Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses
Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.
2014-01-01
Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432
Lien, Anthony D.; Scanziani, Massimo
2011-01-01
Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948
Simkó, Myrtill; Remondini, Daniel; Zeni, Olga; Scarfi, Maria Rosaria
2016-01-01
Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions. PMID:27420084
Nanoscale Proteomic Analysis of Oncoproteins in Hematopoietic Cancers
2012-05-01
MYC, signaling proteins, BCR-ABL, lymphoma, leukemia, MDS, atorvastatin , imatinib, apoptosis, cell proliferation, cellular senescence, tumor regression...interrogate the mechanism of clinical response of patients with lymphoma to atorvastatin and the clinical response of leukemia to imatinib in vitro...oncoprotein and signaling protein expression, phosphorylation and DNA binding in response to atorvastatin and imatinib in vitro in mouse and human cell lines
Paracrine communication maximizes cellular response fidelity in wound signaling
Handly, L Naomi; Pilko, Anna; Wollman, Roy
2015-01-01
Population averaging due to paracrine communication can arbitrarily reduce cellular response variability. Yet, variability is ubiquitously observed, suggesting limits to paracrine averaging. It remains unclear whether and how biological systems may be affected by such limits of paracrine signaling. To address this question, we quantify the signal and noise of Ca2+ and ERK spatial gradients in response to an in vitro wound within a novel microfluidics-based device. We find that while paracrine communication reduces gradient noise, it also reduces the gradient magnitude. Accordingly we predict the existence of a maximum gradient signal to noise ratio. Direct in vitro measurement of paracrine communication verifies these predictions and reveals that cells utilize optimal levels of paracrine signaling to maximize the accuracy of gradient-based positional information. Our results demonstrate the limits of population averaging and show the inherent tradeoff in utilizing paracrine communication to regulate cellular response fidelity. DOI: http://dx.doi.org/10.7554/eLife.09652.001 PMID:26448485
Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi
2016-01-01
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs. PMID:27669221
ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...
Code of Federal Regulations, 2011 CFR
2011-01-01
... vitro measure of the beryllium antigen-specific, cell-mediated immune response. Beryllium worker means a... particles. Immune response refers to the series of cellular events by which the immune system reacts to...
Miller, Michelle M; Alyea, Rebecca A; LeSommer, Caroline; Doheny, Daniel L; Rowley, Sean M; Childs, Kristin M; Balbuena, Pergentino; Ross, Susan M; Dong, Jian; Sun, Bin; Andersen, Melvin A; Clewell, Rebecca A
2016-11-01
A toxicity pathway approach was taken to develop an in vitro assay using human uterine epithelial adenocarcinoma (Ishikawa) cells as a replacement for measuring an in vivo uterotrophic response to estrogens. The Ishikawa cell was determined to be fit for the purpose of recapitulating in vivo uterine response by verifying fidelity of the biological pathway components and the dose-response predictions to women of child-bearing age. Expression of the suite of estrogen receptors that control uterine proliferation (ERα66, ERα46, ERα36, ERβ, G-protein coupled estrogen receptor (GPER)) were confirmed across passages and treatment conditions. Phenotypic responses to ethinyl estradiol (EE) from transcriptional activation of ER-mediated genes, to ALP enzyme induction and cellular proliferation occurred at concentrations consistent with estrogenic activity in adult women (low picomolar). To confirm utility of this model to predict concentration-response for uterine proliferation with xenobiotics, we tested the concentration-response for compounds with known uterine estrogenic activity in humans and compared the results to assays from the ToxCast and Tox21 suite of estrogen assays. The Ishikawa proliferation assay was consistent with in vivo responses and was a more sensitive measure of uterine response. Because this assay was constructed by first mapping the key molecular events for cellular response, and then ensuring that the assay incorporated these events, the resulting cellular assay should be a reliable tool for identifying estrogenic compounds and may provide improved quantitation of chemical concentration response for in vitro-based safety assessments. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.
Translating in vitro data and biological information into a predictive model for human toxicity poses a significant challenge. This is especially true for complex adaptive systems such as the embryo where cellular dynamics are precisely orchestrated in space and time. Computer ce...
2016-01-01
Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840
Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng
2017-09-01
In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.
testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells (target cell dose). Methods: Balb/c mice were exposed nose-only to an aerosol of 12.8 nm (68.6 nm CMD, 19.9 mg/m3, 4 hours)more » super paramagnetic iron oxide particles, target cell doses were calculated and biomarkers of response anchored with histological evidence were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. Results. Target tissue doses of 0.009-0.4 μg SPIO/cm2 lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 μg SPIO/ cm2 of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. Conclusions: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more quantitative comparison of in vitro and in vivo systems advance their use for hazard assessment and extrapolation to humans. The mildly inflammogentic cellular doses experienced by mice were similar those calculated for humans exposed to the same at the existing permissible exposure limit of 10 mg/m3 iron oxide (as Fe).« less
A core viral protein binds host nucleosomes to sequester immune danger signals
Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.
2016-01-01
Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237
Virtual Liver: Quantitative Dose-Response Using Systems Biology
The U.S. EPA’s ToxCast™ program uses hundreds of high-throughput, in vitro assays to screen chemicals in order to rapidly identify signatures of toxicity. These assays measure the in vitro concentrations at which cellular pathways are perturbed by chemicals. The U.S. EPA’s Virtu...
Gas Phase Probe Molecules for Assessing In vitro Metabolism to Infer an In vivo Response
Efficient and accurate in vitro high-throughput screening (HTS) methods use cellular and molecular based adverse outcome pathways (AOPs) as central elements for exposure assessment and chemical prioritization. However, not all AOPs are based on human or animal systems biology, bu...
Kaushal, H; Bras-Gonçalves, R; Avishek, K; Kumar Deep, D; Petitdidier, E; Lemesre, J-L; Papierok, G; Kumar, S; Ramesh, V; Salotra, P
2016-07-01
Post-kala-azar dermal leishmaniasis (PKDL) is a chronic dermal complication that occurs usually after recovery from visceral leishmaniasis (VL). The disease manifests into macular, papular and/or nodular clinical types with mono- or polymorphic presentations. Here, we investigated differences in immunological response between these two distinct clinical forms in Indian PKDL patients. Peripheral blood mononuclear cells of PKDL and naive individuals were exposed in vitro to total soluble Leishmania antigen (TSLA). The proliferation index was evaluated using an enzyme-linked immunosorbent assay (ELISA)-based lymphoproliferative assay. Cytokines and granzyme B levels were determined by cytometric bead array. Parasite load in tissue biopsy samples of PKDL was quantified by quantitative polymerase chain reaction (qPCR). The proportion of different lymphoid subsets in peripheral blood and the activated T cell population were estimated using flow cytometry. The study demonstrated heightened cellular immune responses in the polymorphic PKDL group compared to the naive group. The polymorphic group showed significantly higher lymphoproliferation, increased cytokines and granzyme B levels upon TSLA stimulation, and a raised proportion of circulating natural killer (NK) T cells against naive controls. Furthermore, the polymorphic group showed a significantly elevated proportion of activated CD4(+) and CD8(+) T cells upon in-vitro TSLA stimulation. Thus, the polymorphic variants showed pronounced cellular immunity while the monomorphic form demonstrated a comparatively lower cellular response. Additionally, the elevated level of both activated CD4(+) and CD8(+) T cells, coupled with high granzyme B secretion upon in-vitro TSLA stimulation, indicated the role of cytotoxic cells in resistance to L. donovani infection in polymorphic PKDL. © 2016 British Society for Immunology.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.
2000-01-01
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.
Zhou, Jian; Ye, Shiqiao; Fujiwara, Toshifumi; Manolagas, Stavros C.; Zhao, Haibo
2013-01-01
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function. PMID:23990467
Giorgini, Elisabetta; Sabbatini, Simona; Rocchetti, Romina; Notarstefano, Valentina; Rubini, Corrado; Conti, Carla; Orilisi, Giulia; Mitri, Elisa; Bedolla, Diana E; Vaccari, Lisa
2018-06-22
In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).
A Novel in Vitro Analog Expressing Learning-Induced Cellular Correlates in Distinct Neural Circuits
ERIC Educational Resources Information Center
Weisz, Harris A.; Wainwright, Marcy L.; Mozzachiodi, Riccardo
2017-01-01
When presented with noxious stimuli, "Aplysia" exhibits concurrent sensitization of defensive responses, such as the tail-induced siphon withdrawal reflex (TSWR) and suppression of feeding. At the cellular level, sensitization of the TSWR is accompanied by an increase in the excitability of the tail sensory neurons (TSNs) that elicit the…
Pelletier, Simon J.
2015-01-01
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391
Thoma, Eva C; Heckel, Tobias; Keller, David; Giroud, Nicolas; Leonard, Brian; Christensen, Klaus; Roth, Adrian; Bertinetti-Lapatki, Cristina; Graf, Martin; Patsch, Christoph
2016-10-25
Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.
Baker, Jillian G.; Kemp, Philip; March, Julie; Fretwell, Laurice; Hill, Stephen J.; Gardiner, Sheila M.
2011-01-01
β-Adrenoceptor antagonists differ in their degree of partial agonism. In vitro assays have provided information on ligand affinity, selectivity, and intrinsic efficacy. However, the extent to which these properties are manifest in vivo is less clear. Conscious freely moving rats, instrumented for measurement of heart rate (β1; HR) and hindquarters vascular conductance (β2; HVC) were used to measure receptor selectivity and ligand efficacy in vivo. CGP 20712A caused a dose-dependent decrease in basal HR (P<0.05, ANOVA) at 5 doses between 6.7 and 670 μg/kg (i.v.) and shifted the dose-response curve for isoprenaline to higher agonist concentrations without altering HVC responses. In contrast, at doses of 67 μg/kg (i.v.) and above, ICI 118551 substantially reduced the HVC response to isoprenaline without affecting HR responses. ZD 7114, xamoterol, and bucindolol significantly increased basal HR (ΔHR: +122±12, +129±11, and +59±11 beats/min, respectively; n=6), whereas other β-blockers caused significant reductions (all at 2 mg/kg i.v.). The agonist effects of xamoterol and ZD 7114 were equivalent to that of the highest dose of isoprenaline. Bucindolol, however, significantly antagonized the response to the highest doses isoprenaline. An excellent correlation was obtained between in vivo and in vitro measures of β1-adrenoceptor efficacy (R2=0.93; P<0.0001).—Baker, J. G., Kemp, P., March, J., Fretwell, L., Hill, S. J., Gardiner, S. M. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. PMID:21865315
Plant Regeneration and Cellular Behaviour Studies in Celosia cristata Grown In Vivo and In Vitro
Taha, Rosna Mat; Wafa, Sharifah Nurashikin
2012-01-01
Tissue culture studies of Celosia cristata were established from various explants and the effects of various hormones on morphogenesis of this species were examined. It was found that complete plant regeneration occurred at highest percentage on MS medium supplemented with 2.0 mg/L NAA and 1.5 mg/L BAP, with the best response showed by shoot explants. In vitro flowering was observed on MS basal medium after six weeks. The occurrence of somaclonal variation and changes in cellular behavior from in vivo and in vitro grown plants were investigated through cytological studies and image analysis. It was observed that Mitotic Index (MI), mean chromosome numbers, and mean nuclear to cell area ratio of in vitro root meristem cells were slightly higher compared to in vivo values. However, in vitro plants produced lower mean cell areas but higher nuclear areas when compared to in vivo plants. Thus, no occurrence of somaclonal variation was detected, and this was supported by morphological features of the in vitro plants. PMID:22593677
Computational Systems Biology and Dose Response Modeling Workshop, September 22-26, 2008
The recently published National Academy of Sciences (NAS) report “Toxicity Testing in the 21st Century” recommends a new approach to toxicity testing, based on evaluating cellular responses in a suite of toxicity pathway assays in human cells or cells lines in vitro. Such a parad...
Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo
2010-06-01
Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.
E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.
Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna
2016-07-01
Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.
Oeder, Sebastian; Kanashova, Tamara; Sippula, Olli; Sapcariu, Sean C; Streibel, Thorsten; Arteaga-Salas, Jose Manuel; Passig, Johannes; Dilger, Marco; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Diabaté, Silvia; Weiss, Carsten; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Torvela, Tiina; Jokiniemi, Jorma K; Hirvonen, Maija-Riitta; Schmidt-Weber, Carsten; Traidl-Hoffmann, Claudia; BéruBé, Kelly A; Wlodarczyk, Anna J; Prytherch, Zoë; Michalke, Bernhard; Krebs, Tobias; Prévôt, André S H; Kelbg, Michael; Tiggesbäumker, Josef; Karg, Erwin; Jakobi, Gert; Scholtes, Sorana; Schnelle-Kreis, Jürgen; Lintelmann, Jutta; Matuschek, Georg; Sklorz, Martin; Klingbeil, Sophie; Orasche, Jürgen; Richthammer, Patrick; Müller, Laarnie; Elsasser, Michael; Reda, Ahmed; Gröger, Thomas; Weggler, Benedikt; Schwemer, Theo; Czech, Hendryk; Rüger, Christopher P; Abbaszade, Gülcin; Radischat, Christian; Hiller, Karsten; Buters, Jeroen T M; Dittmar, Gunnar; Zimmermann, Ralf
2015-01-01
Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot"). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.
