Sample records for vitro cell experiments

  1. Extending Human Hematopoietic Stem Cell Survival In Vitro with Adipocytes

    PubMed Central

    Glettig, Dean Liang

    2013-01-01

    Abstract Human hematopoietic stem cells (hHSCs) cannot be maintained in vitro for extended time periods because they rapidly differentiate or die. To extend in vitro culture time, researchers have made attempts to use human mesenchymal stem cells (hMSCs) to create feeder layers that mimic the stem cell niche. We have conducted an array of experiments including adipocytes in these feeder layers that inhibit hHSC differentiation and by that prolong stem cell survival in vitro. The amount of CD34+ cells was quantified using flow cytometry. In a first experiment, feeder layers of undifferentiated hMSCs were compared with feeder layers differentiated toward osteoblasts or adipocytes using minimal medium, showing the highest survival rate where adipocytes were included. The same conclusion was drawn in a second experiment in comparing hMSCs with adipogenic feeder cells, using a culture medium supplemented with a cocktail of hHSC growth factors. In a third experiment, it was shown that direct cell–cell contact is necessary for the supportive effect of the feeder layers. In a fourth and fifth experiment the amount of adipocytes in the feeder layers were varied, and in all experiments a higher amount of adipocytes in the feeder layers showed a less rapid decay of CD34+ cells at later time points. We therefore concluded that adipocytes assist in suppressing hHSC differentiation and aid in prolonging their survival in vitro. PMID:23741628

  2. T cell regulation in microgravity - The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities

    NASA Astrophysics Data System (ADS)

    Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice; Thiel, Cora S.; Layer, Liliana E.; Ullrich, Oliver

    2014-11-01

    Dating back to the Apollo and Skylab missions, it has been reported that astronauts suffered from bacterial and viral infections during space flight or after returning to Earth. Blood analyses revealed strongly reduced capability of human lymphocytes to become active upon mitogenic stimulation. Since then, a large number of in vitro studies on human immune cells have been conducted in space, in parabolic flights, and in ground-based facilities. It became obvious that microgravity affects cell morphology and important cellular functions. Observed changes include cell proliferation, the cytoskeleton, signal transduction and gene expression. This review gives an overview of the current knowledge of T cell regulation under altered gravity conditions obtained by in vitro studies with special emphasis on the cell culture conditions used. We propose that future in vitro experiments should follow rigorous standardized cell culture conditions, which allows better comparison of the results obtained in different flight- and ground-based experiment platforms.

  3. The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Schultz, E.; Cassens, R. G.

    1996-01-01

    The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P>0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P>0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P<0.05) over this time. At later time periods, satellite cell number increased (P<0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.

  4. Bacterial cell-free expression technology to in vitro systems engineering and optimization.

    PubMed

    Caschera, Filippo

    2017-06-01

    Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.

  5. In vitro study on effect of germinated wheat on human breast cancer cells

    USDA-ARS?s Scientific Manuscript database

    This research investigated the possible anti-cancer effects of germinated wheat flours (GWF) on cell growth and apoptosis of human breast cancer cells. In a series of in vitro experiments, estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) cells were cultured and treated with GWF that wer...

  6. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications.

    PubMed

    Benny, Paula; Raghunath, Michael

    2017-01-01

    Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

  7. An experiment to study the effects of space flight cells of mesenchymal origin in the new model 3D-graft in vitro

    NASA Astrophysics Data System (ADS)

    Volova, Larissa

    One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.

  8. Chrondrogenesis in micromass cultures of embryonic mouse limb mesenchymal cells exposed to microgravity (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Duke, Jackie

    1992-01-01

    A basic question of space biology is whether changes in gravity are perceived at the cellular level. Previous studies with a variety of cells have shown that this is the case, but to date the response of skeletal cells has not been examined, even though the skeleton is sensitive to gravitational changes. The objective of the CELLS Experiment is to examine the effect of microgravity in vitro on a skeletal cell known to be sensitive to gravitational changes both in vivo and in vitro - the mammalian chondrocyte. Various aspects of the experiment are discussed.

  9. Induction of suppressor cells in vitro by Candida albicans.

    PubMed

    Cuff, C F; Rogers, C M; Lamb, B J; Rogers, T J

    1986-06-01

    Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.

  10. Use of piracetam improves sickle cell deformability in vitro and in vivo.

    PubMed Central

    Gini, E K; Sonnet, J

    1987-01-01

    Microsieving diluted suspensions of oxygenated sickle cell anaemia (HbSS) cells on polycarbonate filters shows that piracetam improves the red cell deformability in vitro. In vivo an oral intake of 160 mg/kg/day divided in four doses enhances the HbSS cell deformability as actively as it does in in vitro experiments. The drug is also able partially to restore the impaired deformability of physiologically deoxygenated HbSS cells. These findings are consistent with the results of clinical trials, which show that continuous treatment with piracetam reduces the incidence of vaso-occlusive crises in patients with sickle cell disease. PMID:3818978

  11. Comparative analysis of Fe ion-induced mutations in murine tissue and cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Kwoh, E.; Dan, C.; Connolly, L.; Turker, M.

    Space flight exposes astronauts to densely ionizing heavy ions including Fe ions This study is designed to assess the impact of the tissue microenvironment on the cytotoxic and mutagenic effects of 1 GeV amu Fe ions in kidney epithelial cells from one mouse strain irradiated either in vitro or in vivo Three to five month old Aprt heterozygous mice are used from a C57BL6 DBA2 cross B6D2F1 or kidney cells are used that were established from these mice Cells and animals were exposed in the plateau portion of the Bragg peak 159 keV mu m at the NASA Space Radiation Laboratories NSRL at Brookhaven National Laboratory Approximately equal numbers of male and female animals were used for the in vivo studies In vitro experiments demonstrated exponential cell killing with a D 0 of 92 cGy Three Aprt mutation experiments have been performed in kidney cells exposed to graded doses of Fe ions in vitro 0-2 Gy Studies to date indicate that Fe ions are mutagenic to kidney epithelial cells irradiated in vitro with a linear induction of mutants as a function of dose In vivo experiments have been completed on two thirds of the animals planned for the study Kidney cells were retrieved from the animals at two time points 2-3 months post-irradiation or 8-9 months post-irradiation Fe ion exposure in vivo led to exponential killing of kidney epithelial cells that was still evident 8-9 months post-exposure In vivo irradiation also results

  12. Duration of senescent cell survival in vitro as a characteristic of organism longevity, an additional to the proliferative potential of fibroblasts.

    PubMed

    Yegorov, Yegor E; Zelenin, Alexander V

    2003-04-24

    More than 40 years have passed since the original publication by Hayflick and Moorhead led to the concept of the 'Hayflick limit' of the maximum number of divisions which somatic cells undergo in vitro. This concept is still regarded as a fundamental characteristic of species longevity. Here we want to emphasize another characteristic of somatic cells, namely, the duration of their survival in vitro in the non-dividing state after cessation of proliferation. This is suggested on the basis of results of recent experiments with so-called Japanese accelerated senescent mice. Results of these experiments reveal a good correlation between the longevity of the mice, the number of duplications of their fibroblasts in vitro, and the survival time of these cells in the non-dividing state. In routine culture conditions, cell survival time may be very long, as much as a few years. However, when the cells are grown under conditions of oxidative stress, cellular longevity is markedly shortened. This new test may serve as an additional marker of organismic longevity. The comparative value of both tests, the classical 'Hayflick limit' and the new test, is discussed.

  13. Hydroxycinnamate conjugates as potential monolignol replacements: In vitro lignification and cell wall studies with rosmarinic acid

    USDA-ARS?s Scientific Manuscript database

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as rosmarinic acid (RA) and analogous catechol derivatives to create cell wall lignins that are less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that...

  14. Dissolution and dissolution/permeation experiments for predicting systemic exposure following oral administration of the BCS class II drug clarithromycin.

    PubMed

    Kristin, Forner; René, Holm; Boontida, Morakul; Buraphacheep, Junyaprasert Varaporn; Maximilian, Ackermann; Johanna, Mazur; Peter, Langguth

    2017-04-01

    In order to save time and resources in early drug development, in vitro methods that correctly predict the formulation effect on oral drug absorption are necessary. The aim of this study was to 1) evaluate various BCS class II drug formulations with in vitro methods and in vivo in order to 2) determine which in vitro method best correlates with the in vivo results. Clarithromycin served as model compound in formulations with different particle sizes and content of excipients. The performed in vitro experiments were dissolution and dissolution/permeation experiments across two types of membrane, Caco-2 cells and excised rat intestinal sheets. The in vivo study was performed in rats. The oral absorption was enhanced by downsizing drug particles and by increasing the excipient concentration. This correlated strongly with the flux across Caco-2 cells but not with the other in vitro experiments. The insufficient correlation with the dissolution experiments can be partly explained by excipient caused problems during the filtration step. The very poor correlation of the in vivo data with the flux across excised rat intestinal sheets might be due to an artificially enlarged mucus layer ex vivo. In conclusion, downsizing BCS class II drug particles and the addition of surfactants enhanced the in vivo absorption, which was best depicted by dissolution/permeation experiments across Caco-2 cells. This setup is proposed as best model to predict the in vivo formulation effect. Also, this is the first study to evaluate the impact of the nature of the permeation membrane in dissolution/permeation experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro.

    PubMed

    Zhang, Li; Wu, Yenan; Li, Xiang; Wei, Shao; Xing, Yiming; Lian, Zhengxing; Han, Hongbing

    2018-01-01

    Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro . Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro .

  16. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    PubMed

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  17. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    NASA Astrophysics Data System (ADS)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.

  18. Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma.

    PubMed

    Danan, Deepa; Lehman, Christine E; Mendez, Rolando E; Langford, Brian; Koors, Paul D; Dougherty, Michael I; Peirce, Shayn M; Gioeli, Daniel G; Jameson, Mark J

    2018-05-01

    Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.

  19. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    PubMed

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.

  20. Alleviation of streptozotocin-induced diabetes in nude mice by stem cells derived from human first trimester umbilical cord.

    PubMed

    Cao, M; Zhang, J B; Dong, D D; Mou, Y; Li, K; Fang, J; Wang, Z Y; Chen, C; Zhao, J; Yie, S M

    2015-10-16

    Cells isolated from human first trimester umbilical cord perivascular layer (hFTM-PV) tissues display the pluripotent characteristics of stem cells. In this study, we examined whether hFTM-PV cells can differentiate into islet-like clusters (ILCs) in vitro, and whether transplantation of the hFTM-PV cells with and without differentiation in vitro can alleviate diabetes in nude mice. The hFTM-PV cells were differentiated into ILCs in vitro through a simple stepwise culture protocol. To examine the in vivo effects of the cells, the hFTM-PV cells with and without differentiation in vitro were transplanted into the abdominal cavity of nude mice with streptozotocin (STZ)-induced diabetes. Blood glucose levels, body weight, and the survival probability of the diabetic nude mice were then statistically analyzed. The hFTM-PV cells were successfully induced into ILCs that could release insulin in response to elevated concentrations of glucose in vitro. In transplantation experiments, we observed that mice transplanted with the undifferentiated hFTM-PV cells, embryonic body-like cell aggregations, or ILCs all demonstrated normalized hyperglycemia and showed improved survival rate compared with those without cell transplantation. The hFTM-PV cells have the ability to differentiate into ILCs in vitro and transplantations of undifferentiated and differentiated cells can alleviate STZ-induced diabetes in nude mice. This may offer a potential cell source for stem cell-based therapy for treating diabetes in the future.

  1. Cytotoxic activity of natural killer cells in vitro under microgravity

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.

    2005-08-01

    Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.

  2. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  3. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    PubMed

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  4. AuNP-DG: deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging.

    PubMed

    Aydogan, Bulent; Li, Ji; Rajh, Tijana; Chaudhary, Ahmed; Chmura, Steven J; Pelizzari, Charles; Wietholt, Christian; Kurtoglu, Metin; Redmond, Peter

    2010-10-01

    To study the feasibility of using 2-deoxy-D-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-D-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Two groups of cell samples were incubated with the AuNP-DG and the unlabeled AuNP, respectively. Following the incubation, the cells were washed with sterile PBS to remove the excess gold nanoparticles and spun to cell pellets using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. The reconstructed CT images were analyzed using a commercial software package. Significant contrast enhancement in the cell samples incubated with the AuNP-DG with respect to the cell samples incubated with the unlabeled AuNP was observed in multiple CT slices. Results from this study demonstrate enhanced uptake of 2-DG-labeled gold nanoparticle by cancer cells in vitro and warrant further experiments to study the exact molecular mechanism by which the AuNP-DG is internalized and retained in the tumor cells.

  5. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.

    PubMed

    Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

    2012-09-01

    Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.

  6. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    PubMed

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  7. In vitro cell and tissue models for studying host-microbe interactions: a review.

    PubMed

    Bermudez-Brito, Miriam; Plaza-Díaz, Julio; Fontana, Luis; Muñoz-Quezada, Sergio; Gil, Angel

    2013-01-01

    Ideally, cell models should resemble the in vivo conditions; however, in most in vitro experimental models, epithelial cells are cultivated as monolayers, in which the establishment of functional epithelial features is not achieved. To overcome this problem, co-culture experiments with probiotics, dendritic cells and intestinal epithelial cells and three-dimensional models attempt to reconcile the complex and dynamic interactions that exist in vivo between the intestinal epithelium and bacteria on the luminal side and between the epithelium and the underlying immune system on the basolateral side. Additional models include tissue explants, bioreactors and organoids. The present review details the in vitro models used to study host-microbe interactions and explores the new tools that may help in understanding the molecular mechanisms of these interactions.

  8. Genetic and environmental determinants of interferon-tau secretion by in vivo- and in vitro-derived bovine blastocysts.

    PubMed

    Kubisch, H M; Larson, M A; Ealy, A D; Murphy, C N; Roberts, R M

    2001-04-30

    Several experiments were conducted to assess the effects of genotype and various culture media on interferon-tau secretion by in vitro-derived bovine blastocysts and to compare these values with interferon released by blastocysts flushed from superovulated cows. In experiment 1, oocytes were inseminated with semen from three different bulls. While paternal genotype had no effect on cleavage rate, the size or hatching ability of blastocysts, it was a significant determinant of the embryo's ability to develop to the blastocyst stage and of subsequent interferon-tau secretion. In the second experiment, embryos were cultured in synthetic oviductal fluid containing either polyvinyl alcohol, bovine serum albumin or fetal bovine serum. While there was no effect of supplement on the percentage of embryos developing to the blastocyst stage, blastocysts which formed in medium with polyvinyl alcohol had significantly fewer cells, were older at blastocyst formation and produced significantly more interferon-tau. In the third experiment, embryos were cultured to the blastocyst stage in either TCM199 alone or in co-culture with buffalo rat liver, bovine oviductal or bovine uterine epithelial cells. Culture with oviductal or buffalo rat liver cells increased blastocyst cell number, although secretion of interferon-tau was not affected. In the final experiment, bovine blastocysts were flushed from superovulated cows on Day 7 following insemination. Overall, secretion of interferon-tau by in vivo-produced blastocysts did not differ from that of age-matched blastocysts produced in vitro.

  9. Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models.

    PubMed

    Pfohl-Leszkowicz, A; Hadjeba-Medjdoub, K; Ballet, N; Schrickx, J; Fink-Gremmels, J

    2015-01-01

    The aim of this paper was to evaluate the capacity of several yeast-based products, derived from baker's and brewer's yeasts, to sequester the mycotoxin ochratoxin A (OTA) and to decrease its rate of absorption and DNA adduct formation in vivo. The experimental protocol included in vitro binding studies using isotherm models, in vivo chicken experiments, in which the serum and tissue concentrations of OTA were analysed in the absence and presence of the test compounds, and the profile of OTA-derived metabolites and their associated DNA adducts were determined. Additionally in vitro cell culture studies (HK2 cells) were applied to assess further the effects for yeast cell product enriched with glutathione (GSH) or selenium. Results of the in vitro binding assay in a buffer system indicated the ability of the yeast-based products, as sequester of OTA, albeit at a different level. In the in vitro experiments in chickens, decreased serum and tissue concentrations of treated animals confirmed that yeast-based products are able to prevent the absorption of OTA. A comparison of the binding affinity in a standard in vitro binding assay with the results obtained in an in vivo chicken experiment, however, showed a poor correlation and resulted in a different ranking of the products. More importantly, we could show that yeast-based products actively modulate the biotransformation of OTA in vivo as well as in vitro in a cell culture model. This effect seems to be attributable to residual enzymatic activities in the yeast-based products. An enrichment of yeast cell wall products with GSH or selenium further modulated the profile of the generated OTA metabolites and the associated pattern of OTA-induced DNA adducts by increasing the conversion of OTA into less toxic metabolites such as OTA, OTB and 4-OH-OTA. A reduced absorption and DNA adduct formation was particularly observed with GSH-enriched yeast, whereas selenium-enriched yeasts could counteract the OTA-induced decrease in cell viability, but at the same time increased the OTA-DNA adducts formation. These findings indicate the need for an in-depth characterisation of yeast-based products used as mycotoxin-mitigating feed additives, in in vivo models with target animal species taking into account not only their ability to sequester toxins in the gastrointestinal tract but also their potential effects on the biotransformation of mycotoxins.

  10. Structure transition in lipids and nucleic acids of tumor cells under anticancer drugs applications

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G. I.; Repnytska, O. P.; Tryndiak, V. P.; Todor, I. N.

    2003-12-01

    Interaction of DNA and phospholipids from Carcinoma Guerina resistant and sensitive cells of Wistar line rats with anti-cancer drugs - cis-platin and doxorubicin (DOX) have been studied in vivo and in vitro experiments. Surface enhanced infrared absorption (SEIRA) spectroscopy was applied for registration of conformational changes in DNA and lipids induced by anti-cancer drugs. It has been shown in vivo experiment that doxorubicin influences less structural disordering of the membrane than cis-platin. Cis-platin creates irreversible complex with memebrane phospholipids, strongly interacting with phosophates and carbohydrate chains. Doxorubicin influences the ordering of carbohydrate chains and does not strongly influence phosphate heads. This change seems to be partially reversible. In contrast, in vivo experiment the doxorubicin strongly influences the DNA structure, leading to DNA stabilization and formation of new H-bonds in DNA-doxorubicin complex. We have not registered the interaction of DNA with cis-platin in vivo experiment. Experiment in vitro for cis-platin incubation with phospholipids from cancer cells during 0.5 hour at 37°C has not shown those drastic structural peculiarities that it was observed in vivo experiments.

  11. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    PubMed

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  12. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals

    PubMed Central

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood–brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p-aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood–brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p-aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells. PMID:28260885

  13. In Pursuit of Prostate Cancer Stem Cells

    DTIC Science & Technology

    2007-01-01

    cells with different tumorigenicities and primitiveness in human PCa xenografts and cell lines. In this study, we seek to reevaluate the relevancy...us prostatospheres and establish primary xenografts in order to carry out our proposed experiments. Preliminary in vitro experiments indicate that...LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c. THIS PAGE U UU 31

  14. Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro.

    PubMed

    Modglin, Vernon C; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2013-05-01

    The primary objective of this study was to evaluate in vitro responses of MLO-A5 osteogenic cells to two modifications of the bioactive glass 13-93. The modified glasses, which were designed for use as cell support scaffolds and contained added boron to form the glasses 13-93 B1 and 13-93 B3, were made to accelerate formation of a bioactive hydroxyapatite surface layer and possibly enhance tissue growth. Quantitative MTT cytotoxicity tests revealed no inhibition of growth of MLO-A5 cells incubated with 13-93 glass extracts up to 10 mg/ml, moderate inhibition of growth with 13-93 B1 glass extracts, and noticeable inhibition of growth with 13-93 B3 glass extracts. A morphology-based biocompatibility test was also performed and yielded qualitative assessments of the relative biocompatibilities of glass extracts that agree with those obtained by the quantitative MTT test. However, as a proof of concept experiment, when MLO-A5 cells were seeded onto 13-93 B3 scaffolds in a dynamic in vitro environment, cell proliferation occurred as evidenced by qualitative and quantitative MTT labeling of scaffolds. Together these results demonstrate the in vitro toxicity of released borate ion in static experiments; however borate ion release can be mitigated in a dynamic environment similar to the human body where microvasculature is present. Here we argue that despite toxicity in static environments, boron-containing 13-93 compositions may warrant further study for use in tissue engineering applications.

  15. Experimental research on the in vitro antitumor effects of Crataegus sanguinea.

    PubMed

    Sun, Jianling; Gao, Guolan; Gao, YuLian; Xiong, LiJuan; Li, Xiaoying; Guo, Jihong; Zhang, Yueming

    2013-09-01

    Crataegus sanguinea is a wild plant, which has been widely grown in the north and south of the Tianshan mountains in Xinjiang. In order to explore their anti-cancer properties, edible wild plants from Xinjiang have been tested for their antitumor properties. We used Ames tests, mouse bone marrow polychromatic erythrocytes micronucleus tests, and tumor cells cultured in vitro to study the anti-mutagenic and anti-tumor effects of C. sanguinea extract. We have shown that C. sanguinea has anti-mutagenic effect, but no mutagenicity. Cell culture in vitro experiments show that there is no inhibition of growth or increase in cell death on normal mouse fibroblasts, but a stronger inhibition of cell growth and an increase in cell death of Hep-2 and MGC-803 tumor cells. The results of this study illustrate that C. sanguinea extract has both anti-mutagenic and anti-tumor effects.

  16. Hydrostatic pressure affects in vitro maturation of oocytes and follicles and increases granulosa cell death.

    PubMed

    Rashidi, Zahra; Azadbakht, Mehri; Amini, Ali; Karimi, Isac

    2014-01-01

    This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (p<0.05). Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05). Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05). Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  17. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    PubMed

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  18. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.

    PubMed

    Segner, Helmut

    2004-10-01

    In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.

  19. Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.

    DTIC Science & Technology

    1995-08-31

    cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast

  20. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE PAGES

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque; ...

    2017-07-06

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  1. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  2. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro.

    PubMed

    Sun, Hui-Ping; Su, Jing-Han; Meng, Qing-Shuo; Yin, Qi; Zhang, Zhi-Wen; Yu, Hai-Jun; Zhang, Peng-Cheng; Wang, Si-Ling; Li, Ya-Ping

    2016-07-01

    To improve the therapeutic efficacy of cancer treatments, combinational therapies based on nanosized drug delivery system (NDDS) has been developed recently. In this study we designed a new NDDS loaded with an anti-metastatic drug silibinin and a photothermal agent indocyanine green (ICG), and investigated its effects on the growth and metastasis of breast cancer cells in vitro. Silibinin and ICG were self-assembled into PCL lipid nanoparticles (SIPNs). Their physical characteristics including the particle size, zeta potential, morphology and in vitro drug release were examined. 4T1 mammalian breast cancer cells were used to evaluate their cellular internalization, cytotoxicity, and their influences on wound healing, in vitro cell migration and invasion. SIPNs showed a well-defined spherical shape with averaged size of 126.3±0.4 nm and zeta potential of -10.3±0.2 mV. NIR laser irradiation substantially increased the in vitro release of silibinin from the SIPNs (58.3% at the first 8 h, and 97.8% for the total release). Furthermore, NIR laser irradiation markedly increased the uptake of SIPNs into 4T1 cells. Under the NIR laser irradiation, both SIPNs and IPNs (PCL lipid nanoparticles loaded with ICG alone) caused dose-dependent ablation of 4T1 cells. The wound healing, migration and invasion experiments showed that SIPNs exposed to NIR laser irradiation exhibited dramatic in vitro anti-metastasis effects. SIPNs show temperature-sensitive drug release following NIR laser irradiation, which can inhibit the growth and metastasis of breast cancer cells in vitro.

  3. Extended Latanoprost Release from Commercial Contact Lenses: In Vitro Studies Using Corneal Models

    PubMed Central

    Mohammadi, Saman; Jones, Lyndon; Gorbet, Maud

    2014-01-01

    In this study, we compared, for the first time, the release of a 432 kDa prostaglandin analogue drug, Latanoprost, from commercially available contact lenses using in vitro models with corneal epithelial cells. Conventional polyHEMA-based and silicone hydrogel soft contact lenses were soaked in drug solution ( solution in phosphate buffered saline). The drug release from the contact lens material and its diffusion through three in vitro models was studied. The three in vitro models consisted of a polyethylene terephthalate (PET) membrane without corneal epithelial cells, a PET membrane with a monolayer of human corneal epithelial cells (HCEC), and a PET membrane with stratified HCEC. In the cell-based in vitro corneal epithelium models, a zero order release was obtained with the silicone hydrogel materials (linear for the duration of the experiment) whereby, after 48 hours, between 4 to 6 of latanoprost (an amount well within the range of the prescribed daily dose for glaucoma patients) was released. In the absence of cells, a significantly lower amount of drug, between 0.3 to 0.5 , was released, (). The difference observed in release from the hydrogel lens materials in the presence and absence of cells emphasizes the importance of using an in vitro corneal model that is more representative of the physiological conditions in the eye to more adequately characterize ophthalmic drug delivery materials. Our results demonstrate how in vitro models with corneal epithelial cells may allow better prediction of in vivo release. It also highlights the potential of drug-soaked silicone hydrogel contact lens materials for drug delivery purposes. PMID:25207851

  4. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines.

    PubMed

    Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong

    2015-01-01

    The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.

  5. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    PubMed

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  6. Influence of neighboring adherent cells on laminar flow induced shear stress in vitro—A systematic study

    PubMed Central

    Djukelic, Mario; Westerhausen, Christoph

    2017-01-01

    Cells experience forces if subjected to laminar flow. These forces, mostly of shear force character, are strongly dependent not only on the applied flow field itself but also on hydrodynamic effects originating from neighboring cells. This particularly becomes important for the interpretation of data from in vitro experiments in flow chambers without confluent cell layers. By employing numerical Finite Element Method simulations of such assemblies of deformable objects under shear flow, we investigate the occurring stress within elastic adherent cells and the influence of neighboring cells on these quantities. For this, we simulate single and multiple adherent cells of different shapes fixed on a solid substrate under laminar flow parallel to the substrate for different velocities. We determine the local stress within the cells close to the cell-substrate-interface and the overall stress of the cells by surface integration over the cell surface. Comparing each measurand in the case of a multiple cell situation with the corresponding one of single cells under identical conditions, we introduce a dimensionless influence factor. The systematic variation of the distance and angle between cells, where the latter is with respect to the flow direction, flow velocity, Young's modulus, cell shape, and cell number, enables us to describe the actual influence on a cell. Overall, we here demonstrate that the cell density is a crucial parameter for all studies on flow induced experiments on adherent cells in vitro. PMID:28798851

  7. Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis.

    PubMed Central

    ManWarren, T; Gagliardo, L; Geyer, J; McVay, C; Pearce-Kelling, S; Appleton, J

    1997-01-01

    Studies of nematode establishment in intestinal niches has been hindered by the lack of a readily manipulated in vitro assay. In this report, experiments are described wherein the larval stage of the parasitic nematode Trichinella spiralis was shown to invade epithelial cell monolayers in vitro. Larvae penetrated cells and migrated through them, leaving trails of dead cells in their wake. Cells derived from five different species were susceptible to invasion, reflecting the broad host range of T. spiralis in vivo. Epithelial cells derived from large and small intestines and kidneys were susceptible. Fibroblast and muscle cells were resistant. Larvae deposited glycoprotein antigens in the cells they invaded. Although the function of these antigens is unknown, they are targeted by rat antibodies that cause T. spiralis to be expelled from the intestine. The model system described provides the means to further investigate this process as well as the mechanisms by which this parasitic nematode establishes its intestinal niche. PMID:9353069

  8. Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.

    2017-08-01

    Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.

  9. Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells.

    PubMed

    Miranda, Moysés S; Nascimento, Hamilton S; Costa, Mayra P R; Costa, Nathália N; Brito, Karynne N L; Lopes, Cinthia T A; Santos, Simone S D; Cordeiro, Marcela S; Ohashi, Otávio M

    2016-10-01

    Despite advances in the composition of defined embryo culture media, co-culture with somatic cells is still used for bovine in vitro embryo production (IVEP) in many laboratories worldwide. Granulosa cells are most often used for this purpose, although recent work suggests that co-culture with stem cells of adult or embryonic origin or their derived biomaterials may improve mouse, cattle, and pig embryo development. In experiment 1, in vitro produced bovine embryos were co-cultured in the presence of two concentrations of bovine adipose tissue-derived mesenchymal cells (b-ATMSCs; 10 3 and 10 4 cells/mL), in b-ATMSC preconditioned medium (SOF-Cond), or SOF alone (control). In experiment 2, co-culture with 10 4 b-ATMSCs/mL was compared to the traditional granulosa cell co-culture system (Gran). In experiment 1, co-culture with 10 4 b-ATMSCs/mL improved blastocyst rates in comparison to conditioned and control media (p < 0.05). Despite that it did not show difference with 10 3 b-ATMSCs/mL (p = 0.051), group 10 4 b-ATMSCs/mL yielded higher results of blastocyst production. In experiment 2, when compared to group Gran, co-culture with 10 4 b-ATMSCs/mL improved not only blastocyst rates but also quality as assessed by increased total cell numbers and mRNA expression levels for POU5F1 and G6PDH (p < 0.05). Co-culture of bovine embryos with b-ATMSCs was more beneficial than the traditional co-culture system with granulosa cells. We speculate that the microenvironmental modulatory potential of MSCs, by means of soluble substances and exosome secretions, could be responsible for the positive effects observed. Further experiments must be done to evaluate if this beneficial effect in vitro also translates to an increase in offspring following embryo transfer. Moreover, this study provides an interesting platform to study the basic requirements during preimplantation embryo development, which, in turn, may aid the improvement of embryo culture protocols in bovine and other species.

  10. Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect.

    PubMed

    Lugini, Luana; Federici, Cristina; Borghi, Martina; Azzarito, Tommaso; Marino, Maria Lucia; Cesolini, Albino; Spugnini, Enrico Pierluigi; Fais, Stefano

    2016-08-01

    Tumor acidity represents a major cause of chemoresistance. Proton pump inhibitors (PPIs) can neutralize tumor acidity, sensitizing cancer cells to chemotherapy. To compare the anti-tumor efficacy of different PPIs in vitro and in vivo. In vitro experiments PPIs anti-tumor efficacy in terms of cell proliferation and cell death/apoptosis/necrosis evaluation were performed. In vivo PPIs efficacy experiments were carried out using melanoma xenograft model in SCID mice. Lansoprazole showed higher anti-tumor effect when compared to the other PPIs. The lansoprazole effect lasted even upon drug removal from the cell culture medium and it was independent from the lipophilicity of the PPIs formulation. These PPIs have shown different anti-tumoral efficacy, and the most effective at low dose was lansoprazole. The possibility to contrast tumor acidity by off-label using PPIs opens a new field of oncology investigation.

  11. In vitro studies of actin filament and network dynamics

    PubMed Central

    Mullins, R Dyche; Hansen, Scott D

    2013-01-01

    Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766

  12. In vitro cell culture models to study the corneal drug absorption.

    PubMed

    Reichl, Stephan; Kölln, Christian; Hahne, Matthias; Verstraelen, Jessica

    2011-05-01

    Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.

  13. Calcification of in vitro developed hypertrophic cartilage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tacchetti, C.; Quarto, R.; Campanile, G.

    1989-04-01

    We have recently reported that dedifferentiated cells derived from stage 28-30 chick embryo tibiae, when transferred in suspension culture in the presence of ascorbic acid, develop in a tissue closely resembling hypertrophic cartilage. Ultrastructural examination of this in vitro formed cartilage showed numerous matrix vesicles associated with the extracellular matrix. In the present article we report that the in vitro developed hypertrophic cartilage undergoes calcification. We indicate a correlation between the levels of alkaline phosphatase activity and calcium deposition at different times of development. Following the transfer of cells into suspension culture and an initial lag phase, the level ofmore » alkaline phosphatase activity rapidly increased. In most experiments the maximum of activity was reached after 5 days of culture. When alkaline phosphatase activity and /sup 45/Ca deposition were measured in the same experiment, we observed that the increase in alkaline phosphatase preceded the deposition of nonwashable calcium deposits in the cartilage.« less

  14. Alpha-Tocopherol alters transcription activities that modulate tumor necrosis factor alpha (TNF-¿)-induced inflammatory response in bovine cells

    USDA-ARS?s Scientific Manuscript database

    To further investigate the potential role of '-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-a as an immuno-stimulant to simulate inflammation response in cells with and without '...

  15. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo.

    PubMed

    Guimarães-Camboa, Nuno; Cattaneo, Paola; Sun, Yunfu; Moore-Morris, Thomas; Gu, Yusu; Dalton, Nancy D; Rockenstein, Edward; Masliah, Eliezer; Peterson, Kirk L; Stallcup, William B; Chen, Ju; Evans, Sylvia M

    2017-03-02

    Pericytes are widely believed to function as mesenchymal stem cells (MSCs), multipotent tissue-resident progenitors with great potential for regenerative medicine. Cultured pericytes isolated from distinct tissues can differentiate into multiple cell types in vitro or following transplantation in vivo. However, the cell fate plasticity of endogenous pericytes in vivo remains unclear. Here, we show that the transcription factor Tbx18 selectively marks pericytes and vascular smooth muscle cells in multiple organs of adult mouse. Fluorescence-activated cell sorting (FACS)-purified Tbx18-expressing cells behaved as MSCs in vitro. However, lineage-tracing experiments using an inducible Tbx18-CreERT2 line revealed that pericytes and vascular smooth muscle cells maintained their identity in aging and diverse pathological settings and did not significantly contribute to other cell lineages. These results challenge the current view of endogenous pericytes as multipotent tissue-resident progenitors and suggest that the plasticity observed in vitro or following transplantation in vivo arises from artificial cell manipulations ex vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comparison of human and monkey cells for the ability to attenuate transcripts that begin at the adenovirus major late promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiberg, M.; Aloni, Y.; Levine, A.J.

    1989-09-01

    Late transcription from the adenovirus major late promoter can terminate prematurely at a site 182 to 188 nucleotides downstream. Experiments have been designed, with run-on transcription in nuclei in vitro or riboprobe protection of RNA obtained both in vivo and in vitro, that demonstrate that the ratio of attenuator RNA to readthrough RNA is greater in monkey cells (CV-1) than in human cells (HeLa). This may explain, in part, why the human adenoviruses replicate more poorly in CV-1 cells than in HeLa cells. A mutant adenovirus that replicates better than wild-type virus in monkey cells produces less of the attenuatormore » RNA than wild-type adenovirus does in monkey cells. Monkey cell extracts have been shown to contain a factor that, when added to human cell extracts transcribing adenovirus DNA in vitro, increases the production of attenuator RNA in these reactions. These observations help to explain a portion of the block to the production of infectious adenoviruses in monkey cells.« less

  17. Visualization and Measurement of Flow in a Model Rotating-Wall Bioreactor

    NASA Astrophysics Data System (ADS)

    Brown, Jason B.; Neitzel, G. Paul

    1997-11-01

    Fluid shear has been observed to have an effect on the in vitro growth of mammalian cells and is expected to play a role in the in vitro development of aggregates of cells into tissue. The interactions between culture media and cell constructs within a circular Couette flow bioreactor with independently rotating cylinders are investigated in model studies using flow visualization. Particle-Image Velocimetry (PIV) is used to quantify the velocity field in a plane perpendicular to the vessel axis which contains a cell construct model. This velocity field is then used to compute the instantaneous shear field. Experiments show the path of the model cell construct is dependent on the rotation rates of the cylinders.

  18. Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo.

    PubMed

    Altenburg, Arwen F; van de Sandt, Carolien E; Li, Bobby W S; MacLoughlin, Ronan J; Fouchier, Ron A M; van Amerongen, Geert; Volz, Asisa; Hendriks, Rudi W; de Swart, Rik L; Sutter, Gerd; Rimmelzwaan, Guus F; de Vries, Rory D

    2017-08-17

    Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.

  19. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve.

    PubMed

    Seo, NaRi; Lee, Sung-Ho; Ju, Kyung Won; Woo, JaeMan; Kim, BongJu; Kim, SoungMin; Jahng, Jeong Won; Lee, Jong-Ho

    2018-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments. In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 10 6 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.

  20. Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Tixador, R.

    1992-01-01

    The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.

  1. Lidocaine Induces Apoptosis and Suppresses Tumor Growth in Human Hepatocellular Carcinoma Cells In Vitro and in a Xenograft Model In Vivo.

    PubMed

    Xing, Wei; Chen, Dong-Tai; Pan, Jia-Hao; Chen, Yong-Hua; Yan, Yan; Li, Qiang; Xue, Rui-Feng; Yuan, Yun-Fei; Zeng, Wei-An

    2017-05-01

    Recent epidemiologic studies have focused on the potential beneficial effects of regional anesthetics, and the differences in cancer prognosis may be the result of anesthetics on cancer biologic behavior. However, the function and underlying mechanisms of lidocaine in hepatocellular carcinoma both in vitro and in vivo have been poorly studied. Human HepG2 cells were treated with lidocaine. Cell viability, colony formation, cell cycle, and apoptosis were assessed. The effects of lidocaine on apoptosis-related and mitogen-activated protein kinase protein expression were evaluated by Western blot analysis. The antitumor activity of lidocaine in hepatocellular carcinoma with or without cisplatin was investigated with in vitro experiments and also with animal experiments. Lidocaine inhibited the growth of HepG2 cells in a dose- and time-dependent manner. The authors also found that lidocaine arrested cells in the G0/G1 phase of the cell cycle (63.7 ± 1.7% vs. 72.4 ± 3.2%; P = 0.0143) and induced apoptosis (1.7 ± 0.3% vs. 5.0 ± 0.7%; P = 0.0009). Lidocaine may exert these functions by causing an increase in Bax protein and activated caspase-3 and a corresponding decrease in Bcl-2 protein through the extracellular signal-regulated kinase 1/2 and p38 pathways. More importantly, for the first time, xenograft experiments (n = 8 per group) indicated that lidocaine suppressed tumor development (P < 0.0001; lidocaine vs. control) and enhanced the sensitivity of cisplatin (P = 0.0008; lidocaine plus cisplatin vs. cisplatin). The authors' findings suggest that lidocaine may exert potent antitumor activity in hepatocellular carcinoma. Furthermore, combining lidocaine with cisplatin may be a novel treatment option for hepatocellular carcinoma.

  2. Apoptosis induced by cold shock in vitro is dependent on cell growth phase.

    PubMed

    Soloff, B L; Nagle, W A; Moss, A J; Henle, K J; Crawford, J T

    1987-06-15

    Chinese hamster V79 fibroblast cells were exposed to brief periods of cold but non-freezing temperatures at different points on the population growth curve. Upon rewarming, cells at the transition from logarithmic to stationary growth exhibited apoptosis (programmed cell death). Cells in other stages of growth, or after reentry into logarithmic growth by refeeding, did not exhibit apoptosis. Apoptosis was expressed by marked cytoplasmic blebbing, by a characteristic non-random fragmentation of DNA into nucleosomal-sized pieces, and by loss of colony-forming ability. The data suggest that cold shock served as a stimulus for susceptible cells to undergo apoptosis. Thus, the experiments describe a new in vitro system for studying the mechanisms of apoptosis.

  3. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  4. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    DTIC Science & Technology

    2014-08-01

    experiments of this award and published in the high-impact peer-reviewed journal: Journal of Biological Chemistry (13), was that the described increase...of genistein and other flavonoids in human breast cancer cells in vitro, Nutr Cancer, 27: 31-40, 1997. 13 de la,P.C., Otero-Franqui,E., Martinez...properties of genistein and other flavonoids in human breast cancer cells in vitro, Nutr Cancer, 27: 31-40, 1997. 3 Okabe,Y., Shimazu,T. and Tanimoto,H

  5. The Extracellular Environment's Effect on Cellular Processes: An In Vitro Study of Mechanical and Chemical Cues on Human Mesenchymal Stem Cells and C17.2 Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Casey, Meghan E.

    Stem cells are widely used in the area of tissue engineering. The ability of cells to interact with materials on the nano- and micro- level is important in the success of the biomaterial. It is well-known that cells respond to their micro- and nano-environments through a process termed chemo-mechanotransduction. It is important to establish standard protocols for cellular experiments, as chemical modifications to maintenance environments can alter long-term research results. In this work, the effects of different media compositions on human mesenchymal stem cells (hMSCs) throughout normal in vitro maintenance are investigated. Changes in RNA regulation, protein expression and proliferation are studied via quantitative polymerase chain reaction (qPCR), immunocytochemistry (ICC) and cell counts, respectively. Morphological differences are also observed throughout the experiment. Results of this study illustrate the dynamic response of hMSC maintenance to differences in growth medium and passage number. These experiments highlight the effect growth medium has on in vitro experiments and the need of consistent protocols in hMSC research. A substantial opportunity exists in neuronal research to develop a material platform that allows for both the proliferation and differentiation of stem cells into neurons and the ability to quantify the secretome of neuronal cells. Anodic aluminum oxide (AAO) membranes are fabricated in a two-step anodization procedure where voltage is varied to control the pore size and morphology of the membranes. C17.2 neural stem cells are differentiated on the membranes via serum-withdrawal. Cellular growth is characterized by scanning electron microscopy (SEM), ICC and qPCR. ImageJ software is used to obtain phenotypic cell counts and neurite outgrowth lengths. Results indicate a highly tunable correlation between AAO nanopore sizes and differentiated cell populations. By selecting AAO membranes with specific pore size ranges, control of neuronal network density and neurite outgrowth length is achievable. To understand differentiation marker expressions in C17.2 NSCs and how material stiffness affects differentiation, cells are cultured on substrates of varying stiffness. qPCR is used to analyze neural stem cell, neural progenitor cell, neuron-restricted progenitor and differentiated post-mitotic neuronal cell RNA expression. Results suggest a relationship between material stiffness and neuronal development in C17.2 neural stem cells.

  6. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.

    PubMed

    Torella, Daniele; Iaconetti, Claudio; Catalucci, Daniele; Ellison, Georgina M; Leone, Angelo; Waring, Cheryl D; Bochicchio, Angela; Vicinanza, Carla; Aquila, Iolanda; Curcio, Antonio; Condorelli, Gianluigi; Indolfi, Ciro

    2011-09-30

    MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.

  7. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  8. In Vitro Spermatogenesis of Gypsy Moth Larvae.

    ERIC Educational Resources Information Center

    Brown, Judy; Loeb, Marcia J.

    1994-01-01

    Students establish simple cell developmental cultures to observe the process of spermatogenesis, mitosis, and meiosis in living cells. Using the background information, hints for further exploration, and experimental procedures provided, teachers can easily modify this experiment to suit their students needs. (ZWH)

  9. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome

    PubMed Central

    Griffiths, Lisa A.; Persaud, Shanta J.; Jones, Peter M.; Howell, Simon L.; Welsh, Nils

    2016-01-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome. PMID:26953716

  10. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    PubMed

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  11. Mechanisms of selective antitumor action of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Graves, David; Bauer, Georg

    2016-09-01

    Transformed (precancerous) cells are known to be subject to elimination through intercellular RONS-dependent apoptosis-inducing signaling. It is a remarkable fact that the chemical species utilized by apoptosis induction in transformed cells are essentially identical to chemical species created by cold atmospheric plasma (CAP) in aqueous solutions. The association between CAP-induced biochemistry and natural cell anti-tumor mechanisms offers the opportunity to establish a rationale for the observed successes of CAP in selectively eliminating tumor cells in vitro and in vivo. In particular, 1O2 appears to act to selectively induce apoptosis in tumor cells, and can also result in self-perpetuating, cell-to-cell apoptotic signaling. Various CAP-generated liquid phase species can react to form 1O2, thus providing a hypothetical mechanism to explain how CAP can trigger therapeutic apoptosis in tumors. The analysis of model experiments performed with defined RONS in vitro implies that CAP-derived 1O2 induces the mechanism through which CAP acts selectively against cancer cells in vitro and tumors in vivo. This hypothesis needs to be tested experimentally in order to establish its validity.

  12. Crosstalk Between Activated Myofibroblasts and β Cells in Injured Mouse Pancreas.

    PubMed

    Bayan, Jennifer-Ann; Peng, Zhechu; Zeng, Ni; He, Lina; Chen, Jingyu; Stiles, Bangyan L

    2015-10-01

    In injury conditions, myofibroblasts are induced to lay down matrix proteins and support the repair process. In this study, we investigated the role of myofibroblasts, particularly stellate cells, in the growth and regeneration of pancreatic β cells. We used both in vitro and in vivo approaches to address whether stellate cells may promote the growth of β cells. Our experiments demonstrated that activated stellate cells support the proliferation of β cells in vitro. In vivo, mesenchymals surrounding the pancreatic islets are activated (induced to proliferate) in the islet regeneration model of Pten null mice. These mesenchymals display markers of pancreatic stellate cells, such as desmin and to a lesser extent, smooth muscle actin α. We have shown previously that targeted β-cell deletion of Pten lead to a significant increase in total islet mass. This phenotype was accompanied by an increase in peri-islet mitotic activity, particularly in islets injured by streptozotocin, a β cell-specific toxin. Together with the in vitro observations, our data, here, suggest that that these mesenchymal cells may support the regeneration of the islets. Identifying how the communication occurs may provide clinically relevant mechanism for inducing β-cell regeneration.

  13. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo

    PubMed Central

    Hashemzaei, Mahmoud; Far, Amin Delarami; Yari, Arezoo; Heravi, Reza Entezari; Tabrizian, Kaveh; Taghdisi, Seyed Mohammad; Sadegh, Sarvenaz Ekhtiari; Tsarouhas, Konstantinos; Kouretas, Dimitrios; Tzanakakis, George; Nikitovic, Dragana; Anisimov, Nikita Yurevich; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Rezaee, Ramin

    2017-01-01

    The present study focused on the elucidation of the putative anticancer potential of quercetin. The anticancer activity of quercetin at 10, 20, 40, 80 and 120 µM was assessed in vitro by MMT assay in 9 tumor cell lines (colon carcinoma CT-26 cells, prostate adenocarcinoma LNCaP cells, human prostate PC3 cells, pheocromocytoma PC12 cells, estrogen receptor-positive breast cancer MCF-7 cells, acute lymphoblastic leukemia MOLT-4 T-cells, human myeloma U266B1 cells, human lymphoid Raji cells and ovarian cancer CHO cells). Quercetin was found to induce the apoptosis of all the tested cancer cell lines at the utilized concentrations. Moreover, quercetin significantly induced the apoptosis of the CT-26, LNCaP, MOLT-4 and Raji cell lines, as compared to control group (P<0.001), as demonstrated by Annexin V/PI staining. In in vivo experiments, mice bearing MCF-7 and CT-26 tumors exhibited a significant reduction in tumor volume in the quercetin-treated group as compared to the control group (P<0.001). Taken together, quercetin, a naturally occurring compound, exhibits anticancer properties both in vivo and in vitro. PMID:28677813

  14. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach

    PubMed Central

    Qi, Quan; Li, Rui; Li, Hui-ying; Cao, Yu-bing; Bai, Ming; Fan, Xiao-jing; Wang, Shu-yan; Zhang, Bo; Li, Shao

    2016-01-01

    Aim: Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. Methods: The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. Results: The nuciferine target profile was enriched with signaling pathways and biological functions, including “regulation of lipase activity”, “response to nicotine” and “regulation of cell proliferation”. Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. Conclusion: By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels. PMID:27180984

  15. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    PubMed

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  16. Parecoxib: an enhancer of radiation therapy for colorectal cancer.

    PubMed

    Xiong, Wei; Li, Wen-Hui; Jiang, Yong-Xin; Liu, Shan; Ai, Yi-Qin; Liu, Rong; Chang, Li; Zhang, Ming; Wang, Xiao-Li; Bai, Han; Wang, Hong; Zheng, Rui; Tan, Jing

    2015-01-01

    To study the effect of parecoxib, a novel cyclooxygenase-2 selective inhibitor, on the radiation response of colorectal cancer (CRC) cells and its underlying mechanisms. Both in vitro colony formation and apoptosis assays as well as in vivo mouse xenograft experiments were used to explore the radiosensitizing effects of parecoxib in human HCT116 and HT29 CRC cells. Parecoxib sensitized CRC cells to radiation in vitro with a sensitivity enhancement ratio of 1.32 for HCT116 cells and 1.15 for HT29 cells at a surviving fraction of 0.37. This effect was partially attributable to enhanced apoptosis induction by parecoxib combined with radiation, as illustrated using an in vitro apoptosis assays. Parecoxib augmented the tumor response of HCT116 xenografts to radiation, achieving growth delay more than 20 days and an enhancement factor of 1.53. In accordance with the in vitro results, parecoxib combined with radiation resulted in less proliferation and more apoptosis in tumors than radiation alone. Radiation monotherapy decreased microvessel density (MVD) and microvessel intensity (MVI), but increased the hypoxia level in xenografts. Parecoxib did not affect MVD, but it increased MVI and attenuated hypoxia. Parecoxib can effectively enhance radiation sensitivity in CRC cells through direct effects on tumor cells and indirect effects on tumor vasculature.

