a strong natural immunomodulator and the antitumor effect of this polysaccharide is associated with its potent immunostimulating effect. Copyright © 2012 Elsevier B.V. All rights reserved.
Inhibitory effects of Agaricus blazei extracts on human myeloid leukemia cells.
Kim, Chi-Fai; Jiang, Jing-Jing; Leung, Kwok-Nam; Fung, Kwok-Pui; Lau, Clara Bik-San
2009-03-18
Agaricus blazei has been used as an adjuvant in cancer chemotherapy and is found to inhibit the growth of various types of tumor cells. Our study has adopted a systematic and bioassay-guided approach to optimize the extraction of Agaricus blazei for anti-leukemic bioactive components. The tumor-selective growth inhibitory activity of the extracts on leukemic cell lines was evaluated in vitro and in vivo using tumor-bearing nude mice. Agaricus blazei extracts were prepared using different methods. MTT and tritiated thymidine incorporation assays were used to evaluate the in vitro anti-leukemic effects. The most potent extract was further investigated using NB-4 cells-bearing nude mice and mechanistic studies using DNA fragmentation assay and cell death detection ELISA. The JAB80E70 extract showed the most potent tumor-selective growth inhibitory activity against human leukemia NB-4 and K-562 cells. This is the first report of anti-leukemic activity of JAB80E70 in athymic nude mice bearing NB-4 cells. Using DNA fragmentation assays and cell death detection ELISA, JAB80E70 was found to induce apoptosis in NB-4 cells. However, the polysaccharide enriched fractions failed to show significant cytotoxicity on NB-4 cells in vitro. The JAB80E70 extract exhibited potent anti-leukemic effect in vitro and in vivo. The effect can be attributed, at least in part, to the induction of apoptosis. Besides, polysaccharides in Agaricus blazei may not possess direct anti-leukemic activity in vitro.
Juretić, Marina; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena; Hafner, Anita; Lovrić, Jasmina; Pepić, Ivan
2018-07-30
The objective of this study was to systematically investigate the effects of surface active ophthalmic excipients on the corneal permeation of ophthalmic drugs using in vitro (HCE-T cell-based model) and ex vivo (freshly excised porcine cornea) models. The permeation of four ophthalmic drugs (i.e., timolol maleate, chloramphenicol, diclofenac sodium and dexamethasone) across in vitro and ex vivo corneal models was evaluated in the absence and presence of four commonly used surface active ophthalmic excipients (i.e., Polysorbate 80, Tyloxapol, Cremophor® EL and Pluronic® F68). The concentration and self-aggregation-dependent effects of surface active ophthalmic excipients on ophthalmic drug permeability were studied from the concentration region where only dissolved monomer molecules of surface active ophthalmic excipients exist, as well as the concentration region in which aggregates of variable size and dispersion are spontaneously formed. Neither the surface active ophthalmic excipients nor the ophthalmic drugs at all concentrations that were tested significantly affected the barrier properties of both corneal models, as assessed by transepithelial electrical resistance (TEER) monitoring during the permeability experiments. The lowest concentration of all investigated surface active ophthalmic excipients did not significantly affect the ophthalmic drug permeability across both of the corneal models that were used. For three ophthalmic drugs (i.e., chloramphenicol, diclofenac sodium and dexamethasone), depressed in vitro and ex vivo permeability were observed in the concentration range of either Polysorbate 80, Tyloxapol, Cremophor® EL or Pluronic® F68, at which self-aggregation is detected. The effect was the most pronounced for Cremophor® EL (1 and 2%, w/V) and was the least pronounced for Pluronic® F68 (1%, w/V). However, all surface active ophthalmic excipients over the entire concentration range that was tested did not significantly affect the in vitro and ex vivo permeability of timolol maleate, which is the most hydrophilic ophthalmic drug that was investigated. The results of the dynamic light scattering measurements point to the association of ophthalmic drugs with self-aggregates of surface active ophthalmic excipients as the potential mechanism of the observed permeability-depressing effect of surface active ophthalmic excipients. A strong and statistically significant correlation was observed between in vitro and ex vivo permeability of ophthalmic drugs in the presence of surface active ophthalmic excipients, which indicates that the observed permeability-altering effects of surface active ophthalmic excipients were comparable and were mediated by the same mechanism in both corneal models. Copyright © 2018 Elsevier B.V. All rights reserved.
Morcia, C; Malnati, M; Terzi, V
2012-01-01
The aim of this study was to examine the effect of five naturally occurring compounds from essential oils on 10 different species of mycotoxigenic fungi involved in several plant diseases. The antifungal activities of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol were observed in vitro on Fusarium subglutinans, Fusarium cerealis, Fusarium verticillioides, Fusarium proliferatum, Fusarium oxysporum, Fusarium sporotrichioides, Aspergillus tubingensis, Aspergillus carbonarius, Alternaria alternata and Penicillium sp. The naturally occurring compounds tested showed toxic effects on in vitro mycelium growth of all fungal species but with different level of potency. The results are encouraging for further investigations of in planta antifungal activities of these essential oils components.
Oliveira, Vagne Melo; Assis, Caio Rodrigo Dias; Costa, Helane Maria Silva; Silva, Raquel Pereira Freitas; Santos, Juliana Ferreira; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza
2017-01-01
Aluminium is a major pollutant due to its constant disposal in aquatic environments through anthropogenic activities. The physiological effects of this metal in fish are still scarce in the literature. This study investigated the in vivo and in vitro effects of aluminium sulfate on the activity of enzymes from Nile tilapia (Oreochromis niloticus): brain acetylcholinesterase (AChE), muscle cholinesterases (AChE-like and BChE-like activities), pepsin, trypsin, chymotrypsin and amylase. Fish were in vivo exposed during 14days when the following experimental groups were assayed: control group (CG), exposure to Al 2 (SO 4 ) 3 at 1μg·mL -1 (G1) and 3μg·mL -1 (G3) (concentrations compatible with the use of aluminium sulfate as coagulant in water treatment). In vitro exposure was performed using animals of CG treatment. Both in vivo and in vitro exposure increased cholinesterase activity in relation to controls. The highest cholinesterase activity was observed for muscle BChE-like enzyme in G3. In contrast, the digestive enzymes showed decreased activity in both in vivo and in vitro exposures. The highest inhibitory effect was observed for pepsin activity. The inhibition of serine proteases was also quantitatively analyzed in zymograms using pixel optical densitometry as area under the peaks (AUP) and integrated density (ID). These results suggest that the inhibition of digestive enzymes in combination with activation of cholinesterases in O. niloticus is a set of biochemical effects that evidence the presence of aluminium in the aquatic environment. Moreover, these enzymatic alterations may support further studies on physiological changes in this species with implications for its neurological and digestive metabolisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Amat, Nurmuhammat; Umar, Anwar; Hoxur, Parida; Anaydulla, Mihrigul; Imam, Guzalnur; Aziz, Ranagul; Upur, Halmurat; Kijjoa, Anake; Moore, Nicholas
2015-04-25
Karapxa decoction (KD) is a Traditional Uighur Medicine used for hepatitis, cholecystitis, gastralgia, oedema, gout and arthralgia. Because of its purported effect in gout, its effects were tested in hyperuricemic mice models induced by yeast extract paste or potassium oxonate, as well as its capacity to scavenge free radicals in vitro. Hyperuricemia was induced in mice by yeast extract paste or potassium oxonate. KD was given orally for 14 days at 200, 400 and 800 mg/kg/day, with Allopurinol 10 mg/kg/day as positive control. Serum uric acid (UA), and liver xanthine oxidase activity (XO) were measured. Scavenging activity of KD on 1, 1-diphenyl-2-picrylhydrazyl radicals (DPP•), nitric oxide (•NO), superoxide (O2•-), efficiency against lipid peroxidation, and XO inhibition were determined in vitro. KD inhibited liver XO activity and reduced serum uric acid in hyperuricemic mice. KD also showed noticeable antioxidant activity, scavenging free radicals (DPP•, •NO and O2•-). It was effective against lipid peroxidation and inhibited XO in vitro. This study supports the traditional use of Karapxa decoction to treat hyperuricemia and gout.
Comparison of in vitro activity of undecylenic acid and tolnaftate against athlete's foot fungi.
Amsel, L P; Cravitz, L; VanderWyk, R; Zahry, S
1979-03-01
Undecylenic acid and tolnaftate were tested in an in vitro test system to evaluate their relative "killing time" efficacy against Trichophyton mentagrophytes, Trichophyton rubrum, and Epidermophyton floccosum. Commercial products containing these active agents were tested similarly. The pure active agents were equivalent in activity. The commercial product containing undecylenic acid appeared to be more effective against the test organisms than did the product containing tolnaftate.
Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo
2014-01-01
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures.
Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo
2014-01-01
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures. PMID:24918754
Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina
2016-03-01
In the present study, the effect of different in vitro cultures (callus, in vitro shoots) and commercially available peppercorn extract was investigated for its activity against toxic metabolite-producing strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Candida albicans). These in vitro cultures were extracted with ethanol, hexane, and chloroform, and the antipathogenic activity was determined by well-diffusion method. Hexane extract of callus showed 22 mm zone of inhibition against B. cereus, 23 mm against S. aureus, while regenerated shoots and seeds have shown 24.3 and 26 mm zones of inhibition. The ethanolic extracts of regenerated Piper shoots have shown 25 mm activity against S. aureus, 21 mm against B. cereus, and 16 mm in the case of C. albicans in comparison with standard antibiotics. Peppercorn extracts in chloroform and ethanol had shown activities against B. cereus (23.6 mm) and B. subtilis (23.5 mm). During in vitro organogenesis and morphogenesis, cells and tissues produced a comparable phytochemicals profile like mother plant. Morphogenesis is critically controlled by the application of exogenous plant-growth regulators. Such addition alters the hormonal transduction pathways, and cells under in vitro conditions regenerate tissues, which are dependant on the physiological state of cells, and finally enhance the production of secondary metabolites. To the best of our knowledge, this is the first report to compare the antimicrobial potential of in vitro regenerated tissues and peppercorn with standard antibiotics. In conclusion, most of the extracts showed pronounced activities against all the pathogenic microbes. This is a preliminary work, and the minimum inhibitory concentration values needs to be further explored. Regenerated tissues of P. nigrum are a good source of biologically active metabolites for antimicrobial activities, and callus culture presented itself as a good candidate for such activities. © The Author(s) 2013.
In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.
Fisher, T; Golan, H; Schiby, G; PriChen, S; Smoum, R; Moshe, I; Peshes-Yaloz, N; Castiel, A; Waldman, D; Gallily, R; Mechoulam, R; Toren, A
2016-03-01
Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.
In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma
Fisher, T.; Golan, H.; Schiby, G.; PriChen, S.; Smoum, R.; Moshe, I.; Peshes-Yaloz, N.; Castiel, A.; Waldman, D.; Gallily, R.; Mechoulam, R.; Toren, A.
2016-01-01
Background Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Methods We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ9-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Results Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Conclusions Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl. PMID:27022310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yuanxue; Xu, Xiaojun; Chang, Sai
The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect bymore » suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro. • Totarol activates PI3K/Akt pathway in neurons. • Totarol induces HO-1, GSH and SOD expression in vitro and in vivo. • Totarol exhibits neuroprotective effects in rat brain ischemic stroke model.« less
In Vitro Susceptibility Testing Methods for Caspofungin against Aspergillus and Fusarium Isolates
Arikan, Sevtap; Lozano-Chiu, Mario; Paetznick, Victor; Rex, John H.
2001-01-01
We investigated the relevance of prominent reduction in turbidity macroscopically (MIC) and formation of aberrant hyphal tips microscopically (minimum effective concentration; MEC) in measuring the in vitro activity of caspofungin against Aspergillus and Fusarium. Caspofungin generated low MICs and MECs against Aspergillus, but not for Fusarium. While MICs increased inconsistently when the incubation time was prolonged, MEC appeared as a stable and potentially relevant endpoint in testing in vitro caspofungin activity. PMID:11120990
Boyle, R. W.; Leznoff, C. C.; van Lier, J. E.
1993-01-01
Zinc phthalocyanine substituted with four hydroxyl groups attached to the macrocycle, either directly or via spacer chains of three or six carbon atoms, were tested for their photodynamic ability to inactivate Chinese hamster lung fibroblasts (line V-79) in vitro, and to induce regression of EMT-6 tumours grown subcutaneously in Balb/c mice. Their potential to inflict direct cell killing during photodynamic therapy was investigated by examining vascular stasis immediately following photoirradiation using fluorescein as a marker, and also by an in vivo/in vitro EMT-6 cell survival assay. Both of the tetraalkylhydroxy substituted zinc phthalocyanines are effective photodynamic sensitisers in vivo with the tetrapropylhydroxy compound exhibiting about twice the activity of the tetrahexylhydroxy analogue. The differences in activities were accentuated in vitro, the tetrapropylhydroxy compound was two orders of magnitude more potent than the tetrahexylhydroxy analogue in photoinactivating V-79 cells. The tetrahydroxy compound lacking spacer chains failed to exhibit photodynamic activity in either system. Tumour response with the active compounds was preceded by vascular stasis immediate following irradiation which suggests, together with the absence of activity in the in vivo/in vitro assay, that tumour regression involves an indirect response to the photodynamic action rather than direct cell killing. These data demonstrate the importance of the spatial orientation of functional groups around the macrocycle of photosensitisers for their efficacy in the photodynamic therapy of cancer. PMID:8512803
miRNA studies in in vitro and in vivo activated hepatic stellate cells
Maubach, Gunter; Lim, Michelle Chin Chia; Chen, Jinmiao; Yang, Henry; Zhuo, Lang
2011-01-01
AIM: To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation. METHODS: We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated. RESULTS: We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs. Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type I transcription. CONCLUSION: Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA. PMID:21734783
Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warford, Jordan, E-mail: jordan.warford@dal.ca; Doucette, Carolyn D., E-mail: carolyn.doucette@dal.ca; Hoskin, David W., E-mail: d.w.hoskin@dal.ca
2014-01-10
Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycansmore » which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell line CTLL-2. The effect of surfen was antagonized dose-dependently by co-treatment with heparin sulfate. We conclude that surfen inhibits T cell proliferation in vitro and in vivo. When T cell receptor-driven activation is bypassed surfen had a neutral or stimulatory effect on T cell proliferation. The results imply that endogenous GAGs and proteoglycans play a complex role in promoting or inhibiting different aspects of T cell activation.« less
Iannotti, Fabio Arturo; Hill, Charlotte L; Leo, Antonio; Alhusaini, Ahlam; Soubrane, Camille; Mazzarella, Enrico; Russo, Emilio; Whalley, Benjamin J; Di Marzo, Vincenzo; Stephens, Gary J
2014-11-19
Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.
NASA Astrophysics Data System (ADS)
Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.
2011-09-01
The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.
Masterson, Claire; O'Toole, Daniel; Leo, Annemarie; McHale, Patricia; Horie, Shahd; Devaney, James; Laffey, John G
2016-04-01
Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. In vivo animal study and subsequent in vitro studies. University Research Laboratory. Adult male Sprague-Dawley rats and pulmonary epithelial cells. Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-β activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and intrinsic activity of IκB kinase-β.
Zhou, Zhengyuan; Han, Na; Liu, Zhihui; Song, Zehai; Wu, Peng; Shao, Jingxuan; Zhang, Jia Ming; Yin, Jun
2016-04-01
In the present study, the in vitro antibacterial activity of an effective fraction (ESF) from Syringae Folium (SF) on Methicillin-resistant Staphylococcus aureus (MRSA) was evaluated and then its in vivo activity was evaluated by using the MRSA-infected mouse peritonitis model. The ESF showed a significant in vitro and in vivo activity on decreasing the Minimum Inhibitory Concentrations (MICs) and increasing the survival rate of mouse from 42.8% to 100%. Six iridoid glucosides (IGs) of ESF were characterized by UPLC-TOF-MS method and also isolated by column chromatography. Most of them showed in vitro anti MRSA activity. Syringopicroside (Sy), the major compound of IGs, was found to increase the survival rate from 42.8% to 92.8% of the MRSA-infected mouse, which revealed Sy is also the main active components of ESF. In order to know why the effect of oral administration of SF is better than its injections in clinic and the metabolites of Sy, seven metabolites of Sy were isolated from rat urine and identified on the basis of NMR and MS spectra. Most of metabolites possessed stronger in vitro anti-MRSA activity than that of Sy, which furtherly proved the clinical result. Copyright © 2016 Elsevier B.V. All rights reserved.
Zuo, Ai-Ren; Yu, Yan-Ying; Shu, Qing-Long; Zheng, Li-Xiang; Wang, Xiao-Min; Peng, Shu-Hong; Xie, Yan-Fei; Cao, Shu-Wen
2014-06-01
Acute liver damage is primarily induced by one of several causes, among them viral exposure, alcohol consumption, and drug and immune system issues. Agents with the ability to inhibit tyrosinase and protect against DNA damage caused by reactive oxygen species (ROS) may be therapeutically useful for the prevention or treatment of ROS-related diseases. This investigation examined the hepatoprotective effects of phloretin and phloretin isonicotinyl hydrazone (PIH) on d-galactosamine (D-GalN)-induced acute liver damage in Kunming mice, as well as the possible mechanisms. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (γ-GT), alkaline phosphatase (ALP), and total bilirubin (TB) as well as the histopathological changes in mouse liver sections were determined. The antioxidant effects of phloretin, quercetin, and PIH on lipid peroxidation in rat liver mitochondria in vitro, 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radical scavenging activity in vitro, and supercoiled pBR322 plasmid DNA were confirmed. The experiment also examined the antityrosinase activity, inhibition type, and inhibition constant of phloretin and PIH. Phloretin, quercetin, or PIH significantly prevented the increase in serum ALT, AST, γ-GT, ALP, and TB in acute liver damage induced by D-GalN, and produced a marked reduction in the histopathological hepatic lesions. Phloretin, quercetin, or PIH also exhibited antioxidant effects on lipid peroxidation in rat liver mitochondria in vitro, DPPH or ABTS free radical scavenging activity in vitro, and supercoiled pBR322 plasmid DNA. Phloretin, quercetin, or PIH also exhibited good antityrosinase activity. To the best of our knowledge, this was the first study of the hepatoprotective effects of phloretin and PIH on D-GalN-induced acute liver damage in Kunming mice as well as the possible mechanisms. This was also the first study of the lipid peroxidation inhibition activity of phloretin and PIH in liver mitochondria induced by the Fe(2+)/vitamin C (Vc) system in vitro, the protective effects on supercoiled pBR322 plasmid DNA, and the antityrosinase activity of phloretin and PIH. Copyright © 2014. Published by Elsevier B.V.
In vitro and in vivo antitrypanosomal activity of Xanthium strumarium leaves.
Talakal, T S; Dwivedi, S K; Sharma, S R
1995-12-15
Antitrypanosomal activity of crude 50% ethanolic extract of Xanthium strumarium leaves was studied in vitro and in vivo. The extract exhibited trypanocidal activity at all four concentrations tested i.e. 5, 50, 500 and 1000 micrograms/ml, in vitro. In vivo trial revealed that the extract exerted antitrypanosomal effect at dosage of 100, 300 and 1000 mg/kg, intraperitoneally. At 100 and 300 mg/kg doses the survival period of the Trypanosoma evansi infected mice was significantly prolonged. However, the extract was found to be toxic to the animals at 1000 mg/kg dose.
Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.
Ercan, Pınar; El, Sedef Nehir
2016-08-15
The total saponin content and its in vitro bioaccessibilities in Tribulus terrestris and chickpea were determined by a static in vitro digestion method (COST FA1005 Action INFOGEST). Also, in vitro inhibitory effects of the chosen food samples on lipid and starch digestive enzymes were determined by evaluating the lipase, α-amylase and α-glucosidase activities. The tested T. terrestris and chickpea showed inhibitory activity against α-glucosidase (IC50 6967 ± 343 and 2885 ± 85.4 μg/ml, respectively) and α-amylase (IC50 343 ± 26.2 and 167 ± 6.12 μg/ml, respectively). The inhibitory activities of T. terrestris and chickpea against lipase were 15.3 ± 2.03 and 9.74 ± 1.09 μg/ml, respectively. The present study provides the first evidence that these food samples (T. terrestris, chickpea) are potent inhibitors of key enzymes in digestion of carbohydrates and lipids in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kutluyer, Filiz; Benzer, Fulya; Erişir, Mine; Öğretmen, Fatih; İnanan, Burak Evren
2016-03-01
There is limited information on the scientific literature about the effect of in vitro exposure of fish sperm to pesticides. In vitro effect of cypermethrin on sperm quality and oxidative stress has not yet been fully investigated. Therefore, the effects of cypermethrin, a type II pyrethroid insecticide, on quality and oxidative stress of spermatozoa were examined in vitro. To explore the potential in vitro toxicity of cypermethrin, fish spermatozoa were incubated with different concentrations of cypermethrin (1.025, 2.05 and 4.1 μg/l) for 2 h. The motility rate and duration of sperm were determined after exposure to cypermethrin. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) in spermatozoa were analyzed for determination of oxidant and antioxidant balance. Our results indicated that spermatozoa motility and duration significantly decreased with exposure to cypermethrin. Additionally, activity of GSH-Px (P<0.05) and MDA and GSH levels increased in a concentration-dependent manner while CAT activity decreased (P<0.05). Consequently, the oxidant and antioxidant status and sperm quality were affected by quantitative changes and different concentrations of cypermethrin. Copyright © 2015 Elsevier Inc. All rights reserved.
Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto
2002-07-01
In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.
An In Vitro and In Vivo Study of the α-Amylase Activity of Phaseolamin
de Gouveia, Neire Moura; Alves, Fernanda Vieira; Furtado, Fabiana Barcelos; Scherer, Danielli Luana; Mundim, Antonio Vicente
2014-01-01
Abstract We evaluated the polypeptide profiles, inhibition of human salivary α-amylase activity, and hemagglutination properties of a commercial phaseolamin sample. We also performed an in vivo assay to investigate the effects of a commercial phaseolamin treatment (100, 500, or 1500 mg/kg) over 20 days on the glycemia, body weight, and serum biochemical parameters (total cholesterol, triglycerides, alanine aminotransferase, and aspartate aminotransferase) of nondiabetic and streptozotocin-induced diabetic rats. The in vitro evaluation showed defined protein profiles, low hemagglutination activity, and high α-amylase inhibition. None of the experimental groups treated with phaseolamin or acarbose showed decreases in body weight. Our data demonstrate that phaseolamin inhibits amylase activity in vitro, reduces blood glucose levels, decreases or attenuates some of the renal and hepatic effects of diabetes in streptozotocin-induced rats, and could therefore have therapeutic potential in the treatment or prevention of the complications of diabetes. PMID:24650210
Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K
2013-12-01
This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.
2012-01-01
Background Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. Methods For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. Results The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. Conclusions In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases. PMID:22709446
Fávaro, Wagner J; Nunes, Odilon S; Seiva, Fabio Rf; Nunes, Iseu S; Woolhiser, Lisa K; Durán, Nelson; Lenaerts, Anne J
2012-06-18
Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases.
Conley, Justin M; Evans, Nicola; Cardon, Mary C; Rosenblum, Laura; Iwanowicz, Luke R; Hartig, Phillip C; Schenck, Kathleen M; Bradley, Paul M; Wilson, Vickie S
2017-05-02
In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054-116 ng E2Eq L -1 ). There was a strong linear relationship (r 2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6-4.8 ng DHTEq L -1 ) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0-43 ng DexEq L -1 ); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.
Conley, Justin M.; Evans, Nicola; Cardon, Mary C.; Rosenblum, Laura; Iwanowicz, Luke R.; Hartig, Phillip C.; Schenck, Kathleen M.; Bradley, Paul M.; Wilson, Vickie S.
2017-01-01
In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054–116 ng E2Eq L–1). There was a strong linear relationship (r2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6–4.8 ng DHTEq L–1) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0–43 ng DexEq L–1); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.
Cell-based in vitro assays show promise for water quality monitoring applications due to high sensitivity, the ability to quantitatively detect a biologically relevant effect endpoint such as receptor transactivation (i.e., effect-based monitoring), and the ability to assess comp...
Kotowaroo, M I; Mahomoodally, M F; Gurib-Fakim, A; Subratty, A H
2006-03-01
In this study, seven exotic/indigenous medicinal plants of Mauritius, namely Coix lacryma-jobi (Poaceae), Aegle marmelos (Rutaceae), Artocarpus heterophyllus (Moraceae), Vangueria madagascariensis (Rubiaceae), Azadirachta indica (Meliaceae), Eriobotrya japonica (Rosaceae) and Syzigium cumini (Myrtaceae) were studied for possible effects on starch breakdown by alpha-amylase in vitro. The results showed that only Artocarpus heterophyllus significantly (p < 0.05) inhibited alpha-amylase activity in vitro. To confirm the observed effects, a further biochemical assay was undertaken to investigate the effects of Artocarpus heterophyllus on alpha-amylase activity using rat plasma in vitro. It was found that the aqueous leaf extract significantly (p < 0.05) inhibited alpha-amylase activity in rat plasma. The highest inhibitory activity (27.20 +/- 5.00%) was observed at a concentration of 1000 microg/mL. However, in both cases dose dependency was not observed. Enzyme kinetic studies using the Michaelis-Menten and Lineweaver-Burk equations were performed to establish the type of inhibition involved. In the presence of the plant extract the maximal velocity (Vmax) remained constant (1/150 g / L/s) whereas the Michaelis-Menten constant (Km) increased by 5.79 g / L, indicating that the aqueous leaf extract of Artocarpus heterophyllus behaved as a competitive inhibitor. Results from the present study tend to indicate that Artocarpus heterophyllus could act as a 'starch blocker' thereby reducing post-prandial glucose peaks. Copyright 2006 John Wiley & Sons, Ltd.
Widespread contamination of waters with both natural and synthetic estrogens is a concern for potential adverse ecological and human health effects. In vitro assays are valuable screening tools for identifying contaminated environmental samples and chemical specific mechanisms of...
Widespread contamination of waters with both natural and synthetic estrogens is a concern for potential adverse ecological and human health effects. In vitro assays are valuable screening tools for identifying contaminated environmental samples and chemical specific mechanisms o...
Mishra, Nidhi; Arora, Preeti; Kumar, Brajesh; Mishra, Lokesh C; Bhattacharya, Amit; Awasthi, Satish K; Bhasin, Virendra K
2008-07-01
The synthesis of novel 1,3-diaryl propenone derivatives and their antimalarial activity in vitro against asexual blood stages of human malaria parasite, Plasmodium falciparum, are described. Chalcone derivatives were prepared via Claisen-Schmidt condensation of substituted aldehydes with substituted methyl ketones. Antiplasmodial IC(50) (half maximal inhibitory concentration) activity of these compounds ranged between 1.5 and 12.3 microg/ml. The chloro-series, 1,2,4-triazole substituted chalcone was found to be the most effective in inhibiting the growth of P. falciparum in vitro while pyrrole and benzotriazole substituted chalcones showed relatively less inhibitory activity. This is the first report on antiplasmodial activity of chalcones with azoles on acetophenone ring.
Suseem, S R; Saral, Mary
2015-07-01
To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.
Wiegand, C; Abel, M; Ruth, P; Hipler, U C
2011-11-01
A comprehensive in vitro approach was used to assess the effects of superabsorbent polymer (SAP) containing wound dressings in treatment of non-healing wounds. A slight negative effect on HaCaT cells was noted in vitro which is most likely due to the Ca(2+) deprivation of the medium by binding to the SAP. It could be shown that SAP wound dressings are able to bind considerable amounts of elastase reducing enzyme activity significantly. Furthermore, SAP's inhibit the formation of free radicals. The SAP-containing wound dressings tested also exhibited a significant to strong antimicrobial activity effectively impeding the growth of gram-negative and gram-positive bacteria as well as yeasts. In conclusion, in vitro data confirm the positive effect of SAP wound dressings observed in vivo and suggest that they should be specifically useful for wound cleansing.
Elnager, Abuzar; Hassan, Rosline; Idris, Zamzuri; Mustafa, Zulkifli; Wan-Arfah, Nadiah; Sulaiman, S A; Gan, Siew Hua; Abdullah, Wan Zaidah
2015-01-01
Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.
Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik
2015-06-01
Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.
Martini, Franciele; Pesarico, Ana P; Brüning, César A; Zeni, Gilson; Nogueira, Cristina W
2018-02-05
There is a well-known relationship between the cholinergic system and learning, memory, and other common cognitive processes. The process for researching and developing new drugs has lead researchers to repurpose older ones. This study investigated the effects of ebselen on the activity of acethylcholinesterase (AChE) isoforms in vitro and in an amnesia model induced by scopolamine in Swiss mice. In vitro, ebselen at concentrations equal or higher than 10 μM inhibited the activity of cortical and hippocampal G4/AChE, but not G1/AChE isoform. Treatment of mice with ebselen (50 mg/kg, i.p.) was effective against impairment of spatial recognition memory in both Y-maze and novel object recognition tests induced by scopolamine (1 mg/kg, i.p.). Ebselen (50 mg/kg) inhibited hippocampal AChE activity in mice. The present study demonstrates that ebselen inhibited the G4/AChE isoform in vitro and elicited an anti-amnesic effect in a mouse model induced by scopolamine. These findings reveal ebselen as a potential compound in terms of opening up valid therapeutic avenues for the treatment of memory impairment diseases. © 2018 Wiley Periodicals, Inc.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-06-06
In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-01-01
Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328
Colín-Lozano, Blanca; León-Rivera, Ismael; Chan-Bacab, Manuel Jesús; Ortega-Morales, Benjamín Otto; Moo-Puc, Rosa; López-Guerrero, Vanessa; Hernández-Núñez, Emanuel; Argüello-Garcia, Raúl; Scior, Thomas; Barbosa-Cabrera, Elizabeth; Navarrete-Vázquez, Gabriel
2017-08-01
We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 1-5 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC 50 values ranging from the low micromolar to nanomolar order. Compounds 1-5 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC 50 of 0.145μM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709μg/kg (3.53nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 1-5 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections. Copyright © 2017 Elsevier Ltd. All rights reserved.
Choi, Young Ji; Kim, Da Hye; Kim, Sang Jun; Kim, Ju; Jeong, Seung-Il; Chung, Chang Ho; Yu, Kang-Yeol; Kim, Seon-Young
2014-07-17
We studied that a potent antifibrotic effect of decursin on in vivo liver damage model and the mechanism in inhibiting which transforming growth factor (TGF)-β1-induced human hepatic stellate cells (HSCs) activation. Liver injury was induced in vivo by intraperitoneal injection of carbon tetrachloride (CCl4) with or without decursin for 4weeks in mice. Human hepatic stellate cell line, an immortalized human HSC line, was used in in vitro assay system. The effects of decursin on HSC activation were measured by analyzing the expression of α-smooth muscle actin (α-SMA) and collagen I in liver tissue and human HSCs. Decursin treatment significantly reduced the ratio of liver/body weight, α-SMA activation, and type I collagen overexpression in CCl4 treated mice liver. The elevated serum levels, including ALT, AST, and ALP, were also decreased by decursin treatment. Treatment of decursin markedly proved the generation of reactive oxygen species, NAD(P)H oxidase (NOX) protein (1, 2, and 4) upregulation, NOX activity, and superoxide anion production in HSCs by TGF-β1. It also significantly reduced TGF-β1-induced Smad 2/3 phosphorylation, nuclear translocation of Smad 4, and association of Smad 2/3-Smad 4 complex. Consistent with in vitro results, decursin treatment effectively blocked the levels of NOX protein, and Smad 2/3 phosphorylation in injured mice liver. Decursin blocked CCl4-induced liver fibrosis and inhibited TGF-β1-mediated HSC activation in vitro. These data demonstrated that decursin exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1 induced NOX activation and Smad signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
Sarawek, Sasiporn; Feistel, Bjoern; Pischel, Ivo; Butterweck, Veronika
2008-02-01
Artichoke (Cynara scolymus L.) leaves have been historically used for the treatment of hyperuricemia and gout, however whether artichoke is truly efficacious for this indication, is still a matter of debate. Thus, the goal of the present study was first to examine the xanthine oxidase (XO) inhibitory activity of an artichoke leaf extract (ALE) and some of its main compounds in vitro and then further test potentially active substances for possible hypouricemic effects using an in vivo rat model. The in vitro study showed that ALE inhibited XO with only minimal inhibitory action (< 5 %) at 100 microg/mL. However, when selected compounds were tested, the caffeic acid derivatives revealed a weak XO inhibitory effect with IC (50) > 100 microM. From the tested flavones the aglycone luteolin potently inhibited XO with an IC (50) value of 1.49 microM. Luteolin 7-O-glucoside and luteolin 7-O-glucuronide showed lower XO inhibition activities with IC (50) values of 19.90 microM and 20.24 microM, respectively. However, oral administration of an aqueous ALE, luteolin, and luteolin 7-O-glucoside did not produce any observable hypouricemic effects after acute oral treatment in potassium oxonate-treated rats. After intraperitoneal injection of luteolin a decrease in uric acid levels was detected suggesting that the hypouricemic effects of luteolin are due to its original form rather than its metabolites produced by the gut flora. In conclusion, an aqueous ALE, caffeic acid derivatives and flavones exerted XO inhibitory effects in vitro but a hypouricemic activity could not be confirmed after oral administration.
De Bona, Karine S; Bonfanti, Gabriela; Bitencourt, Paula E R; Cargnelutti, Lariane O; da Silva, Priscila S; da Silva, Thainan P; Zanette, Régis A; Pigatto, Aline S; Moretto, Maria B
2014-06-01
Syzygium cumini (S. cumini) is a plant known for its antidiabetic properties. The aim of this study was to evaluate the effect of Sc aqueous leaf extract (ASc) on adenosine deaminase (ADA) activity in erythrocytes (RBCs) exposed to high glucose concentrations (30 mM) in vitro. We also investigated the effects of the main phenolic compounds found in ASc (gallic acid, rutin, and chlorogenic acid) and the effects of insulin, caffeine, and dipyridamole, which are substances involved in the adenosine metabolism, on ADA activity in vitro. Blood samples were obtained from healthy volunteers and a suspension of RBCs was used for the determination of ADA activity. The results showed that: (1) the effect of ASc on ADA activity was more significant than the combination of phenolic compounds; (2) insulin, caffeine, or dipyridamole prevented high glucose increase of ADA activity at doses as low as 50 μU/mL, 25 μM, and 1 μM, respectively; (3) the inhibitory effect caused by ASc on erythrocyte ADA activity remained practically the same after the combination of the extract with insulin or caffeine; (4) when RBCs were exposed to ASc plus dipyridamole, this chemical attenuated the effect of ASc on ADA activity, suggesting an antagonism or a competition with ASc by the same site of action. Therefore, ASc was more effective in preventing the increase in ADA activity than phenolic compounds, suggesting that ASc may collaborate to improve endothelial dysfunction, antioxidant, anti-inflammatory, and antithrombotic properties of adenosine by affecting its metabolism. The results of this study help to provide evidence of the empirically supported benefits of the use of S. cumini in diabetes.
Goel, R K; Sairam, K; Rao, C V
2001-07-01
Studies with plantain banana (Musa sapientum var. paradisiaca) have indicated its ulcer protective and healing activities through its predominant effect on various mucosal defensive factors [Sanyal et.al, Arch Int Pharmacodyn, 149 (1964) 393; 155 (1965) 244]. Oxidative stress and Helicobactorpylori colonization are considered to be important factors in the pathogenesis of gastric ulcers. In the present study methanolic extract of plantain banana pulp (BE) was evaluated for its (i) antiulcer and antioxidant activities in 2 hr cold restraint stress and (ii) anti-H.pylori activity in vitro. The extract (BE, 50 mg/kg, twice daily for 5 days) showed significant antiulcer effect and antioxidant activity in gastric mucosal homogenates, where it reversed the increase in ulcer index, lipid peroxidation and super oxide dismutase values induced by stress. However it did not produce any change in catalase values, which was significantly decreased by stress. Further, in the in vitro study. BE (0.32-1,000 microg/ml) did not show any anti-H.pylori activity. The results suggest absence of anti-H. pyloric activity of methanolic extract of banana in vitro and its antioxidant activity may be involved in its ulcerprotective activity.
Chazalviel, Laurent; Haelewyn, Benoit; Degoulet, Mickael; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H
2016-01-01
Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) in vitro , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis in vitro and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis in vitro to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema in vivo . In line with the facilitating effect of NBO on cerebral blood flow, our findings suggest that 5-minute HBO could have provided neuroprotection by promoting thrombolysis. The lack of effect of HBO exposure of longer duration is discussed.
Terzi, V; Morcia, C; Faccioli, P; Valè, G; Tacconi, G; Malnati, M
2007-06-01
The aim of this study was to examine the effect of Melaleuca alternifolia essential oil (TTO) and its principal components on four cereal-pathogenic fungi. The antimycotic properties of TTO and of terpinen-4-ol, gamma-terpinen and 1,8-cineole (eucalyptol) were evaluated in vitro on Fusarium graminearum, Fusarium culmorum and Pyrenophora graminea. Moreover, barley leaves infected with Blumeria graminis were treated with whole TTO. All the tested fungi were susceptible to TTO and its components. TTO exerted a wide spectrum of antimycotic activity. Single TTO purified components were more active than the whole oil in reducing in vitro growth of fungal mycelium and, among the tested compounds, terpinen-4-ol was the most effective. TTO and its components can be considered potential alternative natural fungicides.
Morris, Bari R; deLaforcade, Armelle; Lee, Joyce; Palmisano, Joseph; Meola, Dawn; Rozanski, Elizabeth
2016-01-01
To investigate the effects of in vitro hemodilution with lactated Ringers solution (LRS), hetastarch (HES), and fresh frozen plasma (FFP) on whole blood coagulation in dogs as assessed by kaolin-activated thromboelastography. In vitro experimental study. University teaching hospital. Six healthy client-owned dogs. Whole blood was collected and diluted in vitro at a 33% and 67% dilution with either LRS, HES, or FFP. Kaolin-activated thromboelastography was performed on each sample as well as a control. Thromboelastographic parameters R (min), alpha (deg), K (min), and MA (mm) were measured and compared to the sample control for each dilution using mixed model methodology. Prolongation in coagulation times were seen at both dilutions with LRS and HES. There was no significant difference in R times at the 33% dilution, but R time was significantly prolonged at the 67% dilution with HES (P = 0.004). MA was significantly decreased for LRS at both dilutions (P = 0.013, P < 0.001) and more profoundly decreased for HES (P < 0.001, P = 0.006). No significant difference in any parameter was found for FFP. In vitro hemodilution of whole blood with both LRS and HES but not FFP resulted in significant effects on coagulation with HES having a more profound effect. In vivo evaluation of changes in coagulation with various resuscitation fluids is warranted and may be clinically relevant. © Veterinary Emergency and Critical Care Society 2015.
Modulation of rat macrophage function by the Mangifera indica L. extracts Vimang and mangiferin.
García, D; Delgado, R; Ubeira, F M; Leiro, J
2002-05-01
Vimang is an aqueous extract of Mangiferia indica L., traditionally used in Cuba as an anti-inflammatory, analgesic and antioxidant. In the present study, we investigated the effects of Vimang and of mangiferin (a C-glucosylxanthone present in the extract) on rat macrophage functions including phagocytic activity and the respiratory burst. Both Vimang and mangiferin showed inhibitory effects on macrophage activity: (a) intraperitoneal doses of only 50-250 mg/kg markedly reduced the number of macrophages in peritoneal exudate following intraperitoneal injection of thioglycollate 5 days previously (though there was no significant effect on the proportion of macrophages in the peritoneal-exudate cell population); (b) in vitro concentrations of 0.1-100 microg/ml reduced the phagocytosis of yeasts cells by resident peritoneal and thioglycollate-elicited macrophages; (c) in vitro concentrations of 1-50 microg/ml reduced nitric oxide (NO) production by thioglycollate-elicited macrophages stimulated in vitro with lipopolysaccharide (LPS) and IFNgamma; and (d) in vitro concentrations of 1-50 microg/ml reduced the extracellular production of reactive oxygen species (ROS) by resident and thioglycollate-elicited macrophages stimulated in vitro with phorbol myristate acetate (PMA). These results suggest that components of Vimang, including the polyphenol mangiferin, have depressor effects on the phagocytic and ROS production activities of rat macrophages and, thus, that they may be of value in the treatment of diseases of immunopathological origin characterized by the hyperactivation of phagocytic cells such as certain autoimmune disorders.
[In vitro studies on antioxidant and antimicrobial activities of polysaccharide from Lycoris aurea].
Ru, Qiao-Mei; Pei, Zhen-Ming; Zheng, Hai-Lei
2008-10-01
To study the preliminary antioxidant and antimicrobial activities of polysaccharide extracted from Lycoris aurea. The scavenging activities of the polysaccharide in vitro on superoxide radical (O2-*), hydroxyl radical (*OH), alkyl radical (R*) and hydrogen peroxide (H2O2) were investigated by modified chemical systems. Meanwhile, the antimicrobial activities were tested using paper-discagar diffusion method. In general, the antioxidant activities of the polysaccharide were lower compared with Vc. However, the scavenging effects to *OH and H2O2 were parallel to Vc. Meanwhile, polysaccharide from Lycoris aurea had strong antimicrobial activities against Micrococcus luteus, Bacillus pumilus and Staphylococcus aureus. The polysaccharide extracted from L. aurea can scavenge *OH and H2O2 effectively and inhibit Gram-positive bacterias.
Effects of unripe Citrus hassaku fruits extract and its flavanone glycosides on blood fluidity.
Itoh, Kimihisa; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Matsuda, Hideaki
2010-01-01
The enhancement of blood fluidity may lead to improvements in skin problems resulting from unsmooth circulation or blood stagnation. Since a 50% ethanolic extract (CH-ext) obtained from unripe Citrus hassaku fruits may be a useful ingredient in skin-whitening cosmetics, the present study was designed to examine the effect of CH-ext on blood fluidity. CH-ext concentration-dependently inhibited in vitro collagen-induced rabbit platelet aggregation and in vitro polybrene-induced rat erythrocyte aggregation. The CH-ext showed in vitro fibrinolysis activity in fibrin plate assay. Activity-guided fractionation of the CH-ext using antiplatelet activity, inhibitory activity of erythrocyte aggregation, and fibrinolysis activity revealed that these activities of CH-ext were attributable to naringenin-7-glycoside (prunin). Successive oral administration of CH-ext to rats inhibited the lipopolysaccharide (LPS)-induced decrease of blood platelets and fibrinogen, and LPS-induced increase of fibrin degradation products (FDP) in LPS-induced disseminated intravascular coagulation (DIC) model rats. Effects of CH-ext on blood fluidity were analyzed by a micro channel array flow analyzer (MC-FAN). Preventive oral administration of CH-ext to rats showed dose-dependent reduction of the passage time of whole blood flow of the DIC model rats in comparison with that of the vehicle control rats. These results imply that CH-ext may have effects which improve effects on blood fluidity.
USDA-ARS?s Scientific Manuscript database
The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...
Jomaa, Barae; Aarts, Jac M M J G; de Haan, Laura H J; Peijnenburg, Ad A C M; Bovee, Toine F H; Murk, Albertinka J; Rietjens, Ivonne M C M
2013-01-01
This study investigates the in vitro effect of eleven thyroid-active compounds known to affect pituitary and/or thyroid weights in vivo, using the proliferation of GH3 rat pituitary cells in the so-called "T-screen," and of FRTL-5 rat thyroid cells in a newly developed test denoted "TSH-screen" to gain insight into the relative value of these in vitro proliferation tests for an integrated testing strategy (ITS) for thyroid activity. Pituitary cell proliferation in the T-screen was stimulated by three out of eleven tested compounds, namely thyrotropin releasing hormone (TRH), triiodothyronine (T3) and thyroxine (T4). Of these three compounds, only T4 causes an increase in relative pituitary weight, and thus T4 was the only compound for which the effect in the in vitro assay correlated with a reported in vivo effect. As to the newly developed TSH-screen, two compounds had an effect, namely, thyroid-stimulating hormone (TSH) induced and T4 antagonized FRTL-5 cell proliferation. These effects correlated with in vivo changes induced by these compounds on thyroid weight. Altogether, the results indicate that most of the selected compounds affect pituitary and thyroid weights by modes of action different from a direct thyroid hormone receptor (THR) or TSH receptor (TSHR)-mediated effect, and point to the need for additional in vitro tests for an ITS. Additional analysis of the T-screen revealed a positive correlation between the THR-mediated effects of the tested compounds in vitro and their effects on relative heart weight in vivo, suggesting that the T-screen may directly predict this THR-mediated in vivo adverse effect.
Antimicrobial activity of chemomechanical gingival retraction products.
Hsu, Belinda; Lee, Stephanie; Schwass, Donald; Tompkins, Geoffrey
2017-07-01
Application of astringent hemostatic agents is the most widely used technique for gingival retraction, and a variety of products are offered commercially. However, these products may have additional unintended yet clinically beneficial properties. The authors assessed the antimicrobial activities of marketed retraction products against plaque-associated bacteria in both planktonic and biofilm assays, in vitro. The authors assessed hemostatic solutions, gels, pellets, retraction cords, pastes, and their listed active agents against a collection of microorganisms by means of conventional agar diffusion and minimum bacteriostatic and bactericidal concentration determinations. The authors then tested the most active products against monospecies biofilms grown on hydroxyapatite disks. All of the tested retraction products exhibited some antimicrobial activity. The results of the most active products were comparable with those of a marketed mouthwash. The listed retraction-active agents displayed relatively little activity when tested in pure form. At 10% dilution, some products evidenced inhibitory activity against most tested bacteria within 3 minutes of exposure, whereas others displayed variable effects after 10 minutes. The most active agents reduced, but did not completely prevent, the metabolic activity of a monospecies biofilm. Commercial gingival retraction products exhibit antimicrobial effects to various degrees in vitro. Some products display rapid bactericidal activity. The antimicrobial activity is not owing to the retraction-active agents. Biofilm bacteria are less sensitive to the antimicrobial effects of the agents. The rapidity of killing by some hemostatic agents suggests an antimicrobial effect that may be efficacious during clinical placement. The results of this in vitro study suggest that clinicians should be aware of the potential antimicrobial effects of some hemostatic agents, but more research is needed to confirm these observations in clinical use. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.
Broug-Holub, E; Persoons, J H; Schornagel, K; Kraal, G
1995-01-01
Oral administration of the bacterial immunomodulator Broncho-Vaxom (OM-85), a lysate of eight bacteria strains commonly causing respiratory disease, has been shown to enhance the host defence of the respiratory tract. In this study we examined the effect of orally administered (in vivo) OM-85 on stimulus-induced cytokine and nitric oxide secretion by rat alveolar macrophages in vitro. The results show that alveolar macrophages isolated from OM-85-treated rats secreted significantly more nitric oxide, tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta upon in vitro stimulation with lipopolysaccharide (LPS), whereas, in contrast, LPS-induced IL-6 secretion was significantly lower. The observed effects of in vivo OM-85 treatment on stimulus-induced cytokine secretion in vitro are not due to a direct effect of OM-85 on the cells, because in vitro incubation of alveolar macrophages with OM-85 did not result in altered activity, nor did direct intratracheal instillation of OM-85 in the lungs of rats result in altered alveolar macrophage activity in vitro. It is hypothesized that oral administration of OM-85 leads to priming of alveolar macrophages in such a way that immune responses are non-specifically enhanced upon stimulation. The therapeutic action of OM-85 may therefore result from an enhanced clearance of infectious bacteria from the respiratory tract due to increased alveolar macrophage activity. PMID:7648713
Aldosterone Activates Transcription Factor Nrf2 in Kidney Cells Both In Vitro and In Vivo
Oteiza, Patricia I.; Link, Samuel; Hey, Valentin; Stopper, Helga; Schupp, Nicole
2014-01-01
Abstract Aims: An increased kidney cancer risk was found in hypertensive patients, who frequently exhibit hyperaldosteronism, known to contribute to kidney injury, with oxidative stress playing an important role. The capacity of kidney cells to up-regulate transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2), a key regulator of the cellular antioxidative defense, as a prevention of aldosterone-induced oxidative damage was investigated both in vitro and in vivo. Results: Aldosterone activated Nrf2 and increased the expression of enzymes involved in glutathione (GSH) synthesis and detoxification. This activation depended on the mineralocorticoid receptor (MR) and oxidative stress. In vitro, Nrf2 activation, GSH amounts, and target gene levels decreased after 24 h, while oxidant levels remained high. Nrf2 activation could not protect cells against oxidative DNA damage, as aldosterone-induced double-strand breaks and 7,8-dihydro-8-oxo-guanine (8-oxodG) lesions steadily rose. The Nrf2 activator sulforaphane enhanced the Nrf2 response both in vitro and in vivo, thereby preventing aldosterone-induced DNA damage. In vivo, Nrf2 activation further had beneficial effects on the aldosterone-caused blood pressure increase and loss of kidney function. Innovation: This is the first study showing the activation of Nrf2 by aldosterone. Moreover, the results identify sulforaphane as a substance that is capable of preventing aldosterone-induced damage both in vivo and in vitro. Conclusion: Aldosterone-induced Nrf2 adaptive response cannot neutralize oxidative actions of chronically increased aldosterone, which, therefore could be causally involved in the increased cancer incidence of hypertensive individuals. Enhancing the cellular antioxidative defense with sulforaphane might exhibit beneficial effects. Antioxid. Redox Signal. 21, 2126–2142. PMID:24512358
Evaluation of the in vitro antioxidant activity of Mangifera indica L. extract (Vimang).
Martínez, G; Delgado, R; Pérez, G; Garrido, G; Núñez Sellés, A J; León, O S
2000-09-01
An extract of Mangifera indica L. (Vimang) was tested in vitro for its antioxidant activity using commonly accepted assays. It showed a powerful scavenger activity of hydroxyl radicals and hypochlorous acid and acted as an iron chelator. The extract also showed a significant inhibitory effect on the peroxidation of rat-brain phospholipid and inhibited DNA damage by bleomycin or copper-phenanthroline systems. Copyright 2000 John Wiley & Sons, Ltd.
Rençber, Seda; Karavana, Sinem Yaprak; Yılmaz, Fethiye Ferda; Eraç, Bayri; Nenni, Merve; Özbal, Seda; Pekçetin, Çetin; Gurer-Orhan, Hande; Hoşgör-Limoncu, Mine; Güneri, Pelin; Ertan, Gökhan
2016-01-01
This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT(®) RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis.
Jonas, Adam; Scholz, Stefan; Fetter, Eva; Sychrova, Eliska; Novakova, Katerina; Ortmann, Julia; Benisek, Martin; Adamovsky, Ondrej; Giesy, John P; Hilscherova, Klara
2015-02-01
Cyanobacteria contain various types of bioactive compounds, which could cause adverse effects on organisms. They are released into surface waters during cyanobacterial blooms, but there is little information on their potential relevance for effects in vivo. In this study presence of bioactive compounds was characterized in cyanobacteria Microcystis aeruginosa (Chroococcales), Planktothrix agardhii (Oscillatoriales) and Aphanizomenon gracile (Nostocales) with selected in vitro assays. The in vivo relevance of detected bioactivities was analysed using transgenic zebrafish embryos tg(cyp19a1b-GFP). Teratogenic potency was assessed by analysis of developmental disorders and effects on functions of the neuromuscular system by video tracking of locomotion. Estrogenicity in vitro corresponded to 0.95-54.6 ng estradiol equivalent(g dry weight (dw))(-1). In zebrafish embryos, estrogenic effects could not be detected potentially because they were masked by high toxicity. There was no detectable (anti)androgenic/glucocorticoid activity in any sample. Retinoid-like activity was determined at 1-1.3 μg all-trans-retinoic acid equivalent(g dw)(-1). Corresponding to the retinoid-like activity A. gracile extract also caused teratogenic effects in zebrafish embryos. Furthermore, exposure to biomass extracts at 0.3 gd wL(-1) caused increase of body length in embryos. There were minor effects on locomotion caused by 0.3 gd wL(-1)M. aeruginosa and P. agardhii extracts. The traditionally measured cyanotoxins microcystins did not seem to play significant role in observed effects. This indicates importance of other cyanobacterial compounds at least towards some species or their developmental phases. More attention should be paid to activity of retinoids, estrogens and other bioactive substances in phytoplankton using in vitro and in vivo bioassays. Copyright © 2014 Elsevier Ltd. All rights reserved.
FK506 protects against articular cartilage collagenous extra-cellular matrix degradation.
Siebelt, M; van der Windt, A E; Groen, H C; Sandker, M; Waarsing, J H; Müller, C; de Jong, M; Jahr, H; Weinans, H
2014-04-01
Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kassim, Mustafa; Achoui, Mouna; Mustafa, Mohd Rais; Mohd, Mustafa Ali; Yusoff, Kamaruddin Mohd
2010-09-01
Natural honey has been used in traditional medicine of different cultures throughout the world. This study looked into the extraction of Malaysian honey and the evaluation of the anti-inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities. Honey extracts were analyzed using liquid chromatography-mass spectrometry to identify and compare phenolic compounds, whereas high-performance liquid chromatography was used for their quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract (HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages. The extracts were also tested for their effects on tumor necrosis factor-α (TNF) cytotoxicity in L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin; chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 μg/100 g of honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 μg/mL, respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by HEAE and HME were 168.1 and 235.4 μg/mL, respectively. In conclusion, HEAE exhibited greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per 100 g of honey. Copyright © 2010 Elsevier Inc. All rights reserved.