Dilger, Marco; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Diabaté, Silvia; Weiss, Carsten; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Torvela, Tiina; Jokiniemi, Jorma K.; Hirvonen, Maija-Riitta; Schmidt-Weber, Carsten; Traidl-Hoffmann, Claudia; BéruBé, Kelly A.; Wlodarczyk, Anna J.; Prytherch, Zoë; Michalke, Bernhard; Krebs, Tobias; Prévôt, André S. H.; Kelbg, Michael; Tiggesbäumker, Josef; Karg, Erwin; Jakobi, Gert; Scholtes, Sorana; Schnelle-Kreis, Jürgen; Lintelmann, Jutta; Matuschek, Georg; Sklorz, Martin; Klingbeil, Sophie; Orasche, Jürgen; Richthammer, Patrick; Müller, Laarnie; Elsasser, Michael; Reda, Ahmed; Gröger, Thomas; Weggler, Benedikt; Schwemer, Theo; Czech, Hendryk; Rüger, Christopher P.; Abbaszade, Gülcin; Radischat, Christian; Hiller, Karsten; Buters, Jeroen T. M.; Dittmar, Gunnar; Zimmermann, Ralf
2015-01-01
Background Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices. PMID:26039251
Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty
2011-01-01
To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.
Lu, Helen H; Cooper, James A; Manuel, Sharron; Freeman, Joseph W; Attawia, Mohammed A; Ko, Frank K; Laurencin, Cato T
2005-08-01
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee, and limitations in existing reconstruction grafts have prompted an interest in tissue engineered solutions. Previously, we reported on a tissue-engineered ACL scaffold fabricated using a novel, three-dimensional braiding technology. A critical factor in determining cellular response to such a graft is material selection. The objective of this in vitro study was to optimize the braided scaffold, focusing on material composition and the identification of an appropriate polymer. The selection criteria are based on cellular response, construct degradation, and the associated mechanical properties. Three compositions of poly-alpha-hydroxyester fibers, namely polyglycolic acid (PGA), poly-L-lactic acid (PLLA), and polylactic-co-glycolic acid 82:18 (PLAGA) were examined. The effects of polymer composition on scaffold mechanical properties and degradation were evaluated in physiologically relevant solutions. Prior to culturing with primary rabbit ACL cells, scaffolds were pre-coated with fibronectin (Fn, PGA-Fn, PLAGA-Fn, PLLA-Fn), an important protein which is upregulated during ligament healing. Cell attachment and growth were examined as a function of time and polymer composition. While PGA scaffolds measured the highest tensile strength followed by PLLA and PLAGA, its rapid degradation in vitro resulted in matrix disruption and cell death over time. PLLA-based scaffolds maintained their structural integrity and exhibited superior mechanical properties over time. The response of ACL cells was found to be dependent on polymer composition, with the highest cell number measured on PLLA-Fn scaffolds. Surface modification of polymer scaffolds with Fn improved cell attachment efficiency and effected the long-term matrix production by ACL cells on PLLA and PLAGA scaffolds. Therefore based on the overall cellular response and its temporal mechanical and degradation properties in vitro, the PLLA braided scaffold pre-coated with Fn was found to be the most suitable substrate for ACL tissue engineering.
Immune response during space flight.
Criswell-Hudak, B S
1991-01-01
The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks.
Han, Xianglu; Corson, Nancy; Wade-Mercer, Pamela; Gelein, Robert; Jiang, Jingkun; Sahu, Manoranjan; Biswas, Pratim; Finkelstein, Jacob N.; Elder, Alison; Oberdörster, Günter
2012-01-01
There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO2 NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO2 NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 hr incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency. PMID:22487507
Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar
2014-02-12
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This "in vitro" model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12-24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.
Long-term microfluidic glucose and lactate monitoring in hepatic cell culture
Prill, Sebastian; Jaeger, Magnus S.; Duschl, Claus
2014-01-01
Monitoring cellular bioenergetic pathways provides the basis for a detailed understanding of the physiological state of a cell culture. Therefore, it is widely used as a tool amongst others in the field of in vitro toxicology. The resulting metabolic information allows for performing in vitro toxicology assays for assessing drug-induced toxicity. In this study, we demonstrate the value of a microsystem for the fully automated detection of drug-induced changes in cellular viability by continuous monitoring of the metabolic activity over several days. To this end, glucose consumption and lactate secretion of a hepatic tumor cell line were continuously measured using microfluidically addressed electrochemical sensors. Adapting enzyme-based electrochemical flat-plate sensors, originally designed for human whole-blood samples, to their use with cell culture medium supersedes the common manual and laborious colorimetric assays and off-line operated external measurement systems. The cells were exposed to different concentrations of the mitochondrial inhibitor rotenone and the cellular response was analyzed by detecting changes in the rates of the glucose and lactate metabolism. Thus, the system provides real-time information on drug-induced liver injury in vitro. PMID:24926387
Hassan, Hatem A.F.M.; Smyth, Lesley; Rubio, Noelia; Ratnasothy, Kulachelvy; Wang, Julie T.-W.; Bansal, Sukhvinder S.; Summers, Huw D.; Diebold, Sandra S.; Lombardi, Giovanna; Al-Jamal, Khuloud T.
2016-01-01
Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~ 386 nm), bearing net positive charge (5.8 mV), or short MWNTs-OVA (~ 122 nm) of increasing negative charges (− 23.4, − 35.8 or − 39 mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system. PMID:26802552
Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-01-01
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686
Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-02-28
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.
Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A; Howell, David; Gibson, Laura F
2016-01-01
Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.
Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.
2012-01-01
Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053
Bent, Eric H.; Gilbert, Luke A.; Hemann, Michael T.
2016-01-01
Cancer therapy targets malignant cells that are surrounded by a diverse complement of nonmalignant stromal cells. Therapy-induced damage of normal cells can alter the tumor microenvironment, causing cellular senescence and activating cancer-promoting inflammation. However, how these damage responses are regulated (both induced and resolved) to preserve tissue homeostasis and prevent chronic inflammation is poorly understood. Here, we detail an acute chemotherapy-induced secretory response that is self-limiting in vitro and in vivo despite the induction of cellular senescence. We used tissue-specific knockout mice to demonstrate that endothelial production of the proinflammatory cytokine IL-6 promotes chemoresistance and show that the chemotherapeutic doxorubicin induces acute IL-6 release through reactive oxygen species-mediated p38 activation in vitro. Doxorubicin causes endothelial senescence but, surprisingly, without a typical senescence secretory response. We found that endothelial cells repress senescence-associated inflammation through the down-regulation of PI3K/AKT/mTOR signaling and that reactivation of this pathway restores senescence-associated inflammation. Thus, we describe a mechanism by which damage-associated paracrine secretory responses are restrained to preserve tissue homeostasis and prevent chronic inflammation. PMID:27566778
Clewell, Rebecca A; Andersen, Melvin E
2016-05-01
Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.
2016-10-01
Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application development.
Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul
2017-01-01
Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448
NASA Technical Reports Server (NTRS)
Feurecker, M.; Mayer, W.; Gruber, M.; Muckenthaler, F.; Draenert, R.; Bogner, J.; Kaufmann, I.; Crucian, B.; Rykova, M.; Morukov, B.;
2010-01-01
Goal:i) Characterization of the role of the main immune reactive cell types contributing to the cellular immune response in the in-vitro DTH and ii) Validation of the in-vitro DTH under different clinical and field conditions. Methods:As positive control whole blood was incubated in the in-vitro DTH, supernatants were gathered after 12, 24 and 48h. Readout parameters of this test are cytokines in the assay's supernatant. To determine the role of T-cells, monocytes and natural killer (NK), these cell populations were depleted using magnetic beads prior to in-vitro-DTH incubation. Validation of the test has occurred under clinical (HIV-patients, ICU) and field-conditions (parabolic/space-flights, confinement). Results:T-cell depletion abandoned almost any IL-2 production and reduced IFN-gamma production irrespective of the type of antigen, whereas CD56 depleted cultures tended to lower IL-2 secretion and IFN-gamma and to parallel a IL-10-increase after viral challenge. This IL-10-increase was seen also in CD14-depleted setups. DTH read-out was significantly different under acute stress (parabolic flight) or chronic stress (ISS), respectively. Preliminary data of HIV infected patients demonstrate that this test can display the contemporary immune status during an antiviral therapy. Conclusion:The in-vitro DTH mirrors adaptive and innate immune activation and may serve as tool also for longitudinal follow up of Th1/Th2 weighed immune response under adverse life conditions on earth and in space. It is planned to implement the assay in the on the ISS (MoCISS).
Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo
2015-01-01
As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament. © 2014 Wiley Periodicals, Inc.
2010-01-01
Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yachie, A.; Tosato, G.; Straus, S.E.
1985-08-01
Cytomegalovirus (CMV) is the cause of a number of different diseases ranging from self-limited benign infections in healthy adults to life threatening illnesses among immunocompromised hosts and newborns. Suppression of cell-mediated immunity is often found in cases of acute CMV infection, and in addition, the virus may also be a potent stimulant of lymphoid cells in vivo. The authors studied cellular proliferation and immunoglobulin (Ig) production induced by CMV to determine its effect on human lymphocytes in vitro. The CMV that was added to cultures of lymphocytes from CMV-seronegative donors failed to induce either significant cellular proliferation or Ig production.more » By contrast, CMV-stimulated cultures from CMV-seropositive donors induced both prominent cellular proliferation and Ig production. B cell differentiation into Ig-secreting cells required the presence of T cells, and this T cell help was sensitive to irradiation with 2000 rad and to treatment with cyclosporin A. When T cells were depleted of OKT4+ cells with monoclonal antibody and complement, the co-cultured B cells failed to produce Ig, whereas the depletion of OKT8+ cells had no effect on the Ig-secreting cell response. Inactivation of CMV before culture did not result in a reduction of either cellular proliferation or Ig production. Thus, infection of target cells is not required for in vitro lymphocyte activation by CMV. These results demonstrate that CMV is a potent activator of B cells inducing Ig production in vitro, and that this process requires the presence of virus-specific memory T cells.« less
Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia
2015-02-16
Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37-1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.
Humoral and Cellular Response in Humans After Immunization with Influenza Vaccine
Ruben, Frederick L.; Jackson, George G.; Gotoff, Samuel P.
1973-01-01
The peripheral blood lymphocyte response and hemagglutination inhibition antibody titers were measured in nine adults before and after immunization with a killed split influenza virus vaccine. Cord blood lymphocytes were tested with the influenza antigen to exclude a nonspecific mitogenic effect. All of the subjects demonstrated preexisting antibody titers and antigen recognition by lymphocytes prior to immunization. The in vitro lymphocyte response after vaccination parallels the humoral antibody response to influenza antigen. PMID:4762112
Evaluation of immunomodulatory activity of methanolic extract of Piper betel.
Kanjwani, D G; Marathe, T P; Chiplunkar, S V; Sathaye, S S
2008-06-01
Many of the disorders today are based on the imbalances of immunological processes. This necessitates the search for newer and safer immunomodulators. Thus, the objective of the present study was to explore the immunomodulatory activity of the methanolic extract of Piper betel L. (MPb) (Family: Piperaceae). The MPb consists of mixture of phenols, flavonoids, tannins and polysaccharides. Both in vitro as well as in vivo evaluation was carried out. The effects of MPb on lymphocyte proliferation, interferon-gamma receptors and the production of nitric oxide were measured in vitro. Further, the extract at different dose levels was studied in vivo for the humoral and cellular immune responses on mice immunized with sheep red blood cells. P. betel significantly suppressed phytohaemagglutinin stimulated peripheral blood lymphocyte proliferation in a dose-dependent manner. The decrease in antibody titre and increased suppression of inflammation suggests possible immunosuppressive effect of extract on cellular and humoral response in mice. Thus, the MPb could be explored extensively as a therapeutic agent to treat various immune disorders including autoimmune disorders.
Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.
Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E
2014-06-01
Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.
Sha, Luping; Wang, Da; Mao, Yuling; Shi, Wei; Gao, Tianbin; Zhao, Qinfu; Wang, Si-Ling
2018-05-22
In this research, a novel method was used to successfully make Pluronic P123 stably coated on mesoporous silica nanoparticles (MSN). That P123 and MSN co-constructed a drug delivery system (DDS) had not been reported. In this DDS, the coating of P123 was realized through hydrophobic interaction with octadecyl chain modified MSN. Experiments found only Pluronic with an appropriate ratio of hydrophilic and lipophilic segment could keep the nanoassemblies stable. For comparison, nanoassemblies consisted of P123 and octadecyl chain modified MSN with or without disulfide bond were prepared, which were denoted as PSMSN and PMSN respectively. Disulfide bond was expected to endow the system with redox-responsiveness to enhance the therapeutic effect meanwhile decrease toxicity. A series of experiments including characterization of the nanoparticles, in vitro drug release, cell uptake and cellular drug release, in vitro cytotoxicity, cell migration and biodistribution of the nanoparticles were carried out. Compared with PMSN, PSMSN displayed redox-responsive drug release property not only in in vitro release text, but also on the cellular level. In addition, cell migration experiments proved that the coating of P123 endowed the system with the ability of anti-metastasis. The accumulation of P123 in tumor was enhanced after coating on MSN by virtue of the "EPR" effect of nanoparticles compared with the solution form. . © 2018 IOP Publishing Ltd.
Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R
2008-08-20
Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti-transplant, autoimmune, or anti-tumor immune responses in vivo and in vitro.
Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites.