  17. Contrasting Views on the Role of Mesenchymal Stromal/Stem Cells in Tumour Growth: A Systematic Review of Experimental Design.

    PubMed

    Oloyo, Ahmed Kolade; Ambele, Melvin Anyasi; Pepper, Michael Sean

    2017-11-15

    The effect of mesenchymal stromal/stem cells (MSCs) on tumour growth remains controversial. Experimental evidence supports both an inhibitory and a stimulatory effect. We have assessed factors responsible for the contrasting effects of MSCs on tumour growth by doing a meta-analysis of existing literature between 2000 and May 2017. We assessed 183 original research articles comprising 338 experiments. We considered (a) in vivo and in vitro experiments, (b) whether in vivo studies were syngeneic or xenogeneic, and (c) if animals were immune competent or deficient. Furthermore, the sources and types of cancer cells and MSCs were considered together with modes of cancer induction and MSC administration. 56% of all 338 experiments reported that MSCs promote tumour growth. 78% and 79% of all experiments sourced human MSCs and cancer cells, respectively. MSCs were used in their naïve and engineered form in 86% and 14% of experiments, respectively, the latter to produce factors that could alter either their activity or that of the tumour. 53% of all experiments were conducted in vitro with 60% exposing cancer cells to MSCs via coculture. Of all in vivo experiments, 79% were xenogeneic and 63% were conducted in immune-competent animals. Tumour growth was inhibited in 80% of experiments that used umbilical cord-derived MSCs, whereas tumour growth was promoted in 64% and 57% of experiments that used bone marrow- and adipose tissue-derived MSCs, respectively. This contrasting effect of MSCs on tumour growth observed under different experimental conditions may reflect differences in experimental design. This analysis calls for careful consideration of experimental design given the large number of MSC clinical trials currently underway.

  18. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    PubMed

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  19. Tissue engineering of heart valves: in vitro experiences.

    PubMed

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced after pulsatile flow exposure.

  20. Preclinical Testing of an Oncolytic Parvovirus in Ewing Sarcoma: Protoparvovirus H-1 Induces Apoptosis and Lytic Infection In Vitro but Fails to Improve Survival In Vivo.

    PubMed

    Lacroix, Jeannine; Kis, Zoltán; Josupeit, Rafael; Schlund, Franziska; Stroh-Dege, Alexandra; Frank-Stöhr, Monika; Leuchs, Barbara; Schlehofer, Jörg R; Rommelaere, Jean; Dinsart, Christiane

    2018-06-03

    About 70% of all Ewing sarcoma (EWS) patients are diagnosed under the age of 20 years. Over the last decades little progress has been made towards finding effective treatment approaches for primarily metastasized or refractory Ewing sarcoma in young patients. Here, in the context of the search for novel therapeutic options, the potential of oncolytic protoparvovirus H-1 (H-1PV) to treat Ewing sarcoma was evaluated, its safety having been proven previously tested in adult cancer patients and its oncolytic efficacy demonstrated on osteosarcoma cell cultures. The effects of viral infection were tested in vitro on four human Ewing sarcoma cell lines. Notably evaluated were effects of the virus on the cell cycle and its replication efficiency. Within 24 h after infection, the synthesis of viral proteins was induced. Efficient H-1PV replication was confirmed in all four Ewing sarcoma cell lines. The cytotoxicity of the virus was determined on the basis of cytopathic effects, cell viability, and cell lysis. These in vitro experiments revealed efficient killing of Ewing sarcoma cells by H-1PV at a multiplicity of infection between 0.1 and 5 plaque forming units (PFU)/cell. In two of the four tested cell lines, significant induction of apoptosis by H-1PV was observed. H-1PV thus meets all the in vitro criteria for a virus to be oncolytic towards Ewing sarcoma. In the first xenograft experiments, however, although an antiproliferative effect of intratumoral H-1PV injection was observed, no significant improvement of animal survival was noted. Future projects aiming to validate parvovirotherapy for the treatment of pediatric Ewing sarcoma should focus on combinatorial treatments and will require the use of patient-derived xenografts and immunocompetent syngeneic animal models.

  1. Photobiomodulation of wound healing via visible and infrared laser irradiation.

    PubMed

    Solmaz, Hakan; Ulgen, Yekta; Gulsoy, Murat

    2017-05-01

    Fibroblast cells are known to be one of the key elements in wound healing process, which has been under the scope of research for decades. However, the exact mechanism of photobiomodulation on wound healing is not fully understood yet. Photobiomodulation of 635 and 809 nm laser irradiation at two different energy densities were investigated with two independent experiments; first, in vitro cell proliferation and then in vivo wound healing. L929 mouse fibroblast cell suspensions were exposed with 635 and 809 nm laser irradiations of 1 and 3 J/cm 2 energy densities at 50 mW output power separately for the investigation of photobiomodulation in vitro. Viabilities of cells were examined by means of MTT assays performed at the 24th, 48th, and 72nd hours following the laser irradiations. Following the in vitro experiments, 1 cm long cutaneous incisional skin wounds on Wistar albino rats (n = 24) were exposed with the same laser sources and doses in vivo. Wound samples were examined on 3rd, 5th, and 7th days of healing by means of mechanical tensile strength tests and histological examinations. MTT assay results showed that 635 nm laser irradiation of both energy densities after 24 h were found to be proliferative. One joule per square centimeter laser irradiation results also had positive effect on cell proliferation after 72 h. However, 809 nm laser irradiation at both energy densities had neither positive nor negative affects on cell viability. In vivo experiment results showed that, 635 nm laser irradiation of both energy densities stimulated wound healing in terms of tensile strength, whereas 809 nm laser stimulation did not cause any stimulative effect. The results of mechanical tests were compatible with the histological evaluations. In this study, it is observed that 635 nm laser irradiations of low energy densities had stimulative effects in terms of cell proliferation in vitro and mechanical strength of incisions in vivo. However, 809 nm laser irradiations at the same doses did not have any positive effect.

  2. Loss of Optineurin In Vivo Results in Elevated Cell Death and Alters Axonal Trafficking Dynamics

    PubMed Central

    Paulus, Jeremiah D.; Link, Brian A.

    2014-01-01

    Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work. PMID:25329564

  3. A and B antigen levels acquired by group O donor-derived erythrocytes following ABO-non-identical transfusion or minor ABO-incompatible haematopoietic stem cell transplantation.

    PubMed

    Hult, A K; Dykes, J H; Storry, J R; Olsson, M L

    2017-06-01

    ABO-incompatible haematopoietic stem cell transplantation (HSCT) presents a challenge to blood component transfusion. The aim of this study was to investigate the weak blood group A or B antigen expression by donor-derived group O red blood cells (RBC) observed following transfusion or minor ABO-incompatible HSCT. In addition, in vitro experiments were performed to elucidate possible mechanisms underlying this phenomenon. A sensitive flow cytometry assay for the semi-quantification of RBC A/B antigen levels was used to assess patient samples and evaluate in vitro experiments. Analysis of blood samples from patients, originally typed as A, B and AB but recently transplanted or transfused with cells from group O donors, revealed the A antigen expression on donor-derived RBC, ranging from very low levels in non-secretor individuals to almost subgroup A x -like profiles in group A secretors. The B antigen expression was less readily detectable. In vitro experiments, in which group O donor RBC were incubated with (i) group A/B secretor/non-secretor donor plasma or (ii) group A/B donor RBC in the absence of plasma, supported the proposed adsorption of A/B antigen-bearing glycolipids from secretor plasma but also indicated a secretor-independent mechanism for A/B antigen acquisition as well as direct cell-to-cell transfer of ABO antigens. The in vivo conversion of donor-derived blood group O RBC to ABO subgroup-like RBC after transfusion or minor ABO-incompatible HSCT raises the question of appropriate component selection. Based on these data, AB plasma should be transfused following ABO-incompatible HSCT. © 2017 British Blood Transfusion Society.

  4. Cell chirality: emergence of asymmetry from cell culture.

    PubMed

    Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi

    2016-12-19

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  5. Cell chirality: emergence of asymmetry from cell culture

    PubMed Central

    Wan, Leo Q.; Chin, Amanda S.; Worley, Kathryn E.; Ray, Poulomi

    2016-01-01

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left–right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821525

  6. Effect of methylmercury on the rat mast cell degranulation

    NASA Astrophysics Data System (ADS)

    Graevskaya, E. E.; Yasutake, A.; Aramai, R.; Rubin, A. B.

    2003-05-01

    Methylmercury is the well-known neurotoxicant as weil as a modulator of the immune system. We investigated the effects of MeHg on the rat mast cell degranulation induced by nonimmunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. In 8, 12 and 15 days afterthe final administration of MeHg we observed the suppression of calcium ionophore A23187-and 48/80-induced histamine release, which enhanced with time. In experiments in vitro incubation of peritoneal mast cells with MeHg alone in the dose range 10^{-8} to 10^{-6} did not induce mast cell degranulation, however modified the activation of mast cells by compound 48/80, and calcium ionophore A23187. We observed activation of stimulated secretion by preliminary incubation with low dose of MeHg 10^{-8} M and inhibition by dose of MeHg 10^{-6} M. These results show that MeHg treatment can modify mast cell function in vivo and in vitro and provide insight into the understanding what role this cell has in the pathogenesis of Minamata disease-comlected disorders.

  7. Enhanced Peptide Radiotherapy of Prostate Cancer Using Targeted Adenoviral Vectors

    DTIC Science & Technology

    2004-06-01

    regard to binding of 64Cu - octreotide. In vitro experiments were performed with DU-145 and PC-3 human prostate cancer cells. Expression levels of SSTR2...were determined using a 64Cu -octreotide saturation binding assay on cell membrane preparations. In vivo experiments were conducted in scid mice bearing...subcutaneous DU-l45 or PC-3 cells. AdSSTR2 was injected intratumorally followed 48 h later by an i.v. injection of 64Cu -octreotide. The mice were

  8. The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation

    PubMed Central

    Zhang, Da; Wang, Xiuli; Tian, Xiaoyu; Zhang, Lulu; Yang, Guosheng; Tao, Yinghong; Liang, Chen; Li, Kun; Yu, Xiaoqi; Tang, Xinjing; Tang, Chaoshu; Zhou, Jing; Kong, Wei; Du, Junbao; Huang, Yaqian; Jin, Hongfang

    2018-01-01

    Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo. PMID:29760703

  9. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Impact of ketorolac administration around ovarian stimulation on in vivo and in vitro fertilization and subsequent embryo development.

    PubMed

    Jee, Byung Chul; Youm, Hye Won; Lee, Jae Ho; Kim, Jee Hyun; Suh, Chang Suk; Kim, Seok Hyun

    2013-05-01

    We performed this study to investigate the effect of ketorolac (a non-steroidal anti-inflammatory drug) administration around ovarian stimulation on in vivo and in vitro fertilization process. Sixty-four female mice (ICR) were injected with ketorolac (0, 7.5, 15 and 30 µg/d) for 3 d starting from the day of eCG treatment. In experiment 1, 41 mice were triggered by hCG and then mated; two-cell embryos were obtained and in vitro development up to blastocyst was observed. In experiment 2, 23 mice were triggered by hCG and mature oocytes were collected; in vitro fertilization rate and subsequent embryo development up to blastocyst was recorded. In experiment 1, the blastocyst-forming rates per in vivo fertilized two-cell embryo showed an inverse relationship with a dosage of ketorolac (97.6%, 64.2%, 35.4% and 25.9%). In experiment 2, degenerated oocytes were frequently observed in a dose-dependent manner (4.3%, 22.9%, 22.4% and 75.0%). Lower fertilization rates were noted in all the three ketorolac-treating groups; blastocyst-forming rate was significantly lower in 30-µg-treating group when compared with the control group. Administration of ketorolac around ovarian stimulation significantly affects the development of in vivo fertilized embryo in a dose-dependent manner. High-dose ketorolac could result in a poor oocyte quality and decreased embryo developmental competence.

  11. Colorectal tissue engineering: A comparative study between porcine small intestinal submucosa (SIS) and chitosan hydrogel patches.

    PubMed

    Denost, Quentin; Adam, Jean-Philippe; Pontallier, Arnaud; Montembault, Alexandra; Bareille, Reine; Siadous, Robin; Delmond, Samantha; Rullier, Eric; David, Laurent; Bordenave, Laurence

    2015-12-01

    Tissue engineering may provide new operative tools for colorectal surgery in elective indications. The aim of this study was to define a suitable bioscaffold for colorectal tissue engineering. We compared 2 bioscaffolds with in vitro and in vivo experiments: porcine small intestinal submucosa (SIS) versus chitosan hydrogel matrix. We assessed nontoxicity of the scaffold in vitro by using human adipose-derived stem cells (hADSC). In vivo, a 1 × 2-cm colonic wall defect was created in 16 rabbits. Animals were divided randomly into 2 groups according to the graft used, SIS or chitosan hydrogel. Graft area was explanted at 4 and 8 weeks. The end points of in vivo experiments were technical feasibility, behavior of the scaffold, in situ putative inflammatory effect, and the quality of tissue regeneration, in particular smooth muscle layer regeneration. In vitro, hADSC attachment and proliferation occurred on both scaffolds without a substantial difference. After proliferation, hADSCs kept their mesenchymal stem cell characteristics. In vivo, one animal died in each group. Eight weeks after implantation, the chitosan scaffold allowed better wound healing compared with the SIS scaffold, with more effective control of inflammatory activity and an integral regeneration of the colonic wall including the smooth muscle cell layer. The outcomes of in vitro experiments did not differ greatly between the 2 groups. Macroscopic and histologic findings, however, revealed better wound healing of the colonic wall in the chitosan group suggesting that the chitosan hydrogel could serve as a better scaffold for colorectal tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines in vitro].

    PubMed

    Gu, Jun; Li, Maolan; Wu, Xiangsong; Wu, Wenguang; Zhang, Lin; Ding, Qichen; Yang, Jiahua; Weng, Hao; Ding, Qian; Bao, Runfa; Shu, Yijun; Liu, Yingbin

    2014-04-01

    To prepare cisPLLAtin-loaded polylactic acid/cnts, and to study the anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines(MGC803 and MNK45). 5-FU-PLLA-CNTs were prepared with ultrasound emulsification. The morphology of 5-FU-PLLA-CNTs was determined by scanning electron microscope(SEM), and its drug loading and drug release curve in vitro were detected by UV-Vis-NIR spectrophotometer. Cells were divided into experiment, positive control and negative control groups. CCK8 method was used to test the cytotoxic effect of 5-FU-PLLA-CNTs in different concentrations on MGC803 and MNK45 cell proliferation. Flow cytometry was employed to measure the apoptotic rate of MGC803 and MNK45 cells before and after the intervention of 5-FU-PLLA-CNTs. Deep layer film of 5-FU-PLLA-CNTs was successfully established, whose drug-load rate was(4.54±0.43)%, entrapment rate was(21.56±2.36)%. In vitro release test showed release rate within 24 h of 5-FU-PLLA-CNTs was 23.9% in a as lowly increasing manner, and accumulating release rate was 85.3% at day 31. CCk8 experiment revealed, as compared to control group, 5-FU-PLLA-CNTs significantly inhibited the proliferation of two cell lines in dose-dependent and time-dependent manner. The best 5-FU-PLLA-CNTs concentration of inhibition for human gastric cancer cell lines was 1 mg/well. Flow cytometry indicated the apoptotic rate of MGC803 and MNK45 cells in experiment group treated by 1 mg/well 5-FU-PLLA-CNTs significantly increased as compared to negative control group (P<0.05), while the difference was not significant as compared to positive control group (P>0.05). The 5-FU-PLLA-CNTs has good drug sustained-release capacity, and can significantly kill and inhibit the proliferation of MGC803 and MNK45 cell lines.

  13. Efficient growth inhibition of ErbB2-overexpressing tumor cells by anti-ErbB2 ScFv-Fc-IL-2 fusion protein in vitro and in vivo.

    PubMed

    Shi, Ming; Zhang, Ling; Gu, Hong-Tao; Jiang, Feng-Qin; Qian, Lu; Yu, Ming; Chen, Guo-Jiang; Luo, Qun; Shen, Bei-Fen; Guo, Ning

    2007-10-01

    To investigate the antitumor activities of an anti-ErbB2 scFv-Fc-interleukin 2 (IL-2) fusion protein (HFI) in vitro and in vivo. Fusion protein HFI was constructed. The efficacy of HFI in mediating tumor cell lysis was determined by colorimetric lactate dehydrogenase release assays. The antitumor activity of HFI was evaluated in tumor xenograft models. The fusion protein was folded as a homodimer formed by covalently linking Fc portions and it retained ErbB2 specificity and IL-2 biological activity. HFI mediated antibody-dependent cell-mediated cytotoxicity (ADCC) at low effector-to-target ratios in vitro and improved the therapeutic efficacy of IL-2 in experiments in vivo. The genetically-engineered anti-ErbB2 scFv-Fc-IL-2 fusion protein exhibited high efficiency both in mediating ADCC in vitro and significant antitumor activity in tumor xenograft models.

  14. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro.

    PubMed

    Dyszkiewicz-Konwińska, M; Bryja, A; Jopek, K; Budna, J; Khozmi, R; Jeseta, M; Bukowska, D; Antosik, P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2017-01-01

    Recently, using experimental animal model, we demonstrated that porcine buccal pouch mucosal cells reflect increased proliferation capability during primary cultivation in vitro. Although the histological structure and morphogenesis in oral cavity is well recognized, the molecular mechanisms which regulate this process still need further investigation. This study was aimed to analyze the molecular marker expression profile involved in morphogenesis and differentiation capacity of porcine buccal pouch mucosal cells during their long-term primary cultivation in vitro. The experiment was performed on buccal pouch mucosal cells isolated from 80 pubertal crossbred Landrace gilts. After collection, the cells were treated enzymatically and transferred into a primary in vitro culture (IVC) system and cultured for 30 days. The cells were collected for RNA isolation after 7, 15 and 30 days of IVC and were checked for their real-time proliferative status using the RTCA system. We found an increased expression of FN1 and SOX9 genes when calculated against ACTB after 7, and 30 days of IVC, (P less than 0.01, P less than 0.001, respectively). The CXCL12 mRNA was down-regulated after 7, 15 and 30 days of IVC, but not statistically significant. Similar expression profile was observed when calculated against HPRT, however, DAB2 was found to be higher expressed at day 15 of IVC, (P less than 0.05). The cell index measured during real-time cell proliferation was substantially increased between 96 h and 147h of IVC and reached the log phase. Since FN1 and SOX9 revealed significant increase of expression after long-term culture in vitro, it is suggested that expression of these differentiation and stemness genes is accompanied by cell proliferation. Moreover, FN1 and SOX9 might be recognized as new markers of buccal pouch mucosal cell proliferation and differentiation in pigs in in vitro primary culture model.

  15. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.

    PubMed

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  16. Cytokinesis failure due to derailed integrin traffic induces aneuploidy and oncogenic transformation in vitro and in vivo

    PubMed Central

    Högnäs, G; Tuomi, S; Veltel, S; Mattila, E; Murumägi, A; Edgren, H; Kallioniemi, O; Ivaska, J

    2012-01-01

    Aneuploidy is frequently detected in solid tumors but the mechanisms regulating the generation of aneuploidy and their relevance in cancer initiation remain under debate and are incompletely characterized. Spatial and temporal regulation of integrin traffic is critical for cell migration and cytokinesis. Impaired integrin endocytosis, because of the loss of Rab21 small GTPase or mutations in the integrin β-subunit cytoplasmic tail, induces failure of cytokinesis in vitro. Here, we describe that repeatedly failed cytokinesis, because of impaired traffic, is sufficient to trigger the generation of aneuploid cells, which display characteristics of oncogenic transformation in vitro and are tumorigenic in vivo. Furthermore, in an in vivo mouse xenograft model, non-transformed cells with impaired integrin traffic formed tumors with a long latency. More detailed investigation of these tumors revealed that the tumor cells were aneuploid. Therefore, abnormal integrin traffic was linked with generation of aneuploidy and cell transformation also in vivo. In human prostate and ovarian cancer samples, downregulation of Rab21 correlates with increased malignancy. Loss-of-function experiments demonstrate that long-term depletion of Rab21 is sufficient to induce chromosome number aberrations in normal human epithelial cells. These data are the first to demonstrate that impaired integrin traffic is sufficient to induce conversion of non-transformed cells to tumorigenic cells in vitro and in vivo. PMID:22120710

  17. An in vitro study of functional maturation of murine thymus cells.

    PubMed

    Chakravarty, A K

    1977-05-26

    Critical time of onset of thymus cell functions in ontogeny was studied in vitro. Collaborative function in an antibody response and ability to induce a graft-versus-host (GvH) response by murine thymocytes from different stages of ontogeny were investigated. Thymocytes from as early as 16-day mouse embryos were capable of collaborating in the antibody response to sheep-erythrocyte-antigen in vitro following 24 h of pretreatment with concanavalin A (con A). By contrast, maturation of thymus cell function as measured by competence to induce a graft-versus-host reaction, was first manifested by newborn thymus cells, and pretreatment with con A did not facilitate the maturation of this thymus cell function. Experiments to understand the effect of con A on the expression of cell surface antigens have also been reported. Con A-treated thymus cells of different ontogenic stages tested were less susceptible to killing by anti-theta serum than nontreated thymus cells; reverse was true with anti-H-2 serum. The significance of the differential susceptibility of con A-treated thymus cells to anti-sera treatment and the finding that mouse thymocytes can provide helper function as early as the 16th day of gestation have been discussed.

  18. In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells.

    PubMed

    Fang, Mingzhu; Kang, Hwan-Goo; Park, Youngil; Estrella, Brian; Zarbl, Helmut

    2017-09-28

    The circadian rhythm is a fundamental physiological process present in all organisms that regulates biological processes ranging from gene expression to sleep behavior. In vertebrates, circadian rhythm is controlled by a molecular oscillator that functions in both the suprachiasmatic nucleus (SCN; central pacemaker) and individual cells comprising most peripheral tissues. More importantly, disruption of circadian rhythm by exposure to light-at-night, environmental stressors and/or toxicants is associated with increased risk of chronic diseases and aging. The ability to identify agents that can disrupt central and/or peripheral biological clocks, and agents that can prevent or mitigate the effects of circadian disruption, has significant implications for prevention of chronic diseases. Although rodent models can be used to identify exposures and agents that induce or prevent/mitigate circadian disruption, these experiments require large numbers of animals. In vivo studies also require significant resources and infrastructure, and require researchers to work all night. Thus, there is an urgent need for a cell-type appropriate in vitro system to screen for environmental circadian disruptors and enhancers in cell types from different organs and disease states. We constructed a vector that drives transcription of the destabilized luciferase in eukaryotic cells under the control of the human PERIOD 2 gene promoter. This circadian reporter construct was stably transfected into human mammary epithelial cells, and circadian responsive reporter cells were selected to develop the in vitro bioluminescence assay. Here, we present a detailed protocol to establish and validate the assay. We further provide details for proof of concept experiments demonstrating the ability of our in vitro assay to recapitulate the in vivo effects of various chemicals on the cellular biological clock. The results indicate that the assay can be adapted to a variety of cell types to screen for both environmental disruptors and chemopreventive enhancers of circadian clocks.

  19. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Lee, J. I.; Lim, Y. J.

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  20. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    NASA Astrophysics Data System (ADS)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  1. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice.

    PubMed

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-05-22

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.

  2. Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations.

    PubMed

    Choi, Young-Ho; Ross, Pablo; Velez, Isabel C; Macías-García, B; Riera, Fernando L; Hinrichs, Katrin

    2015-07-01

    Equine embryos develop in vitro in the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31-46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively for POU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did. GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation in in vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse. © 2015 Society for Reproduction and Fertility.

  3. Hydrophobic interaction mediated coating of Pluronics on mesoporous silica nanoparticle with stimuli responsiveness for cancer therapy.

    PubMed

    Sha, Luping; Wang, Da; Mao, Yuling; Shi, Wei; Gao, Tianbin; Zhao, Qinfu; Wang, Si-Ling

    2018-05-22

    In this research, a novel method was used to successfully make Pluronic P123 stably coated on mesoporous silica nanoparticles (MSN). That P123 and MSN co-constructed a drug delivery system (DDS) had not been reported. In this DDS, the coating of P123 was realized through hydrophobic interaction with octadecyl chain modified MSN. Experiments found only Pluronic with an appropriate ratio of hydrophilic and lipophilic segment could keep the nanoassemblies stable. For comparison, nanoassemblies consisted of P123 and octadecyl chain modified MSN with or without disulfide bond were prepared, which were denoted as PSMSN and PMSN respectively. Disulfide bond was expected to endow the system with redox-responsiveness to enhance the therapeutic effect meanwhile decrease toxicity. A series of experiments including characterization of the nanoparticles, in vitro drug release, cell uptake and cellular drug release, in vitro cytotoxicity, cell migration and biodistribution of the nanoparticles were carried out. Compared with PMSN, PSMSN displayed redox-responsive drug release property not only in in vitro release text, but also on the cellular level. In addition, cell migration experiments proved that the coating of P123 endowed the system with the ability of anti-metastasis. The accumulation of P123 in tumor was enhanced after coating on MSN by virtue of the "EPR" effect of nanoparticles compared with the solution form. . © 2018 IOP Publishing Ltd.

  4. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier

    PubMed Central

    2013-01-01

    Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery. PMID:23773766

  5. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    PubMed

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.

  6. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    PubMed

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-04-29

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  7. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.

    PubMed

    Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J

    2018-03-01

    Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.

  8. How to assess the mutagenic potential of cosmetic products without animal tests?

    PubMed

    Speit, Günter

    2009-08-01

    Animal experiments (in vivo tests) currently play a key role in genotoxicity testing. Results from in vivo tests are, in many cases, decisive for the assessment of a mutagenic potential of a test compound. The Seventh Amendment to the European Cosmetics Directive will, however, ban the European marketing of cosmetic/personal care products that contain ingredients that have been tested in animal experiments. If genotoxicity testing is solely based on the currently established in vitro tests, the attrition rate for chemicals used in cosmetic products will greatly increase due to irrelevant positive in vitro test results. There is urgent need for new and/or improved in vitro genotoxicity tests and for modified test strategies. Test strategies should consider all available information on chemistry of the test substance/the chemical class (e.g. SAR, metabolic activation and dermal adsorption). Test protocols for in vitro genotoxicity tests should be sensitive and robust enough to ensure that negative results can be accepted with confidence. It should be excluded that positive in vitro test results are due to high cytotoxicity or secondary genotoxic effects which may be thresholded and/or only occur under in vitro test conditions. Consequently, further research is needed to establish the nature of thresholds in in vitro assays and to determine the potential for incorporation of mode of action data into future risk assessments. New/improved tests have to be established and validated, considering the use of (metabolically competent) primary (skin) cells, 3D skin models and cells with defined capacity for metabolic activation (e.g. genetically engineered cell lines). The sensitivity and specificity of new and improved genotoxicity tests has to be determined by testing a battery of genotoxic and non-genotoxic chemicals. New or adapted international guidelines will be needed for these tests. The establishment of such a new genotoxicity testing strategy will take time and the new in vitro genotoxicity testing will become much more complex and will require greater mechanistic understanding to build a weight of evidence decision, which will be demanding and time-consuming. At present, no validated alternative methods for the follow-up of positive results from the standard genotoxicity battery are available and an appropriate evaluation of the mutagenic potential of cosmetic ingredients without animal experiments is therefore not possible in many cases.

  9. Effect of Physical Forces on the Metastatic Bone Microenvironment

    DTIC Science & Technology

    2013-10-01

    G.R., et al., Cell proliferation of cultured human cancer cells are affected by the elevated tumor pressures that exist in vivo. Ann Biomed Eng, 2005... cell lines. In vitro experiments have shown that increased pressure leads to decreased PCa proliferation. Osteoblasts also have inhibited...applied to tumor cells . Novel candidate genes with altered expression due to pressure have been identified and are currently undergoing further

  10. Human Cancer and Platelet Interaction, a Potential Therapeutic Target.

    PubMed

    Wang, Shike; Li, Zhenyu; Xu, Ren

    2018-04-20

    Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.

  11. Specific immunotherapy of experimental myasthenia gravis in vitro and in vivo: the Guided Missile strategy.

    PubMed

    Sun, W; Adams, R N; Miagkov, A; Lu, Y; Juon, H-S; Drachman, D B

    2012-10-15

    Current immunotherapy of myasthenia gravis (MG) is often effective, but entails risks of infection and neoplasia. The "Guided Missile" strategy described here is designed to target and eliminate the individual's unique AChR-specific T cell repertoire, without otherwise interfering with the immune system. We genetically engineered dendritic cells to present AChR epitopes and simultaneously express Fas ligand in an ongoing EAMG model. In both in vitro and in vivo experiments, these engineered cells specifically killed AChR-responsive T cells without otherwise damaging the immune system. AChR antibodies were markedly reduced in the treated mice. Translation of this method to treat human MG is possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Fujin; Department of Urinary Surgery, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu; Ma, Song

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC. - Highlights: • Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. • IHC analysis of 136 MIBC specimens revealed increased LDH-A is correlated withmore » positive Oct4 and negative E-cadherin. • In vitro experiments demonstrated LDH-A promotes MIBC progression by positive regulation of EMT/CSC.« less

  13. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    PubMed

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  14. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling

    PubMed Central

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G.; Ramasamy, Saravana K.; Krishnasamy, Kashyap; Limbourg, Anne; Häger, Christine; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J.; Zimber-Strobl, Ursula; Napp, L. Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M.; Adams, Ralf H.; Weber, Christian; Limbourg, Florian P.

    2016-01-01

    A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. PMID:27576369

  15. Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions.

    PubMed

    Palmgrén, Joni J; Mönkkönen, Jukka; Korjamo, Timo; Hassinen, Anssi; Auriola, Seppo

    2006-11-01

    Loss of drug content during cell culture transport experiment can lead to misinterpretations in permeability analysis. This study analyses drug adsorption to various plastic containers and drug retention in cultured cells under in vitro conditions. The loss of various drugs to polystyrene tubes and well plates was compared to polypropylene and glass tubes both in deionised water and buffer solution. In cellular uptake experiments, administered drugs were obtained from cultured cells by liquid extraction. Samples were collected at various time points and drug concentrations were measured by a new HPLC-MS/MS method. Acidic drugs (hydrochlorothiazide, naproxen, probenicid, and indomethacin) showed little if any sorption to all tested materials in either water or buffer. In the case of basic drugs, substantial loss to polystyrene tubes and well plates was observed. After 4.5 h, the relative amount remaining in aqueous test solution stored in polystyrene tubes was 64.7 +/- 6.8%, 38.4 +/- 9.1%, 31.9 +/- 6.7%, and 23.5 +/- 6.1% for metoprolol, medetomidine, propranolol, and midazolam, respectively. Interestingly, there was no significant loss of drugs dissolved in buffer to any of the tested materials indicating that buffer reduced surficial interaction. The effect of drug concentration to sorption was also tested. Results indicated that the higher the concentration in the test solution the lower the proportional drug loss, suggesting that the polystyrene contained a limited amount of binding sites. Cellular uptake studies showed considerable retention of drugs in cultured cells. The amounts of absorbed drugs in cellular structures were 0.45%, 4.88%, 13.15%, 43.80%, 23.57% and 11.22% for atenolol, metoprolol, medetomidine, propranolol, midazolam, and diazepam, respectively. Overall, these findings will benefit development and validation of further in vitro drug permeation experiments.

  16. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  17. Self-organization of neural tissue architectures from pluripotent stem cells.

    PubMed

    Karus, Michael; Blaess, Sandra; Brüstle, Oliver

    2014-08-15

    Despite being a subject of intensive research, the mechanisms underlying the formation of neural tissue architectures during development of the central nervous system remain largely enigmatic. So far, studies into neural pattern formation have been restricted mainly to animal experiments. With the advent of pluripotent stem cells it has become possible to explore early steps of nervous system development in vitro. These studies have unraveled a remarkable propensity of primitive neural cells to self-organize into primitive patterns such as neural tube-like rosettes in vitro. Data from more advanced 3D culture systems indicate that this intrinsic propensity for self-organization can even extend to the formation of complex architectures such as a multilayered cortical neuroepithelium or an entire optic cup. These novel experimental paradigms not only demonstrate the enormous self-organization capacity of neural stem cells, they also provide exciting prospects for studying the earliest steps of human neural tissue development and the pathogenesis of brain malformations in reductionist in vitro paradigms. © 2014 Wiley Periodicals, Inc.

  18. The effect of microgravity on the in vitro NK cell function during six International Space Station Missions

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Grigorieva, V.; Rykova, M. P.

    2007-09-01

    The level of natural killer (NK) cytotoxic activity was measured during co-cultivation of human lymphocytes and target cells (K-562) in microgravity. Flight experiments were carried out using special instrumentation, the "Fibroblast-1 " cassettes, in the frame of Russian scientific program during six ISS missions. Lymphocyte suspensions from human venous blood were used in experiments during short-term flights on six ISS missions (7-12). Russian space crew members performed the experiments after Soyuz docking. The first step was mixing lymphocytes and3H-labeled K-562 cells and their incubation at 37°C during 24 hs; the second step was filtration of the cell suspension. The frozen medium and filters were analyzed for the cytokine level and cytotoxic activity after landing. It was found that lymphocytes with different basal levels of cytotoxic activity kept the ability of recognizing and lysing malignant cells. In microgravity, cytotoxity increased to 160% of the basal levels. Donor individual features modulated the magnitude of the increase. The measurement of interleukin levels (TNF-α, IL-1, IL-2) in medium showed that synthesis of TNF-α increased during cell co-cultivation in microgravity. The level of IL-2 was very low inflight and ground control samples. The production of IL-1 by lymphocytes decreased after in-flight incubation. The results indicate that microgravity did not disturb the cytotoxic function of immune cells in vitro during 24 h incubation with specific target cells.

  19. An in vitro force measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix.

    PubMed

    Roy, P; Petroll, W M; Cavanagh, H D; Chuong, C J; Jester, J V

    1997-04-10

    An in vitro force measurement assay has been developed to quantify the forces exerted by single corneal fibroblasts during the early interaction with a collagen matrix. Corneal fibroblasts were sparsely seeded on top of collagen matrices whose stiffness was predetermined by micromanipulation with calibrated fine glass microneedles. The forces exerted by individual cells were calculated from time-lapse videomicroscopic recordings of the 2-D elastic distortion of the matrix. In additional experiments, the degree of permanent reorganization of the collagen matrices was assessed by lysing the cells with 1% Triton X-100 solution at the end of a 2-hour incubation and recording the subsequent relaxation. The data suggest that a cell can exert comparable centripetal force during either extension of a cell process or partial retraction of an extended pseudopodia. The rates of force associated with pseudopodial extension and partial retraction were 0.180 +/- 0.091 (x 10(-8)) N/min (n = 8 experiments) and 0.213 +/- 0.063 (x 10(-8)) N/min (n = 8 experiments), respectively. Rupture of pseudopodial adhesion associated with cell locomotion causes a release of force on the matrix and a complete recoil of the pseudopodia concerned; a simultaneous release of force on the matrix was also observed at the opposite end of the cell. Lysis of cells resulted in 84 +/- 18% relaxation of the matrix, suggesting that little permanent remodeling of matrix is produced by the actions of isolated migrating cells.

  20. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso

    2014-12-17

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less

  1. [Relationship between sensitivity of tumor cells to chemotherapeutic agent in vivo and in vitro: experiment with mouse lymphoma cells].

    PubMed

    Li, Chuan-gang; Li, Mo-lin; Shu, Xiao-hong; Jia, Yu-jie; Liu, Yong-ji; Li, Ming

    2007-06-12

    To study the relationship of the sensitivity of tumor cells to chemotherapeutic agent between in vivo and in vitro. Mouse lymphoma cells of the line E14 were cultured and melphalan resistant EL4 cell line (EL4/melphalan) was established by culturing EL4 cells with continuous low-concentration and intermittent gradually-increasing-concentration of melphalan in vitro. MTT assay was used to evaluate the drug sensitivity and the resistance index of the EL4/melphalan cells to melphalan was calculated. EL4/melphalan and EL4 cells of the concentration of 5 x 10(8)/L were inoculated separately into 20 C57BL/6 mice subcutaneously. 12 days later, the EL4 and EL4/melphalan tumor-bearing mice were randomly divided into 2 groups respectively, 5 mice in each group. Treatment groups were given 7.5 mg/kg melphalan intraperitoneally, and control groups were given the same volume of normal saline. The tumor size was observed every other day. Compared with the EL4 cells, the EL4/melphalan cells had no obvious changes morphologically. They could grow in RPMI 1640 medium containing 5 mg/ml melphalan. The resistance index was 2.87 against melphalan. After the treatment of melphalan of the dose 7.5 mg/kg, the tumor sizes of the treatment groups and control groups inoculated with both EL4 cells and the EL4/melphalan cells gradually decreased at the similar speed, and about one week later all tumors disappeared. However, the tumors of the control groups grew progressively and all the mice died at last. The chemotherapeutic effects of tumors in vivo have nothing to do with the effects of the chemotherapeutic agents on tumor cells in vitro. The tumor cells resistant to melphalan in vitro remain sensitive to the drug in vivo.

  2. Advances on the Transfer of Lipids by Lipid Transfer Proteins.

    PubMed

    Wong, Louise H; Čopič, Alenka; Levine, Tim P

    2017-07-01

    Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics identifying new LTPs, and from the development of countercurrent models for LTPs. However, the ultimate aim is to unite in vitro and in vivo data, and this is where much progress remains to be made. Even where in vitro and in vivo experiments align, rates of transfer tend not to match. Here we set out some of the advances that might test how LTPs work. Copyright © 2017. Published by Elsevier Ltd.

  3. Concise Review: Adult Mesenchymal Stem Cells, Adult Neural Crest Stem Cells, and Therapy of Neurological Pathologies: A State of Play

    PubMed Central

    Neirinckx, Virginie; Coste, Cécile; Rogister, Bernard

    2013-01-01

    Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions. PMID:23486833

  4. Overexpression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo.

    PubMed

    Mahmoud, Salma; Ibrahim, Mohammed; Hago, Ahmed; Huang, Yuhong; Wei, Yuanyi; Zhang, Jun; Zhang, Qingqing; Xiao, Yu; Wang, Jingwen; Adam, Munkaila; Guo, Yu; Wang, Li; Zhou, Shuting; Xin, Boyi; Xuan, Wei; Tang, Jianwu

    2016-11-15

    Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that up regulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 down regulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its over expression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy.

  5. Overexpression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo

    PubMed Central

    Mahmoud, Salma; Ibrahim, Mohammed; Hago, Ahmed; Huang, Yuhong; Wei, Yuanyi; Zhang, Jun; Zhang, Qingqing; Xiao, Yu; Wang, Jingwen; Adam, Munkaila; Guo, Yu; Wang, Li; Zhou, Shuting; Xin, Boyi; Xuan, Wei; Tang, Jianwu

    2016-01-01

    Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that upregulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 downregulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its overexpression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy. PMID:27626699

  6. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner.

    PubMed

    Qian, J; Jiayuan, W; Wenkai, J; Peina, W; Ansheng, Z; Shukai, S; Shafei, Z; Jun, L; Longxing, N

    2015-07-01

    To determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo. Basic fibroblastic growth factor stimulation of DPSCs was divided into a pre-treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre-treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue. Basic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre-treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre-treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre-treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results. Basic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment-dependent manner both in vitro and in vivo. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    PubMed

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  8. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro.

    PubMed

    Tommasi, Stella; Bates, Steven E; Behar, Rachel Z; Talbot, Prue; Besaratinia, Ahmad

    2017-10-01

    Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres).

    PubMed

    Di Costanzo, Ezio; Giacomello, Alessandro; Messina, Elisa; Natalini, Roberto; Pontrelli, Giuseppe; Rossi, Fabrizio; Smits, Robert; Twarogowska, Monika

    2018-03-14

    We propose a discrete in continuous mathematical model describing the in vitro growth process of biophsy-derived mammalian cardiac progenitor cells growing as clusters in the form of spheres (Cardiospheres). The approach is hybrid: discrete at cellular scale and continuous at molecular level. In the present model, cells are subject to the self-organizing collective dynamics mechanism and, additionally, they can proliferate and differentiate, also depending on stochastic processes. The two latter processes are triggered and regulated by chemical signals present in the environment. Numerical simulations show the structure and the development of the clustered progenitors and are in a good agreement with the results obtained from in vitro experiments.

  10. Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai

    2013-06-01

    The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

  11. Determination of the threshold dose distribution in photodynamic action from in vitro experiments.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2016-09-01

    The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Influence of Neuronal Density and Maturation on Network Activity of Hippocampal Cell Cultures: A Methodological Study

    PubMed Central

    Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs). We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures) or by a decrease phase (for high dense neuronal cultures). Moreover, 900 cells/mm2 cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments) while 1800 cells/mm2 cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules). Finally, cell cultures at 3600 cells/mm2 are more appropriate for experiments in which time saving is relevant (e.g. drug screenings). These results are intended to be a reference for the planning of in vitro neurophysiological and neuropharmacological experiments with MEAs. PMID:24386305

  13. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study.

    PubMed

    Biffi, Emilia; Regalia, Giulia; Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs). We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures) or by a decrease phase (for high dense neuronal cultures). Moreover, 900 cells/mm(2) cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments) while 1800 cells/mm(2) cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules). Finally, cell cultures at 3600 cells/mm(2) are more appropriate for experiments in which time saving is relevant (e.g. drug screenings). These results are intended to be a reference for the planning of in vitro neurophysiological and neuropharmacological experiments with MEAs.

  14. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    PubMed

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  15. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo

    PubMed Central

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW

    2009-01-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958

  16. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  17. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    PubMed

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  18. A history of studies that examine the interactions of Toxoplasma with its host cell: Emphasis on in vitro models.

    PubMed

    Boyle, Jon P; Radke, Jay R

    2009-07-01

    This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.

  19. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro.

    PubMed

    Yang, Yongji; Moser, Michael A J; Zhang, Edwin; Zhang, Wenjun; Zhang, Bing

    2018-01-01

    The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.

  20. Radioprotective activity of Gentiana lutea extract and mangiferin.

    PubMed

    Menkovic, Nebojsa; Juranic, Zorica; Stanojkovic, Tatjana; Raonic-Stevanovic, Tatjana; Savikin, Katarina; Zdunić, Gordana; Borojevic, Nenad

    2010-11-01

    Radioprotective/sensitizing actions of Gentiana lutea aqueous-ethanol extract and mangiferin on radiation-induced effects on different types of cells were investigated. The study focused on the decreasing survival of normal human immunocompetent cells, the survival of the malignant cells in vitro, and the survival of ex vivo irradiated cells before and after consumption of the extract by healthy volunteers. The in vitro experiments showed that mangiferin could inhibit cytotoxic action of ionizing irradiation (doses of 6 and 8 Gy) only on normal resting human PBMC, not stimulated for proliferation. Orally consumed G. lutea extract showed the potential to reduce the cytotoxic effect of x-ray irradiation on normal human immunocompetent cells PBMC of some healthy people, without changing the susceptibility of malignant cells to be destroyed by irradiation. Since the radioprotective effect was individually dependent, further clinical studies are needed. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Curcumin synergistically increases effects of β-interferon and retinoic acid on breast cancer cells in vitro and in vivo by up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways.

    PubMed

    Ren, Min; Wang, Ying; Wu, Xiaodong; Ge, Suxia; Wang, Benzhong

    2017-03-01

    The study aimed to investigate the effects of combination treatment of curcumin and β-interferon (IFN-β)/retinoic acid (RA) on breast cancer cells, including cell viability, apoptosis and migration, and to determine the mechanisms related to GRIM-19 through STAT3-dependent and STAT3-independent pathways. The following groups were used for the in vitro experiment: control siRNA, GRIM-19 siRNA, IFN-β/RA and IFN-β/RA + curcumin. Cell viability is by the MTT method, cell apoptosis by flow cytometry and cell migration by wound healing experiment; GRIM-19, STAT3, survivin, Bcl-2, GADD153 and COX-2 expression was measured by Western blot. In vivo experiment, MCF-7 cells were subcutaneously injected into nude mice. GRIM-19 siRNA promoted MCF-7 cell proliferation and migration; inhibited cell apoptosis; and promoted the expression of STAT3, survivin, Bcl-2 and MMP-9. IFN-β/RA inhibited cell proliferation and migration; promoted cell apoptosis; up-regulated GRIM-19; and inhibited the expression of STAT3, survivin, Bcl-2 and MMP-9. Combination treatment of curcumin and IFN-β/RA had a stronger effect than that of the IFN-β/RA group. In addition, curcumin and IFN-β/RA combination inhibited the expression of COX-2 and up-regulated GADD153. Curcumin synergistically increases the effects of IFN-β/RA on breast cancer cells. The mechanism may be related to the up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways.

  2. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats.

    PubMed

    Liu, Yang; Liu, Xiuheng; Wang, Lei; Du, Yang; Chen, Zhiyuan; Chen, Hui; Guo, Jia; Weng, Xiaodong; Wang, Xiao; Wang, Ming; Wang, Zhishun

    2017-12-01

    The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo . Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro . Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro . In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats.

  3. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats

    PubMed Central

    Liu, Yang; Liu, Xiuheng; Wang, Lei; Du, Yang; Chen, Zhiyuan; Chen, Hui; Guo, Jia; Weng, Xiaodong; Wang, Xiao; Wang, Ming; Wang, Zhishun

    2017-01-01

    The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo. Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro. Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro. In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats. PMID:29285062

  4. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells

    PubMed Central

    Cateau, Estelle; Leveque, Nicolas; Kaaki, Sihem; Beby-Defaux, Agnès; Rodier, Marie-Hélène

    2017-01-01

    Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments. PMID:28591183

  5. Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells.

    PubMed

    Lopata, Anna; Hughes, Ruth; Tiede, Christian; Heissler, Sarah M; Sellers, James R; Knight, Peter J; Tomlinson, Darren; Peckham, Michelle

    2018-04-26

    Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.

  6. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    PubMed

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the fibroblast lines Hs27 and HFL1. Serum-free culture media can be used for in vitro studies of several osteosarcoma cell lines, but the optimal medium varies between cell lines and thus depends on: (i) the cell lines to be investigated/compared; (ii) the functional characteristic that is evaluated (proliferation, cytokine release); and (iii) whether coculture experiments are included.

  7. Optical coherence tomography spectral analysis for detecting apoptosis in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Giles, Anoja; Kolios, Michael C.; Czarnota, Gregory J.

    2015-12-01

    Apoptosis is a form of programmed cell death characterized by a series of predictable morphological changes at the subcellular level, which modify the light-scattering properties of cells. We present a spectroscopic optical coherence tomography (OCT) technique to detect changes in subcellular morphology related to apoptosis in vitro and in vivo. OCT data were acquired from acute myeloid leukemia (AML) cells treated with cisplatin over a 48-h period. The backscatter spectrum of the OCT signal acquired from the cell samples was characterized by calculating its in vitro integrated backscatter (IB) and spectral slope (SS). The IB increased with treatment duration, while the SS decreased, with the most significant changes occurring after 24 to 48 h of treatment. These changes coincided with striking morphological transformations in the cells and their nuclei. Similar trends in the spectral parameter values were observed in vivo in solid tumors grown from AML cells in mice, which were treated with chemotherapy and radiation. Our results provide a strong foundation from which future experiments may be designed to further understand the effect of cellular morphology and kinetics of apoptosis on the OCT signal and demonstrate the feasibility of using this technique in vivo.

  8. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  9. The Next Frontier: Quantitative Biochemistry in Living Cells.

    PubMed

    Honigmann, Alf; Nadler, André

    2018-01-09

    Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.

  10. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Ruiz-Aracama, Ainhoa; Peijnenburg, Ad; Kleinjans, Jos; Jennen, Danyel; van Delft, Joost; Hellfrisch, Caroline; Lommen, Arjen

    2011-05-20

    In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the in vitro model system and model toxicant, respectively. The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.

  11. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.

    PubMed

    Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland

    2006-01-01

    One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.

  12. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.

    PubMed

    Ciccarelli, Carmela; Di Rocco, Agnese; Gravina, Giovanni Luca; Mauro, Annunziata; Festuccia, Claudio; Del Fattore, Andrea; Berardinelli, Paolo; De Felice, Francesca; Musio, Daniela; Bouché, Marina; Tombolini, Vincenzo; Zani, Bianca Maria; Marampon, Francesco

    2018-06-29

    Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.

  13. In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.

    PubMed

    Fisher, T; Golan, H; Schiby, G; PriChen, S; Smoum, R; Moshe, I; Peshes-Yaloz, N; Castiel, A; Waldman, D; Gallily, R; Mechoulam, R; Toren, A

    2016-03-01

    Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.