β-Escin Effectively Modulates HUVECS Proliferation and Tube Formation.
Varinská, Lenka; Fáber, Lenka; Kello, Martin; Petrovová, Eva; Balážová, Ľudmila; Solár, Peter; Čoma, Matúš; Urdzík, Peter; Mojžiš, Ján; Švajdlenka, Emil; Mučaji, Pavel; Gál, Peter
2018-01-17
In the present study we evaluated the anti-angiogenic activities of β-escin (the major active compound of Aesculus hippocastanum L. seeds). Human umbilical-vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying the anti-angiogenic effect of β-escin. We investigated the in vitro effects on proliferation, migration, and tube formation of HUVECs and in vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) angiogenesis assay. Moreover, the effect on gene expressions was determined by the RT2 ProfilerTM human angiogenesis PCR Array. It was found that β-escin exerts inhibitory effect on the basic fibroblast growth factor (bFGF)-induced proliferation, migration and tube formation, as well as CAM angiogenesis in vivo. The inhibition of critical steps of angiogenic process observed with β-escin could be partially explained by suppression of Akt activation in response to bFGF. Moreover, the anti-angiogenic effects of β-escin could also be mediated via inhibition of EFNB2 and FGF-1 gene expressions in endothelial cells. In conclusion, β-escin affects endothelial cells as a negative mediator of angiogenesis in vitro and in vivo and may therefore be considered as a promising candidate for further research elucidating its underlying mechanism of action.
Interaction of alphamangostin and curcumin with dihydroartemisinin as antimalaria in vitro
NASA Astrophysics Data System (ADS)
Tjahjani, S.; Syafruddin; Tjokropranoto, R.
2018-03-01
To overcome malarial resistance tendency against the ACT (artemisinin-based combination therapy), several galenic preparations of Garciniamangostana L-rind and alphamangostin as the major xanthone in this rind have been studied, and they had antimalarial activity and showed its synergistic effect with artemisinin in vitro. Curcumin as anactive component of turmeric is also potentially to have antimalarial activity. This study aimed to evaluate the activity as antimalarial of curcumin and dihydroartemisinin, an active metabolite of all artemisinin derivates, and also to study the mechanism of action of aphamangostin, curcumin, and dihydroartemisinin as antimalaria.The interaction between them each other as the antimalarial in vitro was also investigated. The antimalarial activity was studied in in vitro 3D7 Plasmodium falciparum cultivation incubated with these compounds to look for the IC50 and ΣFIC50 of them. The mechanism of action of these compounds was observed electron microscopically. The result of this promising study showed that these compounds were active antimalaria agents which inhibited hemozoin formation and there is synergistic antimalarial activity interaction between alphamangostin and dihydroartemisinin.
Raffaelli, F; Nanetti, L; Montecchiani, G; Borroni, F; Salvolini, E; Faloia, E; Ferretti, G; Mazzanti, L; Vignini, A
2015-02-01
Oxidative stress is associated with insulin resistance pathogenesis, insulin secretion deficiency, and complication onset. Fermented papaya preparation (FPP), a dietary supplement obtained by fermentation of the papaya fruit, may be used as an antioxidant in the prevention of diabetic complications. Platelets from 30 patients with type 2 diabetes mellitus (DM 2) and 15 healthy subjects were analyzed to evaluate the in vitro effects of FPP incubation. Na(+)/K(+)-adenosine triphosphatase (ATPase) activity, membrane fluidity, total antioxidant capacity (TAC), superoxide dismutase (SOD) activity, and conjugated diene levels were determined. In vitro FPP incubation improved platelet function, by enhancing Na(+)/K(+)-ATPase activity and membrane fluidity, and ameliorated the antioxidant system functionality, through an increase in TAC and SOD activity and a parallel decrease in conjugated diene levels in patients with DM 2. Our data suggest that the incubation with FPP may have a protective effect on platelets from patients with DM 2, by preventing the progression of oxidative damage associated with diabetes and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Jian-Rong; Kanda, Yurina; Tanaka, Anna; Manabe, Hideyuki; Nohara, Toshihiro; Yokomizo, Kazumi
2016-01-20
The increasing incidence of atopic dermatitis during recent decades has prompted the development of safe and effective agents for prevention of atopic diseases. Esculeoside A, a glycoside of spirosolane type, is identified as a major component in ripe tomato fruits. The present study investigated the effects of esculeoside A and its aglycon esculeogenin A on hyaluronidase activity in vitro and antiallergy in experimental dermatitis mice. Esculeogenin A/esculeoside A (esculeogenin A equivalent) with an IC50 of about 2 μM/9 μM dose-dependently inhibited hyaluronidase activity measured by a modified Morgan-Elson method. Oral treatment with esculeoside A 10 mg/kg of experimental dermatitis mice for 4 weeks significantly decreased the skin clinical score to 2.5 without any detectable side effects compared with 6.75 of the control. The scratching frequency of esculeoside A 100 mg/kg application was decreased significantly as 107.5 times compared with 296.67 times of the control. Thus, the present study showed that esculeoside A/esculeogenin A significantly blocks hyaluronidase activity in vitro and that esculeoside A ameliorates mouse experimental dermatitis.
Leng, Khoo Miew; Vijayarathna, Soundararajan; Jothy, Subramanion L; Sasidharan, Sreenivasan; Kanwar, Jagat R
2018-01-01
Aim: To study the in vitro and in vivo anticandidal activity of nanocapsulated bovine lactoferrin. Materials & methods: In vitro and in vivo antimicrobial activities were conducted to study the anticandidal activities of nanocapsules (NCs). Results: The NCs showed good anticandidal activities. The disruption of cell wall and cell membrane was noted via microscopy studies. The NCs changed the normal growth profile of Candida albicans. NCs reduced the colony forming unit in kidney and blood samples. Histopathological examination showed better cell structure and coordination compared with untreated mice kidney. NCs also enhanced the natural killing properties of C. albicans by epithelial cells. Conclusion: NCs have effective anticandidal properties and have the potential as a therapeutic agent against candidiasis. PMID:29379633
In vitro effectiveness of anidulafungin against Candida sp. biofilms.
Rosato, Antonio; Piarulli, Monica; Schiavone, Brigida Pia Immacolata; Catalano, Alessia; Carocci, Alessia; Carrieri, Antonio; Carone, Addolorata; Caggiano, Giuseppina; Franchini, Carlo; Corbo, Filomena; Montagna, Maria Teresa
2013-12-01
This study furnishes deeper insights to previous works on anidulafungin, demonstrating the potent activity against Candida strains planktonic cells and biofilms. Candida sp., associated with many biomaterial-related infections, give rise to infective pathologies typically associated with biofilm formation. We recently determined the in vitro antifungal activities of echinocandin anidulafungin in association with some antifungal drugs against some Candida strains in their planktonic states. A total of 11 Candida strains biofilms were tested in this study: six Candida albicans, three C. parapsilosis and two C. tropicalis. All yeast isolates and ATCC strains were stored at -20°C in glycerol stocks and were subcultured on antimicrobial agent-free Sabouraud dextrose agar plates. MIC endpoints were determined colorimetrically by using the indicator 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) with menadione as electron-coupling agent. The activity of anidulafungin was assessed using in vitro microbiological model relevant for clinical practice. Anidulafungin showed a strong activity in vitro against both planktonic and biofilms cells, and our study confirms that high anidulafungin concentrations might establish paradoxical growth effect in C. albicans and C. tropicalis biofilms.
Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin
2017-07-05
Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cabazitaxel overcomes cisplatin resistance in germ cell tumour cells.
Gerwing, Mirjam; Jacobsen, Christine; Dyshlovoy, Sergey; Hauschild, Jessica; Rohlfing, Tina; Oing, Christoph; Venz, Simone; Oldenburg, Jan; Oechsle, Karin; Bokemeyer, Carsten; von Amsberg, Gunhild; Honecker, Friedemann
2016-09-01
Cisplatin-based chemotherapy is highly effective in metastasized germ cell tumours (GCT). However, 10-30 % of patients develop resistance to cisplatin, requiring salvage therapy. We investigated the in vitro activity of paclitaxel and the novel taxane cabazitaxel in cisplatin-sensitive and -resistant GCT cell lines. In vitro activity of paclitaxel and cabazitaxel was determined by proliferation assays, and mode of action of cabazitaxel was assessed by western blotting and two screening approaches, i.e. whole proteome analysis and a human apoptosis array. Activity of paclitaxel and cabazitaxel was not affected by cisplatin resistance, suggesting that there is no cross-resistance between these agents in vitro. Cabazitaxel treatment showed a strong inhibitory effect on colony formation capacity. Cabazitaxel induced classical apoptosis in all cell lines, reflected by cleavage of PARP and caspase 3, without inducing specific changes in the cell cycle distribution. Using the proteomic and human apoptosis array screening approaches, differential regulation of several proteins, including members of the bcl-2 family, was found, giving first insights into the mode of action of cabazitaxel in GCT. Cabazitaxel shows promising in vitro activity in GCT cells, independent of levels of cisplatin resistance.
Martín-Quintal, Zhelmy; del Rosario García-Miss, María; Mut-Martín, Mirza; Matus-Moo, Abril; Torres-Tapia, Luis W; Peraza-Sánchez, Sergio R
2010-07-01
The in vitro leishmanicidal effect of (3S)-16,17-didehydrofalcarinol (1) isolated from Tridax procumbens whole plant against Leishmania mexicana, the causative agent of cutaneous leishmaniasis (chiclero's ulcer) in the New World, was investigated. This oxylipin showed significant in vitro activity against promastigotes and intracellular amastigotes of L. mexicana. Its inhibitory effect on amastigotes was not due to activation of NO in recombinant gamma-interferon-stimulated macrophages, since the production of NO was decreased in presence of the oxylipin. This is the first report on the leishmanicidal activity against the intracellular stage (amastigote) of the oxylipin (3S)-16,17-didehydrofalcarinol.
Kancirová, Ivana; Jašová, Magdaléna; Waczulíková, Iveta; Ravingerová, Táňa; Ziegelhöffer, Attila; Ferko, Miroslav
2016-01-01
Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored. Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax (P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy. Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria. PMID:27482342
Gatarayiha, Mutimura C; Laing, Mark D; Miller, Ray M
2010-07-01
Testing the compatibility of chemical pesticides and fungal biocontrol agents is necessary if these two agents are to be applied together in the integrated management of plant pests and diseases. In this study, the fungicides azoxystrobin (a strobilurin) and flutriafol (a triazole) were tested in vitro for their effects on germination of conidia and mycelial growth of Beauveria bassiana (Bals.) Vuill. and in bioassay for their effect on fungal activity against Tetranychus urticae Koch. The fungicides were tested at three different concentrations [recommended rate for field use (1 x X) and the dilutions 10(-1)x X and 10(-2)x X]. Flutriafol inhibited growth of mycelia and germination of the fungal conidia at all concentrations tested in vitro, and also reduced the efficacy of B. bassiana in bioassays against mites. The inhibitive effect of azoxystrobin in vitro varied with the concentration applied. A significant effect was observed at 1 x X and 10(-1)x X concentrations on both the germination of conidia and mycelia growth. At 10(-2)x X concentration, azoxystrobin showed little effect on B. bassiana. However, when this fungicide was tested in bioassays, none of the concentrations reduced B. bassiana activity against mites. Azoxystrobin was most compatible with B. bassiana, while flutriafol was the most harmful. Further studies are required to confirm the negative effect of flutriafol on B. bassiana activity. Copyright (c) 2010 Society of Chemical Industry.
[Effects of cornel iridoid glycoside on activity of cholinesterases in vitro].
Chu, Si-Juan; Zhang, Lan; Liu, Gang; Zhou, Wen-Xia; Li, Lin
2013-05-01
The purpose of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on the activity of cholinesterases in vitro, and to investigate the mechanism of CIG's treating Alzheimer's disease (AD). The sources of cholinesterases were prepared from human blood cells, rat brain homogenate and human blood plasma, respectively. The biochemical methods were used to detect the activity of acetylcholine esterase (AChE) and butyryl cholinesterase (BuChE) to investigate the influence of CIG on cholinesterases. The results showed that CIG inhibited the activity of AChE of human blood cells and rat brain homogenate, with the 50% inhibition rate (IC50) of 1.6 g . L-1 and 3.3 g . L-1, respectively; and the inhibition of AChE of CIG is reversible. CIG also inhibited the activity of BuChE of human blood plasma, with the IC50 of 2.9 g . L-1. In conclusion, CIG can inhibit the activity of AChE and BuChE in vitro, which may be one of the mechanisms of CIG to treat AD.
Mariné, Marçal; Pastor, F. Javier; Sahand, Ismail H.; Pontón, José; Quindós, Guillermo; Guarro, Josep
2009-01-01
Candida dubliniensis commonly shows paradoxical or trailing growth effects in vitro in the presence of echinocandins. We tested the in vitro activities of anidulafungin, caspofungin, and micafungin against clinical isolates of C. dubliniensis and evaluated the efficacy of these drugs in two murine models of systemic infection. The three echinocandins were similarly effective in the treatment of experimental disseminated infections with C. dubliniensis strains showing or not showing abnormal growth in vitro. PMID:19786599
Kutluyer, Filiz; Erişir, Mine; Benzer, Fulya; Öğretmen, Fatih; İnanan, Burak Evren
2015-11-01
There is little information in the scientific literature about effect of in vitro exposure of fish spermatozoa to pesticides. In vitro effect of Lambda-cyhalothrin (LCT) on sperm quality and oxidative stress has not been fully explored yet. The effects of LCT, which is a synthetic pyrethroid insecticide, on quality and oxidative stress of spermatozoa were investigated in vitro due to extensively use to control a wide range of insect pests in agriculture, public health, and homes and gardens. To explore the potential in vitro toxicity of LCT, fish spermatozoa were incubated with different concentrations of LCT (0.6, 1.2 and 2.4 μg/L) for 2h. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) in spermatozoa were analyzed for determination of oxidant and antioxidant balance. Our results indicated that the percentage and duration of sperm motility significantly decreased with exposure to LCT. Activity of GSH-Px and MDA (P<0.05) and GSH levels (P<0.05) increased in a concentration-dependent manner while CAT activity decreased (P<0.05). In conclusion, the oxidant and antioxidant status and sperm quality were affected by increasing concentrations of LCT. Copyright © 2015 Elsevier B.V. All rights reserved.
Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo
2012-10-01
This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.
Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W
2009-10-01
Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.
Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW
2009-01-01
Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958
Antithrombotic effect and mechanism of Rubus spp. Blackberry.
Xie, Pingyao; Zhang, Yong; Wang, Xuebiao; Wei, Jinfeng; Kang, Wenyi
2017-05-24
The compounds of Rubus spp. Blackberry (RSB) were isolated and identified by a bioassay-guided method, and their antithrombotic effects and mechanism were investigated with the acute blood stasis rat model. The RSB extract was evaluated by activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), and fibrinogen (FIB) assays in vitro. Results indicated that RSB extract exhibited anticoagulant activity. In addition to compounds 1 and 6, the other compounds also exhibited anticoagulant activity in vitro. Therefore, the in vivo antithrombosis effects of RSB extract were investigated by measuring whole blood viscosity (WBV), plasma viscosity (PV), APTT, PT, TT, and FIB. Meanwhile, the levels of thromboxane B2 (TXB 2 ), 6-keto prostaglandin F1α (6-keto-PGF1α), endothelial nitric oxide synthase (eNOS) and ET-1 (endothelin-1) were measured. Results suggested that RSB extract had inhibitory effects on thrombus formation, and its antithrombotic effects were associated with the regulation of vascular endothelium active substance, activation of blood flow and an anticoagulation effect.
Hydroquinone Exhibits In Vitro and In Vivo Anti-Cancer Activity in Cancer Cells and Mice.
Byeon, Se Eun; Yi, Young-Su; Lee, Jongsung; Yang, Woo Seok; Kim, Ji Hye; Kim, Jooyoung; Hong, Suntaek; Kim, Jong-Hoon; Cho, Jae Youl
2018-03-19
Hydroquinone (HQ, 1,4-benzenediol) is a hydroxylated benzene metabolite with various biological activities, including anti-oxidative, neuroprotective, immunomodulatory, and anti-inflammatory functions. However, the anti-cancer activity of HQ is not well understood. In this study, the in vitro and in vivo anti-cancer activity of HQ was investigated in various cancer cells and tumor-bearing mouse models. HQ significantly induced the death of A431, SYF, B16F10, and MDA-MB-231 cells and also showed a synergistic effect on A431 cell death with other anti-cancer agents, such as adenosine-2',3'-dialdehyde and buthionine sulfoximine. In addition, HQ suppressed angiogenesis in fertilized chicken embryos. Moreover, HQ prevented lung metastasis of melanoma cells in mice in a dose-dependent manner without toxicity and adverse effects. HQ (10 mg/kg) also suppressed the generation of colon and reduced the thickness of colon tissues in azoxymethane/dextran sodium sulfate-injected mice. This study strongly suggests that HQ possesses in vitro and in vivo anti-cancer activity and provides evidence that HQ could be developed as an effective and safe anti-cancer drug.
An in vitro characterization of cefditoren, a new oral cephalosporin.
Felmingham, D; Robbins, M J; Ghosh, G; Bhogal, H; Mehta, M D; Leakey, A; Clark, S; Dencer, C A; Ridgway, G L; Grüneberg, R N
1994-01-01
Cefditoren (ME 1206) is a new cephalosporin available for oral administration as the pivaloyloxymethyl ester (ME 1207). The effect of medium formulation. pH, cation concentration and inoculum on the in vitro activity of cefditoren was investigated prior to determining its comparative antibacterial potency against a wide range of clinical bacterial isolates, its bactericidal activity against susceptible strains and the duration of its post-antibiotic effect (PAE). Cefditoren was shown to possess a broad-spectrum of cidal antibacterial activity against both Gram-positive and Gram-negative species with stability to many beta-lactamases of clinical importance. Its activity against Gram-positive species was similar to augmentin and cefuroxime, but superior to that of cefaclor and cefixime, while its beta-lactamase stability was similar to that of cefixime and ceftazidine, characterizing it as a third generation cephalosporin. Investigation of the effect of laboratory variables on the in vitro activity of cefditoren indicates that it will present no special problems when tested in the clinical setting against bacterial pathogens. PAE of 0.9 h, or greater, for Staphylococcus spp, Streptococcus pneumoniae and Moraxella catarrhalis may support the use of an extended dose-interval when cefditoren is used for the treatment of respiratory tract infections.
Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario
2016-01-01
Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical agents to facilitate neuronal renewal. PMID:26224011
Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario; Castro, Carmen
2015-07-29
Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical agents to facilitate neuronal renewal. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Wang, Zhiqiang; Hwang, Seung Hwan; Lee, Sun Youb; Lim, Soon Sung
2016-06-01
Jerusalem artichoke has inhibitory activity against α-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on α-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-α-glucosidase activities in vitro by α-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal α-glucosidase activity were measured. The LJA showed the highest α-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal α-glucosidase activity was partially inhibited. These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.
Antioxidant Activity of Pistacia vera Fruits, Leaves and Gum Extracts
Hosseinzadeh, Hossein; Sajadi Tabassi, Sayyed Abolghasem; Milani Moghadam, Negar; Rashedinia, Marzieh; Mehri, Soghra
2012-01-01
The side effects of synthetic antioxidants have been considered in different studies. Accordingly, there is an increasing interest toward the use of natural substances instead of the synthetic ones. In this study, the aqueous and ethanolic extracts of Pistacia vera leaves and fruits as well as hydroalcoholic extract of gum were tested for a possible antioxidant activity using in vitro methods. Deoxyribose assay, erythrocyte membrane lipid peroxidation and liver misrosomal non- enzymatic lipid peroxidation tests were used as an in-vitro model for determination antioxidant activity. The extract were evaluated at different concentratios: 25,100, 250, 500 and 1000 μg/mL. In all procedures, all extracts showed free radical scavenging activity. The effect of ethanolic extract of P. vera fruit at 1000 μg/mL was quite similar to positive control (DMSO 20 mM) in deoxyribose method. In two other tests, the ethanolic extracts of fruits and leaves were more effective than the aqueous extracts to inhibit malondialdehyde generation. Phytochemical tests showed the presence of flavonoids and tannins in Pistocia vera extracts. The present study showed that extracts of different part of P. vera have antioxidant activity in different in vitro methods. The ethanolic extracts of leaves and fruits showed more roles for antioxidant properties and gum hydroalcoholic extract demonstrated less antioxidant effect. PMID:24250515
Yang, M P; Goitsuka, R; Ono, K; Suzuki, N; Hasegawa, A
1990-08-01
The cytotoxic activities of feline spleen cells treated with Toxoplasma lysate antigen (TLA) were assayed against feline leukemia virus (FeLV)-producing lymphoma. FL74 cells, and xenogeneic target lymphoma, mouse YAC-1 cells. The TLA treatments were performed in vivo alone, in vitro alone, and in vivo plus in vitro, respectively. In vivo plus in vitro treatments with TLA induced a marked augmentation in cytotoxic activity of spleen cells to FL74 cells. The treatment with TLA in vivo alone showed an enhancement of cytotoxic activity but in vitro alone did not. The cytotoxic effects of TLA-treated spleen cells obtained from the cats which had been previously immunized with live FL74 cells were similar to those of spleen cells from non-immunized cats treated with TLA. However, no increase of cytotoxicity was shown in the response to mouse YAC-1 cells regardless of TLA treatments. These results indicated that the in vivo TLA treatment augmented the cytotoxicity of feline spleen cells against FeLV-producing lymphoma cell.
Berger, I; Barrientos, A C; Cáceres, A; Hernández, M; Rastrelli, L; Passreiter, C M; Kubelka, W
1998-09-01
The activities of crude plant extracts of five plants popularly used in Guatemala against bacterial and protozoal infections and some of their fractions have been evaluated against the trypomastigote and epimastigote forms of Trypanosoma cruzi in vitro. The most active fraction of Neurolaena lobata has also been screened in vivo. Main in vitro activities against trypomastigotes have been observed for the hexane and ethanol extracts of N. lobata (Asteraceae). Both extracts were also active against epimastigotes, whereas all other extracts tested had no effect on epimastigotes. For the hexane extracts of Petiveria alliacea (Phytolaccaceae) and Tridax procumbens (Asteraceae) a marked inhibition of trypomastigotes has been found. Also the ethanol extracts of Byrsonima crassifolia (Malpighiaceae) leafs and Gliricidia sepium (Papilionaceae) bark showed some trypanocidal activity. Fraction 2 of the ethanol extract of N. lobata was highly active against T. cruzi as well in vitro as in vivo. The chloroforme fraction of P. alliacea showed a high inhibition of trypomastigotes in vitro. Also three fractions of the active extract of B. crassifolia inhibited T. cruzi trypomastigotes. No fraction of G. sepium bark extract showed a marked trypanocidal activity.
Filocamo, Angela; Bisignano, Carlo; Mandalari, Giuseppina; Navarra, Michele
2015-01-01
Background. The aim of the present study was to evaluate the antimicrobial effect of a white grape juice extract (WGJe) against a range of Gram-positive and Gram-negative bacteria, yeasts, and the fungus Aspergillus niger. WGJe was also tested on the production of bacterial biofilms in vitro. Results. WGJe inhibited in vitro most Gram-positive bacteria tested, Staphylococcus aureus ATCC 6538P being the most sensitive strain (MIC values of 3.9 μg/mL). The effect was bactericidal at the concentration of 500 μg/mL. Amongst the Gram-negative bacteria, Escherichia coli was the only susceptible strain (MIC and MBC of 2000 μg/mL). No effect on the growth of Candida sp. and the fungus Aspergillus niger was detected (MIC values > 2000 μg/mL). WGJe inhibited the biofilms formation of E. coli and Pseudomonas aeruginosa with a dose-dependent effect. Conclusions. WGJe exerted both bacteriostatic and bactericidal activity in vitro. The presented results could be used to develop novel strategies for the treatment of skin infections and against potential respiratory pathogens.
Nitric oxide - an activating factor of adenosine deaminase 2 in vitro.
Sargisova, Ye G; Andreasyan, N A; Hayrapetyan, H L; Harutyunyan, H A
2012-01-01
In this study we have investigated the effect of reactive oxygen species produced by some chemicals in aqueous solutions on activity of adenosine deaminase 2 (ADA2) purified from human blood plasma. An activating effect on ADA2 was observed in vitro with sodium nitroprusside (SNP), the source of NO (nitrosonium ions NO(-) in aqueous solutions). Not SH-groups of cysteine but other amino acid residues sensitive to NO were responsible for ADA2 activation. The SNP-derived activation was more pronounced when purified ADA2 was preincubated with heparin and different proteins as an experimental model of the protein environment in vivo. The most effective was heparin, which is known for its ability to regulate enzyme and protein functions in extracellular matrix. We conclude that ADA2 is a protein with flexible conformation that is affected by the protein environment, and it changes its activity under oxidative (nitrosative) stress.
Effect of certain plant extracts on alpha-amylase activity.
Prashanth, D; Padmaja, R; Samiulla, D S
2001-02-01
Ethanolic extracts of Punica granatum, Mangifera indica, Boerhaavia diffusa, Embelia ribes, Phyllanthus maderaspatensis, and Withania somnifera, were tested for their effect on alpha-amylase activity (in vitro). P. granatum and M. indica were found to exhibit interesting alpha-amylase inhibitory activity.
Elnager, Abuzar; Hassan, Rosline; Idris, Zamzuri; Mustafa, Zulkifli; Wan-Arfah, Nadiah; Sulaiman, S. A.; Gan, Siew Hua; Abdullah, Wan Zaidah
2015-01-01
Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted. PMID:25664321
Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong
2007-01-01
To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.
Baicalin, a metabolite of baicalein with antiviral activity against dengue virus
Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan
2014-01-01
Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553
Xiang, Jianfeng; Xiang, Yanjie; Lin, Shengming; Xin, Dongwei; Liu, Xiaoyu; Weng, Lingling; Chen, Tao; Zhang, Minguang
2014-04-01
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world whose chemoprevention became increasingly important in HCC treatment. Although the anticancer effects of asparagus constituents have been investigated in several cancers, its effects on hepatocellular carcinoma have not been fully studied. In this study, we investigated the anticancer effects of the deproteinized asparagus polysaccharide on the hepatocellular carcinoma cells using the in vitro and in vivo experimental model. Our data showed that deproteinized asparagus polysaccharide might act as an effective inhibitor on cell growth in vitro and in vivo and exert potent selective cytotoxicity against human hepatocellular carcinoma Hep3B and HepG2 cells. Further study showed that it could potently induce cell apoptosis and G2/M cell cycle arrest in the more sensitive Hep3B and HepG2 cell lines. Moreover, deproteinized asparagus polysaccharide potentiated the effects of mitomycin both in vitro and in vivo. Mechanistic studies revealed that deproteinized asparagus polysaccharide might exert its activity through an apoptosis-associated pathway by modulating the expression of Bax, Bcl-2, and caspase-3. In conclusion, deproteinized asparagus polysaccharide exhibited significant anticancer activity against hepatocellular carcinoma cells and could sensitize the tumoricidal effects of mitomycin, indicating that it is a potential therapeutic agent (or chemosensitizer) for liver cancer therapy.
Dos Santos, Desirée Magalhães; Rocha, Camila Valesca Jardim; da Silveira, Elita Ferreira; Marinho, Marcelo Augusto Germani; Rodrigues, Marisa Raquel; Silva, Nichole Osti; da Silva Ferreira, Ailton; de Moura, Neusa Fernandes; Darelli, Gabriel Jorge Sagrera; Braganhol, Elizandra; Horn, Ana Paula; de Lima, Vânia Rodrigues
2018-04-01
Rapanea ferruginea antioxidant and antitumoral properties were not explored before in literature. This study aimed to investigate these biological activities for the R. ferruginea leaf extract and correlate them with its phenolic content and influence in biological membrane dynamics. Thus, in this study, anti/pro-oxidative properties of R. ferruginea leaf extract by in vitro DPPH and TBARS assays, with respect to the free radical reducing potential and to its activity regarding membrane free radical-induced peroxidation, respectively. Furthermore, preliminary tests related to the extract effect on in vitro glioma cell viability were also performed. In parallel, the phenolic content was detected by HPLC-DAD and included syringic and trans-cinnamic acids, quercetrin, catechin, quercetin, and gallic acid. In an attempt to correlate the biological activity of R. ferruginea extract and its effect on membrane dynamics, the molecular interaction between the extract and a liposomal model with natural-sourced phospholipids was investigated. Location and changes in vibrational, rotational, and translational lipid motions, as well as in the phase state of liposomes, induced by R. ferruginea extract, were monitored by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and UV-visible spectroscopy. In its free form, the extract showed promising in vitro antioxidant properties. Free-form extract (at 1000µ g/mL) exposure reduced glioma cell in vitro viability in 40%, as evidenced by MTT tests. Pro-oxidant behavior was observed when the extract was loaded into liposomes. A 70.8% cell viability reduction was achieved with 500 µg/mL of liposome-loaded extract. The compounds of R. ferruginea extract ordered liposome interface and disorder edits a polar region. Phenolic content, as well as membrane interaction and modulation may have an important role in the oxidative and antitumoral activities of the R. ferruginea leaf extract.
Jeong, Hyun-Ja; Ryu, Ka-Jung; Kim, Hyung-Min
2018-06-29
Previous studies reported that depletion of Bcl-2 has a protective effect against allergic diseases. Furthermore, recently our study showed that anticancer drug has antiallergic inflammatory effect. An anticancer agent ABT-737 is an inhibitor of Bcl-2 and has an anti-inflammatory effect. However, the antiallergic inflammatory activity of ABT-737 is still unknown. Here, we aimed to explore the anti-atopic dermatitis (AD) activity and the mechanism of ABT-737 in AD models. HaCaT cells were used for in vitro experiments. To evaluate the effect of ABT-737 in vivo model, BalB/c mice were orally administered ABT-737 for 6 weeks in 2,4-dinitrofluorobenzene (DNFB)-induced AD-like murine model. Major assays were enzyme-linked immunosorbent assay, reverse transcription-PCR, caspase-1 assay, histamine assay, and H&E staining. ABT-737 significantly decreased thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity in activated HaCaT cells. In DNFB-induced AD mice, oral administration of ABT-737 alleviated clinical severity and scratching behavior. ABT-737 decreased levels of AD-related biomarkers including IgE, histamine, TSLP, and inflammatory cytokines. In addition, ABT significantly reduced caspase-1 activity in skin lesions of AD mice. ABT-737 elicited an anti-AD activity via suppression of caspase-1 activation in AD in vitro and in vivo models. Therefore, this study provides important information regarding the use of anticancer drugs for controlling allergic inflammatory diseases.
Mahmoudvand, Hossein; Sharififar, Fariba; Sharifi, Iraj; Ezatpour, Behrouz; Fasihi Harandi, Majid; Makki, Mahsa Sadat; Zia-Ali, Naser; Jahanbakhsh, Sareh
2014-03-01
Leishmaniasis has been identified as a major public health problem in tropical and sub-tropical countries. The present study was aimed to investigate antileishmanial effects of various extracts of Berberis vulgaris also its active compoenent, berberine against Leishmania tropica and L. infantum species on in vitro experiments. In this study in vitro antileishmanial activity of various extracts of B. vulgaris also its active compoenent, berberine against promastigote and amastigote stages of L. tropica and L. infantum was evaluated, using MTT assay and in a macrophage model, respectively. Furthermore, infectivity rate and cytotoxicity effects of B. vulgaris and berberine in murine macrophage cells were investigated. The findings of optical density (OD) and IC50 indicated that B. vulgaris particulary berberine significantly (P<0.05) inhibited the growth rate of promastigote stage of L.tropica and L.infantum in comparison to meglumine antimoniate (MA). In addition, B. vulgaris and berberine significantly (P<0.05) decreased the mean number of amastigotes in each macrophage as compared with positive control. In the evaluation of cytotoxicity effects, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages. Results also showed that when parasites were pre-incubated with B. vulgaris their ability to infect murine macrophages was significantly decreased. B.vulgaris particularly berberine exhibited potent in vitro leishmanicidal effects against L. tropica and L.infantum. Further works are required to evaluate the antileishmanial effects of B.vulgaris on Leishmania species using clinical settings.
Pacheco, Natália Ramos; Pinto, Nícolas de Castro Campos; da Silva, Josiane Mello; Mendes, Renata de Freitas; da Costa, Juliana de Carvalho; Aragão, Danielle Maria de Oliveira; Castañon, Maria Christina Marques Nogueira; Scio, Elita
2014-01-01
Cecropia pachystachya is a species traditionally used in Brazil to treat inflammation. This work aims to evaluate the topical anti-inflammatory and antioxidant activities of the methanolic extract of C. pachystachya (CPM) and to perform its chemical fingerprint by HPLC-DAD. The topical anti-inflammatory activity was evaluated using the mouse models of acute ear inflammation induced by croton oil, arachidonic acid, capsaicin, EPP, phenol, and chronic inflammation induced by multiple application of croton oil. The in vitro antioxidant effect of CPM was investigated using DPPH, reducing power, β -carotene bleaching, and TBARS assays. HPLC analysis was performed to quantify the antioxidant phenolics orientin, isoorientin, and chlorogenic acid previously identified in CPM. CPM exhibited significant anti-inflammatory effect in the acute models, in some cases comparable to the reference drugs. Histopathological analysis showed a moderate chronic skin anti-inflammatory effect with decrease in vasodilation, edema, cell infiltration, and epidermal hyperproliferation. It also showed strong in vitro antioxidant activity. The contents of orientin, isoorientin, and chlorogenic acid were 66.5 ± 1.8, 118.8 ± 0.7, and 5.4 ± 0.2 µg/mg extract, respectively. The topical anti-inflammatory activity of CPM could be based on its antioxidant properties, although other effects are probably involved, including COX inhibition and other mechanisms.
In vitro sensitivity of Trichomonas vaginalis and Candida albicans to chemotherapeutic agents.
Lövgren, T; Salmela, I
1978-06-01
Strains of fresh clinical isolates of Trichomonas vaginalis and Candida albicans have been tested in vitro for their sensitivity to eight drugs used in the therapy of monilial and trichomonal vaginitis. Three of the chemotherapeutic agents, chlorchinaldol, clotrimazole and broxyquinoline were effective against both organisms. Tinidazole and metronidazole were active against T. vaginalis. The strains of C. albicans were also sensitive to trichomycin, natamycin and nystatin. Tinidazole was the most effective trichomonacide, clotrimazole and chlorchinaldol were most effective against C. albicans, while chlorchinaldol had the best in vitro effect against both organisms. The ranges of the MICs are compared to values previously reported.
USDA-ARS?s Scientific Manuscript database
The effects of azole-type P450 inhibitors and two metabolism-resistant ABA analogs on in vitro ABA 8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expr...
Ha, Shin-Woo; Sikorski, James A.; Weitzmann, M. Neale; Beck, George R.
2014-01-01
Silica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ~50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method. Nineteen different cell lines representing all major organ types were used to investigate an in vitro lethal concentration (LC) and results revealed little toxicity in any cell type analyzed. To calculate an in vitro therapeutic index we quantified the effective concentration at 50% response (EC50) for nanoparticle-stimulated mineral deposition activity using primary bone marrow stromal cells (BMSCs). The EC50 for BMSCs was not substantially altered by surface or magnetic core. The calculated Inhibitory concentration 50% (IC50) for pre-osteoclasts was similar to the osteoblastic cells. These results demonstrate the pharmacological potential of certain silica-based nanomaterial formulations for use in treating bone diseases based on a favorable in vitro therapeutic index. PMID:24333519
Liu, Zhibin; Wang, Wei; Huang, Guangwei; Zhang, Wen; Ni, Li
2016-03-30
Almonds contain considerable amounts of potential prebiotic components, and the roasting process may alter these components. The aim of this study was to compare the in vitro fermentation properties and in vivo prebiotic effect of raw and roasted almonds. In vitro, predigested raw and roasted almonds promoted the growth of Lactobacillus acidophilus (La-14) and Bifidobacterium breve (JCM 1192), and no significant differences were found between these two nuts. In a 4-week animal trial, daily intake of raw or roasted almonds promoted the population of Bifidobacterium spp. and Lactobacillus spp. and inhibited the growth of Enterococcus spp. in faeces and caecal contains of rats. Compared with roasted almonds, raw almonds had a greater bifidobacteria promotion effect. Besides, significantly higher β-galactosidase activity and lower β-glucuronidase and azoreductase activities in faeces or caecal contents of rats were observed with raw almonds than with roasted almonds. While, in terms of metabolic effects, the ingestion of roasted almonds resulted in significantly greater intestinal lipase activities. Both raw and roasted almonds exhibit potential prebiotic effects, including regulation of intestinal bacteria and improved metabolic activities. The roasting process may slightly reduce the prebiotic effects of almonds but significantly improve the metabolic effects © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Anserine induced advantage effects on the antitumor activity of doxorubicin.
Sadzuka, Yasuyuki; Sonobe, Takashi
2007-06-01
It is hoped that the strategy for the increase of antitumor activity by the combination of foods or their components will take quality of life into consideration. We examined whether anserine, is a dipeptide in foods, has beneficial effects on the doxorubicin (DOX) induced antitumor activity in vitro and in vivo. Anserine increased the DOX induced antitumor activity by the maintained DOX concentration in the tumor in vivo. On the other hand, anserine has no effect on the DOX concentration in normal tissues. Namely, it is expected that anserine will not increase the DOX induced adverse reaction. Thus, anserine appeared to increase the antitumor activity of DOX with an increased DOX concentration in the tumor by specific action on the tumor. Furthermore, anserine significantly induced DOX influx compared to that of the DOX alone group in vitro. It is speculated that the anserine induced increase in the antitumor activity of DOX in vivo was affected by the promotion of DOX influx into the tumor cells in vitro. Anserine was considered to take into tumor cells via a dipeptide transporter, and it resulted in an increase of the DOX influx. Anserine did not affect on the activity of the CYP3A subtype as a DOX metabolizing enzyme. Namely, it was expected that anserine increased the antitumor activity of DOX by the change of the DOX concentration without the changing metabolism of DOX.
Carrion, F; Nova, E; Ruiz, C; Diaz, F; Inostroza, C; Rojo, D; Mönckeberg, G; Figueroa, F E
2010-03-01
Mesenchymal stem cells (MSCs) exert suppressive effects in several disease models including lupus prone mice. However, autologous MSC therapy has not been tested in human systemic lupus erythematosus (SLE). We evaluate the safety and efficacy of bone marrow (BM)-derived MSCs in two SLE patients; the suppressor effect of these cells in-vitro and the change in CD4+CD25+FoxP3+ T regulatory (Treg) cells in response to treatment. Two females (JQ and SA) of 19 and 25 years of age, fulfilling the 1997 American College of Rheumatology (ACR) criteria for SLE were infused with autologous BM-derived MSCs. Disease activity indexes and immunological parameters were assessed at baseline, 1, 2, 7 and 14 weeks. Peripheral blood lymphocyte (PBL) subsets and Treg cells were quantitated by flow cytometry, and MSCs tested for in-vitro suppression of activation and proliferation of normal PBLs. No adverse effects or change in disease activity indexes were noted during 14 weeks of follow-up, although circulating Treg cells increased markedly. Patient MSCs effectively suppressed in-vitro PBL function. However, JQ developed overt renal disease 4 months after infusion. MSC infusion was without adverse effects, but did not modify initial disease activity in spite of increasing CD4+CD25+FoxP3+ cell counts. One patient subsequently had a renal flare. We speculate that the suppressive effects of MSC-induced Treg cells might be dependent on a more inflammatory milieu, becoming clinically evident in patients with higher degrees of disease activity.
Jarošová, Barbora; Bláha, Luděk; Giesy, John P; Hilscherová, Klára
2014-03-01
In vitro assays are broadly used tools to evaluate the estrogenic activity in Waste Water Treatment Plant (WWTP) effluents and their receiving rivers. Since potencies of individual estrogens to induce in vitro and in vivo responses can differ it is not possible to directly evaluate risks based on in vitro measures of estrogenic activity. Estrone, 17beta-estradiol, 17alfa-ethinylestradiol and to some extent, estriol have been shown to be responsible for the majority of in vitro estrogenic activity of municipal WWTP effluents. Therefore, in the present study safe concentrations of Estrogenic Equivalents (EEQs-SSE) in municipal WWTP effluents were derived based on simplified assumption that the steroid estrogens are responsible for all estrogenicity determined with particular in vitro assays. EEQs-SSEs were derived using the bioassay and testing protocol-specific in vitro potencies of steroid estrogens, in vivo predicted no effect concentration (PNECs) of these compounds, and their relative contributions to the overall estrogenicity detected in municipal WWTP effluents. EEQs-SSEs for 15 individual bioassays varied from 0.1 to 0.4ng EEQ/L. The EEQs-SSEs are supposed to be increased by use of location-specific dilution factors of WWTP effluents entering receiving rivers. They are applicable to municipal wastewater and rivers close to their discharges, but not to industrial waste waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung
2016-11-01
The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin-3-O-β-d-glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen-induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin-induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics. © 2016 Wiley Periodicals, Inc.
Apigenin inhibits African swine fever virus infection in vitro.
Hakobyan, Astghik; Arabyan, Erik; Avetisyan, Aida; Abroyan, Liana; Hakobyan, Lina; Zakaryan, Hovakim
2016-12-01
African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.
Freitas, Claisa Andréa Silva; Vieira, Ícaro Gusmão Pinto; Sousa, Paulo Henrique Machado; Muniz, Celli Rodrigues; Gonzaga, Maria Leônia da Costa; Guedes, Maria Izabel Florindo
2016-04-01
The beneficial biological effects of cinnamic acid derivatives and the lack of studies on the antioxidant activity and bioavailability of cinnamic esters from carnauba wax, diesters were extracted from carnauba wax powder. Their structural, physical and morphological characteristics, antioxidant activity and in vitro bioaccessibility were measured. p-Methoxycinnamic diester (PCO-C) was identified, which has a crystalline, apolar structure and exhibited significant antioxidant activity (107.27 ± 3.92 μM Trolox/g of dry weight) before and after simulated in vitro gastrointestinal digestion and 32.46% bioaccessibility. In human cells, PCO-C (250 μg/mL) inhibited the production of intracellular reactive oxygen species, with an effect similar to that of Trolox (80 μM). Thermogravimetric analysis showed that PCO-C had high thermal stability and high UV absorption between 250 and 350 nm. These results indicate that this compound is promising as an antioxidant for pharmaceutical and food industry applications, such as the development of active packaging and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xie, Meng; Zhang, Hai-Jing; Deng, An-Jun; Wu, Lian-Qiu; Zhang, Zhi-Hui; Li, Zhi-Hong; Wang, Wen-Jie; Qin, Hai-Lin
2016-04-22
In this study, natural quaternary coptisine was used as a lead compound to design and synthesize structurally stable and actively potent coptisine analogues. Of the synthesized library, 13 N-dihydrocoptisine-8-ylidene amines/amides were found not only to be noncytotoxic toward intestinal epithelial cells (IECs), but they were also able to activate the transcription of X-box-binding protein 1 (XBP1) targets to varying extents in vitro. Antiulcerative colitis (UC) activity levels were assessed at the in vitro molecular level as well as in vivo in animals using multiple biomarkers as indices. In an in vitro XBP1 transcriptional activity assay, four compounds demonstrated good dose-effect relationships with EC50 values of 0.0708-0.0132 μM. Moreover, two compounds were confirmed to be more potent in vivo than a positive control, demonstrating a curative effect for UC in experimental animals. Thus, the findings of this study suggest that these coptisine analogues are promising candidates for the development of anti-UC drugs.
Giribabu, Nelli; Rao, Pasupuleti Visweswara; Kumar, Korla Praveen; Muniandy, Sekaran; Swapna Rekha, Somesula; Salleh, Naguib
2014-01-01
P. niruri has been reported to possess antidiabetic and kidney protective effects. In the present study, the phytochemical constituents and in vitro antioxidant activity of P. niruri leaf aqueous extract were investigated together with its effect on oxidative stress and antioxidant enzymes levels in diabetic rat kidney. Results. Treatment of diabetic male rats with P. niruri leaf aqueous extract (200 and 400 mg/kg) for 28 consecutive days prevents the increase in the amount of lipid peroxidation (LPO) product, malondialdehyde (MDA), and the diminution of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in the kidney of diabetic rats. The amount of LPO showed strong negative correlation with SOD, CAT, and GPx activity levels. P. niruri leaf aqueous extract exhibits in vitro antioxidant activity with IC50 slightly lower than ascorbic acid. Phytochemical screening of plant extract indicates the presence of polyphenols. Conclusion. P. niruri leaf extract protects the kidney from oxidative stress induced by diabetes. PMID:24991228
Inhibitory Effect of Apigenin on Losartan Metabolism and CYP2C9 Activity in vitro.
Wang, Zhe; Gong, Yun; Zeng, Da-Li; Chen, Lian-Guo; Lin, Gao-Tong; Huang, Cheng-Ke; Sun, Wei; Chen, Meng-Chun; Hu, Guo-Xin; Chen, Rui-Jie
2016-01-01
CYP2C9 is one of the most important phase I drug-metabolizing enzymes in liver. The objective of this work was to investigate the effects of apigenin on the metabolism of losartan and human CYP2C9 and rat CYP2C11 activity in vitro. Different concentrations of apigenin were added to a 100 mmol/l Tris-HCl reaction mixture containing 2 pmol/ml recombinant human CYP2C9.1, 0.25 mg/ml human liver microsomes or 0.5 mg/ml rat liver microsomes to determine the half maximal inhibition or a half-maximal inhibitory concentration (IC50) on the metabolism of losartan. In addition, diclofenac used as CYP2C9 substrate was performed to determine the effects of apigenin on CYP2C9. The results showed that apigenin has the inhibitory effect on the metabolism of losartan in vitro, the IC50 was 7.61, 4.10 and 11.07 μmol/l on recombinant CYP2C9 microsomes, human liver microsomes and rat liver microsomes, respectively. Meanwhile, apigenin's mode of action on human CYP2C9 activity was competitive for the substrate diclofenac. In contrast to its potent inhibition of CYP2C9 in humans (9.51 μmol/l), apigenin had lesser effects on CYP2C11 in rat (IC50 = 15.51 μmol/l). The observations imply that apigenin has the inhibitory effect on the metabolism of losartan and CYP2C9 activity in vitro. More attention should be paid as to when losartan should be administrated combined with apigenin. © 2016 S. Karger AG, Basel.
Zapata-Morales, Juan Ramón; Alonso-Castro, Angel Josabad; Domínguez, Fabiola; Carranza-Álvarez, Candy; Isiordia-Espinoza, Mario; Hernández-Morales, Alejandro; Solorio-Alvarado, Cesar
2017-07-31
Bidens odorata Cav (Asteraceae) is used for the empirical treatment of inflammation and pain. This work evaluated the in vitro and in vivo toxicity, antioxidant activity, as well as the anti-inflammatory and antinociceptive effects of an ethanol extract from Bidens odorata leaves (BOE). The in vitro toxicity of BOE (10-1000µg/ml) was evaluated with the comet assay in PBMC. The in vivo acute toxicity of BOE (500-5000mg/kg) and the effect of BOE (10-1000µg/ml) on the level of ROS in PBMC were determined. The in vivo anti-inflammatory activity of BOE was assessed using the TPA-induced ear edema in mice. The antinociceptive activities of BOE (50-200mg/kg p.o.) were assessed using the acetic acid and formalin tests. The antinociceptive mechanism of BOE was determined using naloxone and glibenclamide. BOE lacked DNA damage, and showed low in vivo toxicity (LD 50 > 5000mg/kg p.o.). BOE inhibited ROS production (IC 50 = 252.13 ± 20.54µg/ml), and decreased inflammation by 36.1 ± 3.66%. In both antinociceptive test, BOE (200mg/kg) exerted activity with similar activity than the reference drugs. B. odorata exerts low in vitro and in vivo toxicity, antioxidant effects, moderate in vivo anti-inflammatory activity, and antinociceptive effects mediated by ATP-sensitive K + channels. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Franzblau, S G; White, K E; O'Sullivan, J F
1989-01-01
In a previous study of structure-activity relationships of selected phenazines against Mycobacterium leprae in vitro, compounds containing a 2,2,6,6-tetramethylpiperidine substitution at the imino nitrogen were most active. Therefore, the effect of substitution at the para positions of the phenyl and anilino groups in tetramethylpiperidine-substituted phenazines was assessed. As determined by radiorespirometry, activity in ascending order was observed in compounds substituted with hydrogens or fluorines, ethoxy groups, methyl groups, chlorines, and bromines and correlated with partition coefficients in octanol-water. PMID:2692516
Skliar, M I; Fernandez, M C; Faienza, H; Orsatti, M B; Puche, R C; Boland, R L; Skliar, M I
1980-12-01
The erythrocytes of rats treated with 1, 25-dihydroxycholecalciferol or 1, 25-dihydroxycholecalciferol glycoside showed decreased levels of 2, 3-diphosphoglycerate. The same result has been obtained in vitro, indicating a direct effect of the sterol on the red cell. The glycoside is less active than the free sterol in vivo and more active in vitro. The decreased levels of diphosphoglycerate induced tissue hypoxia as shown by a higher plasma lactate/pyruvate ratio and a three fold increase in plasma erythropoietin concentration.
Li, Dan; Liu, Nan; Zhao, Hai-Hua; Zhang, Xu; Kawano, Hitoshi; Liu, Lu; Zhao, Liang; Li, Hong-Peng
2017-03-29
Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. The present study employs an interleukin-1β (IL-1β) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. GFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul
2017-05-01
This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.
Henry, Morgane A; Alexis, Maria N
2009-08-15
Antimicrobial, anti-inflammatory and immunomodulating properties of lactoferrin have been demonstrated in mammals and in fish. However, in vivo, lactoferrin is digested by gastric pepsin treatment into the N-terminal derived peptide named lactoferricin. This has been so far overlooked in fish in vitro studies. The aim of the present study was to assess in vitro the effects of both lactoferricin and lactoferrin on the head kidney cells of European sea bass (Dicentrarchus labrax, L.) in order to determine their potential as dietary additives and to get some insight into their mode of action. In vitro lactoferricin decreased significantly the chemiluminescent response of head kidney cells but did not affect the zymosan-triggered chemiluminescence activity. On the other hand, a high concentration of lactoferrin directly stimulated chemiluminescence but reduced the zymosan-triggered chemiluminescence. The bactericidal activity of head kidney cells was also significantly diminished by pre-incubation with lactoferrin in a dose-dependent manner. Although no significant effect of lactoferricin or lactoferrin was evidenced on head kidney cellular viability, absent or negative effect on the priming of respiratory burst activity suggested that care should be taken when using lactoferrin in the diet of sea bass and high doses should be avoided. Hypotheses about the mechanisms of action of lactoferricin and lactoferrin are presented.
Non-pharmacological treatment of Helicobacter pylori
Shmuely, Haim; Domniz, Noam; Yahav, Jacob
2016-01-01
Many food and plant extracts have shown in vitro anti-Helicobacter pylori (H. pylori) activity, but are less effective in vivo. The anti-H. pylori effects of these extracts are mainly permeabilitization of the membrane, anti-adhesion, inhibition of bacterial enzymes and bacterial grown. We, herein, review treatment effects of cranberry, garlic, curcumin, ginger and pistacia gum against H. pylori in both in vitro, animal studies and in vivo studies. PMID:27158532
Souza, Joyce G R; Lopes Torres, Eduardo J; Garcia, Juberlan S; Gomes, Ana Paula N; Rodrigues-Silva, Rosangela; Maldonado, Arnaldo; Machado-Silva, José Roberto
2017-03-01
Chemotherapy of food-borne trematodes relies on two drugs, praziquantel and tricabendazole, and there is growing interest in finding alternative therapies. Plant oil extracts have long been used in traditional Chinese medicine as sources of bioactive compounds with antiparasitic activity. Species of the genus Echinostoma are used as good models to test effective compounds against food-borne trematodes. This study evaluated the anthelmintic activity of crude artesunate extracts in vitro on newly excysted metacercariae of Echinostoma paraensei by light and scanning electron microscopy (SEM). The flukes were incubated with 1 μg/mL, 10 μg/mL, 25 μg/mL, 50 μg/mL and 100 μg/mL of artesunate for 4, 12, 24, 48 and 72 h. When the exposure time and concentration of artesunate increased, there were changes in motor activity, tegument damage and death. Blebs and swelling were the most common damages quantified on the tegument. The in vitro study reproduced results described for other immature flukes incubated with artemisinin derivatives. Excysted metacercariae of E. paraensei constitute a good model to study in vitro drug effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Tao; Zhang, Peng; Zhao, Chunfeng; Zhang, Yi; Liu, Hong; Hu, Limin; Gao, Xiumei; Zhang, Deqin
2011-07-01
Cataract is the leading cause of blindness worldwide. It is a multifactorial disease primarily associated with oxidative stress produced by free radicals. The present study was undertaken to evaluate the anticataract potential of Crataegus pinnatifida (hawthorn tree) leaves extract in selenite-induced cataract in vivo and antioxidant effects in vitro. In vitro antioxidant assay of C. pinnatifida leaves extract on NO production inhibition, aldose reductase inhibition, and O(2)(-) radical scavenging activities gave the IC(50) of 98.3, 89.7, and 5.98 μg/mL, respectively. To characterize some major compounds in C. pinnatifida leaves extract, nine flavonoids were identified via LC-MS/MS qualitative analysis. Based on in vitro screening results, C. pinnatifida leaves extract eye drops in 0.1% hydroxypropyl methyl cellulose solution were prepared to evaluate the anticataract potential in vivo. Administration of C. pinnatifida leaves extract eye drops alternately three times a day in rat pups with selenite-induced oxidative stress significantly increased serum SOD and CAT activities, and tended to reduce MDA level compared with control group. The antioxidant enzyme SOD, CAT, and GSH activities in lens showed a significant increase. These results may be applied in the future for the prevention and treatment of cataracts.