Saha, Naresh; Dubey, Ashutosh K; Basu, Bikramjit
2012-01-01
One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (≤10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. Copyright © 2011 Wiley Periodicals, Inc.
Arias, Mauricio A.; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin
2011-01-01
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. PMID:21145913
Arias, Mauricio A; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin
2011-02-01
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hapten-specific lymphocyte transformation in humans sensitized with NDMA or DNCB.
SoebergB; Andersen, V
1976-01-01
The primary immune response to a contact sensitizing dose of para-N-dimethylnitrosaniline (NDMA) and dinitrochlorobenzene (DNCB) was obtained in humans and measured in vitro by increased thymidine incorporation into sensitized lymphocytes. No cross-reaction was found between these two haptens, and it is thus possible on two separate occasions to quantify and follow the primary cellular immune response in man. PMID:963911
Tendon cell outgrowth rates and morphology associated with kevlar-49.
Zimmerman, M; Gordon, K E
1988-12-01
A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.
2000-01-01
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.
Johansson, Tomas; Nilsson, Anki; Chatzissavidou, Nathalie; Sjöblom, Magnus; Rova, Ulrika; Holgersson, Jan
2012-01-01
Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented. OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays. Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect. Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses. PMID:23071675
Waag, David M; England, Marilyn J; Bolt, Christopher R; Williams, Jim C
2008-10-01
Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 microg, followed by a booster dose of 30 microg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection.
Waag, David M.; England, Marilyn J.; Bolt, Christopher R.; Williams, Jim C.
2008-01-01
Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 μg, followed by a booster dose of 30 μg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection. PMID:18701647
Nederpelt, Indira; Kuzikov, Maria; de Witte, Wilbert E A; Schnider, Patrick; Tuijt, Bruno; Gul, Sheraz; IJzerman, Adriaan P; de Lange, Elizabeth C M; Heitman, Laura H
2017-10-26
An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system. We demonstrated that the binding kinetics of both antagonists (DFA and aprepitant) and endogenous agonists (NKA and SP) have significantly different effects on signal transduction profiles, i.e. potency values, in vitro efficacy values and onset rate of signal transduction. The antagonistic effects were most efficacious with slowly dissociating aprepitant and slowly associating NKA while the combination of rapidly dissociating DFA and rapidly associating SP had less significant effects on the signal transduction profiles. These results were consistent throughout different kinetic assays and cellular backgrounds. We conclude that knowledge of the relationship between in vitro drug-target binding kinetics and cellular responses is important to ultimately improve the understanding of drug efficacy in vivo.
Finding Toxicological Tipping Points from High-Content Imaging Data (WC10)
A key challenge to using in vitro data in risk assessment is differentiating between chemical-induced adaptive versus adverse cellular responses. To further investigate this issue, we studied the effects of hundreds of chemicals in HepG2 cells using high-content imaging (HCI). HC...
Graphene-based nanoparticles (NPs) are used extensively in industrial, consumer, and mechanical applications based on their unique structural properties. Due to increasing use of these NPs, environmental exposure to graphene oxide (GO) is probable. GO has been shown to compromise...
Enhancement of proliferation in a rat hepatocyte co-culture model after mitogenic stimulation.
Primary mouse and rat hepatocyte cultures have long been the gold standard for assessment of cellular changes following chemical exposure. While helpful for assessing proliferative and responses in vitro, these cultures are limited to 1 or 2 days of incubation. Our motivation was...
Cellular oxidative response from exposure to size-resolved ambient particulate matter
Recent studies suggest that particulate matter (PM) derived from different sources may differ in toxicity. The goal of this study was to characterize the in vitro effects of ambient PM and PM components from eight different locations in the U.S. and to investigate the effects of ...
Kim, WonJin; Jang, Chul Ho; Kim, GeunHyung
2017-09-01
Collagen has been widely used as a very promising material to regenerate various tissues. It is a chief component of the extracellular matrix, and encourages various biological effects conducive to tissue regeneration. However, poor mechanical stability, low processability, and high level of water absorption can lead to impaired control of growth factor release and have impeded the use of collagen as a functional biomedical scaffold. Here, to overcome the shortcomings of collagen scaffolds, we have additively manufactured collagen/polycaprolactone (PCL) biocomposites supplemented with a bioceramic (hydroxyapatite (HA)/β-tricalcium-phosphate (TCP)) and two growth factors (recombinant human bone morphogenetic protein-2 [rhBMP-2] and platelet-rich plasma [PRP]). Various weight fractions of PCL in the collagen/PCL composites were manipulated to select optimal growth factor release and highly active cellular responses. After the optimal concentration of PCL in the collagen/PCL scaffold was determined, biocomposites supplemented with bioceramic/growth-factors were fabricated. Continuously released growth factors were assumed to increase the in vitro cellular activities of the osteoblast-like cells (MG63) cultured on the biocomposites. In vitro cellular responses, including osteogenic activities, were examined, and results showed that compared to the HA/TCP/rhBMP-2 supplemented scaffold the HA/TCP/PRP biocomposites provide significantly high cellular activities (cell proliferation: >1.3-fold) and mineralization (calcium deposition: >1.4-fold, osteocalcin: >2.6-fold) sufficient for regenerating bone tissue. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lee, J. M.; Lee, J. I.; Lim, Y. J.
2010-03-01
The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.
Edmonds, Matthew J; Carter, Rachel J; Nickson, Catherine M; Williams, Sarah C; Parsons, Jason L
2017-01-25
Endonuclease VIII-like protein 1 (NEIL1) is a DNA glycosylase involved in initiating the base excision repair pathway, the major cellular mechanism for repairing DNA base damage. Here, we have purified the major E3 ubiquitin ligases from human cells responsible for regulation of NEIL1 by ubiquitylation. Interestingly, we have identified two enzymes that catalyse NEIL1 polyubiquitylation, Mcl-1 ubiquitin ligase E3 (Mule) and tripartite motif 26 (TRIM26). We demonstrate that these enzymes are capable of polyubiquitylating NEIL1 in vitro, and that both catalyse ubiquitylation of NEIL1 within the same C-terminal lysine residues. An siRNA-mediated knockdown of Mule or TRIM26 leads to stabilisation of NEIL1, demonstrating that these enzymes are important in regulating cellular NEIL1 steady state protein levels. Similarly, a mutant NEIL1 protein lacking residues for ubiquitylation is more stable than the wild type protein in vivo We also demonstrate that cellular NEIL1 protein is induced in response to ionising radiation (IR), although this occurs specifically in a Mule-dependent manner. Finally we show that stabilisation of NEIL1, particularly following TRIM26 siRNA, contributes to cellular resistance to IR. This highlights the importance of Mule and TRIM26 in maintaining steady state levels of NEIL1, but also those required for the cellular DNA damage response. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Systems Biology for Organotypic Cell Cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grego, Sonia; Dougherty, Edward R.; Alexander, Francis J.
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomicmore » data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.« less
Workshop Report: Systems Biology for Organotypic Cell Cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grego, Sonia; Dougherty, Edward R.; Alexander, Francis Joseph
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomicmore » data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.« less
Workshop Report: Systems Biology for Organotypic Cell Cultures
Grego, Sonia; Dougherty, Edward R.; Alexander, Francis Joseph; ...
2016-11-14
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomicmore » data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.« less
Systems biology for organotypic cell cultures.
Grego, Sonia; Dougherty, Edward R; Alexander, Francis J; Auerbach, Scott S; Berridge, Brian R; Bittner, Michael L; Casey, Warren; Cooley, Philip C; Dash, Ajit; Ferguson, Stephen S; Fennell, Timothy R; Hawkins, Brian T; Hickey, Anthony J; Kleensang, Andre; Liebman, Michael N J; Martin, Florian; Maull, Elizabeth A; Paragas, Jason; Qiao, Guilin Gary; Ramaiahgari, Sreenivasa; Sumner, Susan J; Yoon, Miyoung
2017-01-01
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.
Vitamin K3 suppressed inflammatory and immune responses in a redox-dependent manner.
Checker, Rahul; Sharma, Deepak; Sandur, Santosh K; Khan, Nazir M; Patwardhan, Raghavendra S; Kohli, Vineet; Sainis, Krishna B
2011-08-01
Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.
Cellular but not humoral antibacterial activity of earthworms is inhibited by Aroclor 1254.
Roch, P; Cooper, E L
1991-12-01
Earthworms, Eisenia fetida andrei and Lumbricus terrestris, exposed to Aroclor 1254, followed by infestation with Aeromonas hydrophila, elicited two types of responses. First, in E. fetida, there was no change in the LD50 nor in the in vitro antibacterial growth capacity of cell-free coelomic fluid. Thus, Aroclor exerts no influence on antibacterial proteins nor on the chloragogue cells responsible for their release. Second, in L. terrestris, both a high LD50 value and no antibacterial activity indicate that A. hydrophila was not pathogenic. The 10(4) times higher sensitivity of exposed L. terrestris suggests that Aroclor inhibits leukocyte activity since E. fetida eliminates nonpathogenic bacteria by a cellular mechanism.
Restrepo, B I; Aguilar, M I; Melby, P C; Teale, J M
2001-10-01
In neurocysticercosis (NCC), it is thought that the long-term survival of the parasite within the human brain is due in part to the ability of the cestode to suppress the local immune response. When the parasite dies, the immunosuppression is apparently lost and a strong local inflammatory response then develops. In contrast, little is known about the immunologic response that may occur in the peripheral immune system of these patients. In this study, the status of the peripheral (extracerebral) cellular and humoral response was evaluated in patients with a history of NCC. The in vitro proliferation of peripheral blood mononuclear cells to mitogens and foreign antigens was similar in patients and controls. Importantly, a substantive response was elicited by two Taenia solium metacestode antigens. In addition, 8 of 10 patients had a detectable humoral response to the antigenic glycoproteins of the cestode. Considering both the cellular and humoral response, all of the patients with NCC presented an active peripheral immunity.
Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis.
English, Andrew; Azeem, Ayesha; Spanoudes, Kyriakos; Jones, Eleanor; Tripathi, Bhawana; Basu, Nandita; McNamara, Karrina; Tofail, Syed A M; Rooney, Niall; Riley, Graham; O'Riordan, Alan; Cross, Graham; Hutmacher, Dietmar; Biggs, Manus; Pandit, Abhay; Zeugolis, Dimitrios I
2015-11-01
Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fischer, G. L.; Daniels, J. C.; Levin, W. C.; Kimzey, S. L.; Cobb, E. K.; Ritzmann, S. E.
1972-01-01
The present studies were undertaken to assess the effects of the environment of space flights on the cellular division of the human immune system. Peripheral blood absolute lymphocyte counts were determined at various preflight and postflight intervals for the 21 crewmen of Apollo Missions 7-13. Mean lymphocyte numbers tended to exhibit a delayed significant but fluctuating increase shortly after recovery, although a variety of responses was seen in individual astronauts. The in vitro reactivity of lymphocytes, reflected by RNA and DNA synthesis rates by unstimulated and PHA-stimulated lymphocytes tissue-cultured preflight and postflight from the same participants, was found to remain within previously established normal ranges. These results indicate that functional integrity of cellular immune potential as reflected by in vitro techniques is maintained during this spaceflight experience.
Differentiated NSC-34 cells as an in vitro cell model for VX.
Kanjilal, Baishali; Keyser, Brian M; Andres, Devon K; Nealley, Eric; Benton, Betty; Melber, Ashley A; Andres, Jaclynn F; Letukas, Valerie A; Clark, Offie; Ray, Radharaman
2014-10-01
The US military has placed major emphasis on developing therapeutics against nerve agents (NA). Current efforts are hindered by the lack of effective in vitro cellular models to aid in the preliminary screening of potential candidate drugs/antidotes. The development of an in vitro cellular model to aid in discovering new NA therapeutics would be highly beneficial. In this regard, we have examined the response of a differentiated hybrid neuronal cell line, NSC-34, to the NA VX. VX-induced apoptosis of differentiated NSC-34 cells was measured by monitoring the changes in caspase-3 and caspase-9 activity post-exposure. Differentiated NSC-34 cells showed an increase in caspase-3 activity in a manner dependent on both time (17-23 h post-exposure) and dose (10-100 nM). The maximal increase in caspase-3 activity was found to be at 20-h post-exposure. Caspase-9 activity was also measured in response to VX and was found to be elevated at all concentrations (10-100 nM) tested. VX-induced cell death was also observed by utilizing annexin V/propidium iodide flow cytometry. Finally, VX-induced caspase-3 or -9 activities were reduced with the addition of pralidoxime (2-PAM), one of the current therapeutics used against NA toxicity, and dizocilpine (MK-801). Overall the data presented here show that differentiated NSC-34 cells are sensitive to VX-induced cell death and could be a viable in vitro cell model for screening NA candidate therapeutics.
Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan
2017-11-01
Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P < 0.01) and antiproliferative (R 2 = 0.408-0.623, P < 0.05) potential. Moreover, gallic acid may be responsible for the antioxidant potential of seven flowers rich in edible flowers. The antioxidant and antiproliferative potential of 10 edible flowers revealed a clear decrease after digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Nanotopographical Cues for Modulating Fibrosis and Drug Delivery
NASA Astrophysics Data System (ADS)
Walsh, Laura Aiko Michelle
Nanotopography in the cellular microenvironment provides biological cues and therefore has potential to be a useful tool for directing cellular behavior. Fibrotic encapsulation of implanted devices and materials can wall off and eventually cause functional failure of the implant. Drug delivery requires penetrating the epithelium, which encapsulates the body and provides a barrier to separate the body from its external environment. Both of these challenges could be elegantly surmounted using nanotopography, which would harness innate cellular responses to topographic cues to elicit desired cellular behavior. To this end, we fabricated high and low aspect ratio nanotopographically patterned thin films. Using scanning electron microscopy, real time polymerase chain reaction, immunofluorescence microscopy, in vitro drug delivery assays, transmission electron microscopy, inhibitor studies, and rabbit and rat in vivo drug delivery studies, we investigated cellular response to our nanotopographic thin films. We determined that high aspect ratio topography altered fibroblast morphology and decreased proliferation, possibly due to decreased protein adsorption. The fibroblasts also down regulated expression of mRNA of key factors associated with fibrosis, such as collagens 1 and 3. Low aspect ratio nanotopography increased drug delivery in vitro across an intestinal epithelial model monolayer by increasing paracellular permeability and remodeling the tight junction. This increase in drug delivery required integrin engagement and MLCK activity, and is consistent with the increased focal adhesion formation. Tight junction remodeling was also observed in a multilayered keratinocyte model, showing this mechanism can be generalized to multiple epithelium types. By facilitating direct contact of nanotopography with the viable epidermis using microneedles to pierce the stratum corneum, we are able to transdermally deliver a 150 kiloDalton, IgG-based therapeutic in vivo..
Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity
Ghosh, Arnab; Dogan, Yildirim; Moroz, Maxim; Holland, Amanda M.; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; Tannenbaum, Daniel; Masih, Durva; Velardi, Enrico; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Smith, Odette M.; Piersanti, Kelly; Lezcano, Cecilia; Murphy, George F.; Liu, Chen; Palomba, M. Lia; Sauer, Martin G.; Sadelain, Michel; Ponomarev, Vladimir; van den Brink, Marcel R.M.
2013-01-01
Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro–generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD. PMID:23676461
MacDonald, A J; Libri, N A; Lustigman, S; Barker, S J; Whelan, M A; Semper, A E; Rosenberg, W M
2008-05-01
We have described previously an immunostimulant derived from Onchocerca volvulus, the helminth parasite that causes onchocerciasis. Recombinant O. volvulus activation-associated secreted protein-1 (rOv-ASP-1) was a potent adjuvant for antibody and cellular responses to protein, polypeptide and small peptide antigens. Our aims were to determine whether rOv-ASP-1 is immunostimulatory for human peripheral blood mononuclear cells (PBMC) and, if so, whether it could augment cellular responses against human pathogen antigens in vitro. Cytokines from rOv-ASP-1-stimulated human PBMC were measured by a fluorescence activated cell sorter-based multiplex assay. Recall responses of normal healthy donor (NHD) and chronic hepatitis C virus (c-HCV)-infected patient PBMC to tetanus toxoid (TT) or HCV core (HCVco) antigen, respectively, were measured by interferon-gamma enzyme-linked immunospot assays. Interferon-gamma was the predominant cytokine induced by rOv-ASP-1. 77.3% of NHD anti-TT and 88.9% of c-HCV anti-HCVco responses were enhanced by rOv-ASP-1. The immunostimulant effect was dependent upon contact between CD56+ and CD56- fractions of PBMC. We have described a helminth-derived protein that can act as an immunostimulant for human recall responses in vitro to TT and, perhaps more importantly, HCV antigens in patients with chronic HCV infection. Our longer-term goal would be to boost anti-viral responses in chronic infections such as HCV.
Kurtz-Chalot, Andréa; Villiers, Christian; Pourchez, Jérémie; Boudard, Delphine; Martini, Matteo; Marche, Patrice N; Cottier, Michèle; Forest, Valérie
2017-06-01
Nanoparticles (NP) physico-chemical features greatly influence NP/cell interactions. NP surface functionalization is often used to improve NP biocompatibility or to enhance cellular uptake. But in biological media, the formation of a protein corona adds a level of complexity. The aim of this study was to investigate in vitro the influence of NP surface functionalization on their cellular uptake and the biological response induced. 50nm fluorescent silica NP were functionalized either with amine or carboxylic groups, in presence or in absence of polyethylene glycol (PEG). NP were incubated with macrophages, cellular uptake and cellular response were assessed in terms of cytotoxicity, pro-inflammatory response and oxidative stress. The NP protein corona was also characterized by protein mass spectroscopy. Results showed that NP uptake was enhanced in absence of PEG, while NP adsorption at the cell membrane was fostered by an initial positively charged NP surface. NP toxicity was not correlated with NP uptake. NP surface functionalization also influenced the formation of the protein corona as the profile of protein binding differed among the NP types. Copyright © 2017 Elsevier B.V. All rights reserved.
The relationship between in vitro cellular aging and in vivo human age.
Schneider, E L; Mitsui, Y
1976-01-01
Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470
Alteration of Cell Cycle Mediated by Zinc in Human Bronchial Epithelial Cells In Vitro
Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examin...
Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome...
Kaveh, Kamran; Takahashi, Yutaka; Farrar, Michael A; Storme, Guy; Guido, Marcucci; Piepenburg, Jamie; Penning, Jackson; Foo, Jasmine; Leder, Kevin Z; Hui, Susanta K
2017-07-01
Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is characterized by a very poor prognosis and a high likelihood of acquired chemo-resistance. Although tyrosine kinase inhibitor (TKI) therapy has improved clinical outcome, most ALL patients relapse following treatment with TKI due to the development of resistance. We developed an in vitro model of Nilotinib-resistant Ph+ leukemia cells to investigate whether low dose radiation (LDR) in combination with TKI therapy overcome chemo-resistance. Additionally, we developed a mathematical model, parameterized by cell viability experiments under Nilotinib treatment and LDR, to explain the cellular response to combination therapy. The addition of LDR significantly reduced drug resistance both in vitro and in computational model. Decreased expression level of phosphorylated AKT suggests that the combination treatment plays an important role in overcoming resistance through the AKT pathway. Model-predicted cellular responses to the combined therapy provide good agreement with experimental results. Augmentation of LDR and Nilotinib therapy seems to be beneficial to control Ph+ leukemia resistance and the quantitative model can determine optimal dosing schedule to enhance the effectiveness of the combination therapy.
Kohn, Florian P M; Ritzmann, Ramona
2018-03-01
For decades it has been shown that acute changes in gravity have an effect on neuronal systems of human and animals on different levels, from the molecular level to the whole nervous system. The functional properties and gravity-dependent adaptations of these system levels have been investigated with no or barely any interconnection. This review summarizes the gravity-dependent adaptation processes in human and animal organisms from the in vitro cellular level with its biophysical properties to the in vivo motor responses and underlying sensorimotor functions of human subjects. Subsequently, a first model for short-term adaptation of neuronal transmission is presented and discussed for the first time, which integrates the responses of the different levels of organization to changes in gravity.
Cao, Yuli; Risling, Mårten; Malm, Elisabeth; Sondén, Anders; Bolling, Magnus Frödin; Sköld, Mattias K
2016-01-01
The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.
In vitro effects of dental cements on hard and soft tissues associated with dental implants.
Rodriguez, Lucas C; Saba, Juliana N; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C
2017-07-01
Dental cements for cement-retained restorations are often chosen based on clinician preference for the product's material properties, mixing process, delivery mechanism, or viscosity. The composition of dental cement may play a significant role in the proliferation or inhibition of different bacterial strains associated with peri-implant disease, and the effect of dental cements on host cellular proliferation may provide further insight into appropriate cement material selection. The purpose of this in vitro study was to investigate the cellular host response of bone cells (osteoblasts) and soft tissue cells (gingival fibroblasts) to dental cements. Zinc oxide (eugenol and noneugenol), zinc phosphate, and acrylic resin cements were molded into pellets and directly applied to confluent preosteoblast (cell line MC3T3 E1) or gingival fibroblast cell cultures (cell line HGF) to determine cellular viability after exposure. Controls were defined as confluent cell cultures with no cement exposure. Direct contact cell culture testing was conducted following International Organization for Standardization 10993 methods, and all experiments were performed in triplicate. To compare either the MC3T3 E1 cell line, or the HGF cell line alone, a 1-way ANOVA test with multiple comparisons was used (α=.05). To compare the MC3T3 E1 cell line results and the HGF cell line results, a 2-way ANOVA test with multiple comparisons was used (α=.05). The results of this study illustrated that while both bone and soft tissue cell lines were vulnerable to the dental cement test materials, the soft tissue cell line (human gingival fibroblasts) was more susceptible to reduced cellular viability after exposure. The HGF cell line was much more sensitive to cement exposure. Here, the acrylic resin, zinc oxide (eugenol), and zinc phosphate cements significantly reduced cellular viability after exposure with respect to HGF cells only. Within the limitation of this in vitro cellular study, the results indicated that cell response to various implant cements varied significantly, with osteoblast proliferation much less affected than gingival fibroblast cells. Furthermore, the zinc oxide noneugenol dental cement appeared to affect the cell lines significantly less than the other test cements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing
2014-01-01
The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357
REJUVENATION OF PERIOSTEAL CHONDROGENESIS USING LOCAL GROWTH FACTOR INJECTION
Reinholz, G.G.; Fitzsimmons, J.S.; Casper, M.; Ruesink, T.J.; Chung, H.W.; Schagemann, J.C.; O’Driscoll, S.W.
2015-01-01
Objective To examine the potential for rejuvenation of aged periosteum by local injection of transforming growth factor-beta1 (TGF-β1) and insulin-like growth factor-1 (IGF-1) alone or in combination to induce cambium cell proliferation and enhance in vitro periosteal cartilage formation. Methods A total of 367 New Zealand white rabbits (6, 12, and 24+ month-old) received subperiosteal injections of TGF-β1 and/or IGF-1 percutaneously. After 1, 3, 5, or 7 days, the rabbits were sacrificed and cambium cellularity or in vitro cartilage forming capacity was determined. Results A significant increase in cambium cellularity and thickness, and in vitro cartilage formation was observed after injection of TGF-β1 alone or in combination with IGF-1. In 12 month-old rabbits, mean cambium cellularity increased 5-fold from 49 to 237 cells/mm and in vitro cartilage production increased 12-fold from 0.8 to 9.7 mg seven days after TGF-β1 (200 ng) injection compared to vehicle controls (p<0.0001). A correlation was observed between cambium cellularity and in vitro cartilage production (R2=0.98). An added benefit of IGF-1 plus TGF-β1 on in vitro cartilage production compared to TGF-β1 alone was observed in the 2 year old rabbits. IGF-1 alone generally had no effect on either cambium cellularity or in vitro cartilage production in any of the age groups. Conclusions These results clearly demonstrate that it is possible to increase cambium cellularity and in vitro cartilage production in aged rabbit periosteum, to levels comparable to younger rabbits, using local injection of TGF-β1 alone or in combination with IGF-1, thereby rejuvenating aged periosteum. PMID:19064326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guglielmi, G.E.; Vogt, T.F.; Tice, R.R.
1982-01-01
While many agents have been examined for their ability to induce SCE's, complete dose-response information has often been lacking. We have reexamined the ability of one such compound - caffeine - to induce SCEs and also to inhibit cellular proliferation in human peripheral lymphocytes in vitro. An acute exposure to caffeine prior to the DNA synthetic period did not affect either SCE frequency or the rate of cellular proliferation. Chronic exposure to caffeine throughout the culture period lead to both a dose-dependent increase in SCEs (SCE/sub d/ or doubling dose = 2.4 mM; SCE/sub 10/ or the dose capable ofmore » inducing 10 SCE = 1.4 mM) and a dose-dependent inhibition of cellular proliferation (IC/sub 50/ or the 50% inhibition concentration = 2.6 mM). The relative proportion of first generation metaphase cells, an assessment of proliferative inhibiton, increased linearly with increasing caffeine concentrations. However, SCE frequency increased nonlinearly over the same range of caffeine concentrations. Examination of the ratio of nonsymmetrical to symmetrical SCEs in third generation metaphase cells indicated that caffeine induced SCEs in equal frequency in each of three successive generations. The dependency of SCE induction and cellular proliferative inhibition on caffeine's presence during the DNA synthetic period suggests that caffeine may act as an antimetabolite in normal human cells.« less
Aldosterone Activates Transcription Factor Nrf2 in Kidney Cells Both In Vitro and In Vivo
Oteiza, Patricia I.; Link, Samuel; Hey, Valentin; Stopper, Helga; Schupp, Nicole
2014-01-01
Abstract Aims: An increased kidney cancer risk was found in hypertensive patients, who frequently exhibit hyperaldosteronism, known to contribute to kidney injury, with oxidative stress playing an important role. The capacity of kidney cells to up-regulate transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2), a key regulator of the cellular antioxidative defense, as a prevention of aldosterone-induced oxidative damage was investigated both in vitro and in vivo. Results: Aldosterone activated Nrf2 and increased the expression of enzymes involved in glutathione (GSH) synthesis and detoxification. This activation depended on the mineralocorticoid receptor (MR) and oxidative stress. In vitro, Nrf2 activation, GSH amounts, and target gene levels decreased after 24 h, while oxidant levels remained high. Nrf2 activation could not protect cells against oxidative DNA damage, as aldosterone-induced double-strand breaks and 7,8-dihydro-8-oxo-guanine (8-oxodG) lesions steadily rose. The Nrf2 activator sulforaphane enhanced the Nrf2 response both in vitro and in vivo, thereby preventing aldosterone-induced DNA damage. In vivo, Nrf2 activation further had beneficial effects on the aldosterone-caused blood pressure increase and loss of kidney function. Innovation: This is the first study showing the activation of Nrf2 by aldosterone. Moreover, the results identify sulforaphane as a substance that is capable of preventing aldosterone-induced damage both in vivo and in vitro. Conclusion: Aldosterone-induced Nrf2 adaptive response cannot neutralize oxidative actions of chronically increased aldosterone, which, therefore could be causally involved in the increased cancer incidence of hypertensive individuals. Enhancing the cellular antioxidative defense with sulforaphane might exhibit beneficial effects. Antioxid. Redox Signal. 21, 2126–2142. PMID:24512358
Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter
2016-01-01
Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses. PMID:27219467
Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro
Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.