  14. In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma

    PubMed Central

    Fisher, T.; Golan, H.; Schiby, G.; PriChen, S.; Smoum, R.; Moshe, I.; Peshes-Yaloz, N.; Castiel, A.; Waldman, D.; Gallily, R.; Mechoulam, R.; Toren, A.

    2016-01-01

    Background Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Methods We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ9-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Results Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Conclusions Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl. PMID:27022310

  15. Role of bone marrow cells in the growth inhibition of transplanted methylcholanthrene-induced sarcoma (MCA). [/sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scuderi, P.; Rosse, C.

    1981-03-01

    The operation of various antitumor mechanisms in vivo remains largely unknown. The presence of specific sensitized cells in the spleen and lymph node of tumor-bearing and tumor-immune animals has been demonstrated. Such cells are more effectively revealed by secondary sensitization of the splenocytes of tumor-immune animals in vitro by reexposing them to the tumor. Tumor-immune in vitro sensitized splenocytes (ISS) are highly effective in retarding the in vivo growth of the sensitizing tumor when they are transplated together with tumor cells into normal recipient mice. However, if the same cell transfer is made into lethally irradiated mice, the tumor willmore » grow rapidly in 100% of recipients. The objective of the present study is to explore this phenomenon and to determine the origin of the host cells that are capable of collaborating with tumor-immune in vitro sensitized splenocytes in the regulation of tumor growth. We designed experiments to test whether the host cells involved in tumor growth regulation are derived from the spleen, thymus, or the bone marrow and set out to determine whether or not collaboration of the host cells with ISS was specific as far as the sensitizing tumor was concerned.« less

  16. Transgene delivery to endothelial cultures derived from porcine carotid artery ex vivo.

    PubMed

    Andoh, J; Sawyer, B; Szewczyk, K; Nortley, M; Rossetti, T; Loftus, I M; Yáñez-Muñoz, R J; Hainsworth, A H

    2013-10-01

    Carotid artery disease is a widespread cause of morbidity and mortality. Porcine models of vascular disease are well established in vivo, but existing endothelial systems in vitro (e.g. human umbilical vein endothelial cells, rat aortic endothelial cultures) poorly reflect carotid endothelium. A reliable in vitro assay would improve design of in vivo experiments and allow reduction and refinement of animal use. This study aimed (1) to develop ex vivo endothelial cultures from porcine carotid and (2) to test whether these were suitable for lentivector-mediated transgene delivery. Surplus carotid arteries were harvested from young adult female Large White pigs within 10 min post-mortem. Small sectors of carotid artery wall (approximately 4 mm×4 mm squares) were immobilised in a stable gel matrix. Cultures were exposed to HIV-derived lentivector (LV) encoding a reporter transgene or the equivalent integration-deficient vector (IDLV). After 7-14 days in vitro, cultures were fixed and labelled histochemically. Thread-like multicellular outgrowths were observed that were positive for endothelial cell markers (CD31, VEGFR2, von Willebrand factor). A minority of cells co-labelled for smooth muscle markers. Sensitivity to cytotoxic agents (paclitaxel, cycloheximide, staurosporine) was comparable to that in cell cultures, indicating that the gel matrix permits diffusive access of small pharmacological molecules. Transgene-expressing cells were more abundant following exposure to LV than IDLV (4.7, 0.1% of cells, respectively). In conclusion, ex vivo adult porcine carotid artery produced endothelial cell outgrowths that were effectively transduced by LV. This system will facilitate translation of novel therapies to clinical trials, with reduction and refinement of in vivo experiments.

  17. A clinical scalable cryopreservation method of adipose tissue for reconstructive surgery assessed by stromal vascular fraction and mice studies.

    PubMed

    Chaput, Benoit; Orio, Julie; Garrido, Ignacio; De Bonnecaze, Guillaume; Espagnolle, Nicolas; Gadelorge, Melanie; Chavoin, Jean-Pierre; Grolleau-Raoux, Jean-Louis; Casteilla, Louis; Planat, Valérie; Bourin, Philippe

    2014-04-01

    Adipose tissue is widely used in plastic surgery. The main obstacle is that it can be used only immediately after liposuction, while reconstruction often requires several procedures to achieve optimal results. This study aimed to develop a cryopreservation protocol directly applicable to clinical situations, allowing repetitive procedures without multiple tissue harvests. The authors first tested scalable bags suitable for therapeutic uses. All subsequent experiments were performed in those bags. The authors evaluated in vitro, on the basis of cell viability, cell number, phenotype, and stromal cell proliferation, the efficacy of six cryopreservation media composed of an external cryoprotectant (human albumin or hydroxylethyl starch) with or without an internal cryoprotectant (dimethyl sulfoxide). Two storage temperatures (-196°C and -80°C) were tested in vitro and in vivo (subcutaneous graft in 30 nude mice) with the selected medium. The combination of 5% dimethyl sulfoxide and 95% hydroxylethyl yielded in vitro results that were good and the most consistent. With this cryoprotective solution, the authors observed no significant difference in vitro for a storage period of 7 days. When the storage was extended to 1 month, the cell viability was decreased by 10 percent for both storage temperatures. The in vivo experiments assessed the superiority of cryopreservation at -80°C with less graft resorption (60 percent and 70 percent, respectively, for -80°C and -196°C) and less fibrosis. The study's protocol with a chemically defined cryoprotective solution, specific scalable bags constrained in an aluminum holder, and a storage temperature of -80°C is promising for long-term adipose tissue cryopreservation.

  18. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations.

    PubMed

    Hu, Xiao; Yang, Feifei; Liao, Yonghong; Li, Lin; Zhang, Lan

    2017-11-01

    This study investigated cholesterol-polyethylene glycol (PEG) comodified poly (ethyleneglycol)-poly (lactide) nanoparticles (CLS-PEG NPs) as a novel, biodegradable brain drug delivery system and included an evaluation of its in vitro and in vivo properties. To this end, coumarin-6 (C6), a fluorescent probe, was encapsulated into CLS-PEG NPs by an emulsion polymerization method. We reported that the use of CLS-PEG NPs led to a sustained drug release in vitro. Additionally, cell viability experiments confirmed their safety. The uptake and transport of CLS-PEG NPs, by bEnd.3 cells (an immortalized mouse brain endothelial cell line), was significantly higher than that of a control C6 solution. An investigation of the uptake mechanisms of different NP formulations demonstrated that cholesterol modifications may be the primary way to improve the efficiency of cellular uptake, wherein macropinocytosis may be the most important endocytic pathway in this process. An investigation of the transport mechanisms of CLS-PEG NPs also implicated macropinocytosis, energy and cholesterol in bEnd.3 cells lines. Following an intravenous (IV) administration to rats, pharmacokinetic experiments indicated that C6-loaded CLS-PEG NPs achieved sustained release for up to 12 h. In addition, IV delivery of CLS-PEG NPs appeared to significantly improve the ability of C6 to pass through the blood-brain barrier: the concentration of C6 found in the brain increased nearly 14.2-fold when C6 CLS-PEG NPs were used rather than a C6 solution. These in vitro and in vivo results strongly suggest that CLS-PEG NPs are a promising drug delivery system for targeting the brain, with low toxicity.

  19. Biological effects of low-dose-rate irradiation of pancreatic carcinoma cells in vitro using 125I seeds

    PubMed Central

    Wang, Zhong-Min; Lu, Jian; Zhang, Li-Yun; Lin, Xiao-Zhu; Chen, Ke-Min; Chen, Zhi-Jin; Liu, Fen-Ju; Yan, Fu-Hua; Teng, Gao-Jun; Mao, Ai-Wu

    2015-01-01

    AIM: To determine the mechanism of the radiation-induced biological effects of 125I seeds on pancreatic carcinoma cells in vitro. METHODS: SW1990 and PANC-1 pancreatic cancer cell lines were cultured in DMEM in a suitable environment. Gray’s model of iodine-125 (125I) seed irradiation was used. In vitro, exponential phase SW1990, and PANC-1 cells were exposed to 0, 2, 4, 6, and 8 Gy using 125I radioactive seeds, with an initial dose rate of 12.13 cGy/h. A clonogenic survival experiment was performed to observe the ability of the cells to maintain their clonogenic capacity and to form colonies. Cell-cycle and apoptosis analyses were conducted to detect the apoptosis percentage in the SW1990 and PANC-1 cells. DNA synthesis was measured via a tritiated thymidine (3H-TdR) incorporation experiment. After continuous low-dose-rate irradiation with 125I radioactive seeds, the survival fractions at 2 Gy (SF2), percentage apoptosis, and cell cycle phases of the SW1990 and PANC-1 pancreatic cancer cell lines were calculated and compared. RESULTS: The survival fractions of the PANC-1 and SW1990 cells irradiated with 125I seeds decreased exponentially as the dose increased. No significant difference in SF2 was observed between SW1990 and PANC-1 cells (0.766 ± 0.063 vs 0.729 ± 0.045, P < 0.05). The 125I seeds induced a higher percentage of apoptosis than that observed in the control in both the SW1990 and PANC-1 cells. The rate of apoptosis increased with increasing radiation dosage. The percentage of apoptosis was slightly higher in the SW1990 cells than in the PANC-1 cells. Dose-dependent G2/M cell-cycle arrest was observed after 125I seed irradiation, with a peak value at 6 Gy. As the dose increased, the percentage of G2/M cell cycle arrest increased in both cell lines, whereas the rate of DNA incorporation decreased. In the 3H-TdR incorporation experiment, the dosimetry results of both the SW1990 and PANC-1 cells decreased as the radiation dose increased, with a minimum at 6 Gy. There were no significant differences in the dosimetry results of the two cell lines when they were exposed to the same dose of radiation. CONCLUSION: The pancreatic cancer cell-killing effects induced by 125I radioactive seeds mainly occurred via apoptosis and G2/M cell cycle arrest. PMID:25741139

  20. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    PubMed

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  1. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE PAGES

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; ...

    2017-03-13

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  2. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    PubMed Central

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth; Aizenberg, Joanna

    2017-01-01

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques. PMID:28287116

  3. Electroinduced Delivery of Hydrogel Nanoparticles in Colon 26 Cells, Visualized by Confocal Fluorescence System.

    PubMed

    Atanasova, Severina; Nikolova, Biliana; Murayama, Shuhei; Stoyanova, Elena; Tsoneva, Iana; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana

    2016-09-01

    Nano-scale drug delivery systems (nano-DDS) are under intense investigation. Nano-platforms are developed for specific administration of small molecules, drugs, genes, contrast agents [quantum dots (QDs)] both in vivo and in vitro. Electroporation is a biophysical phenomenon which consists of the application of external electrical pulses across the cell membrane. The aim of this study was to research electro-assisted Colon 26 cell line internalization of QDs and QD-loaded nano-hydrogels (polymersomes) visualized by confocal microscopy and their influence on cell viability. The experiments were performed on the Colon 26 cancer cell line, using a confocal fluorescent imaging system and cell viability test. Electroporation facilitated the delivery of nanoparticles in vivo. We demonstrated increased voltage-dependent delivery of nanoparticles into cells after electrotreatment, without significant cell viability reduction. The delivery and retention of the polymersomes in vitro is a promising tool for future cancer treatment strategies and nanomedcine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  5. Establishment of an immortal cynomolgus macaque fibroblast cell line for propagation of cynomolgus macaque cytomegalovirus (CyCMV).

    PubMed

    Ambagala, Aruna P; Marsh, Angie K; Chan, Jacqueline K; Mason, Rosemarie; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Willer, David O; MacDonald, Kelly S

    2013-05-01

    Cynomolgus macaques are widely used as an animal model in biomedical research. We have established an immortalized cynomolgus macaque fibroblast cell line (MSF-T) by transducing primary dermal fibroblasts isolated from a 13-year-old male cynomolgus macaque with a retrovirus vector expressing human telomerase reverse transcriptase (hTERT). The MSF-T cells showed increased telomerase enzyme activity and reached over 200 in vitro passages compared to the non-transduced dermal fibroblasts, which reached senescence after 43 passages. The MSF-T cell line is free of mycoplasma contamination and is permissive to the newly identified cynomolgus macaque cytomegalovirus (CyCMV). CyCMV productively infects MSF-T cells and induces down-regulation of MHC class I expression. The MSF-T cell line will be extremely useful for the propagation of CyCMV and other cynomolgus herspesviruses in host-derived fibroblast cells, allowing for the retention of host-specific viral genes. Moreover, this cell line will be beneficial for many in vitro experiments related to this animal model.

  6. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo.

    PubMed

    Huang, Zhi-Qiang; Chen, Pan; Su, Wei-Wei; Wang, Yong-Gang; Wu, Hao; Peng, Wei; Li, Pei-Bo

    2018-05-16

    Hypericum japonicum is traditionally used as a folk medicine to treat cholestasis and hepatitis. Quercetin 7-rhamnoside (Q7R) is one of the main flavonoid components of Hypericum japonicum and has been rarely studied. The aim of the present study was to evaluate the antioxidant activity and hepatoprotective potential of Q7R. In the in vitro experiments, DPPH, ABTS and ferric reducing antioxidant power (FRAP) assays were first performed to assess the antioxidant properties of Q7R, and then a H₂O₂-induced oxidative damage cellular model was used to determine the cytoprotective and antioxidant properties of Q7R in human liver L-02 cells. In the in vivo experiment, the hepatoprotective activity of Q7R was evaluated by carbon tetrachloride (CCl₄)-induced liver damage model in mice. The results of the three in vitro assays (DPPH, ABTS and FRAP) demonstrated that Q7R significantly exhibited antioxidant activity. The cell experiment results showed that Q7R possessed cytoprotective and antioxidant effects on H₂O₂-treated L-02 cells. In the in vivo experiments, Q7R suppressed the up-regulation of serum activities of ALT, AST, LDH and triglyceride (TG) levels with dose-dependency. Q7R down-regulated the production of MDA and increased the hepatic GSH content and antioxidant enzymes CAT activities. Hepatic morphological analysis was also performed to confirm the biochemical changes. In summary, these results suggested that Q7R could be considered as a potential source of natural antioxidants, and may become a promising candidate for the treatment of liver injury in the future.

  7. In Vitro Reactivity of 3-M KC1-Solubilized Murine Histocompatibility (H-2) Antigens

    DTIC Science & Technology

    1974-01-01

    experiment, varying concentra- mice were immunized with DBA/2 spleen tions of cells from day 5 BALB/c sensitized cells and subsequently skin grafted . Syn... skin grafts , spleen in MLC with mitomycin-C treated DBA/2 cells were removed and cultured with spleen cells. As seen in Table 4, increasing DBA/2...was solubilized antigens were assayed for levels produced by spleen cells from animals 5 of lymphotoxin (LT), it was seen that nor- days post skin graft sensitization

  8. In Vitro Toxicity of Cadmium Oxide Particles in BRL 3A Rat Liver Cells

    DTIC Science & Technology

    2005-03-01

    cadmium oxide? What is the cellular toxicity of cadmium oxide particles? What is the effect of cell density on cadmium oxide toxicity? 1.5...cells observed, though in some cases, the percent of control cells was less than 2%. Approximately twice as many experiments as what is shown in this...question was answered in the literature review: 1. What is the cellular toxicity of cadmium oxide particles? 2. What is the effect of cell density on

  9. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  11. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    PubMed Central

    2011-01-01

    Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma. PMID:21457573

  12. A Comprehensive Tutorial on In Vitro Characterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms

    PubMed Central

    Maisch, Tim; Berneburg, Mark; Plaetzer, Kristjan

    2013-01-01

    In vitro research performed on eukaryotic or prokaryotic cell cultures usually represents the initial step for characterization of a novel photosensitizer (PS) intended for application in photodynamic therapy (PDT) of cancer or photodynamic inactivation (PDI) of microorganisms. Although many experimental steps of PS testing make use of the wide spectrum of methods readily employed in cell biology, special aspects of working with photoactive substances, such as the autofluorescence of the PS molecule or the requirement of light protection, need to be considered when performing in vitro experiments in PDT/PDI. This tutorial represents a comprehensive collection of operative instructions, by which, based on photochemical and photophysical properties of a PS, its uptake into cells, the intracellular localization and photodynamic action in both tumor cells and microorganisms novel photoactive molecules may be characterized for their suitability for PDT/PDI. Furthermore, it shall stimulate the efforts to expand the convincing benefits of photodynamic therapy and photodynamic inactivation within both established and new fields of applications and motivate scientists of all disciplines to get involved in photodynamic research. PMID:23762860

  13. Transient immune deficiency in patients with acute Epstein-Barr virus infection.

    PubMed

    Junker, A K; Ochs, H D; Clark, E A; Puterman, M L; Wedgwood, R J

    1986-09-01

    To study the effect of primary Epstein-Barr virus (EBV) infection on antigen-specific antibody production, we immunized 17 college students who had developed acute infectious mononucleosis with the T-cell dependent neoantigen bacteriophage phi X174. During the early phase of infectious mononucleosis, the proportion of peripheral blood lymphocytes displaying Ia and T8 (CD8) phenotypes was increased and the T helper/suppressor (T4/T8) ratio was decreased (less than 1). These abnormalities disappeared during the convalescent phase. Correlating with EBV-induced changes in T lymphocytes, we demonstrated depressed humoral immune responses to bacteriophage phi X174 both in vivo and in vitro. In vitro coculture experiments indicated that the Ia+ suppressor T cells could inhibit antibody production and isotype switch. Removal of T8+ lymphocytes from patient T cells normalized in vitro antibody synthesis. In addition, impaired B-cell function was shown to be in part responsible for deficient antibody production. These studies demonstrate that infection with EBV affects both B and T lymphocytes and causes a broad-based transient immune deficiency in patients with uncomplicated infectious mononucleosis.

  14. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein.

    PubMed

    Tabll, Ashraf A; Atef, Khaled; Bader El Din, Noha G; El Abd, Yasmine S; Salem, Ahmed; Sayed, Ahmed A; Dawood, Reham M; Omran, Moataza H; El-Awady, Mostafa K

    2014-01-01

    This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.

  15. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Haijing; Xu, Hong; Zhang, Xianghong

    The epithelial–mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blotmore » analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties. - Highlights: • EMT is a critical stage during the development of silicosis fibrosis. • Ac-SDKP inhibits the EMT process in silicosis both in vivo and in vitro. • Ac-SDKP inhibits the EMT process in silicosis via TGF-β1/ROCK1 pathway.« less

  16. The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.

    PubMed

    Enomoto, Hirayuki; Tao, Lihua; Eguchi, Ryoji; Sato, Ayuko; Honda, Masao; Kaneko, Shuichi; Iwata, Yoshinori; Nishikawa, Hiroki; Imanishi, Hiroyasu; Iijima, Hiroko; Tsujimura, Tohru; Nishiguchi, Shuhei

    2017-09-22

    Type I-interferon (IFN) is considered to exert antitumor effects through the inhibition of cancer cell proliferation and angiogenesis. Based on the species-specific biological activity of IFN, we evaluated each antitumor mechanism separately. We further examined the antitumor effects of type I-IFN combined with sorafenib. Human IFN (hIFN) significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) Hep3B cells and the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Although mouse IFN (mIFN) did not inhibit the proliferation of Hep3B cells in vitro, mIFN, as well as hIFN, showed significant antitumor effects in mouse Hep3B cell-xenograft model. Furthermore, mIFN treatment amplified the antitumor effects of sorafenib in vivo with the suppression of angiogenesis. The DNA chip analysis showed that the mIFN treatment promoted the antitumor signal pathways of sorafenib, including anti-angiogenic effects. Unlike the effects observed in in vitro experiments, mIFN showed an antitumor effect in the mouse Hep3B cell-xenograft model, suggesting a role of the anti-angiogenic activity in the in vivo tumoricidal effects of type I-IFN. In addition, our findings suggested the clinical utility of combination therapy with type І-IFN and sorafenib for HCC.

  17. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.

    PubMed

    Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas

    2018-05-01

    Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.

  18. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  19. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice

    PubMed Central

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-01-01

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR–Ras–Raf–MEK–ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [3H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras–MAPK activity could be important in its anticancer activity. PMID:24853419

  20. Neoplastic transformation of SV40-immortalized human urinary tract epithelial cells by in vitro exposure to 3-methylcholanthrene.

    PubMed

    Reznikoff, C A; Loretz, L J; Christian, B J; Wu, S Q; Meisner, L F

    1988-08-01

    Normal human urinary tract epithelial cells (HUC) were neoplastically transformed in vitro using a step-wise strategy. First, a partially transformed non-virus-producing cell line was obtained after infection of HUC with simian virus 40 (SV40). This cell line (SV-HUC-1) was demonstrated to be clonal in origin, as 100% of cells contained at least five of seven marker chromosomes. Marker chromosomes were formed by balanced translocations resulting in a 'pseudodiploid' cell line. SV-HUC-1 showed altered growth properties in vitro (e.g. anchorage independent growth) but failed to form tumors in athymic nude mice, even after 3 years in culture (80 passages). In the studies reported here, SV-HUC-1 at early passages (P15-P19) were exposed to 3-methylcholanthrene (MCA) in three separate experiments. After a six-week post-treatment period of cell culture, cells were inoculated s.c. into athymic nude mice. In all experiments, MCA-treated SV-HUC-1 formed carcinomas in mice usually with a latent period of 5-8 weeks. These carcinomas showed heterogeneity with respect to histopathologies and growth properties in the mice and karyotypes. All the tumors retained SV-HUC-1 chromosome markers, but each independent transformant was aneuploid and contained unique new marker chromosomes. Chromosomes usually altered in tumor cells included numbers 3, 5, 6, 9, 11 and 13. Mutations in the ras family of cellular proto-oncogenes resulting in altered mobility of the p21 protein product were not detected in six cell lines established from independently derived tumors. It is not yet known whether other cellular proto-oncogenes are activated in these tumorigenic transformants. Neither control SV-HUC-1 (which were not exposed to MCA), nor early passage HUC exposed to MCA formed tumors when inoculated into mice. Thus, the tumorigenic transformation of HUC resulted from the combined actions of SV40 and MCA.

  1. S100A8, An Oocyte-Specific Chemokine, Directs the Migration of Ovarian Somatic Cells During Mouse Primordial Follicle Assembly.

    PubMed

    Teng, Zhen; Wang, Chao; Wang, Yijing; Huang, Kun; Xiang, Xi; Niu, Wanbao; Feng, Lizhao; Zhao, Lihua; Yan, Hao; Zhang, Hua; Xia, Guoliang

    2015-12-01

    In the mammalian ovaries, the primordial follicle pool determines the reproductive capability over the lifetime of a female. The primordial follicle is composed of two cell members, namely the oocyte and the pre-granulosa cells that encircle the oocyte. However, it is unclear what factors are involved in the reorganization of the two distinct cells into one functional unit. This study was performed to address this issue. Firstly, in an in vitro reconstruction system, dispersed ovarian cells from murine fetal ovaries at 19.0 days post coitum (dpc) reassembled into follicle-like structures, independent of the physical distance between the cells, implying that either oocytes or ovarian somatic cells (OSCs) were motile. We then carried out a series of transwell assay experiments, and determined that it was in fact 19.0 dpc OSCs (as opposed to oocytes), which exhibited a significant chemotactic response to both fetal bovine serum and oocytes themselves. We observed that S100A8, a multi-functional chemokine, may participate in the process as it is mainly expressed in oocytes within the cysts/plasmodia. S100A8 significantly promoted the number of migrating OSCs by 2.5 times in vitro, of which 66.9% were FOXL2 protein-positive cells, implying that the majority of motile OSCs were pre-granulosa cells. In addition, an S100A8-specific antibody inhibited the formation of follicle-like reconstruction cell mass in vitro. And, the primordial follicle formation was reduced when S100a8-specific siRNA was applied onto in vitro cultured 17.5 dpc ovary. Therefore, S100A8 could be a chemokine of oocyte origin, which attracts OSCs to form the primordial follicles. © 2015 Wiley Periodicals, Inc.

  2. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer

    PubMed Central

    Yoshida, Kazumichi; Tsujimoto, Hironori; Matsumura, Kouji; Kinoshita, Manabu; Takahata, Risa; Matsumoto, Yusuke; Hiraki, Shuichi; Ono, Satoshi; Seki, Shuhji; Yamamoto, Junji; Hase, Kazuo

    2015-01-01

    CD47 is an antiphagocytic molecule that acts via ligation to signal regulatory protein alpha on phagocytes; its enhanced expression and therapeutic targeting have recently been reported for several malignancies. However, CD47 expression in gastric cancer is not well documented. Immunohistochemical expression of CD47 in surgical specimens was investigated. Expression of CD47 and CD44, a known gastric cancer stem cell marker, were investigated in gastric cancer cell lines by flow cytometry. MKN45 and MKN74 gastric cancer cells were sorted by fluorescence-activated cell sorting according to CD44 and CD47 expression levels, and their in vitro proliferation, spheroid-forming capacity, and in vivo tumorigenicity were studied. In vitro phagocytosis of cancer cells by human macrophages in the presence of a CD47 blocking monoclonal antibody (B6H12) and the survival of immunodeficient mice intraperitoneally engrafted with MKN45 cells and B6H12 were compared to experiments using control antibodies. Immunohistochemistry of the clinical specimens indicated that CD47 was positive in 57 out of 115 cases, and its positivity was an independent adverse prognostic factor. Approximately 90% of the MKN45 and MKN74 cells expressed CD47 and CD44. CD47hi gastric cancer cells showed significantly higher proliferation and spheroid colony formation than CD47lo, and CD44hiCD47hi cells showed the highest proliferation in vitro and tumorigenicity in vivo. B6H12 significantly enhanced in vitro phagocytosis of cancer cells by human macrophages and prolonged the survival of intraperitoneal cancer dissemination in mice compared to control antibodies. In conclusion, CD47 is an adverse prognostic factor and promising therapeutic target in gastric cancer. PMID:26077800

  3. In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides.

    PubMed

    Crooke, R M; Graham, M J; Cooke, M E; Crooke, S T

    1995-10-01

    ISIS 2105 (Afovirsen), a 20-mer phosphorothioate oligonucleotide that inhibits the production of a gene product essential to the growth of human papillomavirus, is in phase II clinical trials for the treatment of genital warts induced by human papillomavirus-6 and human papillomavirus-11. The uptake, subcellular distribution and metabolism of ISIS 2105 and three other similar length phosphorothioates have been studied in a variety of cell lines. Our experiments indicated that ISIS 2105 and other phosphorothioates are internalized and distributed in a time-, temperature-, concentration-, sequence- and cell line-dependent manner. Cell association was also influenced by the tissue culture medium. Several different analytical techniques revealed that phosphorothioates were more rapidly degraded in vitro than previously reported. These data suggest that phosphorothioate oligonucleotide uptake and stability observed in tissue culture can vary as a function of cellular assay conditions and analytical methods used. Comparison of these results with those obtained in vivo suggests that the pharmacokinetic behavior of this class of compounds cannot necessarily be predicted from in vitro studies.

  4. In vitro differentiation of quail neural crest cells into sensory-like neuroblasts

    NASA Technical Reports Server (NTRS)

    Sieber-Blum, Maya; Kumar, Sanjiv R.; Riley, Danny A.

    1988-01-01

    Data are presented that demonstrate the ability of quail neural-crest embrionic cells grown as primary culture to differentiate in vitro into sensorylike neuroblasts. After 7-14 days of growth as primary culture, many of the putative sensory neuroblasts displayed substance P (SP)-like immunoreactivity and some exhibited histochemical carbonic anhydrase activity. Double staining experiments showed that the SP-like immunoreactive neuroblasts did not contain detectable levels of tyrosine hydroxylase or dopamine-beta-hydroxylase. The neuronal nature of the cultured sensorylike neuroblasts was further documented by double labeling for antibodies against the 68 kDa neurofilament polypeptide and substance P.

  5. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.

    PubMed

    Tarantola, Marco; Schneider, David; Sunnick, Eva; Adam, Holger; Pierrat, Sebastien; Rosman, Christina; Breus, Vladimir; Sönnichsen, Carsten; Basché, Thomas; Wegener, Joachim; Janshoff, Andreas

    2009-01-27

    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell.

  6. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation.

    PubMed

    Migheli, Rossana; Puggioni, Giulia; Dedola, Sonia; Rocchitta, Gaia; Calia, Giammario; Bazzu, Gianfranco; Esposito, Giovanni; Lowry, John P; O'Neill, Robert D; Desole, M S; Miele, Egidio; Serra, Pier A

    2008-09-15

    A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.

  7. Synthesis, characterization and in vitro biocompatibility assessment of a novel tripeptide hydrogelator, as a promising scaffold for tissue engineering applications.

    PubMed

    Pospišil, Tihomir; Ferhatović Hamzić, Lejla; Brkić Ahmed, Lada; Lovrić, Marija; Gajović, Srećko; Frkanec, Leo

    2016-10-20

    We have synthesized and characterized a self-assembling tripeptide hydrogelator Ac-l-Phe-l-Phe-l-Ala-NH2. A series of experiments showed that the hydrogel material could serve as a stabile and biocompatible physical support as it improves the survival of HEK293T cells in vitro, thus being a promising biomaterial for use in tissue engineering applications.

  8. THE ROLE OF LYMPHOCYTES IN THE SENSITIZATION OF RATS TO RENAL HOMOGRAFTS

    PubMed Central

    Strober, S.; Gowans, J. L.

    1965-01-01

    In order to study the role of blood-borne small lymphocytes in the sensitization of rats to renal homografts 2 techniques for the perfusion of isolated rat kidneys were employed: (a) the in vitro perfusion of kidneys with thoracic duct cells suspended in either an artificial medium or in blood; the perfusates were then injected into rats syngeneic with the lymphocyte donors; (b) the in vivo perfusion of kidneys with blood issuing from the femoral artery and returning to the femoral vein of living rats. The degree of sensitization conferred on the recipients by the perfusates was assessed by applying a skin homograft from the kidney donor and scoring the epithelial necrosis at 6 days. The in vitro experiments indicated that parental strain thoracic duct cells, which had passed through an F1 hybrid kidney could confer upon a parental rat sensitivity to an F1 skin graft. Several perfusions with radioactively labelled lymphocytes showed that the injected cells migrated to the lymph nodes and spleen of the recipients Labelled large pyroninophilic cells were occasionally seen in the spleen and lymph nodes of recipients, and it was suggested that these had arisen from the injected cells. Although the in vitro perfusions with blood indicated that renal homografts might sensitize their hosts within 1 hour, the in vivo perfusions suggested that about 5 to 12 hours were required. The more rapid sensitization in vitro was possibly due to the more frequent opportunity for contact between lymphocytes and kidney vascular endothelium which was afforded by the conditions in vitro. PMID:14316949

  9. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5.

    PubMed

    Wang, Li; Zhu, Zhi-Ming; Zhang, Ning-Kun; Fang, Zhi-Rong; Xu, Xiao-Hong; Zheng, Nan; Gao, Lian-Ru

    2016-05-01

    Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5. © 2016 International Federation for Cell Biology.

  10. Inhibitory effects of β,β-dimethylacrylshikonin on hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Wu, Yi-ying; Wan, Li-hong; Zheng, Xiao-wei; Shao, Zhen-jun; Chen, Jian; Chen, Xia-jing; Liu, Li-tao; Kuang, Wen-juan; Tan, Xian-shu; Zhou, Li-ming

    2012-05-01

    β,β-Dimethylacrylshikonin is one of the most abundant naphthoquinones in the root extracts of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), which have been reported to have antitumor effects. This study evaluated the antiproliferative activity of β,β-dimethylacrylshikonin on human hepatocellular carcinoma (HCC) cells both in vitro and in vivo. In vitro, the MTT assay showed that β,β-dimethylacrylshikonin inhibited the proliferation of SMMC-7721 cells in both dose- and time-dependent manners with its 50% inhibitory concentration (IC(50) ) at 48 h being 15.01 ± 0.76 µg/mL. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) and Hoechst staining detected the characteristics of cell apoptosis in β,β-dimethylacrylshikonin-treated cells and the apoptotic rates of treated groups were increased in a dose-dependent manner. Flow cytometric analysis revealed that β,β-dimethylacrylshikonin could block the cell cycle arrest at G2 phase. Furthermore, β,β-dimethylacrylshikonin down-regulated the mRNA and protein expression of Bcl-2 but up-regulated that of Bax. The cleaved caspase-3 protein was also detected in treated cells. The experiment in vivo showed that β,β-dimethylacrylshikonin significantly suppressed the growth of H(22) transplantable hepatoma, and induced the activation of caspase-3 determined by immunohistochemistry. The results indicate that β,β-dimethylacrylshikonin has significant antitumor effects on hepatocellular carcinoma both in vitro and in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  11. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  12. In vitro evaluation of electrospun PLGA/PLLA/PDLLA blend fibers loaded with naringin for guided bone regeneration.

    PubMed

    Guo, Zhenzhao; Wu, Shuai; Li, Hong; Li, Qiyan; Wu, Gang; Zhou, Changren

    2018-03-30

    The present study was to evaluate fiber mesh loaded with naringin via electrospinning to guide bone regeneration in vitro. The naringin-loaded fiber mesh was prepared via elctrospinning of PLGA, PLLA, PDLLA blending solution with naringin. SEM showed that naringin decreased the fiber's diameter according to the concentration of naringin. After 20 days' degradation in PBS, the drug-loaded fiber meshes still kept their stability with about 10% decrease in tensile strength. In vitro release experiments showed a sustained and steady naringin releasing profile with little initial burst releasing. Compared to the mats without naringin, the fiber mats loaded with naringin showed the most pronounced enhancement of cell growth when MC3T3-E1 cells were cultured on the fiber mats. The blend fiber loaded with naringin has optimized physical properties and sustained release profile in vitro. The study presents a promising fibrous mesh material for guided bone regeneration therapy.

  13. The suppression of mitogen responses associated with resistance to experimental autoimmune encephalomyelitis requires adherent and T cells.

    PubMed

    Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S

    1984-05-01

    Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.

  14. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles.

    PubMed

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca3(PO4)2) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  16. Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model.

    PubMed

    Kubatka, Peter; Kapinová, Andrea; Kružliak, Peter; Kello, Martin; Výbohová, Desanka; Kajo, Karol; Novák, Miroslav; Chripková, Martina; Adamkov, Marián; Péč, Martin; Mojžiš, Ján; Bojková, Bianka; Kassayová, Monika; Stollárová, Nadežda; Dobrota, Dušan

    2015-04-01

    There has been considerable interest in both clinical and preclinical research about the role of phytochemicals in the reduction of risk for cancer in humans. The aim of this study was to determine the antineoplastic effects of Chlorella pyrenoidosa in experimental breast cancer in vivo and in vitro. In this experiment, the antineoplastic effects of C. pyrenoidosa in the chemoprevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats were evaluated. Chlorella powder was administered through diet at concentrations of 0.3% and 3%. The experiment was terminated 14 wk after carcinogen administration. At autopsy, mammary tumors were removed and prepared for histopathological and immunohistochemical analysis. In vitro cytotoxicity assay, parameters of apoptosis, and proliferation after chlorella treatment in human breast adenocarcinoma (MCF-7) cells were carried out. Basic parameters of experimental carcinogenesis, mechanism of action (biomarkers of apoptosis, proliferation, and angiogenesis), chosen metabolic variables, and side effects after long-term chlorella treatment in animals were assessed. Chlorella at higher concentration suppressed tumor frequency by 61% (P < 0.02) and lengthened tumor latency by 12.5 d (P < 0.02) in comparison with the controls. Immunohistochemical analysis of rat tumor cells showed caspase-7 expression increase by 73.5% (P < 0.001) and vascular endothelial growth factor receptor-2 expression decrease by 19% (P = 0.07) after chlorella treatment. In a parallel in vitro study, chlorella significantly decreased survival of MCF-7 cells in a dose-dependent manner. In chlorella-treated MCF-7 cells, a significant increase in cells having sub-G0/G1 DNA content and significant increase of early apoptotic and late apoptotic/necrotic cells after annexin V/PI staining assay were found. Decreases in mitochondrial membrane potential and increasing reactive oxygen species generation were observed in the chlorella-treated MCF-7 cells. This study is the first report on the antineoplastic effects of C. pyrenoidosa in experimental breast cancer in vivo and in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cell diameter measurements obtained with a handheld cell counter could be used as a surrogate marker of G2/M arrest and apoptosis in colon cancer cell lines exposed to SN-38

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahara, Makiko; Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi; Inoue, Takeshi

    2013-05-17

    Highlights: •Chemo-sensitivity to SN-38 was assayed by the automated cell counter. •Colon cancer cell line, HCT116 cells were more sensitive to SN-38 than HT29 cells. •Increase of cell size reflects G2/M arrest. •Appearance of small particles indicates cell apoptosis. -- Abstract: In vitro assessment of chemosensitivity are important for experiments evaluating cancer therapies. The Scepter 2.0 cell counter, an automated handheld device based on the Coulter principle of impedance-based particle detection, enables the accurate discrimination of cell populations according to cell size and volume. In this study, the effects of SN-38, the active metabolite of irinotecan, on the colon cancermore » cell lines HCT116 and HT29 were evaluated using this device. The cell count data obtained with the Scepter counter were compared with those obtained with the {sup 3}H-thymidine uptake assay, which has been used to measure cell proliferation in many previous studies. In addition, we examined whether the changes in the size distributions of these cells reflected alterations in the frequency of cell cycle arrest and/or apoptosis induced by SN-38 treatment. In our experiments using the Scepter 2.0 cell counter, the cell counts were demonstrated to be accurate and reproducible measure and alterations of cell diameter reflected G2/M cell cycle arrest and apoptosis. Our data show that easy-to-use cell counting tools can be utilized to evaluate the cell-killing effects of novel treatments on cancer cells in vitro.« less

  18. A three dimensional in vitro glial scar model to investigate the local strain effects from micromotion around neural implants.

    PubMed

    Spencer, Kevin C; Sy, Jay C; Falcón-Banchs, Roberto; Cima, Michael J

    2017-02-28

    Glial scar formation remains a significant barrier to the long term success of neural probes. Micromotion coupled with mechanical mismatch between the probe and tissue is believed to be a key driver of the inflammatory response. In vitro glial scar models present an intermediate step prior to conventional in vivo histology experiments as they enable cell-device interactions to be tested on a shorter timescale, with the ability to conduct broader biochemical assays. No established in vitro models have incorporated methods to assess device performance with respect to mechanical factors. In this study, we describe an in vitro glial scar model that combines high-precision linear actuators to simulate axial micromotion around neural implants with a 3D primary neural cell culture in a collagen gel. Strain field measurements were conducted to visualize the local displacement within the gel in response to micromotion. Primary brain cell cultures were found to be mechanically responsive to micromotion after one week in culture. Astrocytes, as determined by immunohistochemical staining, were found to have significantly increased in cell areas and perimeters in response to micromotion compared to static control wells. These results demonstrate the importance of micromotion when considering the chronic response to neural implants. Going forward, this model provides advantages over existing in vitro models as it will enable critical mechanical design factors of neural implants to be evaluated prior to in vivo testing.

  19. In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation

    NASA Technical Reports Server (NTRS)

    Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.

    2002-01-01

    One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.

  20. Low-energy Shock Wave Therapy Ameliorates Erectile Dysfunction in a Pelvic Neurovascular Injuries Rat Model.

    PubMed

    Li, Huixi; Matheu, Melanie P; Sun, Fionna; Wang, Lin; Sanford, Melissa T; Ning, Hongxiu; Banie, Lia; Lee, Yung-Chin; Xin, Zhongcheng; Guo, Yinglu; Lin, Guiting; Lue, Tom F

    2016-01-01

    Erectile dysfunction (ED) caused by pelvic injuries is a common complication of civil and battlefield trauma with multiple neurovascular factors involved, and no effective therapeutic approach is available. To test the effect and mechanisms of low-energy shock wave (LESW) therapy in a rat ED model induced by pelvic neurovascular injuries. Thirty-two male Sprague-Dawley rats injected with 5-ethynyl-2'-deoxyuridine (EdU) at newborn were divided into 4 groups: sham surgery (Sham), pelvic neurovascular injury by bilateral cavernous nerve injury and internal pudendal bundle injury (PVNI), PVNI treated with LESW at low energy (Low), and PVNI treated with LESW at high energy (High). After LESW treatment, rats underwent erectile function measurement and the tissues were harvested for histologic and molecular study. To examine the effect of LESW on Schwann cells, in vitro studies were conducted. The intracavernous pressure (ICP) measurement, histological examination, and Western blot (WB) were conducted. Cell cycle, Schwann cell activation-related markers were examined in in vitro experiments. LESW treatment improves erectile function in a rat model of pelvic neurovascular injury by leading to angiogenesis, tissue restoration, and nerve generation with more endogenous EdU(+) progenitor cells recruited to the damaged area and activation of Schwann cells. LESW facilitates more complete re-innervation of penile tissue with regeneration of neuronal nitric oxide synthase (nNOS)-positive nerves from the MPG to the penis. In vitro experiments demonstrated that LESW has a direct effect on Schwann cell proliferation. Schwann cell activation-related markers including p-Erk1/2 and p75 were upregulated after LESW treatment. LESW-induced endogenous progenitor cell recruitment and Schwann cell activation coincides with angiogenesis, tissue, and nerve generation in a rat model of pelvic neurovascular injuries. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  1. A recombined fusion protein PTD-Grb2-SH2 inhibits the proliferation of breast cancer cells in vitro.

    PubMed

    Yin, Jikai; Cai, Zhongliang; Zhang, Li; Zhang, Jian; He, Xianli; Du, Xilin; Wang, Qing; Lu, Jianguo

    2013-03-01

    The growth factor receptor bound protein 2 (Grb2) is one of the affirmative targets for cancer therapy, especially for breast cancer. In this study, we hypothesized the Src-homology 2 (SH2) domain in Grb2 may serve as a competitive protein-binding agent to interfere with the proliferation of breast cancer cells in vitro. We designed, constructed, expressed and purified a novel fusion protein containing the protein transduction domain (PTD) and Grb2-SH2 domain (we named it after PTD-Grb2-SH2). An immunofluorescence assay was used to investigate the location of PTD-Grb2-SH2 in cells. MTT assay and EdU experiments were applied to detect the proliferation of breast cancer cells. The ultra-structure was observed using transmission electron microscopy. Flow cytometry was used to determine the cytotoxicity of PTD-Grb2-SH2 on cell proliferation. We successfully obtained the PTD-Grb2-SH2 fusion protein in soluble form using a prokaryotic expression system. The new fusion protein successfully passed through both the cellular and nuclear membranes of breast cancer cells. The MTT assay showed that PTD-Grb2-SH2 exhibited significant toxicity to breast cancer cells in a dose- and time-dependent manner in vitro. EdU identified the decreased proliferation rates in treated MDA-MB-231 and SK-BR-3 cells. Observation by transmission electron microscopy and flow cytometry further confirmed the cytotoxicity as apoptosis. Our results show that the HIV1-TAT domain is a useful tool for transporting a low molecular weight protein across the cell membrane in vitro. The PTD-Grb2-SH2 may be a novel agent for breast cancer therapy.

  2. [The cultivation and identification of lacrimal gland adenoid cystic cancer stem cells].

    PubMed

    Lyu, Jianmei; He, Yanjin; Xie, Lianfeng; Liu, Xun; Zhu, Limin

    2015-10-01

    To isolate and cultivate the Lacrimal gland Adenoid Cystic Carcinoma cells line, study Cancer Stem Cells properties. Experimental study. Lacrimal gland adenoid cystic carcinoma cancer stem cells were cultivated in serum-free suspension culture and the morphological changes were observed. Cells were divided into two groups, the LACC-CSC experimental group and the LACC control group. The flow cytometry instrument was used to detect the expression of classical stem cell markers CD133 and ABCG2. Transwell chamber was used to detect the cancer stem cell aggressivity and differentiated into the vascular endothelial cells. The tumorigenic force in vitro xenotransplantation were applied. LACC cells can grow suspensively after vaccinated in serum free medium and form tumor microspheres after 10-12 days. Flow cytometry experiments showed that the expression ratio of stem cell markers CD133 in LACC-CSC was (35.67 ± 6.86)%, significantly different to LACC with (0.46 ± 0.48)%, (t = 8.867, P < 0.05). Similarly, the expression ratio of stem cell marker ABCG2 in LACC-CSC was (39.99 ± 4.54)%, significantly different to LACC with (6.75 ± 1.34)%, (t = -9.932, P < 0.05). In vitro experiment of Matrigel invasion, LACC-CSC went through the matrigel basement membrane averagely (32.60 ± 8.79)/HP contrary to LACC with average (10.20 ± 2.77)/HP after 24 hours, showing statistically significance (t = 5.433, P < 0.05) between the two groups. After training for 48 hours, the difference between two groups was still obvious (t = 5.779, P < 0.05) with LACC-CSC average (62.60 ± 4.83)/HP to LACC (44.00 ± 5.34)/HP. When induced by serum medium containing VEGF and bFGF, LACC-CSC grew adherent gradually and cell morphological changes occurred after continuous induction to long spindle cells. When cultured into three-dimensional matrix structure they formed vessel samples and expressed vascular endothelial marker CD31 and CD34. Transplanted tumor in vitro experiment, mice of LACC-CSC group grew tumors in 9 days with 100% tumorigenic rate, whereas LACC group 12 days with 100% tumorigenic rate. LACC-CSC can be obtained through serum-free culture method. LACC-CSC grew suspensively and expressed classical stem cell markers. LACC-CSC were identified as cancer stem cells with stronger migration and invasion. LACC-CSC have tumorigenic force and multi-directional differentiation potential with general characteristics of the stem cell.

  3. Effect of Fibroblast-Like Cells of Mesenchymal Origin of Cytotoxic Activity of Lymphocytes against NK-Sensitive Target Cells.

    PubMed

    Lupatov, A Yu; Kim, Ya S; Bystrykh, O A; Vakhrushev, I V; Pavlovich, S V; Yarygin, K N; Sukhikh, G T

    2017-02-01

    We studied immunosuppressive properties of skin fibroblasts and mesenchymal stromal cells against NK cells. In vitro experiments showed that mesenchymal stromal cells isolated from human umbilical cord and human skin fibroblasts can considerably attenuate cytotoxic activity of NK cells against Jurkat cells sensitive to NK-mediated lysis. NK cells cultured in lymphocyte population exhibited higher cytotoxic activity than isolated NK cells. Mesenchymal stromal cells or fibroblasts added 1:1 to lymphocyte culture almost completely suppressed NK cell cytotoxicity. This suggests that fibroblast-like cells can suppress not only isolated NK cells, but also NK cells in natural cell microenvironment.

  4. Enhancing osseointegration of orthopedic implants with titania nanotube surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Erin A.

    Introduction: As joint arthroplasty surgical procedures increase annually, the development of new strategies, including novel materials and surface modifications, to attain solid bone-implant fixation are needed to increase implant terms of service. In this study, we evaluate two morphologies of titania nanotubes in both in vitro and in vivo experiments to quantify osseointegrative potential and material-level biocompatibility. Materials and Methods: Samples were prepared via an electrochemical etching process. Two different titania nanotube (TiNT) morphologies were produced, Aligned and Trabecular. For the in vitro experiment, Sprague Dawley (SD) rat marrow-derived bone marrow cells (BMC) were seeded on samples. Alkaline phosphatase (ALP) activity, osteocalcin (OC) expression, expression of relevant genes as well as cell attachment and morphology were assessed. In the first in vivo experiment, Kirschner wires were implanted unilaterally into SD rat femora with a TiNT-etched or unmodified (Control) implant. General health assessments and weekly body weights were recorded. At a 12-week endpoint, hematologic, systemic metal ion, and histologic analyses were performed. For the second in vivo experiment, Kirschner wires were implanted bilaterally into SD rat femora, with a TiNT-etched implant in one femora and unmodified (Control) implant as an internal control. At 4- and 12-week endpoints, femora were assessed via biomechanics, undecalcified histology, micro-computed tomography (muCT), and backscattered electron imaging (BEI) to characterize de novo bone formation. Results: In vitro experiments demonstrated BMC attachment and differentiation into osteoblasts as well as greater ALP activity, OC expression, total cell counts, and gene expression (of Col1a1, IGF-1, and osteonectin) on TiNT surfaces versus Controls. Cells on TiNT-etched substrates were smaller in diameter and more eccentric than Controls. In the first in vivo experiment, there were significant differences in body weight between groups at Weeks 9 and 11. There were no significant differences in red or white blood cell function between TiNT groups and Control. Aluminum levels in the lungs were significantly greater in the Trabecular TiNT group compared to Control. Histologic analysis showed significantly fewer granulocytes and neutrophils in the distal region of Trabecular TiNT-implanted femora as well as significantly fewer foreign body giant/multinucleated cells and neutrophils in the midshaft region of Aligned TiNT-implanted femora versus Controls. In the second in vivo experiment, at 12 weeks, microCT analysis showed TiNT implants generated greater bone formation than Controls. Histologic analysis demonstrated 1.5 times greater bone-implant contact in TiNT groups than Controls at 12 weeks. TiNT groups exhibited 1.3 to 3.7 times greater strength of fixation than Controls during pull-out testing. Discussion and Conclusions: In vitro data confirmed BMC attachment and differentiation into osteoblasts as well as osteoblastic phenotypic behavior. A clinically-relevant in vivo model of femoral intramedullary fixation, showed increased bone formation and quality in femora implanted with TiNT-etched implants versus Controls. A second in vivo study showed that TiNT surfaces do not generate systemic effects and may beneficially modulate the periprosthetic inflammatory environment.