Antibacterial Activity of Cinoxacin In Vitro
Giamarellou, Helen; Jackson, George G.
1975-01-01
Cinoxacin is a new synthetic compound similar chemically and in antimicrobial activity to oxolonic acid and nalidixic acid. It is most effective against Escherichia coli and Proteus mirabilis, but at concentrations expected in the urine it is inhibitory for all species of Enterobacteriaceae. Relative to nalidixic acid, cinoxacin has slightly greater inhibitory and bactericidal activity, less inoculum effect probably due to less heterogeneity in the susceptibility of bacterial cells, and less inhibition by high concentrations of serum protein. Both drugs are more active in an acid than an alkaline medium. Glucose can specifically antagonize the inhibitory effect against P. mirabilis. In urine the bactericidal rate and effect are decreased. Resistance to cinoxacin can be developed quickly by serial transfers in vitro. Some nonresistant organisms remained viable in bactericidal drug concentrations. The in vivo importance of the favorable features of cinoxacin must be determined by clinical trials. PMID:1096811
Liu, J; Mori, A
1992-12-01
Gastrodia elata Bl. (GE) and Uncaria rhynchophylla (Miq.) Jacks (UR) are two traditional Chinese medicinal herbal drugs, used for the treatment of convulsions and epilepsy. Their antioxidant effects in vivo and their free radical scavenging effects in vitro were investigated. Epileptogenic foci in the lateral brain of the rat were induced by the injection of ferric chloride into the lateral cortex. Both extracts significantly inhibited the increase in levels of lipid peroxide in the ipsilateral cortex, at all times observed. In addition, the two extracts also induced an early increase of activity of superoxide dismutase in the mitochondrial fraction of the ipsilateral cortex. In in vitro experiments, the two extracts exhibited significant dose-dependent scavenging effects on free radicals, using electron spin resonance spectroscopy. These results suggest that the proposed antiepileptic effects of GE and UR may be attributable to the antioxidant activity of the active components in these two medicinal herbs.
Measurement of uterine activity in vitro by integrating muscle tension
Styles, P. R.; Sullivan, T. J.
1962-01-01
Spontaneous or electrically stimulated activity of the uterus is measured isometrically in vitro by integrating tension against time. Uterine contractions move the operating rod of a potentiometer transducer, the output voltage from which is coupled to an electrical integrator motor and a servo recorder. Several parameters of uterine activity can be expressed in a single measurement, and a record of isometric contractions is obtained simultaneously. Oxytocin can be assayed accurately and the effect of drugs on uterine motility can be measured. PMID:13918066
Jacobus, Nilda V.; McDermott, Laura A.
2016-01-01
We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. PMID:27480858
Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji
2014-01-01
In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc. PMID:24584238
Vilanova Neta, Jaci Lima; da Silva Lédo, Ana; Lima, Aloisio André Bonfim; Santana, José Carlos Curvelo; Leite, Nadjma Souza; Ruzene, Denise Santos; Silva, Daniel Pereira; de Souza, Roberto Rodrigues
2012-09-01
The aim of this work was to evaluate the activity of bromelain in pineapple plants (Ananas comosus var. Comosus), Pérola cultivar, produced in vitro in different culture conditions. This enzyme, besides its pharmacological effects, is also employed in food industries, such as breweries and meat processing. In this work, the enzymatic activity was evaluated in the tissues of leaves and stems of plants grown in culture medium without plant growth regulator. The most significant levels of bromelain were observed in leaf tissue after 4 months of culture in vitro in medium with a filter paper bridge, followed by medium gelled by the agar. The results of this study, regarding the different structures of the pineapple (leaves and stems) in vitro showed that the activity of bromelain varied depending on the culture conditions, the time and structure of which was quantified, ensuring a viable strategy in the production of seedlings with high levels of bromelain in subsequent phases of micropropagation.
In vitro and in vivo biological activities of anthocyanins from Nitraria tangutorun Bobr. fruits.
Ma, Tao; Hu, Na; Ding, Chenxi; Zhang, Qiulong; Li, Wencong; Suo, Yourui; Wang, Honglun; Bai, Bo; Ding, Chenxu
2016-03-01
Anthocyanins are the main compounds in Nitraria tangutorun Bobr. The enrichment and purification of anthocyanins on macroporous resins were investigated. Regarding anthocyanin purification, static adsorption and desorption were studied. The optimal experimental conditions were the following: resin type: X-5; static adsorption time: 6h; desorption solution: ethanol-water-HCl (80:19:1, V/V/V; pH 1); desorption time: 40min. Furthermore, the in vitro and in vivo biological activities of the anthocyanins were evaluated. The anthocyanins showed ideal scavenging effects on free radicals in vitro, especially on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl free radical (OH). In the animal experiment, blood lipid metabolism of hyperlipidemia rats was regulated by anthocyanin contents. The superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) of hyperlipidemia rats were also improved by anthocyanins. These results showed that anthocyanins from N. tangutorun Bobr. fruits had potential biological activities in vivo as well as in vitro. Copyright © 2015. Published by Elsevier Ltd.
Tonin, Talita Dacroce; Thiesen, Liliani Carolini; de Oliveira Nunes, Maria Luisa; Broering, Milena Fronza; Donato, Marcos Paulo; Goss, Marina Jagielski; Petreanu, Marcel; Niero, Rivaldo; Machado, Isabel Daufenback; Santin, José Roberto
2016-11-01
Here, we evaluate the anti-inflammatory and wound-healing effects of methanolic crude extract obtained from aerial parts (leaves and branches) of Rubus imperialis Chum. Schl. (Rosaceae) and the pure compound niga-ichigoside F1. Anti-inflammatory activity was determined in vivo and in vitro, and the healing effect was evaluated in surgical lesions in mice skin. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay and H 2 O 2 -induced oxidative stress were used to determine antioxidant activity. The efferocytosis activity was also determined. The data obtained show that the extract of R. imperialis promote reduction in the inflammatory process induced by lipopolysaccharide (LPS) or carrageenan in the air pouch model; the effects could be reinforced by nitric oxide reduction in LPS-stimulated neutrophils, and an increase in the efferocytosis. The extract showed wound healing property in vitro and in vivo, scavenging activity for DPPH, and cytoprotection in the H 2 O 2 -induced oxidative stress in L929 cells. In addition, the compound niga-ichigoside F1 was able to reduce the NO secretion; however, it did not present wound-healing activity in vitro. Together, the data obtained point out the modulatory actions of R. imperialis extract on leukocyte migration to the inflamed tissue, the antioxidant, and the pro-resolutive activity. However, the R. imperialis anti-inflammatory activity may be mediated in parts by niga-ichigoside F1, and on wound healing do not correlated with niga-ichigoside F1.
CONTROL ID: 1850472 CONTACT (NAME ONLY): Timothy Shafer Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Nanotoxicology, In Vitro | Neurotoxicity, General | Neurotoxicity, Metals KEYWORDS: Nanoparticle, Neurotoxicity, microelectrode array. DATE/TIME LAST...
Couzinet, S; Dubremetz, J F; Buzoni-Gatel, D; Jeminet, G; Prensier, G
2000-10-01
Toxoplasma gondii. The experiments were conducted in vitro using 2 methods; cysts produced either in mice or in cell culture were exposed to monensin in vitro, and the infectivity of the parasites was then assessed in vivo or in vitro. The data obtained from these 2 systems of evaluation showed that monensin inhibits the infectivity and the viability of the bradyzoites. Its activity was time and concentration dependent. The first effects were observed at very low drug concentrations (i.e. 0.0001 microg/ml). Immunofluorescence and electron microscopy analysis showed significant cytological alterations of the monensin-treated bradyzoites: they were swollen, had a large number of vacuoles in their cytoplasm and were found lysed at higher concentrations in ionophore.
Frederico, Marisa Jádna Silva; Mascarello, Alessandra; Castro, Allisson Jhonatan Gomes; Da Luz, Gabrielle; Altenhofen, Delsi; Mendes, Camila Pires; Leal, Paulo Cesar; Yunes, Rosendo Augusto; Nunes, Ricardo José; Silva, Fátima Regina Mena Barreto
2016-05-01
To characterize the role and the mechanism of action of (2E)-N'-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide (BZD) on incretin secretion, glucose uptake in skeletal muscle and α-glucosidase activity on intestine, targets for glucose homeostasis. It was assayed on glucose tolerance test (GTT) to analyze GLP-1 secretion and the activity of DPP-4 enzyme in vitro. In skeletal muscle, mechanism of action on glucose uptake was carried out by in vitro experiments. The activity of intestinal disaccharidases was performed after in vivo and in vitro experiments. The compound improved the glucose tolerance around 30%, 25%, and 20% at 15, 30, and 60 min, respectively and potentiated the sitagliptin effect, an inhibitor of the enzyme that removes GLP-1, about 50, 45, and 54% at 15, 30, and 60 min, respectively. Additionally, BZD did not modify the activity of DPP-4 enzyme. The acute effect of BZD on glucose uptake is mediated by increasing GLUT4 expression (around 140%) and its translocation to the plasma membrane in soleus muscle. The genomic effect as well as GLUT4 translocation involve the activation of PI-3K and MAPK pathways and require the microtubules integrity to the complete stimulatory effect of this compound on glucose uptake. Beyond, BZD acts in an alternative target to ameliorate glycaemia, intestinal disaccharidases. In a whole, these data point an incretino- and insulinomimetic effect of the compound for glycemic control. © 2015 Wiley Periodicals, Inc.
In vitro evaluation of the cytotoxicity of two root canal sealers on macrophage activity.
de Oliveira Mendes, Sônia Teresa; Ribeiro Sobrinho, Antônio Paulino; de Carvalho, André Teixeira; de Souza Côrtes, Maria Ilma; Vieira, Leda Quercia
2003-02-01
Although some studies have been concerned with the cytotoxicity of endodontic sealers and their components, few have approached the effects of endodontic sealers on macrophage viability and activity. In this study the effect of two zinc oxide-eugenol-based sealers, freshly prepared or after setting for 24 h, was determined on macrophage activity in vitro. Sealers were placed inside a glass capillary tube and added to mouse-elicited macrophage cultures. Sealers did not affect macrophage viability; however, adherence to glass and phagocytosis were impaired. Moreover, nitric oxide production in response to activation with interferon-gamma was diminished, but interleukin-12 production in response to Listeria monocytogenes was not altered. Interestingly, freshly mixed and solid test samples had similar inhibitory activities. In conclusion, the tested sealers did not affect a pro-inflammatory response (interleukin-12 production) but had an inhibitory effect on the effector responses measured (phagocytosis and nitric oxide production).
Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes.
Nikolić-Kokić, Aleksandra; Oreščanin-Dušić, Zorana; Spasojević, Ivan; Slavić, Marija; Mijušković, Ana; Paškulin, Roman; Miljević, Čedo; Spasić, Mihajlo B; Blagojević, Duško P
2015-04-22
Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. Some of the effects of ibogaine seem to be mediated through its influence on energy metabolism, redox active processes and the effects of discrete fluctuations of individual reactive oxygen species on different levels of enzyme activities. Overall, ibogaine acts as a pro-antioxidant by increasing activity of antioxidative enzymes and as an adaptagene in oxidative distress. Copyright © 2015. Published by Elsevier Ireland Ltd.
Makino, Toshiaki; Mizuno, Fumika; Mizukami, Hajime
2006-10-01
Herb-drug interaction has attracted attention as medicinal topics recently. However, the drug information is sometimes confusing. Previous in vitro studies revealed that schisandra fruit had strong inhibitory effect on CYP3A4 and claimed the possibilities of its herb-drug interaction. In the present study, we evaluated the inhibitory effects of schisandra fruit and shoseiryuto, an herbal formula in Japanese traditional kampo medicine containing eight herbal medicines including schisandra fruit, on rat CYP3A activity in vitro, and the effect of shoseiryuto on pharmacokinetics of nifedipine in rats, in comparison with those of grapefruit juice, a well-characterized natural CYP3A inhibitor. Shoseiryuto and its herbal constituents, schisandra fruit, ephedra herb and cinnamon bark exhibited in vitro inhibitory effect of CYP3A. Although shoseiryuto inhibited rat CYP3A activity in vitro with a degree comparable to grapefruit juice, shoseiryuto did not significantly affect a plasma concentration profile of nifedipine in rats as grapefruit juice did. These results indicate that in vivo experiments using the extract of herbal medicine prepared with the same dosage form as patients take are necessary to provide proper information about herb-drug interaction.
Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.
Arnadottir, M; Nilsson-Ehle, P
1994-01-01
The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.
FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.
Ono, S; Hirano, H
1984-04-01
We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.
Roberto, Bruna Sampaio; Macedo, Gabriela Alves; Macedo, Juliana Alves; Martins, Isabela Mateus; Nakajima, Vânia Mayumi; Allwood, J William; Stewart, Derek; McDougall, Gordon J
2016-09-14
The aim of this work was to assess the effect of immobilized-tannase treatment on black, green, white and mate tea components and on their bioactivities relevant to obesity. Tannase treatment caused predictable changes in polyphenol composition with substantial reduction in galloylated catechins in green, white and black tea. Mate tea, which is rich in chlorogenic acids, was much less affected by tannase treatment although some degradation of caffeoyl quinic acid derivatives was noted. The original tea samples were effective in inhibiting digestive enzymes in vitro. They inhibited amylase activity, some with IC50 values ∼70 μg mL(-1), but were much less effective against α-glucosidase. They also inhibited lipase activity in vitro and caused dose-dependent reductions in lipid accumulation in cultured adipocytes. The bio-transformed tea samples generally matched the effectiveness of the original samples but in some cases they were markedly improved. In particular, tannase treatment reduced the IC50 value for amylase inhibition for green tea and white tea by 15- and 6-fold respectively. In addition, the bio-transformed samples were more effective than the original samples in preventing lipid accumulation in adipocytes. These in vitro studies indicate that bio-transformed tea polyphenols could assist in the management of obesity through improvement in energy uptake and lipid metabolism and also indicate that biotechnological modification of natural food molecules can improve the benefits of a common beverage such as tea.
Glatt, H; de Balle, L; Oesch, F
1981-01-01
The activation of dimethylnitrosamine (DMN) to a bacterial mutagen in liver subcellular fraction and in intrasanguinous host-mediated assays was studied, in particular the effect of pretreatment of the animals with ethanol or acetone. Salmonella typhimurium TA 92 was much more sensitive to DMN mutagenicity than TA 100 and TA 1535 or Escherichia coli WP2uvrA and was used for the main part of the study. Noteworthy, in part already known, features of the in vitro activation are the relatively low pH optimum (pH 6-6.4), the non-linear dose-mutagenic response-relationship and the relatively high doses of DMN required for activation with control preparations. Pretreatment of mice with ethanol or acetone greatly reduced the minimal mutagenically effective concentration of DMN in the in vitro assay. Pretreatment with Aroclor 1254, an inducer frequently used in mutagenicity research, showed little effect when used alone, but reduced the potentiation by acetone. The results of the host-mediated assays substantially differed from those of the in vitro activation assays (a) in the relatively low dose of DMN required for mutagenicity to occur and (b) in the lack of potentiation by acetone-or ethanol-pretreatment. Acetone even led to a marginal decrease in mutagenicity. As a possible explantation for this apparent discrepancy were assume that with the in vitro system the activity of the dilute metabolizing system is limiting for the activation of DMN and induction therefore will increase the mutagenicity, whereas in vivo DMN is quantitatively metabolized in both induced and non-induced animals. The results show that caution has to be taken in the interpretation from in vitro results to the in vivo situation. In particular our in vivo experiments do not support the hypothesis that the induction by ethanol of an activating system with a low Km (which would strongly activate traces of DMN ingested with many foods) is one of the reasons for the increased risk of liver tumors in alcoholics.
Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William
2016-01-11
Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O.; Delaney, William
2016-01-01
Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. PMID:26824950
Chakraborty, Mainak; Karmakar, Indrajit; Haldar, Sagnik; Das, Avratanu; Bala, Asis; Haldar, Pallab Kanti
2016-01-01
Introduction: The present study evaluates the antioxidant effect of methanol extract of Hippophae salicifolia (MEHS) bark with special emphasis on its role on oxidative DNA damage in mouse peritoneal macrophages. Material and Methods: In vitro antioxidant activity was estimated by standard antioxidant assays whereas the antioxidant activity concluded the H+ donating capacity. Mouse erythrocytes’ hemolysis and peritoneal macrophages’ DNA damage were determined spectrophotometrically. In vivo antioxidant activity of MEHS was determined in carbon tetrachloride-induced mice by studying its effect on superoxide anion production in macrophages cells, superoxide dismutase in the cell lysate, DNA damage, lipid peroxidation, and reduces glutathione. Results: The extract showed good in vitro antioxidant activities whereas the inhibitory concentrations values ranged from 5.80 to 106.5 μg/ml. MEHS significantly (P < 0.05) attenuated the oxidative DNA damage. It also attenuated the oxidative conversion of hemoglobin to methemoglobin and elevation of enzymatic and nonenzymatic antioxidant in cells. Conclusion: The result indicates MEHS has good in vitro-in vivo antioxidant property as well as the protective effect on DNA and red blood cell may be due to its H+ donating property. PMID:27413349
Monge, María Del Pilar; Magnoli, Alejandra Paola; Bergesio, Maria Virginia; Tancredi, Nestor; Magnoli, Carina E; Chiacchiera, Stella Maris
2016-06-01
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins that often co-occur in feedstuffs. The ingestion of AFB1 causes aflatoxicosis in humans and animals. Sodium bentonite (NaB), a cheap non-nutritive unselective sequestering agent incorporated in animal diets, can effectively prevent aflatoxicosis. Fumonisins are responsible for equine leukoencephalomalacia and porcine pulmonary oedema, and often have subclinical toxic effects in poultries. Fumonisin B1 and aflatoxin B1 are both strongly adsorbed in vitro on sodium bentonite. Co-adsorption studies, carried out with a weight ratio of FB1 to AFB1 that mimics the natural occurrence (200:1), showed that FB1 greatly decreases the in vitro ability of NaB to adsorb AFB1. The ability of two activated carbons to adsorb FB1 was also investigated. Both carbons showed high affinity for FB1. A complex behaviour of the FB1 adsorption isotherms with pH was observed. In vitro results suggest that under natural contamination levels of AFB1 and FB1, a mixture of activated carbon and sodium bentonite might be potentially useful for prevention of sub-acute aflatoxicosis.
Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan
2015-08-01
Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fu, Ting-ting; Wu, Jian-yuan; Wang, Li; Ma, Yao; Wang, Ying; Liu, Ying; Ding, Hong
2006-09-01
To study on the various proportions of Radix Sophorae Flavescentis, Cortex Phellodendri, Fructus Cnidii and pericarp of Zanthoxylum bungeanum Maxim in the formulas, whose antimicrobial effects on E. coli, S. aureus, P. aeruginosa and C. albicans under different pH values were compared in vitro. According to Chinese ancient proved recipe, the K-B method and plate diluting method were adopted to measure antimicrobial activity, and orthogonal design to ascertain the herbal formula in vitro. Finally, murine models were established to test the antimicrobial activity in vivo through vaginal membrane irritancy experiment, negative rate of pathogeny and pathological grade of vaginal membrane. The results suggested that formulas with different proportions of the herbs had diverse antimicrobial activities, and the effect was shown to be most obvious when one milliliter drug contains 100 microl Fructus Cnidii-pericarp of Zanthoxylum bungeanum (2:1) co-extracted volatile oil and 50 microl Radix Sophorae Flavescentis and Cortex Phenodendri ethanol extraction respectively under pH6. The antimicrobial effect of the formula, which hardly had any membrane irritancy, was better than Jie Eryin in vitro and vivo. The fromula has few components and better effect, and adaptation to the pH value of vaginitis. It is a promising alternative for gynecological diseases.
Lehrke, Michael; Kahles, Florian; Makowska, Anna; Tilstam, Pathricia V; Diebold, Sebastian; Marx, Judith; Stöhr, Robert; Hess, Katharina; Endorf, Elizabeth B; Bruemmer, Dennis; Marx, Nikolaus; Findeisen, Hannes M
2015-04-01
Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cai, De; Qiu, Zhiqing; Yao, Weimin; Liu, Yuyu; Huang, Haixiang; Liao, Sihai; Luo, Qun; Xie, Liming; Lin, Zhixiu
2016-06-01
Microtubules play a central role in various fundamental cell functions and thus become an attractive target for cancer therapy. A novel compound YSL-12 is a combretastatin A-4 (CA-4) analogue with more stability. We investigated its anti-tumor activity and mechanisms in vitro and in vivo for the first time. Cytotoxicity was evaluated by MTT method. In vitro microtubule polymerization assay was performed using a fluorescence-based method by multifunction fluorescence microplate reader. Intracellular microtubule network was detected by immunofluorescence method. Cell cycle analysis and apoptosis were measured by flow cytometry. Metabolic stability was recorded by liquid chromatography-ultraviolet detection and liquid chromatography-mass spectrometry. In vivo anti-tumor activity was assessed using HT-29 colon carcinoma xenografts established in BALB/c nude mice. YSL-12 displayed nanomolar-level cytotoxicity against various human cancer cell lines. A high selectivity toward normal cells and potent activity toward drug-resistant cells were also observed. YSL-12 was identified as tubulin polymerization inhibitor evidenced by effectively inhibits tubulin polymerization and heavily disrupted microtubule networks in living HT-29 cells. YSL-12 displayed potent disruption effect of pre-established tumor vasculature in vitro. In addition, YSL-12 treatment also caused cell cycle arrest in the G2/M phase and induced cell apoptosis in a dose-dependent manner. In vitro metabolic stability study revealed YSL-12 displayed considerable better stability than CA-4 in liver microsomes. In vivo, YSL-12 delayed tumor growth with 69.4 % growth inhibition. YSL-12 is a promising microtubule inhibitor that has great potential for the treatment of colon carcinoma in vitro and in vivo and worth being a candidate for further development of cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Li-Li; Wu, Xue-Feng; Liu, Hai-Liang
2013-03-01
In the present study, we aimed to investigate the immunosuppressive activity of vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, on T lymphocytes both in vitro and in vivo, and further explored its potential molecular mechanism. Resveratrol had a wide spectrum of healthy beneficial effects with multiple targets. Interestingly, its tetramer, vaticaffinol, exerted more intensive immunosuppressive activity than resveratrol. Vaticaffinol significantly inhibited T cells proliferation activated by concanavalin A (Con A) or anti-CD3 plus anti-CD28 in a dose- and time-dependent manner. It also induced Con A-activated T cells undergoing apoptosis through mitochondrial pathway. Moreover, this compound prevented cells from enteringmore » S phase and G2/M phase during T cells activation. In addition, vaticaffinol inhibited ERK and AKT signaling pathways in Con A-activated T cells. Furthermore, vaticaffinol significantly ameliorated ear swelling in a mouse model of picryl chloride-induced ear contact dermatitis in vivo. In most of the aforementioned experiments, however, resveratrol had only slight effects on the inhibition of T lymphocytes compared with vaticaffinol. Taken together, our findings suggest that vaticaffinol exerts more preferable immunosuppressive activity than its precursor resveratrol both in vitro and in vivo by affecting multiple targets against activated T cells. - Graphical abstract: Vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, exerts more intensive immunosuppressive activity than its precursor resveratrol does in vitro and in vivo. Its mechanism may involve multiple effects against activated T cells: regulation of signalings involved in cell proliferation, G0/G1 arrest of T cells, as well as an apoptosis induction in activated effector T cells. Highlights: ► Vaticaffinol, a resveratrol tetramer, exerts more potent activity than its precursor. ► It inhibited T cells proliferation and prevented them from entering cell cycles. ► It led to apoptosis of activated T cells through mitochondrial pathway. ► It down-regulated ERK and AKT signaling pathways in Con A-activated T cells. ► It significantly ameliorated picryl chloride-induced ear swelling.« less
Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase.
Masuda, Megumi; Murata, Kazuya; Fukuhama, Akiko; Naruto, Shunsuke; Fujita, Tadashi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki
2009-07-01
A 50% ethanolic extract (MCS-ext) from seeds of Morinda citrifolia ("noni" seeds) showed more potent in vitro inhibition of elastase and tyrosinase, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than extracts of M. citrifolia leaves or flesh. Activity-guided fractionation of MCS-ext using in vitro assays led to the isolation of ursolic acid as an active constituent of elastase inhibitory activity. 3,3'-Bisdemethylpinoresinol, americanin A, and quercetin were isolated as active constituents having both tyrosinase inhibitory and radical scavenging activities. Americanin A and quercetin also showed superoxide dismutase (SOD)-like activity. These active compounds were isolated from noni seeds for the first time.
Mechanisms implicated in the effects of boron on wound healing.
Nzietchueng, Rosine Mayap; Dousset, Brigitte; Franck, Patricia; Benderdour, Mohamed; Nabet, Pierre; Hess, Ketsia
2002-01-01
Recently, we demonstrated that boron modulates the turnover of the extracellular matrix and increases TNFalpha release. In the present study, we used an in vitro test to investigate the direct effect of boron on specific enzymes (elastase, trypsin-like enzymes, collagenase and alkaline phosphatase) implicated in extracellular matrix turnover. Boron decreased the elastase and alkaline phosphatase activity, but had no effect on trypsin and collagenase activities. The effect of boron on the enzyme activities was also tested in fibroblasts considered as an in vivo test. In contrast to the results obtained in vitro, boron enhanced the trypsin-like, collagenase, and cathepsin D activities in fibroblasts. Boron did not modify the generation of free radicals compared to the control and did not seem to act on the intracellular alkaline phosphatase activity, However, as it did enhance phosphorylation, it can be hypothesized that boron may affect living cells via a mediator, which could be TNFalpha whose transduction signal involves a cascade of phosphorylations.
Brugnari, Tatiane; da Silva, Pedro Henrique Alves; Contato, Alex Graça; Inácio, Fabíola Dorneles; Nolli, Mariene Marques; Kato, Camila Gabriel; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques
2018-01-01
In this study we evaluated the antioxidant capacity, antimicrobial activity, and cytotoxicity of an aqueous extract of the Pleurotus ostreatoroseus mushroom, which was cooked. Fresh basidiocarps were heated and steamed at 100°C and the resulting aqueous extract was assessed before and after in vitro digestion. Cooking reduced the amounts of phenolic compounds in the extract. The antioxidant activity of the extract was evaluated through the use of 4 methods. The lowest half-maximal effective concentration (EC50) against ABTS radicals was 0.057 ± 0.002 mg/mL for the uncooked basidiocarp extract. Cooking and the digestive process led to decreased activity (P > 0.05) against ABTS and DPPH radicals. A significant increase in chelating activity (P > 0.05) occurred after the basidiocarps were cooked (EC50 = 0.279 ± 0.007 mg/mL). The reducing power did not significantly change among the different extracts. The uncooked basidiocarp extract was cytotoxic to Vero cells. After cooking and subsequent in vitro digestion, the cytotoxicity of the extracts decreased (P < 0.05). Bacillus subtilis, Staphylococcus aureus, and Candida albicans were sensitive to the fresh mushroom extract. The data showed that after being cooked and digested, the P. ostreatoroseus mushroom maintains antioxidant activity and has a low cytotoxic effect.
Sikora, Joanna; Broncel, Marlena; Mikiciuk-Olasik, Elżbieta
2014-01-01
The aim of the study was to analyze the effects of two-month supplementation with chokeberry preparation on the activity of angiotensin I-converting enzyme (ACE) in patients with metabolic syndrome (MS). During the in vitro stage of the study, we determined the concentration of chokeberry extract, which inhibited the activity of ACE by 50% (IC50). The participants (n = 70) were divided into three groups: I-patients with MS who received chokeberry extract supplements, II-healthy controls, and III-patients with MS treated with ACE inhibitors. After one and two months of the experiment, a decrease in ACE activity corresponded to 25% and 30%, respectively. We documented significant positive correlations between the ACE activity and the systolic (r = 0.459, P = 0.048) and diastolic blood pressure, (r = 0.603, P = 0.005) and CRP. The IC50 of chokeberry extract and captopril amounted to 155.4 ± 12.1 μg/mL and 0.52 ± 0.18 μg/mL, respectively. Our in vitro study revealed that chokeberry extract is a relatively weak ACE inhibitor. However, the results of clinical observations suggest that the favorable hypotensive action of chokeberry polyphenols may be an outcome of both ACE inhibition and other pleotropic effects, for example, antioxidative effect.
Badary, Dalia M.; Sayed, Hesham M. B.; Bayoumi, Soad A. H.; Khalifa, Azza A.; El-Moghazy, Ahmed M.
2016-01-01
Due to the development of praziquantel (PZQ) schistosomes resistant strains, the discovery of new antischistosomal agents is of high priority in research. This work reported the in vitro and in vivo effects of the edible and ornamental pomegranate extracts against Schistosoma mansoni. Leaves and stem bark ethanolic extracts of both dried pomegranates were prepared at 100, 300, and 500 μg/mL for in vitro and 600 and 800 mg/kg for in vivo. Adult worms Schistosoma mansoni in RPMI-1640 medium for in vitro and S. mansoni infected mice for in vivo tests were obtained from Theodor Bilharz Research Institute, Cairo, Egypt. In vitro activity was manifested by significant coupled worms separation, reduction of motor activity, lethality, and ultrastructural tegumental alterations in adult worms. In vivo activity was manifested revealed by significant reduction of hepatic granulomas number and diameter, decreased number of bilharzial eggs in liver tissues, lowered liver inflammatory infiltration, decreased hepatic fibrosis, and inducible nitric oxide synthase (iNOS) expression. Ethanolic stem bark extract of edible pomegranate exhibited highest antischistosomal activities both in vitro and in vivo. Therefore, pomegranate showed a good potential to be used as a promising new candidate for the development of new schistosomicidal agents. PMID:27990425
Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme
2010-01-01
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300
Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.
Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma
2006-07-26
A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.
Alvarez, Celeste; Andes, David R.; Kang, Jeong Yeon; Krug, Carmen; Kwon, Glen S.
2017-01-01
Purpose Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination’s activity against Candida albicans. Methods We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 hours. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. Results The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. Conclusions Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy. PMID:28205003
Alvarez, Celeste; Andes, David R; Kang, Jeong Yeon; Krug, Carmen; Kwon, Glen S
2017-05-01
Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination's activity against Candida albicans. We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 h. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy.
Simonetti, Amalia; Gambacorta, Emilio; Perna, Annamaria
2016-12-01
The aim of this study was to evaluate and compare antioxidative and antihypertensive activities of Longissimus dorsi muscle from Suino Nero Lucano (SNL) and a modern crossbred (CG) pigs, before and after cooking and in vitro gastrointestinal digestion. Pig meat showed antioxidative and antihypertensive activities, heat treatment decreased the thiols content but at the same time increased angiotensin I-converting enzyme (ACE) inhibitory activity, and in vitro gastrointestinal digestion enhanced the biological activity of meat. Autochthonous SNL meat showed a higher nutraceutical quality compared to CG meat, highlighting a greater potential beneficial physiological effect on human health. The results of this study indicate that the pig meat, in particular autochthonous pig meat, may be considered a functional food since it is a good source of antioxidative and antihypertensive peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bogarín, G; Romero, M; Rojas, G; Lutsch, C; Casadamont, M; Lang, J; Otero, R; Gutiérrez, J M
1999-03-01
A monospecific Bothrops lanceolatus antivenom, currently used in Martinique, was tested for its efficacy in the neutralization of several toxic and enzymatic activities of the venoms of B. lanceolatus, B. atrox and B. asper. When tested by the i.p. route in mice, B. lanceolatus venom had an LD50 of 12.8 microg/g. In addition, it induced local tissue damage (hemorrhage, edema and myotoxicity) and showed indirect hemolytic activity, but was devoid of coagulant effect on human plasma in vitro and of defibrinating activity in mice. Antivenom was fully effective in the neutralization of lethal, hemorrhagic, edema-forming, myotoxic and indirect hemolytic effects of B. lanceolatus venom in assays involving preincubation of venom and antivenom. When tested against the venoms of B. asper and B. atrox, the antivenom completely neutralized the lethal, hemorrhagic, myotoxic and indirect hemolytic effects, and was partially effective in neutralizing edema-forming activity. In contrast, the antivenom was ineffective in the neutralization of in vitro coagulant and in vivo defibrinating effects induced by these two venoms.
In vitro immunomodulatory effects of cuphiin D1 on human mononuclear cells.
Wang, Ching-Chiung; Chen, Lih-Geeng; Yang, Ling-Ling
2002-01-01
Cuphiin D1 (CD1), a macrocyclic hydrolyzable tannin isolated from Cuphea hyssopifolia, has been shown to exert antitumor activity both in vitro and in vivo. Moreover, the antitumor effects of CD1 are not only related to its cytotoxicity to carcinoma cell lines, but also depend on host-mediated mechanisms. In the present study, CD1 was investigated for its effects on the proliferation and cytokine secretion of human peripheral blood mononuclear cells (PBMCs). At concentrations of from 6.25 to 50 micrograms/ml, it enhanced the 3H-thymidine incorporation of concanavalin A (Con A)-stimulated PBMCs in a dose-dependent manner. Excretion of IL-1 beta, IL-2 and TNF-alpha by CD1-stimulated PBMCs was markedly increased in a dose-dependent manner. The results show that CD1 could stimulate PBMCs release of IL-1 beta, IL-2 and TNF-alpha and then activate T cells. Therefore, CD1-activated T cells via IL-1 beta in vitro might account for the host-mediated CD1 mechanism of action.
Effects of BCG infection on the susceptibility of mouse macrophages to endotoxin.
Peavy, D L; Baughn, R E; Musher, D M; Musher, D M
1979-01-01
Mice infected intravenously with Mycobacterium bovis (BCG) are 100 to 1,000 times more sensitive to the lethal effects of bacterial lipopolysaccharides (LPS). Since BCG infection results in macrophage activation and LPS may cause pathophysiological effects through interaction with this cell type, it was of interest to determine whether macrophages from BCG-infected animals were more susceptible to the toxic effects of LPS in vitro. When LPS-susceptible, C57BL/6 mice were infected with BCG, a significant reduction in the 50% lethal dose of LPS was first observed after 7 days and persisted for several weeks. Macrophages from these animals had greatly increased susceptibility to LPS in vitro, which correlated with the development of acquired cellular resistance as determined by their ability to inhibit the growth of Listeria monocytogenes. In contrast, BCG infection of C3H/HeJ mice, a strain resistant to LPS, did not alter the 50% lethal dose of LPS for these animals or increase the sensitivity of their peritoneal macrophages to LPS in vitro. These results indicate that susceptibility of BCG-infected mice to the lethal effects of LPS parallels the susceptibility of their macrophages in vitro; release of vasoactive substances from LPS-susceptible activated macrophages in vivo may be, in part, responsible for lethality. PMID:378847
In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taxvig, Camilla, E-mail: camta@food.dtu.dk; Hadrup, Niels; Boberg, Julie
Two pesticide mixtures were investigated for potential endocrine activity. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin, and Mix 5 included malathion and terbuthylazine in addition to the three pesticides in Mix 3. All five single pesticides and the two mixtures were investigated for their ability to affect steroidogenesis in vitro in H295R cells. The pesticides alone and both mixtures affected steroidogenesis with both mixtures causing increase in progesterone and decrease in testosterone. For Mix 5 an increase in estradiol was seen as well, indicating increased aromatase activity. The two mixtures were also investigated in pregnant rats dosed from gestationalmore » day 7 to 21, followed by examination of dams and fetuses. Decreased estradiol and reduced placental testosterone were seen in dams exposed to Mix 5. Also a significant increase in aromatase mRNA-levels in female adrenal glands was found for Mix5. However, either of the two mixtures showed any effects on fetal hormone levels in plasma or testis, or on anogenital distance. Overall, potential aromatase induction was found for Mix 5 both in vitro and in vivo, but not for Mix 3, an effect likely owed to terbuthylazine in Mix 5. However, the hormonal responses in vitro were only partly reflected in vivo, probably due to some toxicokinetic issues, as the pesticide levels in the amniotic fluid also were found to be negatively affected by the number of compounds present in the mixtures. Nonetheless, the H295R assay gives hints on conceivable interference with steroidogenesis, thus generating hypotheses on in vivo effects. - Highlights: • The study examines the endocrine disrupting potential of mixtures of pesticides. • All single pesticides and both mixtures affected steroidogenesis in vitro. • Potential aromatase induction was found for Mix 5 both in vitro and in vivo. • The hormonal responses in vitro were only partly reflected in vivo.« less
Barani, K; Manipal, Sunayana; Prabu, D; Ahmed, Adil; Adusumilli, Preethi; Jeevika, C
2014-01-01
The aim of this study was to investigate the anti-fungal activity of Morinda citrifolia fruit extract on Candida albicans. Juice extract from M. citrifolia fruit was lyophilized and used in anti-fungal testing. Anti-fungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations. The inhibitory effect of M. citrifolia extract on C. albicans was determined by agar culture and applied broth dilution test. M. citrifolia extract at 1000 μg/ml concentration effectively inhibited the growth of C. albicans (16.6 ± 0.3) compared with the positive control - amphotericin B (20.6 ± 0.6). It was found to be a dose-dependent reaction. M. citrifolia fruit extract had an anti-fungal effect on C. albicans and the inhibitory effect varied with concentration.
Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie
2015-12-05
Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis. Although widely applied in clinical care, the mechanism through which TA exerts this effect remains unknown. In this animal study, we investigated the in vivo effects of TA injections on macrophage activation, osteophyte development and joint degeneration. Furthermore, in vitro macrophage differentiation experiments were conducted to further explain working mechanisms of TA effects found in vivo. Osteoarthritis was induced in rat knees using papain injections and a running protocol. Untreated and TA-treated animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes. Synovial macrophage activation was measured in vivo using folate receptor β (FRβ)-targeted single-photon emission computed tomography/computed tomography. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology. To further explain the outcomes of our in vivo study, TA on macrophages was also studied in vitro. These cultured macrophages were either M1- or M2-activated, and they were analyzed using fluorescence-activated cell sorting for CD163 and FRβ expression as well as for messenger RNA (mRNA) expression of interleukin (IL)-10. Our in vivo study showed that intra-articular injections with TA strongly enhanced FRβ(+) macrophage activation. Despite stimulated macrophage activation, osteophyte formation was fully prevented. There was no beneficial effect of TA against cartilage degradation or subchondral bone sclerosis. In vitro macrophage cultures showed that TA strongly induced monocyte differentiation towards CD163(+) and FRβ(+) macrophages. Furthermore, TA-stimulated M2 macrophages showed enhanced IL-10 expression at the mRNA level. TA injections potently induce a CD163(+)- and FRβ(+)-activated macrophage with anti-inflammatory characteristics such as reduced IL-10 production in vitro and lack of osteophytosis in vivo.
Medicinal Plants from Mexico, Central America, and the Caribbean Used as Immunostimulants
Juárez-Vázquez, María del Carmen; Campos-Xolalpa, Nimsi
2016-01-01
A literature review was undertaken by analyzing distinguished books, undergraduate and postgraduate theses, and peer-reviewed scientific articles and by consulting worldwide accepted scientific databases, such as SCOPUS, Web of Science, SCIELO, Medline, and Google Scholar. Medicinal plants used as immunostimulants were classified into two categories: (1) plants with pharmacological studies and (2) plants without pharmacological research. Medicinal plants with pharmacological studies of their immunostimulatory properties were subclassified into four groups as follows: (a) plant extracts evaluated for in vitro effects, (b) plant extracts with documented in vivo effects, (c) active compounds tested on in vitro studies, and (d) active compounds assayed in animal models. Pharmacological studies have been conducted on 29 of the plants, including extracts and compounds, whereas 75 plants lack pharmacological studies regarding their immunostimulatory activity. Medicinal plants were experimentally studied in vitro (19 plants) and in vivo (8 plants). A total of 12 compounds isolated from medicinal plants used as immunostimulants have been tested using in vitro (11 compounds) and in vivo (2 compounds) assays. This review clearly indicates the need to perform scientific studies with medicinal flora from Mexico, Central America, and the Caribbean, to obtain new immunostimulatory agents. PMID:27042188
Medicinal Plants from Mexico, Central America, and the Caribbean Used as Immunostimulants.
Alonso-Castro, Angel Josabad; Juárez-Vázquez, María Del Carmen; Campos-Xolalpa, Nimsi
2016-01-01
A literature review was undertaken by analyzing distinguished books, undergraduate and postgraduate theses, and peer-reviewed scientific articles and by consulting worldwide accepted scientific databases, such as SCOPUS, Web of Science, SCIELO, Medline, and Google Scholar. Medicinal plants used as immunostimulants were classified into two categories: (1) plants with pharmacological studies and (2) plants without pharmacological research. Medicinal plants with pharmacological studies of their immunostimulatory properties were subclassified into four groups as follows: (a) plant extracts evaluated for in vitro effects, (b) plant extracts with documented in vivo effects, (c) active compounds tested on in vitro studies, and (d) active compounds assayed in animal models. Pharmacological studies have been conducted on 29 of the plants, including extracts and compounds, whereas 75 plants lack pharmacological studies regarding their immunostimulatory activity. Medicinal plants were experimentally studied in vitro (19 plants) and in vivo (8 plants). A total of 12 compounds isolated from medicinal plants used as immunostimulants have been tested using in vitro (11 compounds) and in vivo (2 compounds) assays. This review clearly indicates the need to perform scientific studies with medicinal flora from Mexico, Central America, and the Caribbean, to obtain new immunostimulatory agents.
Kuang, Huijuan; Yang, Lin; Shah, Nagendra P; Aguilar, Zoraida P; Wang, Lijun; Xu, Hengyi; Wei, Hua
2016-04-01
In this study, we investigated the antibacterial activity of ZnO nanoparticles (NPs) and Lactobacillus-fermentation liquor (LFL) against two pathogenic bacteria in vitro and in vivo. Bactericidal tests were performed on solid agar plates and quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE) techniques were used to examine the antibacterial activity of the mixture of ZnO NPs and LFL in vivo. The results showed that the mixture exhibited higher antibacterial activity against Salmonella typhimurium in vitro in comparison with ZnO NPs alone. The results showed that ZnO NPs and LFL significantly enhanced microbial diversity in mouse intestine which suggested a synergistic antibacterial activity against the tested pathogenic bacteria that could be used for the control of the spread and persistence of bacterial infections.
Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N.; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.
2008-01-01
Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor–responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). Results Some carbanilide compounds, including TCC (1–10 μM), enhanced estradiol (E2)-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1–10 μM) significantly enhanced the binding of [3H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca2+] in primary skeletal myotubes, but carbanilides had no effect. Conclusions Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca2+ mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS. PMID:18795164
Geng, Jinhai; Liu, Gangjun; Chen, Zhongping
2013-01-01
Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d1/e) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening. PMID:23392340
Xu, Xiangqun; Geng, Jinhai; Liu, Gangjun; Chen, Zhongping
2013-08-01
Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.
Pacheco, Natália Ramos; Pinto, Nícolas de Castro Campos; Mendes, Renata de Freitas; da Costa, Juliana de Carvalho; Aragão, Danielle Maria de Oliveira; Castañon, Maria Christina Marques Nogueira
2014-01-01
Cecropia pachystachya is a species traditionally used in Brazil to treat inflammation. This work aims to evaluate the topical anti-inflammatory and antioxidant activities of the methanolic extract of C. pachystachya (CPM) and to perform its chemical fingerprint by HPLC-DAD. The topical anti-inflammatory activity was evaluated using the mouse models of acute ear inflammation induced by croton oil, arachidonic acid, capsaicin, EPP, phenol, and chronic inflammation induced by multiple application of croton oil. The in vitro antioxidant effect of CPM was investigated using DPPH, reducing power, β-carotene bleaching, and TBARS assays. HPLC analysis was performed to quantify the antioxidant phenolics orientin, isoorientin, and chlorogenic acid previously identified in CPM. CPM exhibited significant anti-inflammatory effect in the acute models, in some cases comparable to the reference drugs. Histopathological analysis showed a moderate chronic skin anti-inflammatory effect with decrease in vasodilation, edema, cell infiltration, and epidermal hyperproliferation. It also showed strong in vitro antioxidant activity. The contents of orientin, isoorientin, and chlorogenic acid were 66.5 ± 1.8, 118.8 ± 0.7, and 5.4 ± 0.2 µg/mg extract, respectively. The topical anti-inflammatory activity of CPM could be based on its antioxidant properties, although other effects are probably involved, including COX inhibition and other mechanisms. PMID:24877079
Cui, Fangqiang; Zhao, Wenjing; Zou, Dawei; Wu, Xiaoming; Tian, Nianxiu; Wang, Xiaolei; Liu, Jing; Tong, Yu
2016-01-01
Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3. PMID:27672400
Liu, Zhibin; Wang, Wei; Huang, Guangwei; Zhang, Wen
2016-01-01
Abstract BACKGROUND Almonds contain considerable amounts of potential prebiotic components, and the roasting process may alter these components. The aim of this study was to compare the in vitro fermentation properties and in vivo prebiotic effect of raw and roasted almonds. RESULTS In vitro, predigested raw and roasted almonds promoted the growth of Lactobacillus acidophilus (La‐14) and Bifidobacterium breve (JCM 1192), and no significant differences were found between these two nuts. In a 4‐week animal trial, daily intake of raw or roasted almonds promoted the population of Bifidobacterium spp. and Lactobacillus spp. and inhibited the growth of Enterococcus spp. in faeces and caecal contains of rats. Compared with roasted almonds, raw almonds had a greater bifidobacteria promotion effect. Besides, significantly higher β‐galactosidase activity and lower β‐glucuronidase and azoreductase activities in faeces or caecal contents of rats were observed with raw almonds than with roasted almonds. While, in terms of metabolic effects, the ingestion of roasted almonds resulted in significantly greater intestinal lipase activities. CONCLUSION Both raw and roasted almonds exhibit potential prebiotic effects, including regulation of intestinal bacteria and improved metabolic activities. The roasting process may slightly reduce the prebiotic effects of almonds but significantly improve the metabolic effects.© 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26749248
Ha, Shin-Woo; Sikorski, James A; Weitzmann, M Neale; Beck, George R
2014-04-01
Silica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ∼ 50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method. Nineteen different cell lines representing all major organ types were used to investigate an in vitro lethal concentration (LC) and results revealed little toxicity in any cell type analyzed. To calculate an in vitro therapeutic index we quantified the effective concentration at 50% response (EC50) for nanoparticle-stimulated mineral deposition activity using primary bone marrow stromal cells (BMSCs). The EC50 for BMSCs was not substantially altered by surface or magnetic core. The calculated Inhibitory concentration 50% (IC50) for pre-osteoclasts was similar to the osteoblastic cells. These results demonstrate the pharmacological potential of certain silica-based nanomaterial formulations for use in treating bone diseases based on a favorable in vitro therapeutic index. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ozer, H; Cowens, J W; Colvin, M; Nussbaum-Blumenson, A; Sheedy, D
1982-01-01
The alkylating agent cyclophosphamide may suppress or enhance immune responses in vivo but is inactive in vitro unless metabolized by microsomal enzyme activation. 4-hydroperoxycyclophosphamide (4-HC) is a synthetic compound that is spontaneously converted in aqueous solution to the active metabolites. In this report, we examined the in vitro sensitivity of functional human T cell subsets to 4-HC in a polyclonal B cell differentiation assay and in the generation of mitogen-induced suppressor cells for effector B cell function. Con A-induced T suppression of B cell differentiation is completely abrogated by a 1-h pretreatment of T cells at very low concentrations of between 10(-2) and 20 nmol/ml, whereas inducer T cell function is sensitive only to concentrations in greater than 40 nmol/ml. The effects of 4-HC on suppressor T cells appear to occur at concentrations that do not result in DNA cross-linking or decreased blastogenesis. Con A-induced T suppressors are generated from within the OKT4+, OKT8- subset and are sensitive to low-dose 4-HC only before activation, whereas differentiated suppressor cells are resistant to concentrations in greater than 80 nmol/ml. Low-dose 4-HC pretreatment of the B cell population results in abrogation of immunoglobulin secretion when treated B cells are cocultured with unfractionated T cells, however, this effect is completely reversible if pretreated B cells are cocultured with T cells devoid of suppressor activity. These results demonstrate that human presuppressor cells for B-effector function differentiate in response to Con A from the OKT4+, OKT8- subset and are exquisitely sensitive to low concentrations of CYP whereas mature suppressor and inducer functions are resistant to all but very high concentrations in vitro. The differential sensitivity of functional T and B cell subsets to 4-HC in vitro can be a very useful probe in dissecting immunoregulatory interactions with man.
Li, Miaomiao; Hu, Shuang; Chen, Xuan; Wang, Runqin; Bai, Xiaohong
2018-02-05
Hollow fiber cell fishing (HFCF) based on hepatoma HepG-2 cells, human renal tubular ACHN cells or human cervical carcinoma HeLa cells, coupled with high-performance liquid chromatography (HPLC), was developed and employed to research the major active components in Zi-Cao-Cheng-Qi decoction both in vitro and in vivo. The research showed that the active components, such as hesperidin, magnolol, honokiol, shikonin, emodin and β,β'-dimethylacrylshikonin were screened out by HFCF based on the cancer cells in vitro, furthermore they can be absorbed into blood and reach in the target organ, and some of the active components can be fished by the cells and maintain effective concentrations. Before application of HFCF with HPLC, cell growth state, cell survival rate, positive effect on screening results binding between active centers on the fiber and target components, repeatability of retention times and relative peak areas of the target analytes were analysed and investigated. In short, HFCF with HPLC is a simple, inexpensive, effective, and reliable method that can be used in researching active components from traditional Chinese medicine (TCM) and its formula both in vitro and in vivo, elucidating preliminarily the TCM characteristics of multiple components and multiple targets, laying a foundation for expounding the antitumor efficacy material basis in TCM. Copyright © 2017 Elsevier B.V. All rights reserved.
Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation
NASA Astrophysics Data System (ADS)
Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.
2003-09-01
The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.
In vitro anti-influenza viral activities of constituents from Caesalpinia sappan.
Liu, Ai-Lin; Shu, Shi-Hui; Qin, Hai-Lin; Lee, Simon Ming Yuen; Wang, Yi-Tao; Du, Guan-Hua
2009-03-01
Six constituents with neuraminidase (NA) inhibitory activity, namely brazilein, brazilin, protosappanin A, 3-deoxysappanchalcone, sappanchalcone and rhamnetin, were isolated from the hearthwood of Caesalpinia sappan (Leguminosae). Their in vitro anti-influenza virus activities were evaluated with the cytopathic effect (CPE) reduction method. The results showed that 3-deoxysappanchalcone and sappanchalcone exhibited the highest activity against influenza virus (H3N2) with IC50 values of 1.06 and 2.06 microg/mL, respectively, in comparison to the positive control oseltamivir acid and ribavirin with IC50 values of 0.065 and 9.17 microg/mL, respectively.
Krey, Anke; Kwan, Michael; Chan, Hing Man
2014-11-01
Mercury (Hg) has been detected in polar bear brain tissue, but its biological effects are not well known. Relationships between Hg concentrations and neurochemical enzyme activities and receptor binding were assessed in the cerebellum, frontal lobes, and occipital lobes of 24 polar bears collected from Nunavik (Northern Quebec), Canada. The concentration-response relationship was further studied with in vitro experiments using pooled brain homogenate of 12 randomly chosen bears. In environmentally exposed brain samples, there was no correlative relationship between Hg concentration and cholinesterase (ChE) activity or muscarinic acetylcholine receptor (mAChR) binding in any of the 3 brain regions. Monoamine oxidase (MAO) activity in the occipital lobe showed a negative correlative relationship with total Hg concentration. In vitro experiments, however, demonstrated that Hg (mercuric chloride and methylmercury chloride) can inhibit ChE and MAO activities and muscarinic mAChR binding. These results show that Hg can alter neurobiochemical parameters but the current environmental Hg exposure level does have an effect on the neurochemistry of polar bears from northern Canada. © 2014 SETAC.
Machala, M; Kubínová, R; Horavová, P; Suchý, V
2001-03-01
A series of homoisoflavonoids and chalcones, isolated from the endemic tropical plant Dracaena cinnabari Balf. (Agavaceae), were tested for their potential to inhibit cytochrome P4501A (CYP1A) enzymes and Fe-enhanced in vitro peroxidation of microsomal lipids in C57B1/6 mouse liver. The effects of the polyphenolic compounds were compared with those of prototypal flavonoid modulators of CYP1A and the well-known antioxidant, butylated hydroxytoluene. 2-Hydroxychalcone and partly 4,6-dihydroxychalcone were found to be strong inhibitors of CYP1A-dependent 7-ethoxyresorufin O-deethylase (EROD) activity in vitro comparable to the effects of quercetin and chrysin. The first screening of flavonoids and chalcones of Dracaena cinnabari for antioxidant activity was done in an in vitro microsomal peroxidation assay. While chalcones were shown to be poor antioxidants, 7,8-methylenedioxy-3(4-hydroxybenzyl) chromane, as one of the tested homoisoflavonoids, exhibited a strong antioxidant activity comparable to that of the strongest flavonol antioxidant, quercetin. Copyright 2001 John Wiley & Sons, Ltd.