2012-01-01
Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042
Cell Type-Specific Modulation of Cobalamin Uptake by Bovine Serum
Zhao, Hua; Ruberu, Kalani; Li, Hongyun; Garner, Brett
2016-01-01
Tracking cellular 57Co-labelled cobalamin (57Co-Cbl) uptake is a well-established method for studying Cbl homeostasis. Previous studies established that bovine serum is not generally permissive for cellular Cbl uptake when used as a supplement in cell culture medium, whereas supplementation with human serum promotes cellular Cbl uptake. The underlying reasons for these differences are not fully defined. In the current study we address this question. We extend earlier observations by showing that fetal calf serum inhibits cellular 57Co-Cbl uptake by HT1080 cells (a fibrosarcoma-derived fibroblast cell line). Furthermore, we discovered that a simple heat-treatment protocol (95°C for 10 min) ameliorates this inhibitory activity for HT1080 cell 57Co-Cbl uptake. We provide evidence that the very high level of haptocorrin in bovine serum (as compared to human serum) is responsible for this inhibitory activity. We suggest that bovine haptocorrin competes with cell-derived transcobalamin for Cbl binding, and that cellular Cbl uptake may be minimised in the presence of large amounts of bovine haptocorrin that are present under routine in vitro cell culture conditions. In experiments conducted with AG01518 cells (a neonatal foreskin-derived fibroblast cell line), overall cellular 57Co-Cbl uptake was 86% lower than for HT1080 cells, cellular TC production was below levels detectable by western blotting, and heat treatment of fetal calf serum resulted in only a modest increase in cellular 57Co-Cbl uptake. We recommend a careful assessment of cell culture protocols should be conducted in order to determine the potential benefits that heat-treated bovine serum may provide for in vitro studies of mammalian cell lines. PMID:27893837
In vitro 3D corneal tissue model with epithelium, stroma, and innervation.
Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L
2017-01-01
The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vivo metabolic imaging of mouse tumor models in response to chemotherapy
NASA Astrophysics Data System (ADS)
Lukina, Maria M.; Dudenkova, Varvara; Shumilova, Anastasia V.; Snopova, Ludmila B.; Zagaynova, Elena V.; Shirmanova, Marina V.
2017-02-01
The aim of the study was to estimate energy metabolism in human cervical cancer cells HeLa Kyoto after chemotherapy in vitro and in vivo using two-photon fluorescence lifetime microscopy (FLIM). Cellular metabolism was examined by monitoring of the fluorescence intensities and lifetimes of metabolic cofactors NAD(P)H and FAD. Cancer metabolism was analyzed in dynamics after treatment with cisplatin. Two-photon fluorescence and second harmonic generation microscopies as well as standard histopathology with hematoxylin and eosin were used to characterize cancer tissue structure. We showed an increase of the optical redox ratio FAD/NAD(P)H in cancer cells in vitro and decrease of the relative contribution of free NAD(P)H (ɑ1) in vitro and in vivo, which presumably indicate a shift to more oxidative metabolism after chemotherapy. These data demonstrate the possibility to detect response of cancer cells to chemotherapy using optical metabolic imaging.
Pele, Laetitia; Haas, Carolin T; Hewitt, Rachel; Faria, Nuno; Brown, Andy; Powell, Jonathan
2015-01-01
Aim To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. Material & methods The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. Results Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. Conclusion In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes. PMID:24991724
A tribute to Dr. Gordon Hisashi Sato (December 24, 1927-March 31, 2017).
Sato, J Denry; Okamoto, Tetsuji; Barnes, David; Hayashi, Jun; Serrero, Ginette; McKeehan, Wallace L
2018-03-01
Gordon H. Sato, an innovator in mammalian tissue culture and integrated cellular physiology, passed away in 2017. In tribute to Dr. Sato, In Vitro Cellular and Developmental Biology-Animal presents a collection of invited remembrances from six colleagues whose associations with Dr. Sato spanned more than 40 years. Dr. Sato was a past president of the Tissue Culture Association (now the Society for In Vitro Biology), editor-in-chief of In Vitro Cellular and Developmental Biology (1987-1991), and the recipient of the lifetime achievement award from the Society for In Vitro Biology (2002). He was elected to the US National Academy of Sciences in 1984.
Gartlan, Kate H; Wee, Janet L; Demaria, Maria C; Nastovska, Roza; Chang, Tsz Man; Jones, Eleanor L; Apostolopoulos, Vasso; Pietersz, Geoffrey A; Hickey, Michael J; van Spriel, Annemiek B; Wright, Mark D
2013-05-01
Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA
NASA Astrophysics Data System (ADS)
Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio
2016-12-01
Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.
In Vitro Modeling of Repetitive Motion Injury and Myofascial Release
Meltzer, Kate R.; Cao, Thanh V.; Schad, Joseph F.; King, Hollis; Stoll, Scott T.; Standley, Paul R.
2010-01-01
Objective In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR. Method Cultured human fibroblasts were strained with 8 hours RMS, 60 seconds MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules. Results RMS induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the twenty cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone. Conclusion Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic DAPK2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in DAPK2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies. PMID:20226363
Foglia, Sabrina; Ledda, Mario; Fioretti, Daniela; Iucci, Giovanna; Papi, Massimiliano; Capellini, Giovanni; Lolli, Maria Grazia; Grimaldi, Settimio; Rinaldi, Monica; Lisi, Antonella
2017-04-19
Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.
NASA Astrophysics Data System (ADS)
Pourchez, Jérémie; Forest, Valérie; Boumahdi, Najih; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Herlin-Boime, Nathalie; Leconte, Yann; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe
2012-10-01
Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol-gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-α production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases (α-SiC vs. β-SiC) on the TNF-α production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H2O2 production.
Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young
2015-08-01
We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Specificity in the immunosuppression induced by avian reticuloendotheliosis virus.
Walker, M H; Rup, B J; Rubin, A S; Bose, H R
1983-01-01
Several parameters of the cellular and humoral immune responses of chickens infected with reticuloendotheliosis virus (REV-T), an avian defective acute leukemia virus, or with its helper virus, reticuloendotheliosis-associated virus (REV-A), were evaluated. Spleen cells from chickens infected with REV-T (REV-A) or REV-A exhibited depressed mixed lymphocyte and mitogen responses in vitro. Allograft rejection was delayed by 6 to 14 days in birds infected with REV-A. The specific antitumor cell immune response was also studied by a 51Cr-release cytotoxicity assay. Lymphocytes from chickens infected with low numbers of the REV-T-transformed cells exhibited significant levels of cytolytic reactivity against the 51Cr-labeled REV-T tumor cells in vitro. The mitogen response of lymphocytes from these injected birds was similar to that of uninjected chickens. In contrast, lymphocytes from chickens injected with higher numbers of REV-T-transformed cells exhibited suppressed mitogen reactivity and failed to develop detectable levels of cytotoxic activity directed against the REV-T tumor cells. These results suggest that the general depression of cellular immune competence which occurs during REV-T (REV-A) infection could contribute to the development of this acute leukemia by inhibiting the proliferation of cytotoxic cells directed against the tumor cell antigens. The cytotoxic effect observed after the injection of chickens with non-immunosuppressive levels of REV-T-transformed cells appears to be specific for the REV-T tumor cell antigens since cells transformed by Marek's disease virus or avian erythroblastosis virus were not lysed. In marked contrast, birds whose cellular immune responses were suppressed by infection with REV-A were capable of producing a humoral immune response to viral antigens. Detectable levels of viral antibody, however, did not appear until 12 to 15 days after REV-A infection. Since REV-T (REV-A) induced an acute leukemia resulting in death within 7 to 14 days, it appears unlikely that the ability of chickens to make antiviral antibody influences the development of lethal reticuloendotheliosis. Images PMID:6187691
Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.
Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung
2015-05-01
Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types. © 2014 Wiley Periodicals, Inc.
Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials
Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.
2013-01-01
To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796
Moreno, Javier; Vouldoukis, Ioannis; Martin, Virginie; McGahie, David; Cuisinier, Anne-Marie; Gueguen, Sylvie
2012-01-01
Canine leishmaniasis is an important zoonotic disease of dogs. The clinical outcome of infection is variable, with the efficiency of the immune response being the key determining factor. There is now a general consensus that a predominant Th1 immune profile in an overall mixed Th1/Th2 response is associated with resistance in dogs, and the absence of a strong Th1 influence is associated with a progression to clinical disease. As a result, there has been a growing demand for vaccines that can induce a specific, strong Th1 response. In this study, we measured the impact of a primary course of a newly available LiESP/QA-21 vaccine on selected humoral and cellular markers of the canine immune response during the onset of immunity. All vaccinated dogs developed a humoral response characterised by IgG2 production. More importantly, vaccinated dogs developed significantly stronger cell-mediated immunity responses than did control dogs. Vaccination induced specific cellular reactivity to soluble Leishmania antigens, with a Leishmania-specific lymphoproliferation (p = 0.0072), characterised by an increased population of T lymphocytes producing IFN-γ (p = 0.0021) and a significant ability of macrophages to reduce intracellular parasite burdens in vitro after co-culture with autologous lymphocytes (p = 0.0014). These responses were correlated with induction of the NOS pathway and production of NO derivatives, which has been shown to be an important leishmanicidal mechanism. These results confirm that vaccination with LiESP/QA-21 induces an appropriate Th1-profile cell-mediated response within three weeks of completing the primary course, and that this response effectively reduces the parasite load in pre-infected macrophages in vitro. PMID:22724031
Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin
2016-02-01
The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.
2017-01-01
The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.
Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.
2017-01-01
The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility. PMID:28045082
NASA Technical Reports Server (NTRS)
Duke, Jackie
1992-01-01
A basic question of space biology is whether changes in gravity are perceived at the cellular level. Previous studies with a variety of cells have shown that this is the case, but to date the response of skeletal cells has not been examined, even though the skeleton is sensitive to gravitational changes. The objective of the CELLS Experiment is to examine the effect of microgravity in vitro on a skeletal cell known to be sensitive to gravitational changes both in vivo and in vitro - the mammalian chondrocyte. Various aspects of the experiment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de; Wagner, Silvia; Buerkle, Alexander
Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin didmore » not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.« less
van Oostrom, Conny T.; Jonker, Martijs J.; de Jong, Mark; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.
2014-01-01
In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization. PMID:24823911
Altered cellular magnesium responsiveness to hyperglycemia in hypertensive subjects.
Barbagallo, M; Dominguez, L J; Bardicef, O; Resnick, L M
2001-09-01
Previous studies by our group have identified ionic aspects of insulin resistance in hypertension, in which cellular responses to insulin were influenced by the basal intracellular ionic environment-the lower the cytosolic free magnesium (Mg(i)), the less Mg(i) increased following insulin stimulation. To investigate whether this ionic insulin resistance represents a more general abnormality of cellular responsiveness in hypertension, we studied Mg(i) responses to nonhormonal signals such as hyperglycemia (15 mmol/L) and used (31)P-nuclear magnetic resonance (NMR) spectroscopy to measure Mg(i) in erythrocytes from normal (NL, n=14) and hypertensive (HTN, n=12) subjects before and 30, 60, 120, and 180 minutes after in vitro glucose incubations. Basal Mg(i) levels were significantly lower in HTN subjects than in NL subjects (169+/-10 versus 205+/-8 micromol.L(-1), P<0.01). In NL cells, hyperglycemia significantly lowered Mg(i), from 205+/-8 micromol.L(-1) (basal, T=0) to 181+/-8, 162+/-6, 152+/-7, and 175+/-9 micromol.L(-1) (T=30, 60, 120, and 180, respectively; P<0.005 versus T=0 at all times). In HTN cells, maximal Mg(i) responses to hyperglycemia were blunted, from 169+/-10 micromol.L(-1) (basal, T=0) to 170+/-11, 179+/-12, 181+/-14, and 173+/-15 micromol.L(-1) (T=30, 60, 120, and 180, respectively; P=NS versus T=0 at all times). For all subjects, Mg(i) responses to hyperglycemia were closely related to basal Mg(i) levels: the higher the Mg(i), the greater the response (n=26, r=0.620, P<0.001). Thus, (1) erythrocytes from hypertensive vis-à-vis normotensive subjects are resistant to the ionic effects of extracellular hyperglycemia on Mg(i) levels, and (2) cellular ionic responses to glucose depend on the basal Mg(i) environment. Altogether, these data support a role for altered extracellular glucose levels in regulating cellular magnesium metabolism and also suggest the importance of ionic factors in determining cellular responsiveness to nonhormonal as well as hormonal signals.