  5. Synthesis and anticancer activity of novel curcumin-quinolone hybrids.

    PubMed

    Raghavan, Saiharish; Manogaran, Prasath; Gadepalli Narasimha, Krishna Kumari; Kalpattu Kuppusami, Balasubramanian; Mariyappan, Palanivelu; Gopalakrishnan, Anjana; Venkatraman, Ganesh

    2015-09-01

    A number of new curcumin-quinolone hybrids were synthesised from differently substituted 3-formyl-2-quinolones and vanillin and their in vitro cytotoxicity was determined on a panel of representative cell lines (A549, MCF7, SKOV3 and H460) using MTT assay. The most potent compound 14, was analysed for its mode of action using various cell biology experiments. SKOV3 cells treated with compound 14 showed distorted cell morphology under phase contrast imaging and induction of apoptosis was confirmed by Annexin V/PE assay. Further experiments on generation of reactive oxygen species (ROS) and cell cycle analysis revealed that these hybrids induce apoptosis by ROS generation and arrest cell cycle progression in S and G2/M phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Laser Fusion of Mouse Embryonic Cells and Intra-Embryonic Fusion of Blastomeres without Affecting the Embryo Integrity

    PubMed Central

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development. PMID:23227157

  7. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    PubMed

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  8. [Cell biology researches aboard the robotic space vehicles: preparation and performance].

    PubMed

    Tairbekov, M G

    2006-01-01

    The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles.

  9. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    PubMed Central

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  10. Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies: A Systematic Review Using Modified ARRIVE and CONSORT Guidelines

    PubMed Central

    Ramamoorthi, Murali; Bakkar, Mohammed; Jordan, Jack; Tran, Simon D.

    2015-01-01

    Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials. PMID:26106427

  11. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors.

    PubMed

    Barbieri, Federica; Thellung, Stefano; Ratto, Alessandra; Carra, Elisa; Marini, Valeria; Fucile, Carmen; Bajetto, Adriana; Pattarozzi, Alessandra; Würth, Roberto; Gatti, Monica; Campanella, Chiara; Vito, Guendalina; Mattioli, Francesca; Pagano, Aldo; Daga, Antonio; Ferrari, Angelo; Florio, Tullio

    2015-04-07

    Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals.

  12. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less

  13. Production and validation of recombinant adeno-associated virus for channelrhodopsin expression in neurons.

    PubMed

    Lin, John Y

    2013-01-01

    Recent discovery of the light-activated ion channel, channelrhodopsin (ChR), has provided researchers a powerful and convenient tool to manipulate the membrane potential of specific cells with light. With genetic targeting of these channels and illumination of light to a specific location, the experimenter can selectively activate the voltage-gated ion channels (VGICs) of ChR-expressing cells, initiating electrical signaling in temporally and spatially precise manners. In neuroscience research, this can be used to study electrical signal processing within one neuron at the cellular level, or the synaptic connectivity between neurons at the circuitry level. To conduct experiments with ChRs, these exogenous channels need to be introduced into the cells of interest, commonly through a viral approach. This chapter provides an overview of the design, production, and validation of recombinant adeno-associated virus (rAAV) for ChR expression that can be used in vitro or in vivo to infect neurons. The virus produced can be used to conduct "optogenetic" experiments in behaving animals, in vitro preparations and cultured cells, and can be used to study signal transduction and processing at a cellular or circuitry level.

  14. A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerchietti, L.C.; Ghetu, A.F.; Zhu, X.

    2010-09-22

    The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compoundmore » also killed primary DLBCLs from human patients.« less

  15. Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI.

    PubMed

    Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C; Xu, Junzhong

    2017-06-01

    To investigate the influence of transcytolemmal water exchange on estimates of tissue microstructural parameters derived from diffusion MRI using conventional PGSE and IMPULSED methods. Computer simulations were performed to incorporate a broad range of intracellular water life times τ in (50-∞ ms), cell diameters d (5-15 μm), and intrinsic diffusion coefficient D in (0.6-2 μm 2 /ms) for different values of signal-to-noise ratio (SNR) (10 to 50). For experiments, murine erythroleukemia (MEL) cancer cells were cultured and treated with saponin to selectively change cell membrane permeability. All fitted microstructural parameters from simulations and experiments in vitro were compared with ground-truth values. Simulations showed that, for both PGSE and IMPULSED methods, cell diameter d can be reliably fit with sufficient SNR (≥ 50), whereas intracellular volume fraction f in is intrinsically underestimated due to transcytolemmal water exchange. D in can be reliably fit only with sufficient SNR and using the IMPULSED method with short diffusion times. These results were confirmed with those obtained in the cell culture experiments in vitro. For the sequences and models considered in this study, transcytolemmal water exchange has minor effects on the fittings of d and D in with physiologically relevant membrane permeabilities if the SNR is sufficient (> 50), but f in is intrinsically underestimated. Magn Reson Med 77:2239-2249, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. CD133: Enhancement of Bone Healing by Local Transplantation of Peripheral Blood Cells in a Biologically Delayed Rat Osteotomy Model

    PubMed Central

    Preininger, Bernd; Duda, Georg; Gerigk, Hinnerk; Bruckner, Jonas; Ellinghaus, Agnes; Sass, F. Andrea; Perka, Carsten; Schmidt-Bleek, Katharina; Dienelt, Anke

    2013-01-01

    Sufficient angiogenesis is crucial during tissue regeneration and therefore also pivotal in bone defect healing. Recently, peripheral blood derived progenitor cells have been identified to have in addition to their angiogenic potential also osteogenic characteristics, leading to the hypothesis that bone regeneration could be stimulated by local administration of these cells. The aim of this study was to evaluate the angiogenic potential of locally administered progenitor cells to improve bone defect healing. Cells were separated from the peripheral blood of donor animals using the markers CD34 and CD133. Results of the in vitro experiments confirmed high angiogenic potential in the CD133(+) cell group. CD34(+) and CD133(+) cells were tested in an in vivo rat femoral defect model of delayed healing for their positive effect on the healing outcome. An increased callus formation and higher bone mineral density of callus tissue was found after the CD133(+) cell treatment compared to the group treated with CD34(+) cells and the control group without cells. Histological findings confirmed an increase in vessel formation and mineralization at day 42 in the osteotomy gap after CD133(+) cell transplantation. The higher angiogenic potential of CD133(+) cells from the in vitro experients therefore correlates with the in vivo data. This study demonstrates the suitability of angiogenic precursors to further bone healing and gives an indication that peripheral blood is a promising source for progenitor cells circumventing the problems associated with bone marrow extraction. PMID:23457441

  17. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro

    NASA Astrophysics Data System (ADS)

    Dysart, Jonathan S.; Patterson, Michael S.

    2005-06-01

    A singlet oxygen dose model is developed for PDT with Photofrin. The model is based on photosensitizer photobleaching kinetics, and incorporates both singlet oxygen and non-singlet oxygen mediated bleaching mechanisms. To test our model, in vitro experiments were performed in which MatLyLu (MLL) cells were incubated in Photofrin and then irradiated with 532 nm light. Photofrin fluorescence was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony formation assay. Cell survival correlated well to calculated singlet oxygen dose, independent of initial Photofrin concentration or oxygenation. About 2 × 108 molecules of singlet oxygen per cell were required to reduce the surviving fraction by 1/e. Analysis of the photobleaching kinetics suggests that the lifetime of singlet oxygen in cells is 0.048 ± 0.005 µs. The generation of fluorescent photoproducts was not a result of singlet oxygen reactions exclusively, and therefore did not yield additional information to aid in quantifying singlet oxygen dose.

  18. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model

    NASA Astrophysics Data System (ADS)

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-04-01

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery.

  19. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  20. In vitro myotoxic effects of bupivacaine on rhabdomyosarcoma cells, immortalized and primary muscle cells.

    PubMed

    Metterlein, Thomas; Hoffmann, Petra; Späth, Ruth; Gruber, Michael; Graf, Bernhard M; Zink, Wolfgang

    2015-01-01

    Rhabdomyosarcoma is a rare malignant skeletal muscle tumor. It mainly occurs in children and young adults and has an unsatisfactory prognosis. Prior studies showed a direct myotoxic effect of bupivacaine on differentiated muscle cells in vitro and in vivo. Exact mechanisms of this myotoxicity are still not fully understood, but a myotoxic effect on malignant muscle tumor cells has not been examined so far. Thus, the aim of this study was to examine if bupivacaine has cytotoxic effects on rhabdomyosarcoma cells, immortalized muscle cells and differentiated muscle cells. Cell lines of rhabdomyosarcoma cells, immortalized muscle cells and differentiated muscle cells were established. After microscopic identification, cells were exposed to various concentrations of bupivacaine (500, 1,000, 1,750, 2,500 and 5,000 ppm) for 1 and 2 h, respectively. 24 and 28 h after incubation the cultures were stained with propidium iodid and analyzed by flow cytometry. The fraction of dead cells was calculated for each experiment and the concentration with 50% cell survival (IC50) was computed. Cell groups as well as incubation and recovery time were compared (ANOVA/Bonferroni p < 0.01). The total number of cultured cells was similar for the different local anesthetics and examined concentrations. Increasing concentrations of bupivacaine led to a decrease in survival of muscle cells. IC50 was highest for immortalized cells, followed by rhabdomyosarcoma cells and differentiated cells. Exposure time, but not recovery time, had an influence on survival. Bupivacaine has clear but different cytotoxic effects on various muscle cell types in vitro. Differentiated primary cells seem to be more vulnerable than tumor cells possibly because of more differentiated intracellular structures.

  1. The influence of micronutrients in cell culture: a reflection on viability and genomic stability.

    PubMed

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Machado, Miriana; Bordin, Diana Lilian; Bergter, Lothar; Prá, Daniel; Henriques, João Antonio Pêgas

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.

  2. The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability

    PubMed Central

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Bordin, Diana Lilian; Prá, Daniel; Pêgas Henriques, João Antonio

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5–10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed. PMID:23781504

  3. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity.

    PubMed

    Zhao, Yang; Ren, Wei; Zhong, Ting; Zhang, Shuang; Huang, Dan; Guo, Yang; Yao, Xin; Wang, Chao; Zhang, Wei-Qiang; Zhang, Xuan; Zhang, Qiang

    2016-01-28

    The pH environment in gliomas is acidic. Therefore, in the present research, we selected our previously reported tumor-specific pH-responsive peptide H7K(R2)2 as a targeting ligand, which could respond to the acidic pH environment in gliomas, possessing CPP characteristics. The pH-sensitive liposomes were selected as carriers which could also respond to the acidic pH environment in gliomas triggering encapsulated drug release from these pH-sensitive liposomes. The H7K(R2)2-modified pH-sensitive liposomes containing doxorubicin (DOX-PSL-H7K(R2)2) were designed and prepared in order to evaluate their potential targeting of glioma tumor cells and their anti-tumor activity in mice with glioma tumor cells. DOX-PSL-H7K(R2)2 was prepared by the thin-film hydration method followed by remote loading using an ammonium sulfate gradient method. The in vitro release of DOX from pH-sensitive liposomes was tested and the in vitro targeting characteristics of H7K(R2)2-modified liposomes regarding C6 (rat C6 glioma cells) and U87-MG (human glioblastoma cells) were evaluated. The in vivo anti-tumor activity of DOX-PSL-H7K(R2)2 was also investigated in C6 tumor-bearing mice and in U87-MG orthotopic tumor-bearing nude mice. A specific targeting effect triggered by an acidic pH was observed in our in vitro experiments in C6 and U87-MG glioma cells. The pH-triggered DOX release from the pH-sensitive liposomes under acidic conditions was also confirmed in our in vitro experiment. Anti-tumor activity of DOX-PSL-H7K(R2)2 was found in C6 tumor-bearing mice and U87-MG orthotopic tumor-bearing nude mice in in vivo experiments. The antiangiogenic activity of DOX-PSL-H7K(R2)2 was confirmed in C6 tumor-bearing mice in the in vivo experiment. These H7K(R2)2-modified pH-sensitive liposomes containing anti-tumor drugs developed in this study are a promising delivery system involving the response stimuli at the acidic pH in the glioma tumor microenvironment and are suitable for anti-tumor therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity.

    PubMed

    Li, Dongwei; Liu, Qingping; Jia, Dong; Dou, Deqiang; Wang, Xiaofei; Kang, Tingguo

    2014-01-01

    The potential protective effects of arctigenin on 1-methyl-4-phenylpyridinium ion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity were examined, and the results indicated that arctigenin could improve the movement behaviors and upregulate dopamine and γ-aminobutyric acid levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity mouse model. A further in vitro experiment showed that the pretreatment with arctigenin on cultured human neuroblastoma SH-SY5Y cells could obviously attenuate the decrease of cell survival rates caused by treatment with 1-methyl-4-phenylpyridinium ion by way of acting against cell apoptosis through the decrease of Bax/Bcl-2 and caspase-3, and by antioxidative action through reduction of the surplus reactive oxygen species production and downregulation of mitochondrial membrane potential. It is for the first time that a neuroprotective activity of arctigenin in both in vitro and in vivo experiments was reported, enlightening that arctigenin could be useful as a potential therapeutic agent for Parkinson's disease. Georg Thieme Verlag KG Stuttgart · New York.

  5. Biological and Clinical Significance of MAD2L1 and BUB1, Genes Frequently Appearing in Expression Signatures for Breast Cancer Prognosis

    PubMed Central

    Wang, Zhanwei; Katsaros, Dionyssios; Shen, Yi; Fu, Yuanyuan; Canuto, Emilie Marion; Benedetto, Chiara; Lu, Lingeng; Chu, Wen-Ming; Risch, Harvey A.; Yu, Herbert

    2015-01-01

    To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis. PMID:26287798

  6. Culture and Drug Profiling of Patient Derived Malignant Pleural Effusions for Personalized Cancer Medicine.

    PubMed

    Ruiz, Christian; Kustermann, Stefan; Pietilae, Elina; Vlajnic, Tatjana; Baschiera, Betty; Arabi, Leila; Lorber, Thomas; Oeggerli, Martin; Savic, Spasenija; Obermann, Ellen; Singer, Thomas; Rothschild, Sacha I; Zippelius, Alfred; Roth, Adrian B; Bubendorf, Lukas

    2016-01-01

    The use of patients' own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs) are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs. MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib) according to the mutational status or chemotherapeutics based on the recommendation of the oncologists. We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs. We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner.

  7. Induction of IL-17 production from human peripheral blood CD4+ cells by asbestos exposure.

    PubMed

    Maeda, Megumi; Chen, Ying; Lee, Suni; Kumagai-Takei, Naoko; Yoshitome, Kei; Matsuzaki, Hidenori; Yamamoto, Shoko; Hatayama, Tamayo; Ikeda, Miho; Nishimura, Yasumitsu; Otsuki, Takemi

    2017-06-01

    We have previously reported that chronic, recurrent and low-dose exposure to asbestos fibers causes a reduction in antitumor immunity. Investigation of natural killer (NK) cells using an in vitro cell line model and comprising in vitro activation using freshly isolated NK cells co-cultured with chrysotile fibers, as well as NK cells derived from asbestos-exposed patients with pleural plaque (PP) or malignant mesothelioma (MM), revealed decreased expression of NK cell activating receptors such as NKG2D, 2B4 and NKp46. An in vitro differentiation and clonal expansion model for CD8+ cytotoxic T lymphocytes (CTLs) showed reduced cytotoxicity with decreased levels of cytotoxic molecules such as granzyme B and perforin, as well as suppressed proliferation of CTLs. Additionally, analysis of T helper cells showed that surface CXCR3, chemokine receptor, and the productive potential of interferon (IFN)γ were reduced following asbestos exposure in an in vitro cell line model and in peripheral CD4+ cells of asbestos-exposed patients. Moreover, experiments revealed that asbestos exposure enhanced regulatory T cell (Treg) function. This study also focused on CXCR3 expression and the Th-17 cell fraction. Following activation with T-cell receptor and co-culture with various concentrations of chrysotile fibers using freshly isolated CD4+ surface CXCR3 positive and negative fractions, the intracellular expression of CXCR3, IFNγ and IL-17 remained unchanged when co-cultured with chrysotile. However, subsequent re-stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin resulted in enhanced IL-17 production and expression, particularly in CD4+ surface CXCR3 positive cells. These results indicated that the balance and polarization between Treg and Th-17 fractions play an important role with respect to the immunological effects of asbestos and the associated reduction in antitumor immunity.

  8. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo

    PubMed Central

    2014-01-01

    Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633

  9. The citrus methoxyflavone tangeretin affects human cell-cell interactions.

    PubMed

    Brack, Marc E; Boterberg, Tom; Depypere, Herman T; Stove, Christophe; Leclercq, Georges; Mareel, Marc M

    2002-01-01

    Two effects of the citrus methoxyflavone tangeretin on cell-cell interactions are biologically relevant. Firstly, tangeretin upregulates the function of the E-cadherin/catenin complex in human MCF-7/6 breast carcinoma cells. This leads to firm cell-cell adhesion and inhibition of invasion in vitro. Secondly, tangeretin downregulates the interleukin-2 receptor on T-lymphocytes and natural killer cells. This leads to a decrease in the cytotoxic competence of these immunocytes against cancer cells. The second effect can become important when high doses of tangeretin are combined with adjuvant tamoxifen treatment for breast cancer. Experiments with nude mice bearing MCF-7/6 tumors showed that tangeretin given orally at high doses, abrogated the therapeutic suppression of tumor growth exerted by tamoxifen. No evidence for a tumor promoting effect of tangeretin by itself was found in these experiments. Tangeretin may be an interesting molecule for application in cases where immunosuppression could be clinically beneficial.

  10. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier.

    PubMed

    Liu, Dan; Lin, Bingqian; Shao, Wei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong

    2014-02-12

    Transport of PEGylated silica nanoparticles (PSiNPs) with diameters of 100, 50, and 25 nm across the blood-brain barrier (BBB) was evaluated using an in vitro BBB model based on mouse cerebral endothelial cells (bEnd.3) cultured on transwell inserts within a chamber. In vivo animal experiments were further performed by noninvasive in vivo imaging and ex vivo optical imaging after injection via carotid artery. Confocal fluorescence studies were carried out to evaluate the uptake of PSiNPs by brain endothelial cells. The results showed that PSiNPs can traverse the BBB in vitro and in vivo. The transport efficiency of PSiNPs across BBB was found to be size-dependent, with increased particle size resulting in decreased efficiency. This work points to the potential application of small sized silica nanoparticles in brain imaging or drug delivery.

  11. Influence of dental materials on cells of the equine periodontium.

    PubMed

    Ringeisen, H; Pöschke, A; Krähling, B; Schröck, C; Stoll, M; Vogelsberg, J; Failing, K; Staszyk, C

    2018-05-01

    Therapy for equine periodontal disease can include filling of the periodontal pockets and widened interproximal spaces. Recommended dental materials are generally adopted from human dentistry. To evaluate the biocompatibility of dental materials for equine periodontal fillings in vitro. In vitro experiments. Four different dental materials (PeriCare ® , Provicol ® , Calxyl ® and Honigum) were tested on equine periodontal fibroblasts. Possible cytotoxic effects were assessed microscopically and by MTT assay, and the expression of inflammatory marker genes was measured by qRT-PCR. PeriCare ® and Provicol ® had no effects on the cells, whereas Honigum and Calxyl ® were associated with severe cytotoxic effects. The results of this in vitro study need to be confirmed by clinical studies. Before adapting dental materials from human dentistry, it is crucial to initially test them in a specific equine model. © 2017 EVJ Ltd.

  12. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    PubMed

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  13. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids

    PubMed Central

    Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J.; Girão, Manoel J. B. C.; Oliva, Maria Luiza V.

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity. PMID:27391384

  14. The Boston Keratoprosthesis: Comparing Corneal Epithelial Cell Compatibility with Titanium and PMMA

    PubMed Central

    Ament, Jared D.; Spurr-Michaud, Sandra J.; Dohlman, Claes H.; Gipson, Ilene K.

    2014-01-01

    Purpose To determine in vitro whether titanium is superior in corneal cell compatibility to standard polymethyl-methacrylate (PMMA) for the Boston Keratoprosthesis (KPro). Methods Human corneal-limbal epithelial (HCLE) cells were cultured 24, 48, 72, 96, 120, 144, or 168 hours in culture plates alone (controls) or with PMMA or titanium discs. Experiments were performed in triplicate and repeated (final n = 6). To determine if a soluble, toxic factor is emitted from materials, concurrent experiments at 48 and 144 hours were performed with discs placed in Transwell Supports, with HCLE cells plated beneath. As an additional test for soluble factors, cells were incubated 24 hours with disc-conditioned media, and number of viable cells per well was quantified at each timepoint by proliferation assay. To determine if delayed cell proliferation was attributable to cell death, HCLE cell death was measured under all conditions and quantified at each timepoint by cytotoxicity assay. The effects of material on HCLE cell proliferation over time was determined by repeated measures ANOVA. P < 0.05 was statistically significant. Results HCLE cell proliferation was greater in wells with titanium discs compared to PMMA. Differences between the test discs and control non-disc cocultures were statistically significant over time for both cell proliferation (P = 0.001) and death (P = 0.0025). No significant difference was found using Transwells (P = 0.9836) or disc-conditioned media (P = 0.36). Conclusion This in vitro HCLE cell model demonstrates significantly increased cell proliferation and decreased cell death with cell/titanium contact compared to cell/PMMA contact. Moreover, differences are unlikely attributable to a soluble factor. Prospective in vivo analysis of the two KPro biomaterials is indicated. PMID:19574903

  15. In vitro activity of the polyether ionophorous antibiotic monensin against the cyst form of Toxoplasma gondii.

    PubMed

    Couzinet, S; Dubremetz, J F; Buzoni-Gatel, D; Jeminet, G; Prensier, G

    2000-10-01

    Toxoplasma gondii. The experiments were conducted in vitro using 2 methods; cysts produced either in mice or in cell culture were exposed to monensin in vitro, and the infectivity of the parasites was then assessed in vivo or in vitro. The data obtained from these 2 systems of evaluation showed that monensin inhibits the infectivity and the viability of the bradyzoites. Its activity was time and concentration dependent. The first effects were observed at very low drug concentrations (i.e. 0.0001 microg/ml). Immunofluorescence and electron microscopy analysis showed significant cytological alterations of the monensin-treated bradyzoites: they were swollen, had a large number of vacuoles in their cytoplasm and were found lysed at higher concentrations in ionophore.

  16. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    PubMed

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  17. Evaluation of permeability alteration and epithelial-mesenchymal transition induced by transforming growth factor-β1 in A549, NCI-H441, and Calu-3 cells: Development of an in vitro model of respiratory epithelial cells in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Yamaguchi, Kotaro; Chono, Sumio; Tada, Hitoshi

    2017-07-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, which is accompanied by changes in lung structure. With regard to treatment, aerosolized drugs administered intrapulmonarily are rapidly distributed into the plasma and do not remain in the lungs due to damage to the alveolar epithelium that occurs from pulmonary fibrosis. In this study, we sought to develop an in vitro model of respiratory epithelial cells in IPF for the evaluation of the intrapulmonary distribution of aerosolized drugs. We investigated transforming growth factor (TGF)-β 1 -induced epithelial-mesenchymal transition (EMT) and permeability alteration in A549, NCI-H441, and Calu-3 cell monolayers. After TGF-β 1 treatment of A549, NCI-H441, and Calu-3 cells, EMT markers including E-cadherin and vimentin and tight junction proteins including claudins-1, -3, and -5 were stained using immunofluorescence methods and detected using immunoblotting methods. Transport experiments were performed using TGF-β 1 -treated cell monolayers and fluorescein isothiocyanate dextrans (FD; 4.4, 10, and 70kDa). In addition, TGF-β 1 -induced apoptosis and necrosis were evaluated by flow cytometry using Annexin V and ethidium homodimer III, respectively. In NCI-H441 cells, incomplete EMT, destruction of claudins-1 and -3, and enhancement of FD permeability were caused by TGF-β 1 treatment. In A549 cells, complete EMT occurred but was not adequate for transport experiments because of low transepithelial electrical resistance. Whereas in Calu-3 cells, no changes were observed. TGF-β 1 -induced apoptosis and necrosis were not observed in any of the cell lines. Incomplete EMT and permeability enhancement were observed in the alveolar epithelium of IPF. Therefore, our results indicate that TGF-β 1 -treated NCI-H441 cell monolayers may serve as a useful in vitro model of respiratory epithelial cells for IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. STUDIES ON THE DEVELOPMENT OF MOUSE EMBRYOS IN VITRO

    PubMed Central

    BRINSTER, RALPH L.

    2016-01-01

    Summary The interactions of a number of possible energy sources for in-vitro development of 2-cell mouse ova were examined using statistical experimental designs. These experiments indicated that glucose has no beneficial effect on development when employed with the optimum concentration of pyruvate. Optimum concentrations of pyruvate and oxaloacetate when employed together resulted in a significantly lower response than when either compound was employed alone. It was found that the best medium for the development of 2-cell mouse ova into blastocysts contained 2·5 to 5·0 × 10−4 M-pyruvate + 2·5 to 5·0 × 10−2 M-lactate. PMID:5836270

  19. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial effects on adipocytes in vitro and adipose tissue in vivo, highlighting its potential as a metabolically favorable botanical supplement. PMID:24915004

  20. A model-based approach for automated in vitro cell tracking and chemotaxis analyses.

    PubMed

    Debeir, Olivier; Camby, Isabelle; Kiss, Robert; Van Ham, Philippe; Decaestecker, Christine

    2004-07-01

    Chemotaxis may be studied in two main ways: 1) counting cells passing through an insert (e.g., using Boyden chambers), and 2) directly observing cell cultures (e.g., using Dunn chambers), both in response to stationary concentration gradients. This article promotes the use of Dunn chambers and in vitro cell-tracking, achieved by video microscopy coupled with automatic image analysis software, in order to extract quantitative and qualitative measurements characterizing the response of cells to a diffusible chemical agent. Previously, we set up a videomicroscopy system coupled with image analysis software that was able to compute cell trajectories from in vitro cell cultures. In the present study, we are introducing a new software increasing the application field of this system to chemotaxis studies. This software is based on an adapted version of the active contour methodology, enabling each cell to be efficiently tracked for hours and resulting in detailed descriptions of individual cell trajectories. The major advantages of this method come from an improved robustness with respect to variability in cell morphologies between different cell lines and dynamical changes in cell shape during cell migration. Moreover, the software includes a very small number of parameters which do not require overly sensitive tuning. Finally, the running time of the software is very short, allowing improved possibilities in acquisition frequency and, consequently, improved descriptions of complex cell trajectories, i.e. trajectories including cell division and cell crossing. We validated this software on several artificial and real cell culture experiments in Dunn chambers also including comparisons with manual (human-controlled) analyses. We developed new software and data analysis tools for automated cell tracking which enable cell chemotaxis to be efficiently analyzed. Copyright 2004 Wiley-Liss, Inc.

  1. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation.

    PubMed

    Marrazzo, Pasquale; Paduano, Francesco; Palmieri, Francesca; Marrelli, Massimo; Tatullo, Marco

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H 2 O 2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  2. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation

    PubMed Central

    Palmieri, Francesca; Marrelli, Massimo

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use. PMID:27774106

  3. Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro.

    PubMed

    Diedrich, Erich; Schaeffel, Frank

    2009-11-01

    The chicken has been extensively studied as an animal model for myopia because its eye growth is tightly controlled by visual experience. It has been found that the retina controls the axial eye growth rates depending on the amount and the sign of defocus imposed in the projected image. Glucagonergic amacrine cells were discovered that appear to encode for the sign of imposed defocus. It is not clear whether the downstream neurons, the retinal ganglion cells, still have access to this information-and whether it ultimately reaches the brain. We have analyzed the spike rates of chicken retinal ganglion cells in vitro using a microelectrode array. For this purpose, we initially defined spatial resolution and contrast sensitivity in vitro. Two classes of chicken retinal ganglions were found, depending on the linearity of their responses with increasing contrast. Responses generally declined with increasing defocus of the visual stimulus. These responses were well predicted by the modulation transfer function for a diffraction-limited defocused optical system, the first Bessel function. Thus, the studied retinal ganglion cells did not distinguish between a loss of contrast at a given spatial frequency due to reduced contrast of the stimulus pattern or because the pattern was presented out of focus. Furthermore, there was no indication that the retinal ganglion cells responded differently to defocus of either sign, at least for the cells that were recorded in this study.

  4. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  5. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    PubMed

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  6. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4

    PubMed Central

    Zhang, Kundong; Cen, Gang; Jiang, Tao; Cao, Jun; Huang, Kejian; Zhao, Qian; Qiu, Zhengjun

    2015-01-01

    Background Aim to determine the clinicopathological and prognostic role of miR-301a-3p in pancreatic ductal adenocarcinoma(PDAC), to investigate the biological mechanism of miR-301a-3p in vitro and in vivo. Methods By tissue microarray analysis, we studied miR-301a-3p expression in PDAC patients and its clinicopathological correlations as well as prognostic significance. qRT-PCR was used to test miR-301a-3p expression in PDAC tissues and cell lines. Functional experiments including in vitro and in vivo were performed. Results Significantly higher expression of miR-301a-3p were found in PDAC patients with lymph node metastasis and advanced pathological stages and identified as an independent prognostic factor for worse survival. In PDAC samples and cell lines, miR-301a-3p was significantly up-regulated compared with matched non-tumor tissues and normal pancreatic ductal cells, respectively. Overexpression of miR-301a-3p enhanced PDAC cells colony, invasion and migration abilities in vitro as well as tumorigenicity in vivo. Furthermore, SMAD4 was identified as a target gene of miR-301a-3p by cell as well as mice xenograft experiments. In PDAC tissue microarray, a significantly inverse correlation between miR-301a-3p ISH scores and SMAD4 IHC scores were observed in both tumor and corresponding non-tumor tissues. Conclusion MiR-301a-3p functions as a novel oncogene in PDAC and the oncogenic activity may involve its inhibition of the target gene SMAD4. PMID:26019136

  7. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts.

    PubMed

    Mediavilla-Varela, Melanie; Boateng, Kingsley; Noyes, David; Antonia, Scott J

    2016-03-02

    Anti-fibrotic drugs such as pirfenidone have been developed for the treatment of idiopathic pulmonary fibrosis. Because activated fibroblasts in inflammatory conditions have similar characteristics as cancer-associated fibroblasts (CAFs) and CAFs contribute actively to the malignant phenotype, we believe that anti-fibrotic drugs have the potential to be repurposed as anti-cancer drugs. The effects of pirfenidone alone and in combination with cisplatin on human patient-derived CAF cell lines and non-small cell lung cancer (NSCLC) cell lines were examined. The impact on cell death in vitro as well as tumor growth in a mouse model was determined. Annexin V/PI staining and Western blot analysis were used to characterize cell death. Synergy was assessed with the combination index method using Calcusyn software. Pirfenidone alone induced apoptotic cell death in lung CAFs at a high concentration (1.5 mg/mL). However, co-culture in vitro experiments and co-implantation in vivo experiments showed that the combination of low doses of cisplatin (10 μM) and low doses of pirfenidone (0.5 mg/mL), in both CAFs and tumors, lead to increased cell death and decreased tumor progression, respectively. Furthermore, the combination of cisplatin and pirfenidone in NSCLC cells (A549 and H157 cells) leads to increased apoptosis and synergistic cell death. Our studies reveal for the first time that the combination of cisplatin and pirfenidone is active in preclinical models of NSCLC and therefore may be a new therapeutic approach in this disease.

  8. E-cigarette vapour is not inert and exposure can lead to cell damage.

    PubMed

    Holliday, Richard; Kist, Ralf; Bauld, Linda

    2016-03-01

    In vitro experiments were performed on normal epithelial cells as well as head and neck squamous cell carcinoma (HNSCC) cell lines. The widely available cell line HaCat, a spontaneously transformed immortal keratinocyte and the HNSCC cell lines HN30 and UMSCC10B were used. Cells were exposed to nicotine-containing and nicotine-free vapour extract from two popular e-cigarette brands for periods ranging from 48 hours to eight weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapour nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. In conclusion, our study strongly suggests that electronic cigarettes are not as safe as their marketing makes them appear to the public. Our in vitro experiments employing two brands of e-cigs show that at biologically relevant doses, vapourised e-cig liquids induce increased DNA strand breaks and cell death, and decreased clono- genic survival in both normal epithelial and HNSCC cell lines independently of nicotine content. Further research is needed to definitively determine the long-term effects of e-cig usage, as well as whether the DNA damage shown in our study as a result of e-cig exposure will lead to mutations that ultimately result in cancer.

  9. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1996-01-01

    The study of the function of immune cells in microgravity has been studied for more than 20 years in several laboratories. It is clear today that the immune system is depressed in more than 50% of the astronauts during and after space flight and that the activation of T lymphocytes by mitogens in vitro changes dramatically. This article gives an overview of the gravitational studies conducted by our laboratory in Spacelab, in MIR station, in sounding rockets and on the ground in the clinostat and the centrifuge. Three experimental approaches are followed in our work: (i) Ex vivo studies are performed with blood samples drawn from astronauts; (ii) in vivo studies are based on the application of seven antigens to the skin of the astronauts; (iii) in vitro studies are carried out with immune cells purified from the blood of healthy donors (not astronauts). The data from our in vivo and ex vivo studies are in agreement with those of other laboratories and show that the immunological function is depressed in the majority of astronauts as a consequence of the stress of space flight rather than by a direct influence of gravity on the cell. Immune depression may become a critical hazard on long duration flights on space stations or to other planets. In vitro experiments show that cultures of free-floating lymphocytes and monocytes undergo a dramatic depression of activation by the mitogen concanavalin A, while activation is more than doubled when the cells are attached to microcarrier beads. Such effects may be attributed to both direct and indirect effects of gravitational unloading on basic biological mechanisms of the cell. While the in vitro data are very important to clarify certain aspects of the biological mechanism of T cells activation, they are not descriptive of the changes of the immunological function of the astronauts.

  10. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies.

    PubMed

    Cogoli, A

    1996-04-01

    The study of the function of immune cells in microgravity has been studied for more than 20 years in several laboratories. It is clear today that the immune system is depressed in more than 50% of the astronauts during and after space flight and that the activation of T lymphocytes by mitogens in vitro changes dramatically. This article gives an overview of the gravitational studies conducted by our laboratory in Spacelab, in MIR station, in sounding rockets and on the ground in the clinostat and the centrifuge. Three experimental approaches are followed in our work: (i) Ex vivo studies are performed with blood samples drawn from astronauts; (ii) in vivo studies are based on the application of seven antigens to the skin of the astronauts; (iii) in vitro studies are carried out with immune cells purified from the blood of healthy donors (not astronauts). The data from our in vivo and ex vivo studies are in agreement with those of other laboratories and show that the immunological function is depressed in the majority of astronauts as a consequence of the stress of space flight rather than by a direct influence of gravity on the cell. Immune depression may become a critical hazard on long duration flights on space stations or to other planets. In vitro experiments show that cultures of free-floating lymphocytes and monocytes undergo a dramatic depression of activation by the mitogen concanavalin A, while activation is more than doubled when the cells are attached to microcarrier beads. Such effects may be attributed to both direct and indirect effects of gravitational unloading on basic biological mechanisms of the cell. While the in vitro data are very important to clarify certain aspects of the biological mechanism of T cells activation, they are not descriptive of the changes of the immunological function of the astronauts.

  11. The ovine uterus as a host for in vitro-produced bovine embryos.

    PubMed

    Rexroad, C E; Powell, A M

    1999-07-15

    A series of experiments were conducted to determine whether bovine blastocysts would develop beyond the blastocyst stage in the ovine uterine environment. In Experiment 1, in vitro matured, fertilized and cultured (IVM/IVF/IVC) expanded bovine blastocysts were transferred into uteri of ewes on Day 7 or 9 of the estrous cycle and collected on Day 14 or 15 to determine if the bovine blastocysts would elongate and form an embryonic disk. Springtime trials with ewes that were synchronized with a medroxyprogesterone acetate (MAP) sponge resulted in a 78% blastocyst recovery rate, and 68% of the recovered spherical or elongated embryos had embryonic disks. In Experiment 2, transfer of 4-cell bovine embryos to the oviducts of ewes at Day 3 resulted in a lower recovery (47 vs 80%) than the transfer of blastocysts at Day 7 when embryos were recovered at Day 14. However, the percentage of embryos containing embryonic disks was higher for embryos transferred at the 4-cell stage (71%) than for embryos transferred as blastocysts (50%). In Experiment 3, IVF embryos from super-ovulated cows or Day 8 in vitro produced embryos transferred to cows were collected at Day 14 and were found to be similar in size to those produced by transfer to ewes in Experiment 2. In Experiment 4, the transfer of bovine blastocysts to ewes did not prolong the ovine estrous cycle. In Experiment 5, extension of the ovine estrous cycle by administration of a MAP releasing intravaginal device allowed bovine embryos to elongate extensively and to become filamentous. In Experiment 6, uterine flushings on Day 14 or Day 16 contained elevated levels of interferon-tau when bovine blastocyst were transferred on Day 7. Transfer of bovine embryos to the reproductive tract of a ewe allows some embryos to develop normally to advanced perimplantation stages and may be a useful tool for studying critical stages of embryo development and the developmental capacity of experimental embryos.

  12. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  13. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen*

    PubMed Central

    Sharma, Aditya K.; Arora, Divya; Singh, Lalit K.; Gangwal, Aakriti; Sajid, Andaleeb; Molle, Virginie; Singh, Yogendra; Nandicoori, Vinay Kumar

    2016-01-01

    Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events. PMID:27758870

  14. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry.

    PubMed

    Chen, Yuanyuan; Li, Donghai; Li, Yongjian; Wan, Jiandi; Li, Jiang; Chen, Haosheng

    2017-11-10

    Margination of stiffened red blood cells has been implicated in many vascular diseases. Here, we report the margination of stiffened RBCs in vivo, and reveal the crucial role of the vessel geometry in the margination by calculations when the blood is seen as viscoelastic fluid. The vessel-geometry-regulated margination is then confirmed by in vitro experiments in microfluidic devices, and it establishes new insights to cell sorting technology and artificial blood vessel fabrication.

  15. Tissue engineering for human urethral reconstruction: systematic review of recent literature.

    PubMed

    de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O; Ruud Bosch, J L H; de Kort, Laetitia M O

    2015-01-01

    Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. To review recent literature on tissue engineering for human urethral reconstruction. A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.

  16. Photothermal monitoring of interaction of carcinoma cells with cytostatic drugs in vitro

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Hanna, Ehab; Cannon, Martin

    2003-06-01

    Background/problem. Monitoring of tumor response to cancer chemotherapy and dose optimization for specific patients are the key factors for successful application of anti-tumor drugs. Using patient's tumor cells for preliminary in vitro drug screening may allow optimal selection of drug type and dose. Method. Single cell state was studied with photothermal microscope. Carcinoma cells were irradiated at 427 nm with 8 ns laser pulse with energy 30 - 40 μJ. Cell photothermal (PT) response amplitude and shape from each cell were analyzed and amount of cells that produced specific PT response was used as PT parameter. Parallel experiment included cell viability control. Results were obtained for two cytotoxic chemotherapy agents -- Platinol-aq and Adrucil. Incubation of cell suspensions for 90 min at 20 and 37°C caused changes in cell PT parameters. Reaction of carcinoma cells to the drug was very similar to reaction of hepatocytes to respiratory chain inhibition and reaction of RBC to osmotic pressure decrease. PT effect was found to be dose-dependent. PT method allows detecting drug-induced changes before cell death or morphological changes and therefore can be fast and sensitive modality for control of chemotherapy.

  17. Chromosome Aberrations in Cells Infected with Bovine Papillomavirus: Comparing Cutaneous Papilloma, Esophagus Papilloma, and Urinary Bladder Lesion Cells

    PubMed Central

    Campos, S. R. C.; Melo, T. C.; Assaf, S.; Araldi, R. P.; Mazzuchelli-de-Souza, J.; Sircili, M. P.; Carvalho, R. F.; Roperto, F.; Beçak, W.; Stocco, R. C.

    2013-01-01

    The majority of malignant cells present genetic instability with chromosome number changes plus segmental defects: these changes involve intact chromosomes and breakage-induced alterations. Some pathways of chromosomal instability have been proposed as random breakage, telomere fusion, and centromere fission. Chromosome alterations in tumor cells have been described in animal models and in vitro experiments. One important question is about possible discrepancies between animal models, in vitro studies, and the real events in cancer cells in vivo. Papillomaviruses are relevant agents in oncogenic processes related to action on host genome. Recently, many reports have discussed the presence of virus DNA in peripheral blood, in humans and in animals infected by papillomaviruses. The meaning of this event is of controversy: possible product of apoptosis occurring in cancer cells, metastasized cancer cells, or active DNA sequences circulating in bloodstream. This study compares chromosome aberrations detected in bovine cells, in peripheral blood cells, and in BPV lesion cells: the literature is poor in this type of study. Comparing chromosome aberrations described in the different cells, a common mechanism in their origin, can be suggested. Furthermore blood cells can be evaluated as an effective way of virus transmission. PMID:24298391

  18. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Schumacher, M; Lode, A; Helth, A; Gelinsky, M

    2013-12-01

    In the present study, the in vitro effects of novel strontium-modified calcium phosphate bone cements (SrCPCs), prepared using two different approaches on human-bone-marrow-derived mesenchymal stem cells (hMSCs), were evaluated. Strontium ions, known to stimulate bone formation and therefore already used in systemic osteoporosis therapy, were incorporated into a hydroxyapatite-forming calcium phosphate bone cement via two simple approaches: incorporation of strontium carbonate crystals and substitution of Ca(2+) by Sr(2+) ions during cement setting. All modified cements released 0.03-0.07 mM Sr(2+) under in vitro conditions, concentrations that were shown not to impair the proliferation or osteogenic differentiation of hMSCs. Furthermore, strontium modification led to a reduced medium acidification and Ca(2+) depletion in comparison to the standard calcium phosphate cement. In indirect and direct cell culture experiments with the novel SrCPCs significantly enhanced cell proliferation and differentiation were observed. In conclusion, the SrCPCs described here could be beneficial for the local treatment of defects, especially in the osteoporotic bone. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. A novel taspine derivative suppresses human liver tumor growth and invasion in vitro and in vivo.

    PubMed

    Wang, Nan; Zheng, Lei; Zhan, Yingzhuan; Zhang, Yanmin

    2013-09-01

    Taspine is an attractive target of research due to the anticancer and anti-angiogenic effects shown by in vitro and in vivo experiments. The present study investigated the role of tas1611, which is a derivative of taspine that has increased activity and solubility, in the regulation of the invasive properties of the SMMC-7721 liver cell line in vitro and in tumor inhibition in vivo . The proliferation of the SMMC-7721 cells was examined using the tetrazole blue colorimetric method. Matrigel ® invasion chamber assays and zymogram analyses were performed to assess the inhibitory effect of tas1611 on cell invasion. Finally, a solid tumor athymic mouse model was employed to further investigate the anti-tumor effect of this compound. The results revealed that tas1611 had a marked inhibitory effect on the invasion of the SMMC-7721 cells and that this effect was associated with the activity and expression levels of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, tas1611 was able to inhibit tumor growth effectively in a solid tumor SMMC-7721 athymic mouse model. In conclusion, tas1611 may serve as a promising novel therapeutic candidate for the treatment of metastatic liver cancer.

  20. Characterizing Mechanisms of Resistance to Androgen Deprivation in Prostate Cancer

    DTIC Science & Technology

    2015-11-01

    LNCaP cells, using nextgen sequencing. shRNA-mediated-knock-down and CRISPR -mediated knock-out in vitro experiments, as well as in vivo PCa...short hairpin RNA CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats FBS – Fetal Bovine Serum GFP...targeted CRISPR genomic editing technology. Cas9- expressing LNcaP cells were infected with small guides targeting the AR gene. Unfortunately, only

  1. Imaging Prostate Cancer with Positron Emission Tomography

    DTIC Science & Technology

    2014-07-01

    critical role in tumor development. The purpose of this proposal is to utilize fibroblast activation protein alpha ( FAP ) expression on TAFs within...based cell lines, which stably express eGFP and FAP . Ongoing experiments are focused on the in vitro and in vivo evaluation of each radiopharmaceutical...and on understanding the growth characteristics of each transfected cell line in vivo. 15. SUBJECT TERMS PET, Prostate Cancer, FAP , molecular

  2. Interference of a synthetic C18 juvenile hormone with mammalian cells in vitro, I. Effects on growth and morphology.

    PubMed

    Zielińska, Z M; Laskowska-Bozek, H; Jastreboff, P

    1978-01-01

    Some of structural and functional analogs of juvenile hormones are now under field examinations as growth inhibitors of some pest-insect populations. So far however very little is known about the possible interference of these compounds with mammalian cells or organisms. In this research the interference of a synthetic preparation of the insect C18 juvenile hormone with mouse embryo fibroblasts (ME-cells) and mouse cells of an established line (L-cells) was studied. Aliquots of juvenile hormone solution or those of the solvent (DMSO plus ethanol, 9:1) were included into the culture medium and after defined times of contact the cells were tested for their morphology, pattern of growth, proliferation rate and viability. The data for the parameters under examination were evaluated by means of the analysis of variance and checked by the Tuckey test. The sensitivity of ME-cells and L-cells to the agent tested was compared by means of the analysis of variance of the data for mitotic indices of these cells and by evaluation of the number of dead cells in cultures under the particular conditions of the experiments. The main findings can be summarized as follows: 1. Cells of both types are evidently more sensitive to juvenile hormone than to the solvent. 2. ME-cells are more sensitive to both agents than are L-cells. 3. The concentrations of the hormone in the medium required to evoked the cytocidal effect on the mouse cells similarly as those affecting some insect non-target cells were far above concentrations found in insect blood, but they were of the same order of magnitude as those used in physiological experiments with insect organs in vitro.

  3. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  4. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  5. Antagonistic Effects of a Mixture of Low-Dose Nonylphenol and Di-N-Butyl Phthalate (Monobutyl Phthalate) on the Sertoli Cells and Serum Reproductive Hormones in Prepubertal Male Rats In Vitro and In Vivo

    PubMed Central

    Xiang, Zou; Qian, Weiping; Han, Xiaodong; Li, Dongmei

    2014-01-01

    The estrogenic chemical nonylphenol (NP) and the antiandrogenic agent di-n-butyl phthalate (DBP) are regarded as widespread environmental endocrine disruptors (EDCs) which at high doses in some species of laboratory animals, such as mice and rats, have adverse effects on male reproduction and development. Given the ubiquitous coexistence of various classes of EDCs in the environment, their combined effects warrant clarification. In this study, we attempted to determine the mixture effects of NP and DBP on the testicular Sertoli cells and reproductive endocrine hormones in serum in male rats based on quantitative data analysis by a mathematical model. In the in vitro experiment, monobutyl phthalate (MBP), the active metabolite of DBP, was used instead of DBP. Sertoli cells were isolated from 9-day-old Sprague-Dawley rats followed by treatment with NP and MBP, singly or combined. Cell viability, apoptosis, necrosis, membrane integrity and inhibin-B concentration were tested. In the in vivo experiment, rats were gavaged on postnatal days 23–35 with a single or combined NP and DBP treatment. Serum reproductive hormone levels were recorded. Next, Bliss Independence model was employed to analyze the quantitative data obtained from the in vitro and in vivo investigation. Antagonism was identified as the mixture effects of NP and DBP (MBP). In this study, we demonstrate the potential of Bliss Independence model for the prediction of interactions between estrogenic and antiandrogenic agents. PMID:24676355

  6. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Grenho, L.; Salgado, C. L.; Fernandes, M. H.; Monteiro, F. J.; Ferraz, M. P.

    2015-08-01

    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA-ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections.

  7. Endocrine effects of contaminated sediments on the freshwater snail Potamopyrgus antipodarum in vivo and in the cell bioassays in vitro.