In Vitro and In Vivo Short-Term Pulmonary Toxicity of Differently Sized Colloidal Amorphous SiO2
Wiemann, Martin; Sauer, Ursula G.; Vennemann, Antje; Bäcker, Sandra; Keller, Johannes-Georg; Ma-Hock, Lan; Wohlleben, Wendel; Landsiedel, Robert
2018-01-01
In vitro prediction of inflammatory lung effects of well-dispersed nanomaterials is challenging. Here, the in vitro effects of four colloidal amorphous SiO2 nanomaterials that differed only by their primary particle size (9, 15, 30, and 55 nm) were analyzed using the rat NR8383 alveolar macrophage (AM) assay. Data were compared to effects of single doses of 15 nm and 55 nm SiO2 intratracheally instilled in rat lungs. In vitro, all four elicited the release of concentration-dependent lactate dehydrogenase, β-glucuronidase, and tumor necrosis factor alpha, and the two smaller materials also released H2O2. All effects were size-dependent. Since the colloidal SiO2 remained well-dispersed in serum-free in vitro conditions, effective particle concentrations reaching the cells were estimated using different models. Evaluating the effective concentration–based in vitro effects using the Decision-making framework for the grouping and testing of nanomaterials, all four nanomaterials were assigned as “active.” This assignment and the size dependency of effects were consistent with the outcomes of intratracheal instillation studies and available short-term rat inhalation data for 15 nm SiO2. The study confirms the applicability of the NR8383 AM assay to assessing colloidal SiO2 but underlines the need to estimate and consider the effective concentration of such well-dispersed test materials. PMID:29534009
Hirunpanich, Vilasinee; Utaipat, Anocha; Morales, Noppawan Phumala; Bunyapraphatsara, Nuntavan; Sato, Hitoshi; Herunsalee, Angkana; Suthisisang, Chuthamanee
2005-03-01
The present study quantitatively investigated the antioxidant effects of the aqueous extracts from dried calyx of Hibiscus sabdariffa LINN. (roselle) in vitro using rat low-density lipoprotein (LDL). Formations of the conjugated dienes and thiobarbituric acid reactive substances (TBARs) were monitored as markers of the early and later stages of the oxidation of LDL, respectively. Thus, we demonstrated that the dried calyx extracts of roselle exhibits strong antioxidant activity in Cu(2+)-mediated oxidation of LDL (p<0.05) in vitro. The inhibitory effect of the extracts on LDL oxidation was dose-dependent at concentrations ranging from 0.1 to 5 mg/ml. Moreover, 5 mg/ml of roselle inhibited TBARs-formation with greater potency than 100 microM of vitamin E. In conclusion, this study provides a quantitative insight into the potent antioxidant effect of roselle in vitro.
Gonzalez-Reyes, Luis E; Ladas, Thomas P; Chiang, Chia-Chu; Durand, Dominique M
2013-12-01
Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in the peripheral and central nervous systems. The membrane surface expression of TRPV1 is known to occur in neuronal cell bodies and sensory neuron axons. TRPV1 receptors are also expressed in the hippocampus, the main epileptogenic region in the brain. Although, previous studies implicate TRPV1 channels in the generation of epilepsy, suppression of ongoing seizures by TRPV1 antagonists has not yet been attempted. Here, we evaluate the role of TRPV1 channels in the modulation of epileptiform activity as well as the anti-convulsant properties of capsazepine (CZP), an established TRPV1 competitive antagonist, using in vitro and in vivo models. To this end, we used 4-aminopyridine (4-AP) to trigger seizure-like activity. We found that CZP suppressed 4-AP induced epileptiform activity in vitro (10-100μM) and in vivo (50mg/kg s.c.). In contrast, capsaicin enhanced 4-AP induced epileptiform activity in vitro (1-100μM) and triggered bursting activity in vivo (100μM dialysis perfusion), which was abolished by the TRPV1 antagonist CZP. To further investigate the mechanisms of TRPV1 modulation, we studied the effect of capsaicin and CZP on evoked potentials. Capsaicin (1-100μM) and CZP (10-100μM) increased and decreased, respectively, the amplitude of extracellular field evoked potentials in a concentration-dependent manner. Additional in vitro studies showed that the effect of the TRPV1 blocker on evoked potentials was similar whether the response was orthodromic or antidromic, suggesting that the effect involves interference with membrane depolarization on cell bodies and axons. The fact that CZP could act directly on axons was confirmed by decreased amplitude of the compound action potential and by an increased delay of both the antidromic potentials and the axonal response. Histological studies using transgenic mice also show that, in addition to the known neural expression, TRPV1 channels are widely expressed in alvear oligodendrocytes in the hippocampus. Taken together, these results indicate that activation of TRPV1 channels leads to enhanced excitability, while their inhibition can effectively suppress ongoing electrographic seizures. These results support a role for TRPV1 channels in the suppression of convulsive activity, indicating that antagonism of TRPV1 channels particularly in axons may possibly be a novel target for effective acute suppression of seizures. © 2013.
Cosmeceutical Effects of Galactomannan Fraction from Arenga pinnata Fruits In vitro
Yanti; Madriena; Ali, Soegianto
2017-01-01
Background: Cosmeceuticals refer to natural cosmetics with medical-like benefits due to their bioactive contents. Sugar palm fruit (Arenga pinnata) extract has been claimed for its anti-aging effect in vitro. However, its active compounds for cosmeceuticals is still unclear. Objective: This study was aimed to extract galactomannan from A. pinnata fruits and test its efficacy for tyrosinase inhibition, antioxidant, and anti-photoaging activities in vitro. Materials and Methods: Galactomannan from A. pinnata fruits was extracted by freeze drying and identified for its chemical compounds by using pyrolysis gas chromatography-mass spectrometry (py-GC/MS). Galactomannan was tested for its tyrosinase inhibition in both cell-based (melanocytes) and enzymatic assays, antioxidant activity using ferrous ion chelating assay (FCA) assay, and anti-photoaging activity for inhibiting the gene expression of matrix metalloproteinase-1 (MMP-1) and MMP-13 in macrophages using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Results: Identification of galactomannan fraction from A. pinnata fruits by py-GC/MS mainly consisted of oxonium ion and glucosides. For cellular assay, galactomannan at 5 μg/mL inhibited >50% of tyrosinase activity in melanocytes induced by phorbol myristate acetate. At the enzymatic level, galactomannan at similar concentration showed less tyrosinase activity inhibition (~20%). FCA results showed that galactomannan at 10 μg/mL exerted >50% of antioxidant activity. The qRT-PCR data indicated that galactomannan at 5 μg/mL inhibited >50% of MMP-1 and MMP-13 gene expressions in ultraviolet B-treated macrophages. Conclusion: Galactomannan fraction from A. pinnata fruits has efficacy for enlightening effect, antioxidant, and anti-photoaging activity in the dose-independent pattern, indicating its cosmeceutical effects for skin healthcare. SUMMARY A. pinnata fruit containing galactomannan has cosmeceutical potentials through enlightening effect, antioxidant, and anti-photoaging activity in vitro.Galactomannan fraction has inhibitory effect on tyrosinase activity in both cellular melanocytes and enzymatic systems.Galactomannan fraction has strong protection against UVB-irradiation effect by inhibiting collagenase genes (MMP-1 and MMP-13) in macrophages. Abbreviations Used: Py-GC/MS: Pyrolysis-Gas Chromatography-Mass Spectrometry; FCA: Ferrous chelating activity; MMP: Matrix metalloproteinase; qRT-PCR: Quantitative Real-Time Polymerase Chain Reaction; PMA: Phorbol myristate acetate; UV: Ultraviolet; RPMI: Roswell Park Memorial Institute; DMEM: Dulbecco's modified eagle media; FBS: Fetal bovine serum; PBS: Phosphate buffered saline; MTT: 3-(4,5-diethylthiazol-2-yl)-2,5-dipheniltetrazolium bromide; L-DOPA: L-3,4-dihydroxyphenylalanine; EDTA: Ethylenediaminetetraacetic acid; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; DPPH: 1,1-diphenyl-2-picryl-hydrazyl; SPF: Sun protection factor PMID:28250652
Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.
Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik
2005-01-01
We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.
Kucherov, I I; Rytik, P G; Podol'skaya, I A; Mistryukova, L O; Korjev, M O
2009-01-01
In vitro screening of 307 drugs with various clinical indications (cardiotropic, neurotropic, antibacterial, etc.) has revealed 6 compounds which displayed remarkable antiretroviral activity. Three of these drugs had a tendency to have undesirable side effects and were thus excluded from further consideration. Remaining three, i.e., Xantinol Nicotinate, Tardiferon, and Trental may become valid candidates for inclusion into antiviral regimens such as HAART. In vitro tests have shown that xantinol and trental display synergistic effect with azidothymidine, inhibit the replication AZT-resistant strains of HIV, and have no competing undesirable activities. These compounds should be evaluated in safety studies to determine optimal doses for patients with HIV. If these studies confirm in vitro results these compounds may become valid candidates as safe and affordable means to be added into the arsenal of antiretroviral drugs.
Sleha, Radek; Mosio, Petra; Vydrzalova, Marketa; Jantovska, Alexandra; Bostikova, Vanda; Mazurova, Jaroslava
2014-06-01
The aim of this study was to evaluate the antimicrobial effects of five natural substances against 50 clinical isolates of Mycoplasma hominis. The in vitro activity of selected natural compounds, cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene, was investigated against 50 M. hominis isolates cultivated from cervical swabs by the broth dilution method. All showed valuable antimicrobial activity against the tested isolates. Oil from the bark of Cinnamomum zeylanicum (MBC90 = 500 µg/mL) however was found to be the most effective. Carvacrol (MBC90 = 600 µg/mL) and eugenol (MBC90 = 1000 µg/mL) also possessed strong antimycoplasmal activity. The results indicate that cinnamon bark oil, carvacrol and eugenol have strong antimycoplasmal activity and the potential for use as antimicrobial agents in the treatment of mycoplasmal infections.
Medicinal activities of the leaves of Musa sapientum var. sylvesteris in vitro
Sahaa, Repon Kumer; Acharyaa, Srijan; Shovon, Syed Sohidul Haque; Royb, Priyanka
2013-01-01
Objective This study is to investigate the medicinal value of methanolic extract of the leaves of Musa sapientum var. sylvesteris in Bangladesh. Methods Several biochemical assays, thin layer chormatogarphy and ultra-violet spectroscopy were used to detect the presence of various types of compounds in this extract. Antioxidant effects were measured by DPPH scavenging assay, total reducing assay and hydrogen peroxide scavenging assay. Receptor binding activities and hydrogen peroxide induced hemolysis assay were performed by hemagglutination assay and hemolysis assay using erythrocytes. Disk diffusion assay was performed to show the antibacterial effect of the extract. Results Methanolic extract of the leaves showed antioxidant and antibacterial activity in vitro. The extract showed hemaglutination inhibition activities and hydrogen peroxide induced hemolysis inhibition activity of human red blood cells. Conclusion Musa sapientum var. sylvesteris can be an useful medicinal plant. PMID:23730561
Tcholakian, Robert K.; Raad, Issam I.
2001-01-01
This study was performed to test the long-term antimicrobial efficacy of impregnated silicone catheters comprising an antimicrobial layer sandwiched between an external surface sheath and a luminal surface silicone sheath. The design of the catheter permits the introduction of various antimicrobials in addition to anticoagulants or antifibrins in the antimicrobial layer and allows their gradual release over a period of months after insertion. The in vitro data presented show that the catheter can provide antimicrobial activity for 90 days, after being replated for 15 7-day cycles of replating. When the catheters were immersed in human serum and incubated at 37°C, they demonstrated significant antimicrobial activity after more than 325 days of incubation. The significant long-term in vitro antimicrobial activity observed may imply effective in vivo activity for almost 1 year after insertion and could serve as a cost-effective alternative to surgically implantable silicone catheters. PMID:11408213
In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma
Masuelli, Laura; Benvenuto, Monica; Mattera, Rosanna; Di Stefano, Enrica; Zago, Erika; Taffera, Gloria; Tresoldi, Ilaria; Giganti, Maria Gabriella; Frajese, Giovanni Vanni; Berardi, Ginevra; Modesti, Andrea; Bei, Roberto
2017-01-01
Malignant mesothelioma (MM) is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API) is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse MM cells. We evaluated the in vivo anti-tumor activities of API in mice transplanted with MM #40a cells forming ascites. API inhibited in vitro MM cells survival, increased reactive oxygen species intracellular production and induced DNA damage. API activated apoptosis but not autophagy. API-induced apoptosis was sustained by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of both caspase 9 and caspase 8, cleavage of PARP-1, and increase of the percentage of cells in subG1 phase. API treatment affected the phosphorylation of ERK1/2, JNK and p38 MAPKs in a cell-type specific manner, inhibited AKT phosphorylation, decreased c-Jun expression and phosphorylation, and inhibited NF-κB nuclear translocation. Intraperitoneal administration of API increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of tumor growth. Our findings may have important implications for the design of MM treatment using API. PMID:28674496
Snydman, David R; Jacobus, Nilda V; McDermott, Laura A
2016-10-01
We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Antitumor and immunomodulatory effects of Justicia spicigera Schltdl (Acanthaceae).
Alonso-Castro, Angel Josabad; Ortiz-Sánchez, Elizabeth; Domínguez, Fabiola; Arana-Argáez, Victor; Juárez-Vázquez, Maria del Carmen; Chávez, Marco; Carranza-Álvarez, Candy; Gaspar-Ramírez, Octavio; Espinosa-Reyes, Guillermo; López-Toledo, Gabriela; Ortiz-Andrade, Rolffy; García-Carrancá, Alejandro
2012-06-14
Medicinal plants are an important source of antitumor compounds. This study evaluated the acute toxicity in vitro and in vivo, as well as the cytotoxic, antitumor and immunomodulatory effects of ethanolic extracts of Justicia spicigera leaves (JSE). The in vitro and in vivo toxicity of JSE was evaluated with comet assay in peripheral blood mononuclear cells (PBMC) and acute toxicity in mice, according to the Lorke procedure, respectively. The apoptotic effect of JSE on human cancer cells and human noncancerous cells was evaluated using flow cytometry with annexin-Alexa 488/propidium iodide. Also, different doses of JSE were injected intraperitoneally daily into athymic mice bearing tumors of HeLa cells during 18 days. The growth and weight of tumors were measured. The in vitro immunomodulatory effects of JSE were evaluated estimating the effects of JSE on the phagocytosis of the yeast Saccharomyces cerevisiae, NO production and H(2)O(2) release in macrophages, as well as the proliferation of splenocytes and NK activity. The comet assay showed that only JSE tested at 200 and 1000 μg/ml induced a significantly DNA damage in PBMC, compared to untreated cells, whereas the LD(50) was >5000 mg/kg by intraperitoneal route (i.p.) and by oral route. JSE showed pro-apoptotic (Annexin/PI) effects by 35% against HeLa cells, but lack toxic effects against human normal cells. JSE administrated at 10, 50 and 100 mg/kg i.p. inhibited the tumor growth by 28%, 41% and 53%, respectively, in mice bearing HeLa tumor. JSE stimulated, in a concentration dependent manner, the phagocytosis of Saccharomyces cerevisiae yeasts, the NO production and H(2)O(2) release by human differentiated macrophages. In addition, JSE stimulated the proliferation of murine splenocytes and induced the NK cell activity. Justicia spicigera shows low toxic effects in vitro and in vivo, exerts apoptotic effects on HeLa cells, has antitumor effects in mice bearing HeLa tumor and induces immunomodulatory activities in vitro. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fu, Rao; Zhang, Yu-Ting; Guo, Yi-Ran; Huang, Qiu-Lan; Peng, Tong; Xu, Ying; Tang, Lin; Chen, Fang
2013-05-20
The leaves of Sapium sebiferum have long been used in Traditional Chinese Medicine (TCM) for the treatment of eczema, shingles, edema, swelling, ascites, scabs, and snakebites, among other maladies. The present study aimed to investigate the antioxidant and anti-inflammatory effects of the phenolic extracts of Sapium sebiferum leaves using in vitro and in vivo models. The in vitro antioxidant activities of the extracts were measured using common chemical methods (total phenolic content; total flavonoid content; scavenging of DPPH·, ABTS+·, superoxide, and nitrite radicals; reducing power; β-carotene bleaching; and FTC assays). The in vivo topical anti-inflammatory activities were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced dermatitis animal model. The SOD and CAT activities and the GSH content of ear tissue were also determined using test kits. The extracts of Sapium sebiferum leaves exhibited strong in vitro antioxidant activities. They also showed significant (P<0.001) and dose-dependent anti-inflammatory activities in an acute dermatitis model at the doses of 0.03 mg/ear, 0.1mg/ear, and 0.3mg/ear. The application of Sapium sebiferum leaf extracts increased the SOD and CAT activities and the GSH content relative to those of the TPA treatment group. The anti-inflammatory effect of the Sapium sebiferum leaf extract was positively correlated with its antioxidant activity. These results demonstrate that Sapium sebiferum leaf extract is an effective anti-inflammatory agent in the TPA-induced dermatitis model, and its anti-inflammatory effect is related, at least in part, to its antioxidant activity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Why eicosanoids could represent a new class of tocolytics on uterine activity in pregnant women.
Corriveau, Stéphanie; Berthiaume, Maryse; Rousseau, Eric; Pasquier, Jean-Charles
2009-10-01
The purpose of this study was to assess the effects of exogenous eicosanoids on spontaneous uterine contractile activity. Eight uterine biopsies were performed from women who were undergoing elective cesarean delivery. Tension measurements were performed in vitro on myometrial strips. Contractile activities were quantified by the calculation of the area under the curve. The effects of eicosanoids and specific enzyme inhibitors were assessed. Fractions from various uterine tissues were analyzed by Western blot. Data demonstrate the presence, in some tested tissues, of cytochrome P-450 epoxygenase and soluble epoxide hydrolase, which respectively produce and degrade epoxyeicosatrienoic acid regioisomers. Inhibition of soluble epoxide hydrolase with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid or omega-hydroxylase with N-methylsulfonyl-12,12-dibromododec-11-enamide resulted in a tocolytic effect; N-methylsulfonyl-6-[2-propargyloxyphenyl] hexanamide, which is an epoxygenase inhibitor, had no effect. Exogenous epoxyeicosatrienoic acids displayed significant tocolytic effects on spontaneous contractile activities. Epoxy- and hydroxyeicosanoids represent new bioactive, arachidonic acid by-products with in vitro tocolytic activities. These findings suggest that cytochrome P-450 isozymes may represent relevant pharmacologic targets under physiopathologic conditions.
As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of six benzothiazoles to affect endpoints related to thyroid hormone ...
Chen, Mei X.; Alexander, Kenneth S.
2016-01-01
Background. Skin infections occur commonly and often present therapeutic challenges to practitioners due to the growing concerns regarding multidrug-resistant bacterial, viral, and fungal strains. The antimicrobial properties of zinc sulfate and copper sulfate are well known and have been investigated for many years. However, the synergistic activity between these two metal ions as antimicrobial ingredients has not been evaluated in topical formulations. Objective. The aims of the present study were to (1) formulate topical creams and gels containing zinc and copper alone or in combination and (2) evaluate the in vitro antibacterial activity of these metal ions in the formulations. Method. Formulation of the gels and creams was followed by evaluating their organoleptic characteristics, physicochemical properties, and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. Results. Zinc sulfate and copper sulfate had a strong synergistic antibacterial activity in the creams and gels. The minimum effective concentration was found to be 3 w/w% for both active ingredients against the two tested microorganisms. Conclusions. This study evaluated and confirmed the synergistic in vitro antibacterial effect of copper sulfate and zinc sulfate in a cream and two gels. PMID:27885352
Sithisarn, Patchima; Nantateerapong, Petcharat; Rojsanga, Piyanuch; Sithisarn, Pongtip
2016-04-07
Oroxylum indicum, which is called Pheka in Thai, is a traditional Thai plant in the Bignoniaceae family with various ethnomedical uses such as as an astringent, an anti-inflammatory agent, an anti-bronchitic agent, an anti-helminthic agent and an anti-microbial agent. The young fruits of this plant have also been consumed as vegetables. However, there has been no report concerning its antibacterial activities, especially activities related to clinically isolated pathogenic bacteria and the in vitro antioxidant effects of this plant. Therefore, the extracts from O. indicum fruits and seeds collected from different provinces in Thailand were prepared by decoction and maceration with ethanol and determined for their in vitro antibacterial effects on two clinically isolated bacteria, Streptococcus suis and Staphylococcus intermedius, using disc diffusion assay. Ethanol extracts from O. indicum fruits collected from Nakorn Pathom province at the concentration of 1000 mg/mL exhibited intermediate antibacterial activity against S. intermedius with an inhibition zone of 15.11 mm. Moreover, it promoted moderate inhibitory effects on S. suis with an inhibition zone of 14.39 mm. The extracts prepared by maceration with ethanol promoted higher antibacterial activities than those prepared with water. The ethanol extract from the seeds of this plant, purchased in Bangkok, showed stronger in vitro antioxidant activities than the other extracts, with an EC50 value of 26.33 µg/mL. Phytochemical analysis suggested that the seed ethanol extract contained the highest total phenolic and flavonoid contents (10.66 g% gallic acid equivalent and 7.16 g% quercetin equivalent, respectively) by a significant amount. Thin layer chromatographic analysis of the extracts showed the chromatographic band that could correspond to a flavonoid baicalein. From the results, extracts from O. indicum fruits have an in vitro antioxidant effect, with antibacterial potential, on clinically pathologic bacteria and they contain an antioxidant flavonoid which could be developed for medicinal and pharmaceutical purposes in the future.
Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje
2011-11-01
Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hee-Seok; Park, Eun-Jung; Han, Songyi; Oh, Gyeong-Yong; Kang, Hui-Seung; Suh, Jin-Hyang; Shin, Min-Ki; Oh, Hyun-Suk; Hwang, Myung-Sil; Moon, Guiim; Koh, Young-Ho; Park, Yooheon; Hong, Jin-Hwan; Koo, Yong Eui
2018-01-01
The aim of this study is to assess the androgen receptor (AR) agonistic/antagonistic effects on various chemicals, which are used in household products including cleaning agents and wetted tissues by in vitro OECD test guideline No. 458 (using AR-EcoScreen™ cell line) and the me-too test method (using 22Rv1cell line), which was adopted as OECD project No. 4.99. All chemicals were not determined as AR agonists. However α-dodecyl-ω-hydroxypoly (oxyethylene) and 3-iodo-2-propynyl butylcarbamate have shown a weak AR antagonistic effects with IC 50 values of 2.18 ± 0.12 and 4.26 ± 0.17 μg/ml via binding affinity to AR in only 22Rv1/mouse mammary tumor virus using AR transcriptional activation assay, because of their different cytotoxicity on each applied cell line. This report firstly provides information about agonistic/antagonistic effects against human AR of various chemicals including surfactants and biocides by OECD in vitro stably transfected transcriptional activation assays. However, further in vivo and human model studies are needed to confirm their adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Genmin; Pine, Polly; Leeds, Janet M.; DeGuzman, Francis; Pratikhya, Pratikhya; Lin, Joyce; Malinowski, John; Hollenbach, Stanley J.; Curnutte, John T.
2018-01-01
Introduction Increasing use of factor Xa (FXa) inhibitors necessitates effective reversal agents to manage bleeding. Andexanet alfa, a novel modified recombinant human FXa, rapidly reverses the anticoagulation effects of direct and indirect FXa inhibitors. Objective To evaluate the ability of andexanet to reverse anticoagulation in vitro and reduce bleeding in rabbits administered edoxaban. Materials and methods In vitro studies characterized the interaction of andexanet with edoxaban and its ability to reverse edoxaban-mediated anti-FXa activity. In a rabbit model of surgically induced, acute hemorrhage, animals received edoxaban vehicle+andexanet vehicle (control), edoxaban (1 mg/kg)+andexanet vehicle, edoxaban+andexanet (75 mg, 5-minute infusion, 20 minutes after edoxaban), or edoxaban vehicle+andexanet prior to injury. Results Andexanet bound edoxaban with high affinity similar to FXa. Andexanet rapidly and dose-dependently reversed the effects of edoxaban on FXa activity and coagulation pharmacodynamic parameters in vitro. In edoxaban-anticoagulated rabbits, andexanet reduced anti-FXa activity by 82% (from 548±87 to 100±41 ng/ml; P<0.0001), mean unbound edoxaban plasma concentration by ~80% (from 100±10 to 21±6 ng/ml; P<0.0001), and blood loss by 80% vs. vehicle (adjusted for control, 2.6 vs. 12.9 g; P = 0.003). The reduction in blood loss correlated with the decrease in anti-FXa activity (r = 0.6993, P<0.0001) and unbound edoxaban (r = 0.5951, P = 0.0035). Conclusion These data demonstrate that andexanet rapidly reversed the anticoagulant effects of edoxaban, suggesting it could be clinically valuable for the management of acute and surgery-related bleeding. Correlation of blood loss with anti-FXa activity supports the use of anti-FXa activity as a biomarker for assessing anticoagulation reversal in clinical trials. PMID:29590221
Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G
2018-05-19
Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.
Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V; Manjunath, Kirangadur; Viswanatha, Gollapalle L; Ashok, Godavarthi
2016-01-01
The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro.
Chlapanidas, Theodora; Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Galuzzi, Marta; Mantelli, Melissa; Avanzini, Maria Antonietta; Tosca, Marta Cecilia; Marazzi, Mario; Vigo, Daniele; Torre, Maria Luisa; Faustini, Massimo
2013-07-01
Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influenced these properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFNγ, while no effects were observed on TNFα and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use. Copyright © 2013 Elsevier B.V. All rights reserved.
Bhat, G P; Surolia, N
2001-10-01
In an attempt to search for new antimalarial drugs, we studied plants used by traditional healers of southwest India to treat malaria. Aqueous and organic solvent extracts obtained from specific parts of the plants Swertia chirata, Carica papaya, and Citrus sinensis were tested on malaria strain Plasmodium falciparum FCK 2 in vitro. The temperatures of extraction were the same as that used by the traditional healers in their plant preparations. Visual evaluation of the antimalarial activity of the plant extracts on thin blood smears was followed by quantification of the activity by use of [35S]-methionine incorporation into parasite proteins to determine the value that inhibits 50% (IC50). Among the 3 plants tested, 2 had significant inhibitory effect on P. falciparum in vitro.
Hirashima, A; Suetsugu, E; Hirokado, S; Kuwano, E; Taniguchi, E; Eto, M
1999-12-01
This study focuses on the effect of octopamine (OA) on metamorphosis of the silkworm Bombyx mori and the red flour beetle Tribolium freemani Hinton. Titers of OA and juvenile-hormone esterase (JHE) were measured at various larval and pupal stadia of both insects. Effects of OA, OA agonists, and antagonists on metamorphosis and JHE activity were also examined. At day 2, peaks of OA and JHE activity were observed in third instars, and at day 3, a sharp peak of OA was observed, followed by a large peak of JHE activity at day 4 in last instars of B. mori. However, no peaks of OA and JHE activity were observed in fourth instars. A high titer of OA appeared at days 2-4, followed by a peak of JHE activity at day 7 and the second OA peak at day 9 after the start of assay of T. freemani. At pupation, a small peak of OA and the highest activity of JHE were observed. The effects of OA on JHE activity were examined in vitro, because the relationship could be responsible for triggering pupation in B. mori and T. freemani larvae. Exogeneous OA (0.1-10 mM) stimulated the JHE activity of final instars (day 2) of B. mori in vitro. Similarly, the presence of OA (10 mM) activated the JHE activity of newly ecdysed T. freemani pupae in vitro. OA antagonists chlorpromazine and gramine delayed the start of spinning and reduced the JHE activity of B. mori, when applied in diet at 10-100 ppm. Some OA agonists stimulated the pupation and JHE activity of T. freemani larvae reared under crowded conditions, when topically applied. Thus, OA may contribute to activation of the events preparatory to a pupal molt, i.e., the secretion of OA increases JHE activity followed by stimulation of pupation. Copyright 1999 Academic Press.
Ben-Ami, Ronen; Lewis, Russell E; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P
2010-01-01
In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis.
Ben-Ami, Ronen; Lewis, Russell E.; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P.
2010-01-01
In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis. PMID:19858263
Nagahama, Kiyoko; Eto, Nozomu; Shimojo, Tomofumi; Kondoh, Tomomi; Nakahara, Keiko; Sakakibara, Yoichi; Fukui, Keiichi; Suiko, Masahito
2015-01-01
Natural killer (NK) cells play a key role in innate immune defense against infectious disease and cancer. A reduction of NK activity is likely to be associated with increased risk of these types of disease. In this study, we investigate the activation potential of kumquat pericarp acetone fraction (KP-AF) on NK cells. It is shown to significantly increase IFN-γ production and NK cytotoxic activity in human KHYG-1 NK cells. Moreover, oral administration of KP-AF significantly improves both suppressed plasma IFN-γ levels and NK cytotoxic activity per splenocyte in restraint-stressed mice. These results indicate that raw kumquat pericarp activates NK cells in vitro and in vivo. To identify the active constituents, we also examined IFN-γ production on KHYG-1 cells by the predicted active components. Only β-cryptoxanthin increased IFN-γ production, suggesting that NK cell activation effects of KP-AF may be caused by carotenoids such as β-cryptoxanthin.
Richards, R M; Xing, J Z; Weir, L F
1996-04-01
The purpose of this investigation was to determine the influence on the antimicrobial activity of cetylpyridinium chloride of the various components of the formulation of each of six candy based lozenges. In vivo activity was investigated using six volunteers by determining the reduction in colony forming units recoverable from the oropharynx after sucking each lozenge separately on different days. In vitro determinations investigated the relative activity of aqueous solutions of the lozenges, the effect on activity of additional active ingredients, pH and lozenge base ingredients against separate inocula of each of the test organisms Staphylococcus aureus, Streptococcus pyogenes and Candida albicans. Both in vivo and in vitro results showed that the pH of the dissolved lozenge solution was the single most influential readily adjustable formulation parameter which significantly influenced the activity of cetylpyridinium chloride activity in candy based lozenges. Lozenges containing cetylpyridinium chloride as the active ingredient should be formulated at a pH greater than 5.5.
Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit
2017-03-01
Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. Copyright © 2017 the American Physiological Society.
Dauth, Stephanie; Maoz, Ben M.; Sheehy, Sean P.; Hemphill, Matthew A.; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M.; Budnik, Bogdan
2017-01-01
Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. PMID:28031399
Effect of Nanoparticles on Complement System in Cell Culture Model
2006-09-15
case complement activation considerably differs between nanoparticles , being the highest in case of fullerene, ferric oxide and aluminium oxide ... oxide (CdO; 1 µm), manganese oxide (MnO2; 1-2 µm), and tungsten (W; 27 µm) were assessed. Additionally the effects of nanoparticles coated with...using in vitro system. Obtained results indicate that: 1. Nanoparticles toxicity in vitro can’t be measured using methods which were designed
Han, Yantao; Xie, Jing; Gao, Hui; Xia, Yunqiu; Chen, Xuehong; Wang, Chunbo
2015-03-01
The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.
IN VIVO AND IN VITRO ANTILEISHMANIAL EFFECTS OF METHANOLIC EXTRACT FROM BARK OF BURSERA APTERA.
Nieto-Yañez, O J; Resendiz-Albor, A A; Ruiz-Hurtado, P A; Rivera-Yañez, N; Rodriguez-Canales, M; Rodriguez-Sosa, M; Juarez-Avelar, I; Rodriguez-Lopez, M G; Canales-Martinez, M M; Rodriguez-Monroy, M A
2017-01-01
Cutaneous leishmaniasis lacks effective and well-tolerated treatments. The current therapies mainly rely on antimonial drugs that are inadequate because of their poor efficacy. Traditional medicine offers a complementary alternative for the treatment of various diseases. Additionally, several plants have shown success as anti-leishmanial agents. Therefore, we sought to evaluate the in vitro and in vivo activity of MEBA against Leishmania mexicana . Methanolic extract of B. aptera was obtained by macetration, after we determined in vitro anti-leishmanial activity of MEBA by MTT assay and the induced apoptosis in promastigotes by flow cytometry. To analyze the in vivo anti-leishmanial activity, we used infected mice that were treated and not treated with MEBA and we determined the levels of cytokines using ELISA. The phytochemical properties were determined by CG-MS and DPPH assay. We determined of LC 50 of 0.408 mg/mL of MEBA for in vitro anti-leishmanial activity. MEBA induced apoptosis in promastigotes (15.3% ± 0.86). Treated mice exhibited smaller lesions and contained significantly fewer parasites than did untreated mice; in addition, we found that IFN-γ and TNF-α increased in the sera of MEBA-treated mice. GC-MS analysis showed that podophyllotoxin was the most abundant compound. Evaluation of the activity by DPPH assay demonstrated an SC 50 of 11.72 μg/mL. Based on the above data, it was concluded that MEBA is a good candidate in the search for new anti-leishmanial agents.
Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A
2015-02-15
Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro. Copyright © 2015 Elsevier GmbH. All rights reserved.
Tirali, Resmiye E; Bodur, Haluk; Sipahi, Bilge; Sungurtekin, Elif
2013-04-01
The objective of this study was to compare the antimicrobial activity of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX) and octenidine hydrochloride (OCT) in different concentrations against endodontic pathogens in vitro. Agar diffusion procedure was used to determine the antimicrobial activity of the tested materials. Enterococcus faecalis, Candida albicans and the mixture of these were used for this study. In the agar diffusion test, 5.25% NaOCl exhibited better antimicrobial effect than the other concentrations of NaOCl for all strains. All concentrations of OCT were effective against C. albicans and E. faecalis. Some 0.2% CHX was ineffective on all microorganisms. Antibacterial effectiveness of all experimental solutions decreased on the mixture of all strains. Decreasing concentrations of NaOCl resulted in significantly reduced antimicrobial effect. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker
2014-11-01
The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.
Lobo, Gricela; Monasterios, Melina; Rodrigues, Juan; Gamboa, Neira; Capparelli, Mario V; Martínez-Cuevas, Javier; Lein, Michael; Jung, Klaus; Abramjuk, Claudia; Charris, Jaime
2015-01-01
A highly regiospecific synthesis of a series of indenoindoles is reported, together with X-ray studies and their activity against human prostate cancer cells PC-3 and LNCaP in vitro. The most effective compound 7,7-dimethyl-5-[(3,4-dichlorophenyl)]-(4bRS,9bRS)-dihydroxy-4b,5,6,7,8,9bhexahydro-indeno[1,2-b]indole-9,10-dione 7q reduced the viability in both cell lines in a time and dose-dependent manner. Inhibitory effects were also observed on the adhesion, migration, and invasion of the prostate cancer cells as well as on clonogenic possibly by inhibition of MMP-9 activity. Molecular docking of 7q and 6k into MMP-9 human active site was also performed to determine the probable binding mode. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Colombo, Miriam; Fiandra, Luisa; Alessio, Giulia; Mazzucchelli, Serena; Nebuloni, Manuela; De Palma, Clara; Kantner, Karsten; Pelaz, Beatriz; Rotem, Rany; Corsi, Fabio; Parak, Wolfgang J.; Prosperi, Davide
2016-01-01
Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect. PMID:27991503
Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad
2014-11-07
Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.
Raffaelli, Francesca; Borroni, Francesca; Alidori, Alessandro; Tirabassi, Giacomo; Faloia, Emanuela; Rabini, Rosa Anna; Giulietti, Alessia; Mazzanti, Laura; Nanetti, Laura; Vignini, Arianna
2015-01-01
The aim of this study was to assess the in vitro effects of Syzygium cumini (L.) (Sc) incubation on platelets from patients with diabetes, in order to test its efficacy as a potential adjuvant therapy. This study was performed on 77 patients with diabetes [29 in good (DMgc) and 48 in poor glycemic control (DMpc)] and 85 controls. In patients, platelets were analyzed at recruitment and after in vitro Sc incubation (final concentration of 200 µg/ml for 3 hours at 37 °C), whereas in controls only basal evaluation was performed. Lipoperoxide and nitric oxide (NO) levels, superoxide dismutase (SOD) and Na(+)/K(+) ATPase activities, total antioxidant capacity (TAC), and membrane fluidity tested by anisotropy of fluorescent probes 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1-6-phenyl-1,3,5-hexatriene (DPH) were determined. Collagen-induced platelet aggregation was also evaluated. In vitro Sc activity counteracts oxidative damage, by improving platelet function through augmented membrane fluidity and Na(+)/K(+) ATPase activity; it also enhances antioxidant system functionality by increasing NO levels, SOD activity, and TAC and by decreasing lipoperoxide levels both in whole samples and in DMgc and DMpc. In addition, a slight tendency towards collagen-induced platelet aggregation decrease after Sc was observed. However, all these parameters, even after improvement, did not reach the levels of control subjects. Our results suggest that Sc may have a preventive and protective effect in oxidative damage progression associated with diabetes mellitus and its complications. If our data will be confirmed, Sc supplementation might become a further tool in the management of this disease, especially in view of its easy availability, safety, low cost, and absence of side effects.
Activities of Tannins--From In Vitro Studies to Clinical Trials.
Sieniawska, Elwira
2015-11-01
Tannins are considered as valuable plant secondary metabolites providing many benefits for human health. In this review information was gathered about bioactivity in vitro and in vivo, as well as about conducted clinical trials. The literature research was based on ScienceDirect, Scopus, and Cochrane databases and presents a wide range of tested activities of tannins. The described clinical trials verify laboratory tests and show the effective health benefits taken from supplementation with tannins.
Antifungal activity of n-tributyltin acetate against some common yam rot fungi.
Olurinola, P F; Ehinmidu, J O; Bonire, J J
1992-01-01
The antifungal activity of n-tributyltin acetate (TBTA) was examined in relation to combating yam rot disease. TBTA exhibited a significant effect in vitro and in vivo on four yam rot fungal isolates tested. However, the in vitro toxicity of TBTA was drastically reduced when 2.5% Tween 80 was the solvent instead of 25% acetone, as indicated by the MICs of 156.0 and 5.0 micrograms/ml, respectively. PMID:1610202
Alves, Pollianna Muniz; Queiroz, Lélia Maria Guedes; Pereira, Jozinete Vieira; Pereira, Maria do Socorro Vieira
2009-01-01
The antimicrobial, antifungal and antiadherent activity of aroeira-do-sertão, mallow and guava tree on oral biofilm microorganisms and oral candidiasis was evaluated in vitro. The extracts were shown to be effective in inhibiting the growth of bacteria of the oral biofilm and fungi of oral candidiasis, thus suggesting that these extracts can be used as alternative means of dental therapy.
Activity of Imipenem against Klebsiella pneumoniae Biofilms In Vitro and In Vivo
Chen, Ping; Seth, Akhil K.; Abercrombie, Johnathan J.; Mustoe, Thomas A.
2014-01-01
Encapsulated Klebsiella pneumoniae has emerged as one of the most clinically relevant and more frequently encountered opportunistic pathogens in combat wounds as the result of nosocomial infection. In this report, we show that imipenem displayed potent activity against established K. pneumoniae biofilms under both static and flow conditions in vitro. Using a rabbit ear model, we also demonstrated that imipenem was highly effective against preformed K. pneumoniae biofilms in wounds. PMID:24247132
Luethi, Dino; Liechti, Matthias E
2018-05-29
Pharmacological profiles of new psychoactive substances (NPSs) can be established rapidly in vitro and provide information on potential psychoactive effects in humans. The present study investigated whether specific in vitro monoamine transporter and receptor interactions can predict effective psychoactive doses in humans. We correlated previously assessed in vitro data of stimulants and psychedelics with human doses that are reported on the Internet and in books. For stimulants, dopamine and norepinephrine transporter inhibition potency was positively correlated with human doses, whereas serotonin transporter inhibition potency was inversely correlated with human doses. Serotonin 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2C receptor affinity was significantly correlated with psychedelic doses, but 5-HT1A receptor affinity and 5-HT2A and 5-HT2B receptor activation potency were not. The rapid assessment of in vitro pharmacological profiles of NPSs can help to predict psychoactive doses and effects in humans and facilitate the appropriate scheduling of NPSs.
Glucocorticoid activity has been detected, using in vitro effects-based monitoring tools (e.g. transcriptional activation bioassays), in waste and surface waters domestically and around the world. A review of the existing literature confirms that many different glucocorticoid rec...
Triptolide protects podocytes from puromycin aminonucleoside induced injury in vivo and in vitro.
Zheng, Chun-Xia; Chen, Zhao-Hong; Zeng, Cai-Hong; Qin, Wei-Song; Li, Lei-Shi; Liu, Zhi-Hong
2008-09-01
Extracts of Tripterygium wilfordii Hook F have been used to treat glomerulonephritis for more than 30 years in China with dramatic antiproteinuric effects. Triptolide, a diterpene triepoxide, is one of the major active components of these extracts. To clarify its antiproteinuric effects we induced podocyte injury by puromycin aminonucleoside. Triptolide effectively reduced the proteinuria induced by puromycin in nephrotic rats without reducing the glomerular filtration rate. The antiproteinuric effect was associated with improvement in the foot process effacement, a decrease in the podocyte injury marker desmin as well as the restoration of nephrin and podocin expression and distribution. In cultured mouse podocytes triptolide pretreatment prevented the puromycin-induced disruption of the actin cytoskeleton and microfilament-associated synaptopodin while protecting nephrin and podocin expression. Triptolide suppressed reactive oxygen species generation and p38 mitogen-activated protein kinase activation while restoring RhoA signaling activity. These results show that triptolide ameliorates puromycin aminonucleoside-mediated podocyte injury in vivo and in vitro.
Gajski, Goran; Dinter, Domagoj; Garaj-Vrhovac, Vera
2010-11-01
This study aimed to evaluate the effect of proguanil, a chemical substance used for treatment and prevention of malaria on viability and DNA integrity in human lymphocytes in vitro. Two different concentrations of proguanil obtained from the plasma concentrations were used: 130ng/ml used for prophylactic treatment and 520ng/ml used in treatment of malaria. Testing was done with and without metabolic activation. Viability of lymphocytes decreased in time and dose dependent manner. Comet assay parameters showed similar effects, indicating that some damage to DNA molecule can occur. Frequency of sister chromatid exchanges did not show significant deviation from the control samples. As for the proliferation kinetics no significant changes were noticed. Since majority of DNA damaging effect is induced after metabolic activation it is to be concluded that activity of proguanil is dependent upon the active metabolite cycloguanil and that monitoring should be conducted especially among frequent travellers. Copyright © 2010 Elsevier B.V. All rights reserved.
Betts, J W; Abdul Momin, H F; Phee, L M; Wareham, D W
2018-02-01
Glycopeptides are widely used for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infections. Although difficult to detect, isolates with reduced (GISA), hetero (hGISA) or complete (GRSA) resistance to glycopeptides are increasingly reported. Optimal therapy for such strains is unknown. We compared the in vitro and in vivo activity of tedizolid (TED), a recently licensed oxazolidonone, with vancomycin (VAN) and teicoplanin (TEIC) combined with fusidic acid (FD) or rifampicin (RIF) against S. aureus (SA) with reduced susceptibility to glycopeptides. Susceptibility was determined for six (GISA, hGISA and GRSA) reference strains and 72 clinical MRSA isolates screened for hGISA/GISA-like phenotypes. Synergy and bactericidal activity were assessed using chequerboard and time-kill assays. The G. mellonella wax moth caterpillar model was used to measure the activity of TED and the combinations in vivo. Glycopeptide MICs (VAN/TEIC) ranged from 0.5-8/4 and 0.125-1 for TED. No significant synergy was noted when VAN/TEIC were combined with either RIF or FD. Time-kill assays confirmed that TED was bacteriostatic but superior to VAN and TEIC against GISA strains. In G. mellonella TED was more effective than TEIC monotherapy versus GISA strains. The combination of TEIC with RIF was the most effective combination overall, both in vitro and in vivo. TED had good in vitro activity versus MRSA including those with reduced susceptibility to glycopeptides. Although bacteriostatic, it was effective in the G. mellonella model and superior to TEIC in the treatment of GISA. Although this supports the use of TED for MRSA and GISA, the TEIC/RIF combination also warrants further study.
Pele, Laetitia; Haas, Carolin T; Hewitt, Rachel; Faria, Nuno; Brown, Andy; Powell, Jonathan
2015-01-01
Aim To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. Material & methods The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. Results Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. Conclusion In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes. PMID:24991724
Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori
2016-12-06
The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Upham, Brad L.; Park, Joon-Suk; Babica, Pavel; Sovadinova, Iva; Rummel, Alisa M.; Trosko, James E.; Hirose, Akihiko; Hasegawa, Ryuichi; Kanno, Jun; Sai, Kimie
2009-01-01
Background Perfluoroalkanoates, [e.g., perfluorooctanoate (PFOA)], are known peroxisome proliferators that induce hepatomegaly and hepatocarcinogenesis in rodents, and are classic non-genotoxic carcinogens that inhibit in vitro gap-junctional intercellular communication (GJIC). This inhibition of GJIC is known to be a function of perfluorinated carbon lengths ranging from 7 to 10. Objectives The aim of this study was to determine if the inhibition of GJIC by PFOA but not perfluoropentanoate (PFPeA) observed in F344 rat liver cells in vitro also occurs in F344 rats in vivo and to determine mechanisms of PFOA dysregulation of GJIC using in vitro assay systems. Methods We used an incision load/dye transfer technique to assess GJIC in livers of rats exposed to PFOA and PFPeA. We used in vitro assays with inhibitors of cell signaling enzymes and antioxidants known to regulate GJIC to identify which enzymes regulated PFOA-induced inhibition of GJIC. Results PFOA inhibited GJIC and induced hepatomegaly in rat livers, whereas PFPeA had no effect on either end point. Serum biochemistry of liver enzymes indicated no cytotoxic response to these compounds. In vitro analysis of mitogen-activated protein kinase (MAPK) indicated that PFOA, but not PFPeA, can activate the extracellular receptor kinase (ERK). Inhibition of GJIC, in vitro, by PFOA depended on the activation of both ERK and phosphatidylcholine-specific phospholipase C (PC-PLC) in the dysregulation of GJIC in an oxidative-dependent mechanism. Conclusions The in vitro analysis of GJIC, an epigenetic marker of tumor promoters, can also predict the in vivo activity of PFOA, which dysregulated GJIC via ERK and PC-PLC. PMID:19440492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen
2011-07-01
The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA asmore » part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.« less
Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan
2015-12-01
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. Copyright © 2015 Elsevier B.V. All rights reserved.
Soltani, El-Khamsa; Cerezuela, Rebeca; Charef, Noureddine; Mezaache-Aichour, Samia; Esteban, Maria Angeles; Zerroug, Mohamed Mihoub
2017-03-01
Propolis has been used as a medicinal agent for centuries. The chemical composition of four propolis samples collected from four locations of the Sétif region, Algeria, using gas chromatography-mass spectrometry was determined. More than 20 compounds and from 30 to 35 compounds were identified in the aqueous and ethanolic extracts, respectively. Furthermore, the antimicrobial activity of the propolis extracts against two marine pathogenic bacteria was evaluated. Finally, the in vitro effects of propolis on gilthead seabream (Sparus aurata L.) leucocyte activities were measured. The bactericidal activity of ethanolic extracts was very high against Shewanella putrefaciens, average against Photobacterium damselae and very low against Vibrio harveyi. The lowest bactericidal activity was always that found for the aqueous extracts. When the viability of gilthead seabream head-kidney leucocytes was measured after 30 min' incubation with the different extracts, both the ethanolic and aqueous extracts of one of the propolis samples (from Babor) and the aqueous extract of another (from Ain-Abbassa) provoked a significant decrease in cell viability when used at concentrations of 100 and 200 μg ml -1 . Furthermore, significant inhibitory effects were recorded on leucocyte respiratory burst activity when isolated leucocytes where preincubated with the extracts. This effect was dose-dependent in all cases except when extracts from a third propolis sample (from Boutaleb) were used. Our findings suggest that some of Algerian propolis extracts have bactericidal activity against important bacterial pathogens in seabream and significantly modulate in vitro leucocyte activities, confirming their potential as a source of new natural biocides and/or immunomodulators in aquaculture practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of mastic gum Pistacia lentiscus var. Chia on innate cellular immune effectors.
Kottakis, Filippos; Kouzi-Koliakou, Kokona; Pendas, Stefanos; Kountouras, Jannis; Choli-Papadopoulou, Theodora
2009-02-01
The essential oil and Chios mastic gum (CMG) are natural antimicrobial agents currently broadly used in medicine owing to their antimicrobial, antioxidant, and hepatoprotective properties. The aim of this study was to investigate the effect of CMG-extracted arabinogalactan proteins (AGPs/CMG) both in vitro and in vivo, under the presence of Helicobacter pylori neutrophil-activating protein (HP-NAP), on the innate cellular immune effectors (neutrophils activations) comparing H. pylori-infected patients and healthy controls. The in-vivo effect of AGPs/CMG under the presence of HP-NAP in neutrophil activation was investigated in five H. pylori-infected patients and three healthy volunteers who received 1 g daily consumption of CMG for 2 months. All participants did not receive any immunosuppressive medication before or during the trial; patients with infectious diseases that could modify their immunologic status were excluded. In-vitro studies with pull-down experiments to assess the effect of AGPs/CMG under the presence of HP-NAP on the neutrophil activation were also carried out. Neutrophil activation was estimated by nicotinamide adenine dinucleotide phosphate-oxidase assays and optical microscopy methods by measurement of cytochrome C reduction. Neutrophil activation was reduced when incubated in vitro with HP-NAP (P=0.0027) and AGP plus HP-NAP (P=0.0004) in H. pylori-positive patients who consumed AGP for 2 months. Similar results were also obtained when neutrophils were incubated with AGP plus HP-NAP (P=0.0038) in controls. Pull-down experiments showed a specific binding of AGPs to two membrane proteins of neutrophils, possibly suggesting inhibition of neutrophil activation. AGPs/CMG inhibit neutrophil activation in the presence of HP-NAP, playing a crucial role in H. pylori-associated pathologies in gastric mucosa.
de Castro, Andreísa Teixeira; Castro, Aline Pereira; Silva, Matheus Siqueira; de Souza, Isabella Maria Monteiro; Martins-Souza, Raquel Lopes; Chagas-Paula, Daniela Aparecida; Coelho, Luiz Felipe Leomil; da Silva Bolzani, Vanderlan; Pivatto, Marcos; Viegas, Claudio; Marques, Marcos José
2016-09-01
In this work, we present the in vitro schistosomicidal activity evaluation of the most active dichloromethane fraction (FDm) (ED50=83.5μg/mL) and of a mixture of the major alkaloids ((-)-cassine/(-)-spectaline, C/E) (ED50=37.4μg/mL) from the flowers of Senna spectabilis against adult worms and cercariae. We also demonstrate other toxic effects including paralysis of the adult worms, inhibition of the secretory activity, tegument lesions and cercaricidal activity. In the association test of Praziquantel (PZQ)-C/E, we observed up to 80% mortality of Schistosoma mansoni in comparison to PZQ monotherapy. Due to the diversity of the toxic effects, the schistosomicidal activity of C/E is likely a result of a multitarget mechanism involving the tegument, secretory system and neuromotor action. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson
2015-01-01
Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.
Wong, Chi C; Cheng, Ka-Wing; Xie, Gang; Zhou, Dingying; Zhu, Cai-Hua; Constantinides, Panayiotis P; Rigas, Basil
2012-02-01
Phospho-nonsteroidal anti-inflammatory drugs (phospho-NSAIDs) are novel NSAID derivatives with improved anticancer activity and reduced side effects in preclinical models. Here, we studied the metabolism of phospho-NSAIDs by carboxylesterases and assessed the impact of carboxylesterases on the anticancer activity of phospho-NSAIDs in vitro and in vivo. The expression of human liver carboxylesterase (CES1) and intestinal carboxylesterase (CES2) in human embryonic kidney 293 cells resulted in the rapid intracellular hydrolysis of phospho-NSAIDs. Kinetic analysis revealed that CES1 is more active in the hydrolysis of phospho-sulindac, phospho-ibuprofen, phospho-naproxen, phospho-indomethacin, and phospho-tyrosol-indomethacin that possessed a bulky acyl moiety, whereas the phospho-aspirins are preferentially hydrolyzed by CES2. Carboxylesterase expression leads to a significant attenuation of the in vitro cytotoxicity of phospho-NSAIDs, suggesting that the integrity of the drug is critical for anticancer activity. Benzil and bis-p-nitrophenyl phosphate (BNPP), two carboxylesterase inhibitors, abrogated the effect of carboxylesterases and resensitized carboxylesterase-expressing cells to the potent cytotoxic effects of phospho-NSAIDs. In mice, coadministration of phospho-sulindac and BNPP partially protected the former from esterase-mediated hydrolysis, and this combination more effectively inhibited the growth of AGS human gastric xenografts in nude mice (57%) compared with phospho-sulindac alone (28%) (p = 0.037). Our results show that carboxylesterase mediates that metabolic inactivation of phospho-NSAIDs, and the inhibition of carboxylesterases improves the efficacy of phospho-NSAIDs in vitro and in vivo.