Theodorakis, M E; Goldberg, J
1984-01-01
We employed a liquid culture system to examine the in vitro effects of vincristine and vindesine on cellular incorporation of 35SO4 into leukemic cells obtained from 5 patients with chronic granulocytic leukemia in blast crisis. The per cent of 35SO4 into drug-treated as compared to saline-treated leukemic cells was compared to the clinical outcome of patients treated with these agents. A good or partial clinical response to vincristine or vindesine was seen in patients whose leukemic cells incorporated less than 50% 35SO4 when exposed to vincristine or vindesine in vitro, compared with control saline-treated cells. No clinical response was observed following treatment with vincristine or vindesine if the 35SO4 incorporation of drug treated leukemic cells was greater than 50% of saline-treated cells. These data suggest that the in vitro effects of vincristine or vindesine on 35SO4 incorporation into leukemic cells of patients in blast crisis may parallel the clinical outcome of patients treated with these agents in vivo.
Perez, Felipe P; Zhou, Ximing; Morisaki, Jorge; Jurivich, Donald
2008-04-01
Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.
Colavecchia, Silvia B; Fernández, Bárbara; Jolly, Ana; Minatel, Leonardo; Hajos, Silvia E; Paolicchi, Fernando A; Mundo, Silvia L
2016-08-01
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of ruminant paratuberculosis. The aim of this study was to evaluate the biological behavior of different Argentinean strains of MAP in two bovine infection models: macrophage (in vitro) and calf (in vivo) through the evaluation of early immune responses at the peripheral and local levels. Two MAP strains (A and C) were selected taking into account the different patterns of TNF-α and IL-10 secretion displayed by infected bovine macrophages in vitro. Two groups of calves were infected with 250mg of total wet weight live MAP: strain A infected group (MA, n=3), strain C infected group (MC, n=2). Another group of animals was mock-infected (MI, n=3). Infection was confirmed by MAP culture of feces and microscopic observation of granulomatous lesions in the gut tissue. All infected calves showed positive results in the DTH skin test. A significant increase in peripheral CD4CD25(+) cells in MC group on day 150 was detected. The specific cellular immune response developed allowed the identification of the infection as early as 30days in the MA group. However, the percentage of CD8CD25(+) cells was significantly increased on day 120 in MC group. Significant differences between groups in proliferation and cellular responses were also detected in ileocecal lymph node samples. In summary, the strains of MAP employed herein induced differential immune responses in peripheral cells, in the proliferative responses and in cell functionality at the local level. Our findings support the hypotheses that the in vitro behavior displayed by macrophages could be a tool to identify differences among MAP strains infecting bovines and that the host-pathogen interactions occurring upon infection are dependent on the strain of MAP involved. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shor, Erez; Shoham, Shy; Levenberg, Shulamit
2016-03-01
Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.
Zeng, Ji-ping; Bi, Bo; Chen, Liang; Yang, Ping; Guo, Yu; Zhou, Yi-qun; Liu, Tian-yi
2014-01-01
Photoaging skin is due to accumulative effect of UV irradiation that mainly imposes its damage on dermal fibroblasts. To mimic the specific cellular responses invoked by long term effect of UVB, it is preferable to develop a photo-damaged model in vitro based on repeated UVB exposure instead of a single exposure. To develop a photo-damaged model of fibroblasts by repeated UVB exposure allowing for investigation of molecular mechanism underlying premature senescence and testing of potential anti-photoaging compounds. Mouse dermal fibroblasts (MDFs) at early passages (passages 1-3) were exposed to a series of 4 sub-cytotoxic dose of UVB. The senescent phenotypes were detected at 24 or 48h after the last irradiation including cell viability, ROS generation, mitochondrial membrane potential, cell cycle, production and degradation of extracellular matrix. Repeated exposure of UVB resulted in remarkable features of senescence. It effectively avoided the disadvantages of single dose such as induction of cell death rather than senescence, inadequate stress resulting in cellular self-rehabilitation. Our work confirms the possibility of detecting cellular machinery that mediates UVB damage to fibroblasts in vitro by repeated exposure, while the potential molecular mechanisms including cell surface receptors, protein kinase signal transduction pathways, and transcription factors remain to be further evaluated. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Fernández, Dolores; García-Gómez, Concepción; Babín, Mar
2013-05-01
Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.
Penrad-Mobayed, May; Perrin, Caroline; Lepesant, Jean-Antoine
2012-12-01
Subterminal lampbrush loops of one of the 12 bivalents of the oocyte karyotype of Pleurodeles waltl (Amphibian, Urodele) underwent prominent morphological changes upon in vitro culture. These loops exhibited a fine ribonucleoprotein (RNP) granular matrix, which evolved during culture into huge structures that we have named 'chaussons' (slippers). This phenomenon involved progressive accumulation of proteins in the RNP matrix without protein neosynthesis. One of these proteins, which translocated into the nucleus during the culture, was identified as a homolog of the human Ro52 E3 ubiquitin ligase. RNA polymerase III was also found to accumulate on the same loops. These results suggest that the subterminal loops of bivalent XII act as a storage site for the components of a nuclear machinery involved in the quality control of RNA synthesis and maturation in response to cellular stress. They also emphasise the considerable value of the lampbrush chromosome system for a direct visualisation of modifications in gene expression and open the question of a nuclear accumulation of Ro52 in human or animal oocytes cultured in vitro for assisted reproductive technologies (ART).
Xie, Li; Yamamoto, Brenda; Haoudi, Abdelali; Semmes, O John; Green, Patrick L
2006-03-01
HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.
Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.
2016-01-01
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052
Leclerc, L; Rima, W; Boudard, D; Pourchez, J; Forest, V; Bin, V; Mowat, P; Perriat, P; Tillement, O; Grosseau, P; Bernache-Assollant, D; Cottier, M
2012-08-01
Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.
NASA Astrophysics Data System (ADS)
Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.
2011-07-01
We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.
Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.
Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír
2007-09-01
Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.
Physical effects at the cellular level under altered gravity conditions
NASA Technical Reports Server (NTRS)
Todd, Paul
1992-01-01
Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.
The influence of platelets, plasma and red blood cells on functional haemostatic assays.
Bochsen, Louise; Johansson, Pär I; Kristensen, Annemarie T; Daugaard, Gedske; Ostrowski, Sisse R
2011-04-01
Functional whole blood haemostatic assays are used increasingly to guide transfusion therapy and monitor medical treatment and are also applied for in-vitro evaluations of the haemostatic potential of stored platelets. We investigated how the cellular and plasmatic elements, both isolated and combined, influenced the two methodologically different assays, thrombelastography (TEG) and impedance aggregometry (Multiplate). Platelet-rich plasma (200 × 10/l) or pure plasma (0 platelets), with and without added red blood cells (RBCs), hematocrit 0, 0.15 or 0.29, were produced in vitro from platelet concentrates, fresh frozen plasma and stored RBC. Pure platelets were investigated by removing plasma components from platelet concentrates by diafiltration against the platelet storage solution Intersol. Plasma was readded by diafiltration against plasma in Intersol. Haemostatic function was evaluated by TEG and Multiplate. In the TEG, increasing amounts of RBC reduced clot strength and clot kinetics (α-angle), most markedly in plasma/RBC without platelets. In contrast, RBC in a platelet concentrate matrix enhanced Multiplate aggregation in response to weak agonists (ADP and arachidonic acid). Furthermore, removing plasma from platelet concentrates eliminated the TEG response and diminished the Multiplate aggregation response, but readding plasma to the pure platelet concentrates restored the response. Each of the elements in whole blood, plasma, platelets and RBC, affected the Multiplate and TEG results differently. The results emphasize that the concentrations of all cellular and plasmatic components in whole blood should be taken into account when interpreting results obtained by TEG and multiplate.
Ramirez, Christina N; Li, Wenji; Zhang, Chengyue; Wu, Renyi; Su, Shan; Wang, Chao; Gao, Linbo; Yin, Ran; Kong, Ah-Ng
2017-12-20
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
QI, Xiaonan; LI, Huatao; CONG, Xia; WANG, Xin; JIANG, Zhongling; CAO, Rongfeng; TIAN, Wenru
2016-01-01
Scutellaria baicalensis has been effectively used in Chinese traditional medicine to prevent miscarriages. However, little information is available on its mechanism of action. This study is designed specifically to reveal how baicalin, the main effective ingredient of S. baicalensis, improves developmental competence of embryos in vitro, using the mouse as a model. Mouse pronuclear embryos were cultured in KSOM medium supplemented with (0, 2, 4 and 8 μg/ml) baicalin. The results demonstrated that in vitro culture conditions significantly decreased the blastocyst developmental rate and blastocyst quality, possibly due to increased cellular stress and apoptosis. Baicalin (4 µg/ml) significantly increased 2- and 4-cell cleavage rates, morula developmental rate, and blastocyst developmental rate and cell number of in vitro-cultured mouse embryos. Moreover, baicalin increased the expression of Gja1, Cdh1, Bcl-2, and Dnmt3a genes, decreased the expression of Dnmt1 gene, and decreased cellular stress and apoptosis as it decreased the expression of HSP70, CASP3, and BAX and increased BCL-2 expression in blastocysts cultured in vitro. In conclusion, baicalin improves developmental competence of in vitro-cultured mouse embryos through inhibition of cellular apoptosis and HSP70 expression, and improvement of DNA methylation. PMID:27478062
Jiang, Cho-Pei; Chen, Yo-Yu; Hsieh, Ming-Fa; Lee, Hung-Maan
2013-04-01
Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3 MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420 μm and a porosity of 79 % were fabricated, and their average compressive strength was found to be 18.2 MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28 days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10 h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells.
NASA Astrophysics Data System (ADS)
Shah, Amy T.; Heaster, Tiffany M.; Skala, Melissa C.
2017-02-01
Treatment options for head and neck cancer are limited, and can cause an impaired ability to eat, talk, and breathe. Therefore, optimized and personalized therapies could reduce unnecessary toxicities from ineffective treatments. Organoids are generated from primary tumor tissue and provide a physiologically-relevant in vitro model to measure drug response. Additionally, multiphoton fluorescence lifetime imaging (FLIM) of the metabolic cofactors NAD(P)H and FAD can resolve dynamic cellular response to anti-cancer treatment. This study applies FLIM of NAD(P)H and FAD to head and neck cancer organoids. Head and neck cancer tissue was digested and grown in culture as three-dimensional organoids. Gold standard measures of therapeutic response in vivo indicate stable disease after treatment with cetuximab (antibody therapy) or cisplatin (chemotherapy), and treatment response after combination treatment. In parallel, organoids were treated with cetuximab, cisplatin, or combination therapy for 24 hours. Treated organoids exhibit decreased NAD(P)H lifetime (p<0.05) and increased FAD lifetime (p<0.05) compared with control organoids. Additionally, analysis of cellular heterogeneity identifies distinct subpopulations of cells in response to treatment. A quantitative heterogeneity index predicts in vivo treatment response and demonstrates increased cellular heterogeneity in organoids treated with cetuximab or cisplatin compared with combination treatment. Mapping of cell subpopulations enables characterization of spatial relationships between cell subpopulations. Ultimately, an organoid model combined with metabolic fluorescence imaging could provide a high-throughput platform for drug discovery. Organoids grown from patient tissue could enable individualized treatment planning. These achievements could optimize quality of life and treatment outcomes for head and neck cancer patients.
NASA Astrophysics Data System (ADS)
Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara
2013-12-01
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.
Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.
Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D
2015-01-01
Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage associated stresses.
Pearlstein, Robert A; McKay, Daniel J J; Hornak, Viktor; Dickson, Callum; Golosov, Andrei; Harrison, Tyler; Velez-Vega, Camilo; Duca, José
2017-01-01
Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Eotaxin-1 is involved in parasite clearance during chronic filarial infection.
Gentil, K; Lentz, C S; Rai, R; Muhsin, M; Kamath, A D; Mutluer, O; Specht, S; Hübner, M P; Hoerauf, A
2014-02-01
Eosinophil migration as key feature of helminth infection is increased during infection with filarial nematodes. In a mouse model of filariasis, we investigated the role of the eosinophil-attracting chemokine Eotaxin-1 on disease outcome. BALB/c and Eotaxin-1(-/-) mice were infected with the rodent filaria Litomosoides sigmodontis, and parasitic parameters, cellular migration to the site of infection, and cellular responsiveness were investigated. We found increased parasite survival but unaffected eosinophil migration to the site of infection in Eotaxin-1(-/-) mice. Expression of CD80 and CD86 was reduced on eosinophils from Eotaxin-1(-/-) mice after in vitro TLR2 stimulation and exposure to filarial antigen, respectively, suggesting a potential reduced activation state of eosinophils in Eotaxin-1 deficient mice. We further demonstrated that macrophages from Eotaxin-1(-/-) mice produce decreased amounts of IL-6 in vitro, a cytokine found to be associated with parasite containment, suggesting possible mechanisms by which Eotaxin-1 regulates activation of inflammatory cells and thus parasite survival. © 2013 John Wiley & Sons Ltd.
Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3.
de Jong, Eiko K; de Haas, Alexander H; Brouwer, Nieske; van Weering, Hilmar R J; Hensens, Marjolein; Bechmann, Ingo; Pratley, Pierre; Wesseling, Evelyn; Boddeke, Hendrikus W G M; Biber, Knut
2008-06-01
Signaling through chemokine receptor CXCR3 in the brain has been implicated in various brain diseases, as CXCR3 and its ligands are found under these conditions. Recently, a new chemokine ligand for CXCR3 was reported. In humans, an alternatively spliced variant of CXCR3 expressed on microvascular endothelial cells, named CXCR3b, was shown to bind CXCL4. In the periphery, the cellular expression and functions of CXCL4 are well described but in the brain its expression and function are unknown. Here, we show that brain microglia are a cellular source of CXCL4 in vitro and in vivo under neurodegenerating conditions. Microglial migration induced by CXCL4 is absent in CXCR3-deficient microglia, indicating a role of CXCR3. CXCL4 furthermore attenuates lipopolysaccharide-induced microglial phagocytosis and nitric oxide production in microglia and BV-2 cells. Based on these findings, it is proposed that locally released CXCL4 may control microglia responses.
New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...
Klaić, Lada; Morimoto, Richard I.; Silverman, Richard B.
2012-01-01
The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogs. Conversion of the carboxylic acid functionality to amides and long-chain analogs, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and β-tubulin as potential targets of celastrol. PMID:22380712
Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications.
Domanski, Dominik; Zegrocka-Stendel, Oliwia; Perzanowska, Anna; Dutkiewicz, Malgorzata; Kowalewska, Magdalena; Grabowska, Iwona; Maciejko, Dorota; Fogtman, Anna; Dadlez, Michal; Koziak, Katarzyna
2016-01-01
β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α-induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications.
Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications
Perzanowska, Anna; Dutkiewicz, Malgorzata; Kowalewska, Magdalena; Grabowska, Iwona; Maciejko, Dorota; Fogtman, Anna; Dadlez, Michal; Koziak, Katarzyna
2016-01-01
β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α—induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications. PMID:27727329
Cellular stress associated with the differentiation of Plasmodium berghei ookinetes.
Duran-Bedolla, Josefina; Téllez-Sosa, Juan; Valdovinos-Torres, Humberto; Pavón, Natalia; Buelna-Chontal, Mabel; Tello-López, Angel T; Argotte-Ramos, Rocio; Rodríguez, Mario Henry; Rodríguez, María Carmen
2017-04-01
For malaria transmission, Plasmodium parasites must develop in the mosquito vector. Oxidative stress in the insect midgut, triggered by environmental changes (e.g., pH and temperature), influences the cellular signaling involved in differentiation from gametocytes to mobile ookinetes for the purpose of parasite survival. Oxidative stress activates the homeostatic response to stress characterized by the phosphorylation eIF2α, the attenuation of protein synthesis, and the transcription of genes participating in the unfolded protein response and antioxidant processes, forming a part of an integrated stress response (ISR). We hypothesized that ISR operates during the differentiation of gametocytes to ookinetes to assure Plasmodium survival. Using in-vitro conditions resembling the mosquito midgut conditions, we cultured Plasmodium berghei gametocytes to ookinetes and evaluated the redox balance by detecting reactive oxygen species and superoxide dismutase activity. Additionally, we evaluated the phosphorylation of eIF2α, the attenuation of the global protein synthesis, and the gene expression of cellular stress markers (e.g., endoplasmic reticulum chaperones and antioxidant molecules, measured by reverse-transcription quantitative polymerase chain reaction), finding that these processes were all taking place, probably to improve survival during the differentiation of Plasmodium berghei ookinetes.
In Vitro Measurements of Metabolism for Application in Pharmacokinetic Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipscomb, John C.; Poet, Torka S.
2008-04-01
Abstract Human risk and exposure assessments require dosimetry information. Species-specific tissue dose response will be driven by physiological and biochemical processes. While metabolism and pharmacokinetic data are often not available in humans, they are much more available in laboratory animals; metabolic rate constants can be readily derived in vitro. The physiological differences between laboratory animals and humans are known. Biochemical processes, especially metabolism, can be measured in vitro and extrapolated to account for in vivo metabolism through clearance models or when linked to a physiologically based biological (PBPK) model to describe the physiological processes, such as drug delivery to themore » metabolic organ. This review focuses on the different organ, cellular, and subcellular systems that can be used to measure in vitro metabolic rate constants and how that data is extrapolated to be used in biokinetic modeling.« less
Stephens, T. C.; Peacock, J. H.
1977-01-01
The relationship between tumour volume response and cell kill in B16 melanoma following treatment in vivo with cyclophosphamide (CY) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) was investigated. Tumour volume response, expressed as growth delay, was estimated from measurements of tumour dimensions. Depression of in vitro colony-forming ability of cells from treated tumours was used as the measure of tumour cell kill. The relationship between these parameters was clearly different for the two agents studied. CY produced more growth delay (7.5 days) per decade of tumour cell kill than CCNU (2 to 3.5 days). The possibility that this was due to a technical artefact was rejected in favour of an alternative explanation that different rates of cellular repopulation in tumours treated with CY and CCNU might be responsible. Cellular repopulation was measured directly, by performing cell-survival assays at various times after treatment with doses of CY and CCNU which produced about 3 decades of cell kill. The rate of repopulation by clonogenic cells was much slower after treatment with CY than with CCNU, and this appears to account for the longer duration of the growth delay obtained with CY. PMID:921888
The quantification of cellular viability and inflammatory response to stainless steel alloys.
Bailey, LeeAnn O; Lippiatt, Sherry; Biancanello, Frank S; Ridder, Stephen D; Washburn, Newell R
2005-09-01
The biocompatibility of metallic alloys is critical to the success of many orthopedic therapies. Corrosion resistance and the immune response of the body to wear debris products ultimately determine the performance of these devices. The establishment of quantitative tests of biocompatibility is an important issue for biomaterials development. We have developed an in vitro model to measure the pro-inflammatory cytokine production and in this study investigated the cellular responses induced by nitrogenated and 316L stainless steel alloys in both particulate and solid form. We utilized a murine macrophage cell line, RAW 264.7, to characterize and compare the mRNA profiles of TNF-alpha and IL-1beta in these cells using real time-polymerase chain reaction (RT-PCR). Fluorescence microscopy and flow cytometry were used to probe the viability of the population and to examine the apoptotic pathway. The goals of this work were to develop improved measurement methods for the quantification of cellular inflammatory responses to biomaterials and to obtain data that leads to an enhanced understanding of the ways in which the body responds to biomaterials. Using these techniques, we observed evidence for an association between the upregulation of IL-1beta and reversible apoptosis, and the upregulation of TNF-alpha and irreversible apoptosis.
Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate
NASA Astrophysics Data System (ADS)
Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela
2016-02-01
Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.
Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate
Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica
2016-01-01
Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775
Kumagai, T; Yamanaka, T; Wataya, Y; Umetsu, A; Kawamura, N; Ikeda, K; Furukawa, H; Kimura, K; Chiba, S; Saito, S; Sugawara, N; Kurimoto, F; Sakaguchi, M; Inouye, S
1997-07-01
This study was designed to investigate the development of both cellular and humoral immune responses to gelatin in patients with vaccine-related immediate and nonimmediate reactions. Our purpose was to define the nature of the responses in the different clinical states. Six patients with immediate reactions and 21 patients with nonimmediate reactions after inoculation of various live vaccines were studied. Measurement of gelatin-specific IgE was performed in all subjects. Gelatin-specific T-cell responses detected by an in vitro lymphocyte proliferation assay and by an assay for IL-2 responsiveness were investigated to compare the immune response in patients with the two types of reaction. All six patients with immediate reactions had IgE responses to gelatin, whereas none of the 21 patients with nonimmediate reactions had any anti-gelatin IgE. All of the six patients with immediate reactions and 17 of the 21 patients with nonimmediate reactions exhibited positive T-lymphocyte responses specific to gelatin. Immediate and nonimmediate reactions are caused by different types of allergy to gelatin, and cell-mediated immunity to gelatin may play an important role in the pathogenesis of nonimmediate reactions.
Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae
2014-02-01
Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.
IN VITRO CARDIAC CELLULAR AND MOLECULAR EFFECTS OF AIR POLLUTION PARTICLE CONSTITUENTS
In Vitro Cardiac Cellular and Molecular Effects of Air Pollution Particle Constituents
Travis L. Knuckles1, Richard Jaskot2, Judy Richards2, and Kevin L. Dreher2. 1North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606, 2USEPA, Research Triangle Pa...
Characteristics of the ToxCast In Vitro Datasets from Biochemical and Cellular Assays
Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of 467 assays acr...
Kongsgaard, Michael; Bassi, Maria R; Rasmussen, Michael; Skjødt, Karsten; Thybo, Søren; Gabriel, Mette; Hansen, Morten Bagge; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Buus, Soren; Stryhn, Anette
2017-04-06
Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.
Barry, Gerald; Varela, Mariana; Ratinier, Maxime; Blomström, Anne-Lie; Caporale, Marco; Seehusen, Frauke; Hahn, Kerstin; Schnettler, Esther; Baumgärtner, Wolfgang; Kohl, Alain; Palmarini, Massimo
2014-08-01
Bunyaviruses have evolved a variety of strategies to counteract the antiviral defence systems of mammalian cells. Here we show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. In addition, we show that the SBV NSs protein enhances apoptosis in vitro and possibly in vivo, suggesting that this protein could be involved in SBV pathogenesis in different ways. © 2014 The Authors.
Heal, K G; Sheikh, N A; Hollingdale, M R; Morrow, W J; Taylor-Robinson, A W
2001-07-20
We have recently demonstrated that the novel glycoalkaloid tomatine, derived from leaves of the wild tomato Lycopersicon pimpinellifolium, can act as a powerful adjuvant for the elicitation of antigen-specific CD8+ T cell responses. Here, we have extended our previous investigation with the model antigen ovalbumin to an established malaria infection system in mice and evaluated the cellular immune response to a major preerythrocytic stage malaria vaccine candidate antigen when administered with tomatine. The defined MHC H-2kd class I-binding 9-mer peptide (amino acids 252-260) from Plasmodium berghei circumsporozoite (CS) protein was prepared with tomatine to form a molecular aggregate formulation and this used to immunise BALB/c (H-2kd) mice. Antigen-specific IFN-gamma secretion and cytotoxic T lymphocyte activity in vitro were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunised control mice. Moreover, when challenged with P. berghei sporozoites, mice immunised with the CS 9-mer-tomatine preparation had a significantly delayed onset of erythrocytic infection compared to controls. The data presented validate the use of tomatine to potentiate a cellular immune response to antigenic stimulus by testing in an important biologically relevant system. Specifically, the processing of the P. berghei CS 9-mer as an exogenous antigen and its presentation via MHC class I molecules to CD8+ T cells led to an immune response that is an in vitro correlate of protection against preerythrocytic malaria. This was confirmed by the protective capacity of the 9-mer-tomatine combination upon in vivo immunisation. These findings merit further work to optimise the use of tomatine as an adjuvant in malaria vaccine development.
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E.; Ding, Shilei; Medjahed, Halima; Delgado, Gloria G.; Brassard, Nathalie; Stürzel, Christina M.; Kirchhoff, Frank; Hahn, Beatrice H.; Parsons, Matthew S.; Kaufmann, Daniel E.; Evans, David T.
2018-01-01
ABSTRACT The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a “closed” conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands. PMID:29559570
[Immune response to live influenza vaccine].
Naĭkhin, A N; Rekstin, A R; Barantseva, I B; Donina, S A; Desheva, Iu A; Grigor'eva, E P; Kiseleva, I V; Rudenko, L G
2002-01-01
Priority data on the induction, by using a Russian live cold-adapted reassortant influenza vaccine (LIV), of the cellular and humoral immunity with regard for attenuation and genetic reassortment of vaccine stains as well as with regard for the age of vaccinated persons and the production of Th1 (IFNY, IL-2) and Th2 (IL-4) cytokine markers in vitro are presented. It was demonstrated in vivo that a pathogenic virus of the A group by far more actively induced the lymphocyte apoptosis as compared with attenuated genetically reassorted stains. Unlike the influenza pathogenic virus, the genetically attenuated and reassorted strain did not produce any negative effects on the induction of cellular immunity. A comparative study of the LIV immunogenic properties in vaccinated persons showed an advantage of LIV over inactivated influenza vaccine (IIV) in stimulating the cellular and local immunity in the elderly. Unlike IIV, LIV induced an active and balanced immune response developing due to Th1 and Th2 activation. LIV was found to stimulate well enough the production of IFN and IL-2 in both young and old persons.