    PubMed

    Mazurová, E; Hilscherová, K; Jálová, V; Köhler, H-R; Triebskorn, R; Giesy, J P; Bláha, L

    2008-09-17

    Lake Pilnok located in the black coal-mining region Ostrava-Karvina, Czech Republic, contains sediments highly contaminated with powdered waste coal. Moreover, population of the endangered species of narrow-clawed crayfish Pontastacus leptodactylus with high proportion of intersex individuals (18%) was observed at this site. These findings motivated our work that aimed to evaluate contamination, endocrine disruptive potency using in vitro assays and in vivo effects of contaminated sediments on reproduction of sediment-dwelling invertebrates. Chemical analyses revealed low concentrations of persistent chlorinated compounds and heavy metals but concentrations of polycyclic aromatic hydrocarbons (PAH) were high (sum of 16 PAHs 10 microg/g dw). Organic extracts from sediments caused significant in vitro AhR-mediated activity in the bioassay with H4IIE-luc cells, estrogenicity in MVLN cells and anti-androgenicity in recombinant yeast assay, and these effects could be attributed to non-persistent compounds derived from the waste coal. We have also observed significant in vivo effects of the sediments in laboratory experiments with the Prosobranchian euryhaline mud snail Potamopyrgus antipodarum. Sediments from Lake Pilnok as well as organic extracts of the sediments (externally added to the control sediment) significantly affected fecundity during 8 weeks of exposure. The effects were stimulations of fecundity at lower concentrations at the beginning of the experiment followed by inhibitions of fecundity and general toxicity. Our study indicates presence of chemicals that affected endocrine balance in invertebrates, and emphasizes the need for integrated approaches combining in vitro and in vivo bioassays with identification of chemicals to elucidate ecotoxicogical impacts of contaminated sediment samples.

  8. Trastuzumab- and Fab' fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo.

    PubMed

    Duan, Dongyu; Wang, Aiping; Ni, Ling; Zhang, Liping; Yan, Xiuju; Jiang, Ying; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2018-01-01

    Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab' (antigen-binding fragments cut from TMAB)-modified NPs (Fab'-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab'-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The release kinetics showed that both Fab'-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab'-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab'-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2-) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab'-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab'-Cur-NPs was higher than that of TMAB-Cur-NPs. Fab' fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery.

  9. Friend leukemia virus transformed cells exposed to microgravity in the presence of DMSO (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    The purpose of this experiment is to study the adaptation of living cells to microgravity. The in vitro transformation of Friend cells by Dimethylsufoxide (DMSO) is a good model for the study of cell differentiation and protein biosynthesis. Cultures of cells will be prepared shortly before launch. Once in space, transformation will be induced by injection of DMSO. One set of cultures will be chemically fixed with glutaraldehyde for electron microscope investigations; another set will be preserved for determining the amount of hemogloben produced and the extent of cell proliferation.

  10. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    PubMed

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles

    PubMed Central

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    Objective This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). Methods CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. Results CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×108 microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD)-mediated gene therapy, the transcription and expression of endostatin were the highest in the CMB105 group (P<0.001); the antiangiogenesis effect and inhibition of tumor cells invasion was better with CMB105 than CMB or NMB in vitro (P<0.01). After gene therapy, the tumor volumes of CMB105 group were significantly smaller than that of CMB and NMB, and many tumor cells had begun apoptosis in the CMB105 group, which had the highest apoptosis index (P<0.001). Conclusions As a contrast agent and plasmid carrier, CMB105 can be used not only for targeted ultrasound imaging but also for targeted gene therapy both in vitro and in vivo. The plasmid DNA binding ability of the CMB was not affected by conjugation of the CMB with the CD105 antibody, and because of its targeting ability, the gene transfection efficiency and therapeutic effect were better compared with the untargeted CMB and NMB. The advantages of targeted gene therapy with CMB105 in vivo were more prominent than with CMB or NMB because neither can target the endothelia in vivo. PMID:25699099

  12. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles.

    PubMed

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×10(8) microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD)-mediated gene therapy, the transcription and expression of endostatin were the highest in the CMB105 group (P<0.001); the antiangiogenesis effect and inhibition of tumor cells invasion was better with CMB105 than CMB or NMB in vitro (P<0.01). After gene therapy, the tumor volumes of CMB105 group were significantly smaller than that of CMB and NMB, and many tumor cells had begun apoptosis in the CMB105 group, which had the highest apoptosis index (P<0.001). As a contrast agent and plasmid carrier, CMB105 can be used not only for targeted ultrasound imaging but also for targeted gene therapy both in vitro and in vivo. The plasmid DNA binding ability of the CMB was not affected by conjugation of the CMB with the CD105 antibody, and because of its targeting ability, the gene transfection efficiency and therapeutic effect were better compared with the untargeted CMB and NMB. The advantages of targeted gene therapy with CMB105 in vivo were more prominent than with CMB or NMB because neither can target the endothelia in vivo.

  13. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles

    PubMed Central

    Cho, Eun Chul; Zhang, Qiang; Xia, Younan

    2011-01-01

    In vitro experiments typically measure the uptake of nanoparticles by exposing cells at the bottom of a culture plate to a suspension of nanoparticles, which is assumed to be well-dispersed. However, nanoparticles can sediment and this means the concentration of particles on the cell surface and those actually taken up by the cells may be higher than the initial bulk concentration. Here we use upright and inverted cell culture configurations to show that cellular uptake of gold nanoparticles depends on the sedimentation and diffusion velocities of the nanoparticles and is independent of size, shape, density, surface coating and initial concentration of the nanoparticles. Generally more nanoparticles are taken up in the upright configuration than the inverted one and nanoparticles that sediment faster showed greater differences in uptake between the two configurations. Our results suggest that cellular uptake of nanoparticles is sensitive to the way cells are positioned and sedimentation need to be considered when performing in vitro studies for large and heavy nanoparticles. PMID:21516092

  14. Ultrastructural Analysis of Different Human Mesenchymal Stem Cells After in Vitro Expansion: A Technical Review

    PubMed Central

    Danišovič, Ľ.; Majidi, A.; Varga, I.

    2015-01-01

    Transmission electron microscopy reveals ultrastructural details of cells, and it is a valuable method for studying cell organelles. That is why we used this method for detailed morphological description of different adult tissue-derived stem cells, focusing on the morphological signs of their functions (proteosynthetic activity, exchange with external environment, etc.) and their comparison. Preparing a specimen from the cell culture suitable for transmission electron microscopy is, however, much more challenging than routine tissue processing for normal histological examination. There are several issues that need to be solved while working with cell pellets instead of solid tissue. Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells from different adult tissues, with applications to stem cell biology and regenerative medicine. Since we are working with population of cells that was obtained after many days of passaging, very efficient and gentle procedures are highly necessary. We demonstrated that our semi-conservative approach regarding to histological techniques and processing of cells for transmission electron microscopy is a well reproducible procedure which results in quality pictures and images of cell populations with minimum distortions and artifacts. We also commented about riskiest steps and histochemical issues (e.g., precise pH, temperature) while preparing the specimen. We bring full and detailed procedures of fixation, post-fixation, infiltration, embedding, polymerization and contrasting of cell obtained from in vitro cell and tissue cultures, with modifications according to our experience. All this steps are essential for us to know more about adult stem cells derived from different sources or about other random cell populations. The knowledge about detailed ultra-structure of adult stem cells cultured in vitro are also essential for their using in regenerative medicine and tissue engineering. PMID:26708176

  15. Combining Theory, Model, and Experiment to Explain How Intrinsic Theta Rhythms Are Generated in an In Vitro Whole Hippocampus Preparation without Oscillatory Inputs

    PubMed Central

    Ferguson, Katie A.

    2017-01-01

    Abstract Scientists have observed local field potential theta rhythms (3–12 Hz) in the hippocampus for decades, but understanding the mechanisms underlying their generation is complicated by their diversity in pharmacological and frequency profiles. In addition, interactions with other brain structures and oscillatory drives to the hippocampus during distinct brain states has made it difficult to identify hippocampus-specific properties directly involved in theta generation. To overcome this, we develop cellular-based network models using a whole hippocampus in vitro preparation that spontaneously generates theta rhythms. Building on theoretical and computational analyses, we find that spike frequency adaptation and postinhibitory rebound constitute a basis for theta generation in large, minimally connected CA1 pyramidal (PYR) cell network models with fast-firing parvalbumin-positive (PV+) inhibitory cells. Sparse firing of PYR cells and large excitatory currents onto PV+ cells are present as in experiments. The particular theta frequency is more controlled by PYR-to-PV+ cell interactions rather than PV+-to-PYR cell interactions. We identify two scenarios by which theta rhythms can emerge, and they can be differentiated by the ratio of excitatory to inhibitory currents to PV+ cells, but not to PYR cells. Only one of the scenarios is consistent with data from the whole hippocampus preparation, which leads to the prediction that the connection probability from PV+ to PYR cells needs to be larger than from PYR to PV+ cells. Our models can serve as a platform on which to build and develop an understanding of in vivo theta generation. PMID:28791333

  16. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells.

    PubMed

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Feldman, Kirill; Dora, Claudio; Stark, Wendelin J

    2012-10-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering.

  17. In vitro development of Haemoproteus parasites: the efficiency of reproductive cells increase during simultaneous sexual process of different lineages.

    PubMed

    Valkiūnas, Gediminas; Palinauskas, Vaidas; Ilgūnas, Mikas; Bernotienė, Rasa; Iezhova, Tatjana A

    2014-04-01

    Recent in vitro experimental studies reported the complex patterns of haemosporidian (Haemosporida) between-lineage interactions, which prevent mixing of lineages during simultaneous sexual process. Numerous anomalous ookinetes have been observed; these are not involved in sporogony. Massive development of such ookinetes might influence parasite transmission but is insufficiently investigated. The simultaneous sexual process of several lineages is a common phenomenon in vectors due to high prevalence of haemosporidian co-infections in wildlife. It remains unclear if the number of anomalous ookinetes changes during dual-infection sporogony in comparison with the single-infection process. We calculated proportions of the anomalous and normal ookinetes, which developed during single-infection (control) and dual-infection experiments in vitro conditions. Three mitochondrial cytochrome b lineages belonging to three Haemoproteus spp. (Haemosporida, Haemoproteidae) were isolated from naturally infected passerine birds. Sexual process and ookinete development were initiated in vitro by mixing blood containing mature gametocytes of two different parasites; the following experiments were performed: (1) Haemoproteus tartakovskyi (lineage hSISKIN1) × Haemoproteus lanii (lineage hRBS4) and (2) Haemoproteus belopolskyi (hHIICT3) × H. lanii (hRBS4). Genetic difference between lineages was 5.0-5.9%. Normal and anomalous ookinetes developed in all control and dual-infection experiments. The number of anomalous ookinetes markedly decreased, and normal ookinetes increased in all dual-infection experiments in comparison with those in controls, except for H. belopolskyi, in which proportion of the anomalous and normal ookinetes did not change. This study shows that simultaneous sexual process of two genetically distant lineages of haemosporidian parasites might increase the efficiency of reproductive cells, resulting in the development of a greater number of normal ookinetes. The marked increase of the number of normal ookinetes, which is involved in sporogony, indicates the success of sporogony in dual infections. Some haemosporidian lineages might benefit from simultaneous sporogony. Widespread avian Haemoproteus spp. are convenient and laboratory-friendly organisms for in vitro experimental research addressing between-lineage interaction in parasites during the sexual process.

  18. In vivo but not in vitro leptin enhances lymphocyte proliferation in Siberian hamsters (Phodopus sungorus).

    PubMed

    Demas, Gregory E

    2010-04-01

    Mounting an immune response requires a relatively substantial investment of energy and marked reductions in energy availability can suppress immune function and presumably increase disease susceptibility. We have previously demonstrated that a moderate reduction in energy stores by partial surgical lipectomy impairs humoral immunity of Siberian hamsters (Phodopus sungorus) and is mediated, in part, by changes in the adipose tissue hormone leptin. The goals of the present study were to assess the role of leptin in cell-mediated immunity and to determine if the potential effects of leptin on immunity are via the direct actions of this hormone on lymphocytes, or indirect, via the sympathetic nervous system (SNS). In Experiment 1, hamsters received osmotic minipumps containing either murine leptin (0.5 microl/h) or vehicle alone for 10 days and splenocyte proliferation in response to the T-cell mitogen Concanavalin A (Con A) was determined. In Experiment 2, Con A-induced splenocyte proliferation was tested in the presence or absence of leptin in vitro. In Experiment 3, exogenous leptin was administered to intact or sympathetically denervated hamsters. Hamsters treated with in vivo leptin displayed increased splenocyte proliferation compared with control hamsters receiving vehicle. In contrast, in vitro leptin had no effect on splenocyte proliferation. Sympathetic denervation attenuated, but did not block, leptin-induced increases in immunity. Taken together, these results are consistent with the idea that leptin can enhance cell-mediated immunity; the SNS appears to contribute, least in part, to leptin-induced increases in immunity. Importantly, these findings confirm previous studies that leptin serves as an important endocrine link between energy balance and immunity. (c) 2009 Elsevier Inc. All rights reserved.

  19. Screening of bioactive peptides using an embryonic stem cell-based neurodifferentiation assay.

    PubMed

    Xu, Ruodan; Feyeux, Maxime; Julien, Stéphanie; Nemes, Csilla; Albrechtsen, Morten; Dinnyés, Andras; Krause, Karl-Heinz

    2014-05-01

    Differentiation of pluripotent stem cells, PSCs, towards neural lineages has attracted significant attention, given the potential use of such cells for in vitro studies and for regenerative medicine. The present experiments were designed to identify bioactive peptides which direct PSC differentiation towards neural cells. Fifteen peptides were designed based on NCAM, FGFR, and growth factors sequences. The effect of peptides was screened using a mouse embryonic stem cell line expressing luciferase dual reporter construct driven by promoters for neural tubulin and for elongation factor 1. Cell number was estimated by measuring total cellular DNA. We identified five peptides which enhanced activities of both promoters without relevant changes in cell number. We selected the two most potent peptides for further analysis: the NCAM-derived mimetic FGLL and the synthetic NCAM ligand, Plannexin. Both compounds induced phenotypic neuronal differentiation, as evidenced by increased neurite outgrowth. In summary, we used a simple, but sensitive screening approach to identify the neurogenic peptides. These peptides will not only provide new clues concerning pathways of neurogenesis, but they may also be interesting biotechnology tools for in vitro generation of neurons.

  20. Effects of dexamethasone on C6 astrocytoma radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lordo, C.D.; Stroude, E.C.; Del Maestro, R.F.

    1989-05-01

    Brain-tumor patients often undergo radiation therapy while receiving corticosteroids for the treatment of cerebral edema. Studies have demonstrated that dexamethasone is radioprotective in a number of cell lines. The C6 astrocytoma cell line is well established in vitro and is modulated by dexamethasone treatment. It has therefore been hypothesized that dexamethasone-treated C6 astrocytoma cells would be more resistant to radiation-induced damage. The present study was carried out to assess this hypothesis using both the in vitro C6 astrocytoma monolayer and three-dimensional multicellular spheroid models. Dexamethasone was inhibitory to the C6 astrocytoma cells in the monolayer preparation, increasing their doubling timemore » by 13%. In the spheroid cultures, dexamethasone treatment decreased the number of cells per spheroid by 46%. Dexamethasone did not affect the plating efficiency of either the cells from the monolayer experiment or those dissociated from spheroids, however, suggesting that the inhibitory effect was not tumoricidal. At a clinical concentration (1.94 x 10(-5) M), dexamethasone did not significantly influence plating efficiency of irradiated C6 astrocytoma cells in monolayer or three-dimensional spheroid cultures.« less

  1. The use of FDTD in establishing in vitro experimentation conditions representative of lifelike cell phone radiation on the spermatozoa.

    PubMed

    Mouradi, Rand; Desai, Nisarg; Erdemir, Ahmet; Agarwal, Ashok

    2012-01-01

    Recent studies have shown that exposing human semen samples to cell phone radiation leads to a significant decline in sperm parameters. In daily living, a cell phone is usually kept in proximity to the groin, such as in a trouser pocket, separated from the testes by multiple layers of tissue. The aim of this study was to calculate the distance between cell phone and semen sample to set up an in vitro experiment that can mimic real life conditions (cell phone in trouser pocket separated by multiple tissue layers). For this reason, a computational model of scrotal tissues was designed by considering these separating layers, the results of which were used in a series of simulations using the Finite Difference Time Domain (FDTD) method. To provide an equivalent effect of multiple tissue layers, these results showed that the distance between a cell phone and semen sample should be 0.8 cm to 1.8 cm greater than the anticipated distance between a cell phone and the testes.

  2. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.

    PubMed

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In vitro biocompatibility of EPM and EPDM rubbers.

    PubMed

    Mast, F; Hoschtitzky, J A; Van Blitterswijk, C A; Huysmans, H A

    1997-01-01

    The in vitro toxicity of two EPDM rubbers (K 778 and K 4802) and one EPM rubber (K 740) was tested using human fibroblasts. The modulus of elasticity of each rubber was varied by exposure to different amounts of electron-beam radiation (0, 5 and 10 Mrad). The short-term in vitro toxicity was tested by culturing cells on polymer films. The long-term effect of ageing was simulated by growing fibroblasts in nutrient media prepared from extracts of heat-exposed materials. Cell cultures were studied both quantitatively and (ultra) structurally. Growth curves obtained in the toxicity test did not differ significantly from control values at any day of observation, and also showed that electron-beam radiation did not alter the biocompatibility. The same results were found for all but one material in the artificial ageing test. The number of cells in the K4802/10 Mrad extraction medium was decreased. Ultrastructurally no gross deviations from normal morphology were observed, either in the direct contact test or in the artificial ageing test. The most characteristic feature was a somewhat dilated endoplasmic reticulum. In summary, the in vitro biocompatibility of EPDM-rubbers as observed in this study is satisfactory and motivates further investigation of their biocompatibility in animal experiments.

  5. Comparison of colony stimulation factors on in vitro rat and human neutrophil function.

    PubMed

    Wheeler, J G; Huffine, M E; Childress, S; Sikes, J

    1994-01-01

    The effects of rhCSFs on in vitro polymorphonuclear leukocyte (PMN) function were studied in Sprague-Dawley neonatal and adult rats and adult and umbilical cord derived human PMN to compare species response. Following in vitro exposure to buffer or rhCSFs (50-100 micrograms/ml), PMN oxidative burst, chemotactic activity and adherence protein expression were measured. RhG-CSF increased the oxidative burst of adult rat PMN as measured by chemiluminescence and altered CD11b/CD18 in resting neonatal rat but not adult rat cells. RhGM-CSF had no effect on adult rat PMN function in vitro, but led to modest changes in adult rat PMN diapedesis across rat peritoneum. No responses were noted to rhM-CSF. Human PMN responded best to GM-CSF (particularly in the neonate), intermediately to G-CSF and none to M-CSF. These experiments show that the profile of cytokine effects is not similar in adult and neonatal rat PMN when compared to human cells. The diversity of actions in other species must be considered when using rhCSFs in animal models.

  6. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease.

    PubMed

    Krenger, W; Snyder, K M; Byon, J C; Falzarano, G; Ferrara, J L

    1995-07-15

    Acute graft-vs-host disease (GVHD) is thought to be mediated by alloreactive T cells with a type 1 cytokine phenotype. To prevent the development of acute GVHD, we have successfully polarized mature donor T cells toward a type 2 cytokine phenotype ex-vivo by incubating them with murine rIL-4 in a primary MLC. Polarized type 2 T cells were then transplanted with T cell-depleted bone marrow cells into irradiated recipients across either MHC class II (bm12-->C57BL/6) or class I (bm1-->C57BL/6) barriers, and the intensity of GVHD was measured by assessment of several in vitro and in vivo parameters. The injection of polarized type 2 T cells abrogated the mitogen-induced production of IFN-gamma by splenocytes from transplanted hosts on day 13 after bone marrow transplantation (BMT). Injection of polarized type 2 T cells failed to induce secretion of the effector phase cytokine TNF-alpha by splenocytes stimulated with LPS both in vitro and in vivo, and survival of transplanted mice after i.v. injection with LPS was significantly improved. Furthermore, cell-mixing experiments revealed that polarized type 2 T cells were able to inhibit type 1 cytokine responses induced by naive T cells after BMT. These data demonstrate that both polarized CD4+ and CD8+ type 2 alloreactive donor T cells can be generated in vitro from mature T cell populations. These cells function in vivo to inhibit type 1 T cell responses, and such inhibition attenuates the systemic morbidity of GVHD after BMT across both MHC class II or class I barriers in mice.

  7. Effect of triiodothyronine on developmental competence of bovine oocytes.

    PubMed

    Costa, N N; Cordeiro, M S; Silva, T V G; Sastre, D; Santana, P P B; Sá, A L A; Sampaio, R V; Santos, S S D; Adona, P R; Miranda, M S; Ohashi, O M

    2013-09-01

    Developmental competence of in vitro-matured bovine oocytes is a limiting factor in production of embryos in vitro. Several studies have suggested a potential positive effect of thyroid hormones on cultured oocytes and/or their supporting cells. Therefore, the aim of the present study was to ascertain whether medium supplementation with triiodothyronine (T3) improved subsequent developmental competence of in vitro-matured bovine oocytes. For this purpose, we first documented (using reverse transcription PCR) that whereas bovine cumulus cells expressed both thyroid hormone receptor (TR)-α and TRβ, immature bovine oocytes expressed TRα only. Thereafter, to test the effects of TH on developmental competence, abattoir-derived oocytes were matured in vitro in a medium containing 0, 25, 50, or 100 nM T3 and subjected to in vitro fertilization. Embryo quality was evaluated by assessing cleavage and blastocyst rates, morphological quality, development kinetics, and total cell number on Day 8 of culture. Notably, addition of 50 or 100 nM T3 to the in vitro maturation medium increased (P < 0.05) the rate of hatched blastocysts on the eighth day of culture, as compared with other groups (62.4 ± 11.7, 53.1 ± 16.3, and 32.4 ± 5.3, respectively). Next, the relative expression levels of genes related to embryo quality POU-domain transcription factor (POU5F1) and glucose transporter-1 (GLUT 1) were compared between in vivo- and in vitro-produced blastocysts. On the basis of the previous experiments, IVP embryos originating from oocytes that were matured in vitro in the presence or absence of 50 nM T3 were evaluated. The treatment had no effect (P > 0.05) on gene expression. We concluded that supplementation of bovine oocyte in vitro maturation medium with T3 may have a beneficial effect on the kinetics of embryo development. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material.

    PubMed

    Bogdanski, Denise; Köller, Manfred; Müller, Dietmar; Muhr, Gert; Bram, Martin; Buchkremer, Hans Peter; Stöver, Detlev; Choi, Jongsik; Epple, Matthias

    2002-12-01

    The biocompatibility of nickel-titanium alloys was investigated by single-culture experiments on functionally graded samples with a stepwise change in composition from pure nickel to pure titanium, including an Ni-Ti shape memory alloy for a 50:50 mixture. This approach permitted a considerable decrease of experimental resources by simultaneously studying a full variation of composition. The results indicate a good biocompatibility for a nickel content up to about 50%. The cells used in the biocompatibility studies comprised osteoblast-like osteosarcoma cells (SAOS-2, MG-63), primary human osteoblasts (HOB), and murine fibroblasts (3T3).

  9. Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats.

    PubMed

    Arnhold, Stefan; Heiduschka, Peter; Klein, Helmut; Absenger, Yvonne; Basnaoglu, Serkan; Kreppel, Florian; Henke-Fahle, Sylvia; Kochanek, Stefan; Bartz-Schmidt, Karl-Ulrich; Addicks, Klaus; Schraermeyer, Ulrich

    2006-09-01

    To determine the potential of adenovirally transduced bone marrow stromal cells (BMSCs) to differentiate into retinal pigment epithelial-like cells and to evaluabe possible rescue effects after transplantation into the retinas of Royal College of Surgeons (RCS) rats. Through a high-capacity adenoviral vector expressing either green fluorescent protein (GFP) or pigment epithelial-derived factor (PEDF), rat MSCs were transduced in vitro before subretinal transplantation into Wistar rats or, alternatively, RCS rats. Two months after cell injection, the rats were killed and the eyes enucleated. The eyes were then investigated light microscopically or processed for electron microscopic investigations. Cell differentiation and integration were analyzed immunocytochemically using antibodies against cytokeratin and the tight junction protein ZO-1. Electroretinography was performed 16 days after injection of cells, to check whether a functional rescue could be detected. In vitro experiments in cocultured human MSCs and human RPE cells showed that MSCs adopted RPE-like characteristics. In grafting experiments, some rat MSCs integrate into the host RPE cell layer of Wistar and RCS rats, indicated by their hexagonal morphology. Subretinally transplanted cells express the epithelial marker cytokeratin and establish tight junctions with the host RPE cells. Furthermore, rescue effects can be demonstrated after grafting of vector-transduced and nontransduced MSCs in semithin sections of dystrophic retinas. Ultrastructurally, MSCs can be detected on top of host RPE and in close contact with photoreceptor outer segments phagocytosing rod outer segments. Taken together, these results raise the possibility that MSCs have the potency to replace diseased RPE cells and deliver therapeutic proteins into the subretinal space to protect photoreceptor cells from degeneration.

  10. A microfluidics assay to study invasion of human placental trophoblast cells.

    PubMed

    Abbas, Yassen; Oefner, Carolin Melati; Polacheck, William J; Gardner, Lucy; Farrell, Lydia; Sharkey, Andrew; Kamm, Roger; Moffett, Ashley; Oyen, Michelle L

    2017-05-01

    Pre-eclampsia, fetal growth restriction and stillbirth are major pregnancy disorders throughout the world. The underlying pathogenesis of these diseases is defective placentation characterized by inadequate invasion of extravillous placental trophoblast cells into the uterine arteries. How trophoblast invasion is controlled remains an unanswered question but is influenced by maternal uterine immune cells called decidual natural killer cells. Here, we describe an in vitro microfluidic invasion assay to study the migration of primary human trophoblast cells. Each experiment can be performed with a small number of cells making it possible to conduct research on human samples despite the challenges of isolating primary trophoblast cells. Cells are exposed to a chemical gradient and tracked in a three-dimensional microenvironment using real-time high-resolution imaging, so that dynamic readouts on cell migration such as directionality, motility and velocity are obtained. The microfluidic system was validated using isolated trophoblast and a gradient of granulocyte-macrophage colony-stimulating factor, a cytokine produced by activated decidual natural killer cells. This microfluidic model provides detailed analysis of the dynamics of trophoblast migration compared to previous assays and can be modified in future to study in vitro how human trophoblast behaves during placentation. © 2017 The Authors.

  11. Heritable non-lethal damage to cultured human cells irradiated with heavy ions.

    PubMed

    Walker, James T; Todd, Paul; Walker, Olivia A

    2002-12-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (Linear Energy Transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 microm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the USEPA.

  12. A novel nitro-oxy substituted analogue of rofecoxib reduces human colon cancer cell growth.

    PubMed

    Bocca, Claudia; Bozzo, Francesca; Ievolella, Monica; Miglietta, Antonella

    2012-02-01

    Rofecoxib is a specific COX-2 inhibitor able to exert antiproliferative activity against colorectal cancer cells. It was withdrawn from the market after the demonstration of an increased risk of cardiovascular complications after prolonged use. Nevertheless, it remains an interesting compound for laboratory research as an experimental COX-2 inhibitor. In this study, the antiproliferative activity of a novel dinitro-oxy-substituted analogue of rofecoxib (NO-rofe), potentially less cardiotoxic, has been investigated in vitro on human colon cancer cells and compared with the action of the parent drug. Due to the fact that COX-2 inhibition is the main characteristic of coxibs, we performed all experiments in COX-2-overexpressing (HT-29) and COX-2-negative (SW-480) human colon cancer cells, to elucidate whether the observed effects were dependent on COX-2 inhibition. Moreover, experiments were performed in order to evaluate whether COX-2 pharmacological inhibition may affect beta-catenin/E-cadherin signaling pathway. NO-rofe exerted a significant antiproliferative activity on COX-2 positive HT-29 human colon cancer cells, being less effective on the COX-2 negative SW-480 human colon cancer cell line. In particular, the rofecoxib analogue retained similar potencies with respect to COX-2 inhibition but was much more active than rofecoxib in inhibiting the growth of human colon cancer cells in vitro. In addition, this novel compound resulted in the induction of membrane β-catenin/E-cadherin expression, a feature that may significantly contribute to its antiproliferative activity.

  13. Prevention of carcinogenesis of mouse mammary epithelial cells RIII/MG by epigallocatechin gallate.

    PubMed

    Yanaga, Hiroshi; Fujii, Teruhiko; Koga, Toshihiro; Araki, Ruriko; Shirouzu, Kazuo

    2002-09-01

    The chemopreventive effect of the polyphenols abundant in green tea on carcinogenesis has been attracting attention in recent years. Among tea polyphenols, epigallocatechin gallate (EGCG) has been studied as a preventive substance for carcinogenesis. We investigated the chemopreventive effect in a group treated with EGCG in vitro and in vivo using mouse mammary epithelial cells RIII/MG. In the in vitro experiment, crude catechin (catechin) containing 50% or more EGCG significantly inhibited the growth of RIII/MG cells, which were precancerous cultured cells. Many cells died, and a DNA ladder was observed. In the in vivo experiment, RIII/MG cells formed a tumor after 13 weeks in a group without catechin treatment, and the tumor formation rate in the 20th week was 40%. In a group treated with 0.1% catechin, a tumor began to grow in the 13th week, and the tumor formation rate in the 20th week was 20%. In a group treated with 1% catechin, no tumor was detected even in the 20th week. There was no significant difference in the change in body weight between the catechin treatment groups and the non-treatment group during the observation period. Tissue samples were stained by the nick-end-labeling method and apoptosis was observed in many cells. Based on the above findings, EGCG inhibited growth in the mouse viral mammary epithelial carcinogenesis model RIII/MG, and induced apoptosis, suggesting a clinical usefulness of EGCG as a chemopreventive substance.

  14. Radiosensitization of high-Z compounds by medium-energy 160 kV vs. high-energy 6 MV X-rays for radiation therapy: Theoretical, in vitro and in vivo studies of platinum compounds activating glioma F98 cancer cells

    NASA Astrophysics Data System (ADS)

    Lim, S.; Pradhan, A.; Nahar, S.; Montenegro, M.; Barth, R.; Nakkula, R.; Turro, C.

    2013-03-01

    Energy dependence of X-ray irradiation of high-Z compounds for enhanced radiosensitization is explored thoeretically and via in vitro and in vivo experiments. The cell killing ability of medium-energy X-rays from 160 kV source are found to be more effective than 6 MV X-rays in activating high-Z contrast agents. Results are presented for a newly synthesized Pt compound, Pyridine Terpyridine Pt(II) Nitrate ([Pt(typ)(py)]) and carboplatin in treating F98 rat glioma. In-vitro results show considerable reduction in cell viability for radiosensitized cells irradiated with a 160 kV irradiator. Cells treated with 6 MV LINAC radiation find little variation with radiation dose. Maximum dose enhancement factors (DEFs) and minimum cancer cell survival fractions correspond to 50-200 keV range, and fall rapidly at higher energies. Theoretical calculations of photoelectric absorption vis-a-vis total scattering demonstrates this energy dependence. However, in vivo studies of rats treated with [Pt(tpy)(py)] had a severe negative neurotoxic response, confirmed by histopathological analysis. But subsequent in vivo studies using carboplatin showed very positive results in the treatment of F98 glioma bearing rats and potential clinical radiation therapy.

  15. Persistence of dead-cell bacterial DNA in ex vivo root canals and influence of nucleases on DNA decay in vitro.

    PubMed

    Brundin, Malin; Figdor, David; Roth, Chrissie; Davies, John K; Sundqvist, Göran; Sjögren, Ulf

    2010-12-01

    The fate of DNA from bacteria that do not survive in the root canal is uncertain, yet DNA longevity may confound recovery of authentic etiologic participants in the disease process. This study assessed the recovery of PCR-detectable DNA in ex vivo human root canals and some environmental factors on the decay of microbial DNA. Heat-killed Enterococcus faecalis cells were inoculated into instrumented human root canals ex vivo, and samples were taken at intervals over 2 years and analyzed by polymerase chain reaction. In an in vitro assay, heat-killed E. faecalis cells and extracted E. faecalis DNA were inoculated into various media, DNase, and culture of a DNase-producing species, Prevotella intermedia. Recovery of DNA was assessed by gel electrophoresis. In ex vivo human teeth, amplifiable DNA was recovered after 1 and 2 years (in 14/15 and 21/25 teeth, respectively). In vitro experiments showed that extracted DNA incubated in different media (water, 10%-50% sera, and DNase) progressively decomposed to levels below the detection limit. In corresponding assays, cell-bound DNA was more resistant to decay. Amplifiable DNA is preserved after cell death, but the critical determinant is the form of DNA. Free DNA undergoes spontaneous and enzymatic decomposition, whereas cell-bound E. faecalis DNA persists for long periods. Copyright © 2010 Mosby, Inc. All rights reserved.

  16. Designing a Microfluidic Device with Integrated Ratiometric Oxygen Sensors for the Long-Term Control and Monitoring of Chronic and Cyclic Hypoxia

    PubMed Central

    Grist, Samantha M.; Schmok, Jonathan C.; Liu, Meng-Chi (Andy); Chrostowski, Lukas; Cheung, Karen C.

    2015-01-01

    Control of oxygen over cell cultures in vitro is a topic of considerable interest, as chronic and cyclic hypoxia can alter cell behaviour. Both static and transient hypoxic levels have been found to affect tumour cell behaviour; it is potentially valuable to include these effects in early, in vitro stages of drug screening. A barrier to their inclusion is that rates of transient hypoxia can be a few cycles/hour, which is difficult to reproduce in traditional in vitro cell culture environments due to long diffusion distances from control gases to the cells. We use a gas-permeable three-layer microfluidic device to achieve spatial and temporal oxygen control with biologically-relevant switching times. We measure the oxygen profiles with integrated, ratiometric optical oxygen sensors, demonstrate sensor and system stability over multi-day experiments, and characterize a pre-bleaching process to improve sensor stability. We show, with both finite-element modelling and experimental data, excellent control over the oxygen levels by the device, independent of fluid flow rate and oxygenation for the operating flow regime. We measure equilibration times of approximately 10 min, generate complex, time-varying oxygen profiles, and study the effects of oxygenated media flow rates on the measured oxygen levels. This device could form a useful tool for future long-term studies of cell behaviour under hypoxia. PMID:26287202

  17. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    PubMed

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  18. Differential developmental ability of embryos cloned from tissue-specific stem cells.

    PubMed

    Inoue, Kimiko; Noda, Shinichi; Ogonuki, Narumi; Miki, Hiromi; Inoue, Shinichi; Katayama, Kazufumi; Mekada, Kazuyuki; Miyoshi, Hiroyuki; Ogura, Atsuo

    2007-05-01

    Although cloning animals by somatic cell nuclear transfer is generally inefficient, the use of certain nuclear donor cell types may significantly improve or deteriorate outcomes. We evaluated whether two multipotent stem cell lines produced in vitro--neural stem cells (NSCs) and mesenchymal stem cells (MSCs)--could serve as nuclear donors for nuclear transfer cloning. Most (76%) NSC-derived embryos survived the two-cell-to-four-cell transition, the stage when the major zygotic gene activation occurs. Consistent with this observation, the expression patterns of zygotically active genes were better in NSC-derived embryos than in fibroblast clone embryos, which arrested at the two-cell stage more frequently. Embryo transfer experiments demonstrated that at least some of these NSC embryos had the ability to develop to term fetuses (1.6%, 3/189). In contrast, embryos reconstructed using MSCs showed a low rate of in vitro development and never underwent implantation in vivo. Chromosomal analysis of the donor MSCs revealed very frequent aneuploidy, which probably impaired the potential for development of their derived clones. This is the first demonstration that tissue-specific multipotent stem cells produced in vitro can serve as donors of nuclei for cloning mice; however, these cells may be prone to chromosomal aberrations, leading to high embryonic death rates. We found previously that hematopoietic stem cells (HSCs) are very inefficient donor cells because of their failure to activate the genes essential for embryonic development. Taken together, our data led us to conclude that tissue-specific stem cells in mice, namely NSCs, MSCs, and HSCs, exhibited marked variations in the ability to produce cloned offspring and that this ability varies according to both the epigenetic and genetic status of the original genomes. Disclosure of potential conflicts of interest is found at the end of this article.

  19. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.

    PubMed

    Wang, Lingyu; Yu, Linfen; Grist, Samantha; Cheung, Karen C; Chen, David D Y

    2017-11-15

    Cell culture systems based on polydimethylsiloxane (PDMS) microfluidic devices offer great flexibility because of their simple fabrication and adaptability. PDMS devices also make it straightforward to set up parallel experiments and can facilitate process automation, potentially speeding up the drug discovery process. However, cells grown in PDMS-based systems can develop in different ways to those grown with conventional culturing systems because of the differences in the containers' surfaces. Despite the growing number of studies on microfluidic cell culture devices, the differences in cellular behavior in PDMS-based devices and normal cell culture systems are poorly characterized. In this work, we investigated the proliferation and autophagy of MCF7 cells cultured in uncoated and Parylene-C coated PDMS wells. Using a quantitative method combining solid phase extraction and liquid chromatography mass spectrometry we developed, we showed that Tamoxifen uptake into the surfaces of uncoated PDMS wells can change the drug's effective concentration in the culture medium, affecting the results of Tamoxifen-induced autophagy and cytotoxicity assays. Such changes must be carefully analyzed before transferring in vitro experiments from a traditional culture environment to a PDMS-based microfluidic system. We also found that cells cultured in Parylene-C coated PDMS wells showed similar proliferation and drug response characteristics to cells cultured in standard polystyrene (PS) plates, indicating that Parylene-C deposition offers an easy way of limiting the uptake of small molecules into porous PDMS materials and significantly improves the performance of PDMS-based device for cell related research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Protective effects of Erigeron breviscapus Hand.– Mazz. (EBHM) extract in retinal neurodegeneration models

    PubMed Central

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing

    2018-01-01

    Purpose To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. Methods In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. Results In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h, respectively; for all when compared to normal control, p<0.001). Scutellarin inhibited the expression of NLRP3 in vitro (the hypoxia + EBHM group/normal control group ratio versus the hypoxia model group/normal control group ratio: 2.30±0.12 versus 4.06±0.19, p<0.01) and in vivo (the HIOP + EBHM group/normal control group ratio versus the HIOP model group/normal control ratio: 3.39±0.42 versus 6.07±0.22, p<0.01). Scutellarin administration also reduced the upregulation of ASC, cleaved caspase-1, IL-18, and IL-1β in vitro and in vivo. In the in vivo study, the RGC survival rate was statistically significantly improved following scutellarin administration (p<0.001 versus the HIOP group), and the number of impaired retinal microglial cells was statistically significantly reduced following scutellarin treatment when compared with the HIOP model group. Conclusions EBHM extract scutellarin exhibits protective effects in retinal hypoxia models by inhibiting NLRP3 inflammasome-mediated inflammatory reactions. Thus, EBHM extract scutellarin may be an appropriate therapeutic option for disorders related to retinal neurodegeneration, such as glaucoma.

  1. Protective effects of Erigeron breviscapus Hand.- Mazz. (EBHM) extract in retinal neurodegeneration models.

    PubMed

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing; Wu, Huijuan

    2018-01-01

    To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h, respectively; for all when compared to normal control, p<0.001). Scutellarin inhibited the expression of NLRP3 in vitro (the hypoxia + EBHM group/normal control group ratio versus the hypoxia model group/normal control group ratio: 2.30±0.12 versus 4.06±0.19, p<0.01) and in vivo (the HIOP + EBHM group/normal control group ratio versus the HIOP model group/normal control ratio: 3.39±0.42 versus 6.07±0.22, p<0.01). Scutellarin administration also reduced the upregulation of ASC, cleaved caspase-1, IL-18, and IL-1β in vitro and in vivo. In the in vivo study, the RGC survival rate was statistically significantly improved following scutellarin administration (p<0.001 versus the HIOP group), and the number of impaired retinal microglial cells was statistically significantly reduced following scutellarin treatment when compared with the HIOP model group. EBHM extract scutellarin exhibits protective effects in retinal hypoxia models by inhibiting NLRP3 inflammasome-mediated inflammatory reactions. Thus, EBHM extract scutellarin may be an appropriate therapeutic option for disorders related to retinal neurodegeneration, such as glaucoma.

  2. The Standardized Extract of Juniperus communis Alleviates Hyperpigmentation in Vivo HRM-2 Hairless Mice and in Vitro Murine B16 Melanoma Cells.

    PubMed

    Jegal, Jonghwan; Chung, Ki Wung; Chung, Hae Young; Jeong, Eun Ju; Yang, Min Hye

    2017-01-01

    In European folk medicine, the fruits of Juniperus communis are used in the treatment of skin-related disorders such as skin infection, itching, and psoriasis. Previously, we reported that the EtOAc fraction of J. communis (EAJC) contained tyrosinase inhibition properties in vitro non-cellular experiment. The aim of this study was to evaluate anti-melanogenic effect of standardized EAJC on a hyperpigmentation animal model. Therapeutic effects of EAJC toward skin hyperpigmentation were confirmed by both in vivo experiment and in vitro cell-based assay. Skin depigmenting effect was detected by topical treatment of EAJC for 11 d to HRM-2 melanin-possessing hairless mice. Histologic findings including significantly decreased melanin depositions could be observed in dorsal skin samples of EAJC-treated group. In addition, the EAJC (50 µg/mL) attenuated melanin production through down-regulation of tyrosinase activity and protein expression in B16 murine melanoma cells. According to the phytochemical analysis, EAJC was found to contain hypolaetin-7-O-β-D-xylopyranoside and isoscutellarein-7-O-β-D-xylopyranoside as main components. Hypolaetin-7-O-β-D-xylopyranoside was responsible for the skin-lightening effect of EAJC by reducing the number of melanocytes in dorsal skins of HRM-2 mice. The present study provided direct experimental evidence for skin-lightening effect of EAJC in UV-irradiated hairless mouse model. Therapeutic attempts with the J. communis might be useful in the management of skin pigmentation-related diseases.

  3. Human CIK Cells Loaded with Au Nanorods as a Theranostic Platform for Targeted Photoacoustic Imaging and Enhanced Immunotherapy and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Zhang, Jingjing; Xia, Fangfang; Zhang, Chunlei; Qian, Qirong; Zhi, Xiao; Yue, Caixia; Sun, Rongjin; Cheng, Shangli; Fang, Shan; Jin, Weilin; Yang, Yuming; Cui, Daxiang

    2016-06-01

    How to realize targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer has become a great challenge. Herein, we reported for the first time that human cytokine-induced killer cells (CIK) loaded with gold nanorods were used for targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer. Silica-modified gold nanorods were prepared; then incubated with human cytokine-induced killer cells (CIK), resultant human CIK cells loaded with Au nanorods were evaluated for their cytotoxicity, targeted ability of gastric cancer in vitro and in vivo, immunotherapy, and photothermal therapy efficacy. In vitro cell experiment shows that human CIK cells labeled with gold nanorods actively target gastric cancer MGC803 cells, inhibit growth of MGC803 cells by inducing cell apoptosis, and kill MGC803 cells under low power density near-infrared (NIR) laser treatment (808-nm continuous wave laser, 1.5 W/cm2, 3 min). In vivo experiment results showed that human CIK cells labeled with gold nanorods could target actively and image subcutaneous gastric cancer vessels via photoacoustic imaging at 4 h post-injection, could enhance immunotherapy efficacy by up-regulating cytokines such as IL-1, IL-12, IL-2, IL-4, IL-17, and IFN-γ, and kill gastric cancer tissues by photothermal therapy via direct injection into tumor site under near-infrared (NIR) laser irradiation. High-performance human CIK cells labeled with Au nanorods are a good novel theranostic platform to exhibit great potential in applications such as tumor-targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy in the near future.

  4. A homeopathic remedy from arnica, marigold, St. John's wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts.

    PubMed

    Hostanska, Katarina; Rostock, Matthias; Melzer, Joerg; Baumgartner, Stephan; Saller, Reinhard

    2012-07-18

    Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2), its succussed hydroalcoholic solvent (0712-1) and unsuccussed solvent (0712-3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined "wound field". All assays were performed in three independent controlled experiments. None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712-1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712-3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712-1), which caused 22.1% wound closure. Results of this study showed that the low potency homeopathic remedy (0712-2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis.

  5. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.

    PubMed

    Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N

    2014-02-01

    Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.

  6. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment

    PubMed Central

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid–polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment. PMID:28331310

  7. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid-polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment.

    PubMed

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid-polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)- S - S -hexadecyl (mPEG- S - S -C 16 ), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment.

  8. Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell Metabolism

    PubMed Central

    Torres, María P.; Rachagani, Satyanarayana; Purohit, Vinee; Pandey, Poomy; Joshi, Suhasini; Moore, Erik D.; Johansson, Sonny L.; Singh, Pankaj K.; Ganti, Apar K.; Batra, Surinder K.

    2012-01-01

    Pancreatic tumors are resistant to conventional chemotherapies. The present study was aimed at evaluating the potential of a novel plant-derived product as a therapeutic agent for pancreatic cancer (PC). The effects of an extract from the tropical tree Annona Muricata, commonly known as Graviola, was evaluated for cytotoxicity, cell metabolism, cancer-associated protein/gene expression, tumorigenicity, and metastatic properties of PC cells. Our experiments revealed that Graviola induced necrosis of PC cells by inhibiting cellular metabolism. The expression of molecules related to hypoxia and glycolysis in PC cells (i.e. HIF-1α, NF-κB, GLUT1, GLUT4, HKII, and LDHA) were downregulated in the presence of the extract. In vitro functional assays further confirmed the inhibition of tumorigenic properties of PC cells. Overall, the compounds that are naturally present in a Graviola extract inhibited multiple signaling pathways that regulate metabolism, cell cycle, survival, and metastatic properties in PC cells. Collectively, alterations in these parameters led to a decrease in tumorigenicity and metastasis of orthotopically implanted pancreatic tumors, indicating promising characteristics of the natural product against this lethal disease. PMID:22475682

  9. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    PubMed

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  10. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    PubMed

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  11. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    PubMed

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  12. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner

    PubMed Central

    Sawosz, Ewa; Jaworski, Sławomir; Kutwin, Marta; Vadalasetty, Krishna Prasad; Grodzik, Marta; Wierzbicki, Mateusz; Kurantowicz, Natalia; Strojny, Barbara; Hotowy, Anna; Lipińska, Ludwika; Jagiełło, Joanna; Chwalibog, André

    2015-01-01

    Our previous studies revealed that graphene had anticancer properties in experiments in vitro with glioblastoma multiforme (GBM) cells and in tumors cultured in vivo. We hypothesized that the addition of arginine or proline to graphene solutions might counteract graphene agglomeration and increase the activity of graphene. Experiments were performed in vitro with GBM U87 cells and in vivo with GBM tumors cultured on chicken embryo chorioallantoic membranes. The measurements included cell morphology, mortality, viability, tumor morphology, histology, and gene expression. The cells and tumors were treated with reduced graphene oxide (rGO) and rGO functionalized with arginine (rGO + Arg) or proline (rGO + Pro). The results confirmed the anticancer effect of graphene on GBM cells and tumor tissue. After functionalization with amino acids, nanoparticles were distributed more specifically, and the flakes of graphene were less agglomerated. The molecule of rGO + Arg did not increase the expression of TP53 in comparison to rGO, but did not increase the expression of MDM2 or the MDM2/TP53 ratio in the tumor, suggesting that arginine may block MDM2 expression. The expression of NQO1, known to be a strong protector of p53 protein in tumor tissue, was greatly increased. The results indicate that the complex of rGO + Arg has potential in GBM therapy. PMID:26512645

  13. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    PubMed

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers. Copyright © 2015 the American Physiological Society.

  14. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block

    PubMed Central

    Spindler, Anthony J.; Paterson, David; Noble, Denis

    2015-01-01

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na+ channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2–6.67 Hz) and exposed to various concentrations (5 × 10−6 to 500 × 10−6 mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10−4 mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10−6 mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na+ channel blockers. PMID:26342072

  15. Rrhizogenesis in vitro is a convenient model for studying the root graviperceptive apparatus formation in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Sarnatska, Veresa; Ovcharenko, Yulia

    A root graviperceptive apparatus is known to form in microgravity but does not function in the absence of a gravitational vector, that has been shown in many spaceflight experiments with seedlings of different plant species. In statocytes, which are differentiated in microgravity, a nucleus is localized in the proximal part of a cell as at 1 g. Unlike control, amyloplastsstatoliths do not sedimented in the distal part of a cell in microgravity, they group in the cell center more often, sometimes they localized in the different part of a cell. In all these experiments, the objects of investigations were embryonal roots formed in seeds at 1 g. There is only single report that columella cells in roots, which developed de novo from callus in space flight, did not differentiate in statocytes. Therefore, we call to attention to rhizogenesis in vitro as a convenient model for studying the influence of microgravity on differentiation of a root graviperceptive apparatus. Two methods for obtaining of Arabidopsis thaliana roots in vitro are proposed: the first-from the primary callus of leaf origin and the second - from leaf fragments. Callus initiation and growth are successful on MS medium supplemented with vitamin B5, glycine, inositol, 2,4-D, kinetin, glucose and agar. For induction of rhizogenesis calli were transferred to medium without hormones or medium which contained one to ten of MS mineral salts and microelements, without vitamins and hormones. Rhyzogenesis was obtained without added growth substances, but considerably higher number of calli with roots and number of roots per callus are on MS medium diluted tenfold. Rhizogenesis in A. thaliana leaf segments should present no problem, but the most intensive root formation is obtained when culturing them for three day on diluted MS medium supplemented with salycilic acid and then on diluted MS medium only. The low temperature treatment for three days increases the number of roots formed. A role of both plasticity and positional keys in vivo and in vitro root development at 1 g and under clinorotation is discussed.