Wong, Chi C.; Cheng, Ka-Wing; Xie, Gang; Zhou, Dingying; Zhu, Cai-Hua; Constantinides, Panayiotis P.
2012-01-01
Phospho-nonsteroidal anti-inflammatory drugs (phospho-NSAIDs) are novel NSAID derivatives with improved anticancer activity and reduced side effects in preclinical models. Here, we studied the metabolism of phospho-NSAIDs by carboxylesterases and assessed the impact of carboxylesterases on the anticancer activity of phospho-NSAIDs in vitro and in vivo. The expression of human liver carboxylesterase (CES1) and intestinal carboxylesterase (CES2) in human embryonic kidney 293 cells resulted in the rapid intracellular hydrolysis of phospho-NSAIDs. Kinetic analysis revealed that CES1 is more active in the hydrolysis of phospho-sulindac, phospho-ibuprofen, phospho-naproxen, phospho-indomethacin, and phospho-tyrosol-indomethacin that possessed a bulky acyl moiety, whereas the phospho-aspirins are preferentially hydrolyzed by CES2. Carboxylesterase expression leads to a significant attenuation of the in vitro cytotoxicity of phospho-NSAIDs, suggesting that the integrity of the drug is critical for anticancer activity. Benzil and bis-p-nitrophenyl phosphate (BNPP), two carboxylesterase inhibitors, abrogated the effect of carboxylesterases and resensitized carboxylesterase-expressing cells to the potent cytotoxic effects of phospho-NSAIDs. In mice, coadministration of phospho-sulindac and BNPP partially protected the former from esterase-mediated hydrolysis, and this combination more effectively inhibited the growth of AGS human gastric xenografts in nude mice (57%) compared with phospho-sulindac alone (28%) (p = 0.037). Our results show that carboxylesterase mediates that metabolic inactivation of phospho-NSAIDs, and the inhibition of carboxylesterases improves the efficacy of phospho-NSAIDs in vitro and in vivo. PMID:22085648
Xu, Yi; Zhao, Hui; Zheng, Ying; Gu, Qing; Ma, Jianxing
2010-01-01
Purpose To study the antiangiogenic activity of two small peptides (H-RN and H-FT) derived from the hepatocyte growth factor kringle 1 domain (HGF K1) using in vitro and in vivo assays. Methods RF/6A rhesus macaque choroid-retina endothelial cells were used for in vitro studies. The inhibiting effect of two peptides on a vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration, and endothelial cell tube formation were investigated. For in vivo assays, the antiangiogenic activity of H-RN and H-FT in the chick chorioallantoic membrane model (CAM) and a mice oxygen-induced retinopathy model (OIR) were studied. A recombinant mouse VEGF-neutralizing antibody, bevacizumab, and a scrambled peptide were used as two control groups in separate studies. Results H-RN effectively inhibited VEGF-stimulated RF/6A cell proliferation, migration, and tube formation on Matrigel™, while H-FT did not. H-RN was also able to inhibit angiogenesis when applied to the CAM, and had antineovascularization activity in the retinal neovascularization of a mouse OIR model when administrated as an intravitreous injection. The antiangiogenic activity of H-RN was not as strong as that of VEGF antibodies. The H-FT and scrambled peptide had no such activity. Conclusions H-RN, a new peptide derived from the HGF K1 domain, was shown to have antiangiogenic activity in vitro and in vivo. It may lead to new potential drug discoveries and the development of new treatments for pathological retinal angiogenesis. PMID:21031024
The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig; Glien, Anja
In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC),more » we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.« less
Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad
2012-02-01
Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.
Harhaji, Lj; Mijatović, S; Maksimović-Ivanić, D; Stojanović, I; Momcilović, M; Maksimović, V; Tufegdzić, S; Marjanović, Z; Mostarica-Stojković, M; Vucinić, Z; Stosić-Grujicić, S
2008-05-01
Numerous studies have shown immunostimulatory and anti-tumor effects of water and standardized aqueous ethanol extracts derived from the medicinal mushroom, Coriolus versicolor, but the biological activity of methanol extracts has not been examined so far. In the present study we investigated the anti-tumor effect of C. versicolor methanol extract (which contains terpenoids and polyphenols) on B16 mouse melanoma cells both in vitro and in vivo. In vitro treatment of the cells with the methanol extract (25-1600 microg/ml) reduced melanoma cell viability in a dose-dependent manner. Furthermore, in the presence of the methanol extract (200 microg/ml, concentration IC(50)) the proliferation of B16 cells was arrested in the G(0)/G(1) phase of the cell cycle, followed by both apoptotic and secondary necrotic cell death. In vivo methanol extract treatment (i.p. 50 mg/kg, for 14 days) inhibited tumor growth in C57BL/6 mice inoculated with syngeneic B16 tumor cells. Moreover, peritoneal macrophages collected 21 days after tumor implantation from methanol extract-treated animals exerted stronger tumoristatic activity ex vivo than macrophages from control melanoma-bearing mice. Taken together, our results demonstrate that C. versicolor methanol extract exerts pronounced anti-melanoma activity, both directly through antiproliferative and cytotoxic effects on tumor cells and indirectly through promotion of macrophage anti-tumor activity.
Assessment of anti-oxidant activity of plant extracts using microbial test systems.
Oktyabrsky, O; Vysochina, G; Muzyka, N; Samoilova, Z; Kukushkina, T; Smirnova, G
2009-04-01
To evaluate the anti-oxidant properties of extracts from 20 medicinal herbs growing in western Siberia using microbial test systems and different in vitro methods. In vivo anti-oxidant activity of extracts was evaluated for their capacity to protect bacteria, Escherichia coli, against bacteriostatic and bactericidal effects of H(2)O(2) and menadione, and action on anti-oxidant gene expression. In vitro anti-oxidant activity has been examined by a number of methods including: the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*))-scavenging assay, chelating activity and capacity to protect plasmid DNA against oxidative damage. In addition, total polyphenol content was determined. The extracts of Fragaria vesca, Rosa majalis, Pentaphylloides fruticosa, Alchemilla vulgaris and Pulmonaria mollis possessed the highest levels of anti-oxidant activity in vivo and in vitro. The protective properties were more closely related to the DPPH(*) radical-scavenging activity, tannin content and action on anti-oxidant gene expression than to other parameters. The extracts of medicinal plants may have anti-oxidant effects on bacteria simultaneously through several different pathways, including direct inhibition of reactive oxygen species, iron chelation and anti-oxidant genes induction. Using microbial test systems, we revealed herbs that may be used as potential sources of natural anti-oxidants.
He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi
2016-01-01
Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.
He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi
2016-01-01
Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750
Cytotoxic Effects of Dillapiole on Embryonic Development of Mouse Blastocysts in Vitro and in Vivo
Chan, Wen-Hsiung
2014-01-01
We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole. PMID:24933639
Marie-Magdeleine, C; Udino, L; Philibert, L; Bocage, B; Archimede, H
2014-02-01
This study was carried out to evaluate the in vitro effect of Musa x paradisiaca stem and leaf against the parasitic nematode of small ruminants Haemonchus contortus. Three extracts (aqueous, methanolic and/or dichloromethane) of Musa x paradisiaca stem and leaf were tested in vitro on four developmental stages of H. contortus using egg hatch assay (EHA), larval development assay (LDA), L3 migration inhibition assay (LMI) and adult worm motility assay (AWM). The highly significant (P<0.0001) ability to stop larval development (inhibition >67% for each extract) and the negative effect of the dichloromethane extract of leaf on adult worm motility (43% of inhibition of motility after 24h of incubation) compared to the negative controls, suggest anthelmintic properties of Musa x paradisiaca stem and leaf against H. contortus. The active principles responsible for the activity could be secondary metabolites such as terpenoid and flavonoid compounds present in the leaf and stem of the plant. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cruz, L. C.; Batista, J. E. S.; Zemolin, A. P. P.; Nunes, M. E. M.; Lippert, D. B.; Royes, L. F. F.; Soares, F. A.; Pereira, A. B.; Posser, T.; Franco, J. L.
2014-01-01
We characterized, for the first time, the quality and identity of Brazilian Pampa biome honey and its antioxidant properties in vitro (FRAP, DDPH and ABTS). The potential protective effect of honey against oxidative stress induced by iron (Fe) and paraquat, (PQ) in a Drosophila melanogaster model (in vivo) was also tested. The results indicated that all honey samples tested showed antioxidant activity in vitro. Flies treated with honey showed increased lifespan and were protected against oxidative stress induced by Fe and PQ. Despite the high concentration of sugars in honey (approximately 70–80%), our results demonstrate a hypoglycemic-like effect of honey in Drosophila. Thus, this study demonstrates the high quality of Brazilian Pampa biome honey as well as its significant antioxidant activity in vitro and in vivo, pointing to the potential use of this natural product as an alternative in the therapy of oxidative stress-associated diseases. PMID:26904632
Cruz, L C; Batista, J E S; Zemolin, A P P; Nunes, M E M; Lippert, D B; Royes, L F F; Soares, F A; Pereira, A B; Posser, T; Franco, J L
2014-01-01
We characterized, for the first time, the quality and identity of Brazilian Pampa biome honey and its antioxidant properties in vitro (FRAP, DDPH and ABTS). The potential protective effect of honey against oxidative stress induced by iron (Fe) and paraquat, (PQ) in a Drosophila melanogaster model (in vivo) was also tested. The results indicated that all honey samples tested showed antioxidant activity in vitro. Flies treated with honey showed increased lifespan and were protected against oxidative stress induced by Fe and PQ. Despite the high concentration of sugars in honey (approximately 70-80%), our results demonstrate a hypoglycemic-like effect of honey in Drosophila. Thus, this study demonstrates the high quality of Brazilian Pampa biome honey as well as its significant antioxidant activity in vitro and in vivo, pointing to the potential use of this natural product as an alternative in the therapy of oxidative stress-associated diseases.
Zhai, Xiao-Ting; Chen, Jia-Quan; Jiang, Cui-Hua; Song, Jie; Li, Dong-Yu; Zhang, Hao; Jia, Xiao-Bin; Tan, Wei; Wang, Shu-Xia; Yang, Yi; Zhu, Fen-Xia
2016-12-24
Corydalis bungeana Turcz. (C. bungeana) is one of traditionally used medicines in China and possesses various biological effects, such as anti-inflammatory, antibacterial activity and inhibition of the immune function of the host. we studied the anti-inflammatory effect and molecular mechanism involved of C. bungeana both in vitro and in vivo model system in which the inflammatory response was induced by LPS treatment. Anti-inflammatory activity of C. bungeana was investigated by LPS-induced RAW 264.7 macrophages and BALB/c mice. The production and expression of pro-inflammatory cytokines were evaluated by Griess reagent, ELISA kits and RT-qPCR, respectively. Phosphorylation status of IκBα and p65 was illustrated by western blot assay. C. bungeana reduced the secretion of NO, TNF-α, IL-6 and IL-1β through inhibiting the protein expression of iNOS, TNF-α, IL-6 and IL-1β in vitro and in vivo. Western blot analysis suggested that C. bungeana supressed NF-κB activation via regulating the phosphorylation of IκBα and p65. Immunohistochemical assay also demostrated the histological inflammatory change in liver tissue. The results indicate that C. bungeana supresses the activation of NF-κB signaling pathway through inhibiting phosphorylation of IκBα and p65, which results in good anti-inflammatory effect. In addition, C. bungeana attenuates inflammatory reaction by supressing the expression of various inflammatory cytokines both in vivo and in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sikora, Joanna; Broncel, Marlena; Mikiciuk-Olasik, Elżbieta
2014-01-01
Purpose. The aim of the study was to analyze the effects of two-month supplementation with chokeberry preparation on the activity of angiotensin I-converting enzyme (ACE) in patients with metabolic syndrome (MS). During the in vitro stage of the study, we determined the concentration of chokeberry extract, which inhibited the activity of ACE by 50% (IC50). Methods. The participants (n = 70) were divided into three groups: I—patients with MS who received chokeberry extract supplements, II—healthy controls, and III—patients with MS treated with ACE inhibitors. Results. After one and two months of the experiment, a decrease in ACE activity corresponded to 25% and 30%, respectively. We documented significant positive correlations between the ACE activity and the systolic (r = 0.459, P = 0.048) and diastolic blood pressure, (r = 0.603, P = 0.005) and CRP. The IC50 of chokeberry extract and captopril amounted to 155.4 ± 12.1 μg/mL and 0.52 ± 0.18 μg/mL, respectively. Conclusions. Our in vitro study revealed that chokeberry extract is a relatively weak ACE inhibitor. However, the results of clinical observations suggest that the favorable hypotensive action of chokeberry polyphenols may be an outcome of both ACE inhibition and other pleotropic effects, for example, antioxidative effect. PMID:25050143
Ronchi, Silas Nascimento; Brasil, Girlandia Alexandre; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Scherer, Rodrigo; Costa, Helber B; Romão, Wanderson; Boëchat, Giovanna Assis Pereira; Lenz, Dominik; Fronza, Marcio; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2015-10-01
The aim of this study was to investigate the antihypertensive effect of leaves Mangifera indica L. using in vitro and in vivo assays. The ethanol extract of leaves of M. indica was fractionated to dichloromethanic, n-butyl alcohol and aqueous fractions. The chemical composition of ethanolic extract and dichloromethanic fraction were evaluated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Antioxidant activity was evaluated in the DPPH scavenging activity assay. Angiotensin-converting enzyme (ACE) inhibitory activity was investigated using in vitro and in vivo assays. The chronic antihypertensive assay was performed in spontaneously hypertensive rats (SHRs) and Wistar rats treated with enalapril (10 mg/kg), dichloromethanic fraction (100 mg/kg; twice a day) or vehicle control for 30 days. The baroreflex sensitivity was evaluated through the use of sodium nitroprusside and phenylephrine. Cardiac hypertrophy was evaluated by morphometric analysis. The dichloromethanic fraction exhibited the highest flavonoid, total phenolic content and high antioxidant activity. Dichloromethanic fraction elicited ACE inhibitory activity in vitro (99 ± 8%) similar to captopril. LC-MS/MS analysis revealed the presence of ferulic acid (48.3 ± 0.04 µg/g) caffeic acid (159.8 ± 0.02 µg/g), gallic acid (142.5 ± 0.03 µg/g), apigenin (11.0 ± 0.01 µg/g) and quercetin (203.3 ± 0.05 µg/g). The chronic antihypertensive effects elicited by dichloromethanic fraction were similar to those of enalapril, and the baroreflex sensitivity was normalized in SHR. Plasma ACE activity and cardiac hypertrophy were comparable with animals treated with enalapril. Dichloromethanic fraction of M. indica presented an antihypertensive effect, most likely by ACE inhibition, with benefits in baroreflex sensitivity and cardiac hypertrophy. Altogether, the results of the present study suggest that the dichloromethanic fraction of M. indica leaves may have potential as a promoting antihypertensive agent. © The Author(s), 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kui Lea; Ko, Na Young; Lee, Jun Ho
2011-12-15
4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-{alpha} and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc{epsilon}RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observedmore » in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. Black-Right-Pointing-Pointer The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.« less
Sanchez, Karla R; Mersha, Mahlet D; Dhillon, Harbinder S; Temburni, Murali K
2018-04-26
Bis-phenols, such as bis-phenol A (BPA) and bis-phenol-S (BPS), are polymerizing agents widely used in the production of plastics and numerous everyday products. They are classified as endocrine disrupting compounds (EDC) with estradiol-like properties. Long-term exposure to EDCs, even at low doses, has been linked with various health defects including cancer, behavioral disorders, and infertility, with greater vulnerability during early developmental periods. To study the effects of BPA on the development of neuronal function, we used an in vitro neuronal network derived from the early chick embryonic brain as a model. We found that exposure to BPA affected the development of network activity, specifically spiking activity and synchronization. A change in network activity is the crucial link between the molecular target of a drug or compound and its effect on behavioral outcome. Multi-electrode arrays are increasingly becoming useful tools to study the effects of drugs on network activity in vitro. There are several systems available in the market and, although there are variations in the number of electrodes, the type and quality of the electrode array and the analysis software, the basic underlying principles, and the data obtained is the same across the different systems. Although currently limited to analysis of two-dimensional in vitro cultures, these MEA systems are being improved to enable in vivo network activity in brain slices. Here, we provide a detailed protocol for embryonic exposure and recording neuronal network activity and synchrony, along with representative results.
Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash
2015-01-01
Objective: In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Materials and methods: Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Results: Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. Conclusion: This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts. PMID:26101754
Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash
2015-01-01
In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts.
Synthesis and biological activities of fluorinated chalcone derivatives.
Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio
2002-03-01
We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.
[In vitro activity of voriconazole and three other antifungal agents against dermatophytes].
Serrano-Martino, María del Carmen; Chávez-Caballero, Mónica; Valverde-Conde, Anastasio; Claro, Rosa María; Pemán, Javier; Martín-Mazuelos, Estrella
2003-11-01
The increase in infections due to dermatophytes in recent years led us to study the effectiveness of new antifungal formulations against these microorganisms. The in vitro activity of a new antifungal agent, voriconazole, was compared with three other antifungal agents, itraconazole, fluconazole and terbinafine, against 120 dermatophytes belonging to four species (61 Trichophyton mentagrophytes, 34 Microsporum canis, 13 M. gypseum and 12 T. rubrum). A broth microdilution method was used following the recommendations of the NCCLS document M38-P with some modifications. Terbinafine was the most active agent against the dermatophytes studied (MIC90 < or = 0.03 mg/ml), followed by voriconazole (MIC90, 0.25 micro g/ml) and itraconazole (MIC90, 0.5 micro g/ml). Fluconazole was the least active antifungal agent. The most susceptible species was M. canis. Voriconazole was found to have effective activity against dermatophytes.
Wolff, E A; Esselstyn, J; Maloney, G; Raff, H V
1992-04-15
Human IgG1 mAb dimers specific for either group B streptococci or Escherichia coli K1 bacteria were formed using chemical cross-linkers. The effect of antibody valency on biologic efficacy was investigated by comparing the IgG dimers against the corresponding IgG monomers. Binding activity and relative avidity were assessed using Ag binding and competition ELISA, and functional activity was analyzed using opsonophagocytic assays. These in vitro assays revealed that the dimers were greater than or equal to 50-fold more active than the monomers. A neonatal rat infection model showed the in vivo protective efficacy of the dimers was greater than or equal to 20-fold greater than that of the monomers. Enhancing the activity of mAb by chemical cross-linking may be a useful strategy for salvaging low affinity IgG mAb that possess poor functional properties.
Zhao, Xinghua; He, Xin; Zhong, Xiuhui
2016-12-05
Qingdaisan (Formulated Indigo powder, QDS) are widely used for treatment of aphtha, sore throat and bleeding gums in China. The aim of the study is to evaluate the anti-inflammatory, antibacterial and dental ulcer therapeutic effects of QDS. Dimethylbenzene-induced ear edema test and cotton pellet-induced granuloma test were used to evaluate anti-inflammatory activities of QDS on acute and chronic inflammatory. The healing time and local pathologic changes were used to assess the therapeutic effects of QDS on dental ulcer. The antibacterial activities of each component and the whole formulation of QDS were determined by agar well diffusion assay. High-dose and low-dose QDS were tested in this experiment and Gui Lin Watermelon Frost Powder (GLWFP) was used as positive control. Oral treatment with QDS significantly accelerated the healing of ulcerative lesions induced by phenol injury. The dental ulcers of high-dose QDS group were all healed within 6 days. It was shorter than those of low-dose QDS group and GLWFP group. Less quantity of inflammatory cells and plenty fibroblasts were observed in pathological section of QDS groups. QDS also exhibited significant anti-inflammatory activity both in acute and chronic animal models. Although some of the components exhibited antibacterial activities, the whole formulation of QDS didn't show any significant antibacterial activity in vitro. The study showed that QDS has obviously anti-inflammatory activity for both acute and chronic inflammatory, also has a remarkable effect for healing dental ulcer caused by phenol. QDS didn't have antibacterial activity to selected strains in vitro.
Slee, A M; O'Connor, J R
1983-01-01
The antibacterial activity of octenidine dihydrochloride (WIN 41464-2) against intact preformed in vitro plaques of four indigenous oral plaque-forming microorganisms, Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Actinomyces naeslundii, was studied. Both absolute (plaque bactericidal index) and relative (chlorhexidine coefficient) indices of antiplaque efficacy were established. Octenidine dihydrochloride compared favorably with chlorhexidine digluconate with respect to overall antiplaque potency in this in vitro plaque bactericidal model. These data indicate that prudent selection of treatment concentration and duration and frequency of exposure should provide an effective means to aid in controlling dental caries and Actinomyces-associated disease in vivo. PMID:6847170
Nehir El, Sedef; Karakaya, Sibel; Simsek, Sebnem; Dupont, Didier; Menfaatli, Esra; Eker, Alper Tolga
2015-07-01
The hydrolysis degrees of goat milk and kefir during simulated gastrointestinal digestion and some bioactivities of the resulting peptides after fermentation and digestion were studied. A static in vitro digestion method by the COST FA1005 Action INFOGEST was used and goat milk and kefir were partially hydrolyzed during the gastric phase and had above 80% hydrolysis after duodenal digestion. There were no differences between the digestibility of goat milk and kefir (p > 0.05). Goat milk and kefir displayed about 7-fold antioxidant activity after digestion (p < 0.05). Fermentation showed no effect on the calcium-binding capacity of the samples (p > 0.05), however, after in vitro digestion calcium-binding capacity of the goat milk and kefir increased 2 and 5 fold, respectively (p < 0.05). Digested goat milk and kefir showed a higher dose-dependent inhibitory effect on α-amylase compared to undigested samples (p < 0.05). α-Glucosidase inhibitory activities and in vitro bile acid-binding capacities of the samples were not determined at the studied concentrations.
Akomolafe, S F; Akinyemi, A J; Ogunsuyi, O B; Oyeleye, S I; Oboh, G; Adeoyo, O O; Allismith, Y R
2017-09-01
Caffeine and caffeic acid are two bioactive compounds that are present in plant foods and are major constituent of coffee, cocoa, tea, cola drinks and chocolate. Although not structurally related, caffeine and caffeic acid has been reported to elicit neuroprotective properties. However, their different proportional distribution in food sources and possible effect of such interactions are not often taken into consideration. Therefore, in this study, we investigated the effect of caffeine, caffeic acid and their various combinations on activities of some enzymes [acetylcholinesterase (AChE), monoamine oxidase (MAO) ecto-nucleoside triphosphate diphosphohydrolase (E-NTPase), ecto-5 1 -nucleotidase (E-NTDase) and Na + /K + ATPase relevant to neurodegeneration in vitro in rat brain. The stock concentration of caffeine and caffiec acid and their various proportional combinations were prepared and their interactions with the activities of these enzymes were assessed (in vitro) in different brain structures. The Fe 2+ and Cu 2+ chelating abilities of the samples were also investigated. The results revealed that caffeine, caffeic acid and their various combinations exhibited inhibitory effect on activities of AChE, MAO, E-NTPase and E-NTDase, but stimulatory effect on Na + /K + ATPase activity. The combinations also exhibited Fe 2+ and Cu 2+ chelating abilities. Considering the various combinations, a higher caffeine to caffeic acid ratio produced significantly highest enzyme modulatory effects; these were significantly lower to the effect of caffeine alone but significantly higher than the effect of caffeic acid alone. These findings may provide new insight into the effect of proportional combination of these bioactive compounds as obtained in many foods especially with respect to their neuroprotective effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Guimarães, Danielle A.; Rizzi, Elen; Ceron, Carla S.; Martins-Oliveira, Alisson; Gerlach, Raquel F.; Shiva, Sruti; Tanus-Santos, Jose E.
2015-01-01
Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. PMID:26343345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk
The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferasemore » reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [{sup 3}H]{sub 2}O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks. - Highlights: • Currently used pesticides possess endocrine-disrupting (ED) potential in vitro. • ED effects can be mediated via sex hormone receptors and/or the aromatase enzyme. • Additive mixture effects on androgen receptor transactivity were observed.« less
Franchi, A M; Di Girolamo, G; Farina, M; de los Santos, A R; Martí, M L; Gimeno, M A
2001-04-01
Recent studies have shown that some nonsteroidal antiinflammatory drugs (NSAIDS) inhibited the inducible NO synthase (iNOS) without direct effect on the catalytic activity of this enzyme. This study was conducted to investigate the in vitro and in vivo effects of lysine clonixinate (LC) and indomethacin (INDO) on NOS activity in rat lung preparation. LC is a drug with antiinflammatory, antipyretic, and analgesic action. In the in vitro experiments, rats were injected with saline or lipopolysaccharide (LPS) and killed 6 h after treatment. Lung preparations were incubated with LC at 2.3 x 10(-5) M or 3.8 x 10(-5) M. The minimum concentration did not modify NOS activity in control or LPS-treated rats but the maximum dose inhibited increased NO production induced by LPS. Furthermore, INDO at 10(-6) M had no effect on enzymatic activity in control or LPS-treated rats. In the in vivo experiments, 40 mg/kg of LC were injected ip. Such a dose did not affect basal production of NO. When LC and LPS were injected simultaneously 6 h before sacrifice, a significant decrease in LPS-induced NOS activity was observed. INDO 10 mg/kg injected in control animals had no effect on NOS activity and did not block LPS induced stimulation of NO production when injected simultaneously. Finally, when LC (40 mg/kg) was injected 3 h after LPS, the enzymatic activity remained unchanged. Expression of iNOS was detected by Western blotting in rats treated with LPS plus 4, 10, 20, and 40 mg/kg of LC. The lowest dose was the only one showing no effect on LPS-induced increase of iNOS. In short, LC is a NSAID with inhibitory action on the expression of LPS-induced NOS, effect that was not seen with INDO in our experimental conditions. Copyright 2001 Academic Press.
Akram, Muhammad; Usmanghani, Khan; Ahmed, Iqbal; Azhar, Iqbal; Hamid, Abdul
2014-05-01
Currently, natural products have been used in treating gouty arthritis and are recognized as xanthine oxidase inhibitors. Current study was designed to evaluate in vitro xanthine oxidase inhibitory potential of Gouticin and its ingredients extracts and in vivo hypouricemic activity of gouticin tablet 500 mg twice daily. Ethanol extracts of Gouticin and its ingredients were evaluated in vitro, at 200, 100, 50, 25 μ g/ml concentrations for xanthine oxidase inhibitory activity. IC(50) values of Gouticin and its ingredients were estimated. Further, in vivo therapeutic effect of Gouticin was investigated in comparison with allopathic medicine (Allopurinol) to treat gout. Total patients were 200 that were divided into test and control group. Herbal coded medicine (Gouticin) was given to test group and allopathic medicine allopurinol was administered to control group. In vitro, Gouticin has the highest percent inhibition at 96% followed by Allopurinol with 93% inhibition. In vivo study, mean serum uric acid level of patients was 4.62 mg/dl and 5.21mg/dl by use of Gouticin and Allopurinol at end of therapy. The study showed that herbal coded formulation gouticin and its ingredients are potential sources of natural xanthine oxidase inhibitors. Gouticin 500 mg twice daily is more effective than the allopurinol 300mg once daily in the management of gout.
Antileishmanial Activity of Liposomal Clarithromycin against Leishmania Major Promastigotes.
Sazgarnia, Ameneh; Zabolinejad, Naghmeh; Layegh, Pouran; Rajabi, Omid; Berenji, Fariba; Javidi, Zari; Salari, Roshanak
2012-11-01
Cutaneous leishmaniasis is a common parasitic disease which is endemic in some parts of the world. In vitro and in vivo studies have shown azithromycin efficacy on some Leishmania species. Because of structural similarity between clarithromycin and azithromycin and efficacy of clarithromycin against intracellular organisms and due to the absence of previous studies in this respect, we decided to evaluate the efficacy of clarithromycin against promastigotes of L. major in vitro. First, liposomal and non- liposomal clarithromycin were prepared, then both forms of the drug were incubated with promastigotes for 24 hr in NNN culture media without red phenol in the presence of 5% FCS with different concentrations as follows: 20, 40, 80, 100, 200 and 500 µg/ml. According to the results, clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major. The concentration of drug that killed 50% of parasites (ED 50) was 169 and 253.6 µg/ml for liposomal and non- liposomal forms, respectively which shows that lower concentrations of liposomal drug are required to have the same effect as non- liposomal drug and the liposomal form of the drug is more effective than non- liposomal form. Clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major.
Li, Kejuan; Lei, Zhongfang; Hu, Xuansheng; Sun, Shuang; Li, Shuhong; Zhang, Zhenya
2015-08-22
Helicteres angustifolia L. (H. angustifolia L.) has been used as traditional medicine in the treatment of cancer in China and Laos. Its medical benefits, however, are still lacking of scientific evidence. Two extracts successively obtained from the root of H. angustifolia L., namely the aqueous root extract (ARE) and the ethanolic root extract (ERE), were used to evaluate the antioxidant and anticancer activities in vitro, and the antitumor efficacy of ARE was examined in vivo, respectively. ARE and ERE were extracted successively from H. angustifolia L. root with water and ethanol. In vitro antioxidant activities were assessed by radicals scavenging assay, ferrous chelating assay and reducing power assay. In vitro anticancer activities of ARE and ERE were evaluated by their cytotoxic effects against three human cancer cell lines. In addition, the anti-tumor activities of ARE in vivo were assessed by using Ht1080 (human fibrosarcoma cell line Ht1080) tumor xenografts mice. BALB/c nude mice were orally administrated with 200mg/kg/d of ARE. The tumor inhibition rate was determined on day 42 after treatment by using histopathology analysis of the tumor tissues. Furthermore, relevant biochemical parameters in blood were analyzed to monitor their cytotoxic effect. In vitro assays indicated that ARE possessed relatively higher antioxidant and anticancer activities than ERE, with IC50 values of 82.31 ± 9.62, 62.50 ± 6.99, and 127.49 ± 2.9 μg/mL against DLD-1, A549, and HepG2 cells, respectively. In vivo tumor inhibition experiments suggested that ARE possessed significant antitumor efficacy in BALB/c nude mice with a tumor inhibition rate of 49.83 ± 14.38% (p<0.05) and little toxicity was observed to the host. ARE from H. angustifolia L. possessed high antioxidant activities is active against liver cancer HepG2, lung cancer A549 and colon cancer DLD-1 cells in vitro and tumor xenografts bearing BALB/c nude mice in vivo. Further studies on elucidation of the mechanisms involved and isolation of the active components may provide more valuable information for the development of functional products from H. angustifolia L. and their application in cancer treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wang, Xuping; Yang, Lei; Yang, Xiaolan; Tian, Yanhua
2014-06-01
Hops (Humulus lupulus L.) contain 40-140 mg g(-1) polyphenols. The objective of this study was to determine the phenolic composition of a high-purity (total phenolic content = 887 mg g(-1) ) hop polyphenol extract (HPE) and evaluate its antioxidant activities in vivo and in vitro and its antimutagenic activity. The antioxidant activity of HPE was compared with the activity of green tea polyphenols. The phenolic compositions of HPE were more than 55% proanthocyanidins and more than 28% flavonoid glycosides. In vitro, HPE effectively scavenged α,α-diphenyl-β-picrylhydrazyl, hydroxyl and superoxide anion radicals, and inhibited DNA oxidative damage. In vivo, oral HPE at a polyphenol dose of 200-800 mg kg(-1) body weight significantly prevented a bromobenzene-induced decrease in liver superoxide dismutase and glutathione peroxidase activity, and decreased levels of liver thiobarbituric acid reactive substances in bromobenzene-treated mice. An oral dose of 20-80 mg kg(-1) body weight HPE significantly reduced the frequency of bone marrow micronuclei induced by cyclophosphamide. The antioxidant activities of hop polyphenols in vitro and in vivo were higher than green tea polyphenols at the same concentration. Hop polyphenols had the same or higher antioxidant activity than tea polyphenols. Hop polyphenols might be useful as natural antioxidants and antimutagens. © 2013 Society of Chemical Industry.
Xu, Fang-Tian; Li, Hong-Mian; Yin, Qing-Shui; Liang, Zhi-Jie; Huang, Min-Hong; Chi, Guang-Yi; Huang, Lu; Liu, Da-Lie; Nan, Hua
2015-01-01
To investigate whether activated autologous platelet-rich plasma (PRP) can promote proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) in vitro. hASCs were isolated from lipo-aspirates, and characterized by specific cell markers and multilineage differentiation capacity after culturing to the 3rd passage. PRP was collected and activated from human peripheral blood of the same patient. Cultured hASCs were treated with normal osteogenic inductive media alone (group A, control) or osteogenic inductive media plus 5%, 10%, 20%, 40%PRP (group B, C, D, E, respectively). Cell proliferation was assessed by CCK-8 assay. mRNA expression of osteogenic marker genes including alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and core binding factor alpha 1 (Cbfa1) were determined by Real-Time Quantitative PCR Analysis (qPCR). Data revealed that different concentrations of activated autologous PRP significantly promoted hASCs growth in the proliferation phase compared to the without PRP group and resulted in a dose-response relationship. At 7-d and 14-d time point of the osteogenic induced stage, ALP activity in PRP groups gradually increased with the increasing of concentrations of PRP and showed that dose-response relationship. At 21-d time point of the osteogenic induced stage, PRP groups make much more mineralization and mRNA relative expression of ALP, OPN, OCN and Cbfa1 than that without PRP groups and show that dose-response relationship. This study indicated that different concentrations of activated autologous PRP can promote cell proliferation at earlier stage and promote osteogenic differentiation at later stage of hASCs in vitro. Moreover, it displayed a dose-dependent effect of activated autologous PRP on cell proliferation and osteogenic differentiation of hASCs in vitro. PMID:25901195
Zhao, Jinyan; Chen, Xuzheng; Lin, Wei; Wu, Guangwen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun
2013-03-01
The aim of this study was to evaluate the therapeutic efficacy of Rubus aleaefolius Poir total alkaloids (TARAP) against hepatocellular carcinoma growth in vivo and in vitro, and to investigate the possible molecular mechanisms mediating its biological activity. Nude mice were implanted with HepG2 human hepatocellular carcinoma cells and fed with vehicle (physiological saline) or 3 g/kg/d dose of TARAP, 5 days per week, for 21 days. The in vivo efficacy of TARAP against tumor growth was investigated by evaluating its effect on tumor volume and tumor weight in mice with HCC xenografts and its adverse effect was determined by measuring the body weight gain. The in vitro effect of TARAP on the viability of HepG2 cells was determined by MTT assay. HepG2 cell morphology was observed via phase-contrast microscopy. Apoptosis in tumor tissues or in HepG2 cells was analyzed by TUNEL assay or FACS analysis with Annexin V/PI, respectively. The loss of mitochondrial membrane potential in HepG2 cells was determined via JC-1 staining followed by FACS analysis. Activation of caspase-9 and -3 in HepG2 cells was examined by a colorimetric assay. The mRNA and protein expression of Bcl-2 and Bax in tumor tissues were measured by RT-PCR and immunohistochemistry. TARAP reduced tumor volume and tumor weight, but had no effect on the body weight gain in HCC mice. TARAP decreased the viability of HepG2 cells and induced cell morphological changes in vitro in a dose- and time-dependent manner. In addition, TARAP induced apoptosis both in tumor tissues and in HepG2 cells. Moreover, TARAP treatment resulted in the collapse of mitochondrial membrane potential in HepG2 cells, as well as the activation of caspase-9 and -3. Furthermore, administration of TARAP increased the pro-apoptotic Bax/Bcl-2 ratio in HCC mouse tumors, at both transcriptional and translational levels. TARAP inhibits hepatocellular carcinoma growth both in vivo and in vitro probably through the activation of mitochondrial-dependent apoptosis, which may, in part, explain its anticancer activity. These results suggest that total alkaloids in Rubus aleaefolius Poir may be a potential novel therapeutic agent for the treatment of hepatocellular carcinoma and other cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, M.S.; Jayaprada, P.; Rao, K.V.R.
1991-03-01
The increasing contamination of the aquatic environment by the indiscriminate and widespread use of different kinds of pesticides is a serious problem for environmental biologists. Organochlorine insecticides are more hazardous since they are not only more toxic but also leave residues in nature. The deleterious effects of aldrin on several crustaceans have been studied. But studies concerning the impact of aldrin on biochemical aspects of crustaceans are very much limited. The present study is aimed at probing the in vitro effects of aldrin on the acid and alkaline phosphatase activity levels in selected tissues of penaeid prawn, Metapenaeus monoceros (Fabricius).
Bagheri, Shahrokh; Ahmadvand, Hassan; Khosrowbeygi, Ali; Ghazanfari, Farshid; Jafari, Narges; Nazem, Habibolah; Hosseini, Reza Haji
2013-01-01
Objective To assess various antioxidative activities of Satureja khozestanica essential oil (SKE) and its effect on oxidation of low density lipoprotein (LDL) induced by CuSO4 in vitro by monitoring the formation of conjugated dienes and malondialdehyde (MDA). Methods The formation of conjugated dienes, lag time and MDA were measured. Inhibition of this Cu-induced oxidation was studied in the presence of several concentrations of SKE. Also total antioxidant activity and free radical scavenging of SKE were determinated. Results It was demonstrated that SKE was able to inhibit LDL oxidation and decrease the resistance of LDL against oxidation. The inhibitory effects of SKE on LDL oxidation were dose-dependent at concentrations ranging from 50 to 200 µg/mL. Total antioxidant capacity of SKE was (3.20±0.40) nmol of ascorbic acid equivalents/g SKE. The SKE showed remarkable scavenging activity on 2, 2-diphenyl-picrylhydrazyl, IC50 (5.30±0.11) ng/mL. Conclusions This study shows that SKE is a source of potent antioxidants and prevents the oxidation of LDL in vitro and it may be suitable for use in food and pharmaceutical applications. PMID:23570012
Mulik, Rohit S; Mönkkönen, Jukka; Juvonen, Risto O; Mahadik, Kakasaheb R; Paradkar, Anant R
2012-11-01
Curcumin, a natural phytoconstituent, is known to be therapeutically effective in the treatment of various cancers such as, breast cancer, lung cancer, pancreatic cancer, brain cancer, etc. However, low bioavailability and photodegradation of curcumin hampers its overall therapeutic efficacy. Anionic polymerization method was employed for the preparation of apolipoprotein-E3 mediated curcumin loaded poly(butyl)cyanoacrylate nanoparticles (ApoE3-C-PBCA) and characterized for size, zeta potential, entrapment efficiency, photostability, morphology, and in vitro release study. ApoE3-C-PBCA were found to be effective against SH-SY5Y neuroblastoma cells compared to curcumin solution (CSSS) and curcumin loaded PBCA nanoparticles (C-PBCA) from in vitro cell culture investigations. Flow cytometry techniques employed for the detection of anticancer activity revealed enhanced activity of curcumin against SH-SY5Y neuroblastoma cells with ApoE3-C-PBCA compared to CSSS and C-PBCA, and apoptosis being the underlying mechanism. Present study revealed that ApoE3-C-PBCA has tremendous potential to develop into an effective therapeutic treatment modality against brain cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Xiaobing; Lu, Wenhua; Hu, Yumin; Wen, Shijun; Qian, Chaonan; Wu, Wenjing; Huang, Peng
2013-11-01
Elevated aerobic glycolysis in cancer cells (Warburg effect) has been observed in many tumor types including nasopharyngeal carcinoma (NPC), which can often be detected clinically using FDG-PET. However, the role of glycolysis in supporting the growth of NPC cells and its therapeutic implications still remain to be investigated. In the present study, we showed that the LDH inhibitor oxamate significantly suppressed NPC cell proliferation in vitro and tumor growth in vivo, yet exhibited minimum toxicity to normal nasopharyngeal epithelial cells in vitro and was well tolerated in mice. Moreover, oxamate exhibited cytotoxic effect in NPC cells under hypoxia. Mechanistic study showed that oxamate significantly inhibited LDH activity, leading to a substantial decrease in glucose uptake and lactate production. Combination of oxamate with a mitochondrial respiratory complex I inhibitor resulted in a significant depletion of cellular ATP and a synergistic killing of cancer cells. Our results suggest that inhibition of glycolysis by oxamate is an effective therapeutic strategy for treatment of NPC and that combination of this compound with mitochondrial-targeted agents may improve the therapeutic activity.
Knudsen, J D; Frimodt-Møller, N; Espersen, F
1995-01-01
The purpose of the study was to investigate the correlation of in vitro activity with the in vivo effect and the pharmacokinetics of penicillin in the treatment of infections with pneumococci with various susceptibilities to penicillin. We used 10 pneumococcal strains for which penicillin MICs ranged from 0.016 to 8 micrograms/ml. Time-kill curve experiments were performed with all strains. We found that the effect of penicillin in vitro is concentration independent, with a maximum effect at two to four times the MIC for penicillin-susceptible as well as penicillin-resistant pneumococci. The mouse peritonitis model with an inoculum of approximately 10(6) CFU, to which mucin was added, resulted in a reproducible lethal infection with the pneumococci. The 50% effective dose was determined for each strain, and we found a highly significant correlation between the log MIC and the log 50% effective dose of penicillin against these strains (P < 0.01). Furthermore, it was shown that the most important pharmacokinetic parameter determining the effect of penicillin in vivo was the time that the concentration of penicillin in serum was greater than the MIC. PMID:7574511
A novel taspine derivative suppresses human liver tumor growth and invasion in vitro and in vivo.
Wang, Nan; Zheng, Lei; Zhan, Yingzhuan; Zhang, Yanmin
2013-09-01
Taspine is an attractive target of research due to the anticancer and anti-angiogenic effects shown by in vitro and in vivo experiments. The present study investigated the role of tas1611, which is a derivative of taspine that has increased activity and solubility, in the regulation of the invasive properties of the SMMC-7721 liver cell line in vitro and in tumor inhibition in vivo . The proliferation of the SMMC-7721 cells was examined using the tetrazole blue colorimetric method. Matrigel ® invasion chamber assays and zymogram analyses were performed to assess the inhibitory effect of tas1611 on cell invasion. Finally, a solid tumor athymic mouse model was employed to further investigate the anti-tumor effect of this compound. The results revealed that tas1611 had a marked inhibitory effect on the invasion of the SMMC-7721 cells and that this effect was associated with the activity and expression levels of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, tas1611 was able to inhibit tumor growth effectively in a solid tumor SMMC-7721 athymic mouse model. In conclusion, tas1611 may serve as a promising novel therapeutic candidate for the treatment of metastatic liver cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, I.A.; Woodsworth, M.; Eidinger, D.
1979-01-01
When normal mouse spleen cells are cultured in vitro, large numbers of cells develop that produce antibody toward antigens found on bromelain-treated mouse erythrocytes (BrMRBC). The in vitro culture also generates T cells that mediate DTH toward these antigens. We have suggested that under in vivo conditions, suppressor T cells maintain these immune responses at a low level but that this suppression wanes when the cells are cultured in vitro. The present study examines the effect of concanavalin A (Con A) on the in vitro development of humoral and cell-mediated immunity to BrMRBC. Mitogenic concentrations of Con A prevented themore » development of both the PFC and T/sub DTH/ responses toward BrMRBC. The Con A-induced suppression was due to the induction of suppressor T cells; thus the addition of Con A-activated cells to fresh spleen cell cultures prevented the development of both the PFC and T/sub DTH/ response against BrMRBC.« less
Du, P; Zhu, S; Lü, P
2001-03-01
To study the antibacterial activity of 20 Chinese medicinal materials for helicobacter pylori in vitro and the culture of hylicobacter pylori. Doubled-diluted method and tomato juice culture medium were adopted. The detecting ratio of tomato juice culture medium to hylicobacter pylori was equal to that of skirrow culture medium; Radix Scutellariae, Flos Lonicerae, Radix Isatidis, Indigo Naturalis, Fructus Chebulae, Semen Ginkgo, Cortex Phellodendri, Rhizoma Corydalis and Cortex Fraxini have obvious effect of antibacterium to hyliocobater pylori.
Anwar Ibrahim, Doa'a; Noman Albadani, Rowida
2014-01-01
Green tea and hibiscus are widely consumed as traditional beverages in Yemen and some regional countries. They are relatively cheap and the belief is that they improve health state and cure many diseases. The aim of this study was to evaluate the potential protective and antibacterial activity of these two famous plants in vitro through measuring their antibacterial activity and in vivo through measuring nonenzymatic kidney markers dysfunction after induction of nephrotoxicity by gentamicin. Gram positive bacteria like MRSA (methicillin resistant Staphylococcus aureus) were isolated from hospitalized patients' different sources (pus and wound) and Gram negative bacteria including E. coli and P. aeruginosa were used in vitro study. In addition, the efficacy of these plants was assessed in vivo through measuring nonenzymatic kidney markers including S. creatinine and S. urea. Green tea was shown antimicrobial activity against MRSA with inhibition zone 19.67 ± 0.33 mm and MIC 1.25 ± 0.00 mg/mL compared with standard reference (vancomycin) 18.00 ± 0.00 mg/mL. Hibiscus did not exhibit a similar effect. Both Hibiscus- and green tea-treated groups had nephroprotective effects as they reduced the elevation in nonenzymatic kidney markers. We conclude that green tea has dual effects: antimicrobial and nephroprotective.
Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M
2010-05-01
To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.
Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.
Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J
2014-08-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flanagan, Talia; Martin, Paul; Gillen, Michael; Mathews, David; Lisbon, Eleanor; Kruusmägi, Martin
2017-02-01
Fostamatinib is an orally dosed phosphate prodrug that is cleaved by intestinal alkaline phosphatase to the active metabolite R406. Clinical studies were performed to assess the effect of food and ranitidine on exposure, to support in vitro-in vivo relationships (IVIVR) understanding and formulation transitions and to investigate absolute oral bioavailability. A series of in vitro dissolution and clinical pharmacokinetic studies were performed to support the design and introduction of a new formulation, understand the impact of changes in in vitro dissolution on in vivo performance for two fostamatinib formulations, to characterize the effects of food and ranitidine on exposure, and determine the absolute oral bioavailability. The in vivo performance of fostamatinib was generally insensitive to changes in in vitro dissolution performance, although marked slowing of the dissolution rate did impact exposures. Food and ranitidine had minor effects on R406 exposure that were not considered clinically relevant. The absolute oral bioavailability of fostamatinib was 54.6 %. The absolute oral bioavailability of fostamatinib was ~55 %. Food and ranitidine had minor effects on R406 exposure. An in vitro dissolution versus clinical performance relationship was determined that supported formulation transitions.
In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.
Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H
1996-01-01
A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017
[Effect of Kaixinsan on monoamine oxidase activity].
Wang, Shi; Dong, Xian-Zhe; Tan, Xiao; Wang, Yu-Ning; Liu, Ping
2016-05-01
To observe the effect of antidepressant medicine prescription, Kaixinsan (KXS) on monoamine oxidase (MAO) activity, and explore the mechanism of KXS in elevating the levels of monoamine neurotransmitter from the perspective of metabolism, in vitro enzyme reaction system and C6 neuroglial cells, the effect of KXS at different concentrations on MAO-A and MAO-B activity was observed. In animal studies, the effect of KXS at different concentrations on MAO-A and MAO-B activities of brain mitochondrialin normal rats and solitary chronic unpredictable moderate stress (CMS) model rats after intragastric administration for 1, 2, 3 weeks. Results showed that 10 g•L⁻¹ KXS could significantly reduce the activity of MAO-A and MAO-B in enzyme reaction system; and in C6 cells, KXS within 0.625-10 g•L⁻¹ concentration range had no significant effect on the activity of MAO-A, but had obvious inhibitory effect on the activity of MAO-B in a dose dependent manner. KXS had no significant effect on the activity of MAO-A and MAO-B in brains of normal rats after action for 1, 2, 3 weeks. After 2 and 3 weeks treatment with 338 mg•kg⁻¹ dose KXS, MAO-A activity in the brain of CMS rats was decreased as compared with the model group (P<0.05), while KXS had no significant effect on MAO-B activity after 1, 2, 3 weeks of treatment. The results indicated that KXS had certain effect on in vitro MAO-A and MAO-B activity, had no effect on brain MAO-A and MAO-B activity in vivo in normal rats, and had certain inhibitory effect on MAO-A activity in brains of CMS rats. Copyright© by the Chinese Pharmaceutical Association.
Puttananjaiah, Shilpa; Chatterji, Anil; Salimath, Bharati
2014-01-01
BACKGROUND/OBJECTIVES Abundant consumption of seaweeds in the diet is epidemiologically linked to the reduction in risk of developing cancer. In larger cases, however, identification of particular seaweeds that are accountable for these effects is still lacking, hindering the recognition of competent dietary-based chemo preventive approaches. The aim of this research was to establish the antiproliferative potency and angiosuppressive mode of action of Stoechospermum marginatum seaweed methanolic extract using various experimental models. MATERIALS/METHODS Among the 15 seaweeds screened for antiproliferative activity against Ehrlich ascites tumor (EAT) cell line, Stoechospermum marginatum extract (SME) was found to be the most promising. Therefore, it was further investigated for its anti-proliferative activity in-vitro against choriocarcinoma (BeWo) and non-transformed Human embryonic kidney (HEK 293) cells, and for its anti-migratory/tube formation activity against HUVEC cells in-vitro. Subsequently, the angiosuppressive activity of S. marginatum was established by inhibition of angiogenesis in in-vivo (peritoneal angiogenesis and chorioallantoic membrane assay) and ex-vivo (rat cornea assay) models. RESULTS Most brown seaweed extracts inhibited the proliferation of EAT cells, while green and red seaweed extracts were much less effective. According to the results, SME selectively inhibited proliferation of BeWo cells in-vitro in a dose-dependent manner, but had a lesser effect on HEK 293 cells. SME also suppressed the migration and tube formation of HUVEC cells in-vitro. In addition, SME was able to suppress VEGF-induced angiogenesis in the chorio allantoic membrane, rat cornea, and tumor induced angiogenesis in the peritoneum of EAT bearing mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provided further evidence of its angiosuppressive activity. CONCLUSIONS Altogether, the data underline that VEGF mediated angiogenesis is the target for the angiosuppressive action of SME and could potentially be useful in cancer prevention or treatment involving stimulated angiogenesis. PMID:25110556
Zhang, Qiuya; Ma, Xiaoyan; Dzakpasu, Mawuli; Wang, Xiaochang C
2017-08-01
The widespread use of organic ultraviolet (UV) filters in personal care products raises concerns about their potentially hazardous effects on human and ecosystem health. In this study, the toxicities of four commonly used benzophenones (BPs) UV filters including benzophenone (BP), 2-Hydroxybenzophenone (2HB), 2-Hydroxy-4-methoxybenzophenone (BP3), and 2-Hydroxy-4-methoxybenzophenone-5-sulfonicacid (BP4) in water were assayed in vitro using Vibrio fischeri, SOS/umu assay, and yeast estrogen screen (YES) assay, as well as in vivo using zebrafish larvae. The results showed that the luminescent bacteria toxicity, expressed as logEC 50 , increased with the lipophilicity (logKow) of BPs UV filters. Especially, since 2HB, BP3 and BP4 had different substituent groups, namely -OH, -OCH 3 and -SO 3 H, respectively, these substituent functional groups had a major contribution to the lipophilicity and acute toxicity of these BPs. Similar tendency was observed for the genotoxicity, expressed as the value of induction ratio=1.5. Moreover, all the target BPs UV filters showed estrogenic activity, but no significant influences of lipophilicity on the estrogenicity were observed, with BP3 having the weakest estrogenic efficiency in vitro. Although BP3 displayed no noticeable adverse effects in any in vitro assays, multiple hormonal activities were observed in zebrafish larvae including estrogenicity, anti-estrogenicity and anti-androgenicity by regulating the expression of target genes. The results indicated potential hazardous effects of BPs UV filters and the importance of the combination of toxicological evaluation methods including in vitro and in vivo assays. Copyright © 2017 Elsevier Inc. All rights reserved.
Khan, Fouzia; Baqai, Rakhshanda
2010-01-01
Vaginal candidiasis is the most common infection of females. A large variety of antifungal drugs are used for treatment. The objective of this study was isolation and identification of Candida from high vaginal swabs and in vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin against Candida. Two hundred and fifty high vaginal swabs were collected from females reporting at different hospitals of Karachi. Wet mount was performed to observe the budding cells of Candida. Vaginal swabs were cultured on Sabouraud's dextrose agar with added antibiotics. Plates were incubated at room temperature for seven days. Chlamydospores of Candida albicans were identified on corn meal agar. Species of Candida were identified on Biggy agar. In vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin was performed by MIC (Minimum inhibitory concentration), well diffusion method and disc diffusion method. Out of 250 high vaginal swabs, Candida species were isolated in 100 (40%) of cases. Out of 100, C. albican 30 (30%), C. tropicalis 21 (21%), C. parapsillosis 10 (10%), C. parakrusi 8 (8%), C. glabrata 8 (8%), C. krusei 3 (3%) were isolated. In vitro antifungal activity indicated Clotrimazole (MIC 16 and 8 microg/ml) effective against 68 (70%) of Candida SPP, Fluconazole (MIC 64 and 32 microg/ml) effective against 29 (36.2%) and Nystatin disc (100 units) was 51 (63.5%) effective. C. albicans was mainly isolated. Clotrimazole was more effective as compared to Fluconazole and Nystatin. Antifungal susceptibility testing should be determined before therapy to avoid treatment failures.
Gastroprotective mechanism of Bauhinia thonningii Schum.
Abdelwahab, Siddig Ibrahim; Taha, Manal Mohamed Elhassan; Abdulla, Mahmood Ameen; Nordin, Norazie; Hadi, A Hamid A; Mohan, Syam; Jayapalan, Jaime Jacqueline; Hashim, Onn Haji
2013-06-21
Bauhinia thonningii Schum. (Cesalpiniaceae) is locally known as Tambarib and used to treat various diseases including gastric ulcer. The current study aims to evaluate the gastroprotecive mechanism(s) of methanolic (MEBT) and chloroform (CEBT) extracts of Bauhinia thonningii leaves on ethanol-induced gastric ulceration. Gastric acidity, quantification and histochemistry of mucus, gross and microscopic examination, nitric oxide, lipid peroxidation, 2D gel electrophoresis, mass spectroscopy and biochemical tests were utilized to assess the mechanism(s) underlying the gastroprotective effects of MEBT and CEBT. Effect of these extracts into lipopolysaccharide/interferon-γ stimulated rodent cells were done in vitro. In vitro and in vivo toxicity studies were also conducted. Antioxidant activities of MEBT and CEBT were examined using DPPH, FRAP and ORAC assays. Phytochemical analyses of MEBT and CEBT were conducted using chemical and spectroscopic methods. Gross and histological features confirmed the anti-ulcerogenic properties of Bauhinia thonningii. Gastroprotective mechanism of MEBT was observed to be mediated through the modulation of PAS-reactive substances, MDA and proteomics biomarkers (creatine kinase, malate dehydrogenase, ATP synthase, actin and thioredoxin). MEBT and CEBT showed no significant in vitro and in vivo effects on nitric oxide. Methanolic extract (MEBT) showed superior gastroprotective effects, polyphenolic content and antioxidant activities compared to CEBT. The plant extracts showed no in vitro or in vivo toxicity. It could be concluded that MEBT possesses anti-ulcer activity, which could be attributed to the inhibition of ethanol-induced oxidative damage and the intervention in proteomic pathways but not the nitric oxide pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Enomoto, Hirayuki; Tao, Lihua; Eguchi, Ryoji; Sato, Ayuko; Honda, Masao; Kaneko, Shuichi; Iwata, Yoshinori; Nishikawa, Hiroki; Imanishi, Hiroyasu; Iijima, Hiroko; Tsujimura, Tohru; Nishiguchi, Shuhei
2017-09-22
Type I-interferon (IFN) is considered to exert antitumor effects through the inhibition of cancer cell proliferation and angiogenesis. Based on the species-specific biological activity of IFN, we evaluated each antitumor mechanism separately. We further examined the antitumor effects of type I-IFN combined with sorafenib. Human IFN (hIFN) significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) Hep3B cells and the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Although mouse IFN (mIFN) did not inhibit the proliferation of Hep3B cells in vitro, mIFN, as well as hIFN, showed significant antitumor effects in mouse Hep3B cell-xenograft model. Furthermore, mIFN treatment amplified the antitumor effects of sorafenib in vivo with the suppression of angiogenesis. The DNA chip analysis showed that the mIFN treatment promoted the antitumor signal pathways of sorafenib, including anti-angiogenic effects. Unlike the effects observed in in vitro experiments, mIFN showed an antitumor effect in the mouse Hep3B cell-xenograft model, suggesting a role of the anti-angiogenic activity in the in vivo tumoricidal effects of type I-IFN. In addition, our findings suggested the clinical utility of combination therapy with type І-IFN and sorafenib for HCC.
Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.
Renault, Renaud; Sukenik, Nirit; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Peyrin, Jean-Michel; Bottani, Samuel; Monceau, Pascal; Moses, Elisha; Vignes, Maéva
2015-01-01
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.
Muller, Joséphine; Bolomsky, Arnold; Dubois, Sophie; Duray, Elodie; Stangelberger, Kathrin; Plougonven, Erwan; Lejeune, Margaux; Léonard, Angélique; Marty, Caroline; Hempel, Ute; Baron, Frédéric; Beguin, Yves; Cohen-Solal, Martine; Ludwig, Heinz; Heusschen, Roy; Caers, Jo
2018-05-10
Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only causes morbidity but also negatively impacts survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission. We have previously shown that MELK plays a central role in proliferation-associated high-risk multiple myeloma and its inhibition with OTSSP167 resulted in decreased tumor load. MELK inhibition in bone cells has not yet been explored, although some reports suggest factors downstream of MELK stimulate osteoclast activity and inhibit osteoblast activity, which makes MELK inhibition a promising therapeutic approach. Therefore, we assessed the effect of OTSSP167 on bone cell activity and the development of myeloma-induced bone disease. OTSSP167 inhibited osteoclast activity in vitro by decreasing progenitor viability as well as via a direct anti-resorptive effect on mature osteoclasts. In addition, OTSSP167 stimulated matrix deposition and mineralization by osteoblasts in vitro. This combined anti-resorptive and osteoblast-stimulating effect of OTSSP167 resulted in the complete prevention of lytic lesions and bone loss in myeloma-bearing mice. Immunohistomorphometric analyses corroborated our in vitro findings. In conclusion, we show that OTSSP167 has a direct effect on myeloma-induced bone disease in addition to its anti-multiple myeloma effect, which warrants further clinical development of MELK inhibition in multiple myeloma. Copyright © 2018, Ferrata Storti Foundation.
Calzada, Catherine; Coulon, Laurent; Halimi, Déborah; Le Coquil, Elodie; Pruneta-Deloche, Valérie; Moulin, Philippe; Ponsin, Gabriel; Véricel, Evelyne; Lagarde, Michel
2007-05-01
Platelet hyperactivation contributes to the increased risk for atherothrombosis in type 2 diabetes and is associated with oxidative stress. Plasma low-density lipoproteins (LDLs) are exposed to both hyperglycemia and oxidative stress, and their role in platelet activation remains to be ascertained. The aim of this study was to investigate the effects of LDLs modified by both glycation and oxidation in vitro or in vivo on platelet arachidonic acid signaling cascade. The activation of platelet p38 MAPK, the stress kinase responsible for the activation of cytosolic phospholipase A(2), and the concentration of thromboxane B(2), the stable catabolite of the proaggregatory arachidonic acid metabolite thromboxane A(2), were assessed. First, in vitro-glycoxidized LDLs increased the phosphorylation of platelet p38 MAPK as well as the concentration of thromboxane B(2). Second, LDLs isolated from plasma of poorly controlled type 2 diabetic patients stimulated both platelet p38 MAPK phosphorylation and thromboxane B(2) production and possessed high levels of malondialdehyde but normal alpha-tocopherol concentrations. By contrast, LDLs from sex- and age-matched healthy volunteers had no activating effects on platelets. Our results indicate that LDLs modified by glycoxidation may play an important contributing role in platelet hyperactivation observed in type 2 diabetes via activation of p38 MAPK.
Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Deng, Hui-Xiong; Chen, Xiao-Xuan; Li, Wei-Zhong; Li, Kang-Sheng
2018-03-23
Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.
AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...
Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characterize the ability of drugs, chemicals and particles to cause neurotoxicity. While effects of compounds on spontaneous network activity is easily determined by MEA recordin...
Rocha, Bruno Alves; Bueno, Paula Carolina Pires; Vaz, Mirela Mara de Oliveira Lima Leite; Nascimento, Andresa Piacezzi; Ferreira, Nathália Ursoli; Moreno, Gabriela de Padua; Rodrigues, Marina Rezende; Costa-Machado, Ana Rita de Mello; Barizon, Edna Aparecida; Campos, Jacqueline Costa Lima; de Oliveira, Pollyanna Francielli; Acésio, Nathália de Oliveira; Martins, Sabrina de Paula Lima; Tavares, Denise Crispim; Berretta, Andresa Aparecida
2013-01-01
Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE) leading to little knowledge about the biological activities of propolis water extract (PWE). Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays. PMID:23710228
Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo
2015-10-05
Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.
Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit
2016-01-01
Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805
Suppression of antigen-specific lymphocyte activation in modeled microgravity
NASA Technical Reports Server (NTRS)
Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)
2001-01-01
Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.
Navas, José M; Segner, Helmut
2006-10-25
Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.
Impact of tofacitinib treatment on human B-cells in vitro and in vivo.
Rizzi, Marta; Lorenzetti, Raquel; Fischer, Kathleen; Staniek, Julian; Janowska, Iga; Troilo, Arianna; Strohmeier, Valentina; Erlacher, Miriam; Kunze, Mirjam; Bannert, Bettina; Kyburz, Diego; Voll, Reinhard E; Venhoff, Nils; Thiel, Jens
2017-02-01
B-cells are pivotal to the pathogenesis of rheumatoid arthritis and tofacitinib, a JAK inhibitor, is effective and safe in its treatment. Tofacitinib interferes with signal transduction via cytokine receptors using the common γ-chain. Despite extensive data on T-lymphocytes, the impact of tofacitinib on B-lymphocytes is poorly understood. In this study we assessed the effect of tofacitinib on B-lymphocyte differentiation and function. Tofacitinib treatment strongly impaired in vitro plasmablast development, immunoglobulin secretion and induction of B-cell fate determining transcription factors, Blimp-1, Xbp-1, and IRF-4, in naïve B-cells. Interestingly, class switch and activation-induced cytidine deaminase (AICDA) induction was only slightly reduced in activated naïve B-cells. The effect of tofacitinib on plasmablast formation, immunoglobulin secretion and proliferation was less profound, when peripheral blood B-cells, including not only naïve but also memory B-cells, were stimulated. In line with these in vitro results, the relative distribution of B-cell populations remained stable in tofacitinib treated patients. Nevertheless, a temporary increase in absolute B-cell numbers was observed 6-8 weeks after start of treatment. In addition, B-cells isolated from tofacitinib treated patients responded rapidly to in vitro activation. We demonstrate that tofacitinib has a direct impact on human naïve B-lymphocytes, independently from its effect on T-lymphocytes, by impairing their development into plasmablasts and immunoglobulin secretion. The major effect of tofacitinib on naïve B-lymphocyte development points to the potential inability of tofacitinib-treated patients to respond to novel antigens, and suggests planning vaccination strategies prior to tofacitinib treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Palacio- Landín, Josefina; Mendoza-de Gives, Pedro; Salinas-Sánchez, David Osvaldo; López-Arellano, María Eugenia; Liébano-Hernández, Enrique; Hernández-Velázquez, Victor Manuel; Valladares-Cisneros, María Guadalupe
2015-12-01
In the Mexican ethno-medicine, a number of plants have shown a successful anthelmintic activity. This fact could be crucial to identify possible green anti-parasitic strategies against nematodes affecting animal production. This research evaluated the in vitro and in vivo nematocidal effects of two single and combined plant extracts: bulbs of Allium sativum (n-hexane) and flowers of Tagetes erecta (acetone). The in vivo assay evaluated the administration of extracts either individually or combined against Haemonchus contortus in experimentally infected gerbils. The in vitro larvicidal activity percentage (LAP) of A. sativum and T. erecta extracts against H. contortus (L3) was determined by means of individual and combined usage of the extracts. Similarly, the extracts were evaluated in terms of reduction in the parasitic population in gerbils infected with H. contortus by individual and combined usage. The LAP at 40 mg/mL was 68% with A. sativum and 36.6% with T. erecta. The combination caused 83.3% mortality of parasites. The oral administration of A. sativum and T. erecta extracts at 40 mg/mL, caused 68.7% and 53.9% reduction of the parasitic burden, respectively. Meanwhile, the combined effect of both extracts shown 87.5% reduction. This study showed evidence about the effect of A. sativum and T. erecta plant extracts by means of individual and combined usage against H. contortus in in vitro and in vivo bioassays in artificially H. contortus-infected gerbils as a model.
Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard
2003-01-01
The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522
Lalegani, Sajjad; Ahmadi Gavlighi, Hassan; Azizi, Mohammad Hossein; Amini Sarteshnizi, Roghayeh
2018-03-01
Phenolic compounds as agro-industrial by-products have been associated with health benefits since they exhibit high antioxidant activity and anti-diabetic properties. In this study, polyphenol-rich extract from pistachio green hull (PGH) was evaluated for antioxidant activity and its ability to inhibit α-amylase and α-glucosidase activity in vitro. The effect of PGH extract powder on in vitro starch digestibility was also evaluated. The results showed that PGH had stronger antioxidant activity than Trolox. The inhibitory effect of PGH extract against α-amylase from porcine pancreas was dose dependent and the IC 50 value was ~174μgGAE/mL. The crude PGH extract was eight times more potent on baker yeast α-glucosidase activity (IC 50 ~6μgGAE/mL) when compared to acarbose, whereas the IC 50 value of PGH extract against rat intestinal maltase activity obtained ~2.6mgGAE/mL. The non-tannin fraction of PGH extract was more effective against α-glucosidase than tannin fraction whereas the α-amylase inhibitor was concentrated in the tannin fraction. In vitro starch digestibility and glycemic index (GI) of pasta sample supplemented with PGH extract powder (1.5%) was significantly lower than the control pasta. The IC 50 value of PGH extract obtained from cooked pasta against α-amylase and α-glucosidase was increased. These results have important implications for the processing of PGH for food industry application and therefore could comply with glucose control diets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V.; Manjunath, Kirangadur; Viswanatha, Gollapalle L.; Ashok, Godavarthi
2016-01-01
Aims: The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Materials and Methods: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. Results: The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. Conclusion: These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro. PMID:27104035
Herter, Sylvia; Morra, Laura; Schlenker, Ramona; Sulcova, Jitka; Fahrni, Linda; Waldhauer, Inja; Lehmann, Steffi; Reisländer, Timo; Agarkova, Irina; Kelm, Jens M; Klein, Christian; Umana, Pablo; Bacac, Marina
2017-01-01
The complexity of the tumor microenvironment is difficult to mimic in vitro, particularly regarding tumor-host interactions. To enable better assessment of cancer immunotherapy agents in vitro, we developed a three-dimensional (3D) heterotypic spheroid model composed of tumor cells, fibroblasts, and immune cells. Drug targeting, efficient stimulation of immune cell infiltration, and specific elimination of tumor or fibroblast spheroid areas were demonstrated following treatment with a novel immunocytokine (interleukin-2 variant; IgG-IL2v) and tumor- or fibroblast-targeted T cell bispecific antibody (TCB). Following treatment with IgG-IL2v, activation of T cells, NK cells, and NKT cells was demonstrated by increased expression of the activation marker CD69 and enhanced cytokine secretion. The combination of TCBs with IgG-IL2v molecules was more effective than monotherapy, as shown by enhanced effects on immune cell infiltration; activation; increased cytokine secretion; and faster, more efficient elimination of targeted cells. This study demonstrates that the 3D heterotypic spheroid model provides a novel and versatile tool for in vitro evaluation of cancer immunotherapy agents and allows for assessment of additional aspects of the activity of cancer immunotherapy agents, including analysis of immune cell infiltration and drug targeting.
Cytotoxic activity of natural killer cells in vitro under microgravity
NASA Astrophysics Data System (ADS)
Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.
2005-08-01
Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.
Wein, Alexander N; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T; Leppla, Stephen H
2013-02-01
PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wildtype lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an antimitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an antiangiogenesis therapy such as sunitinib or sorafinib.
In vitro and in vivo anti-cancer activity of silymarin on oral cancer.
Won, Dong-Hoon; Kim, Lee-Han; Jang, Boonsil; Yang, In-Hyoung; Kwon, Hye-Jeong; Jin, Bohwan; Oh, Seung Hyun; Kang, Ju-Hee; Hong, Seong-Doo; Shin, Ji-Ae; Cho, Sung-Dae
2018-05-01
Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.
Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Jao, Chia-Ling; Hsieh, You-Liang; Wu, Si-Xian; Hsu, Kuo-Chiang
2016-02-01
The frequency (A), a novel in silico parameter, was developed by calculating the ratio of the number of truncated peptides with Xaa-proline and Xaa-alanine to all peptide fragments from a protein hydrolyzed with a specific protease. The highest in vitro DPP-IV inhibitory activity (72.7%) was observed in the hydrolysate of sodium caseinate by bromelain (Cas/BRO), and the constituent proteins of bovine casein also had relatively high A values (0.10-0.17) with BRO hydrolysis. 1CBR (the <1 kDa fraction of Cas/BRO) showed the greatest in vitro DPP-IV inhibitory activity of 77.5% and was used for in vivo test by high-fat diet-fed and low-dose streptozotocin-induced diabetic rats. The daily administration of 1CBR for 6 weeks was effective to improve glycaemic control in diabetic rats. The results indicate that the novel in silico method has the potential as a screening tool to predict dietary proteins to generate DPP-IV inhibitory and antidiabetic peptides.
Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis.
Millar, A D; Rampton, D S; Blake, D R
2000-09-01
Reactive oxygen species may be pathogenic in ulcerative colitis. Oral iron supplements anecdotally exacerbate inflammatory bowel disease and iron levels are elevated in the inflamed mucosa. Mucosal iron may enhance hydroxyl ion production via Fenton chemistry. Conversely, the iron chelator, desferrioxamine, is reportedly beneficial in Crohn's disease. To assess the in vitro effects of exogenous iron and of iron chelators on the production of reactive oxygen species by colonic biopsies from normal control subjects and patients with ulcerative colitis. Luminol-amplified chemiluminescence was used to measure mucosal reactive oxygen species production both before and after addition in vitro of ferric citrate (100 microM), desferrioxamine (1 mM) and 1,10-phenanthroline (1 mM). Ferric citrate had no effect on the chemiluminescence produced by human colonic mucosa. However, desferrioxamine and phenanthroline reduced chemiluminescence by 47% (n=7, P=0.018) and by 26% (n=10, P=0.005), respectively, in inactive ulcerative colitis, and by 44% (n=9, P=0. 008) and 42% (n=11, P=0.006) in active disease. The lack of effect of ferric citrate suggests that sufficient free iron is already present in inflamed biopsies to drive the Fenton reaction maximally. The effects of desferrioxamine and 1,10-phenanthroline on the chemiluminescence of biopsies from patients with ulcerative colitis suggest that a clinical trial of topical iron chelation in active disease is indicated.
Widzowski, D; Maciag, C; Zacco, A; Hudzik, T; Liu, J; Nyberg, S; Wood, M W
2015-01-01
Background and Purpose Quetiapine has a range of clinical activity distinct from other atypical antipsychotic drugs, demonstrating efficacy as monotherapy in bipolar depression, major depressive disorder and generalized anxiety disorder. The neuropharmacological mechanisms underlying this clinical profile are not completely understood; however, the major active metabolite, norquetiapine, has been shown to have a distinct in vitro pharmacological profile consistent with a broad therapeutic range and may contribute to the clinical profile of quetiapine. Experimental Approach We evaluated quetiapine and norquetiapine, using in vitro binding and functional assays of targets known to be associated with antidepressant and anxiolytic drug actions and compared these activities with a representative range of established antipsychotics and antidepressants. To determine how the in vitro pharmacological properties translate into in vivo activity, we used preclinical animal models with translational relevance to established antidepressant‐like and anxiolytic‐like drug action. Key Results Norquetiapine had equivalent activity to established antidepressants at the noradrenaline transporter (NET), while quetiapine was inactive. Norquetiapine was active in the mouse forced swimming and rat learned helplessness tests. In in vivo receptor occupancy studies, norquetiapine had significant occupancy at NET at behaviourally relevant doses. Both quetiapine and norquetiapine were agonists at 5‐HT1A receptors, and the anxiolytic‐like activity of norquetiapine in rat punished responding was blocked by the 5‐HT1A antagonist, WAY100635. Conclusions and Implications Quetiapine and norquetiapine have multiple in vitro pharmacological actions, and results from preclinical studies suggest that activity at NET and 5‐HT1A receptors contributes to the antidepressant and anxiolytic effects in patients treated with quetiapine. PMID:26436896
Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro.
Broadhurst, C L; Polansky, M M; Anderson, R A
2000-03-01
To evaluate the possible effects on insulin function, 49 herb, spice, and medicinal plant extracts were tested in the insulin-dependent utilization of glucose using a rat epididymal adipocyte assay. Cinnamon was the most bioactive product followed by witch hazel, green and black teas, allspice, bay leaves, nutmeg, cloves, mushrooms, and brewer's yeast. The glucose oxidation enhancing bioactivity was lost from cinnamon, tea, witch hazel, cloves, bay leaf and allspice by poly(vinylpyrrolidone) (PVP) treatment, indicating that the active phytochemicals are likely to be phenolic in nature. The activity of sage, mushrooms, and brewers's yeast was not removed by PVP. Some products such as Korean ginseng, flaxseed meal, and basil have been reported to be effective antidiabetic agents; however, they were only marginally active in our assay. Our technique measures direct stimulation of cellular glucose metabolism, so it may be that the active phytochemicals in these plants improve glucose metabolism via other mechanisms or that this in vitro screening is not a reliable predictor of hypoglycemic effects in vivo for some products. In summary, the positive effects of specific plant extracts on insulin activity suggest a possible role of these plants in improving glucose and insulin metabolism.
Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite.
Ricciardi, M R; Licchetta, R; Mirabilii, S; Scarpari, M; Parroni, A; Fabbri, A A; Cescutti, P; Reverberi, M; Fanelli, C; Tafuri, A
2017-01-01
Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor , on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity.
Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite
Scarpari, M.; Parroni, A.; Fabbri, A. A.; Cescutti, P.; Reverberi, M.; Fanelli, C.
2017-01-01
Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor, on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity. PMID:29270245
Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang
2013-01-01
Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591
Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro
Liu, Daozhou; Cui, Han; Zhang, Bangle; Zhou, Siyuan; Yang, Tiehong; Mei, Qibing
2013-01-01
Background The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro. Methods The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS. Conclusion Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells. PMID:23342161
Goel, R K; Sairam, K; Babu, M Dora; Tavares, I A; Raman, A
2003-01-01
Bacopa monniera is an Indian tratidional medicine widely used to improve intellectual functions. Earlier, we had reported the prophylactic and curative effects of standardized extract of Bacopa monniera (BME) in various gastric ulcer models. The effect was due to augmentation of the defensive mucosal factors like increase in mucin secretion, life span of mucosal cells and gastric antioxidant effect rather than on the offensive acid-pepsin secretion. The present study includes evaluation of standardized BME (bacoside A content--35.5 +/- 0.9) on other contributing factors towards ulcerogenesis. BME in the dose of 1000 microg/ml showed anti-Helicobacter pylori activity in vitrol and in the dose of 10 microg/ml increased in vitro of prostanoids (PGE and PGI2) in human colonic mucosal incubates. It may be concluded that these factors may contribute to antiulcerogenic activity of BME.
NASA Astrophysics Data System (ADS)
Kammerer, Cornelia; Getoff, Nikola
2001-04-01
Experiments in vitro using E. coli bacteria (AB 1157) proved that aspirin possesses a cytostatic ability under various experimental condition (pH=7.4) in airfree, aerated as well as in media containing N 2O (converting e aq- into OH- radicals). In the last case the highest effect of aspirin was observed. The combination of aspirin with the well-known cytostaticum, mitomycin C (MMC) leads in airfree as well as in aerated media to a significant decrease of the MMC activity. However, the mixture of aspirin and MMC in the presence of N 2O causes a synergistic effect, resulting in an enhancement of the MMC activity by a factor of 1.5. Probable reaction steps are presented and discussed. Using the pulse radiolysis method the rate constants for the reactions of e aq-, H and OH- species with aspirin were also determined.
Nilsson, G E; Tottmar, O
1987-04-21
The effect of indole-3-acetaldehyde, 5-hydroxyindole-3-acetaldehyde, disulfiram, diethyldithiocarbamate, coprine, and 1-amino-cyclopropanol on tryptophan hydroxylase activity was studied in vitro using high performance liquid chromatography with electro-chemical detection. With the analytical method developed, 5-hydroxytryptophan, serotonin, and 5-hydroxyindole-3-acetic acid could be measured simultaneously. Indole-3-acetaldehyde (12-1200 microM) was found to cause a 6-33% inhibition of the enzyme. Dependent upon the nature of the sulfhydryl- or reducing-agent (dithiotreitol, glutathione, or ascorbate) present in the incubates, the degree of inhibition by disulfiram varied, probably due to the formation of various mixed disulfides. Also the presence of diethyldithiocarbamate (160-1600 microM) was found to inhibit tryptophan hydroxylase (28-91%), while 5-hydroxyindole-3-acetaldehyde, coprine, or 1-aminocyclopropanol appeared to have no effect on the enzyme activity.
Abu-Serie, Marwa M; Habashy, Noha H; Attia, Wafaa E
2018-05-10
Since oxidative stress and inflammation are two linked factors in the pathogenesis of several human diseases. Thus identification of effective treatment is of great importance. Edible mushroom and microalgae are rich in the effective antioxidant phytochemicals. Hence, their beneficial effects on oxidative stress-associated inflammation are extremely required to be investigated. This study evaluated the functional constituents, antioxidant and anti-inflammatory activities of Malaysian Ganoderma lucidum aqueous extract (GLE) and Egyptian Chlorella vulgaris ethanolic extract (CVE). Also, the synergistic, addictive or antagonistic activities of the combination between the two extracts (GLE-CVE) were studied. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B, as well as levels of nitric oxide, tumor necrosis factor (TNF)-α, lipid peroxidation, reduced glutathione and antioxidant enzymes were determined using in vitro model of lipopolysaccharide-stimulated white blood cells.
IN VIVO AND IN VITRO ANTILEISHMANIAL EFFECTS OF METHANOLIC EXTRACT FROM BARK OF BURSERA APTERA
Nieto-Yañez, O. J.; Resendiz-Albor, A. A.; Ruiz-Hurtado, P. A.; Rivera-Yañez, N.; Rodriguez-Canales, M.; Rodriguez-Sosa, M.; Juarez-Avelar, I.; Rodriguez-Lopez, M. G.; Canales-Martinez, M. M.; Rodriguez-Monroy, M. A.
2017-01-01
Background: Cutaneous leishmaniasis lacks effective and well-tolerated treatments. The current therapies mainly rely on antimonial drugs that are inadequate because of their poor efficacy. Traditional medicine offers a complementary alternative for the treatment of various diseases. Additionally, several plants have shown success as anti-leishmanial agents. Therefore, we sought to evaluate the in vitro and in vivo activity of MEBA against Leishmania mexicana. Materials and Methods: Methanolic extract of B. aptera was obtained by macetration, after we determined in vitro anti-leishmanial activity of MEBA by MTT assay and the induced apoptosis in promastigotes by flow cytometry. To analyze the in vivo anti-leishmanial activity, we used infected mice that were treated and not treated with MEBA and we determined the levels of cytokines using ELISA. The phytochemical properties were determined by CG-MS and DPPH assay. Results: We determined of LC50 of 0.408 mg/mL of MEBA for in vitro anti-leishmanial activity. MEBA induced apoptosis in promastigotes (15.3% ± 0.86). Treated mice exhibited smaller lesions and contained significantly fewer parasites than did untreated mice; in addition, we found that IFN-γ and TNF-α increased in the sera of MEBA-treated mice. GC-MS analysis showed that podophyllotoxin was the most abundant compound. Evaluation of the activity by DPPH assay demonstrated an SC50 of 11.72 μg/mL. Conclusion: Based on the above data, it was concluded that MEBA is a good candidate in the search for new anti-leishmanial agents. PMID:28573235
Conley, Justin M; Evans, Nicola; Mash, Heath; Rosenblum, Laura; Schenck, Kathleen; Glassmeyer, Susan; Furlong, Ed T; Kolpin, Dana W; Wilson, Vickie S
2017-02-01
In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated water samples were assayed for estrogenic activity using T47D-KBluc cells and analyzed by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) for natural and synthetic estrogens (including estrone, 17β-estradiol, estriol, and ethinyl estradiol). None of the estrogens were detected above the LC-FTMS quantification limits in treated samples and only 5 source waters had quantifiable concentrations of estrone, whereas 3 treated samples and 16 source samples displayed in vitro estrogenicity. Estrone accounted for the majority of estrogenic activity in respective samples, however the remaining samples that displayed estrogenic activity had no quantitative detections of known estrogenic compounds by chemical analyses. Source water estrogenicity (max, 0.47ng 17β-estradiol equivalents (E2Eq) L -1 ) was below levels that have been linked to adverse effects in fish and other aquatic organisms. Treated water estrogenicity (max, 0.078ngE2EqL -1 ) was considerably below levels that are expected to be biologically relevant to human consumers. Overall, the advantage of using in vitro techniques in addition to analytical chemical determinations was displayed by the sensitivity of the T47D-KBluc bioassay, coupled with the ability to measure cumulative effects of mixtures, specifically when unknown chemicals may be present. Published by Elsevier B.V.
Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model.
Jin, Jun; Choi, Suh Hee; Lee, Jung Eun; Joo, Jin-Deok; Han, Jung Ho; Park, Su-Young; Kim, Chae-Yong
2017-05-01
Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo . These results suggest that SMA salt has significant antitumor effects on glioblastoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jingmin
2017-01-01
The RXR agonist (triphenyltin, TPT) and the RXR antagonist (UVI3003) both show teratogenicity and, unexpectedly, induce similar malformations in Xenopus tropicalis embryos. In the present study, we exposed X. tropicalis embryos to UVI3003 in seven specific developmental windows and identified changes in gene expression. We further measured the ability of UVI3003 to activate Xenopus RXRα (xRXRα) and PPARγ (xPPARγ) in vitro and in vivo. We found that UVI3003 activated xPPARγ either in Cos7 cells (in vitro) or Xenopus embryos (in vivo). UVI3003 did not significantly activate human or mouse PPARγ in vitro; therefore, the activation of Xenopus PPARγ by UVI3003more » is novel. The ability of UVI3003 to activate xPPARγ explains why UVI3003 and TPT yield similar phenotypes in Xenopus embryos. Our results indicate that activating PPARγ leads to teratogenic effects in Xenopus embryos. More generally, we infer that chemicals known to specifically modulate mammalian nuclear hormone receptors cannot be assumed to have the same activity in non-mammalian species, such as Xenopus. Rather they must be tested for activity and specificity on receptors of the species in question to avoid making inappropriate conclusions. - Highlights: • UVI3003 is a RXRs antagonist and shows teratogenicity to Xenopus embryos. • UVI3003 activated xPPARγ either in Cos7 cells or Xenopus embryos. • UVI3003 did not activate human or mouse PPARγ in Cos7 cells. • Activating PPARγ leads to teratogenic effects in Xenopus embryos.« less
Agregán, Rubén; Munekata, Paulo E; Domínguez, Ruben; Carballo, Javier; Franco, Daniel; Lorenzo, José M
2017-09-01
Extracts from three macroalgae species (Ascophyllum nodosum (ANE), Bifurcaria bifurcata (BBE) and Fucus vesiculosus (FVE)) were tested for proximate composition (total solid, protein and total carbohydrate contents), total phenols content (TPC), and for their antioxidant activities in vitro in comparison to that of BHT compound by using four different assays (ABTS radical cation decolouration, DPPH free radical scavenging activity, ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC)). The inclusion of the extracts as oil stabilizers in canola oil in substitution of the synthetic antioxidant (BHT) was also evaluated by assessing lipid oxidation parameters (peroxide value (PV), p-anisidine value (AV), TBARS value, conjugated dienes (CD) and TOTOX index) under accelerated storage conditions (16days, 60°C). There was an inverse relationship between total solid content and total polyphenols content in the seaweed extracts. FVE showed an intermediate TPC (1.15g PGE/100g extract), but it presented the highest in vitro antioxidant activity when measured using the ABTS, DPPH and FRAP tests. BBE, that displayed the highest TPC (1.99g PGE/100g extract), only showed the highest in vitro antioxidant activity when measured using the ORAC test. ANE showed the lowest TPC and the lowest antioxidant activity in all the tests performed. The seaweed extracts added in a 500ppm concentration significantly reduced the oxidation during canola oil storage at 60°C, being this antioxidant effect significantly higher than that of BHT added at 50ppm. Results indicate that seaweed extracts can effectively inhibit the oxidation of canola oil and they can be a healthier alternative to the synthetic antioxidants in the oil industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tanaka, Kosuke; Tawara, Shunsuke; Tsuruta, Kazuhisa; Hoppensteadt, Debra; Fareed, Jawed
2018-01-01
Although thrombomodulin alfa (TM alfa), recombinant human soluble thrombomodulin, exerts antithrombogenic effects through activated protein C (APC), clinical trials suggested that TM alfa has a lower bleeding risk than does recombinant human APC. To address the mechanism explaining this difference, effects of TM alfa and APC on thrombogenic, coagulation, and fibrinolytic processes were compared in vitro. TM alfa and APC inhibited generation of thrombogenic markers, thrombin, and prothrombin fragment F1+2 and prolonged coagulation parameters, activated clotting time (ACT), and activated partial thromboplastin time (APTT). Concentrations of TM alfa effective for thrombin and F1+2 generation inhibition were comparable to those of APC. However, effects of TM alfa on ACT and APTT were clearly weaker than those of APC. TM alfa significantly prolonged clot lysis time (CLT) and decreased LY30, a parameter of degree of fibrinolysis in thromboelastography, whereas APC significantly shortened CLT and increased LY30. These results suggested that while the antithrombogenic effects of TM alfa were similar to those of APC, its anticoagulant effects were lower. In addition, effects of TM alfa were antifibrinolytic, while those of APC were profibrinolytic.
Quality aspects of fibrinolytic agents based on biochemical characterization.
Werner, R G; Bassarab, S; Hoffmann, H; Schlüter, M
1991-11-01
The purity, composition and in vitro fibrinolytic activity of four commercially available fibrinolytic agents, alteplase (recombinant tissue plasminogen activator, rt-PA, Actilyse; CAS 105857-23-6), streptokinase, urokinase and anistreplase (ansioyl-plasminogen-streptokinase activator-complex, APSAC), have been compared in this investigation. The fibrinolytic activity was measured in an in vitro thrombolytic assay. In this assay a human blood thrombus is dissolved in an environment of human plasma. This assay is representative for the in vivo situation, where plasminogen activation is also a limiting step in thrombolysis. In the in vitro thrombolytic assay alteplase is about 10 times more effective in clot lysis than either streptokinase or urokinase and more than 300 times more active than anistreplase. In addition, the ratio of active ingredient to total protein content in the preparations was analysed by RP-HPLC, SDS-PAGE, GPC-HPLC and amino acid analysis. The portion of active ingredient per total protein was 99.9% for alteplase, 55% for anistreplase, 20% for urokinase and 1% for streptokinase. This demonstrates that alteplase is the only fibrinolytic agent tested which is essentially free of protein additives of human origine and potential contaminants associated therewith. The superior purity of alteplase compared to the other fibrinolytics was confirmed by SDS-PAGE, RP-HPLC, and HPLC-GPC. Significant levels of aggregates were detected in streptokinase and urokinase preparations, whereas alteplase and anistreplase were essentially free of aggregates. These data demonstrate that there are significant differences in composition, purity and in vitro activity between different fibrinolytic agents.
Many commercial and environmental chemicals lack toxicity data necessary for users and risk assessors to make fully informed decisions about potential health effects. Generating these data using high throughput in vitro cell- or biochemical-based tests would be faster and less e...
Ohyama, K; Kikuchi, H; Oda, Y; Moritake, K; Yamasaki, T
1993-06-01
We studied the effects of mouse IFN-gamma on the cytotoxic activity of murine activated macrophages (M phi) against mouse VM-Glioma cells (H-2b). Activated M phi were obtained from peritoneal exudate cells of mice from four strains, C57BL/6 (H-2b), C3H/He(H-2k), DBA/2 (H-2d), and BALB/c (H-2d), following intraperitoneal injection of (1) LPS 200 micrograms, (2) BCG 200 micrograms, (3) C. parvum 200 micrograms, or (4) MDP 350 micrograms 7 days prior to 20-hr 51Cr release-assay. Of the various combination of mouse strains and activating agents tested, that of activated M phi of the C3H/He mouse with induction by LPS had the most tumoricidal effect against the glioma cells, which was not MHC restricted. Although LPS-activated M phi underwent marked loss of cytotoxicity following initiation of in vitro culture, this 24 hr pretreatment with IFN-gamma inhibited this reduction in tumoricidal effects in a dose-dependent fashion. On the other hand, 24 hr pretreatment of target cells with IFN-gamma did not increase their susceptibility to lysis by activated M phi. These findings suggest that IFN-gamma augments the in vitro tumoricidal activation of M phi; This effect appears to be unrelated to any influence of IFN-gamma on target sensitivity to lysis by macrophages.
Bill, Kate Lynn J.; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J.; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J.; Prudner, Bethany C.; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E.
2016-01-01
Purpose Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a “hallmark” of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the p53-MDM2 axis as a potential therapeutic target for DDLPS. Here we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. Experimental Design The therapeutic effectiveness of SAR405838 was compared to the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. Results SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. Conclusion SAR405838 is currently in early phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. PMID:26475335
Bill, Kate Lynn J; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J; Prudner, Bethany C; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E
2016-03-01
Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a "hallmark" of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the MDM2:p53 axis as a potential therapeutic target for DDLPS. Here, we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. The therapeutic effectiveness of SAR405838 was compared with the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell-cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. SAR405838 is currently in early-phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. ©2015 American Association for Cancer Research.
Brinck, Jonas W; Thomas, Aurélien; Lauer, Estelle; Jornayvaz, François R; Brulhart-Meynet, Marie-Claude; Prost, Jean-Christophe; Pataky, Zoltan; Löfgren, Patrik; Hoffstedt, Johan; Eriksson, Mats; Pramfalk, Camilla; Morel, Sandrine; Kwak, Brenda R; van Eck, Miranda; James, Richard W; Frias, Miguel A
2016-05-01
The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature. © 2016 American Heart Association, Inc.
Park, Kyoung-Sun; Lee, Jin-Moo; Jang, Jun-Bock; Lee, Chang-Hoon
2014-01-01
Purpose. Primary dysmenorrhea (PD) is a common gynecological complaint among adolescent girls and women of reproductive age. This study aims to review the findings of published articles on the in vitro and in vivo efficacy of herbal medicines for PD. Methods. In vitro and in vivo studies of herbal compounds, individual herbal extracts, or herbal formula decoctions published from their inception to April 2014 were included in this review. Results. A total of 18 studies involving herbal medicines exhibited their inhibitory effect on PD. The majority of in vitro studies investigated the inhibition of uterine contractions. In vivo studies suggest that herbal medicines exert a peripheral analgesic effect and a possible anti-inflammatory activity via the inhibition of prostaglandin (PG) synthesis. The mechanisms of herbal medicines for PD are associated with PG level reduction, suppression of cyclooxygenase-2 expression, superoxide dismutase activation and malondialdehyde reduction, nitric oxide, inducible nitric oxide synthase, and nuclear factor-kappa B reduction, stimulation of somatostatin receptor, intracellular Ca2+ reduction, and recovery of phospholipid metabolism. Conclusions. Herbal medicines are thought to be promising sources for the development of effective therapeutic agents for PD. Further investigations on the appropriate herbal formula and their constituents are recommended. PMID:25431607
Li, Li-Sheng; Lu, Yan-Liu; Nie, Jing; Xu, Yun-Yan; Zhang, Wei; Yang, Wen-Jin; Gong, Qi-Hai; Lu, Yuan-Fu; Lu, Yang; Shi, Jing-Shan
2017-04-01
Axonal degeneration is a pathological symbol in the early stage of Alzheimer's disease (AD), which can be triggered by amyloid-β (Aβ) peptide deposition. Growing evidence indicates that deficit of autophagy eventually leads to the axonal degeneration. Our previous studies have shown that Dendrobium nobile Lindl alkaloid (DNLA) had protective effect on neuron impairment in vivo and in vitro; however, the underlying mechanisms is still unclear. We exposed cultured hippocampus neurons to Aβ 25-35 to investigate the effect of DNLA in vitro. Axonal degeneration was evaluated by immunofluorescence staining and MTT assay. Neurons overexpressing GFP-LC3B were used to measure the formation of autophagosome. Autophagosome-lysosome fusion, the lysosomal pH, and cathepsin activity were assessed to reflect autophagy process. Proteins of interest were analyzed by Western blot. DNLA pretreatment significantly inhibited axonal degeneration induced by Aβ 25-35 peptide in vitro. Further studies revealed DNLA treatment increased autophagic flux through promoting formation and degradation of autophagosome in hippocampus neurons. Moreover, enhancement of autophagic flux was responsible for the protective effects of DNLA on axonal degeneration. DNLA prevents Aβ 25-35 -induced axonal degeneration via activation of autophagy process and could be a novel therapeutic target. © 2017 John Wiley & Sons Ltd.
Effects of humic acids in vitro.
Vašková, Janka; Veliká, Beáta; Pilátová, Martina; Kron, Ivan; Vaško, Ladislav
2011-06-01
Humic acids are known for their overall positive health and productivity effects in animal feeding trials and, controversially, as an aetiological factor of cancer. We tried to assess the in vitro effect of humic acids from a selected source in Slovakia when used at recommended prophylactic dosage. We investigated antioxidant properties, enzymatic and non-enzymatic antioxidant defence system in liver mitochondria and cultured cancer cell lines in vitro. We observed a significant decrease in superoxide dismutase activity after humic acids treatment irrespective of dissolving in dimethyl sulphoxide or direct addition to mitochondria suspension in a respiration medium. Activities of other antioxidant enzymes measured, such as glutathione peroxidase and glutathione reductase, showed no significant differences from the control as well as the reduced glutathione content. Percentage of inhibition by humic acids of superoxide radical indicated lower efficacy compared with that of hydroxyl radical. Survival of six different cancer cells lines indicated that only the acute T lymphoblastic leukaemia cell line was sensitive to the tested humic acids. Despite relatively low solubility in aqueous solutions, humic acids from the selected source participated in redox regulation. By recapturing the radicals, humic acids reloaded the antioxidant defensive mechanism. Results from in vitro study conducted with humic acids from the natural source showed potential of these substances as promising immunity enhancing agents.
Tjahjani, Susy
2017-02-28
Malaria especially falciparum malaria still causes high morbidity and mortality in tropical countries. Several factors have been linked to this situation and the most important one is the rapid spread of parasite resistance to the currently available antimalarials, including artemisinin. Artemisinin is the main component of the currently recommended antimalarial, artemisinin based combination therapy (ACT), and it is a free radical generating antimalarial. Garcinia mangostana L (mangosteen) rind contain a lot of xanthone compounds acting as an antioxidant and exhibited antimalarial activity. The aim of this study was to evaluate the antimalarial activity of mangosteen rind extract and its fractions and their interaction with artemisinin against the 3D7 clone of Plasmodium falciparum in vitro. Dry ripe mangosteen rind was extracted with ethanol followed by fractionation with hexane, ethylacetate, buthanol, and water consecutively to get ethanol extract, hexane, athylacetate, buthanol, and water fractions. Each of these substances was diluted in DMSO and examined for antimalarial activity either singly or in combination with artemisinin in vitro against Plasmodium falciparum 3D7 clone. Synergism between these substances with artemisinin was evaluated according to certain formula to get the sum of fractional inhibitory concentration 50 (∑FIC 50 ). Analysis of the parasite growth in vitro indicated that IC 50 of these mangosteen rind extract, hexane, ethylacetate, buthanol, and water fraction ranged from 0.41 to > 100 μg/mL. All of the ∑FIC50 were <1. This study demonstrated a promising antimalarial activity of the extract and fractions of G.mangostana L rind and its synergistic effect with artemisinin. Further study using lead compound(s) isolated from extract and fractions should be performed to identify more accurately their mechanism of antimalarial activities.
Isogai, H; Isogai, E; Fujii, N; Oguma, K; Kagota, W; Takano, K
1988-07-01
The biological activities of lipopolysaccharide from Bacteroides gingivalis 381 (B-LPS) were examined in vivo and in vitro. Intra-oral mucosal injection of B-LPS induced an acute inflammation at the injection site. Intravenous injection of B-LPS induced necrotic lesions with many thrombi in the liver and lymphocytic reduction in the spleen. By immunohistochemical examination, B-LPS was detected in macrophages in the liver, spleen and lymph nodes. In vitro analysis showed that B-LPS was a potent activator of both neutrophils and macrophages in luminol-dependent response and IL-1 secretion from macrophages and was mitogenic to the spleen cells not only from BALB/c mice but also from LPS-non-responder C3H/HeJ mice. Interferon production from human peripheral mononuclear leucocytes was induced, in vitro, by stimulation with B-LPS but not with the other enterobacterial LPS. These findings clarified the various biological activities of B-LPS affecting various cells and tissues, especially neutrophils, macrophages and lymphocytes. The potent inflammability of B-LPS shown in the present study indicates that it is one of the effective agents to induce periodontitis.
Anti-Leishmania Activity of Osthole
Kermani, Elaheh Kordzadeh; Sajjadi, Seyed Ebrahim; Hejazi, Seyed Hossein; Arjmand, Reza; Saberi, Sedigheh; Eskandarian, Abbas Ali
2016-01-01
Background: Treatment of cutaneous leishmaniasis (CL) is occasionally highly resistant to pentavalent antimonials, the gold standard in pharmacotherapy of CL. Since there is no effective vaccine, the discovery of natural antileishmanial products as complementary therapeutic agents could be used to improve the current regimens. Objective: In this study in vitro and in vivo antileishmanial activities of osthole, a natural coumarin known to possess antibacterial and parasiticidal activities are evaluated. Materials and Methods: Leishmania major infected J774.A1 macrophages were treated with increasing concentrations of osthole. CL lesions of BALB/c mice were treated topically with 0.2% osthole. Results: Osthole exhibited dose-dependent leishmanicidal activity against intracellular amastigotes with IC50 value of 14.95 μg/ml. Treatment of CL lesions in BALB/c mice with osthole significantly declined lesion progression compared to untreated mice (P < 0.05), however did not result in recovery. Conclusion: Osthole demonstrated remarkable leishmanicidal activity in vitro. Higher concentrations of osthole may demonstrate the therapeutic property in vivo. SUMMARY In vitro and in vivo antileishmanial activities of osthole, a pernylated coumarin extracted from Prangos asperula Boiss., are studied against Leishmania major. PMID:27114685
Duque, Cristiane; Aida, Kelly Limi; Pereira, Jesse Augusto; Teixeira, Gláucia Schuindt; Caldo-Teixeira, Angela Scarparo; Perrone, Luciana Rodrigues; Caiaffa, Karina Sampaio; Negrini, Thais de Cássia; de Castilho, Aline Rogéria Freire; Costa, Carlos Alberto de Souza
2017-01-01
Abstract Objectives: Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. Material and Methods: For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (p<0.05). Results: Incorporation of 1.25% and 2.5% CHX improved the antimicrobial/anti-biofilm activity of GIC, without affecting F release and mechanical characteristics, but 2.5% CHX was cytotoxic. Survival rate of restorations using GIC with 1.25% CHX was similar to GIC. A significant reduction of MS levels was observed for KM+CHX group in children saliva and biofilm 7 days after treatment. Conclusions: The incorporation of 1.25% CHX increased the in vitro antimicrobial activity, without changing chemical-mechanical properties of GIC and odontoblast-like cell viability. This combination improved the in vivo short-term microbiological effect without affecting clinical performance of ART restorations. PMID:29069152
Duque, Cristiane; Aida, Kelly Limi; Pereira, Jesse Augusto; Teixeira, Gláucia Schuindt; Caldo-Teixeira, Angela Scarparo; Perrone, Luciana Rodrigues; Caiaffa, Karina Sampaio; Negrini, Thais de Cássia; Castilho, Aline Rogéria Freire de; Costa, Carlos Alberto de Souza
2017-01-01
Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (p<0.05). Incorporation of 1.25% and 2.5% CHX improved the antimicrobial/anti-biofilm activity of GIC, without affecting F release and mechanical characteristics, but 2.5% CHX was cytotoxic. Survival rate of restorations using GIC with 1.25% CHX was similar to GIC. A significant reduction of MS levels was observed for KM+CHX group in children saliva and biofilm 7 days after treatment. The incorporation of 1.25% CHX increased the in vitro antimicrobial activity, without changing chemical-mechanical properties of GIC and odontoblast-like cell viability. This combination improved the in vivo short-term microbiological effect without affecting clinical performance of ART restorations.
Ecker, Assis; Araujo Vieira, Francielli; de Souza Prestes, Alessandro; Mulling dos Santos, Matheus; Ramos, Angelica; Dias Ferreira, Rafael; Teixeira de Macedo, Gabriel; Vargas Klimaczewski, Claudia; Lopes Seeger, Rodrigo; Teixeira da Rocha, João Batista; de Vargas Barbosa, Nilda B.
2015-01-01
Aqueous-leaf extract of Syzygium cumini and Bauhinia forficata are traditionally used in the treatment of diabetes and cancer, especially in South America, Africa, and Asia. In this study, we analyzed the effects of these extracts on oxidative and mitochondrial parameters in vitro, as well as their protective activities against toxic agents. Phytochemical screenings of the extracts were carried out by HPLC analysis. The in vitro antioxidant capacities were compared by DPPH radical scavenging and Fe2+ chelating activities. Mitochondrial parameters observed were swelling, lipid peroxidation and dehydrogenase activity. The major chemical constituent of S. cumini was rutin. In B. forficata were predominant quercetin and gallic acid. S. cumini reduced DPPH radical more than B. forficata, and showed iron chelating activity at all tested concentrations, while B. forficata had not similar property. In mitochondria, high concentrations of B. forficata alone induced a decrease in mitochondrial dehydrogenase activity, but low concentrations of this extract prevented the effect induced by Fe2++H2O2. This was also observed with high concentrations of S. cumini. Both extracts partially prevented the lipid peroxidation induced by Fe2+/citrate. S. cumini was effective against mitochondrial swelling induced by Ca2+, while B. forficata alone induced swelling more than Ca2+. This study suggests that leaf extract of S. cumini might represent a useful therapeutic for the treatment of diseases related with mitochondrial dysfunctions. On the other hand, the consumption of B. forficata should be avoided because mitochondrial damages were observed, and this possibly may pose risk to human health. PMID:27152111
Oboh, Ganiyu; Ogunsuyi, Opeyemi Babatunde; Olonisola, Oluwaseyi Emmanuel
2017-04-01
Caffeine is adjudged world's most consumed pharmacologically active food component. With reports of the potential cognitive enhancing properties of caffeine, we sought to investigate if caffeine can influence the anticholinesterase and antioxidant properties of donepezil-a selective acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). In vitro, we investigated the effect of donepezil (DON), caffeine (CAF) and their various combinations on the activity of AChE in rat brain homogenate, as well as determined their antioxidant properties. In vivo, two rat groups were administered single oral dose of DON (5 mg/kg) and CAF (5 mg/kg) separately, while three groups, each received 5 mg/kg DON plus either 5, 50 or 100 mg/kg CAF for three hours, after which the rats were sacrificed and brain isolated. Results show that CAF concentration dependently and synergistically increased the anticholinesterase properties of DON in vitro. Also, CAF produced a significant influence on investigated in vitro antioxidant properties of DON. Furthermore, rats administered 5 mg/kg CAF and DON produced no significant difference in AChE activity compared to rats administered DON alone. However, co-administration of either 50 or 100 mg/kg CAF with DON lead to higher AChE activity compared to both control and DON groups. In addition, DON, CAF and their various combinations augmented brain antioxidant status in treated rats. We conclude that while low caffeine consumption may improve the antioxidant properties of donepezil without having a significant influence on its anticholinesterase effect, moderate-high caffeine consumption could also improve the antioxidant properties of donepezil but reduce its anticholinesterase effect; nevertheless, a comprehensive clinical trial is essential to fully explore these possibilities in human AD condition.
Antimicrobial efficacy of granulysin-derived synthetic peptides in acne vulgaris.
Lim, Hee-Sun; Chun, Seung-Min; Soung, Min-Gyu; Kim, Jenny; Kim, Seong-Jin
2015-07-01
Antimicrobial peptides are considered as a potential alternative to antibiotic treatment in acne vulgaris because the development of a resistant strain of Propionibacterium acnes is problematic. Granulysin can be regarded as an ideal substance with which to treat acne because it has antimicrobial and anti-inflammatory effects. This study was performed to explore the effectiveness of granulysin-derived peptides (GDPs) in killing P. acnes in vitro under a standard microbiologic assay and to evaluate their potential use in a topical agent for the treatment of acne vulgaris. Twenty different peptides based on the known sequence of a GDP were synthesized and tested in vitro for antimicrobial activity. Thirty patients with facial acne vulgaris were instructed to apply a topical formulation containing synthetic GDP to acne lesions twice per day for 12 weeks. A newly synthesized peptide in which aspartic acid was substituted with arginine, and methionine was substituted with cysteine, showed the highest antimicrobial activity against P. acnes. Moreover, it was effective against both Gram-positive and Gram-negative bacteria in vitro. After treatment with the topical formulation containing 50 ppm of synthetic peptide for 12 weeks, a significant reduction in the number of pustules was observed, regardless of the increase in the number of comedones. In addition, a significant reduction in the clinical grade of acne based on the Korean Acne Grading System (KAGS) was evident. Synthesized GDP shows strong antimicrobial activity against P. acnes in vitro. The clinical improvement observed suggests a topical formulation containing the GDP has therapeutic potential for the improvement of inflammatory-type acne vulgaris by its antimicrobial activity. © 2015 The International Society of Dermatology.
Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis
2015-01-01
Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.