  16. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery

    PubMed Central

    Cheng, Feng; Theodorescu, Dan; Schulman, Ira G.; Lee, Jae K.

    2012-01-01

    Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems. However, only a small number of preselected compounds can be examined in vivo due to high experimental costs. A more efficient yet accurate screening technique which can identify potentially hepatotoxic compounds in the early stages of drug development would thus be valuable. Here, we develop and apply a novel genomic prediction technique for screening hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged to a subset of 32 genes that can be used as a multi-gene expression signature to predict hepatotoxicity. This multi-gene predictor was independently validated and showed consistently high prediction performance on five test sets of in vitro human liver cell and in vivo animal toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of toxicity in response to drug concentrations which may be useful not only for discerning a compound’s general hepatotoxicity but also for determining its toxic concentration. PMID:21884709

  17. Experiment M115: Special hematologic effects: Dynamic changes in red cell shape in response to the space-flight environment

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Burns, L. C.; Fischer, C. L.

    1974-01-01

    The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.

  18. Mesenchymal Stem Cell Differentiation into Adipocytes Is Equally Induced by Insulin and Proinsulin In Vitro.

    PubMed

    Pfützner, Andreas; Schipper, Dorothee; Pansky, Andreas; Kleinfeld, Claudia; Roitzheim, Barbara; Tobiasch, Edda

    2017-11-30

    In advanced β -cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β -cell dysfunction. Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β -cell dysfunction.

  19. [Establishment and application of mechanical strain loading system of multi-channel cells].

    PubMed

    Li, Yongming; Wang, Hua; Zhang, Xiaodong; Tang, Lin

    2012-02-01

    Based on single-chip microcomputer, we have established a mechanical strain loading system with multi-channel to study the biological behavior of cultured cells in vitro under mechanical strain. We developed a multi-channel cell strain loading device controlled by single-chip microcomputer. We controlled the vacuum pump with vacuum chamber to make negative pressure changing periodically in the vacuum chamber. The tested cells were seeded on the surface of an elastic membrane mounted on the vacuum chamber, and could be strained or relaxed by cyclic pressure. Since the cells are attached to the surface of the membrane, they presumably experience the same deformation as that was applied to the membrane. The system was easy to carry and to operate, with deformation rate (1%-21%) and frequency (0-0. 5Hz) which could be adjusted correctly according to experimental requirement, and could compare different deformation rate of three channels at the same time. The system ran stably and completely achieved design aims, and provided a method to study the biological behavior of cultured cells attached to the surface of the elastic membrane under mechanical strain in vitro.

  20. In vitro ovine articular chondrocyte proliferation: experiments and modelling.

    PubMed

    Mancuso, L; Liuzzo, M I; Fadda, S; Pisu, M; Cincotti, A; Arras, M; La Nasa, G; Concas, A; Cao, G

    2010-06-01

    This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed (1) was adopted for quantitative interpretation of these experimental data. The model is based on a 1-D (that is, mass-structured), single-staged population balance approach capable of taking into account contact inhibition at confluence. The model's parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model's parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at 'balanced growth', to be adequately predicted.

  1. Hydroxycinnamate Conjugates as Potential Monolignol Replacements: In vitro Lignification and Cell Wall Studies with Rosmarinic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuki, Tobimatsu; Sasikumar, Elumalai; Grabber, John H.

    2012-04-01

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin oligomers to form polymers with new benzodioxane inter-unit linkages. Incorporation of RA permitted extensive depolymerization of synthetic lignins by mild alkaline hydrolysis, presumably by cleavage of ester intra-unit linkages within RA. Copolymerization of RA with monolignols into maize cell walls by in situ peroxidases significantly enhanced alkaline lignin extractability andmore » promoted subsequent cell wall saccharification by fungal enzymes. Incorporating RA also improved cell wall saccharification by fungal enzymes and by rumen microflora even without alkaline pretreatments, possibly by modulating lignin hydrophobicity and/or limiting cell wall cross-linking. Consequently, we anticipate that bioengineering approaches for partial monolignol substitution with RA and analogous plant hydroxycinnamates would permit more efficient utilization of plant fiber for biofuels or livestock production.« less

  2. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    USDA-ARS?s Scientific Manuscript database

    Epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogalloyl (B-ring) moieties in EGCG underwent ...

  3. Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells12

    PubMed Central

    Brantley, Emily C; Guo, Lixia; Zhang, Chenyu; Lin, Qingtang; Yokoi, Kenji; Langley, Robert R; Kruzel, Ewa; Maya, Marva; Kim, Seung Wook; Kim, Sun-Jin; Fan, Dominic; Fidler, Isaiah J

    2010-01-01

    Experimental metastases in the brain of mice are infiltrated by microglia, and parabiosis experiments of green fluorescent protein (GFP+) and GFP- mice revealed that these microglia are derived from circulating monocytes (GFP+, F4/80+, and CD68+). These findings raised the question as to whether microglia (specialized macrophages) possess tumoricidal activity. C8-B4 murine microglia cells were incubated in vitro in medium (control) or in medium containing both lipopolysaccharide and interferon-γ. Control microglia were not tumoricidal against a number of murine and human tumor cells, whereas lipopolysaccharide/interferon-γ-activated microglia lysed murine and human tumor cells by release of nitric oxide. Parallel experiments with murine peritoneal macrophages produced identical results. Neither activated microglia nor activated macrophages lysed nontumorigenic murine or human cells. Collectively, these data demonstrate that brain metastasis-associated microglia are derived from circulating mononuclear cells and exhibit selective and specific tumoricidal activity. PMID:21151477

  4. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    PubMed Central

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  5. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

    PubMed Central

    Maruta, Naomichi; Marumoto, Moegi

    2017-01-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293

  6. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-04-01

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e

  7. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  8. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach.

    PubMed

    Berndt, Rouven; Hummitzsch, Lars; Heß, Katharina; Albrecht, Martin; Zitta, Karina; Rusch, Rene; Sarras, Beke; Bayer, Andreas; Cremer, Jochen; Faendrich, Fred; Groß, Justus

    2018-04-27

    Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO 2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. In summary, PCMO improve angiogenesis and tissue recovery in chronic ischemic muscle and first clinical results promise to provide an effective and safe treatment of CLI.

  9. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.

    PubMed

    Ren, Tianbin; Ren, Jie; Jia, Xiaozhen; Pan, Kefeng

    2005-09-15

    Highly porous scaffolds of poly(lactide-co-glycolide) (PLGA) were prepared by solution-casting/salt-leaching method. The in vitro degradation behavior of PLGA scaffold was investigated by measuring the change of normalized weight, water absorption, pH, and molecular weight during degradation period. Mesenchymal stem cells (MSCs) were seeded and cultured in three-dimensional PLGA scaffolds to fabricate in vitro tissue engineering bone, which was investigated by cell morphology, cell number and deposition of mineralized matrix. The proliferation of seeded MSCs and their differentiated function were demonstrated by experimental results. To compare the reconstructive functions of different groups, mandibular defect repair of rabbit was made with PLGA/MSCs tissue engineering bone, control PLGA scaffold, and blank group without scaffold. Histopathologic methods were used to estimate the reconstructive functions. The result suggests that it is feasible to regenerate bone tissue in vitro using PLGA foams with pore size ranging from 100-250 microm as scaffolding for the transplantation of MSCs, and the PLGA/MSCs tissue engineering bone can greatly promote cell growth and have better healing functions for mandibular defect repair. The defect can be completely recuperated after 3 months with PLGA/MSCs tissue engineering bone, and the contrastive experiments show that the defects could not be repaired with blank PLGA scaffold. PLGA/MSCs tissue engineering bone has great potential as appropriate replacement for successful repair of bone defect. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005.

  10. Organ/body-on-a-chip based on microfluidic technology for drug discovery.

    PubMed

    Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo

    2018-02-01

    Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

    PubMed Central

    Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.

    2013-01-01

    Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209

  12. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Li-Li; Wu, Xue-Feng; Liu, Hai-Liang

    2013-03-01

    In the present study, we aimed to investigate the immunosuppressive activity of vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, on T lymphocytes both in vitro and in vivo, and further explored its potential molecular mechanism. Resveratrol had a wide spectrum of healthy beneficial effects with multiple targets. Interestingly, its tetramer, vaticaffinol, exerted more intensive immunosuppressive activity than resveratrol. Vaticaffinol significantly inhibited T cells proliferation activated by concanavalin A (Con A) or anti-CD3 plus anti-CD28 in a dose- and time-dependent manner. It also induced Con A-activated T cells undergoing apoptosis through mitochondrial pathway. Moreover, this compound prevented cells from enteringmore » S phase and G2/M phase during T cells activation. In addition, vaticaffinol inhibited ERK and AKT signaling pathways in Con A-activated T cells. Furthermore, vaticaffinol significantly ameliorated ear swelling in a mouse model of picryl chloride-induced ear contact dermatitis in vivo. In most of the aforementioned experiments, however, resveratrol had only slight effects on the inhibition of T lymphocytes compared with vaticaffinol. Taken together, our findings suggest that vaticaffinol exerts more preferable immunosuppressive activity than its precursor resveratrol both in vitro and in vivo by affecting multiple targets against activated T cells. - Graphical abstract: Vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, exerts more intensive immunosuppressive activity than its precursor resveratrol does in vitro and in vivo. Its mechanism may involve multiple effects against activated T cells: regulation of signalings involved in cell proliferation, G0/G1 arrest of T cells, as well as an apoptosis induction in activated effector T cells. Highlights: ► Vaticaffinol, a resveratrol tetramer, exerts more potent activity than its precursor. ► It inhibited T cells proliferation and prevented them from entering cell cycles. ► It led to apoptosis of activated T cells through mitochondrial pathway. ► It down-regulated ERK and AKT signaling pathways in Con A-activated T cells. ► It significantly ameliorated picryl chloride-induced ear swelling.« less

  13. In Vitro Effects of Bromoalkyl Phenytoin Derivatives on Regulated Death, Cell Cycle and Ultrastructure of Leukemia Cells.

    PubMed

    Śladowska, Katarzyna; Opydo-Chanek, Małgorzata; Król, Teodora; Trybus, Wojciech; Trybus, Ewa; Kopacz-Bednarska, Anna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia

    2017-11-01

    To search for new antileukemic agents, the chemical structure of phenytoin was modified. A possible cytotoxic activity of three bromoalkyl phenytoin analogs, methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate (PH2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH3) and 1-(4-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH4) on regulated cell death, the cell cycle and cell ultrastructure was assessed. The experiments were performed in vitro on HL-60 and U937 cells, using flow cytometry and electron microscopy methods. Application of PH2, PH3, and PH4 resulted in cell surface exposure of phosphatidylserine and plasma membrane impairment, caspase-8, -9, and -3/7 activation, dissipation of mitochondrial membrane potential, DNA breakage, cell-cycle disturbance and cell ultrastructural changes. In general, PH3 appeared to be the most active against the leukemia cells, and all bromoalkyl hydantoins, PH2-PH4, were more active in HL-60 cells than in U937 cells. The antileukemic activity of the bromoalkyl phenytoin analogs depended on the combination of N-hydantoin substituents and the human cell line used. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Shuttle of lentiviral vectors via transplanted cells in vivo.

    PubMed

    Blömer, U; Gruh, I; Witschel, H; Haverich, A; Martin, U

    2005-01-01

    Lentiviral vectors have turned out to be an efficient method for stable gene transfer in vitro and in vivo. Not only do fields of application include cell marking and tracing following transplantation in vivo, but also the stable delivery of biological active proteins for gene therapy. A variety of cells, however, need immediate transplantation after preparation, for example, to prevent cell death, differentiation or de-differentiation. Although these cells are usually washed several times following lentiviral transduction, there may be the risk of viral vector shuttle via transplanted cells resulting in undesired in vivo transduction of recipient cells. We investigated whether infectious lentiviral particles are transmitted via ex vivo lentivirally transduced cells. To this end, we explored potential viral shuttle via ex vivo lentivirally transduced cardiomyocytes in vitro and following transplantation into the brain and peripheral muscle. We demonstrate that, even after extensive washing, infectious viral vector particles can be detected in cell suspensions. Those lentiviral vector particles were able to transduce target cells in transwell experiments. Moreover, transmitted vector particles stably transduced resident cells of the recipient central nervous system and muscle in vivo. Our results of lentiviral vector shuttle via transduced cardiomyocytes are significant for both ex vivo gene therapy and for lentiviral cell tracing, in particular for investigation of stem cell differentiation in transplantation models and co-cultivation systems.

  15. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications.

    PubMed

    Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2016-01-13

    The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.

  16. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations.

    PubMed

    Danielczok, Jens G; Terriac, Emmanuel; Hertz, Laura; Petkova-Kirova, Polina; Lautenschläger, Franziska; Laschke, Matthias W; Kaestner, Lars

    2017-01-01

    When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca 2+ -signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca 2+ when RBCs were passing through small capillaries in vivo . Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca 2+ -signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca 2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K + , Cl - , and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction.

  17. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations

    PubMed Central

    Danielczok, Jens G.; Terriac, Emmanuel; Hertz, Laura; Petkova-Kirova, Polina; Lautenschläger, Franziska; Laschke, Matthias W.; Kaestner, Lars

    2017-01-01

    When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca2+-signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca2+ when RBCs were passing through small capillaries in vivo. Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca2+-signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K+, Cl−, and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction. PMID:29259557

  18. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  19. Skin-derived dendritic cells acquire and degrade the scrapie agent following in vitro exposure

    PubMed Central

    Mohan, Joanne; Hopkins, John; Mabbott, Neil A

    2005-01-01

    The accumulation of the scrapie agent in lymphoid tissues following inoculation via the skin is critical for efficient neuroinvasion, but how the agent is initially transported from the skin to the draining lymph node is not known. Langerhans cells (LCs) are specialized antigen-presenting cells that continually sample their microenvironment within the epidermis and transport captured antigens to draining lymph nodes. We considered LCs probable candidates to acquire and transport the scrapie agent after inoculation via the skin. XS106 cells are dendritic cells (DCs) isolated from mouse epidermis with characteristics of mature LC cells. To investigate the potential interaction of LCs with the scrapie agent XS106 cells were exposed to the scrapie agent in vitro. We show that XS106 cells rapidly acquire the scrapie agent following in vitro exposure. In addition, XS106 cells partially degrade the scrapie agent following extended cultivation. These data suggest that LCs might acquire and degrade the scrapie agent after inoculation via the skin, but data from additional experiments demonstrate that this ability could be lost in the presence of lipopolysaccharide or other immunostimulatory molecules. Our studies also imply that LCs would not undergo maturation following uptake of the scrapie agent in the skin, as the expression of surface antigens associated with LC maturation were unaltered following exposure. In conclusion, although LCs or DCs have the potential to acquire the scrapie agent within the epidermis our data suggest it is unlikely that they become activated and stimulated to transport the agent to the draining lymph node. PMID:16108824

  20. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa

    PubMed Central

    Anyan, Morgen E.; Amiri, Aboutaleb; Harvey, Cameron W.; Tierra, Giordano; Morales-Soto, Nydia; Driscoll, Callan M.; Alber, Mark S.; Shrout, Joshua D.

    2014-01-01

    Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP−TFP interactions between cells should be a dominant mechanism that promotes cell−cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell−cell association and directional collective motion within motile groups to aid their survival. PMID:25468980

  1. Human Periodontal Ligament-Derived Stem Cells Promote Retinal Ganglion Cell Survival and Axon Regeneration After Optic Nerve Injury.

    PubMed

    Cen, Ling-Ping; Ng, Tsz Kin; Liang, Jia-Jian; Zhuang, Xi; Yao, Xiaowu; Yam, Gary Hin-Fai; Chen, Haoyu; Cheung, Herman S; Zhang, Mingzhi; Pang, Chi Pui

    2018-06-01

    Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855. © AlphaMed Press 2018.

  2. Effects of IL8 and Immune Cells on the Regulation of Luteal Progesterone Secretion‡

    PubMed Central

    Talbott, Heather; Delaney, Abigail; Zhang, Pan; Yu, Yangsheng; Cushman, Robert A.; Cupp, Andrea; Hou, Xiaoying; Davis, John S.

    2015-01-01

    Recent studies suggest that chemokines may mediate the luteolytic action of PGF2α (PGF). Our objective was to identify chemokines induced by PGF in vivo and to determine the effects of IL8 on specific luteal cell types in vitro. Midcycle cows were injected with saline or PGF, ovaries were removed after 0.5 – 4 h and chemokine expression was analyzed by qPCR. In vitro expression of IL8 was analyzed after PGF administration and with cell signaling inhibitors to determine the mechanism of PGF-induced chemokine expression. Purified neutrophils were analyzed for migration and activation in response to IL8 and PGF. Purified luteal cell types (steroidogenic, endothelial and fibroblast cells) were used to identify which cells respond to chemokines. Neutrophils and peripheral blood mononuclear cells (PBMCs) were co-cultured with steroidogenic cells to determine their effect on progesterone production. IL8, CXCL2, CCL2, and CCL8 transcripts were rapidly increased following PGF treatment in vivo and. The stimulatory action of PGF on IL8 mRNA expression in vitro was prevented by inhibition of p38 and JNK signaling. IL8, but not PGF, TNF, or TGFB1, stimulated neutrophil migration. IL8 had no apparent action in purified luteal steroidogenic, endothelial, or fibroblast cells, but IL8 stimulated ERK phosphorylation in neutrophils. In co-culture experiments neither IL8 nor activated neutrophils altered basal or LH-stimulated luteal cell progesterone synthesis. In contrast, activated PBMCs inhibited LH-stimulated progesterone synthesis from cultured luteal cells. These data implicate a complex cascade of events during luteolysis involving chemokine signaling, neutrophil recruitment, and immune cell action within the corpus luteum. PMID:24686456

  3. Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65

    PubMed Central

    Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.

    2014-01-01

    Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990

  4. EFFECTS OF VARIOUS IMMUNE RABBIT SERUMS ON THE CELLS OF SEVERAL TRANSPLANTED MOUSE LYMPHOMAS IN VITRO AND IN VIVO

    PubMed Central

    Mohos, Steven C.; Kidd, John G.

    1957-01-01

    Immune serums prepared in rabbits with antigens made from normal mouse organs and tissues that were presumably devoid of large numbers of lymphocytic cells (notably kidney, liver, brain, whole embryos, and erythrocytes) proved lethal for the cells of several transplanted mouse lymphomas in vitro in the presence of complement; but these immune serums, when given intraperitoneally in large amounts to susceptible mice that had been implanted subcutaneously with lymphoma cells of one or another of several types, failed entirely to inhibit growth of the lymphoma cells in vivo. In contrast, immune serums made with cells procured from transplanted mouse lymphomas as antigens, and those made with cells from normal mouse thymus or lymph nodes, acted even more powerfully upon the several types of lymphoma cells in vitro than did the immune serums prepared with normal mouse organs, and when given intraperitoneally to implanted mice they brought about death of the lymphoma cells in vivo, the effect being to a considerable extent specific and referable to an antibody that reacts with neoplastic and non-neoplastic lymphocytic cells of mice, as absorption experiments disclosed. In comparative tests, furthermore, the anti-lymphoma serums acted more powerfully upon the lymphoma cells in vivo than did such chemotherapeutic agents as amethopterin, azaguanine, ethionine, azaserine, and 6-mercaptopurine, given singly or in various combinations in maximal tolerated amounts, though their effects were not so powerful as those exerted by normal guinea pig serum on lymphoma cells of two types that are susceptible to its action in vivo. The significance of the findings was briefly discussed. PMID:13406182

  5. ALA-induced photodynamic effect on vitality, apoptosis, and secretion of vascular endothelial growth factor (VEGF) by colon cancer cells in normoxic environment in vitro.

    PubMed

    Kawczyk-Krupka, A; Sieroń-Stołtny, K; Latos, W; Czuba, Z P; Kwiatek, B; Potempa, M; Wasilewska, K; Król, W; Stanek, A

    2016-03-01

    Cancer therapy is often based on combination of conventional methods of cancer treatment with immunotherapy. Photodynamic therapy (PDT) is one of the immunomodulating methods used in oncology. We examined how PDT influences the secretory activity of colon cancer cells in vitro, especially the secretion of vascular endothelial growth factor (VEGF) in aerobic conditions. We used two cancer cell lines with different malignancy potentials: a metastatic SW620 line and a non-metastatic SW480 line. In the first stage of the experiment, we exposed each cell line to three different concentrations of photosensitizer's precursor: 5-aminolevulinic acid (ALA) and varying levels of light radiation, after which we assessed cell viability and apoptosis induction in these lines, using the MTT and LDH assays. Then, we determined the secretion of VEGF by these cells in aerobic conditions and under the ALA-PDT parameters at which cells presented the highest viability. Photodynamic treatment with ALA did not influence on VEGF secretion by the non-metastatic SW480 cells, but caused a decrease in VEGF secretion by the metastatic SW 620 cell line by 29% (p<0.05). SW 620 cell line secreted more actively VEGF than the SW480 cells, both before and after photo dynamic therapy (p<0.05). The outcome of this in vitro study presented a beneficial effect of ALA-PDT, resulting in a decrease of VEGF secretion in the more malignant SW620 cell lines. Further studies should be considered to confirm the clinical relevance of this finding. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Inhibition of cell proliferation by mitomycin C incorporated into P(HEMA) hydrogels.

    PubMed

    Blake, Diane A; Sahiner, Nurettin; John, Vijay T; Clinton, Antoine D; Galler, Korianne E; Walsh, Molly; Arosemena, Analisa; Johnson, Pamela Y; Ayyala, Ramesh S

    2006-08-01

    The technique of mitomycin C (MMC) drug delivery and its application in glaucoma surgery are not standardized with resultant inconsistencies in the results. Also, one time application of MMC does not seem to have the same efficacy after glaucoma drainage device surgeries compared with trabeculectomies. This preliminary study examined the efficacy of a slow release form of MMC for its ability to inhibit cell proliferation in vitro. MMC was incorporated into 1% P(HEMA) hydrogels using a redox polymerization method. For some experiments, unreacted low molecular weight components were removed from the hydrogels before the MMC was incorporated. Sterile disks (8 mm) of each polymer sample were affixed to 60 mm tissue culture dishes, and the dishes were inoculated with COS-1 cells or early passage human conjunctival fibroblasts. After 7 days in culture, the number of cells in each dish was determined. Cell morphology was assessed in replicate cultures after fixation and staining. Hydrogels with unreacted low molecular weight components slowed cell proliferation and induced morphologic changes. Early passage human conjunctival fibroblasts were more sensitive than COS-1 cells both to intrinsic contaminants in the hydrogels and to incorporated MMC. Once contaminants had been removed, MMC-loaded hydrogels inhibited conjunctival fibroblast proliferation in a dose-dependent fashion, with an IC50 of approximately 0.15 mg/g polymer. This study demonstrates that a slow release form of MMC can inhibit cell proliferation in vitro. Future experiments will focus upon the efficacy of this polymer-bound form during in vivo wound healing.

  7. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  8. In Vitro Studies on the Degradability, Bioactivity, and Cell Differentiation of PRP/AZ31B Mg Alloys Composite Scaffold.

    PubMed

    Zou, Jian; Shi, Zhongmin; Xu, Hongwei; Li, Xiaolin

    2017-01-01

    In recent years, more and more methods have been developed to improve the bioactivity of the biodegradable materials in bone tissue regeneration. In present study, we used rat mesenchymal stem cells (rMSCs) to evaluate the outcomes of Mg alloys (AZ31B, Magnesium, and Aluminum) and Platelet-rich plasma (PRP)/Mg alloys on rMSCs biocompatibility and osteogenic differentiation. Water absorption experiments indicated that both bare AZ31B and PRP/AZ31B were capable of absorbing large amounts of water. But the water absorption ratio for PRP/AZ31B was significantly higher than that for bare AZ31B. The degradability experiments implied that both samples degraded at same speed. rMSCs on the surface of AZ31B distributed more and better than those on the AZ31B scaffold. In ALP activity experiment, the activity of rMSCs on the PRP/AZ31B was markedly higher than that on the AZ31B scaffolds on the 7th day and 14th day. qRT-PCR also showed that OPN and OCN were expressed in both samples. OPN and OCN expression in PRP/AZ31B sample were higher than those in bare AZ31B samples. In summary, the in vitro study implied that AZ31B combined with PRP could remarkably improve cell seeding, attachment, proliferation, and differentiation.

  9. Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling

    PubMed Central

    Jakobsen, Rune B.; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S.; Brinchmann, Jan E.

    2014-01-01

    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols. PMID:24816923

  10. The Effect of Coumestrol on Progesterone and Prostaglandin Production in the Mare: In Vitro and In Vivo Studies.

    PubMed

    Szóstek, Anna Z; Sadowska, Agnieszka; Piotrowska-Tomala, Katarzyna K; Botelho, Marta; Fradinho, Maria João; Rebordão, Maria Rosa; Ferreira-Dias, Graça M; Skarzynski, Dariusz J

    2016-09-01

    Coumestrol (Cou) is a plant-derived phytoestrogen that induces various pathologies in the female reproductive tract. Although effects of phytoestrogens on reproductive function in other species are well documented, their influence on progesterone (P 4 ) and prostaglandin (PG) secretion in the mare is unknown. The aim of this study was to determine if Cou directly affects P 4 and PG concentrations (in vivo) and endometrial PG secretion (in vitro) in the mare. In experiment 1, the mares (n = 4) were fed for 14 days on a diet containing increasing proportions of alfalfa pellets (250 g-1 kg/day). An additional 4 mares were fed a standard diet (control group). Sequential blood samples were obtained for 8 h after feeding on Days 13 and 14 (1 kg/day alfalfa pellets). Feeding the mares alfalfa pellets up-regulated PGE 2 and 13,14-dihydro-15-ketoprostaglandin F 2alpha (PGFM) and down-regulated P 4 in the blood plasma compared to those in the control group (P < 0.05). In experiment 2, epithelial and stromal cells were exposed to E 2 (10 -9 M) or Cou (10 -8 M) for 24 h. In the in vitro study, Cou increased PG secretion in epithelial and stromal cells (P < 0.05). In both types of endometrial cells, Cou up-regulated PTGS-2 protein expression (P < 0.05). Moreover, PGES and PGFS proteins were up-regulated by Cou in epithelial cells (P < 0.01). These results indicate that Cou can disturb reproductive function by affecting reproductive hormone secretion and altering the endometrial milieu through PG stimulation. Coumestrol therefore may impair physiologic regulation of the estrous cycle and early pregnancy. © 2016 by the Society for the Study of Reproduction, Inc.

  11. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Analysis of Invasion Dynamics of Matrix-Embedded Cells in a Multisample Format.

    PubMed

    Van Troys, Marleen; Masuzzo, Paola; Huyck, Lynn; Bakkali, Karima; Waterschoot, Davy; Martens, Lennart; Ampe, Christophe

    2018-01-01

    In vitro tests of cancer cell invasion are the "first line" tools of preclinical researchers for screening the multitude of chemical compounds or cell perturbations that may aid in halting or treating cancer malignancy. In order to have predictive value or to contribute to designing personalized treatment regimes, these tests need to take into account the cancer cell environment and measure effects on invasion in sufficient detail. The in vitro invasion assays presented here are a trade-off between feasibility in a multisample format and mimicking the complexity of the tumor microenvironment. They allow testing multiple samples and conditions in parallel using 3D-matrix-embedded cells and deal with the heterogeneous behavior of an invading cell population in time. We describe the steps to take, the technical problems to tackle and useful software tools for the entire workflow: from the experimental setup to the quantification of the invasive capacity of the cells. The protocol is intended to guide researchers to standardize experimental set-ups and to annotate their invasion experiments in sufficient detail. In addition, it provides options for image processing and a solution for storage, visualization, quantitative analysis, and multisample comparison of acquired cell invasion data.

  13. Nanovesicles released by Dictyostelium cells: a potential carrier for drug delivery.

    PubMed

    Lavialle, Françoise; Deshayes, Sophie; Gonnet, Florence; Larquet, Eric; Kruglik, Sergei G; Boisset, Nicolas; Daniel, Régis; Alfsen, Annette; Tatischeff, Irène

    2009-10-01

    Nanovesicles released by Dictyostelium discoideum cells grown in the presence of the DNA-specific dye Hoechst 33342 have been previously shown to mediate the transfer of the dye into the nuclei of Hoechst-resistant cells. The present investigation extends this work by conducting experiments in the presence of hypericin, a fluorescent therapeutic photosensitizer assayed for antitumoral photodynamic therapy. Nanovesicles released by Dictyostelium cells exhibit an averaged diameter between 50 and 150 nm, as measured by transmission cryoelectron microscopy. A proteomic analysis reveals a predominance of actin and actin-related proteins. The detection of a lysosomal membrane protein (LIMP II) indicates that these vesicles are likely generated in the late endosomal compartment. The use of the hypericin-containing nanovesicles as nanodevices for in vitro drug delivery was investigated by fluorescence microscopy. The observed signal was almost exclusively located in the perinuclear area of two human cell lines, skin fibroblasts (HS68) and cervix carcinoma (HeLa) cells. Studies by confocal microscopy with specific markers of cell organelles, provided evidence that hypericin was accumulated in the Golgi apparatus. All these data shed a new light on in vitro drug delivery by using cell-released vesicles as carriers.

  14. Three-dimensional slice cultures from murine fetal gut for investigations of the enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Nikolov, Ivan; Skutella, Thomas; Just, Lothar

    2007-01-01

    Three-dimensional intestinal cultures offer new possibilities for the examination of growth potential, analysis of time specific gene expression, and spatial cellular arrangement of enteric nervous system in an organotypical environment. We present an easy to produce in vitro model of the enteric nervous system for analysis and manipulation of cellular differentiation processes. Slice cultures of murine fetal colon were cultured on membrane inserts for up to 2 weeks without loss of autonomous contractility. After slice preparation, cultured tissue reorganized within the first days in vitro. Afterward, the culture possessed more than 35 cell layers, including high prismatic epithelial cells, smooth muscle cells, glial cells, and neurons analyzed by immunohistochemistry. The contraction frequency of intestinal slice culture could be modulated by the neurotransmitter serotonin and the sodium channel blocker tetrodotoxin. Coculture experiments with cultured neurospheres isolated from enhanced green fluorescent protein (eGFP) transgenic mice demonstrated that differentiating eGFP-positive neurons were integrated into the intestinal tissue culture. This slice culture model of enteric nervous system proved to be useful for studying cell-cell interactions, cellular signaling, and cell differentiation processes in a three-dimensional cell arrangement.

  15. Stabilisation of cables of fibronectin with micromolar concentrations of copper: in vitro cell substrate properties.

    PubMed

    Ahmed, Zubair; Briden, Anita; Hall, Susan; Brown, Robert A

    2004-02-01

    We have previously described the production of large cables of fibronectin, a large extracellular matrix cell adhesion glycoprotein, which has a potential application in tissue engineering. Here we have stabilised these cables for longer survival and looked at their ultrastructural cell-substrate behaviour in vitro. Dissolution experiments showed that low concentrations of copper not only caused significant material stabilisation but left pores which could promote cell ingrowth, as we have previously reported with Fn-mats. Indeed, the greatest amount of cell ingrowth was observed for copper treated cables. Immunostaining showed S-100(+) multi-layers of cells around the edge of cables while ultrastructural analysis confirmed the presence of a mixture of fibroblasts and bipolar cells associated with fragments of basal lamina, which is a Schwann cell phenotype. Interestingly, the outermost layers of cells consisted of S-100(-) cells, presumed fibroblasts, apparently 'capping' the Schwann cells. Toxicity tests revealed that Schwann cells were only able to grow at the lowest concentration of copper used (1microM) while fibroblasts grew at all concentrations tested. These results could be used to design biomaterials with optimum properties for promoting cellular ingrowth and survival in tissue engineered grafts which may be used to improve peripheral nerve repair.

  16. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.

    PubMed

    Paşca, Anca M; Sloan, Steven A; Clarke, Laura E; Tian, Yuan; Makinson, Christopher D; Huber, Nina; Kim, Chul Hoon; Park, Jin-Young; O'Rourke, Nancy A; Nguyen, Khoa D; Smith, Stephen J; Huguenard, John R; Geschwind, Daniel H; Barres, Ben A; Paşca, Sergiu P

    2015-07-01

    The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

  17. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro.

    PubMed

    Tokumoto, Yasuhito; Ogawa, Shinichiro; Nagamune, Teruyuki; Miyake, Jun

    2010-06-01

    Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro.

    PubMed

    Johnson, M T; Vanscoy-Cornett, A; Vesper, D N; Swez, J A; Chamberlain, J K; Seaward, M B; Nindl, G

    2001-01-01

    An important aspect of medical device development is the need to understand how a device produces a specific biological effect. The focus can then be on optimizing that effect by device modification and repeated testing. Several reports from this lab have targeted programmed cell death, or apoptosis, as a cellular pathway that is induced by exposure of transformed leukemic T-cells in culture to specific frequency and intensity electromagnetic fields (EMFs). An EMF delivery device capable of selectively inducing T-cell apoptosis in human tissues could be used to enhance healing by limiting the production of molecules that promote inflammatory disorders such as psoriasis and tendonitis. In the present study, we examined the normal T-cell response to EMF exposure in vitro. In the peripheral blood, 70-80% of the lymphocytes are T-cells, and thus is a rich source of normal cells that match the transformed T-cells used in other experiments (Jurkat cells). We isolated lymphocytes from the peripheral blood of humans and rats, cultured them in nutritive medium and exposed them to either a complex 1.8 mT pulsed EMF (Electrobiology, Inc.), a 0.1 mT, 60 Hz power frequency EMF or a 0.2 mT, 100 Hz sinusoidal EMF. Control lymphocytes were cultured similarly, without field exposure. Lymphocytes were then treated with T-cell mitogens and evaluated for proliferative capacity after an additional 72 hours culture. Results indicate that T-cell proliferation is modulated by in vitro exposure to defined EMFs. The potential use of an EMF delivery device capable of selectively inducing such T-cell effects is discussed.

  20. Novel Quinazolinone MJ-29 Triggers Endoplasmic Reticulum Stress and Intrinsic Apoptosis in Murine Leukemia WEHI-3 Cells and Inhibits Leukemic Mice

    PubMed Central

    Lu, Chi-Cheng; Yang, Jai-Sing; Chiang, Jo-Hua; Hour, Mann-Jen; Lin, Kuei-Li; Lin, Jen-Jyh; Huang, Wen-Wen; Tsuzuki, Minoru

    2012-01-01

    The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca2+ release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future. PMID:22662126

  1. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    The purpose of this study was to investigate in ground-based experiments, the effect of microgravity on in vitro erythroid differentiation triggered by the hematopoietic growth factor erythropoietin (Epo) and to begin to determine whether this is associated with the anemia of space flight. We chose to use a model cell culture system with which we have had a long and successful experience. These cells, designated Rauscher murine erythroleukemia, grow independently in suspension culture. We first compared the growth rate of Rauscher cells under conditions of simulated microgravity with that of cells grown at 1XG in standard tissue culture flasks. Therefore, since there were fewer cells in the RWV at each specified time, glucose consumption per cell was increased in simulated microgravity. We next began to study the effect of simulated microgravity on erythropoietin induced differentiation of these cells. In another experiment, we allow the cells to grown in flasks or in the RWV for 24 hours prior to the addition of Epo. We initiated studies of c-myb, a proto-oncogene the down-regulation of which is necessary for erythroid differentiation. These preliminary results suggest that simulated microgravity interferes with the signal to c-myb. This may be part of the mechanism that blocks differentiation. A flight experiment is planned within the next 18- 24 months.

  2. Positive in vitro wound healing effects of functional inclusion bodies of a lipoxygenase from the Mexican axolotl.

    PubMed

    Stamm, Anne; Strauß, Sarah; Vogt, Peter; Scheper, Thomas; Pepelanova, Iliyana

    2018-04-07

    AmbLOXe is a lipoxygenase, which is up-regulated during limb-redevelopment in the Mexican axolotl, Ambystoma mexicanum, an animal with remarkable regeneration capacity. Previous studies have shown that mammalian cells transformed with the gene of this epidermal lipoxygenase display faster migration and wound closure rate during in vitro wound healing experiments. In this study, the gene of AmbLOXe was codon-optimized for expression in Escherichia coli and was produced in the insoluble fraction as protein aggregates. These inclusion bodies or nanopills were shown to be reservoirs containing functional protein during in vitro wound healing assays. For this purpose, functional inclusion bodies were used to coat cell culture surfaces prior cell seeding or were added directly to the medium after cells reached confluence. In both scenarios, AmbLOXe inclusion bodies led to faster migration rate and wound closure, in comparison to controls containing either no AmbLOXe or GFP inclusion bodies. Our results demonstrate that AmbLOXe inclusion bodies are functional and may serve as stable reservoirs of this enzyme. Nevertheless, further studies with soluble enzyme are also necessary in order to start elucidating the exact molecular substrates of AmbLOXe and the biochemical pathways involved in the wound healing effect.

  3. A novel taspine derivative suppresses human liver tumor growth and invasion in vitro and in vivo

    PubMed Central

    WANG, NAN; ZHENG, LEI; ZHAN, YINGZHUAN; ZHANG, YANMIN

    2013-01-01

    Taspine is an attractive target of research due to the anticancer and anti-angiogenic effects shown by in vitro and in vivo experiments. The present study investigated the role of tas1611, which is a derivative of taspine that has increased activity and solubility, in the regulation of the invasive properties of the SMMC-7721 liver cell line in vitro and in tumor inhibition in vivo. The proliferation of the SMMC-7721 cells was examined using the tetrazole blue colorimetric method. Matrigel® invasion chamber assays and zymogram analyses were performed to assess the inhibitory effect of tas1611 on cell invasion. Finally, a solid tumor athymic mouse model was employed to further investigate the anti-tumor effect of this compound. The results revealed that tas1611 had a marked inhibitory effect on the invasion of the SMMC-7721 cells and that this effect was associated with the activity and expression levels of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, tas1611 was able to inhibit tumor growth effectively in a solid tumor SMMC-7721 athymic mouse model. In conclusion, tas1611 may serve as a promising novel therapeutic candidate for the treatment of metastatic liver cancer. PMID:24137425

  4. In Vitro Virucidal and Virustatic Properties of the Crude Extract of Cynodon dactylon against Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Khonghiran, Oapkun; Kunanoppadol, Suchaya; Potha, Teerapong; Chuammitri, Phongsakorn

    2014-01-01

    The in vitro virustatic and virucidal tests of the crude extract of Cynodon dactylon against infection with porcine reproductive and respiratory syndrome virus (PRRSV), a cause of major devastating pig disease, were described. Crude extract of C. dactylon was prepared for cytotoxicity on tissue-culture cells that were used to measure virustatic and virucidal activities against PRRSV. Crude extract of C. dactylon at 0.78 mg/mL showed no cytotoxicity on the cell line, and at that concentration significantly inhibited replication of PRRSV as early as 24 hours post infection (hpi). C. dactylon also inactivated PRRSV as determined by immunoperoxidase monolayer assay (IPMA) compared to the control experiments. In summary, the present study may be among the earliest studies to describe virustatic and virucidal activities of C. dactylon crude extract against PRRSV in vitro. Extracts of C. dactylon may be useful for PRRSV control and prevention on pig farms. PMID:24744959

  5. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    PubMed

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  6. Apigenin inhibits African swine fever virus infection in vitro.

    PubMed

    Hakobyan, Astghik; Arabyan, Erik; Avetisyan, Aida; Abroyan, Liana; Hakobyan, Lina; Zakaryan, Hovakim

    2016-12-01

    African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.

  7. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    PubMed

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  8. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  9. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  10. Flow cytometry of human embryonic kidney cells: A light scattering approach

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Goolsby, C. L.; Todd, P. W.; Morrison, D. R.; Lewis, M. L.

    1985-01-01

    The mammalian kidney contains cells that transport water, convert vitamin D to active forms, synthesize hormones such a renin and erythropoietin, and produce enzymes such as urokinase, a plasminogen activator. Several of these functions are maintained by human embryonic kidney cells (HEK) cultivated in vitro. Biochemical study of these functions in their individual cell types in vitro requires purified populations of cells. Light-scattering activated cell sorting (LACS) was explored as a means of achieving such purifications. It was found that HEK cells at the first 1 to 5 passages in culture were heterogeneous with respect to 2-parameter light scattering intensity distribution, in which combined measurements included forward angle scattering (2.5 to 19 deg), 90 deg scattering, and time-of-flight size measurements. Size was measured at a resolution of 0.15 microns/channel in 256 channels using pulse-height independent pulse-width measurements. Two-parameter distributions combining these measurements were obtained for HEK cell subpopulations that had been purified by microgravity electrophoresis and subsequently propagated in culture. These distributions contained at least 3 subpopulations in all purified fractions, and results of experiments with prepurified cultured HEK cells indicated that subpopulations of living cells that were high in plasminogen-activator activity also contained the highest per cent of cells with high 90 deg light scatter intensity.

  11. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  12. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  13. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma.

    PubMed

    Liang, Chaofeng; Sun, Weitong; He, Haiyong; Zhang, Baoyu; Ling, Cong; Wang, Bocheng; Huang, Tengchao; Hou, Bo; Guo, Ying

    2018-01-01

    MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG) and hyper-branched polyethylenimine (hy-PEI) in order to improve the miRNA delivery system into the glioma cells. The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6). Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a. In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0) of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility evaluated by CCK8 assay. The cell experiments in vitro indicated that mPEG-g-PEI could significantly improve miR-135a transfection by enhancing uptake effect of both normal glial and glioma cells. Given the C6 implanted in situ model, we discovered that the mPEG-g-PEI/miR-135a could obviously increase the survival period and inhibit the growth of glioma confirmed by MRI and histochemistry. In addition, the transfection efficiency of mPEG-g-PEI was better than that of other transfection agents either in vitro or in vivo confirmed by RT-PCR. Moreover, the expressions of the targeted proteins of miR-135a were consistent with the in vitro results. These results suggest that mPEG-g-PEI is expected to provide a new effective intracellular miRNA delivery system with low toxicity for glioma therapy.

  14. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma

    PubMed Central

    Zhang, Baoyu; Ling, Cong; Wang, Bocheng; Huang, Tengchao; Hou, Bo; Guo, Ying

    2018-01-01

    Introduction MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG) and hyper-branched polyethylenimine (hy-PEI) in order to improve the miRNA delivery system into the glioma cells. Methods The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6). Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a. Results In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0) of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility evaluated by CCK8 assay. The cell experiments in vitro indicated that mPEG-g-PEI could significantly improve miR-135a transfection by enhancing uptake effect of both normal glial and glioma cells. Given the C6 implanted in situ model, we discovered that the mPEG-g-PEI/miR-135a could obviously increase the survival period and inhibit the growth of glioma confirmed by MRI and histochemistry. In addition, the transfection efficiency of mPEG-g-PEI was better than that of other transfection agents either in vitro or in vivo confirmed by RT-PCR. Moreover, the expressions of the targeted proteins of miR-135a were consistent with the in vitro results. Conclusion These results suggest that mPEG-g-PEI is expected to provide a new effective intracellular miRNA delivery system with low toxicity for glioma therapy. PMID:29343959

  15. Natural killer cells as a promising tool to tackle cancer-A review of sources, methodologies, and potentials.

    PubMed

    Preethy, Senthilkumar; Dedeepiya, Vidyasagar Devaprasad; Senthilkumar, Rajappa; Rajmohan, Mathaiyan; Karthick, Ramalingam; Terunuma, Hiroshi; Abraham, Samuel J K

    2017-07-04

    Immune cell-based therapies are emerging as a promising tool to tackle malignancies, both solid tumors and selected hematological tumors. Vast experiences in literature have documented their safety and added survival benefits when such cell-based therapies are combined with the existing treatment options. Numerous methodologies of processing and in vitro expansion protocols of immune cells, such as the dendritic cells, natural killer (NK) cells, NKT cells, αβ T cells, so-called activated T lymphocytes, γδ T cells, cytotoxic T lymphocytes, and lymphokine-activated killer cells, have been reported for use in cell-based therapies. Among this handful of immune cells of significance, the NK cells stand apart from the rest for not only their direct cytotoxic ability against cancer cells but also their added advantage, which includes their capability of (i) action through both innate and adaptive immune mechanism, (ii) tackling viruses too, giving benefits in conditions where viral infections culminate in cancer, and (iii) destroying cancer stem cells, thereby preventing resistance to chemotherapy and radiotherapy. This review thoroughly analyses the sources of such NK cells, methods for expansion, and the future potentials of taking the in vitro expanded allogeneic NK cells with good cytotoxic ability as a drug for treating cancer and/or viral infection and even as a prophylactic tool for prevention of cancer after initial remission.

  16. Nanoparticles for magnetic biosensing systems

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.

  17. Evidence for a dopamine intrinsic direct role in the regulation of the ovary reproductive function: in vitro study on rabbit corpora lutea.

    PubMed

    Parillo, Francesco; Maranesi, Margherita; Mignini, Fiorenzo; Marinelli, Lisa; Di Stefano, Antonio; Boiti, Cristiano; Zerani, Massimo

    2014-01-01

    Dopamine (DA) receptor (DR) type 1 (D1R) has been found to be expressed in luteal cells of various species, but the intrinsic role of the DA/DRs system on corpora lutea (CL) function is still unclear. Experiments were devised to characterize the expression of DR types and the presence of DA, as well as the in vitro effects of DA on hormone productions by CL in pseudopregnant rabbits. Immunoreactivity and gene expression for D1R decreased while that for D3R increased in luteal and blood vessel cells from early to late pseudopregnant stages. DA immunopositivity was evidenced only in luteal cells. The DA and D1R agonist increased in vitro release of progesterone and prostaglandin E2 (PGE2) by early CL, whereas the DA and D3R agonist decreased progesterone and increased PGF2α in vitro release by mid- and late CL. These results provide evidence that the DA/DR system exerts a dual modulatory function in the lifespan of CL: the DA/D1R is luteotropic while the DA/D3R is luteolytic. The present data shed new light on the physiological mechanisms regulating luteal activity that might improve our ability to optimize reproductive efficiency in mammal species, including humans.

  18. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model

    PubMed Central

    Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka

    2014-01-01

    Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794

  19. Biosynthesis of reovirus-specified polypeptides: the reovirus s1 mRNA encodes two primary translation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, B.L.; Samuel, C.E.

    1985-05-01

    Reovirus serotypes 1 (Lang strain) and 3 (Dearing strain) code for a hitherto unrecognized low-molecular-weight polypeptide of Mr approximately 12,000. This polypeptide (p12) was synthesized in vitro in L-cell-free protein synthesizing systems programmed with either reovirus serotype 1 mRNA, reovirus serotype 3 mRNA, or with denatured reovirus genome double-stranded RNA, and in vivo in L-cell cultures infected with either reovirus serotype. Pulse-chase experiments in vivo, and the relative kinetics of synthesis of p12 in vitro, indicate that it is a primary translation product. Fractionation of reovirus mRNAs by velocity sedimentation and translation of separated mRNAs in vitro suggests that p12more » is coded for by the s1 mRNA, which also codes for the previously recognized sigma 1 polypeptide. Synthesis of both p12 and sigma 1 in vitro in L-cell-free protein synthesizing systems programmed with denatured reovirus genome double-stranded RNA also suggests that these two polypeptides can be coded by the same mRNA species. It is proposed that the Mr approximately 12,000 polypeptide encoded by the S1 genome segment be designated sigma 1bNS, and that the polypeptide previously designated sigma 1 be renamed sigma 1a.« less

  20. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction. PMID:24532171

  1. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  2. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes.