In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections
Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera
2014-01-01
Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737
Fujimaki, Takahiro; Mori, Shoko; Horikawa, Manabu; Fukui, Yuko
2018-05-15
The red wines made from Vitis vinifera were identified as skin-whitening effectors by using in vitro assays. OPCs in the wine were evaluated for tyrosinase activity and melanogenesis. Strong tyrosinase inhibitory activity was observed in fractions with high oligomeric proanthocyanidin (OPC) content. Among OPC dimers, a strong inhibitory effect on tyrosinase was observed with OPCs which contain (+)-catechin as an upper unit. Melanogenesis inhibitory effect was observed with OPCs which have (-)-epicatechin as upper units. Also, OPC trimers, upper and middle units joined with 4 → 8 bonds, showed stronger effects compared to trimers with 4 → 6 linkages. Interestingly, (-)-epicatechin-(4β → 8)-(-)-epicatechin 3-O-gallate, which is a unique component of grapes has potent inhibitory effects on both tyrosinase and melanogenesis. Our data provide structural information about such active compounds. These results suggest that red wines containing OPC, have high melanogenesis inhibitory effect and are supposed to have skin-whitening effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jiménez-Escrig, Antonio; Dragsted, Lars Ove; Daneshvar, Bahram; Pulido, Raquel; Saura-Calixto, Fulgencio
2003-08-27
Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) scavenging, (b) ferric-reducing antioxidant power (FRAP), and (c) inhibition of copper(II)-catalyzed in vitro human low-density lipoprotein (LDL) oxidation. In addition, the present study was performed to investigate the ability of the edible portion of artichoke to alter in vivo antioxidative defense in male rats using selected biomarkers of antioxidant status. One gram (dry matter) had a DPPH(*) activity and a FRAP value in vitro equivalent to those of 29.2 and 62.6 mg of vitamin C and to those of 77.9 and 159 mg of vitamin E, respectively. Artichoke extracts showed good efficiency in the inhibition in vitro of LDL oxidation. Neither ferric-reducing ability nor 2,2'-azinobis(3-ethylbenzothiazolin-6-sulfonate) radical scavenging activity was modified in the plasma of the artichoke group with respect to the control group. Among different antioxidant enzymes measured (superoxide dismutase, gluthatione peroxidase, gluthatione reductase, and catalase) in erythrocytes, only gluthatione peroxidase activity was elevated in the artichoke group compared to the control group. 2-Aminoadipic semialdehyde, a protein oxidation biomarker, was decreased in plasma proteins and hemoglobin in the artichoke-fed group versus the control group. In conclusion, the in vitro protective activity of artichoke was confirmed in a rat model.
Ekanem, A P; Wang, M; Simon, J E; Obiekezie, A I; Morah, F
2004-10-01
Methanol extracts of the seeds of Piper guineense (Piperaceae) were active against gold fish (Carassius auratus auratus L. Pisces Cyprinidae) monogenean parasites. The seed extract of P. guineense was administered at different concentrations (0.5-2.0 mg/L) under in vivo and in vitro conditions. There was a higher efficacy of the effects of the extracts against fish parasites under in vitro situations than under in vivo. Three major compounds (piperanine, N-isobutyl (E,E)-2,4 decadienamide and Deltaalpha,beta-dihydrowasanine) were identified from the seed extract of Piper guineense by LC-MS analysis. Copyright 2004 John Wiley & Sons, Ltd.
Han, Le; Liu, Ben; Chen, Xianyan; Chen, Haiyan; Deng, Wenjia; Yang, Changsheng; Ji, Bin; Wan, Miaojian
2018-04-01
Activation of the Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis and hair growth. Recently, low-level laser therapy (LLLT) was evaluated for stimulating hair growth in numerous clinical studies, in which 655-nm red light was found to be most effective and practical for stimulating hair growth. We evaluated whether 655-nm red light + light-emitting diode (LED) could promote human hair growth by activating Wnt/β-catenin signaling. An in vitro culture of human hair follicles (HFs) was irradiated with different intensities of 655-nm red light + LED, 21 h7 (an inhibitor of β-catenin), or both. Immunofluorescence staining was performed to assess the expression of β-catenin, GSK3β, p-GSK3β, and Lef1 in the Wnt/β-catenin signaling. The 655-nm red light + LED not only enhanced hair shaft elongation, but also reduced catagen transition in human hair follicle organ culture, with the greatest effectiveness observed at 5 min (0.839 J/cm 2 ). Additionally, 655-nm red light + LED enhanced the expression of β-catenin, p-GSK3β, and Lef1, signaling molecules of the Wnt/β-catenin pathway, in the hair matrix. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in vitro and therefore may serve as an alternative therapeutic option for alopecia.
Tam, R C; Li, Y; Noonberg, S; Hwang, D G; Lui, G; Hunt, C A; Garovoy, M R
1994-01-01
Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability. Images PMID:8152930
NASA Astrophysics Data System (ADS)
Wijanarti, Sri; Putra, Agus Budiawan Naro; Nishi, Kosuke; Harmayani, Eni; Sugahara, Takuya
2017-05-01
Snake fruit (Salacca edulis Reinw) cultivar Pondoh Hitam is a tropical fruit produced in Indonesia. It is consumed freshly or processed and believed as the most delicious snake fruit cultivar. Snake fruit flesh contains high polisaccharides such as pectin and dietary fiber. Therefore, snake fruit is a potential immunostimulator candidates but the immunological effect of snake fruit flesh has not been reported. In the present study, immunostimulatory activity of snake fruit flesh extract (SFFE) on macrophages activation was evaluated. SFFE was prepared by extracting from snake fruit flesh with water, methanol 70%, and ethanol 70% for 15 h at 4°C. Then obtained SFFE was used to stimulated cytokine production in vitro using J774.1 cell line. The extract giving strongest stimulation was sellected for in vivo assay to stimulate cytokines production and gene expression using peritoneal macrophage (P-mac) of BALB/c mice. The results showed that SFFE exhibited immunostimulatory activities. Immunostimulatory activity could be indicated by macrophages activation characteristics such as cytokines production. Water extract of SFFE gave strongest stimulation on cytokines production in vitro and sellected for in vivo assay. In vivo assay showed that SFFE stimulated cytokines production as well as their gene expression levels. The optimum stimulation was demonstrated by SFFE 16.7 mg/g. Overall findings suggest that SFFE has a potent beneficial effects to promote the body health through activating macrophages.
Spirulan from blue-green algae inhibits fibrin and blood clots: its potent antithrombotic effects.
Choi, Jun-Hui; Kim, Seung; Kim, Sung-Jun
2015-05-01
We investigated in vitro and in vivo fibrinolytic and antithrombotic activity of spirulan and analyzed its partial biochemical properties. Spirulan, a sulfated polysaccharide from the blue-green alga Arthrospira platensis, exhibits antithrombotic potency. Spirulan showed a strong fibrin zymogram lysis band corresponding to its molecular mass. It specifically cleaved Aα and Bβ, the major chains of fibrinogen. Spirulan directly decreased the activity of thrombin and factor X activated (FXa), procoagulant proteins. In vitro assays using human fibrin and mouse blood clots showed fibrinolytic and hemolytic activities of spirulan. Spirulan (2 mg/kg) showed antithrombotic effects in the ferric chloride (FeCl3 )-induced carotid arterial thrombus model and collagen and epinephrine-induced pulmonary thromboembolism mouse model. These results may be attributable to the prevention of thrombus formation and partial lysis of thrombus. Therefore, we suggest that spirulan may be a potential antithrombotic agent for thrombosis-related diseases. © 2015 Wiley Periodicals, Inc.
Nicotine Inhibits Memory CTL Programming
Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo
2013-01-01
Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development. PMID:23844169
Maier, Diana; Benisek, Martin; Blaha, Ludek; Dondero, Francesco; Giesy, John P; Köhler, Heinz-R; Richter, Doreen; Scheurer, Marco; Triebskorn, Rita
2016-10-01
Efficiency of advanced wastewater treatment technologies to reduce micropollutants which mediate dioxin-like toxicity was investigated. Technologies compared included ozonation, powdered activated carbon and granular activated carbon. In addition to chemical analyses in samples of effluents, surface waters, sediments, and fish, (1) dioxin-like potentials were measured in paired samples of effluents, surface waters, and sediments by use of an in vitro biotest (reporter gene assay) and (2) dioxin-like effects were investigated in exposed fish by use of in vivo activity of the mixed-function, monooxygenase enzyme, ethoxyresorufin O-deethylase (EROD) in liver. All advanced technologies studied, based on degradation or adsorption, significantly reduced dioxin-like potentials in samples and resulted in lesser EROD activity in livers of fish. Results of in vitro and in vivo biological responses were not clearly related to quantification of targeted analytes by use of instrumental analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
Song, Yi; Ni, Yuanying; Hu, Xiaosong; Li, Quanhong
2015-11-01
Phosphorylated derivatives of pumpkin polysaccharide with different degree of substitution were synthesized using POCl3 and pyridine. Antioxidant activities and cytoprotective effects of unmodified polysaccharide and phosphorylated derivatives were investigated employing various in vitro systems. Results showed that high ratio of POCl3/pyridine could increase the degree of substitution and no remarkable degradation occurred in the phosphorylation process. Characteristic absorption of phosphorylation appeared both in the IR and (31)P NMR spectrum. The df values between 2.27 and 2.55 indicated the relatively expanded conformation of the phosphorylated derivatives. All the phosphorylated polysaccharides exhibited higher antioxidant activities. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by the derivatives. In general, phosphorylation could improve the antioxidant activities of pumpkin polysaccharide both in vitro and in a cell system. Copyright © 2015 Elsevier B.V. All rights reserved.
Mucolytic Activity Test of Shallot Extract (Allium Ascalonicum L) by in Vitro
NASA Astrophysics Data System (ADS)
Deswati, D. A.; Dhina, M. A.; Mubaroq, S. R.
2018-01-01
This paper aims to explain the results of research on the mucolytic activity of shallot extract is proportional to 0.2% N-Acetylcysteine. Shallot (Allium ascalonicum L.) is efficacious for treating cough. This research was conducted by examining the mucolytic activity of shallot extract made with various dose concentration 5%, 10%, 15%, 20%, and 25%. The mucolytic activity test was performed in vitro based on the decrease in the viscosity of the egg whites by using the Brookfield viscometer. The results showed that shallot extract with dose concentration of 5%, 10%, 15%, 20%, 25% had mucolytic activity by decreasing the viscosity of egg white solution. The effective concentration almost equal to 0.2% N-Acetylcysteine is at 25% concentration.
In Vitro and In Vivo Activities of Pterostilbene against Candida albicans Biofilms
Li, De-Dong; Zhao, Lan-Xue; Mylonakis, Eleftherios; Hu, Gan-Hai; Zou, Yong; Huang, Tong-Kun; Yan, Lan
2014-01-01
Pterostilbene (PTE) is a stilbene-derived phytoalexin that originates from several natural plant sources. In this study, we evaluated the activity of PTE against Candida albicans biofilms and explored the underlying mechanisms. In 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assays, biofilm biomass measurement, confocal laser scanning microscopy, and scanning electron microscopy, we found that ≤16 μg/ml PTE had a significant effect against C. albicans biofilms in vitro, while it had no fungicidal effect on planktonic C. albicans cells, which suggested a unique antibiofilm effect of PTE. Then we found that PTE could inhibit biofilm formation and destroy the maintenance of mature biofilms. At 4 μg/ml, PTE decreased cellular surface hydrophobicity (CSH) and suppressed hyphal formation. Gene expression microarrays and real-time reverse transcription-PCR showed that exposure of C. albicans to 16 μg/ml PTE altered the expression of genes that function in morphological transition, ergosterol biosynthesis, oxidoreductase activity, and cell surface and protein unfolding processes (heat shock proteins). Filamentation-related genes, especially those regulated by the Ras/cyclic AMP (cAMP) pathway, including ECE1, ALS3, HWP1, HGC1, and RAS1 itself, were downregulated upon PTE treatment, indicating that the antibiofilm effect of PTE was related to the Ras/cAMP pathway. Then, we found that the addition of exogenous cAMP reverted the PTE-induced filamentous growth defect. Finally, with a rat central venous catheter infection model, we confirmed the in vivo activity of PTE against C. albicans biofilms. Collectively, PTE had strong activities against C. albicans biofilms both in vitro and in vivo, and these activities were associated with the Ras/cAMP pathway. PMID:24514088
Eggers, Jürgen; Ossadnik, Stefan; Hütten, Heiko; Seidel, Günter
2009-12-01
Transcranial "diagnostic" ultrasound (US) has been shown to accelerate thrombolysis related to recombinant tissue-type plasminogen activator (rt-PA). In this in vitro study, we evaluated the potential of US to increase clot dissolution mediated by Abciximab (Abc) compared to rt-PA. The effect of 1.8-MHz pulsed wave (PW) Doppler US on dissolution of whole venous blood clots (WBC) and platelet-rich clots (PRC) treated with Abc and rt-PA was investigated in an in vitro model. Clot dissolution was measured by weight loss. Abc-related WBC dissolution was enhanced by additional US, but the effect was not any more detectable when the US was attenuated by a human temporal bone (US-tb). In PRC there was no additional effect of US on the Abc-related clot lysis. Rt-PA-related clot dissolution was increased by US in WBC and PRC as well, however, US-tb was only effective in WBC. The effect of insonation on WBC dissolution treated with the combination of Abc plus rt-PA was lower compared with those treated with rt-PA. In this in vitro experiment, the additional effect of "diagnostic" US in combination with Abc was only present in WBC and less strong than with rt-PA. The results do not support the use of Abc for sonothrombolysis targeting both, fibrin-rich and platelet-rich clots. In contrast, US when combined with rt-PA increases dissolution in both, WBC and PRC as well.
Bolden, Ashley L.
2015-01-01
Background Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled “BPA-free.” Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes. Objectives This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA. Methods We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol. Results We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression. Conclusions Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects. Citation Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123:643–650; http://dx.doi.org/10.1289/ehp.1408989 PMID:25775505
Mangwe, M C; Rangubhet, K T; Mlambo, V; Yu, B; Chiang, H I
2016-11-01
This study investigated the influence of two microbial inoculants; Lactobacillus formosensis and Lactobacillus buchneri on fermentation quality, chemical composition, aerobic stability and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. Sweet potato vines were ensiled for 28 and 60 days; without inoculant (CON), with Lact. buchneri (LB) or with Lact. formosensis (LF), both inoculants applied to achieve 1 × 10 6 CFU g -1 fresh forage. Lactobacillus formosensis silage had lower pH and higher lactic acid than all treatments. Yeasts and moulds were not detected in LB silage after ensiling. Lactobacillus buchneri silage was more aerobically stable than all treatments, whereas LF was more stable than CON silage. In vitro ruminal biological activity of condensed tannins was lower in microbial-inoculated silages than CON after ensiling. Lactobacillus formosensis improved fermentability by reducing silage pH and improved aerobic stability by producing more propionate, which inhibited yeast activity. Lactobacillus buchneri improved aerobic stability of the silage by producing more acetate. Both strains effectively reduced the antinutritional effect of condensed tannins after ensiling. Lactobacillus formosensis has the potential to be used as a silage inoculant because of its ability to improve fermentability and aerobic stability in sweet potato vines silage. © 2016 The Society for Applied Microbiology.
Characterization of AQX-1125, a small-molecule SHIP1 activator
Stenton, Grant R; Mackenzie, Patrick Tam, Lloyd F; Cross, Jennifer L; Harwig, Curtis; Raymond, Jeffrey; Toews, Judy; Wu, Joyce; Ogden, Nancy; MacRury, Thomas; Szabo, Csaba
2013-01-01
Background The SH2-containing inositol-5′-phosphatase 1 (SHIP1) metabolizes PI(3,4,5)P3 to PI(3,4)P2. SHIP1-deficient mice exhibit progressive inflammation. Pharmacological activation of SHIP1 is emerging as a potential therapy for pulmonary inflammatory diseases. Here we characterize the efficacy of AQX-1125, a small-molecule SHIP1 activator currently in clinical development. Experimental Approach The effects of AQX-1125 were tested in several in vitro assays: on enzyme catalytic activity utilizing recombinant human SHIP1, on Akt phosphorylation in SHIP1-proficient and SHIP1-deficient cell lines, on cytokine release in murine splenocytes, on human leukocyte chemotaxis using modified Boyden chambers and on β-hexosaminidase release from murine mast cells. In addition, pharmacokinetic and drug distribution studies were performed in rats and dogs. Results AQX-1125 increased the catalytic activity of human recombinant SHIP1, an effect, which was absent after deletion of the C2 region. AQX-1125 inhibited Akt phosphorylation in SHIP1-proficient but not in SHIP1-deficient cells, reduced cytokine production in splenocytes, inhibited the activation of mast cells and inhibited human leukocyte chemotaxis. In vivo, AQX-1125 exhibited >80% oral bioavailability and >5 h terminal half-life. Conclusions Consistent with the role of SHIP1 in cell activation and chemotaxis, the SHIP1 activator AQX-1125 inhibits Akt phosphorylation, inflammatory mediator production and leukocyte chemotaxis in vitro. The in vitro effects and the pharmacokinetic properties of the compound make it a suitable candidate for in vivo testing in various models of inflammation. Linked Article This article is accompanied by Stenton et al., pp. 1519–1529 of this issue. To view this article visit http://dx.doi.org/10.1111/bph.12038 PMID:23121445
Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun
2014-01-01
Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.
Respiration in vitro: I. Spontaneous activity.
Hamada, O; Garcia-Rill, E; Skinner, R D
1992-01-01
The present report describes respiratory-like activity recorded from intercostal muscles in the neonatal rat in vitro brain stem-spinal cord, rib-attached preparation. In this preparation from 1- to 4-day-old rats, spontaneous rhythmic and synchronized upward movements of the rib cage coincided with the recorded muscle activity. Spontaneous respiratory-like activity showed a frequency in the range of 0.05-0.2 Hz, with single-, double-, and mixed-burst patterns. Spontaneous activity declined over time, but increased in frequency as temperature increased. Multilevel recordings showed a cephalocaudal order of bursting of intercostal muscles. Brain stem transections at the prepontine level did not affect spontaneous frequency, whereas premedullary transections resulted in an increase in spontaneous respiratory frequency. High spinal transections eliminated spontaneous respiratory-like activity. These results suggest that there is a well-organized pontomedullary pattern generator for respiratory-like activity in this preparation, which can be modulated by temperature. The characteristics of these electromyographic (EMG) recordings allow comparison with previous in vitro studies of respiratory-like activity using nerve activity and in vivo studies using EMG activity. These results provide basic information on the spontaneous activity of this preparation as a prelude to the study of the effects of electrical stimulation of the spinal cord to induce respiratory-like activity, as described in the companion article.
Orhan, Nilüfer; Deliorman Orhan, Didem; Gökbulut, Alper; Aslan, Mustafa; Ergun, Fatma
2017-01-01
Fruit and leaves of junipers are commonly used internally as tea and pounded fruits are eaten to lower blood glucose levels in Anatolia. Thus, we aimed to evaluate antidiabetic and antioxidant potential and the chemical profile of Juniperus foetidissima Willd. and J. sabina L. in this study. In-vitro antidiabetic activities of leaf and fruit extracts were examined by their inhibitory activity on α-glucosidase and α-amylase enzymes. Then, in-vivo antidiabetic activities of leaf and fruit extracts of Juniperus species were investigated on streptozotocin-induced diabetic rats. Additionally, antioxidant activities (phosphomolybdenum, ferric-reducing antioxidant power and ABTS radical scavenging activity assays), phytochemical screening tests and high performance liquid chromatography analysis (HPLC) were done. In-vitro enzyme inhibitory effects of the extracts were supported by the results of in-vivo antidiabetic activity studies. Phytochemical screening tests indicated presence of flavonoids, tannins, terpenoids and carbohydrates in the extracts. Amentoflavone was identified as the major compound in the extracts and content of amentoflavone was determined. As a result, Juniperus extracts and its active constituents might be beneficial for diabetes and its complications. PMID:29844777
Protective activity of Lentinan in experimental tuberculosis.
Markova, Nadya; Kussovski, Vesselin; Drandarska, Ivanka; Nikolaeva, Sascha; Georgieva, Neli; Radoucheva, Tatyana
2003-10-01
Protective effects of Lentinan (Ajinomoto, Japan) against Mycobacterium tuberculosis infection were studied by in vitro and in vivo mouse models. The effectiveness of Lentinan administrated intraperitoneally (i.p.) before infection at a dose of 1 mg/kg three times at 2-day intervals was monitored in vivo by several parameters (body temperature; spleen weight; CFU counts of M. tuberculosis in spleen, liver and lung; and histomorphological observations). Peritoneal macrophages obtained from animals treated with Lentinan were greatly stimulated, as assayed by establishing their number, acid phosphatase activity, H2O2 production and killing ability against M. tuberculosis in vitro. The in vivo model demonstrated that administration of Lentinan before infection can mobilize host defense potential and reduce mycobacterial infection.
Tylewska-Wierzbanowska, Stanisława; Rogulska, Urszula; Lewandowska, Grażyna; Chmielewski, Tomasz
2017-07-06
The aim of our studies was to invent a reliable method for detection of the bactericidal activity of disinfectants against Borrelia burgdorferi in suspension (in vitro) and in cell line cultures (in vivo). In the suspension method, 0.01% octenidine at 20°C and 35°C was bactericidal to Borrelia afzeli; Borrelia garini, B. burgdorferi sensu stricto after 5 minutes treatment. Increase of the temperature to 35°C speed up the bactericidal effect to 1 minute. The bactericidal action of octenidine towards B. burgdorferi spirochetes growing in fibroblasts was less effective and needed a longer time to kill them than in the suspension.
Zhang, Zhongshan; Wang, Xiaomei; Yu, Shuchi; Zhao, Mingxing
2011-11-01
Polysaccharides extracted from Phyllostachys edulis (Carr.) are a group of hetero polysaccharides, and their antioxidant activities were investigated employing various established in vitro systems. Available data obtained with in vitro models suggested that among the three samples, B1 (extraction with water) showed significant inhibitory effects on superoxide radical and hydroxyl radical; its reducing power was also the strongest among the three samples. These results clearly establish the possibility that polysaccharides extracted from P. edulis could be effectively employed as ingredient in health or functional food, to alleviate oxidative stress. However, comprehensive studies need to be conducted in experimental animal models. Copyright © 2011 Elsevier B.V. All rights reserved.
Chopade, Shakuntala Santosh; Dhaneshwar, Suneela Sunil
2018-01-01
AIM To design colon-targeted codrugs of mycophenolic acid (MPA) and aminosugars as a safer option to mycophenolate mofetil (MMF) in the management of inflammatory bowel disease. METHODS Codrugs were synthesized by coupling MPA with aminosugars (D-glucosamine and D-galactosamine) using EDCI coupling. The structures were confirmed by infrared radiation, nuclear magnetic resonance, mass spectroscopy and elemental analysis. The release profile of codrugs was extensively studied in aqueous buffers, upper gastrointestinal homogenates, faecal matter and caecal homogenates (in vitro) and rat blood (in vitro). Anti-colitic activity was assessed in 2,4,6-trinitrobezenesulfonic acid-induced colitis in Wistar rats by the estimation of various demarcating parameters. Statistical evaluation was performed by applying one-way and two-way ANOVA when compared with the disease control. RESULTS The prodrugs resisted activation in HCl buffer (pH 1.2) and stomach homogenates of rats with negligible hydrolysis in phosphate buffer (pH 7.4) and intestinal homogenates. Incubation with colon homogenates (in vitro) produced 76% to 89% release of MPA emphasizing colon-specific activation of codrugs and the release of MPA and aminosugars at the site of action. In the in vitro studies, the prodrug of MPA with D-glucosamine (MGLS) was selected which resulted in 68% release of MPA in blood. in vitro studies on MGLS revealed its colon-specific activation after a lag time of 8 h which could be ascribed to the hydrolytic action of N-acyl amidases found in the colon. The synthesized codrugs markedly diminished disease activity score and revived the disrupted architecture of the colon that was comparable to MMF but superior to MPA. CONCLUSION The significant attenuating effect of prodrugs and individual aminosugars on colonic inflammation proved that the rationale of the codrug approach is valid. PMID:29563754
Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue
2016-01-01
This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196
Martin, Diana; Moran-Valero, Maria I; Casado, Víctor; Reglero, Guillermo; Torres, Carlos F
2014-10-08
Intestinal digestion of phosphatidyl derivatives of HT (PHT) and its bioaccessibility under in vitro conditions was performed. First, an in vitro intestinal digestion model for phospholipids was developed. The impact of digestion in the antioxidant ability of PHT was also assayed. PHT was progressively hydrolyzed to lyso-PHT. However, digestion was slower than the phospholipid control. Nevertheless, most hydrolysis products were found at the micellar phase fraction, meaning a high bioaccessibility. Either PHT or digested PHT showed lower antioxidant activity than HT. However, PHT improved its antioxidant ability after digestion, likely related to lyso-PHT. As a summary, the synthetic phosphatidyl derivative of HT as PHT is recognized by phospholipases during simulation of intestinal digestion, although less efficiently than analogous phospholipids. Nevertheless, taking into account the bioaccessibility and the antioxidant activity of digested PHT, the potential of carriers of HT under the form of phospholipids might be of interest.
In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liimatainen, A.; Grummt, T.
Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. Themore » authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese hamster lung fibroblasts).« less
Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe
2014-09-26
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats. Copyright © 2014 Elsevier Inc. All rights reserved.
[In-vitro activity of rabeprazole, lansoprazole, and esomeprazole against Helicobacter pylori].
He, Li-hua; Yin, Yan; You, Yuan-hai; Yan, Xiao-mei; Zhang, Jian-zhong
2003-06-01
To investigate the antimicrobial activity of Pariet, Tekpron, Nexium, respectively, against Helicobacter pylori (H. pylori) in vitro. Antimicrobial effects of these medicines were evaluated through detection of MICs for 3 H. pylori strains isolated from different countries. The MIC(99) contents were 2.25 mg/L, 42.5 mg/L and 360 mg/L, respectively, for the three medicines. The strains under testing exhibited the same susceptibility to each medicine. Nexium did not inhibit the bacteria under the concentration of 3.6 - 36 mg/L with more and bigger H. pylori colonies seen when compared with controls. The growth inhibitory activity appeared to be different among the three PPI medicines under investigation, with Rabeprazole the most potential agent of the three. Data suggested that the action of growth inhibition in vitro was resting on the characteristic of the given PPI as well as the supplements of the medicine.
Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin
2014-01-01
The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Vidya, Balasubramaniam; Uma, Chandrasekar
2015-06-01
To identify the free radical scavenging activity of ethanolic extract of Evolvulus alsinoides. The free radical scavenging activity was evaluated by in vitro methods like reducing power assay, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction, superoxide radical scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) scavenging activity, hydroxyl radical scavenging assay, and nitric oxide radical scavenging assay, which were studied by using ascorbic acid as standard. The extract showed significant activities in all antioxidant assays compared with the reference antioxidant ascorbic acid. The total antioxidant activity as well as the reducing power was also found to increase in a dose-dependent manner. Evolvulus alsinoides may act as a chemopreventive agent, providing antioxidant properties and offering effective protection from free radicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Dong-Hee; Department of Medical Science, Konkuk University School of Medicine, Seoul; Lee, Kyoung-Hee
2012-06-01
Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, wemore » sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote synaptogenesis through MAPK activation and subsequently protect cell death in the in vitro stroke model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jinbin, E-mail: hanjinbin@gmail.com; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032; Shanghai Clinical Center, Chinese Academy of Sciences/Xuhui Central Hospital, Shanghai 200031
2013-12-15
It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and themore » possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.« less
In vitro hypoglycemic effects of hot water extract from Auricularia polytricha (wood ear mushroom).
Wu, Ni-Jung; Chiou, Fu-Jing; Weng, Yih-Ming; Yu, Zer-Ran; Wang, Be-Jen
2014-06-01
Viscous dietary fibers were shown to alleviate postprandial blood glucose. Auricularia polytricha (wood ear mushroom, WEM) contains rich amount fibers and water extract WEM was highly viscous. This study aimed to investigate whether WEM extract exhibited hypoglycemic effect in vitro. The effects of WEM extract on glucose adsorption, glucose diffusion, starch digestion and α-amylase activity were examined and compared to those of two high soluble fibers, psyllium and oat fiber and one insoluble fiber, cellulose. Our results showed that WEM extract and psyllium possessed similar ability to adsorb glucose which may thus decrease the level of dialysis glucose. The decrease of dialysis rate is dose-dependent. WEM extract can also suppress the activity of α-amylase which may thus inhibit the digestion of polysaccharides. Since WEM extract exhibited the ability to adsorb glucose and to suppress the activity of α-amylase; it might contribute a beneficial effect on postprandial levels of blood sugar.
Lamsal, Kabir; Kim, Sang Woo; Kim, Yun Seok
2012-01-01
In vitro and greenhouse screening of seven rhizobacterial isolates, AB05, AB10, AB11, AB12, AB14, AB15 and AB17, was conducted to investigate the plant growth promoting activities and inhibition against anthracnose caused by Colletotrichum acutatum in pepper. According to identification based on 16S rDNA sequencing, the majority of the isolates are members of Bacillus and a single isolate belongs to the genus Paenibacillus. All seven bacterial isolates were capable of inhibiting C. acutatum to various degrees. The results primarily showed that antibiotic substances produced by the selected bacteria were effective and resulted in strong antifungal activity against the fungi. However, isolate AB15 was the most effective bacterial strain, with the potential to suppress more than 50% mycelial growth of C. acutatum in vitro. Moreover, antibiotics from Paenibacillus polymyxa (AB15) and volatile compounds from Bacillus subtilis (AB14) exerted efficient antagonistic activity against the pathogens in a dual culture assay. In vivo suppression activity of selected bacteria was also analyzed in a greenhouse with the reference to their prominent in vitro antagonism efficacy. Induced systemic resistance in pepper against C. acutatum was also observed under greenhouse conditions. Where, isolate AB15 was found to be the most effective bacterial strain at suppressing pepper anthracnose under greenhouse conditions. Moreover, four isolates, AB10, AB12, AB15, and AB17, were identified as the most effective growth promoting bacteria under greenhouse conditions, with AB17 inducing the greatest enhancement of pepper growth. PMID:23323049
Guimarães, Elisalva T; Lima, Milena S; Santos, Luana A; Ribeiro, Ivone M; Tomassini, Therezinha B C; Ribeiro dos Santos, Ricardo; dos Santos, Washington L C; Soares, Milena B P
2009-07-01
We have previously demonstrated the immunomodulatory effects of physalins, secosteroids purified from Physalis angulata. Here we investigate the antileishmanial activity of physalins in vitro and in vivo in a model of cutaneous leishmaniasis. The antileishmanial activity of physalins B, D and F was tested in Leishmania-infected macrophage cultures. For the in vivo studies, BALB/c mice were infected with Leishmania amazonensis subcutaneously in the ear pinna and treated with physalin F by topical administration. Physalins B and F were able to reduce the percentage of Leishmania-infected macrophages and the intracellular parasite number in vitro at concentrations non-cytotoxic to macrophages. More importantly, topical treatment with physalin F significantly reduced the lesion size, the parasite load and histopathological alterations in BALB/c mice infected with L. amazonensis. Our results demonstrate the potent antileishmanial activity of physalins, especially physalin F, and suggest these molecules as the basis for the development of new therapeutic options for cutaneous leishmaniasis.
Espargaró, Alba; Ginex, Tiziana; Vadell, Maria Del Mar; Busquets, Maria A; Estelrich, Joan; Muñoz-Torrero, Diego; Luque, F Javier; Sabate, Raimon
2017-02-24
Alzheimer's disease (AD) is the main cause of dementia in people over 65 years. One of the major culprits in AD is the self-aggregation of amyloid-β peptide (Aβ), which has stimulated the search for small molecules able to inhibit Aβ aggregation. In this context, we recently reported a simple, but effective in vitro cell-based assay to evaluate the potential antiaggregation activity of putative Aβ aggregation inhibitors. In this work this assay was used together with docking and molecular dynamics simulations to analyze the anti-Aβ aggregation activity of several naturally occurring flavonoids and phenolic compounds. The results showed that rosmarinic acid, melatonin, and o-vanillin displayed zero or low inhibitory capacity, curcumin was found to have an intermediate inhibitory potency, and apigenin and quercetin showed potent antiaggregation activity. Finally, the suitability of the combined in vitro cell-based/in silico approach to distinguish between active and inactive compounds was further assessed for an additional set of flavonols and dihydroflavonols.
Wen, Jiexia; Pan, Sumin; Liang, Shuang; Zhong, Zhenyu; He, Ying; Lin, Hongyu; Li, Wenyan; Wang, Liyue; Li, Xiujin; Zhong, Fei
2013-01-01
Canine parvovirus (CPV) disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR) was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR)) possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo. PMID:24089666
Hahn, R. C.; Fontes, C. J. F.; Batista, R. D.; Hamdan, J. S.
2002-01-01
In vitro, terbinafine is highly active against a broad spectrum of pathogenic fungi. We evaluated the activities of terbinafine and itraconazole against 31 isolates of Paracoccidioides brasiliensis. The tests were conducted by using a broth macrodilution procedure. MICs, in micrograms per milliliter, were as follows: terbinafine, 0.015 to 1.0 (geometric mean, 0.1188); itraconazole, 0.007 to 0.5 (geometric mean, 0.03165). The usual therapy for paracoccidioidomycosis is sulfonamides, amphotericin B, and azole derivatives (ketoconazole, itraconazole, and fluconazole). In comparison to amphotericin B, azole derivatives allow shorter treatment courses, can be administered orally, and are equally effective. Itraconazole has as high efficacy as ketoconazole, but with superior tolerance. It is the current drug of choice for treatment of paracoccidioidomycosis. The data obtained in this study indicate that terbinafine is active against P. brasiliensis in vitro and suggest that this allylamine can be considered a new option as drug therapy for paracoccidioidomycosis. PMID:12149337
Galiana-Roselló, Cristina; Bilbao-Ramos, Pablo; Dea-Ayuela, M Auxiliadora; Rolón, Miriam; Vega, Celeste; Bolás-Fernández, Francisco; García-España, Enrique; Alfonso, Jorge; Coronel, Cathia; González-Rosende, M Eugenia
2013-11-27
We report in vivo and in vitro antileishmanial and trypanocidal activities of a new series of N-substituted benzene and naphthalenesulfonamides 1-15. Compounds 1-15 were screened in vitro against Leishmania infantum , Leishmania braziliensis , Leishmania guyanensis , Leishmania amazonensis , and Trypanosoma cruzi . Sulfonamides 6e, 10b, and 10d displayed remarkable activity and selectivity toward T. cruzi epimastigotes and amastigotes. 6e showed significant trypanocidal activity on parasitemia in a murine model of acute Chagas disease. Moreover, 6e, 8c, 9c, 12c, and 14d displayed interesting IC50 values against Leishmania spp promastigotes as well as L. amazonensis and L. infantum amastigotes. 9c showed excellent in vivo activity (up to 97% inhibition of the parasite growth) in a short-term treatment murine model for acute infection by L. infantum. In addition, the effect of compounds 9c and 14d on tubulin as potential target was assessed by confocal microscopy analysis applied to L. infantum promastigotes.
Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas
2016-08-01
Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension associated rise of aortic stiffness. Copyright © 2016 Elsevier Inc. All rights reserved.
Ochsner, Andrea M; Müller, Jonas E N; Mora, Carlos A; Vorholt, Julia A
2014-08-25
In the Gram-positive methylotroph Bacillus methanolicus, methanol oxidation is catalyzed by an NAD-dependent methanol dehydrogenase (Mdh) that belongs to the type III alcohol dehydrogenase (Adh) family. It was previously shown that the in vitro activity of B. methanolicus Mdh is increased by the endogenous activator protein Act, a Nudix hydrolase. Here we show that this feature is not unique, but more widespread among type III Adhs in combination with Act or other Act-like Nudix hydrolases. In addition, we studied the effect of site directed mutations in the predicted active site of Mdh and two other type III Adhs with regard to activity and activation by Act. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resende, C F; Braga, V F; Pereira, P F; Silva, C J; Vale, V F; Bianchetti, R E; Forzza, R C; Ribeiro, C; Peixoto, P H P
2016-02-01
This study aimed to evaluate the variation in the levels of proline, oxidative metabolism and photosynthetic pigments in plants of Pitcairnia encholirioides grown in vitro under different conditions and after acclimatization. The analyses were performed after 150 days of in vitro cultivation in MS media supplemented with 10 µM GA3 or 0.2 µM NAA, sucrose at 15 or 30 g L-1, in test tubes which allowed gas exchange or in a hermetically sealed system, and 180 days after acclimatization. The in vitro maintenance in hermetically sealed flasks, with GA3 and 15 g L-1 sucrose had adverse metabolic effects, which was demonstrated by the lower proline and photosynthetic pigments accumulation and by the increase in antioxidant enzymes activities. After acclimatization, differences for proline and photosynthetic pigments were no longer found and the enzymatic activities ranged unevenly. The results suggest that the in vitro cultivation in media with 0.2 µM NAA and 30 g L-1 sucrose, in test tubes capped with closures which allowed gas exchange, is more suitable for micropropagation of P. encholirioides, providing a prolonged maintenance of in vitro cultures and plantlets with superior quality for ex vitro development.
Metugriachuk, Yussef; Kuroi, Olivia; Pavasuthipaisit, Kanok; Tsuchiya, Junji; Minelli, Emilio; Okura, Ruichi; Fesce, Edoardo; Marotta, F
2005-01-01
In view of the raising concern for gut fungal infection, the aim of the present research was to carry out a systematic in vitro study testing the antifungal activity and possible toxicity of a polygodyal-anethole compound (Kolorex) in several strains of Candida albicans and in other fungal pathogens. The in vitro susceptibility tests were carried out on 4 strains of C. albicans (C. krusei, C. lipolytica, C. tropicalis, C. utilis), Aspergillus flavus and A. fumigatus. Cultures were also analyzed by varying medium, pH and inoculum size, and a time-course killing test was carried out. In the present study the polygodyal-anethole compound showed remarkable in vitro activity against the most common fungi, which was significantly better than polygodyal alone. Moreover, such mixture compound was shown to exert its activity against a wide spectrum of fungi, including C. lipolytica and C. tropicalis, which required significantly higher MIC of polygodyal to be unfeasible in clinical application. The activity of the polygodyal-anethole compound was significantly better than polygodyal alone with high inoculum size and low pH. Moreover, it proved to exert a significantly faster biological activity against low inoculum. This study suggests that the mixture compound Kolorex has a very good profile of antifungal activity in terms of effectiveness and spectrum of action while being devoid of any significant toxicity.
Protein Binding: Do We Ever Learn?▿
Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula
2011-01-01
Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013
Lee, Ka-Heng; Abas, Faridah; Mohamed Alitheen, Noorjahan Banu; Shaari, Khozirah; Lajis, Nordin Haji; Israf, Daud Ahmad; Syahida, Ahmad
2015-07-01
Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Liu, Shengye; Yang, Liyu; Mu, Shuai; Fu, Qin
2018-01-01
Background: Prolonged administration of overdoses of glucocorticoids results in increased bone remodeling, leading to glucocorticoid-induced osteoporosis (GIO), which is primarily due to the dysfunction and apoptosis of osteoblasts. The present study investigated the therapeutic effect and molecular mechanism of action of epigallocatechin-3-gallate (EGCG), a bioactive catechin in green tea, in high-dose dexamethasone-induced osteoblast differentiation in vivo and in vitro . Methods: The anti-dexamethasone (DEX) effects of EGCG on primary osteoblasts were determined on the basis of cell viability and alkaline phosphatase (ALP) and total cellular superoxide dismutase (SOD) activities. Flow cytometry and Western blot analysis were also used to evaluate the expression of related biomarkers in vitro , and bone microarchitecture was also extensively examined in a rat model in vivo . Results: The results showed that EGCG pretreatment significantly increased osteoblast viability and ALP and SOD activities when cells were exposed to DEX. Alizarin red staining indicated that there was more mineralization with EGCG pretreatment, countering DEX effects. EGCG reduced DEX-induced reactive oxygen species at both the mitochondrial and cellular levels in osteoblasts by activating the nuclear factor erythroid-derived 2-like-2 (Nrf2) pathway. In addition, EGCG protected osteoblasts from apoptosis. EGCG also regulated the formation of active glucocorticoid by 11β-hydroxysteroid dehydrogenase activity. Furthermore, femoral micro-computed tomography scans revealed that EGCG improved bone microstructure and mitigated DEX-induced deterioration of bone quality. Conclusion: These findings suggested that EGCG reversed GIO in rats by protecting osteoblasts by activating the Nrf2 signaling pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai
The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin.more » To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.« less
Li, Ning; Feng, Lin; Han, Hui-Qiong; Yuan, Jing; Qi, Xue-Kang; Lian, Yi-Fan; Kuang, Bo-Hua; Zhang, Yu-Chen; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Yao, You-Yuan; Xu, Miao; He, Gui-Ping; Zhao, Bing-Chun; Gao, Ling; Feng, Qi-Sheng; Chen, Li-Zhen; Yang, Lu; Yang, Dajun; Zeng, Yi-Xin
2016-10-10
Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC. Copyright © 2016. Published by Elsevier Ireland Ltd.
Yetuk, Gamze; Pandir, Dilek; Bas, Hatice
2014-01-01
The aim of this study was to evaluate the protective effect of catechin and quercetin in sodium benzoate- (SB-) induced oxidative stress in human erythrocytes in vitro. For this, the effects of SB (6.25, 12.5, 25, 50, and 100 μg/mL), catechin (10 μM), and quercetin (10 μM) on lipid peroxidation (LPO) and the activities of SOD, CAT, GPx, and GST were studied. Significantly higher LPO and lower activities of antioxidant enzymes were observed with the increasing concentrations of SB. Catechin or quercetin protected the erythrocytes against SB-induced toxicity only at low concentrations of SB. The presence of catechin or quercetin at 10 μM have no effect on SB-induced toxicity at high concentrations of SB (50 and 100 μg/mL). In conclusion, SB may cause oxidative stress as food additive in human erythrocytes in vitro. So, it appears that our findings provide evidence for the protection of erythrocytes from SB that could be considered for further studies.
Kot, Marta; Daniel, Władysława A
2009-01-01
The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.
Anticoagulant effects of a Cannabis extract in an obese rat model.
Coetzee, C; Levendal, R-A; van de Venter, M; Frost, C L
2007-05-01
Blood coagulation studies were conducted to determine the possible anti-/prothrombotic effect of an organic cannabis extract and the three major cannabinoids, THC, CBD and CBN. The in vitro effect of the cannabis extract on thrombin activity produced an IC50 value of 9.89 mg/ml, compared to THC at 1.79 mg/ml. It was also found that the extract, THC and CBN showed considerable inhibition of thrombin-induced clot formation in vitro with IC50 values of 600, 87 and 83 microg/ml for the extract, THC and CBN respectively. In an in vivo model used to determine clotting times of lean and obese rats treated with a cannabis extract, 50% clotting times were found to be 1.5 and 2 fold greater than their respective control groups, supporting the results obtained in the in vitro model. The study thus shows that Cannabis sativa and the cannabinoids, THC and CBN, display anticoagulant activity and may be useful in the treatment of diseases such as type 2 diabetes in which a hypercoagulable state exists.
Sasaki, Clarence T.; Toman, Julia; Vageli, Dimitra
2016-01-01
Background Extra-esophageal carcinogenesis has been widely discussed in relation to the chronic effects of laryngopharyngeal reflux and most prominently with pepsin historically central to this discussion. With refluxate known to include gastric (pepsin) and duodenal (bile) fluids, we recently demonstrated the mechanistic role of NF-κB in mediating the preneoplastic effects of acidic-bile. However, the role of pepsin in promoting hypopharyngeal premalignant events remains historically unclear. Here, we investigate the in vitro effect of acidic-pepsin on the NF-κB oncogenic pathway to better define its potential role in hypopharyngeal neoplasia. Methods Human hypopharyngeal primary cells (HHPC) and keratinocytes (HHK) were repetitively exposed to physiologic pepsin concentrations (0.1 mg/ml) at pH 4.0, 5.0 and 7.0. Cellular localization of phospho-NF-κB and bcl-2 was determined using immunofluorescence and western blotting. NF-κB transcriptional activity was tested by luc reporter and qPCR. Analysis of DNA content of pepsin treated HHK and HHPC was performed using Fluorescence-activated-cell sorting assay. To explore a possible dose related effect, pepsin concentration was reduced from 0.1 to 0.05 and 0.01 mg/ml. Results At physiologic concentration, acidic-pepsin (0.1 mg/ml at pH 4.0) is lethal to most normal hypopharyngeal cells. However, in surviving cells, no NF-κB transcriptional activity is noted. Acidic-pepsin fails to activate the NF-κB or bcl-2, TNF-α, EGFR, STAT3, and wnt5α but increases the Tp53 mRNAs, in both HHPC and HHK. Weakly acidic-pepsin (pH 5.0) and neutral-pepsin (pH 7.0) induce mild activation of NF-κB with increase in TNF-α mRNAs, without oncogenic transcriptional activity. Lower concentrations of pepsin at varying pH do not produce NF-κB activity or transcriptional activation of the analyzed genes. Conclusion Our findings in vitro do not support the role of acidic-pepsin in NF-κB related hypopharyngeal carcinogenesis. PMID:27973541
Shokryazdan, P; Jahromi, M F; Liang, J B; Sieo, C C; Kalavathy, R; Idrus, Z; Ho, Y W
2017-11-01
Twelve previously isolated Lactobacillus strains were investigated for their in vitro bioactivities, including bile salt hydrolase (BSH), cholesterol-reducing and antioxidant activities, cytotoxic effects against cancer cells, enzyme activity, and biogenic amine production. Among them, only 4 strains showed relatively high BSH activity, whereas the rest exhibited low BSH activity. All 12 strains showed cholesterol-reducing and antioxidant activities, especially in their intact cells, which in most of the cases, the isolated strains were stronger in these activities than the tested commercial reference strains. None of the tested strains produced harmful enzymes (β-glucosidase and β-glucuronidase) or biogenic amines. Among the 12 strains, 3 strains were tested for their cytotoxic effects against 3 cancer cell lines, which exhibited strong cytotoxic effects, and they also showed selectivity in killing cancer cells when compared to normal cells. Hence, all 12 Lactobacillus strains could be considered good potential probiotic candidates because of their beneficial functional bioactivities. The Lactobacillus strains tested in this study could be considered good potential probiotic candidates for food/feed industry because of their beneficial functional bioactivities such as good cholesterol-reducing ability, high antioxidant activity, and good and selective cytotoxic effect against cancer cells. © 2017 Institute of Food Technologists®.
Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei
2017-06-05
The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time ( p < 0.05). LPPMs dry-heated for three days obtained relatively strong inhibitory activity against HepG2 cells and SGC7901 cells, as well as strong immunostimulating effects on the nitric oxide production and tumor necrosis factor α secretion of macrophages. Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.
Zhao, Rui-Jie; Huo, Chun-Yan; Qian, Yang; Ren, Di-Feng; Lu, Jun
2017-09-15
This study was to find an effective process to extract bioactive peptides from mushroom foot and determine their effects on activation of alcohol metabolic enzymes in vitro. The optimum extraction assisted by ultra-high-pressure processing of mushroom foot peptides was obtained with a pressure of 400MPa and a processing time of 10min. After ultrafiltration, peptides with molecular weight of 0-3kDa had the highest activity to activate alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) by 70.79% and 71.35%, respectively. Following dextran gel chromatography, two peaks (p-I and p-II) appeared and the activation activities on ADH and ALDH of p-I were 72.00% and 73.43%, both higher than p-II. Nine peptides were found in p-I as determined by LC-MS/MS, and two of them (IPLH and IPIVLL) were synthesized. IPLH activated ADH and ALDH by 42.7% and 29.2% respectively, which were higher than IPIVLL. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-oxidant effects of kiwi fruit in vitro and in vivo.
Iwasawa, Haruyo; Morita, Erika; Yui, Satoru; Yamazaki, Masatoshi
2011-01-01
We previously reported that kiwi fruit is rich in polyphenols and has immunostimulatory activity. Polyphenols are widely known for having anti-oxidant effects. We also revealed potential anti-oxidant effects of kiwi fruit in vivo by oral administration to mice. Here, we compared the anti-oxidant effects of kiwi fruit with those of other fruits in vitro. Then, we examined the inhibitory effects of kiwi fruit on oxidation in the human body. There are two varieties of kiwi fruit, green kiwi and gold kiwi. We also examined variation between these varieties. Comparison of the anti-oxidant effects in vitro demonstrated that kiwi fruit had stronger anti-oxidant effects than orange and grapefruit, which are rich in vitamin C; gold kiwi had the strongest anti-oxidant effects. Kiwi fruit inhibited oxidation of biological substances in the human body. In particular, kiwi fruit may inhibit early lipid oxidation. In this study, kiwi fruit had strong anti-oxidant effects and may prevent the development and deterioration of diseases caused by oxidative stress.
Rendón-Ramirez, A; Cerbón-Solórzano, J; Maldonado-Vega, M; Quintanar-Escorza, M A; Calderón-Salinas, J V
2007-09-01
Lead intoxication induces oxidative damage on lipids and proteins. In the present paper we study in vivo and in vitro the antioxidant effect of vitamin-E and trolox, on the oxidative effects of lead intoxication in rat erythrocytes. Vitamin-E simultaneously administered to erythrocytes treated with lead was capable to prevent the inhibition of delta-aminolevulinic dehydratase activity and lipid oxidation. Partial but important protective effects were found when vitamin-E was administered either after or before lead exposure in rats. In vitro, the antioxidant trolox protected delta-ALA-D activity against damage induced by lead or menadione. These results indicate that vitamin-E could be useful in order to protect membrane-lipids and, notably, to prevent protein oxidation produced by lead intoxication.
Antileishmanial Activity of Liposomal Clarithromycin against Leishmania Major Promastigotes
Sazgarnia, Ameneh; Zabolinejad, Naghmeh; Layegh, Pouran; Rajabi, Omid; Berenji, Fariba; Javidi, Zari; Salari, Roshanak
2012-01-01
Objective(s) Cutaneous leishmaniasis is a common parasitic disease which is endemic in some parts of the world. In vitro and in vivo studies have shown azithromycin efficacy on some Leishmania species. Because of structural similarity between clarithromycin and azithromycin and efficacy of clarithromycin against intracellular organisms and due to the absence of previous studies in this respect, we decided to evaluate the efficacy of clarithromycin against promastigotes of L. major in vitro. Materials and Method First, liposomal and non- liposomal clarithromycin were prepared, then both forms of the drug were incubated with promastigotes for 24 hr in NNN culture media without red phenol in the presence of 5% FCS with different concentrations as follows: 20, 40, 80, 100, 200 and 500 µg/ml. Results According to the results, clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major. The concentration of drug that killed 50% of parasites (ED 50) was 169 and 253.6 µg/ml for liposomal and non- liposomal forms, respectively which shows that lower concentrations of liposomal drug are required to have the same effect as non- liposomal drug and the liposomal form of the drug is more effective than non- liposomal form. Conclusion Clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major. PMID:23658854
Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells
2010-01-01
Background The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. Methods The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Results Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. Conclusions These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas. PMID:20587068
Factors involved in the cytotoxicity of kaolinite towards macrophages in vitro.
Davies, R
1983-01-01
The cytotoxicity of a high purity Cornish kaolinite toward mouse peritoneal macrophages in vitro was examined. The material was cytotoxic towards these cells, the activity could be decreased substantially by pretreating the dust with poly(2-vinylpyridine N-oxide). Pretreatment of the dusts with poly(acrylic acid) had a small effect on cytotoxicity, but combinations of the polymer treatments virtually abolished the material's biological activity towards macrophages. These studies indicated that the cytotoxicity of kaolinite is not due to its flakelike morphology. Images FIGURE 1. PMID:6641658
Zinner, Stephen H.; Simmons, Kelly; Gilbert, Deborah
2000-01-01
The activities of levofloxacin (500 mg every 24 h) and ciprofloxacin (750 mg every 12 h) against six pneumococcal isolates in an in vitro dynamic model were compared. For one strain, levofloxacin reduced the inoculum by over 4 log CFU/ml and ciprofloxacin reduced the inoculum by over 2 log CFU/ml. For four isolates, both drugs reduced inocula by 4 log CFU/ml within 6 h, suggesting that this dose of ciprofloxacin should be as effective as levofloxacin against these pneumococci. PMID:10681356
Influence of human ascitic fluid on the in vitro antibacterial activity of moxifloxacin.
Miglioli, P A; Cappellari, G; Cavallaro, A; Cardaioli, C; Sossai, P; Fille, M; Allerberger, F
2005-08-01
We investigated the in vitro influence of HAF on the antibacterial activity of moxifloxacin against Escherichia coli ATCC 10798, Escherichia coli K-12, Proteus rettgeri (Sanelli), Staphylococcus aureus ATCC 25923, Staphylococcus aureus NCTC 1808 and Staphylococcus epidermidis ATCC 12228. Human ascitic fluid was obtained from 6 cirrhotic patients by paracentesis. The interaction effect was evaluated by the checkerboard technique. Our results indicate the ability of human ascitic fluid to reduce minimum inhibitory concentrations of moxifloxacin against Gram-negative bacteria, but not against Gram-positives.
In Vitro Activities of Eight Antifungal Drugs against 106 Waterborne and Cutaneous Exophiala Species
Najafzadeh, M. J.; Saradeghi Keisari, M.; Vicente, V. A.; Feng, P.; Shamsian, S. A. A.; Rezaei-Matehkolaei, A.; de Hoog, G. S.; Curfs-Breuker, I.
2013-01-01
The in vitro activities of eight antifungal drugs against 106 clinical and environmental isolates of waterborne and cutaneous Exophiala species were tested. The MICs and minimum effective concentrations for 90% of the strains tested (n = 106) were, in increasing order, as follows: posaconazole, 0.063 μg/ml; itraconazole, 0.25 μg/ml; micafungin, 1 μg/ml; voriconazole, 2 μg/ml; isavuconazole, 4 μg/ml; caspofungin, 8 μg/ml; amphotericin B, 16 μg/ml; fluconazole, 64 μg/ml. PMID:24100491
In vitro effect of short peptides on expression of interleukin-2 gene in splenocytes.
Kazakova, T B; Barabanova, S V; Khavinson, V Kh; Glushikhina, M S; Parkhomenko, E P; Malinin, V V; Korneva, E A
2002-06-01
Synthetic peptides Vilon (Lys-Glu), Epithalon (Ala-Glu-Asp-Gly), and Cortagen (Ala-Glu-Asp-Pro) in vitro activated interleukin-2 mRNA synthesis in splenocytes from CBA mice in the absence of specific inductors. The intensity of interleukin-2 mRNA synthesis in splenocytes depended on the type, concentration, and duration of treatment with the peptides. Vilon and Epithalon were most potent, while Cortagen produced a less pronounced effect on interleukin-2 mRNA synthesis.
USDA-ARS?s Scientific Manuscript database
Safflomide (N-caffeoyltryptamine) is a phenolic amide with serotonin-receptor antagonist and anti-oxidant activities. We investigated the effects of safflomide on the expression of adipokines in vitro and in vivo. Safflomide did not affect the expressions of TNF-a, IL-6, and MCP-1/CCL2 in hypertrop...
Drug Evaluation in the Plasmodium Falciparum-Aotus Model
1996-03-01
infections. Although erythromycin is inactive against chloroquine -resistant falciparum infections, an analogue , azithromycin, is effective in vitro...s, infection parameters characterized, confirm their response to chloroquine , and then expand the evaluation of WR 238605, a primaquine analogue ... chloroquine resistance was confirmed, as was the activity of WR 238605 (a primaquine analogue ), 1.0 mglkg (x 3 days) cleared parasitemias but with
NASA Astrophysics Data System (ADS)
Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning
2017-08-01
In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.
Homa, Mónika; Galgóczy, László; Tóth, Eszter; Tóth, Liliána; Papp, Tamás; Chandrasekaran, Muthusamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Vágvölgyi, Csaba
2015-11-01
In the present study, in vitro antifungal activities of five antipsychotic drugs (i.e., chlorpromazine hydrochloride, CPZ; trifluoperazine hydrochloride, TPZ; amantadine hydrochloride; R-(-)-deprenyl hydrochloride, and valproic acid sodium salt) and five conventional antifungal drugs (i.e., amphotericin B, AMB; caspofungin, CSP; itraconazole; terbinafine, TRB and voriconazole, VRC) were investigated in broth microdilution tests against four clinical and five environmental Scedosporium and Pseudallescheria isolates. When used alone, phenothiazines CPZ and TPZ exerted remarkable antifungal effects. Thus, their in vitro combinations with AMB, CSP, VRC, and TRB were also examined against the clinical isolates. In combination with antifungal agents, CPZ was able to act synergistically with AMB and TRB in cases of one and two isolates, respectively. In all other cases, indifferent interactions were revealed. Antagonism was not observed between the tested agents. These combinations may establish a more effective and less toxic therapy after further in vitro and in vivo studies for Scedosporium and Pseudallescheria infections. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gorelnikova, E A; Karpunina, L V
2015-01-01
Study the effect of lactobacilli exopolysaccharides (EPS)on cytokine and phagocyte activity in vitro and in mice organism during modelling of an infectious process. Lactobacillus delbrueckii subsp. delbrueckii B-1596 (laksaran 1596), L. delbrueckii B-1936 (laksaran 1936) and L. delbrueckii ssp. bulgaricus (laksaran Z) were used in the study. EPS were administered into white mice 1 hour after the Staphylococcus aureus 209-P infection. Index of phagocyte completion and index of killing activation (IKA) were calculated during phagocyte activity study. IL-1α, TNF-α, IFN-γ and IL-4 cytokine content was determined in blood sera and macrophage supernatants. Laksaran 1596, 1936 and Z had ambiguous effect on cytokine production. Laksaran: Z and 1936, 6 hours after mice infection increased IL-1 content in blood sera. Laksaran Z had the most pronounced effect on macrophages, resulting in an increase of active macrophages, facilitating increased digestion of S. aureus 209-P and IKA increase, stimulated cytokine production. The results obtained allow to speak about a possibility of using laksaran Z as a prophylaxis immune modulating preparation for correction of animal cytokine status.
Cardioprotection activity and mechanism of Astragalus polysaccharide in vivo and in vitro.
Liu, Debin; Chen, Lei; Zhao, Jianye; Cui, Kang
2018-05-01
Astragalus polysaccharides (ASP) is extracted from Astragalus, and is the main active ingredient of Astragalus membranaceus. The purpose of this study was to investigate the protective effect of ASP on rat cardiomyocytes damage induced by myocardial ischemia and reperfusion injury (MVRI) and isoprenaline(ISO) in vivo and in vitro. The model of cardiomyocytes damage was induced using MVRI in a rat in vivo and also using ISO in cell. After ASP intervention, the protective effect of ASP on cardiomyocytes was evaluated by animal experimental and cell experimental. The results show that ASP can relieve the increase of cell volume in myocardium, reduce the apoptosis of cell in myocardial tissue caused by MVRI in vivo. At the cellular level, ASP can reverse the decrease of cell activity induced by ISO, inhibit the apoptosis, and decrease the levels of intracellular reactive oxygen species. Mechanistically at the molecular level, these effects are elicited via down-regulation of the protein levels of caspase-3 and bax and up-regulation of the protein levels of bcl-2 in both in vivo and in vitro. These results demonstrate that ASP has a protective efficacy in MVRI/ISO-treated cardiomyocytes by inhibiting the apoptosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Spiridon, Camelia I; Ghetie, Maria-Ana; Uhr, Jonathan; Marches, Radu; Li, Jia-Ling; Shen, Guo-Liang; Vitetta, Ellen S
2002-06-01
Her-2 (p185(erbB-2)) is a transmembrane tyrosine kinase receptor, which is encoded by the Her-2/neu proto-oncogene. Her-2 is overexpressed on 30% of highly malignant breast cancers. Monoclonal antibodies (MAbs) against Her-2 inhibit the growth of Her-2-overexpressing tumor cells and this occurs by a variety of mechanisms. One such MAb, Herceptin (Trastuzumab), has been approved for human use. We have generated a panel of murine anti-Her-2 MAbs against nine different epitopes on the extracellular domain of Her-2 and have evaluated the antitumor activity of three of these MAbs alone and in combination, both in vitro and in vivo. We found that MAbs (against different epitopes) make a highly effective mixture, which was more effective than the individual MAbs in treating s.c. tumor nodules of BT474 cells in SCID mice. In vitro, the MAb mixture was also more effective than the single MAbs in inducing antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, inhibiting cell growth and inducing apoptosis, and inhibiting the secretion of vascular endothelial growth factor. Taken together, these activities might explain the superior performance of the MAb mixture in vivo.
Demirci, Selami; Doğan, Ayşegül; Türkmen, Neşe Başak; Telci, Dilek; Rizvanov, Albert A; Şahin, Fikrettin
2017-02-01
Prostate cancer is a multistep and complicated cancer type that is regulated by androgens at the cellular level and remains the second commonest cause of death among men. Discovery and development of novel chemotherapeutic agents enabling rapid tumor cell death with minimal toxic effects to healthy tissues might greatly improve the safety of chemotherapy. The present study evaluates the anti-cancer activity of a novel heterodinuclear copper(II)Mn(II) complex (Schiff base) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (Pluronic) P85. We used assays for cell proliferation, apoptosis, cell migration and invasion, DNA binding and cleavage to elucidate the molecular mechanisms of action, in addition to the anti-inflammatory potency of the new combination. The combined treatment of Schiff base and P85 lead to a remarkable anti-cancer effect on prostate cancer cell lines. Cell proliferation was inhibited in Schiff base-P85 treatment. The activity of this formulation is on DNA binding and cleavage and prevents inflammation in in vitro conditions. This is the first study presenting the anti-cancer activity of the present Schiff base derivative and its combination with P85 to treat prostate cancer in vitro. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Quiroga, Alejandra V; Aphalo, Paula; Nardo, Agustina E; Añón, María C
2017-08-30
Among the factors affecting the development of cardiovascular diseases, hypertension is one of the most important. Research done on amaranth proteins has demonstrated their hypotensive capacity in vivo and in vitro; nevertheless, the mechanism underlying this effect remains unclear. The aim of this study was to analyze in vitro the inhibition of peptides derived from an amaranth hydrolysate (AHH) on other RAS enzymes other than ACE. The chymase and renin activities were studied. AHH was not able to inhibit chymase activity, although a dose-response effect was found on renin activity (IC 50 0.6 mg/mL). To provide an approach to the renin inhibition mechanism, we analyzed AHH renin inhibition kinetics and performed a structural characterization of the peptides involved in the effect in terms of molecular size and hydrophobicity. Results suggest that amaranth peptides exhibit renin competitive inhibition behavior. Renin inhibition potency was directly related to peptide hydrophobicity. RP-HPLC separation of AHH and subsequent analysis of the peptide sequences showed 6 peptides belonging to 11S globulin (that can be grouped into 3 families) that would be responsible for renin inhibition. These results demonstrate that Amaranthus hypochondriacus seeds are an adequate source of peptides with renin inhibitory properties that could be used in functional food formulations.
A novel taspine derivative suppresses human liver tumor growth and invasion in vitro and in vivo
WANG, NAN; ZHENG, LEI; ZHAN, YINGZHUAN; ZHANG, YANMIN
2013-01-01
Taspine is an attractive target of research due to the anticancer and anti-angiogenic effects shown by in vitro and in vivo experiments. The present study investigated the role of tas1611, which is a derivative of taspine that has increased activity and solubility, in the regulation of the invasive properties of the SMMC-7721 liver cell line in vitro and in tumor inhibition in vivo. The proliferation of the SMMC-7721 cells was examined using the tetrazole blue colorimetric method. Matrigel® invasion chamber assays and zymogram analyses were performed to assess the inhibitory effect of tas1611 on cell invasion. Finally, a solid tumor athymic mouse model was employed to further investigate the anti-tumor effect of this compound. The results revealed that tas1611 had a marked inhibitory effect on the invasion of the SMMC-7721 cells and that this effect was associated with the activity and expression levels of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, tas1611 was able to inhibit tumor growth effectively in a solid tumor SMMC-7721 athymic mouse model. In conclusion, tas1611 may serve as a promising novel therapeutic candidate for the treatment of metastatic liver cancer. PMID:24137425
Moffie, B G; Hoogeterp, J J; Lim, T; Douwes-Idema, A E; Mattie, H
1993-03-01
The activity of netilmicin and tobramycin against Pseudomonas aeruginosa was assessed in vitro in the presence of constant and exponentially declining concentrations, and in mice in an experimental thigh infection. The activity in vitro at constant concentrations was expressed as the maximal killing rate (ER) during 3 h of exposure. On the basis of the quantitative relation between E(R) and the drug concentration, the numbers of cfu expected at consecutive times, at constant as well as at declining concentrations, were predicted. The relationship between observed numbers and predicted values of ERt were similar under both conditions for both drugs. On the same basis the numbers of cfu expected in the experimental thigh infection were predicted. There was indeed a significant linear relationship between observed numbers of cfu in homogenized muscle and the values predicted on the basis of the pharmacokinetics of the aminoglycosides, but the slope of this relationship was only 0.22. There was no difference in this respect between the two antibiotics. It is concluded that the efficacy of netilmicin and tobramycin against P. aeruginosa is considerably less in vivo than in vitro, but the relation is about the same for the two drugs; therefore the slightly higher activity of tobramycin in vitro is relevant in the in-vivo situation.
Anwar Ibrahim, Doa'a; Noman Albadani, Rowida
2014-01-01
Green tea and hibiscus are widely consumed as traditional beverages in Yemen and some regional countries. They are relatively cheap and the belief is that they improve health state and cure many diseases. The aim of this study was to evaluate the potential protective and antibacterial activity of these two famous plants in vitro through measuring their antibacterial activity and in vivo through measuring nonenzymatic kidney markers dysfunction after induction of nephrotoxicity by gentamicin. Gram positive bacteria like MRSA (methicillin resistant Staphylococcus aureus) were isolated from hospitalized patients' different sources (pus and wound) and Gram negative bacteria including E. coli and P. aeruginosa were used in vitro study. In addition, the efficacy of these plants was assessed in vivo through measuring nonenzymatic kidney markers including S. creatinine and S. urea. Green tea was shown antimicrobial activity against MRSA with inhibition zone 19.67 ± 0.33 mm and MIC 1.25 ± 0.00 mg/mL compared with standard reference (vancomycin) 18.00 ± 0.00 mg/mL. Hibiscus did not exhibit a similar effect. Both Hibiscus- and green tea-treated groups had nephroprotective effects as they reduced the elevation in nonenzymatic kidney markers. We conclude that green tea has dual effects: antimicrobial and nephroprotective. PMID:24949007
Lakritz, Jeffrey; Tyler, Jeff W; Marsh, Antoinette E; Romesburg-Cockrell, Mary; Smith, Kathy; Holle, Julie M
2002-01-01
Tilmicosin is a potent antimicrobial with broad-spectrum activity against the bacterial agents involved in the bovine respiratory disease complex. Recent studies indicate that in addition to being bactericidal, tilmicosin is capable of modulating inflammation in the lung. A series of experiments were designed to determine whether tilmicosin alters alveolar macrophage-prostaglandin E(2) (PGE(2)) production induced by Escherichia coli (O55:B5) lipopolysaccharide (LPS). Twenty-two healthy Holstein bull calves were used to study the effects of LPS-induced PGE(2) production of alveolar macrophages after in vivo or in vitro treatment with tilmicosin. In Experiment 1, tilmicosin was given by subcutaneous injection (15 mg/kg) twice, 48 hours apart, to four calves; four control calves received no treatment. Twenty-four hours after the second treatment, alveolar macrophages were stimulated with LPS in vitro. In Experiment 2, alveolar macrophages from five untreated calves were harvested and treated in vitro with tilmicosin, followed by LPS stimulation. In Experiment 3, the ability of in vitro tilmicosin treatment to alter the expression of LPS-induced cyclooxygenase-2 (COX-2) mRNA was evaluated. In Experiments 4 and 5, secretory phospholipase A(2) activity was examined in untreated calves. Treatment of calves with tilmicosin resulted in reduced LPS-induced alveolar macrophage PGE(2) production. Similar reductions in PGE(2) by LPS-stimulated alveolar macrophages after in vitro tilmicosin treatment were noted. This in vitro tilmicosin treatment was not associated with reduction of the expression of LPS-induced COX-2. Alveolar macrophage phospholipase A(2) activity induced by LPS was significantly reduced by prior tilmicosin treatment in vitro. Tilmicosin (in vivo and in vitro) appears to reduce the PGE(2) eicosanoid response of LPS-stimulated alveolar macrophages by reducing the in vitro substrate availability without altering in vitro COX-2 mRNA expression.
Rani, M Priya; Padmakumari, K P
2012-10-01
Stereospermum colais (Buch.-Ham. ex Dillw.) Mabberley (Bignoniaceae), which has traditional medicinal properties, is distributed all over deciduous forests. In spite of its many uses, the antidiabetic, antiperoxidative and radical scavenging activities of this species have not been assessed, and its chemical composition is scarcely known. Antidiabetic, antiperoxidation, xanthine oxidase (XO) inhibition, and radical scavenging activities of acetone and methanol extracts of Stereospermum colais roots were investigated. Protective effects of Stereospermum colais root extract in stabilizing sunflower oil was also examined. The protective effect of acetone (ASC) and methanol (MSC) extracts of Stereospermum colais root for the potential inhibition of α-glucosidase and α-amylase enzymes were studied by in vitro method. Glycation inhibitory activity was also studied to inhibit the production of glycated end products. Compared with acarbose, ASC showed a strong inhibitory activity against α-glucosidase (IC(50) 61.21 µg/mL) and a moderate inhibitory activity against α-amylase (IC(50) 681.08 µg/mL). Glycation inhibitory activity of Stereospermum colais root extracts by using an in vitro glucose-bovine serum albumin (BSA) assay was also done and compared with standard gallic acid. ASC also shows high XO inhibition potential, free radical scavenging activities, and low p-anisidine value indicates the high medicinal potency of Stereospermum colais root. These results suggest that the extract of Stereospermum colais may be interesting for incorporation in pharmaceutical preparations for human health, since it can suppress hyperglycaemia, and or as food additives due to its antiradical efficiency.
NASA Astrophysics Data System (ADS)
Wollenberg, Lance A.
Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover, applications of immobilized P450 enzyme constructs will also be used for monitoring protein-protein interaction and metabolite production with the use of immobilized-P450 bioreactor constructs. This work provides insight into the effect on catalytic activity caused by both P450 aggregation as well as isoform-specific protein-protein interactions and provides insight in the production of biosynthetically produced drug metabolites
Song, Xinhua; Yin, Shutao; Zhang, Enxiang; Fan, Lihong; Ye, Min; Zhang, Yong; Hu, Hongbo
2016-10-04
Glycycoumarin (GCM) is a major bioactive coumarin compound isolated from licorice and the anti-cancer activity of GCM has not been scientifically addressed. In the present study, we have tested the anti-liver cancer activity of GCM using both in vitro and in vivo models and found for the first time that GCM possesses a potent activity against liver cancer evidenced by cell growth inhibition and apoptosis induction in vitro and tumor reduction in vivo. Mechanistically, GCM was able to bind to and inactivate oncogenic kinase T-LAK cell-originated protein kinase (TOPK), which in turn led to activation of p53 pathway. Our findings supported GCM as a novel active compound that contributed to the anti-cancer activity of licorice and TOPK could be an effective target for hepatocellular carcinoma (HCC) treatment.
Babu, Vaishnavi; Subathra Devi, C
2015-01-01
Streptokinase (SK) is an extracellular enzyme secreted by various strains of β-hemolytic Streptococci. The main focus of the current study is to evaluate the in vitro thrombolytic activity of purified SK extracted from Streptococcus equinus VIT_VB2 (Accession no. JX406835) isolated from milk sample. The growth rate of S. equinus VIT_VB2 strain was studied with pH and biomass content which has positive significant effect on enzyme yield. A temperature of 10 °C and pH of 6 was found to be optimum for maximum SK activity. The specific activity of the purified SK produced by VIT_VB2 strain was found to be 6,585 IU mg(-1). The molecular mass of the enzyme was determined as 47 kDa by SDS-PAGE. In vitro thrombolytic activity of purified SK was determined using synthetic chromogenic substrate S-2251, the activity of the purified enzyme was found to be 6,330 ± 2.2 IU. The purity of SK was compared with standard SK by HPLC. This is the first report which reveals the SK activity of S. equinus isolated from milk sample.
NASA Astrophysics Data System (ADS)
Tansey, William P.; Herr, Winship
1995-11-01
The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.
Martins, Ligia F; Mesquita, Juliana T; Pinto, Erika G; Costa-Silva, Thais A; Borborema, Samanta E T; Galisteo Junior, Andres J; Neves, Bruno J; Andrade, Carolina H; Shuhaib, Zainab Al; Bennett, Elliot L; Black, Gregory P; Harper, Philip M; Evans, Daniel M; Fituri, Hisham S; Leyland, John P; Martin, Claire; Roberts, Terence D; Thornhill, Andrew J; Vale, Stephen A; Howard-Jones, Andrew; Thomas, Dafydd A; Williams, Harri L; Overman, Larry E; Berlinck, Roberto G S; Murphy, Patrick J; Tempone, Andre G
2016-09-23
Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.
The activity of aminoglycoside antibiotics against Trypanosoma brucei.
Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S
1998-01-01
The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.
Uchii, Masako; Sakai, Mariko; Hotta, Yuhei; Saeki, Satoshi; Kimoto, Naoya; Hamaguchi, Akinori; Kitayama, Tetsuya; Kunori, Shunji
2017-11-01
Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Fonovich de Schroeder, Teresa M
2005-02-01
The effect of Zn2+ on glucose 6-phosphate dehydrogenase (G6PD) activity was monitored in samples from Bufo arenarum toad ovary and alfalfa plants, in the search for a possible new bioindicator able to detect levels of exposure through contaminated soils, and also to elucidate possible similarities between the enzyme from animal and plant tissues. The in vivo effect was evaluated after exposure of the toads to the metal in Ringer solution during 30 days and after 10 days of treatment in 6 weeks old plants, cultured under laboratory conditions. In vitro effects were measured in different extracts from control samples and partially purified enzyme from ovarian tissue as well as in different extracts from control alfalfa plants, by addition of the metal to the reaction mixture containing the enzyme. G6PD from toad ovary was noncompetitively inhibited by zinc both in vivo and in vitro, under all the experimental conditions studied. A kinetic analysis of the enzyme activity showed that the Michaelis-Menten constant (Km) was not modified, while maximal velocity (Vmax) decreased as the consequence of treatment. It was not possible to obtain a dose-response curve for the effects of Zn2+ on G6PD from alfalfa whole plants, measured in vivo or in vitro. Only leaf extracts evidenced a possible relationship between treatment with the metal and G6PD activity alteration. The results agree with a possible role for G6PD as a biomarker of effect and exposure to Zn2+ in B. arenarum ovarian tissue but not in alfalfa plants.
Park, Da-Eun; Woo, Yeon Duk; Kim, Hye Young; Kim, Hang-Rae; Cho, Sang-Heon; Min, Kyung-Up; Kang, Hye-Ryun; Chang, Yoon-Seok
2015-01-01
Background Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood. Objective This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma. Methods Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro. Results The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro. Conclusion These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide. PMID:25905462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xi; Warner, Samuel B.; Wagner, Kyle T.
Purpose: To examine the effect of radiation on in vitro drug activation and release of Promitil, a pegylated liposomal formulation of a mitomycin C (MMC) lipid-based prodrug; and examine the efficacy and toxicity of Promitil with concurrent radiation in colorectal cancer models. Methods and Materials: Promitil was obtained from Lipomedix Pharmaceuticals (Jerusalem, Israel). We tested the effects of radiation on release of active MMC from Promitil in vitro. We next examined the radiosensitization effect of Promitil in vitro. We further evaluated the toxicity of a single injection of free MMC or Promitil when combined with radiation by assessing the effects on blood counts and in-fieldmore » skin and hair toxicity. Finally, we compared the efficacy of MMC and Promitil in chemoradiotherapy using mouse xenograft models. Results: Mitomycin C was activated and released from Promitil in a controlled-release profile, and the rate of release was significantly increased in medium from previously irradiated cells. Both Promitil and MMC potently radiosensitized HT-29 cells in vitro. Toxicity of MMC (8.4 mg/kg) was substantially greater than with equivalent doses of Promitil (30 mg/kg). Mice treated with human-equivalent doses of MMC (3.3 mg/kg) experienced comparable levels of toxicity as Promitil-treated mice at 30 mg/kg. Promitil improved the antitumor efficacy of 5-fluorouracil–based chemoradiotherapy in mouse xenograft models of colorectal cancer, while equitoxic doses of MMC did not. Conclusions: We demonstrated that Promitil is an attractive agent for chemoradiotherapy because it demonstrates a radiation-triggered release of active drug. We further demonstrated that Promitil is a well-tolerated and potent radiosensitizer at doses not achievable with free MMC. These results support clinical investigations using Promitil in chemoradiotherapy.« less
G Silva, Marta; Knowles, Donald P; Antunes, Sandra; Domingos, Ana; Esteves, Maria A; Suarez, Carlos E
2017-06-01
Bovine and equine babesiosis caused by Babesia bovis, Babesia bigemina and Babesia caballi, along with equine theileriosis caused by Theileria equi are global tick-borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the hosts for life. Antiprotozoal drugs are important for managing infection and disease. Previous research demonstrated that trifluralin analogues, designated (TFLAs) 1-15, which specifically bind to regions of alpha-tubulin protein in plants and protozoan parasites, have the ability to inhibit the in vitro growth of B. bovis. The inhibitory activity of TFLAs 1-15 minus TFLA 5 was tested in vitro against cultured B. bigemina, B. caballi and T. equi. The four TFLAs with greatest inhibitory activity were then analyzed for hemolytic activity and toxicity against erythrocytes. All TFLAs tested in the study showed inhibitory effects against the three parasite species. TFLA 2, TFLA 11, TFLA 13 and TFLA 14 were the most effective inhibitors for the three species tested, with estimated IC 50 between 5.1 and 10.1μM at 72h. The drug's solvent (DMSO/ethanol) did not statistically affect the growth of the parasites nor cause hemolysis. Also, TFLA 2, 13 and 14 did not cause statistically significant hemolytic activity on bovine and equine erythrocytes at 15μM, and TFLA 2, 11 and 13 had no detectable toxic effects on bovine and equine erythrocytes at 15μM, suggesting that these drugs do not compromise erythrocyte viability. The demonstrated ability of the trifluralin analogues to inhibit in vitro growth of Babesia spp. and Theileria equi, and their lack of toxic effects on erythrocytes supports further in vivo testing and eventually their development as novel alternatives for the treatment of babesiosis and theileriosis. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Haggerty, D C; Glykos, V; Adams, N E; Lebeau, F E N
2013-12-03
Noradrenaline (NA) in the hippocampus plays an important role in memory function and has been shown to modulate different forms of synaptic plasticity. Oscillations in the gamma frequency (20-80 Hz) band in the hippocampus have also been proposed to play an important role in memory functions and, evidence from both in vitro and in vivo studies, has suggested this activity can be modulated by NA. However, the role of different NA receptor subtypes in the modulation of gamma frequency activity has not been fully elucidated. We have found that NA (30 μM) exerts a bidirectional control on the magnitude of kainate-evoked (50-200 nM) gamma frequency oscillations in the cornu Ammonis (CA3) region of the rat hippocampus in vitro via activation of different receptor subtypes. Activation of alpha-adrenergic receptors (α-AR) reduced the power of the gamma frequency oscillation. In contrast, activation of beta-adrenergic receptors (β-AR) caused an increase in the power of the gamma frequency oscillations. Using specific agonists and antagonists of AR receptor subtypes we demonstrated that these effects are mediated specifically via α1A-AR and β1-AR subtypes. NA activated both receptor subtypes, but the α1A-AR-mediated effect predominated, resulting in a reversible suppression of gamma frequency activity. These results suggest that NA is able to differentially modulate on-going gamma frequency oscillatory activity that could result in either increased or decreased information flow through the hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N
1988-09-01
The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.
The antioxidant system of seminal fluid during in vitro storage of sterlet Acipenser ruthenus sperm.
Dzyuba, Viktoriya; Cosson, Jacky; Dzyuba, Borys; Yamaner, Gunes; Rodina, Marek; Linhart, Otomar
2016-04-01
The role of the seminal fluid antioxidant system in protection against damage to spermatozoa during in vitro sperm storage is unclear. This study investigated the effect of in vitro storage of sterlet Acipenser ruthenus spermatozoa together with seminal fluid for 36 h at 4 °C on spermatozoon motility rate and curvilinear velocity, thiobarbituric acid reactive substance level, and components of enzyme and non-enzyme antioxidant system (superoxide dismutase and catalase activity and uric acid concentration) in seminal fluid. Spermatozoon motility parameters after sperm storage were significantly decreased, while the level of thiobarbituric acid reactive substances, activity of superoxide dismutase and catalase, and uric acid concentration did not change. Our findings suggest that the antioxidant system of sterlet seminal fluid is effective in preventing oxidative stress during short-term sperm storage and prompt future investigations of changes in spermatozoon homeostasis and in spermatozoon plasma membrane structure which are other possible reasons of spermatozoon motility deterioration upon sperm storage.
ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari
2016-01-01
Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487
Dallanoce, C; Conti, P; De Amici, M; De Micheli, C; Barocelli, E; Chiavarini, M; Ballabeni, V; Bertoni, S; Impicciatore, M
1999-08-01
Two subseries of nonquaternized (5a-10a) and quaternized derivatives (5b-10b) related to oxotremorine and oxotremorine-M were synthesized and tested. The agonist potency at the muscarinic receptor subtypes of the new compounds was estimated in three classical in vitro functional assays: M1 rabbit vas deferens, M2 guinea pig left atrium and M3 guinea pig ileum. In addition, the occurrence of central muscarinic effects was evaluated as tremorigenic activity after intraperitoneal administration in mice. In in vitro tests a nonselective muscarinic activity was exhibited by all the derivatives with potencies values that, in some instances, surpassed those of the reference compounds (i.e. 8b). Functional selectivity was evidenced only for the oxotremorine-like derivative 9a, which behaved as a mixed M3-agonist/M1-antagonist (pD2 = 5.85; pA2 = 4.76, respectively). In in vivo tests non-quaternary compounds were able to evoke central muscarinic effects, with a potency order parallel to that observed in vitro.
Vilcacundo, Rubén; Miralles, Beatriz; Carrillo, Wilman; Hernández-Ledesma, Blanca
2018-03-01
Because of the continuous and direct interaction between the digestive tract and foods, dietary compounds represent an interesting source of chemopreventive agents for gastrointestinal health. In this study, the influence of a standardized static in vitro gastrointestinal digestion model on the release of peptides with chemopreventive potential from quinoa protein was investigated. Gastroduodenal digests and fractions collected by ultrafiltration were evaluated for their in plate oxygen radical absorbance capacity and in vitro colon cancer cell viability inhibitory activity. Highest effects were observed in the digests obtained during the intestinal phase, with fraction containing peptides <5kDa as the main responsible for the antioxidant activity and peptides >5kDa showing the greatest anti-cancer effects. Seventeen potential bioactive peptides derived from quinoa proteins have been identified. These proteins might be utilized as new ingredients in the development of functional foods or nutraceuticals with the aim of reducing oxidative stress-associated diseases, including cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
A multivariate extension of mutual information for growing neural networks.
Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J
2017-11-01
Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y
2014-05-22
Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.
2015-01-01
Numerous clinical and preclinical studies have suggested several health promoting effects for the dietary consumption of extra-virgin olive oil (EVOO) that could protect and decrease the risk of developing Alzheimer’s disease (AD). Moreover, recent studies have linked this protective effect to oleocanthal, a phenolic secoiridoid component of EVOO. This protective effect of oleocanthal against AD has been related to its ability to prevent amyloid-β (Aβ) and tau aggregation in vitro, and enhance Aβ clearance from the brains of wild type mice in vivo; however, its effect in a mouse model of AD is not known. In the current study, we investigated the effect of oleocanthal on pathological hallmarks of AD in TgSwDI, an animal model of AD. Mice treatment for 4 weeks with oleocanthal significantly decreased amyloid load in the hippocampal parenchyma and microvessels. This reduction was associated with enhanced cerebral clearance of Aβ across the blood-brain barrier (BBB). Further mechanistic studies demonstrated oleocanthal to increase the expression of important amyloid clearance proteins at the BBB including P-glycoprotein and LRP1, and to activate the ApoE-dependent amyloid clearance pathway in the mice brains. The anti-inflammatory effect of oleocanthal in the brains of these mice was also obvious where it was able to reduce astrocytes activation and IL-1β levels. Finally, we could recapitulate the observed protective effect of oleocanthal in an in vitro human-based model, which could argue against species difference in response to oleocanthal. In conclusion, findings from in vivo and in vitro studies provide further support for the protective effect of oleocanthal against the progression of AD. PMID:26348065
Łopieńska-Biernat, Elżbieta; Molcan, Tomasz; Paukszto, Łukasz; Jastrzębski, Jan Paweł; Myszczyński, Kamil
2018-01-01
The trehalose-6-phosphate phosphatase (TPP) enzyme is involved in the synthesis of trehalose, the main sugar in the energy metabolism of nematodes. TPP is a member of the HAD-like hydrolase superfamily and shows a robust and specific phosphatase activity for the substrate trehalose-6-phosphate. The presence of conserved active sites of TPP in closely related nematodes and its absence in humans makes it a promising target for antiparasitic drugs. In the present study, homology modeling, molecular docking and MD simulation techniques were used to explore the structure and dynamics of TPP. In the active site, a magnesium ion is stabilized by 3 coordinate bonds formed by D 189 , D 191 and D 400 . The key amino acids involved in ligand binding by the enzyme are C 198 , Y 201 ,T 357 , D 191 and Y 197 . This study relied on docking to select potential inhibitors of TPP which were tested in vitro for sensitivity to anthelmintic drugs such as levamisole and ivermectin targeting Anisakis simplex. The higher toxicity of LEV than IVM was demonstrated after 96 h, 30% of larvae were motile in cultures with 100 μg/ml of LEV and 1000 μg/ml of IVM. We identified drug combination of LEV-IVM against in vitro A. simplex as agonistic effect (CI = 1.1). Levamisole appeared to be a more effective drug which inhibited enzyme activity after 48 h and expression of mRNA after 96 h at a concentration of 10 μg/ml. This preliminary study predicted the structure of TPP, and the results of an in vitro experiment involving A. simplex will contribute to the development of effective inhibitors with potential antiparasitic activity in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Giebner, Sabrina; Ostermann, Sina; Straskraba, Susanne; Oetken, Matthias; Oehlmann, Jörg; Wagner, Martin
2018-02-01
Conventional wastewater treatment plants (WWTPs) have a limited capacity to eliminate micropollutants. One option to improve this is tertiary treatment. Accordingly, the WWTP Eriskirch at the German river Schussen has been upgraded with different combinations of ozonation, sand, and granulated activated carbon filtration. In this study, the removal of endocrine and genotoxic effects in vitro and reproductive toxicity in vivo was assessed in a 2-year long-term monitoring. All experiments were performed with aqueous and solid-phase extracted water samples. Untreated wastewater affected several endocrine endpoints in reporter gene assays. The conventional treatment removed the estrogenic and androgenic activity by 77 and 95 %, respectively. Nevertheless, high anti-estrogenic activities and reproductive toxicity persisted. All advanced treatment technologies further reduced the estrogenic activities by additional 69-86 % compared to conventional treatment, resulting in a complete removal of up to 97 %. In the Ames assay, we detected an ozone-induced mutagenicity, which was removed by subsequent filtration. This demonstrates that a post treatment to ozonation is needed to minimize toxic oxidative transformation products. In the reproduction test with the mudsnail Potamopyrgus antipodarum, a decreased number of embryos was observed for all wastewater samples. This indicates that reproductive toxicants were eliminated by neither the conventional nor the advanced treatment. Furthermore, aqueous samples showed higher anti-estrogenic and reproductive toxicity than extracted samples, indicating that the causative compounds are not extractable or were lost during extraction. This underlines the importance of the adequate handling of wastewater samples. Taken together, this study demonstrates that combinations of multiple advanced technologies reduce endocrine effects in vitro. However, they did not remove in vitro anti-estrogenicity and in vivo reproductive toxicity. This implies that a further optimization of advanced wastewater treatment is needed that goes beyond combining available technologies.
Saedi Dezaki, Ebrahim; Mahmoudvand, Hossein; Azadpour, Mojgan; Ezzatkhah, Fatemeh
2015-01-01
The present study aims to evaluate the in vitro and in vivo antileishmanial activities of Pistacia khinjuk Stocks (Anacardiaceae) alcoholic extract and to compare its efficacy with a reference drug, meglumine antimoniate (MA, Glucantime), against Leishmania tropica and Leishmania major. This extract (0–100 µg/mL) was evaluated in vitro against promastigote and intracellular amastigote forms of L. tropica (MRHO/IR/75/ER) and then tested on cutaneous leishmaniasis (CL) in male BALB/c mice with L. major to reproduce the antileishmanial activity topically. In vitro, P. khinjuk extract significantly (P < 0.05) inhibited the growth rate of promastigote (IC50 58.6 ± 3.2 µg/mL) and intramacrophage amastigotes (37.3 ± 2.5 µg/mL) of L. tropica as a dose-dependent response. In the in vivo assay, after 30 days of treatment, 75% recovery was observed in the infected mice treated with 30% extract. After treatment of the subgroups with the concentration of 20 and 30% of P. khinjuk extract, mean diameter of lesions was significantly (P < 0.05) reduced. To conclude, the present investigation demonstrated that P. vera extract had in vitro and in vivo effectiveness against L. major. Obtained findings also provide the scientific evidences that natural plants could be used in the traditional medicine for the prevention and treatment of CL. PMID:25815025
Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Zhao, Ling; Liu, Mengyu
Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in vitro. • Hydrogen molecules have direct effect on the modulation of AChE activity in vitro.« less
Chyderiotis, S; Legeay, C; Verjat-Trannoy, D; Le Gallou, F; Astagneau, P; Lepelletier, D
2018-03-29
Hospital-acquired infections (HAIs) are a major public health issue. The potential of antimicrobial copper surfaces in reducing HAIs' rates is of interest but remains unclear. We conducted a systematic review of studies assessing the activity of copper surfaces (colony-forming unit (CFU)/surface, both in vitro and in situ) as well as clinical studies. In vitro study protocols were analysed through a tailored checklist developed specifically for this review, in situ studies and non-randomized clinical studies were assessed using the ORION (Outbreak Reports and Intervention studies Of Nosocomial infection) checklist and randomized clinical studies using the CONSORT guidelines. The search was conducted using PubMed database with the keywords 'copper' and 'surfaces' and 'healthcare associated infections' or 'antimicrobial'. References from relevant articles, including reviews, were assessed and added when appropriate. Articles were added until 30 August 2016. Overall, 20 articles were selected for review including 10 in vitro, eight in situ and two clinical studies. Copper surfaces were found to have variable antimicrobial activity both in vitro and in situ, although the heterogeneity in the designs and the reporting of the results prevented conclusions from being drawn regarding their spectrum and activity/time compared to controls. Copper effect on HAIs incidence remains unclear because of the limited published data and the lack of robust designs. Most studies have potential conflicts of interest with copper industries. Copper surfaces have demonstrated an antimicrobial activity but the implications of this activity in healthcare settings are still unclear. No clear effect on healthcare associated infections has been demonstrated yet. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Kailayangiri, Sareetha; Jamitzky, Silke; Schelhaas, Sonja; Jacobs, Andreas H.; Wiek, Constanze; Hanenberg, Helmut; Hartmann, Wolfgang; Wiendl, Heinz; Pankratz, Susann; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Fluegge, Maike; Rossig, Claudia
2017-01-01
ABSTRACT Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers. PMID:28197367
Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk
2014-01-01
A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034
Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H
2013-07-01
Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ramkumar, Kunga Mohan; Manjula, Chinnasamy; Sankar, Lakshmanan; Suriyanarayanan, Sarvajayakesavalu; Rajaguru, Palanisamy
2009-09-01
The present study describes the antioxidant activities of ethanol extract from Gymnema montanum (GLEt) which is an endemic plant of India. Antioxidant activity of the GLEt was studied in vitro based on scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and inhibition of lipid peroxidation estimated in terms of thiobarbituric acid reactive substances (TBARS). Further, we examined its protective effect against alloxan-induced oxidative stress in pancreatic beta-cells, HIT-T15 by measuring the free radical generation, malonaldehyde formation and antioxidant levels such as CAT, GPx and GSH. Results showed that G. montanum leaves exhibited significant antioxidant activities measured by various in vitro model systems. The HIT-T15 cell line studies showed the tendency of GLEt to increase antioxidant levels meanwhile decrease the free radical formation and inhibit the lipid peroxidation. The antioxidant activity was found to be well correlated with the phenolic phytochemicals present in the extract. GC-MS analyses revealed the presence of few phenolic compounds in the extract. As this plant has already been demonstrated for a variety of medicinal properties from our laboratory, results of this study suggest that G. montanum is an interesting source for antioxidant compounds and useful for various therapeutic applications.
In-vitro evidence for efficacy of antimicrobial mouthrinses
Pan, Pauline C.; Harper, Scott; Ricci-Nittel, Danette; Lux, Renate; Shi, Wenyuan
2010-01-01
SUMMARY Objectives The objective of this study was to compare the antimicrobial activity of commercially available antiseptic mouthrinses against saliva-derived plaque biofilms in static and flow-through biofilm systems in vitro. Methods Nine mouthrinses were tested in a recirculating flow-through biofilm model (RFTB) with viability assessment by ATP bioluminescence. In addition, five mouthrinses were evaluated in a batch chamber slide biofilm (BCSB) model, using live- dead staining and confocal laser scanning microscopy. Results In the RFTB model, essential oil (EO) and chlorhexidine (CHX)-containing rinses showed equivalent antimicrobial activity and were more effective than a range of cetyl pyridinium chloride (CPC1) formulations. In the BCSB model, twice-daily mouthrinse exposure demonstrated that the EO rinse was significantly more effective than rinses containing amine and stannous fluorides, a combination of CPC/CHX and CPC2. EO showed biofilm kill comparable to the CHX rinse. Conclusions The present studies have shown that mouthrinses vary significantly in their capability to kill plaque biofilm bacteria in BCSB and RFTB models. The EO mouthrinse demonstrated superior antiplaque biofilm activity to AFSF, CPC/CHX, and CPC rinses and comparable activity to CHX. The methods tested may be of value for the in-vitro screening of antiseptic rinses with different modes of antimicrobial action. PMID:20621239
Approaches for predicting effects of unintended environmental ...
Tamoxifen is an endocrine-active pharmaceutical (EAP) that is used world-wide. Because tamoxifen is a ubiquitous pharmaceutical and interacts with estrogen receptors, a case study was conducted with this compound to (1) determine effects on reproductive endpoints in a nontarget species (i.e., a fish), (2) compare biologically-active metabolites across species, (3) assess whether in vitro assays predict in vivo results, and (4) investigate metabolomic profiles in tamoxifen-treated fish to better understand the biological mechanisms of tamoxifen toxicity. In reproductive assays, tamoxifen exposure caused a significant reduction in egg production and significantly increased ovarian aromatase activity in spawning adult cunner fish (Tautogolabrus adspersus). In plasma from tamoxifen-exposed cunner, the predominant metabolite was 4-hydroxytamoxifen, while in rats it was N-desmethyltamoxifen. Because 4-hydroxytamoxifen is a more biologically active metabolite than N-desmethyltamoxifen, this difference could result in a different level of risk for the two species. The results of in vitro assays with fish hepatic microsomes to assess tamoxifen metabolism did not match in vivo results, indicating probable differences in excretion of tamoxifen metabolites in fish compared with rats. For the first time, a complete in vitro characterization of the metabolism of tamoxifen using fish microsomes is presented. Furthermore, a metabolomic investigation of cunner gonad extracts dem
Pinto, Marcia Da Silva; Ranilla, Lena Galvez; Apostolidis, Emmanouil; Lajolo, Franco Maria; Genovese, Maria Inés; Shetty, Kalidas
2009-04-01
Local food diversity and traditional crops are essential for cost-effective management of the global epidemic of type 2 diabetes and associated complications of hypertension. Water and 12% ethanol extracts of native Peruvian fruits such as Lucuma (Pouteria lucuma), Pacae (Inga feuille), Papayita arequipeña (Carica pubescens), Capuli (Prunus capuli), Aguaymanto (Physalis peruviana), and Algarrobo (Prosopis pallida) were evaluated for total phenolics, antioxidant activity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay, and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension linked to type 2 diabetes. The total phenolic content ranged from 3.2 (Aguaymanto) to 11.4 (Lucuma fruit) mg/g of sample dry weight. A significant positive correlation was found between total phenolic content and antioxidant activity for the ethanolic extracts. No phenolic compound was detected in Lucuma (fruit and powder) and Pacae. Aqueous extracts from Lucuma and Algarrobo had the highest alpha-glucosidase inhibitory activities. Papayita arequipeña and Algarrobo had significant ACE inhibitory activities reflecting antihypertensive potential. These in vitro results point to the excellent potential of Peruvian fruits for food-based strategies for complementing effective antidiabetes and antihypertension solutions based on further animal and clinical studies.
Silvestre, M A; Alfonso, J; García-Mengual, E; Salvador, I; Duque, C C; Molina, I
2007-05-01
The aim of this work was to study the effect of recombinant human (rh) FSH and LH on in vitro maturation of pig oocytes compared with a conventional hormonal supplement based on equine (PMSG) and human chorionic gonadotropins (hCG), as evaluated by the developmental ability of 3 types of pig embryos obtained by in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), or artificial activation (ATA). In Exp. 1, one cumulus-oocyte complex group (A group) was supplemented with rh-FSH and rh-LH (0.1 IU/mL each), and the other group (B group) was supplemented with PMSG and hCG (10 IU/mL each). No differences in nuclear maturation between the A and B groups were observed (68.5 vs. 71.4%, respectively). No differences were detected between hormonal treatments in the rates of cleavage or blastocyst formation of ATA, IVF, and ICSI embryos. Total cell number of the embryos was not significantly different in any experimental group (A: 31.1, 28.5, and 19.8 vs. B: 25.2, 25.5, and 20.6 for ATA, IVF, and ICSI embryos, respectively). In Exp. 2, the effects of different concentrations of rh-FSH and rh-LH (0.5, 0.1, or 0.05 IU/mL) in maturation medium on nuclear maturation and in vitro development of embryos obtained by IVF were studied. No effect of different hormonal concentrations on blastocyst formation rates was observed (8.5, 13.0, and 5.7%, respectively). Blastocyst cell number was not different in any experimental group. In conclusion, the results obtained here permit us to substitute PMSG and hCG with rh-FSH and rh-LH and to produce pig embryos obtained by IVF, ICSI, or ATA.
Alpan, Ayşe Selcen; Sarıkaya, Görkem; Çoban, Güneş; Parlar, Sülünay; Armagan, Güliz; Alptüzün, Vildan
2017-07-01
A series of Mannich bases of benzimidazole derivatives having a phenolic group were designed to assess their anticholinesterase and antioxidant activities. The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities were evaluated in vitro by using Ellman's method. According to the activity results, all of the compounds exhibited moderate to good AChE inhibitory activity (except for 2a), with IC 50 values ranging from 0.93 to 10.85 μM, and generally displayed moderate BuChE inhibitory activity. Also, most of the compounds were selective against BuChE. Compound 4b was the most active molecule on the AChE enzyme and also selective. In addition, we investigated the antioxidant effects of the synthesized compounds against FeCl 2 /ascorbic acid-induced oxidative stress in the rat brain in vitro, and the activity results showed that most of the compounds are effective as radical scavengers. Molecular docking studies and molecular dynamics simulations were also carried out. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lim, Yee-Ling; Mok, Shiueh-Lian
2010-01-01
To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro. The antihypertensive activity of 11 species of seaweeds (5 brown, 1 red and 5 green algae) were tested by cumulative addition of the extracts to phenylephrine (PE)-precontracted Wistar-Kyoto (WKY) aortic rings in in vitro isometric contraction studies. Mechanisms for vasorelaxant effect were investigated in the presence of various antagonists. Of the 11 species tested, 2 showed a vasorelaxant effect. Further investigation of the mechanisms of action of the aqueous extract of green alga, Cladophora patentiramea (AECP),showed that the vascular relaxant effect was endothelium- and concentration-dependent. A maximum relaxation of 45.8 +/- 4.6% (n = 8, p < 0.001) was obtained at 0.1 mg/ml of extract, after which the response was found to reduce in a concentration-dependent manner to 15.7 +/- 4.9% (n = 8, p < 0.001) at the highest extract concentration tested. Pretreatment of endothelium-intact aortic rings with Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microM), (1)H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) and methylene blue (100 microM) resulted in a complete blockade of AECP-induced vasorelaxation. However, the relaxant effects of the extract were not blocked by atropine (1 microM), indomethacin (10 microM) and glibenclamide (10 microM), although the maximum relaxant responses were enhanced in the presence of glibenclamide. Our data showed that the in vitro vascular relaxant effect of AECPwas mediated through endothelium-dependent nitric oxide-cGMP pathway, and was not associated with the release of vasodilator prostaglandins, activation of muscarinic receptors, or ATP-sensitive potassium channels opening. Copyright 2010 S. Karger AG, Basel.
In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.
Toroglu, Sevil
2007-07-01
Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.
Castillo, Juan Carlos Quintana; Vargas, Leidy Johana; Segura, Cesar; Gutiérrez, José María; Pérez, Juan Carlos Alarcón
2012-01-01
The antimicrobial and antiparasite activity of phospholipase A2 (PLA2) from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A2 (PLA2) (fraction V) and another containing a PLA2 homologue devoid of enzymatic activity (fraction VI). The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA2 and its homologue have antiplasmodial potential. PMID:23242318
Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji
2017-05-04
Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012; Li, Xianan
Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with themore » in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.« less
Tavss, Edward A; Fisher, Steven W; Campbell, Shannon; Bonta, Yolanda; Darcy-Siegel, Joann; Blackwell, Bernie L; Volpe, Anthony R; Miller, Steven E
2004-02-01
To describe the development of a new dentin hypersensitivity treatment, Colgate Sensitive Maximum Strength dentifrice, containing 5% potassium nitrate as the anti-hypersensitivity active agent. The objective was to develop a home-use hypersensitivity dentifrice that would be superior to the market leader, improving on what is available, which also contains 5% potassium nitrate as the anti-hypersensitivity active agent. In vivo (clinicals, taste evaluation and rat caries), in vitro (potassium flux) and analytical (rheology, dispensed volume, scanning electron microscopy, electron scanning chemical analysis and radioactive dentin abrasion) methods were performed. The objective was accomplished with the development of a new activated silica technology that resulted in enhanced potassium ion activity. In vitro documentation, supported by clinical studies, demonstrated that the resulting formula is more effective than the market leader for relief of hypersensitivity pain. Fast pain relief in less than 2 weeks and long-lasting protection against pain with regular use have also been clinically documented. Furthermore, FDA-required in vivo and in vitro studies indicate that this formula, which contains 0.45% stannous fluoride (1100 ppm fluoride) as the anti-caries active agent, is effective against caries. Good taste, acceptable rheology, acceptable abrasivity, and cosmetic and chemical stability have all been engineered into this unique dentin hypersensitivity treatment. In summary, a highly efficacious consumer friendly treatment for dentin hypersensitivity has been developed.
Martínez-Abad, A; Ocio, M J; Lagarón, J M; Sánchez, G
2013-03-01
There is a growing trend to develop packaging materials with an active role in guarantying that the quality and safety characteristics of packaged products will remain or improve from preparation throughout shelf-life. In the present study, 0.001-1.0 wt.% silver ions were satisfactorily incorporated into polylactide (PLA) films by a solvent casting technique. Silver migration from the films was measured by voltamperometry and then correlated with its antimicrobial efficacy against Salmonella enterica and feline calicivirus (FCV), a human norovirus surrogate, by using the Japanese industrial standard (JIS Z 2801). The PLA-silver films showed strong antibacterial and antiviral activity in vitro, with increasing effects at higher silver concentrations. Moreover, results show that FCV was less susceptible to silver than Salmonella. When films were applied on food samples, antibacterial and antiviral activity was reduced as compared to in vitro. Antimicrobial activity was very much dependent on the food type and temperature. In lettuce samples incubated at 4 °C during 6 days, 4 log CFU of Salmonella was inactivated for films with 1.0 wt.% and no infectious FCV was reported under the same conditions. On paprika samples, no antiviral effect was seen on FCV infectivity whereas films showed less antibacterial activity on Salmonella. Copyright © 2013 Elsevier B.V. All rights reserved.
Cortical granule exocytosis in Bufo arenarum oocytes matured in vitro.
Oterino, J; Sanchez Toranzo, G; Zelarayán, L; Valz-Gianinet, J N; Bühler, M I
2001-08-01
Denuded Bufo arenarum oocytes matured in vitro by progesterone treatment exhibited abnormal segmentation due to the penetration of more than one sperm. These oocytes were able to respond to activation stimuli and exhibited the external signs characteristic of activation. However, the prevention of polyspermy was not effective in these oocytes, which exhibited numerous sperm in their cytoplasm. The aim of this work was to analyse the cortical reaction in polyspermic Bufo arenarum oocytes matured in vitro. The result indicate that the cortical reaction of these oocytes seems to occur with a chronological sequence similar to that described for ovoposited oocytes of this species. In addition, when, 1 min after pricking, cortical granule exocytosis occurred, the oocytes became refractory to sperm entry, suggesting that they are able to establish a slow block to polyspermy.
Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas.
Ahn, K S; Sim, W S; Kim, I H
1996-02-01
A cytotoxic compound was purified from the root of Angelica gigas Nakai by silica gel chromatography and preparative HPLC. As a result of the structure analysis by mass, IR, 1H-NMR, and 13C-NMR spectrometry, the effective compound was identified as decursin, a pyranocoumarin characterized originally from Angelica decursiva Fr. et Sav. In vitro cytotoxicity testing showed that decursin displayed toxic activity against various human cancer cell lines, for which the ED50 of decursin was about 5-16 micrograms/ml. On the other hand, decursin displayed relatively low cytotoxicity against normal fibroblasts. Decursin also activated protein kinase C (PKC) in vitro, which indicates that the cytotoxic activity of decursin may be related to the protein kinase C activation.
Hegedüs, Rózsa; Manea, Marilena; Orbán, Erika; Szabó, Ildikó; Kiss, Eva; Sipos, Eva; Halmos, Gábor; Mező, Gábor
2012-10-01
Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors. Copyright © 2012 Elsevier Masson SAS. All rights reserved.