    PubMed

    Guo, Fang; Yu, Meng; Wang, Jinping; Tan, Fengping; Li, Nan

    2015-09-23

    The therapeutic effectiveness of chemotherapy was hampered by dose-limiting toxicity and was optimal only when tumor cells were subjected to a maximum drug exposure. The purpose of this work was to design a dual-functional thermosensitive bubble-generating liposome (BTSL) combined with conjugated targeted ligand (folate, FA) and photothermal agent (IR780), to realize enhanced therapeutic and diagnostic functions. This drug carrier was proposed to target tumor cells owing to FA-specific binding, followed by triggering drug release due to the decomposition of encapsulated ammonium bicarbonate (NH4HCO3) (generated CO2 bubbles) by being subjected to near-infrared (near-IR) laser irradiation, creating permeable defects in the lipid bilayer that rapidly release drug. In vitro temperature-triggered release study indicated the BTSL system was sensitive to heat triggering, resulting in rapid drug release under hyperthermia. For in vitro cellular uptake experiments, different results were observed on human epidermoid carcinoma cells (KB cells) and human lung cancer cells (A549 cells) due to their different (positive or negative) response to FA receptor. Furthermore, in vivo biodistribution analysis and antitumor study indicated IR780-BTSL-FA could specifically target KB tumor cells, exhibiting longer circulation time than free drug. In the pharmacodynamics experiments, IR780-BTSL-FA efficiently inhibited tumor growth in nude mice with no evident side effect to normal tissues and organs. Results of this study demonstrated that the constructed smart theranostic nanocarrier IR780-BTSL-FA might contribute to establishment of tumor-selective and effective chemotherapy.

  3. Apoptin towards safe and efficient anticancer therapies.

    PubMed

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  4. A Human Amnion-Derived Extracellular Matrix-Coated Cell-Free Scaffold for Cartilage Repair: In Vitro and In Vivo Studies.

    PubMed

    Nogami, Makiko; Kimura, Tomoatsu; Seki, Shoji; Matsui, Yoshito; Yoshida, Toshiko; Koike-Soko, Chika; Okabe, Motonori; Motomura, Hiraku; Gejo, Ryuichi; Nikaido, Toshio

    2016-04-01

    Extracellular matrix (ECM) derived from human amniotic mesenchymal cells (HAMs) has various biological activities. In this study, we developed a novel HAM-derived ECM-coated polylactic-co-glycolic acid (ECM-PLGA) scaffold, examined its property on mesenchymal cells, and investigated its potential as a cell-free scaffold for cartilage repair. ECM-PLGA scaffolds were developed by inoculating HAM on a PLGA. After decellularization by irradiation, accumulated ECM was examined. Exogenous cell growth and differentiation of rat mesenchymal stem cells (MSCs) on the ECM-PLGA were analyzed in vitro by cell attachment/proliferation assay and reverse transcription-polymerase chain reaction. The cell-free ECM-PLGA scaffolds were implanted into osteochondral defects in the trochlear groove of rat knees. After 4, 12, or 24 weeks, the animals were sacrificed and the harvested tissues were examined histologically. The ECM-PLGA contained ECM that mimicked natural amniotic stroma that contains type I collagen, fibronectin, hyaluronic acid, and chondroitin sulfates. The ECM-PLGA showed excellent properties of cell attachment and proliferation. MSCs inoculated on the ECM-PLGA scaffold showed accelerated type II collagen mRNA expression after 3 weeks in culture. The ECM-PLGA implanted into an osteochondral defect in rat knees induced gradual tissue regeneration and resulted in hyaline cartilage repair, which was better than that in the empty control group. These in vitro and in vivo experiments show that the cell-free scaffold composed of HAM-derived ECM and PLGA provides a favorable growth environment for MSCs and facilitates the cartilage repair process. The ECM-PLGA may become a "ready-made" biomaterial for cartilage repair therapy.

  5. In vivo and in vitro evaluation of the effects of Urtica dioica and swimming activity on diabetic factors and pancreatic beta cells.

    PubMed

    Ranjbari, Abbas; Azarbayjani, Mohammad Ali; Yusof, Ashril; Halim Mokhtar, Abdul; Akbarzadeh, Samad; Ibrahim, Mohamed Yousif; Tarverdizadeh, Bahman; Farzadinia, Parviz; Hajiaghaee, Reza; Dehghan, Firouzeh

    2016-03-15

    Urtica dioica (UD) has been identified as a traditional herbal medicine. This study aimed to investigate the effect of UD extract and swimming activity on diabetic parameters through in vivo and in vitro experiments. Adult WKY male rats were randomly distributed in nine groups: intact control, diabetic control, diabetic + 625 mg/kg, 1.25 g/kg UD, diabetic + 100 mg/kg Metformin, diabetic + swimming, diabetic + swimming 625 mg/kg, 1.25 g/kg UD, and diabetic +100 mg/kg Metformin + swimming. The hearts of the animals were punctured, and blood samples were collected for biochemical analysis. The entire pancreas was exposed for histologic examination. The effect of UD on insulin secretion by RIN-5F cells in 6.25 or 12.5 mM glucose dose was examined. Glucose uptake by cultured L6 myotubes was determined. The serum glucose concentration decreased, the insulin resistance and insulin sensitivity significantly increased in treated groups. These changes were more pronounced in the group that received UD extract and swimming training. Regeneration and less beta cell damage of Langerhans islets were observed in the treated groups. UD treatment increased insulin secretion in the RIN-5F cells and glucose uptake in the L6 myotubes cells. Swimming exercises accompanied by consuming UD aqueous extracts effectively improved diabetic parameters, repaired pancreatic tissues in streptozotocin-induced diabetics in vivo, and increased glucose uptake or insulin in UD-treated cells in vitro.

  6. Biomolecular dynamics and binding studies in the living cell.

    PubMed

    Diekmann, Stephan; Hoischen, Christian

    2014-03-01

    Isolation and preparation of proteins of higher organisms often is a tedious task. In the case of success, the properties of these proteins and their interactions with other proteins can be studied in vitro. If however, these proteins are modified in the cell in order to gain or change function, this is non-trivial to correctly realise in vitro. When, furthermore, the cellular function requires the interplay of more than one or two proteins, in vitro experiments for the analysis of this situation soon become complex. Instead, we thus try to obtain information on the molecular properties of proteins in the living cell. Then, the cell takes care of correct protein folding and modification. A series of molecular techniques are, and new ones become, available which allow for measuring molecular protein properties in the living cell, offering information on concentration (FCS), dynamics (FCS, RICS, FRAP), location (PALM, STED), interactions (F3H, FCCS) and protein proximities (FRET, BRET, FLIM, BiFC). Here, these techniques are presented with their advantages and drawbacks, with examples from our current kinetochore research. The review is supposed to give orientation to researchers planning to enter the field, and inform which techniques help us to gain molecular information on a multi-protein complex. We show that the field of cellular imaging is in a phase of transition: in the future, an increasing amount of physico-chemical data can be determined in the living cell. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A minimal physical model for crawling cells

    NASA Astrophysics Data System (ADS)

    Tiribocchi, Adriano; Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    Cell motility in higher organisms (eukaryotes) is fundamental to biological functions such as wound healing or immune response, and is also implicated in diseases such as cancer. For cells crawling on solid surfaces, considerable insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. We present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  8. A minimal physical model captures the shapes of crawling cells

    NASA Astrophysics Data System (ADS)

    Tjhung, E.; Tiribocchi, A.; Marenduzzo, D.; Cates, M. E.

    2015-01-01

    Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. Here we present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work strongly supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  9. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering.

    PubMed

    Barabadi, Zahra; Azami, Mahmoud; Sharifi, Esmaeel; Karimi, Roya; Lotfibakhshaiesh, Nasrin; Roozafzoon, Reza; Joghataei, Mohammad Taghi; Ai, Jafar

    2016-12-01

    Selecting suitable cell sources and angiogenesis induction are two important issues in myocardial tissue engineering. Human endometrial stromal cells (EnSCs) have been introduced as an abundant and easily available resource in regenerative medicine. Bioactive glass is an agent that induces angiogenesis and has been studied in some experiments. The aim of this study was to investigate in vitro differentiation capacity of endometrial stem cells into cardiomyocyte lineage and to evaluate capability of bioactive glass nanoparticles toward EnSCs differentiation into endothelial lineage and angiogenesis on hydrogel scaffold. Our findings suggests that endometrial stem cells could be programmed into cardiomyocyte linage and considered a suitable cell source for myocardial regeneration. This experiment also revealed that inclusion of bioactive glass nanoparticles in hydrogel scaffold could improve angiogenesis through differentiating EnSCs toward endothelial lineage and increasing level of vascular endothelial growth factor secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells

    PubMed Central

    Ruedel, Anke; Hofmeister, Simone; Bosserhoff, Anja-Katrin

    2013-01-01

    High-density cell culture is widely used for the analysis of cartilage development of human mesenchymal stem cells (HMSCs) in vitro. Several cell culture systems, as micromass, pellet culture and alginate culture, are applied by groups in the field to induce chondrogenic differentiation of HMSCs. A draw back of all model systems is the high amount of cells necessary for the experiments. Further, handling of large experimental approaches is difficult due to culturing e.g. in 15 ml tubes. Therefore, we aimed to develop a new model system based on “hanging drop” cultures using 10 to 100 fold less cells. Here, we demonstrate that differentiation of chondrogenic cells was induced as previously shown in other model systems. Real time RT-PCR analysis demonstrated that Collagen type II and MIA/CD-RAP were upregulated during culturing whereas for induction of hypertrophic markers like Collagen type X and AP-2 epsilon treatment with TGF beta was needed. To further test the system, siRNA against Sox9 was used and effects on chondrogenic gene expression were evaluated. In summary, the hanging drop culture system was determined to be a promising tool for in vitro chondrogenic studies. PMID:24294400

  11. The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression.

    PubMed

    Chen, Miao-Fen; Chen, Ping-Tsung; Chen, Wen-Cheng; Lu, Ming-Shian; Lin, Paul-Yang; Lee, Kuan Der

    2016-02-16

    The aim of this study was to assess the significance of programmed cell death 1 ligand 1 (PD-L1) in esophageal squamous cell carcinoma (ESCC) and its association with IL-6 and radiation response. Weretrospectively enrolled 162 patients with ESCC, and examined the correlation between PD-L1 levels and clinical outcomes in esophageal cancer patients. Furthermore, the human esophageal SCC cell line CE81T and TE2 were selected for cellular experiments to investigate the role of PD-L1 in T cell functions and radiation response. Here we demonstrated that PD-L1 expression was significantly higher in esophageal cancer specimens than in non-malignant epithelium. In clinical outcome analysis, this staining of PD-L1 was positively linked to the clinical T4 stage (p=0.004), development of LN metastasis (p=0.012) and higher loco-regional failure rate (p=0.0001). In addition, the frequency of PD-L1 immunoreactivity was significantly higher in IL-6-positive esophageal cancer specimens. When IL-6 signaling was inhibited in vitro, the level of PD-L1 is significantly down-regulated. PD-L1 is a significant predictor for poor treatment response and shorter survival.As demonstrated through in vitro experiments, Irradiation increased PD-L1 expression in human esophageal cancer cells. The inhibition of T cell functions including proliferation and cytotoxicity against tumor cells might be the mechanisms responsible to the role of PD-L1 in radiation response. In conclusion, PD-L1 is important in determining the radiation response and could predict the prognosis of patients with esophageal SCC. Therefore, we suggest inhibition of PD-L1 as a potential strategy for the treatment of esophageal SCC.

  12. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    PubMed

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  13. Improvement in adenoviral gene transfer efficiency after preincubation at +37 degrees C in vitro and in vivo.

    PubMed

    Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo

    2002-01-01

    Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.

  14. Post-Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization

    PubMed Central

    Ferrante, Michele; Shay, Christopher F.; Tsuno, Yusuke; William Chapman, G.; Hasselmo, Michael E.

    2017-01-01

    Abstract Medial entorhinal cortex Layer-II stellate cells (mEC-LII-SCs) primarily interact via inhibitory interneurons. This suggests the presence of alternative mechanisms other than excitatory synaptic inputs for triggering action potentials (APs) in stellate cells during spatial navigation. Our intracellular recordings show that the hyperpolarization-activated cation current (Ih) allows post-inhibitory-rebound spikes (PIRS) in mEC-LII-SCs. In vivo, strong inhibitory-post-synaptic potentials immediately preceded most APs shortening their delay and enhancing excitability. In vitro experiments showed that inhibition initiated spikes more effectively than excitation and that more dorsal mEC-LII-SCs produced faster and more synchronous spikes. In contrast, PIRS in Layer-II/III pyramidal cells were harder to evoke, voltage-independent, and slower in dorsal mEC. In computational simulations, mEC-LII-SCs morphology and Ih homeostatically regulated the dorso-ventral differences in PIRS timing and most dendrites generated PIRS with a narrow range of stimulus amplitudes. These results suggest inhibitory inputs could mediate the emergence of grid cell firing in a neuronal network. PMID:26965902

  15. Application of Albumin-embedded Magnetic Nanoheaters for Release of Etoposide in Integrated Chemotherapy and Hyperthermia of U87-MG Glioma Cells.

    PubMed

    Babincová, Melánia; Vrbovská, Hana; Sourivong, Paul; Babinec, Peter; Durdík, Štefan

    2018-05-01

    Malignant gliomas remain refractory to several therapeutic approaches and the requirement for novel treatment modalities is critical to combat this disease. Etoposide is a topoisomerase-II inhibitor, which promotes DNA damage and apoptosis of cancer cells. In this study, we prepared albumin with embedded magnetic nanoparticles and etoposide for in vitro evaluation of combined hyperthermia and chemotherapy. Magnetic nanoparticles were prepared by a modified co-precipitation method in the presence of human serum albumin and etoposide. A cellular proliferation assay was used to determine the effects of these nanostructures on the viability of U87 glioma cells in an alternating magnetic field. The in vitro experiments showed that cell viability decreased to 59.4% after heat treatment alone and to 53.8% on that with free etoposide, while combined treatment resulted in 7.8% cell viability. Integrating hyperthermia and chemotherapy using albumin co-embedded magnetic nanoheaters and etoposide may represent a promising therapeutic option for glioblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Dual silencing of Bcl-2 and Survivin by HSV-1 vector shows better antitumor efficacy in higher PKR phosphorylation tumor cells in vitro and in vivo.

    PubMed

    Chen, X; Zhou, Y; Wang, J; Wang, J; Yang, J; Zhai, Y; Li, B

    2015-08-01

    RNA interference (RNAi) is a promising tool for cancer therapy, but its delivery strategy is a major challenge for its application. Oncolytic herpes simplex virus type 1 (HSV-1) is not only an effective antitumor drug but also an excellent vector. Herein, RNAi of oncogenes Bcl-2 and Survivin was combined with oncolytic HSV-1 (ICP34.5-/ICP6-/ICP47-/CMV-GM-CSF) and a new vector HSV010-BS was constructed. Transfected cell viability assays and animal experiments revealed that the dual silencing of Bcl-2 and Survivin improved the antitumor effect of oncolytic HSV-1 in vitro and in vivo, while the antitumor effect was correlated with the phosphorylation levels of PKR of the tumor cells. The higher the phosphorylation levels of PKR of the tumor cells, the weaker the replication ability of oncolytic HSV-1, and the more powerful HSV010-BS was than its control vectors in inhibiting the growth of the tumor cells. The results provided direct supportive proofs for a new potential cancer therapy strategy.

  17. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    PubMed Central

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  18. Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair.

    PubMed

    Portron, Sophie; Merceron, Christophe; Gauthier, Olivier; Lesoeur, Julie; Sourice, Sophie; Masson, Martial; Fellah, Borhane Hakim; Geffroy, Olivier; Lallemand, Elodie; Weiss, Pierre; Guicheux, Jérôme; Vinatier, Claire

    2013-01-01

    Multipotent stromal cell (MSC)-based regenerative strategy has shown promise for the repair of cartilage, an avascular tissue in which cells experience hypoxia. Hypoxia is known to promote the early chondrogenic differentiation of MSC. The aim of our study was therefore to determine whether low oxygen tension could be used to enhance the regenerative potential of MSC for cartilage repair. MSC from rabbit or human adipose stromal cells (ASC) were preconditioned in vitro in control or chondrogenic (ITS and TGF-β) medium and in 21 or 5% O2. Chondrogenic commitment was monitored by measuring COL2A1 and ACAN expression (real-time PCR). Preconditioned rabbit and human ASC were then incorporated into an Si-HPMC hydrogel and injected (i) into rabbit articular cartilage defects for 18 weeks or (ii) subcutaneously into nude mice for five weeks. The newly formed tissue was qualitatively and quantitatively evaluated by cartilage-specific immunohistological staining and scoring. The phenotype of ASC cultured in a monolayer or within Si-HPMC in control or chondrogenic medium and in 21 or 5% O2 was finally evaluated using real-time PCR. 5% O2 increased the in vitro expression of chondrogenic markers in ASC cultured in induction medium. Cells implanted within Si-HPMC hydrogel and preconditioned in chondrogenic medium formed a cartilaginous tissue, regardless of the level of oxygen. In addition, the 3D in vitro culture of ASC within Si-HPMC hydrogel was found to reinforce the pro-chondrogenic effects of the induction medium and 5% O2. These data together indicate that although 5% O2 enhances the in vitro chondrogenic differentiation of ASC, it does not enhance their in vivo chondrogenesis. These results also highlight the in vivo chondrogenic potential of ASC and their potential value in cartilage repair.

  19. Distinct metabolic responses of an ovarian cancer stem cell line.

    PubMed

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to be considered in the design and early testing of such treatments.

  20. In vitro expansion of Lin+ and Lin- mononuclear cells from human peripheral blood

    NASA Astrophysics Data System (ADS)

    Norhaiza, H. Siti; Rohaya, M. A. W.; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul

    2013-11-01

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin-) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs) were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin+) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin- cell population. The ability of Lin+ and Lin- to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin+ and Lin- were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin+ mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin- stem cells were not able to survive in proliferation medium however, addition of cytokines into the proliferation medium support Lin- stem cells for at least 18 days. The Lin- stem cells started to response to the cytokines added as early as Day 2 of culture. It is concluded that Lin- stem cells can be expanded in vitro by culturing in proliferation medium supplemented with cytokines.

  1. Effect of open pulled straw (OPS) vitrification on the fertilisation rate and developmental competence of porcine oocytes.

    PubMed

    Varga, Erika; Gardón, J C; Papp, Agnes Bali

    2006-03-01

    Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.

  2. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  3. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    PubMed

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  4. Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.

    PubMed

    Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk

    2016-01-01

    In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.

  5. Effect of Neoangiogenesis Using Micro-spot Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Tsutsui, Chihiro; Komachi, Toshifumi; Kishimoto, Takumi; Hirata, Takamichi; Mori, Akira

    2012-10-01

    Using an in vitro model, we investigated the effect of the atmospheric pressure plasma irradiation to NIH3T3 and porcine aortic endothelial cells. In the plasma exposure experiment using cell proliferation was inhibited in proportion to processing time. However, it was found that this inhibitory effect was suppressed by plasma irradiation and cells are rather on an increase trend. And, in comparison with the cell growth curve for the He gas flow group, the curve for the plasma irradiation group was shifted to the left. We investigated expression analysis in the subsequent experiment with focus on factors related to angiogenesis, it was found that the transient overexpression of VEGF are observed in 24 h from the plasma irradiation. This proliferative effect is likely related to several growth factor releases due to plasma-induced reactive ion/radical interaction.

  6. Preparation & in vitro evaluation of 90Y-DOTA-rituximab

    PubMed Central

    Kameswaran, Mythili; Pandey, Usha; Dash, Ashutosh; Samuel, Grace; Venkatesh, Meera

    2016-01-01

    Background & objectives: Radioimmunotherapy is extensively being used for the treatment of non-Hodgkin's lymphoma (NHL). Use of rituximab, a chimeric anti-CD20 antibody directed against the CD20 antigen in combination with suitable beta emitters is expected to result in good treatment response by its cross-fire and bystander effects. The present work involves the conjugation of p-isothiocyanatobenzyl DOTA (p-SCN-Bn-DOTA) to rituximab, its radiolabelling with 90Y and in vitro and in vivo evaluation to determine its potential as a radioimmunotherapeutic agent. Methods: Rituximab was conjugated with p-SCN-Bn-DOTA at 1:1 antibody: DOTA molar ratio. The number of DOTA molecules linked to one molecule of rituximab was determined by radioassay and spectroscopic assay. Radiolabelling of rituximab with 90Y was carried out and its in vitro stability was evaluated. In vitro cell binding studies were carried out in Raji cells expressing CD20 antigen. Biodistribution studies were carried out in normal Swiss mice. Results: Using both radioassay and spectroscopic method, it was determined that about five molecules of DOTA were linked to rituximab. Radiolabelling of the rituximab conjugate with 90Y and subsequent purification on PD-10 column gave a product with radiochemical purity (RCP) > 98 per cent which was retained at > 90 per cent up to 72 h when stored at 37°C. In vitro cell binding experiments of 90Y-DOTA-rituximab with Raji cells exhibited specific binding of 20.7 ± 0.1 per cent with 90Y-DOTA-rituximab which reduced to 15.5 ± 0.2 per cent when incubated with cold rituximab. The equilibrium constant Kd for 90Y-DOTA-Rituximab was determined to be 3.38 nM. Radiolabelled antibody showed clearance via hepatobiliary and renal routes and activity in tibia was found to be quite low indicating in vivo stability of 90Y-DOTA-rituximab. Interpretation & conclusions: p-SCN-Bn-DOTA was conjugated with rituximab and radiolabelling with 90Y was carried out. In vitro studies carried out in Raji cells showed the specificity of the radiolabelled conjugate suggesting the potential uitability of the formulation as a radiopharmaceutical for therapy of NHL. PMID:26997015

  7. Preparation & in vitro evaluation of ⁹⁰Y-DOTA-rituximab.

    PubMed

    Kameswaran, Mythili; Pandey, Usha; Dash, Ashutosh; Samuel, Grace; Venkatesh, Meera

    2016-01-01

    Radioimmunotherapy is extensively being used for the treatment of non-Hodgkin's lymphoma (NHL). Use of rituximab, a chimeric anti-CD20 antibody directed against the CD20 antigen in combination with suitable beta emitters is expected to result in good treatment response by its cross-fire and bystander effects. The present work involves the conjugation of p-isothiocyanatobenzyl DOTA (p-SCN-Bn-DOTA) to rituximab, its radiolabelling with [90] Y and in vitro and in vivo evaluation to determine its potential as a radioimmunotherapeutic agent. Rituximab was conjugated with p-SCN-Bn-DOTA at 1:1 antibody: DOTA molar ratio. The number of DOTA molecules linked to one molecule of rituximab was determined by radioassay and spectroscopic assay. Radiolabelling of rituximab with 90 Y was carried out and its in vitro stability was evaluated. In vitro cell binding studies were carried out in Raji cells expressing CD20 antigen. Biodistribution studies were carried out in normal Swiss mice. Using both radioassay and spectroscopic method, it was determined that about five molecules of DOTA were linked to rituximab. Radiolabelling of the rituximab conjugate with [90] Y and subsequent purification on PD-10 column gave a product with radiochemical purity (RCP) > 98 per cent which was retained at > 90 per cent up to 72 h when stored at 37°C. In vitro cell binding experiments of 90 Y-DOTA-rituximab with Raji cells exhibited specific binding of 20.7 ± 0.1 per cent with [90] Y-DOTA-rituximab which reduced to 15.5 ± 0.2 per cent when incubated with cold rituximab. The equilibrium constant K d for 90 Y-DOTA-Rituximab was determined to be 3.38 nM. Radiolabelled antibody showed clearance via hepatobiliary and renal routes and activity in tibia was found to be quite low indicating in vivo stability of [90] Y-DOTA-rituximab. p-SCN-Bn-DOTA was conjugated with rituximab and radiolabelling with 90 Y was carried out. In vitro studies carried out in Raji cells showed the specificity of the radiolabelled conjugate suggesting the potential uitability of the formulation as a radiopharmaceutical for therapy of NHL.

  8. Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary

    PubMed Central

    Ortega, Israel; Sokalska, Anna; Villanueva, Jesus A.; Cress, Amanda B.; Wong, Donna H.; Stener-Victorin, Elisabet; Stanley, Scott D.; Duleba, Antoni J.

    2012-01-01

    Objective To evaluate the effects of letrozole on ovarian size and steroidogenesis in vivo, as well as on proliferation and steroidogenesis of theca-interstitial cells alone and in coculture with granulosa cells using an in vitro model. Design In vivo and in vitro studies. Setting Research laboratory. Animal(s) Immature Sprague-Dawley female rats. Intervention(s) In vivo effects of letrozole were studied in intact rats receiving either letrozole (90-day continuous-release SC pellets, 400 µg/d) or placebo pellets (control group). In in vitro experiments, theca cells were cultured alone or in coculture with granulosa cells in the absence or presence of letrozole. Main Outcome Measure(s) Deoxyribonucleic acid synthesis was determined by thymidine incorporation assay; steroidogenesis by mass spectrometry; and steroidogenic enzyme messenger RNA (mRNA) expression by polymerase chain reaction. Result(s) In vivo, letrozole induced an increase in ovarian size compared with the control group and also induced a profound increase of androgen, LH levels, and Cyp17a1 mRNA expression. Conversely, a decrease in Star, Cyp11a1, and Hsd3b1 transcripts was observed in letrozole-exposed rats. In vitro, letrozole did not alter either theca cell proliferation or Cyp17a1 mRNA expression. Similarly, letrozole did not affect Cyp17a1 transcripts in granulosa-theca cocultures. Conclusion(s) These findings suggest that letrozole exerts potent, but indirect, effect on growth of rat ovary and dramatically increases androgen levels and Cyp17a1 mRNA expression, the key enzyme regulating the androgen biosynthesis pathway. The present findings reveal novel mechanisms of action of letrozole in the rat ovary. PMID:23200686

  9. The commitment of human cells to senescence.

    PubMed

    Holliday, Robin

    2014-01-01

    Fifty years ago, it was demonstrated by Leonard Hayflick that human diploid fibroblasts grown in culture have a finite lifespan. Since that time, innumerable experiments have been published to discover the mechanism(s) that are responsible for this 'Hayflick limit' to continuous growth. Much new information has been gained, but there are certain features of this experimental system which have not been fully understood. One is the fact that different populations of the foetal lung strains WI-38 and MRC-5 have a range in division potential of at least a millionfold. The commitment theory of cellular aging, published more than 30 years ago, is able to explain this, but it has been consistently ignored. The theory predicts that bottlenecks, which are transient reductions in population size, can significantly reduce lifespan, or increase variability of lifespans. Computer simulations specify the effects of bottlenecks on longevity, and these were confirmed in two series of experiments. Commitment to senescence may be the loss of telomerase, which leads to the erosion of telomeres and the inability to grow indefinitely. Many experiments have been done with skin fibroblasts from human donors of different age, and it was originally thought that in vitro lifespan was inversely correlated with donor age. In these experiments, a single skin biopsy produces a population of cells that are grown to senescence. However, there is no reason to believe that skin fibroblasts are less variable in their in vitro lifespan than foetal lung strains, in which case the data points with skin cells are so variable that they may completely obscure any inverse correlation between culture lifespans and donor age.

  10. Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro.

    PubMed

    Rønning, Sissel Beate; Pedersen, Mona Elisabeth; Berg, Ragnhild Stenberg; Kirkhus, Bente; Rødbotten, Rune

    2018-01-01

    Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.

  11. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    PubMed

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  12. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.

    PubMed

    Yao, Li; Li, Yongchao

    2016-06-01

    Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.

  13. Cross-study projections of genomic biomarkers: an evaluation in cancer genomics.

    PubMed

    Lucas, Joseph E; Carvalho, Carlos M; Chen, Julia Ling-Yu; Chi, Jen-Tsan; West, Mike

    2009-01-01

    Human disease studies using DNA microarrays in both clinical/observational and experimental/controlled studies are having increasing impact on our understanding of the complexity of human diseases. A fundamental concept is the use of gene expression as a "common currency" that links the results of in vitro controlled experiments to in vivo observational human studies. Many studies--in cancer and other diseases--have shown promise in using in vitro cell manipulations to improve understanding of in vivo biology, but experiments often simply fail to reflect the enormous phenotypic variation seen in human diseases. We address this with a framework and methods to dissect, enhance and extend the in vivo utility of in vitro derived gene expression signatures. From an experimentally defined gene expression signature we use statistical factor analysis to generate multiple quantitative factors in human cancer gene expression data. These factors retain their relationship to the original, one-dimensional in vitro signature but better describe the diversity of in vivo biology. In a breast cancer analysis, we show that factors can reflect fundamentally different biological processes linked to molecular and clinical features of human cancers, and that in combination they can improve prediction of clinical outcomes.

  14. Surgical manipulation of mammalian embryos in vitro.

    PubMed

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  15. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes

    PubMed Central

    2013-01-01

    Background The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Methods Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at −50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose–response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Results Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). Conclusions GM-CSF enhanced cumulus cell expansion of in vitro matured bovine COC. However, GM-CSF did not increase oocyte nuclear or cytoplasmic maturation rates, IGF-2 expression or subsequent embryonic development. PMID:23799974

  16. Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo.

    PubMed

    Valbuena, D; Martin, J; de Pablo, J L; Remohí, J; Pellicer, A; Simón, C

    2001-11-01

    To investigate whether the deleterious effect of E(2) on embryonic implantation is due to a direct effect on the endometrium, on the embryo, or both. Prospective, controlled in vitro study. Tertiary infertility center. Fertile patients in the luteal phase with histologically normal endometrium who were attending the infertility clinic as oocyte donors (n = 14). E(2) dose-response (0, 10(-8), 10(-7), 10(-6), 10(-5), and 10(-4) M) and time course (day 2 vs. day 5) experiments were performed in an in vitro embryo adhesion assay composed of human polarized endometrial epithelial cells obtained from fertile patients and mouse embryos. Blastocyst formation rate and embryo adhesion rate. Monolayers of polarized endometrial epithelial cells expressed ERalpha at the mRNA level. The E(2) dose response of blastocysts with polarized endometrial epithelial cells (n = 235) demonstrated a progressive reduction in embryonic adhesion that was statistically significant at 10(-6) M. When polarized endometrial epithelial cells were treated alone with increasing doses of E(2) for 3 days and E(2) was then removed and blastocysts added (n = 410), embryonic adhesion was not significantly reduced, except at 10(-4) M. When 2-day mouse embryos (n = 609) were treated with increasing E(2) concentrations until day 5, the rate of blastocyst formation significantly decreased at a concentration >or= 10(-6) M, and embryonic adhesion decreased when blastocysts (n = 400) were obtained at a concentration >or= 10(-7) M. Time course experiments of embryos cultured for 2 days with polarized endometrial epithelial cells (n = 426) showed that the adhesion rate was higher at E(2) levels of 10(-7), 10(-6) and 10(-5) M compared with embryos cultured for 5 days (n = 495). High E(2) levels are deleterious to embryo adhesion in vitro, mainly because they have a direct toxic effect on the embryo that may occur at the cleavage stage.

  17. Suppression of mTOR signaling pathway promotes bone marrow mesenchymal stem cells differentiation into osteoblast in degenerative scoliosis: in vivo and in vitro.

    PubMed

    Wang, Yu; Yi, Xiao-Dong; Li, Chun-De

    2017-02-01

    To investigate the role of mTOR signaling pathway in bone marrow mesenchymal stem cells (BMSCs) differentiation into osteoblast in degenerative scoliosis (DS). The rat model of DS was established. Thirty-two Sprague-Dawley (SD) rats were selected and divided into the normal control group, the positive control group (normal rats injected with rapamycin), the negative control group (DS rats injected with PBS) and the experiment group (DS rats injected with rapamycin). H&E staining was performed to observe the osteogenesis of scoliosis. The BMSCs were obtained and assigned into seven groups: the normal control group, the positive control group, the negative control group and 1.0/10.0/100.0/1000.0 nmol/L experiment groups. Flow cytometry was conducted to testify cell cycle. The mRNA and protein expressions of mTOR and osteoblastic differentiation markers were measured by qRT-PCR and western blotting. In vivo, compared with the negative control group, bone trabecular area and the number of differentiated bone cells were significantly increased in the experiment groups. In vitro, at 24 and 48 h after rapamycin treatment, compared with the negative control group, BMSCs at G0/G1 stage increased, but BMSCs at S stage decreased in the 1.0/10.0/100.0/1000.0 nmol/L experiment groups; the expressions of mTOR and p70-S6K1 proteins were reduced in the 1.0/10.0/100.0/1000.0 nmol/L experiment groups, while ALP activity, OC levels, calcium deposition, Co1-I protein expression and the mRNA expressions of OC and Co1-I were significantly increased. Suppression of mTOR signaling pathway by rapamycin could promote BMSCs differentiation into osteoblast in DS.

  18. Cells as strain-cued automata

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Snead, Malcolm L.

    2016-02-01

    We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3 s-1. The transition has previously been observed in experiments conducted in vitro.

  19. Trastuzumab- and Fab′ fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo

    PubMed Central

    Ni, Ling; Zhang, Liping; Yan, Xiuju; Jiang, Ying; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2018-01-01

    Introduction Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab’ (antigen-binding fragments cut from TMAB)-modified NPs (Fab′-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. Material and methods The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab′-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results The release kinetics showed that both Fab′-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab′-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab′-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2−) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab′-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab′-Cur-NPs was higher than that of TMAB-Cur-NPs. Conclusion Fab′ fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery. PMID:29606874

  20. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    USGS Publications Warehouse

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei were synchronized by serum starvation (83.0%) than after roscovitine (80.0%) or contact-inhibition (80.0%). The fusion efficiency of in vivo and in vitro matured oocytes used as recipient cytoplasts of AWC donor nuclei (86.6% vs. 85.2%) was similar to the rates obtained with DSH donor nuclei, 83.7% vs. 73.0%, respectively. The only significant effect of source of donor nucleus (AWC vs. DSH) was on the rate of blastocyst formation in vitro. A higher percentage of the embryos derived from AWC nuclei developed to the blastocyst stage than did embryos produced from DSH nuclei, 24.2% vs. 3.3%, respectively (P < 0.05). In experiment 4, the effect of calcium in the fusion medium on induction of oocyte activation and development of AWC-DSH-cloned embryos was determined. The presence of calcium in the fusion medium induced a high incidence of cleavage of DSH oocytes (54.3%), while oocyte cleavage frequency was much lower in the absence of calcium (16.6%). The presence or absence of calcium in the fusion medium did not affect the fusion, cleavage, and blastocyst development of AWC-DSH-cloned embryos. In experiment 5, AWC-DSH-cloned embryos were transferred to the uteri of 11 synchronized domestic cat recipients on Day 6 or 7 after oocyte aspiration. Recipients were assessed by ultrasonography on Day 21 postovulation, but no pregnancies were observed. In the present study, after NT, AWC donor nuclei were able to dedifferentiate in DSH cytoplasts and support high rates of blastocyst development in vitro. Incomplete reprogramming of the differentiated nucleus may be a major constraint to the in vivo developmental potential of the embryos.

  1. Photothermal therapy to damage PC3 cancer cells: in vitro studies of a pulsed laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zamora-Romero, Noe; Aguilar, Guillermo; Devia-Cruz, Luis F.; Banks, Darren; Zhang, Bin; Halaney, David L.

    2017-02-01

    Laser-nanoparticles interactions have been widely used for several years. In biomedicine, several in vitro and in vivo experiments have shown promising results for the detection and treatment of cancer. One of the techniques of interest to us, is the nanoparticle-assisted photothermal therapy (PTT), which consists of irradiating cancer cells incubated with nanoparticles with either a pulsed or continuous (cw) laser in order to damage the cells. However, there is still a debate over which type of laser is most effective for PTT for cancer treatment. On the one hand, cw lasers are minimally invasive and can be used for both detection and treatment of tumors. On the other hand, pulsed lasers offer great spatial precision and can deposit higher energy fluences than cw lasers, making them very efficient for inducing cavitation to damage cancer cells and tumors mechanically. The aim of this study is to investigate whether simultaneous application of cw and pulsed laser could offer a synergetic enhancement of PTT efficacy to damage cancer cells in vitro, compared to either laser applied individually. PTT efficacy is evaluated through cell viability tests following the irradiation of prostate cancer (PC3) cells incubated with gold nanorods (5.7 X10 10 p/ml). By irradiating the PC3-nanorod solution with the cw laser at 808 nm for 60 seconds, the temperature increases from 37.5 to 45°C, which damages some cancer cells via the heat shock response within the cells, and also could increase their sensitivity to the mechanical stress caused by the shock wave generated from inducing cavitation in the solution by the pulsed laser irradiation.

  2. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in orthopedic bioengineering.

  3. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells.

    PubMed

    Barnes, D W

    2012-04-01

    Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma.

    PubMed

    Caicedo-Granados, Emiro; Lin, Rui; Fujisawa, Caitlin; Yueh, Bevan; Sangwan, Veena; Saluja, Ashok

    2014-12-01

    The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    PubMed Central

    2009-01-01

    Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo. PMID:19930543

  6. Coffee consumption modulates inflammatory processes in an individual fashion.

    PubMed

    Muqaku, Besnik; Tahir, Ammar; Klepeisz, Philip; Bileck, Andrea; Kreutz, Dominique; Mayer, Rupert L; Meier, Samuel M; Gerner, Marlene; Schmetterer, Klaus; Gerner, Christopher

    2016-12-01

    Anti-inflammatory effects of coffee consumption have been reported to be caused by caffeine and adenosine receptor signaling. However, contradictory effects have been observed. Many kinds of chronic diseases are linked to inflammation; therefore a profound understanding of potential effects of coffee consumption is desirable. We performed ex vivo experiments with eight individuals investigating peripheral blood mononuclear cells isolated from venous blood before and after coffee consumption, as well as in vitro experiments applying caffeine on isolated cells. After in vitro inflammatory stimulation of the cells, released cytokines, chemokines, and eicosanoids were determined and quantified using targeted mass spectrometric methods. Remarkably, the release of inflammation mediators IL6, IL8, GROA, CXCL2, CXCL5 as well as PGA2, PGD2, prostaglandin E2 (PGE2), LTC4, LTE4, and 15S-HETE was significantly affected after coffee consumption. While in several individuals coffee consumption or caffeine treatment caused significant downregulation of most inflammation mediators, in other healthy individuals exactly the opposite effects were observed. Ruling out age, sex, coffee consumption habits, the metabolic kinetics of caffeine in blood and the individual amount of regulatory T cells or CD39 expression as predictive parameters, we demonstrated here that coffee consumption may have significant pro- or anti-inflammatory effects in an individual fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 21 CFR 864.9225 - Cell-freezing apparatus and reagents for in vitro diagnostic use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cell-freezing apparatus and reagents for in vitro... Establishments That Manufacture Blood and Blood Products § 864.9225 Cell-freezing apparatus and reagents for in vitro diagnostic use. (a) Identification. Cell-freezing apparatus and reagents for in vitro diagnostic...

  8. 21 CFR 864.9225 - Cell-freezing apparatus and reagents for in vitro diagnostic use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell-freezing apparatus and reagents for in vitro... Establishments That Manufacture Blood and Blood Products § 864.9225 Cell-freezing apparatus and reagents for in vitro diagnostic use. (a) Identification. Cell-freezing apparatus and reagents for in vitro diagnostic...

  9. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  10. Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study.

    PubMed

    Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty

    2011-01-01

    To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.

  11. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    PubMed Central

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application. PMID:29062885

  12. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    PubMed

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  13. Fetal Fibroblasts and Keratinocytes with Immunosuppressive Properties for Allogeneic Cell-Based Wound Therapy

    PubMed Central

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651

  14. The influences of a novel anti-adhesion device, thermally cross-linked gelatin film on peritoneal dissemination of tumor cells: The in vitro and in vivo experiments using murine carcinomatous peritonitis models.

    PubMed

    Miyamoto, Hiroe; Tsujimoto, Hiroyuki; Horii, Tsunehito; Ozamoto, Yuki; Ueda, Joe; Takagi, Toshitaka; Saitoh, Naoto; Hagiwara, Akeo

    2017-10-10

    To create anti-adhesive materials to be more effective and safer, we developed a thermally cross-linked gelatin film that showed superior anti-adhesive effects with excellent peritoneal regeneration. However, it may act as a convenient scaffold for tumor cell growth, thereby accelerating peritoneal dissemination when used in surgery for abdominal tumors. In this study, we tried to clarify this issue using mouse carcinomatous peritonitis models. First, we examined the in vitro tumor cell growth of mouse B16 melanoma or Colon26 cells on the gelatin film or the conventional hyarulonate/carboxymethylcellulose film. Tumor cell growth on each film was significantly lower than that of the control (no film). Next, we conducted the following in vivo experiments: After the parietal peritoneum was partially removed and covered with each film or without any film, mice were inoculated intraperitoneally with B16 melanoma or Colon26/Nluc cells expressing NanoLuc luciferase gene. At 7 days after the operation, we measured the weight of B16 melanoma tumors or the NanoLuc activity of Colon26/Nluc cells using in vivo imaging at the injured sites. There were no significant differences in the weight of the tumors and the NanoLuc activity among the three groups. We also observed the survival time of mice receiving the same operation and treatments. There was no significant difference in the survival time among the three groups. These results suggest that the gelatin film will likely not accelerate peritoneal dissemination as a convenient scaffold for tumor cell growth when used in surgery for abdominal tumors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  15. 14-3-3 σ Expression Effects G2/M Response to Oxygen and Correlates with Ovarian Cancer Metastasis

    PubMed Central

    Ravi, Dashnamoorthy; Chen, Yidong; Karia, Bijal; Brown, Adam; Gu, Ting Ting; Li, Jie; Carey, Mark S.; Hennessy, Bryan T.; Bishop, Alexander J. R.

    2011-01-01

    Background In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O2 levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O2 may be undesirable. To understand better the impact of O2 on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21%) or physiological (3%) O2. Principal Findings Our observations demonstrate that similar to primary cells, many cancer cells maintain an inherent sensitivity to O2, but some display insensitivity to changes in O2 concentration. Further analysis revealed an association between defective G2/M cell cycle transition regulation and O2 insensitivity resultant from overexpression of 14-3-3 σ. Targeting 14-3-3 σ overexpression with RNAi restored O2 sensitivity in these cell lines. Additionally, we found that metastatic ovarian tumors frequently overexpress 14-3-3 σ, which in conjunction with phosphorylated RB, results in poor prognosis. Conclusions Cancer cells show differential proliferative sensitivity to changes in O2 concentration. Although a direct link between O2 insensitivity and metastasis was not determined, this investigation showed that an O2 insensitive phenotype in cancer cells to correlate with metastatic tumor progression. PMID:21249227

  16. Effects of modification of in vitro fertilization techniques on the sex ratio of the resultant bovine embryos.

    PubMed

    Iwata, H; Shiono, H; Kon, Y; Matsubara, K; Kimura, K; Kuwayama, T; Monji, Y

    2008-05-01

    The duration of sperm-oocyte co-incubation has been observed to affect the sex ratio of in vitro produced bovine embryos. The purpose of this study was to investigate some factors that may be responsible for the skewed sex ratio. The factors studied were selected combinations of the duration of co-incubation, the presence or absence of cumulus cells, and the level of hyaluronic acid (HA) in the culture medium. Experiment 1 examined the effect of selected combinations of different factors during the fertilization phase of in vitro oocyte culture. The factors were the nature of the sperm or its treatment, the duration of the sperm-oocyte co-incubation, and the level of hyaluronic acid in the culture medium. In experiment 2, the capacitation of frozen-thawed-Percoll-washed sperm (control), pre-incubated, and non-binding sperm was evaluated by the zona pellucida (ZP) binding assay and the hypo-osmotic swelling test (HOST). The purpose of experiment 3 was to determine the oocyte cleavage rate and sex ratio of the embryos (>5 cells) produced as a consequence of the 10 treatments used in experiment 1. In treatments 1-3 (experiments 1 and 3) COC were co-cultured with sperm for 1, 5 or 18 h. Polyspermic fertilization rose as the co-incubation period increased (1 h 6.5%, 5 h 15.9%, 18 h 41.8%; P<0.05), and the highest rate of normal fertilization was observed for 5h culture (73.4%; P<0.05). The sex ratio was significantly (P<0.05) skewed from the expected 50:50 towards males following 1 h (64.4%) and 5 h (67.3%) co-incubation, but was not affected by 18 h incubation (52.3%). In treatment 4, sperm was pre-incubated for 1h and cultured with COC for 5 h. Relative to control sperm, pre-incubation of sperm increased ZP binding (116 versus 180 per ZP; P<0.05) and decreased the proportion of HOST positive sperm (65.8-48.6%; P<0.05; experiment 2). Pre-incubation did not affect the rates of polyspermy, normal fertilization or the sex ratio of the embryos (experiments 1 and 3). The oocytes used in treatments 5-10 of experiments 1 and 3 were denuded prior to fertilization. Co-incubation of denuded oocytes for 1h (treatment 5) or 5h (treatment 6) resulted in levels of polyspermic fertilization similar to that for treatment 2 with significantly lower levels of normal fertilization (41.7% and 52.6%, respectively; P<0.05), and the 1h co-incubation significantly skewed (P<0.05) the proportion of male embryos to 70.0%. Denuded oocytes were fertilized for 5h with sperm unable to bind to cumulus cells (NB sperm) in treatment 7 or those that bound to cumulus cells (B) in treatment 8. These two treatments had similar rates of polyspermic, normal and non-fertilization. However, the B sperm caused the sex ratio of the embryos to be significantly skewed to males (63.9%; P<0.05). Fertilization of denuded oocytes in medium containing hyaluronic acid (0.1 mg/ml, treatment 9; 1.0 mg/ml treatment 10) significantly (P<0.05) reduced the incidence of polyspermic fertilization relative to treatments 2 and 6, and normal fertilization relative to treatment 2, but did not affect the sex ratio of the embryos. It was concluded that exposure of sperm to cumulus cells, either before fertilization of denuded oocytes or during the process of fertilization of complete COC, increased the proportion of male embryos produced by in vitro culture. It was hypothesized that this may be due to the capacitation state of the sperm, the cumulus-sperm interaction, and/or the ability of the sperm to bind to cumulus cells or oocytes.

  17. Tolerogenic Dendritic Cells Generated by In Vitro Treatment With SAHA Are Not Stable In Vivo.

    PubMed

    Thewissen, Kristof; Broux, Bieke; Hendriks, Jerome J A; Vanhees, Mandy; Stinissen, Piet; Slaets, Helena; Hellings, Niels

    2016-01-01

    The aim of this study is to examine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can generate dendritic cells (DCs) with a stable tolerogenic phenotype to counteract autoimmune responses in an animal model of multiple sclerosis. We investigated if the tolerogenic potency of DCs could be increased by continuous treatment during in vitro differentiation toward DCs compared to standard 24-h in vitro treatment of already terminally differentiated DCs. We show that in vitro treatment with SAHA reduces the generation of new CD11c(+) DCs out of mouse bone marrow. SAHA-generated DCs show reduced antigen-presenting function as evidenced by a reduction in myelin endocytosis, a decreased MHC II expression, and a failure to upregulate costimulatory molecules upon LPS challenge. In addition, SAHA-generated DCs display a reduction in proinflammatory cytokines and molecules involved in apoptosis induction, inflammatory migration, and TLR signaling, and they are less immunostimulatory compared to untreated DCs. We demonstrated that the underlying mechanism involves a diminished STAT1 phosphorylation and was independent of STAT6 activation. Although in vitro results were promising, SAHA-generated DCs were not able to alleviate the development of experimental autoimmune encephalomyelitis in mice. In vitro washout experiments demonstrated that the tolerogenic phenotype of SAHA-treated DCs is reversible. Taken together, while SAHA potently boosts tolerogenic properties in DCs during the differentiation process in vitro, SAHA-generated DCs were unable to reduce autoimmunity in vivo. Our results imply that caution needs to be taken when developing DC-based therapies to induce tolerance in the context of autoimmune disease.

  18. Control of interferon-tau secretion by in vitro-derived bovine blastocysts during extended culture and outgrowth formation.

    PubMed

    Kubisch, H M; Larson, M A; Kiesling, D O

    2001-04-01

    A series of experiments was conducted to examine the pattern of interferon-tau (IFN-tau) secretion by bovine blastocysts during extended culture in vitro. In the first experiment, blastocysts were cultured individually for three 48-hour periods. The day of blastocyst formation affected how much IFN-tau was produced during the first two culture periods, but not during the third period. The overall secretion of IFN-tau during the 6-day period increased significantly and well beyond what could be accounted for by the concomitant increase in cell numbers. In the second experiment, blastocysts were initially cultured in individual droplets for 48 hr, then plated into 48-well plates. Medium concentrations of IFN-tau were determined after 48 hr and again after 6 and 12 days of culture. Initial IFN-tau secretion did not affect the ability to form outgrowths or their final size, and initial differences in secretion between groups of blastocysts had disappeared by the second and third analyses. In the third experiment, blastocysts were cultured individually for 48 hr in droplets containing the medium that had been flushed through the uteri of non-pregnant sheep on days 10, 12, and 15 of the estrous cycle. Culture in the medium obtained from the Day 15 flush significantly increased the number of cells that blastocysts contained, as well as IFN-tau secretion.

  19. T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts

    PubMed Central

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-01-01

    Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777

  20. T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.

    PubMed

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-03-01

    To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.

  1. Targeting Host Cell Surface Nucleolin for RSV Therapy: Challenges and Opportunities.

    PubMed

    Mastrangelo, Peter; Norris, Michael J; Duan, Wenming; Barrett, Edward G; Moraes, Theo J; Hegele, Richard G

    2017-09-19

    Nucleolin (NCL) has been reported as a cellular receptor for the human respiratory syncytial virus (RSV). We studied the effects of re-purposing AS1411, an anti-cancer compound that binds cell surface NCL, as a possible novel strategy for RSV therapy in vitro and in vivo. AS1411 was administered to RSV-infected cultures of non-polarized (HEp-2) and polarized (MDCK) epithelial cells and to virus-infected mice and cotton rats. Results of in vitro experiments showed that AS1411, used in micromolar concentrations, was associated with decreases in the number of virus-positive cells. Intranasal administration of AS1411 (50 mg/kg) to RSV-infected mice and cotton rats was associated with partial reductions in lung viral titers, decreased virus-associated airway inflammation, and decreased IL-4/IFN-γ ratios when compared to untreated, infected animals. In conclusion, our findings indicate that therapeutic use of AS1411 has modest effects on RSV replication and host response. While the results underscore the challenges of targeting cell surface NCL as a potential novel strategy for RSV therapy, they also highlight the potential of cell surface NCL as a therapeutic target.

  2. Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin.

    PubMed

    Qu, Jing; Liu, Yu; Yu, Yanni; Li, Jing; Luo, Jingwan; Li, Mingzhong

    2014-11-01

    To maintain the anti-tumor activity of cis-dichlorodiamminoplatinum (CDDP) while avoiding its cytotoxicity and negative influence on normal tissue, CDDP-loaded silk fibroin nanoparticles approximately 59 nm in diameter were successfully prepared by electrospray without using organic solvent. CDDP was incorporated into nanoparticles through metal-polymer coordination bond exchange. In vitro release tests showed that the cisplatin in the nanoparticles could be slowly and sustainably released for more than 15 days. In vitro anti-cancer experiments and intracellular Pt content testing indicated that CDDP-loaded silk fibroin nanoparticles were easily internalized by A549 lung cancer cells, transferring CDDP into cancer cells and then triggering their apoptosis. In contrast, the particles were not easily internalized by L929 mouse fibroblast cells and hence showed weaker cell growth inhibition. The CDDP-loaded silk fibroin nanoparticles showed sustained and efficient killing of tumor cells but weaker inhibition of normal cells. In general, this study provides not only a novel method for preparing CDDP-loaded silk fibroin nanoparticles but also a new carrier system for clinical therapeutic drugs against lung cancers and other tumors. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    EPA Science Inventory

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  4. Effects of a Shuangling Fuzheng anticancer preparation on the proliferation of SGC-7901 cells and immune function in a cyclophosphamide-treated murine model.

    PubMed

    Chen, Hua-Sheng; Chen, Jue; Cui, De-Li; Zheng, Yuan-Yuan; Xu, Ai-Hua; Chen, Gang; Jia, Ling-Chang

    2007-12-28

    To study the inhibitory effects of a Shuangling Fuzheng anticancer preparation (SFAP) on the human gastric cancer cell line SGC-7901 in vitro as well as its immune-modulated effects in a cyclophosphamide-treated murine model. MTT experiments and immunocytochemistry ABC experiments were performed for detecting the proliferation of SGC-7901 cells in vitro and protein expression of c-myc. The staphylococcal protein A (SPA) rosette test was utilized for measuring the ratio of T-lymphocyte subsets from peripheral blood in a cyclophosphamide-treated murine model. Enzyme-linked immunosorbant assay (ELISA) was performed for measuring the levels of serum sIL-2R in treated mice, while immunoturbidimetry was used for measuring the levels of immunoglobulins (Ig). SFAP (40-640 mg/L, 48 h) inhibited the proliferation of SGC-7901 cells, and a positive correlation was noted between inhibitory effects and dosage. At a dosage of 160-320 mg/L in cultured cells, the expression of c-myc was decreased. SFAP (50-200 mg/kg) increased the percentage of CD3+ and CD4+ T-lymphocytes, the ratio of CD4/CD8, and the contents of Ig such as IgM, IgG or IgA, but decreased the levels of serum sIL-2R in peripheral blood from cyclophosphamide-treated mice. SFAP can inhibit the proliferation of SGC-7901 cells via the c-myc gene. In addition, SFAP can modulat the cellular and humoral immunity in cyclophosphamide-induced immunosuppressed mice.

  5. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  6. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy

    PubMed Central

    Luevano, Martha; Madrigal, Alejandro; Saudemont, Aurore

    2012-01-01

    Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols. PMID:22705914

  7. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts

    PubMed Central

    2012-01-01

    Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2), its succussed hydroalcoholic solvent (0712–1) and unsuccussed solvent (0712–3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712–1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712–3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712–2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712–1), which caused 22.1% wound closure. Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis. PMID:22809174

  8. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies.

    PubMed

    Tsoi, Kim M; Dai, Qin; Alman, Benjamin A; Chan, Warren C W

    2013-03-19

    Despite significant interest in developing quantum dots (QDs) for biomedical applications, many researchers are convinced that QDs will never be used for treating patients because of their potential toxicity. The perception that QDs are toxic is rooted in two assumptions. Cadmium-containing QDs can kill cells in culture. Many researchers then assume that because QDs are toxic to cells, they must be toxic to humans. In addition, many researchers classify QDs as a homogeneous group of materials. Therefore, if CdSe QDs are harmful, they extrapolate this result to all QDs. Though unsubstantiated, these assumptions continue to drive QD research. When dosing is physiologically appropriate, QD toxicity has not been demonstrated in animal models. In addition, QDs are not uniform: each design is a unique combination of physicochemical properties that influence biological activity and toxicity. In this Account, we summarize key findings from in vitro and in vivo studies, explore the causes of the discrepancy in QD toxicological data, and provide our view of the future direction of the field. In vitro and in vivo QD studies have advanced our knowledge of cellular transport kinetics, mechanisms of QD toxicity, and biodistribution following animal injection. Cell culture experiments have shown that QDs undergo design-dependent intracellular localization and they can cause cytotoxicity by releasing free cadmium into solution and by generating free radical species. In animal experiments, QDs preferentially enter the liver and spleen following intravascular injection, undergo minimal excretion if larger than 6 nm, and appear to be safe to the animal. In vitro and in vivo studies show an apparent discrepancy with regard to toxicity. Dosing provides one explanation for these findings. Under culture conditions, a cell experiences a constant QD dose, but the in vivo QD concentration can vary, and the organ-specific dose may not be high enough to induce detectable toxicity. Because QDs are retained within animals, long-term toxicity may be a problem but has not been established. Future QD toxicity studies should be standardized and systematized because methodological variability in the current body of literature makes it difficult to compare and contrast results. We advocate the following steps for consistent, comparable toxicology data: (a) standardize dose metrics, (b) characterize QD uptake concentration, (c) identify in vitro models that reflect the cells QDs interact with in vivo, and (d) use multiple assays to determine sublethal toxicity and biocompatibility. Finally, we should ask more specific toxicological questions. For example: "At what dose are 5 nm CdSe QDs that are stabilized with mercaptoacetic acid and conjugated to the antibody herceptin toxic to HeLa cells?" rather than "Are QDs toxic?" QDs are still a long way from realizing their potential as a medical technology. Modifying the current QD toxicological research paradigm, investigating toxicity in a case-by-case manner, and improving study quality are important steps in identifying a QD formulation that is safe for human use.

  9. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.

    PubMed

    Achouak, Wafa; Conrod, Sandrine; Cohen, Valérie; Heulin, Thierry

    2004-08-01

    Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.

  10. Self-Organization of Stem Cell Colonies and of Early Mammalian Embryos: Recent Experiments Shed New Light on the Role of Autonomy vs. External Instructions in Basic Body Plan Development

    PubMed Central

    Denker, Hans-Werner

    2016-01-01

    “Organoids”, i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization, a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis, specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells (“gastruloids”). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells. PMID:27792143

  11. Self-Organization of Stem Cell Colonies and of Early Mammalian Embryos: Recent Experiments Shed New Light on the Role of Autonomy vs. External Instructions in Basic Body Plan Development.

    PubMed

    Denker, Hans-Werner

    2016-10-25

    " Organoids ", i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization , a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis , specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells (" gastruloids "). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells.

  12. In-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modeling.

    PubMed

    Wurm, Matthias C; Möst, Tobias; Bergauer, Bastian; Rietzel, Dominik; Neukam, Friedrich Wilhelm; Cifuentes, Sandra C; Wilmowsky, Cornelius von

    2017-01-01

    With additive manufacturing (AM) individual and biocompatible implants can be generated by using suitable materials. The aim of this study was to investigate the biological effects of polylactic acid (PLA) manufactured by Fused Deposition Modeling (FDM) on osteoblasts in vitro according to European Norm / International Organization for Standardization 10,993-5. Human osteoblasts (hFOB 1.19) were seeded onto PLA samples produced by FDM and investigated for cell viability by fluorescence staining after 24 h. Cell proliferation was measured after 1, 3, 7 and 10 days by cell-counting and cell morphology was evaluated by scanning electron microscopy. For control, we used titanium samples and polystyrene (PS). Cell viability showed higher viability on PLA (95,3% ± 2.1%) than in control (91,7% ±2,7%). Cell proliferation was highest in the control group (polystyrene) and higher on PLA samples compared to the titanium samples. Scanning electron microscopy revealed homogenous covering of sample surface with regularly spread cells on PLA as well as on titanium. The manufacturing of PLA discs from polylactic acid using FDM was successful. The in vitro investigation with human fetal osteoblasts showed no cytotoxic effects. Furthermore, FDM does not seem to alter biocompatibility of PLA. Nonetheless osteoblasts showed reduced growth on PLA compared to the polystyrene control within the cell experiments. This could be attributed to surface roughness and possible release of residual monomers. Those influences could be investigated in further studies and thus lead to improvement in the additive manufacturing process. In addition, further research focused on the effect of PLA on bone growth should follow. In summary, PLA processed in Fused Deposition Modelling seems to be an attractive material and method for reconstructive surgery because of their biocompatibility and the possibility to produce individually shaped scaffolds.

  13. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma.

    PubMed

    Hu, Qian; Lin, Xiao; Ding, Linxiaoxiao; Zeng, Yinduo; Pang, Danmei; Ouyang, Nengtai; Xiang, Yanqun; Yao, Herui

    2018-06-24

    Rho GTPase-activating protein 42 was identified as an inhibitor of RhoA to maintain normal blood pressure homeostasis. However, the effect of ARHGAP42 in promoting cell malignancy in nasopharyngeal carcinoma is demonstrated in this study. Microarray and real-time quantitative PCR were used for a mRNA profiling of ARHGAP42 in nasopharyngeal primary and metastatic carcinoma tissues. Western blot and immunohistochemical staining were used for detecting the expression of ARHGAP42 protein in nasopharyngeal carcinoma tissues and cell lines. The overexpression and silence experiments of ARHGAP42 were performed in NPC cell lines using siRNA and expressive plasmid for evaluating cancer cell migration and invasion in vitro. Real-time quantitative PCR, western blot, and transwell test were employed for with the function of ARHGAP42 and its antisense lncRNA uc010rul. We confirmed the elevated expression of ARHGAP42 in metastatic NPC tissues of mRNA and protein for the first time. Immunohistochemical analysis indicated that NPC patients with highly ARHGAP42 expression were significantly associated with shorter metastasis-free survival. Knockdown of ARHGAP42 resulted in significant inhibition of nasopharyngeal cancer cell migration and invasion in vitro, and the overexpression of ARHGAP42 showed the opposite effects. In addition, the silence of uc010rul resulted in ARHGAP42 expression decrease and significant inhibition of nasopharyngeal cancer cell migration and invasion. High expression of ARHGAP42 is associated with poor metastasis-free survival of nasopharyngeal carcinoma patients. ARHGAP42 promotes migration and invasion of nasopharyngeal carcinoma cells in vitro; the antisense lncRNA may be involved in this effect. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Antiproliferative and proapoptotic effects of bisphenol A on human trophoblastic JEG-3 cells.

    PubMed

    Morice, Lucie; Benaîtreau, Delphine; Dieudonné, Marie-Noëlle; Morvan, Corinne; Serazin, Valérie; de Mazancourt, Philippe; Pecquery, René; Dos Santos, Esther

    2011-07-01

    Different studies performed in rodents revealed that bisphenol-A (BPA), an environmental compound, altered early embryonic development. However, little is known concerning the direct effects of BPA on human implantation process. Thus, we decided to study in vitro BPA's effects on proliferative capacities of the human trophoblastic cell line, JEG-3. For this purpose, we first have shown that JEG-3 cells express the specific BPA receptor, namely estrogen-related receptor γ1 (ERRγ1). Secondly, we demonstrated that BPA did not exert any cytotoxic action in JEG-3 cells up to 10(-6)M. Moreover [(3)H]-thymidine incorporation experiments revealed that BPA significantly reduced cell proliferation. The results also showed that BPA induced JEG-3 apoptosis capacity as reflected by DNA fragmentation experiments. In conclusion, we describe here the direct impact of BPA on trophoblastic cell number mediated through both anti-proliferative and pro-apoptotic effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin.

    PubMed

    Wu, Bo; Yu, Ping; Cui, Can; Wu, Ming; Zhang, Yang; Liu, Lei; Wang, Cai-Xia; Zhuo, Ren-Xi; Huang, Shi-Wen

    2015-04-01

    The development and evaluation of folate-targeted and reduction-triggered biodegradable nanoparticles are introduced to the research on targeted delivery of doxorubicin (DOX). This type of folate-targeted lipid-polymer hybrid nanoparticles (FLPNPs) is comprised of a poly(D,L-lactide-co-glycolide) (PLGA) core, a soybean lecithin monolayer, a monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16) reduction-sensitive shell, and a folic acid-targeted ligand. FLPNPs exhibited high size stability but fast disassembly in a simulated cancer cell reductive environment. The experiments on the release process in vitro revealed that as a reduction-sensitive drug delivery system, FLPNPs released DOX faster in the presence of 10 mM dithiothreitol (DTT). Results from flow cytometry, confocal image and in vitro cytotoxicity assays revealed that FLPNPs further enhanced cell uptake and generated higher cytotoxicity against human epidermoid carcinoma in the oral cavity than non-targeted redox-sensitive and targeted redox-insensitive controls. Furthermore, in vivo animal experiments demonstrated that systemic administration of DOX-loaded FLPNPs remarkably reduced tumor growth. Experiments on biodistribution of DOX-loaded FLPNPs showed that an increasing amount of DOX accumulated in the tumor. Therefore, FLPNPs formulations have proved to be a stable, controllable and targeted anticancer drug delivery system.

  16. Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications.

    PubMed

    Giri, Jyotsnendu; Ray, Amlan; Dasgupta, S; Datta, D; Bahadur, D

    2003-01-01

    Superparamagnetic as well as fine ferrimagnetic particles such as Fe3O4, have been extensively used in magnetic field induced localized hyperthermia for the treatment of cancer. The magnetic materials with Curie temperature (Tc) between 42 and 50 degrees C, with sufficient biocompatibility are the best candidates for effective treatment such that during therapy it acts as in vivo temperature control switch and thus over heating could be avoided. Ultrafine particles of substituted ferrite Co(1-a)Zn(a)Fe2O4 and substituted yttrium-iron garnet Y3Fe(5-x)Al(x)O12 have been prepared through microwave refluxing and citrate-gel route respectively. Single-phase compounds were obtained with particle size below 100 nm. In order to make these magnetic nano particles biocompatible, we have attempted to coat these above said composition by alumina. The coating of alumina was done by hydrolysis method. The coating of hydrous aluminium oxide has been done over the magnetic particles by aging the preformed solid particles in the solution of aluminium sulfate and formamide at elevated temperatures. In vitro study is carried out to verify the innocuousness of coated materials towards cells. In vitro biocompatibility study has been carried out by cell culture method for a period of three days using human WBC cell lines. Study of cell counts and SEM images indicates the cells viability/growth. The in vitro experiments show that the coated materials are biocompatible.

  17. Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo

    PubMed Central

    Yang, Xiumei; Yang, Yu; Zhao, Gan; Wang, Bin; Wu, Daocheng

    2018-01-01

    A safe and effective vaccine adjuvant is important in modern vaccines. Various Chinese herbal polysaccharides can activate the immune system. Cistanche deserticola (CD) is a traditional Chinese herb and an adjuvant candidate. Here, we confirmed that water-extractable polysaccharides of CD (WPCD) could modulate immune responses in vitro and in vivo. In a dose-dependent manner, WPCD significantly promoted the maturation and function of murine marrow-derived dendritic cells (BM-DCs) through up-regulating the expression levels of MHC-II, CD86, CD80, and CD40, allogenic T cell proliferation, and the yields of IL-12 and TNF-α via toll-like receptor4 (TLR4), as indicated by in vitro experiments. In addition, its immunomodulatory activity was also observed in mice. WPCD effectively improved the titers of IgG, IgG1 and IgG2a and markedly enhanced the proliferation of T and B cells, the production of IFN-γ and IL-4 in CD4+ T cells and the expression level of IFN-γ in CD8+ T cells better than Alum. Furthermore, WPCD could markedly up-regulate the expression levels of CD40 and CD80 on DCs in spleen and down-regulate the Treg frequency. The study suggests that polysaccharides of Cistanche deserticola are a safe and effective vaccine adjuvant for eliciting both humoral immunity and cellular immunity by activating DCs via TLR4 signaling pathway. PMID:29360858

  18. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.

    PubMed

    Kaffashi, Abbas; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Sarısözen, Can; Vural, İmran; Koşucu, Hüsnü; Demir, Taner; Buğdaycı, Kadir Emre; Söylemezoğlu, Figen; Karlı Oğuz, Kader; Mut, Melike

    2017-08-01

    We aimed to develop lipid-polyethylene glycol (PEG)-polymer hybrid nanoparticles, which have high affinity to tumour tissue with active ingredient, a new generation antineoplastic drug, farnesylthiosalicylic acid (FTA) for treatment of glioblastoma. Farnesylthiosalicylic acid-loaded poly(lactic-co-glycolic acid)-1,2 distearoyl-glycerol-3-phospho-ethanolamine-N [methoxy (PEG)-2000] ammonium salt (PLGA-DSPE-PEG) with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) hybrid nanoparticles has been prepared and evaluated for in-vitro characterization. Cytotoxicity of FTA-loaded nanoparticles along with its efficacy on rat glioma-2 (RG2) cells was also evaluated both in vitro (in comparison with non-malignant cell line, L929) and in vivo. Scanning electron microscopy studies showed that all formulations prepared had smooth surface and spherical in shape. FTA and FTA-loaded nanoparticles have cytotoxic activity against RG2 glioma cell lines in cell culture studies, which further increases with addition of DOTAP. Magnetic resonance imaging and histopathologic evaluation on RG2 tumour cells in rat glioma model (49 female Wistar rats, 250-300 g) comparing intravenous and intratumoral injections of the drug have been performed and FTA-loaded nanoparticles reduced tumour size significantly in in-vivo studies, with higher efficiency of intratumoral administration than intravenous route. Farnesylthiosalicylic acid-loaded PLGA-DSPE-PEG-DOTAP hybrid nanoparticles are proven to be effective against glioblastoma in both in-vitro and in-vivo experiments. © 2017 Royal Pharmaceutical Society.

  19. The quest for tissue stem cells in the pancreas and other organs, and their application in beta-cell replacement.

    PubMed

    Houbracken, Isabelle; Bouwens, Luc

    2010-01-01

    Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar, stellate, or yet unidentified clonigenic cells as candidate β-cell progenitors. As in the rest of the adult stem cell field, sound and promising observations have been made. However, these observations still need to be replicated. As an alternative to committed stem/progenitor cells in the pancreas, transdifferentiation or lineage reprogramming of exocrine acinar and endocrine α-cells may be used to generate new β-cells. At present, it is unclear which approach is most medically promising. This article highlights the progress being made in knowledge about tissue stem cells, their existence and availability for therapy in diabetes. Particular attention is given to the assessment of methods to verify the existence of tissue stem cells.

  20. Two Lactobacillus Species Inhibit the Growth and α-Toxin Production of Clostridium perfringens and Induced Proinflammatory Factors in Chicken Intestinal Epithelial Cells in Vitro

    PubMed Central

    Guo, Shuangshuang; Liu, Dan; Zhang, Beibei; Li, Zhui; Li, Yehan; Ding, Binying; Guo, Yuming

    2017-01-01

    Clostridium perfringens is the causative pathogen of avian necrotic enteritis. Lactobacillus spp. are well-characterized probiotics with anti-microbial and immune-modulatory activities. In the present study, we investigated the effects of L. acidophilus and L. fermentum on the growth, α-toxin production and inflammatory responses of C. perfringens. In in vitro culture experiments, both lactobacilli inhibited the growth of C. perfringens (P < 0.01), accompanied with a decrease in pH (P < 0.01). Supernatants from lactobacilli cultures also suppressed the growth of C. perfringens during 24 h of incubation (P < 0.01), but this inhibitory effect disappeared after 48 h. Both lactobacilli decreased the α-toxin production of C. perfringens (P < 0.01) without influencing its biomass, and even degraded the established α-toxin (P < 0.01). Lower environmental pH reduced the α-toxin production as well (P < 0.01). Preincubation with L. acidophilus decreased the attachment of C. perfringens to cells (P < 0.01) with the cell cytotoxicity being unaffected. Both lactobacilli pretreatment reduced the up-regulation of proinflammatory factors, peptidoglycan (PGN) receptors and nuclear factor kappa B (NF-κB) p65 in C. perfringens-challenged chicken intestinal epithelial cells (P < 0.05). In conclusion, L. acidophilus and L. fermentum inhibited the pathological effects of C. perfringens in vitro conditions. PMID:29118744

  1. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    PubMed

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  2. Cell transformation and mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycylic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huberman, E.

    1977-01-01

    Treatment of experimental animals with chemical carcinogens, including some polycyclic hydrocarbons, can result in the formation of malignant tumors. The process whereby some chemicals induce malignancy is as yet unknown. However, in a model system using mammalian cells in culture, it was possible to show that the chemical carcinogens induce malignant transformation rather than select for pre-existing tumor cells. In the process of the in vitro cell transformation, the normal cells, which have an oriented pattern of cell growth, a limited life-span in vitro, and are not tumorigenic, are converted into cells that have a hereditary random pattern of cellmore » growth, the ability to grow continuously in culture, and the ability to form tumors in vivo. This stable heritable phenotype of the transformed cells is similar to that of cells derived from spontaneous or experimentally induced tumors. Such stable heritable phenotype changes may arise from alteration in gene expression due to a somatic mutation after interaction of the carcinogen with cellular DNA. In the present experiments we have shown that metabolically activated carcinogenic polycyclic hydrocarbons which have been shown to bind to cellular DNA induce somatic mutations at different genetic loci in mammalian cells and that there is a relationship between the degree of mutant induction and the degree of carcinogenicity of the different hydrocarbons tested.« less

  3. SU-F-T-105: The Predicted Radiation Response of Non-Small Cell Lung Cancer for SRS, SBRT and HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z; Feng, Y; Lo, S

    2016-06-15

    Purpose: The data on the α/β ratio of non-small cell lung cancer (NSCLC) is scarce in the literature. We have previously proposed a generalized LQ (gLQ) model to address the high dose dilemma of the LQ model. In this study, we applied the gLQ model to both the patients and in vitro cell irradiation data treated with a large range of doses, and investigated the α/β ratio in NSCLC. Methods: 150 patients with T1T2 and non-T1T2 stages were treated with stereotactic body radiotherapy (SBRT). In vitro datasets of 14 NSCLC cell lines from the National Cancer Institute published in Eurmore » J Cancer Clin Oncol. 25(3):527–534 (1989) and 7 NSCLC cell lines published in Cancer Res 57:4285–300 (1997) were included. The gLQ model was used to fit datasets. The least χ2 method was adopted to determine the goodness of fit. Errors of the model parameters were determined by propagating minimal χ2. The α/β ratios from both the patients and these in vitro NSCLC cell lines were obtained. Results: The average of α/β ratios for T1T2 and non-T1T2 NSCLC was 1.45 Gy. The same type of cell lines irradiated with different modalities but almost the same dose rate yielded approximately the same α/β ratio. The average of α/β ratios for NSCLC cell lines in this study was 5.45 Gy. Conclusion: The difference in the α/β ratios between the patients and in vitro cell data is expected and the lower α/β ratio for patients suggests the higher radiosensitivity, which could be associated with higher tumor perfusion or other tumor microenvironmental effects. The α/β ratios derived from the gLQ model can be used in high dose regions or high fraction sizes and are useful to extend our clinical experience accumulated from conversional low-dose fractionation to high dose irradiation schedules.« less

  4. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells.

    PubMed

    Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada

    2017-03-28

    Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.

  5. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  6. Using T2-Exchange from Ln3+DOTA-Based Chelates for Contrast-Enhanced Molecular Imaging of Prostate Cancer with MRI

    DTIC Science & Technology

    2015-04-01

    antigen ( PSMA ) of prostate cancer cells would then be synthesized and tested with both in vitro and in vivo experiments. Major Findings: We found that the...simplified chemistry. 15. SUBJECT TERMS MRI Contrast Agent, T2 contrast, Prostate Cancer, PSMA Targeted Agent, Early Detection and Diagnosis, Dysprosium... PSMA ), which is significantly over-expressed by prostate cancer cells, has proven to be an excellent target for imaging prostate cancer in mouse

  7. Taxol and LPS Modulation of c-kit and nm23 Expression in Macrophages and Normal vs. Malignant Breast Cancer Cell Lines.

    DTIC Science & Technology

    1999-07-01

    medium only, LPS (100 ng/ml), or paclitaxel (35 ^iM), concentrations found to induce maximal levels of mRNA in murine macrophages. Total RNA was...not detected in RNA derived from the DA-3 cells over an 8 h timecourse, even after 40 cycles of PCR amplification, without or with treatment...indicated times after stimulation with LPS or paclitaxel. Isolation of total cellular RNA . For in vitro experiments, culture supematants were removed

  8. Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success.

    PubMed

    Hagedorn, Mary; Carter, Virginia L

    2011-01-01

    Although conventional cryopreservation is a proven method for long-term, safe storage of genetic material, protocols used by the zebrafish community are not standardized and yield inconsistent results, thereby putting the security of many genotypes in individual laboratories and stock centers at risk. An important challenge for a successful zebrafish sperm cryopreservation program is the large variability in the post-thaw in vitro fertilization success (0 to 80%). But how much of this variability was due to the reproductive traits of the in vitro fertilization process, and not due to the cryopreservation process? These experiments only assessed the in vitro process with fresh sperm, but yielded the basic metrics needed for successful in vitro fertilization using cryopreserved sperm, as well. We analyzed the reproductive traits for zebrafish males with a strict body condition range. It did not correlate with sperm volume, or motility (P>0.05), but it did correlate with sperm concentration. Younger males produced more concentrated sperm (P<0.05). To minimize the wastage of sperm during the in vitro fertilization process, 10(6) cells/ml was the minimum sperm concentration needed to achieve an in vitro fertilization success of ≥ 70%. During the in vitro process, pooling sperm did not reduce fertilization success (P>0.05), but pooling eggs reduced it by approximately 30 to 50% (P<0.05). This reduction in fertilization success was due not to the pooling of the females' eggs, but to the type of tools used to handle the eggs. Recommendations to enhance the in vitro process for zebrafish include: 1) using males of a body condition closer to 1.5 for maximal sperm concentration; 2) minimizing sperm wastage by using a working sperm concentration of 10(6) motile cells/ml for in vitro fertilization; and 3) never using metal or sharp-edged tools to handle eggs prior to fertilization.

  9. Zebrafish Reproduction: Revisiting In Vitro Fertilization to Increase Sperm Cryopreservation Success

    PubMed Central

    Hagedorn, Mary; Carter, Virginia L.

    2011-01-01

    Although conventional cryopreservation is a proven method for long-term, safe storage of genetic material, protocols used by the zebrafish community are not standardized and yield inconsistent results, thereby putting the security of many genotypes in individual laboratories and stock centers at risk. An important challenge for a successful zebrafish sperm cryopreservation program is the large variability in the post-thaw in vitro fertilization success (0 to 80%). But how much of this variability was due to the reproductive traits of the in vitro fertilization process, and not due to the cryopreservation process? These experiments only assessed the in vitro process with fresh sperm, but yielded the basic metrics needed for successful in vitro fertilization using cryopreserved sperm, as well. We analyzed the reproductive traits for zebrafish males with a strict body condition range. It did not correlate with sperm volume, or motility (P>0.05), but it did correlate with sperm concentration. Younger males produced more concentrated sperm (P<0.05). To minimize the wastage of sperm during the in vitro fertilization process, 106 cells/ml was the minimum sperm concentration needed to achieve an in vitro fertilization success of ≥ 70%. During the in vitro process, pooling sperm did not reduce fertilization success (P>0.05), but pooling eggs reduced it by approximately 30 to 50% (P<0.05). This reduction in fertilization success was due not to the pooling of the females' eggs, but to the type of tools used to handle the eggs. Recommendations to enhance the in vitro process for zebrafish include: 1) using males of a body condition closer to 1.5 for maximal sperm concentration; 2) minimizing sperm wastage by using a working sperm concentration of 106 motile cells/ml for in vitro fertilization; and 3) never using metal or sharp-edged tools to handle eggs prior to fertilization. PMID:21698162

  10. Opioids and the immune system: what is their mechanism of action?

    PubMed

    Eisenstein, Toby K

    2011-12-01

    There is a significant amount of literature showing that morphine and other opioids modulate immune responses. The findings support many mechanisms by which this may occur. In vitro experiments provide evidence for direct actions of opioids on immune cells using a variety of functional end points. When these drugs are given in vivo, a plethora of immune parameters are also altered. The paper in this issue of the journal by Zhang et al. provides new information on morphine alteration of immune cell subsets in the spleen and thymus of mice and the potential role of glucocorticoids in these observed phenomena. This Commentary reviews the in vitro activities of morphine on leucocytes, as well as other documented mechanisms by which morphine can alter immune function in vivo. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Modulation of osteoblast attachment and growth in vitro by inertial forces

    NASA Astrophysics Data System (ADS)

    Kacena, Melissa Ann

    1999-11-01

    Spaceflight exploration and associated experiments show that human bones lose in density during inertial unloading, due principally to their demineralization. This research project examines the effect of gravity on osteoblast attachment and function in various inertial environments. Chicken calvarial osteoblasts were cultured under the following inertial conditions: spaceflight, simulated shuttle launch accelerations and vibrations, centrifugation, clino-rotation, and inversion. Cultures exposed to these conditions were compared with cultures grown in the laboratory as static 1G controls. Electron and light microscopy revealed the number of total osteoblasts attached to their substrate. Biochemical assays discerned changes in viable cell number, alkaline phosphatase levels, and mineralization. Immunohistochemical assays were used to investigate differences in cytoskeletal and extracellular matrix protein concentrations in the cultures, the percentage of proliferative cells, and cell viability. Compared to controls, spaceflight results indicated that the number of attached osteoblast cells was reduced. Launch simulation data indicated that the associated accelerations and vibrations may contribute to the reduction of attached osteoblasts in spaceflight cultures. Following centrifugation, the number of attached cells was unaltered; however, immunostaining of actin, fibronectin, and vinculin did show alterations in cultures exposed to hypergravity. Confluent cultures that were right side up, inverted, and clino-rotated contained a comparable number of attached cells and functioned similarly on the basis of measured alkaline phosphatase and bound calcium content. Sparse clino-rotated or inverted cultures showed an immediate response of diminished viable osteoblast numbers, but this effect disappeared with time and all remaining attached cells functioned similarly (APase and bound calcium). On the basis of these data osteoblast attachment and function in confluent cultures is minimally, if at all, affected by alterations in inertial environments. However, in sparse cultures about half as many cells are found attached initially. The remaining attached cells appear to multiply and function normally. These results suggest that the effects of spaceflight on bone are thus not likely to be caused by direct intrinsic effects of gravity on single osteoblasts that can be simulated in laboratory experiments in vitro experiments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witkowski, Peter T.; Charite Universitaetsmedizin, CCM, Institut fuer Virologie, Helmut Ruska Haus, Chariteplatz 1, 10117 Berlin; Schuenadel, Livia, E-mail: SchuenadelL@rki.de

    Research highlights: {yields} Real-time data acquisition by RT-CES requires low operative effort. {yields} Time to result is reduced by using RT-CES instead of conventional methods. {yields} RT-CES enables quantification of virus titers in unknown samples. {yields} RT-CES is a useful tool for high-throughput characterization of antiviral agents. {yields} An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence{sup TM}, Roche Applied Science, ACEA Biosciences Inc.) to supplementmore » conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC{sub 50}) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.« less

  13. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo.

    PubMed

    Wei, W; Chen, Z-J; Zhang, K-S; Yang, X-L; Wu, Y-M; Chen, X-H; Huang, H-B; Liu, H-L; Cai, S-H; Du, J; Wang, H-S

    2014-10-02

    There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER-) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER--breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER--breast cancer cells in vitro. Treatment of ER--breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER- breast cancer treatment.

  14. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    PubMed

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. A feasibility study for in vitro evaluation of fixation between prosthesis and bone with bone marrow-derived mesenchymal stem cells.

    PubMed

    Morita, Yusuke; Yamasaki, Kenichi; Hattori, Koji

    2010-10-01

    It is difficult to quantitatively evaluate adhesive strength between an implant and the neighboring bone using animal experiments, because the degree of fixation of an implant depends on differences between individuals and the clearance between the material and the bone resulting from surgical technique. A system was designed in which rat bone marrow cells were used to quantitatively evaluate the adhesion between titanium alloy plates and bone plates in vitro. Three kinds of surface treatment were used: a sand-blasted surface, a titanium-sprayed surface and a titanium-sprayed surface coated with hydroxyapatite. Bone marrow cells obtained from rat femora were seeded on the titanium alloy plates, and the cells were cultured between the titanium alloy plates and the bone plates sliced from porcine ilium for 2 weeks. After cultivation, adhesive strength was measured using a tensile test, after which DNA amount and Alkaline phosphatase activity were measured. The seeded cells accelerated adhesion of the titanium alloy plate to the bone plate. Adhesive strength of the titanium-sprayed surface was lower than that of the sand-blasted surface because of lower initial contact area, although there was no difference in Alkaline phosphatase activity between two surface treatments. A hydroxyapatite coating enhanced adhesive strength between the titanium alloy palate and the bone plate, as well as enhancing osteogenic differentiation of bone marrow cells. It is believed that this novel experimental method can be used to simultaneously evaluate the osteogenic differentiation and the adhesive strength of an implant during in vitro cultivation. 2010 Elsevier Ltd. All rights reserved.

  16. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  17. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    PubMed

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  18. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    NASA Astrophysics Data System (ADS)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  19. Hydroxyapatite Nanoparticles as a Novel Gene Carrier

    NASA Astrophysics Data System (ADS)

    Zhu, S. H.; Huang, B. Y.; Zhou, K. C.; Huang, S. P.; Liu, F.; Li, Y. M.; Xue, Z. G.; Long, Z. G.

    2004-06-01

    Hydroxyapatite crystalline nanoparticles were created by a precipitation hydrothermal technique and the majority of crystal particles were in the size range of 40-60nm and exhibited a colloidal feature when suspended in water. The gastric cancer SGC-7901 cell line cells were cultivated in the presence of10-100 μg ml-1 hydroxyapatite nanoparticle suspension and verified by MTT evaluation for their biocompatibility in vitro. The agarose gel electrophoresis analysis demonstrated that the HA nanoparticles potentially adsorb the green fluorescence protein EGFP-N1 plasmid DNA at pH 2 and 7, but not at pH 12. The DNA-nanoparticle complexes transfected EGFP-N1 pDNA into SGC-7901 cells in vitro with the efficiency about 80% as referenced with Lipofectmine TM 2000. In vivo animal experiment revealed no acute toxic adverse effect 2weeks after tail vein injection into mice, and TEM examination demonstrated their biodistribution and expression within the cytoplasm and also a little in the nuclei of the liver, kidney and brain tissue cells. These results suggest that the HA nanoparticle is a promising material that can be used as gene carrier, vectors.

  20. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    PubMed

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  1. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  2. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    PubMed

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  3. Cytogenetic studies on Nigella sativa seeds extract and thymoquinone on mouse cells infected with schistosomiasis using karyotyping.

    PubMed

    Aboul-Ela, Ezzat I

    2002-04-26

    The protective effect of Nigella sativa seed extract and its main constituents thymoquinone (TQ) was studied on mouse cells infected with schistosomiasis. Bone marrow cells in the in vivo experiments and spleen cells in the in vitro one were used to evaluate the potentially protective effect of these natural compounds on the induction of chromosomal aberrations. Karyotyping of the mice cells illustrated that the main abnormalities were gaps, fragments and deletions especially in chromosomes 2, 6 and some in chromosomes 13 and 14. Both N. sativa extract and TQ were considered as protective agents against the chromosomal aberrations induced as a result of schistosomiasis.

  4. Micro- and nanoengineering for stem cell biology: the promise with a caution.

    PubMed

    Kshitiz; Kim, Deok-Ho; Beebe, David J; Levchenko, Andre

    2011-08-01

    Current techniques used in stem cell research only crudely mimic the physiological complexity of the stem cell niches. Recent advances in the field of micro- and nanoengineering have brought an array of in vitro cell culture models that have enabled development of novel, highly precise and standardized tools that capture physiological details in a single platform, with greater control, consistency, and throughput. In this review, we describe the micro- and nanotechnology-driven modern toolkit for stem cell biologists to design novel experiments in more physiological microenvironments with increased precision and standardization, and caution them against potential challenges that the modern technologies might present. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  6. Inflammatory response study of gellan gum impregnated duck's feet derived collagen sponges.

    PubMed

    Song, Jeong Eun; Lee, Seon Eui; Cha, Se Rom; Jang, Na Keum; Tripathy, Nirmalya; Reis, Rui L; Khang, Gilson

    2016-10-01

    Tissue engineered biomaterials have biodegradable and biocompatible properties. In this study, we have fabricated sponges using duck's feet derived collagen (DC) and gellan gum (GG), and further studied its inflammatory responses. The as-prepared duck's feet DC/GG sponges showed the possibility of application as a tissue engineering material through in vitro and in vivo experiments. The physical and chemical properties of sponges were characterized by compression strength, porosity, and scanning electron microscopy, etc. In vitro cell viability were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. An inflammatory response was studied after seeding RAW264.7 cells on as-fabricated sponges using reverse transcriptase-polymerase chain reaction. In vivo studies were carried out by implanting in subcutaneous nude mouse followed by extraction, histological staining. Collectively, superior results were showed by DC/GG sponges than GG sponge in terms of physical property and cell proliferation and thus can be considered as a potential candidate for future tissue engineering applications.

  7. Measuring APC/C-Dependent Ubiquitylation In Vitro.

    PubMed

    Jarvis, Marc A; Brown, Nicholas G; Watson, Edmond R; VanderLinden, Ryan; Schulman, Brenda A; Peters, Jan-Michael

    2016-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a 1.2 MDa ubiquitin ligase complex with important functions in both proliferating and post-mitotic differentiated cells. In proliferating cells, APC/C controls cell cycle progression by targeting inhibitors of chromosome segregation and mitotic exit for degradation by the 26S proteasome. To understand how APC/C recruits and ubiquitylates its substrate proteins and how these processes are controlled, it is essential to analyze APC/C activity in vitro. In the past, such experiments have been limited by the fact that large quantities of purified APC/C were difficult to obtain and that mutated versions of the APC/C could not be easily generated. In this chapter we review recent advances in generating and purifying recombinant forms of the human APC/C and its co-activators, using methods that are scalable and compatible with mutagenesis. We also describe a method that allows the quantitative analysis of APC/C activity using fluorescently labeled substrate proteins.

  8. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    PubMed

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in vitro or testosterone production was observed. The human testis is very different in physiology from the rat testis, further investigations are still needed to optimize the organ culture system for future use in humans. The successful differentiation of undifferentiated spermatogonia using the testis explant culture system might be employed in future to produce sperm from human spermatogonia as a clinical tool for fertility preservation in boys and men suffering infertility. None. This work was supported financially by the Frimurare Barnhuset in Stockholm, the Paediatric Research Foundation, Jeanssons Foundation, Sällskåpet Barnåvard in Stockholm, Swedish Research Council/Academy of Finland, Emil and Wera Cornells Foundation, Samariten Foundation, the Swedish Childhood Cancer Foundation as well as through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet. All authors declare no conflicts of interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  9. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture

    PubMed Central

    Reda, A.; Hou, M.; Winton, T.R.; Chapin, R.E.; Söder, O.; Stukenborg, J.-B.

    2016-01-01

    STUDY QUESTION Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? SUMMARY ANSWER We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. WHAT IS KNOWN ALREADY Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in vitro or testosterone production was observed. LIMITATIONS, REASONS FOR CAUTION The human testis is very different in physiology from the rat testis, further investigations are still needed to optimize the organ culture system for future use in humans. WIDER IMPLICATIONS OF THE FINDINGS The successful differentiation of undifferentiated spermatogonia using the testis explant culture system might be employed in future to produce sperm from human spermatogonia as a clinical tool for fertility preservation in boys and men suffering infertility. LARGE SCALE DATA None. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported financially by the Frimurare Barnhuset in Stockholm, the Paediatric Research Foundation, Jeanssons Foundation, Sällskåpet Barnåvard in Stockholm, Swedish Research Council/Academy of Finland, Emil and Wera Cornells Foundation, Samariten Foundation, the Swedish Childhood Cancer Foundation as well as through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet. All authors declare no conflicts of interests. PMID:27430551

  10. SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetkovic, D; Wang, B; Gupta, R

    Purpose: Photodynamic therapy (PTD) is a promising cancer treatment modality. 5-sminolevulinic acid (ALA) is a clinically approved photosensitizer. Here we studied the effect of 5-ALA administration with irradiation on several cell lines in vitro. Methods: Human head and neck (FaDu), lung (A549) and prostate (LNCaP) cancer cells (104/well) were seeded overnight in 96-well plates (Figure 1). 5-ALA at a range from 0.1 to 30.0mg/ml was added to confluent cells 3h before irradiation in 100ul of culture medium. 15MV photon beams from a Siemens Artiste linear accelerator were used to deliver 2 Gy dose in one fraction to the cells. Cellmore » viability was evaluated by WST1 assay. The development of orange color was measured 3h after the addition of WST-1 reagent at 450nm on an Envision Multilabel Reader (Figure 2) and directly correlated to cell number. Control, untreated cells were incubated without 5-ALA. The experiment was performed twice for each cell line. Results: The cell viability rates for the head and neck cancer line are shown in Figure 3. FaDu cell viability was reduced significantly to 36.5% (5-ALA) and 18.1% (5-ALA + RT) only at the highest concentration of 5-ALA, 30mg/ml. This effect was observed in neither A549, nor LNCaP cell line. No toxicity was detected at lower 5-ALA concentrations. Conclusion: Application of 5-ALA and subsequent PDT was found to be cytotoxic at the highest dose of the photosensitizer used in the FaDu head and neck cell line, and their effect was synergistic. Further efforts are necessary to study the potential therapeutic effects of 5-ALA PTD in vitro and in vivo. Our results suggest 5-ALA may improve the efficacy of radiotherapy by acting as a radiomediator in head and neck cancer.« less

  11. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro.

    PubMed

    Ma, Jing; Shen, Ming; Xu, Chang Song; Sun, Ying; Duan, You Rong; Du, Lian Fang

    2016-11-29

    A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.

  12. Effect of macrophages on in vitro corrosion behavior of magnesium alloy.

    PubMed

    Zhang, Jian; Hiromoto, Sachiko; Yamazaki, Tomohiko; Niu, Jialin; Huang, Hua; Jia, Gaozhi; Li, Haiyan; Ding, Wenjiang; Yuan, Guangyin

    2016-10-01

    The influence of cells on the corrosion behavior of biomedical magnesium alloy is an important but less studied topic, which is helpful for understanding the inconsistent corrosion rates between in vitro and in vivo experiments. In this work, macrophages were directly cultured on Mg-2.1Nd-0.2Zn-0.5Zr (wt %, abbreviated as JDBM) alloy surface for 72 or 168 hours. Macrophages retained good viability and the generation of reactive oxygen species (ROS) was greatly promoted on the alloy. Weight loss, Mg(2+) concentration, and cross-section observation results demonstrated that macrophages accelerated the in vitro corrosion of JDBM. The coverage of cell body did not affect the local thickness of corrosion product layer. The corrosion product layer had a porous inner Mg(OH)2 layer and a dense outer layer mainly composed of O, P, Mg, and Ca. The uniform acceleration of JDBM corrosion was attributed to the omnidirection diffusion of ROS from macrophages. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2476-2487, 2016. © 2016 Wiley Periodicals, Inc.

  13. In Vitro and In Vivo Trypanocidal Effects of the Cyclopalladated Compound 7a, a Drug Candidate for Treatment of Chagas' Disease ▿

    PubMed Central

    Matsuo, Alisson L.; Silva, Luis S.; Torrecilhas, Ana C.; Pascoalino, Bruno S.; Ramos, Thiago C.; Rodrigues, Elaine G.; Schenkman, Sergio; Caires, Antonio C. F.; Travassos, Luiz R.

    2010-01-01

    Chagas' disease, a neglected tropical infection, affects about 18 million people, and 100 million are at risk. The only drug available, benznidazole, is effective in the acute form and in the early chronic form, but its efficacy and tolerance are inversely related to the age of the patients. Side effects are frequent in elderly patients. The search for new drugs is thus warranted. In the present study we evaluated the in vitro and in vivo effect of a cyclopalladated compound (7a) against Trypanosoma cruzi, the agent of Chagas' disease. The 7a compound inhibits trypomastigote cell invasion, decreases intracellular amastigote proliferation, and is very effective as a trypanocidal drug in vivo, even at very low dosages. It was 340-fold more cytotoxic to parasites than to mammalian cells and was more effective than benznidazole in all in vitro and in vivo experiments. The 7a cyclopalladate complex exerts an apoptosis-like death in T. cruzi trypomastigote forms and causes mitochondrion disruption seen by electron microscopy. PMID:20479201

  14. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome

    PubMed Central

    Terajima, Masanori; Ennis, Francis A.

    2011-01-01

    We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses. PMID:21994770

  15. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome.

    PubMed

    Terajima, Masanori; Ennis, Francis A

    2011-07-01

    We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses.

  16. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.

    PubMed

    Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo

    2018-03-01

    Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  17. [Preparation trauma in stomatology].

    PubMed

    Novák, L; Půza, V; Cervinka, M; Kolárová, J

    1997-01-01

    In this paper authors deal with the causes of preparation trauma in stomatology. They have studied effects of high temperature on human cells cultured in vitro. Based both on literature data and on their own experience they summarize basic principles of preparation which prevent preparation trauma. They summarize how to eliminate as much as possible factors that damage hard dental tissues and pulp.

  18. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology.

    PubMed

    Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin

    2010-12-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).

  19. A study to evaluate the effect of nootropic drug-piracetam on DNA damage in leukocytes and macrophages.

    PubMed

    Singh, Sarika; Goswami, Poonam; Swarnkar, Supriya; Singh, Sheelendra Pratap; Wahajuddin; Nath, Chandishwar; Sharma, Sharad

    2011-11-27

    Piracetam is a nootropic drug that protects neurons in neuropathological and age-related diseases and the activation and modulation of peripheral blood cells in patients with neuropathological conditions is well known. Therefore, in the present study, in vivo, ex vivo, and in vitro tests were conducted to investigate the effect of piracetam on leukocytes and macrophages. Lipopolysaccharide (LPS) causes oxidative DNA damage; thus, in the present study, LPS was used as a tool to induce DNA damage. In vivo experiments were conducted on Sprague Dawley rats, and piracetam (600mg/kg, oral) was provided for five consecutive days. On the fifth day, a single injection of LPS (10mg/kg, i.p.) was administered. Three hours after LPS injection, blood leukocytes and peritoneal macrophages were collected and processed, and a variety of different assays were conducted. Ex vivo treatments were performed on isolated rat blood leukocytes, and in vitro experiments were conducted on rat macrophage cell line J774A.1. Cell viability and the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and DNA damage were estimated in untreated (control) and piracetam-, LPS- and LPS+piracetam-treated leukocytes and macrophages. In vivo experiments revealed that rats pretreated with piracetam were significantly protected against LPS-induced increases in ROS levels and DNA damage. Ex vivo isolated leukocytes and J774A.1 cells treated with LPS exhibited augmented ROS levels and DNA damage, which were attenuated with piracetam treatment. Thus, the present study revealed the salutary effect of piracetam against LPS-induced oxidative stress and DNA damage in leukocytes and macrophages. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.

    PubMed

    Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich

    2015-05-07

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.

Top