NASA Astrophysics Data System (ADS)
Wang, Sheng; Wang, Hanjie; Liu, Zhongyun; Wang, Liangliang; Wang, Xiaomin; Su, Lin; Chang, Jin
2014-06-01
To improve their therapeutic index, designed nanocarriers should preferentially accumulate in tumor tissues and then rapidly enter tumor cells to release the encapsulated drugs in a triggered manner. In this article, a new kind of a smart pH- and reduction-dual-responsive drug delivery system based on folate-PEG-coated polymeric lipid vesicles (FPPLVs) formed from amphiphilic dextran derivatives was designed and prepared successfully. PEG chains with pH-sensitive hydrazone bonds, stearyl alcohol (SA) chains with reduction-sensitive disulfide bonds and folate were connected to a dextran main chain. The newly developed FPPLVs had a nano-sized structure (~50 nm) with a PEG coating. The in vitro DOX release profiles showed that the FPPLVs achieved a triggered drug release in response to acidic pH and reducing environments due to the cleavage of hydrazone bonds and disulfide bonds. It has also been demonstrated by an in vitro cellular uptake study that the FPPLVs lose their PEG coating as well as expose the folate in acidic conditions, which allows them to efficiently enter tumor cells through ligand-receptor interactions. In vitro cytotoxicity measurements also confirmed that FPPLVs exhibited pronounced antitumor activity against HeLa cells. These results suggest that FPPLVs are promising carriers for smart antitumor drug delivery applications.To improve their therapeutic index, designed nanocarriers should preferentially accumulate in tumor tissues and then rapidly enter tumor cells to release the encapsulated drugs in a triggered manner. In this article, a new kind of a smart pH- and reduction-dual-responsive drug delivery system based on folate-PEG-coated polymeric lipid vesicles (FPPLVs) formed from amphiphilic dextran derivatives was designed and prepared successfully. PEG chains with pH-sensitive hydrazone bonds, stearyl alcohol (SA) chains with reduction-sensitive disulfide bonds and folate were connected to a dextran main chain. The newly developed FPPLVs had a nano-sized structure (~50 nm) with a PEG coating. The in vitro DOX release profiles showed that the FPPLVs achieved a triggered drug release in response to acidic pH and reducing environments due to the cleavage of hydrazone bonds and disulfide bonds. It has also been demonstrated by an in vitro cellular uptake study that the FPPLVs lose their PEG coating as well as expose the folate in acidic conditions, which allows them to efficiently enter tumor cells through ligand-receptor interactions. In vitro cytotoxicity measurements also confirmed that FPPLVs exhibited pronounced antitumor activity against HeLa cells. These results suggest that FPPLVs are promising carriers for smart antitumor drug delivery applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00843j
Coletta, Ciro; Módis, Katalin; Szczesny, Bartosz; Brunyánszki, Attila; Oláh, Gábor; Rios, Ester C S; Yanagi, Kazunori; Ahmad, Akbar; Papapetropoulos, Andreas; Szabo, Csaba
2015-02-18
Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3-1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1-3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants DL-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.
Coletta, Ciro; Módis, Katalin; Szczesny, Bartosz; Brunyánszki, Attila; Oláh, Gábor; Rios, Ester CS; Yanagi, Kazunori; Ahmad, Akbar; Papapetropoulos, Andreas; Szabo, Csaba
2015-01-01
Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3–1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1–3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants dl-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia. PMID:25715337
NASA Astrophysics Data System (ADS)
Mold, Matthew; Shardlow, Emma; Exley, Christopher
2016-08-01
Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.
Mold, Matthew; Shardlow, Emma; Exley, Christopher
2016-08-12
Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al(3+) in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.
Mold, Matthew; Shardlow, Emma; Exley, Christopher
2016-01-01
Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain. PMID:27515230
Fearon, Ian M; Acheampong, Daniel O; Bishop, Emma
2012-01-01
Endothelial damage plays a key role in atherosclerosis and this is impacted upon by numerous risk factors including cigarette smoking. A potential measure to reduce the cardiovascular burden associated with smoking is to reduce smoke toxicant exposure. In an in vitro endothelial damage repair assay, endothelial cell migration was inhibited by cigarette smoke particulate matter (PM) generated from several cigarette types. This inhibition was reduced when cells were exposed to PM from an experimental cigarette with reduced smoke toxicant levels. As a number of toxicants induce oxidative stress and since oxidative stress may link cigarette smoke and endothelial damage, we hypothesized that PM effects were dependent on elevated cellular oxidants. However, although PM-induced cellular oxidant production could be inhibited by ascorbic acid or n-acetylcysteine, both these antioxidants were without effect on migration responses to PM. Furthermore, reactive oxygen species production, as indicated by dihydroethidium fluorescence, was not different in cells exposed to smoke from cigarettes with different toxicant levels. In summary, our data demonstrate that a cardiovascular disease-related biological response may be modified when cells are exposed to smoke containing different levels of toxicants. This appeared independent of the induction of oxidative stress.
Evaluation of the ToxCast Suite of Cellular and Molecular Assays for Prediction of In Vivo Toxicity
Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of human in vitro...
High-yield in vitro recordings from neurons functionally characterized in vivo.
Weiler, Simon; Bauer, Joel; Hübener, Mark; Bonhoeffer, Tobias; Rose, Tobias; Scheuss, Volker
2018-06-01
In vivo two-photon calcium imaging provides detailed information about the activity and response properties of individual neurons. However, in vitro methods are often required to study the underlying neuronal connectivity and physiology at the cellular and synaptic levels at high resolution. This protocol provides a fast and reliable workflow for combining the two approaches by characterizing the response properties of individual neurons in mice in vivo using genetically encoded calcium indicators (GECIs), followed by retrieval of the same neurons in brain slices for further analysis in vitro (e.g., circuit mapping). In this approach, a reference frame is provided by fluorescent-bead tracks and sparsely transduced neurons expressing a structural marker in order to re-identify the same neurons. The use of GECIs provides a substantial advancement over previous approaches by allowing for repeated in vivo imaging. This opens the possibility of directly correlating experience-dependent changes in neuronal activity and feature selectivity with changes in neuronal connectivity and physiology. This protocol requires expertise both in in vivo two-photon calcium imaging and in vitro electrophysiology. It takes 3 weeks or more to complete, depending on the time allotted for repeated in vivo imaging of neuronal activity.
Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates
2011-01-01
Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876
Suppression of antigen-specific lymphocyte activation in modeled microgravity
NASA Technical Reports Server (NTRS)
Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)
2001-01-01
Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.
Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants
Rhein, Cosima; Tripal, Philipp; Seebahn, Angela; Konrad, Alice; Kramer, Marcel; Nagel, Christine; Kemper, Jonas; Bode, Jens; Mühle, Christiane; Gulbins, Erich; Reichel, Martin; Becker, Cord-Michael; Kornhuber, Johannes
2012-01-01
Background Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. Methodology/Principal Findings We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. Conclusions/Significance These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity. PMID:22558155
Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro
Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar
2014-01-01
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage. PMID:24526229
NASA Astrophysics Data System (ADS)
Tansey, William P.; Herr, Winship
1995-11-01
The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.
Pezzini, Francesco; Bettinetti, Laura; Di Leva, Francesca; Bianchi, Marzia; Zoratti, Elisa; Carrozzo, Rosalba; Santorelli, Filippo M; Delledonne, Massimo; Lalowski, Maciej; Simonati, Alessandro
2017-05-01
Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.
NASA Technical Reports Server (NTRS)
Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.;
2012-01-01
Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test response in the early phase of Antarctic wintering over con rms distinct immune suppressive effects seen after (sub-)acute hypobaric hypoxia. The reversal and overshooting reaction of cellular immune responses upon stimulation, but not the resting state, indicate either a) priming of immune answers and/or b) an uncoupled or disregulated control of cellular immune answers by auto-, para- and endocrine pathways. Further analyses and correlations are warranted. Acknowledgement: Supported by the European Space Agency (ESA), the French (IPEV) and Italian (PNRA) polar institutes, the German National Space Program (DLR, 50WB0719/WB0919), by BELSPO/PROEDEX/ESA (C90-380/-391), NASA and by the Concordia crews who have participated with great enthusiasm.
Comparison of experimental models for predicting laser-tissue interaction from 3.8-micron lasers
NASA Astrophysics Data System (ADS)
Williams, Piper C. M.; Winston, Golda C. H.; Randolph, Don Q.; Neal, Thomas A.; Eurell, Thomas E.; Johnson, Thomas E.
2004-07-01
The purpose of this study was to evaluate the laser-tissue interactions of engineered human skin and in-vivo pig skin following exposure to a single 3.8 micron laser light pulse. The goal of the study was to determine if these tissues shared common histologic features following laser exposure that might prove useful in developing in-vitro and in-vivo experimental models to predict the bioeffects of human laser exposure. The minimum exposure required to produce gross morphologic changes following a four microsecond, pulsed skin exposure for both models was determined. Histology was used to compare the cellular responses of the experimental models following laser exposure. Eighteen engineered skin equivalents (in-vitro model), were exposed to 3.8 micron laser light and the tissue responses compared to equivalent exposures made on five Yorkshire pigs (in-vivo model). Representative biopsies of pig skin were taken for histologic evaluation from various body locations immediately, one hour, and 24 hours following exposure. The pattern of epithelial changes seen following in-vitro laser exposure of the engineered human skin and in-vivo exposure of pig skin indicated a common histologic response for this particular combination of laser parameters.
Shao, Yue
2014-01-01
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188
Diagnosis of stinging insect allergy: utility of cellular in-vitro tests.
Scherer, Kathrin; Bircher, Andreas J; Heijnen, Ingmar Afm
2009-08-01
Diagnosis of stinging insect allergy is based on a detailed history, venom skin tests, and detection of venom-specific IgE. As an additional diagnostic tool, basophil responsiveness to venom allergens has been shown to be helpful in selected patients. This review summarizes the current diagnostic procedures for stinging insect allergy and discusses the latest developments in cellular in-vitro tests. Cellular assays have been evaluated in patients with Hymenoptera venom allergy. The diagnostic performance of the cellular mediator release test is similar to that of the flow cytometric basophil activation test (BAT), but the BAT has been the most intensively studied. BAT offers the possibility to assess basophil reactivity to allergens in their natural environment and to simultaneously analyze surface marker expression and intracellular signaling. It has been demonstrated that BAT represents a valuable additional diagnostic tool in selected patients when used in combination with other well established tests. A major limitation is the current lack of unified, standardized protocols. Flow cytometry offers huge possibilities to enhance knowledge of basophil functions. The BAT may be used as an additional test to confirm the diagnosis of stinging insect allergy in selected patients, provided that it is performed by an experienced laboratory using a validated assay. Test results have to be interpreted by clinicians familiar with the methodological aspects. The utility of the BAT to confirm allergy diagnosis and to predict the risk of subsequent systemic reactions may be improved by combined analysis of multiple surface markers and intracellular signaling pathways.
The comparative immunology of wild and laboratory mice, Mus musculus domesticus
Abolins, Stephen; King, Elizabeth C.; Lazarou, Luke; Weldon, Laura; Hughes, Louise; Drescher, Paul; Raynes, John G.; Hafalla, Julius C. R.; Viney, Mark E.; Riley, Eleanor M.
2017-01-01
The laboratory mouse is the workhorse of immunology, used as a model of mammalian immune function, but how well immune responses of laboratory mice reflect those of free-living animals is unknown. Here we comprehensively characterize serological, cellular and functional immune parameters of wild mice and compare them with laboratory mice, finding that wild mouse cellular immune systems are, comparatively, in a highly activated (primed) state. Associations between immune parameters and infection suggest that high level pathogen exposure drives this activation. Moreover, wild mice have a population of highly activated myeloid cells not present in laboratory mice. By contrast, in vitro cytokine responses to pathogen-associated ligands are generally lower in cells from wild mice, probably reflecting the importance of maintaining immune homeostasis in the face of intense antigenic challenge in the wild. These data provide a comprehensive basis for validating (or not) laboratory mice as a useful and relevant immunological model system. PMID:28466840
Pathway Based Toxicology and Fit-for-Purpose Assays.
Clewell, Rebecca A; McMullen, Patrick D; Adeleye, Yeyejide; Carmichael, Paul L; Andersen, Melvin E
The field of toxicity testing for non-pharmaceutical chemicals is in flux with multiple initiatives in North America and the EU to move away from animal testing to mode-of-action based in vitro assays. In this arena, there are still obstacles to overcome, such as developing appropriate cellular assays, creating pathway-based dose-response models and refining in vitro-in vivo extrapolation (IVIVE) tools. Overall, it is necessary to provide assurances that these new approaches are adequately protective of human and ecological health. Another major challenge for individual scientists and regulatory agencies is developing a cultural willingness to shed old biases developed around animal tests and become more comfortable with mode-of-action based assays in human cells. At present, most initiatives focus on developing in vitro alternatives and assessing how well these alternative methods reproduce past results related to predicting organism level toxicity in intact animals. The path forward requires looking beyond benchmarking against high dose animal studies. We need to develop targeted cellular assays, new cell biology-based extrapolation models for assessing regions of safety for chemical exposures in human populations, and mode-of-action-based approaches which are constructed on an understanding of human biology. Furthermore, it is essential that assay developers have the flexibility to 'validate' against the most appropriate mode-of-action data rather than against apical endpoints in high dose animal studies. This chapter demonstrates the principles of fit-for-purpose assay development using pathway-targeted case studies. The projects include p53-mdm2-mediated DNA-repair, estrogen receptor-mediated cell proliferation and PPARα receptor-mediated liver responses.
Rampuria, Pragya; Lang, Mark L
2015-05-01
NKT follicular helper cells (NKTfh cells) are a recently discovered functional subset of CD1d-restricted NKT cells. Given the potential for NKTfh cells to promote specific antibody responses and germinal center reactions, there is much interest in determining the conditions under which NKTfh cells proliferate and/or differentiate in vivo and in vitro. We confirm that NKTfh cells expressing the canonical semi-invariant Vα14 TCR were CXCR5(+)/ICOS(+)/PD-1(+)/Bcl6(+) and increased in number following administration of the CD1d-binding glycolipid α-galactosylceramide (α-GC) to C57Bl/6 mice. We show that the α-GC-stimulated increase in NKTfh cells was CD1d-dependent since the effect was diminished by reduced CD1d expression. In vivo and in vitro treatment with α-GC, singly or in combination with IL-2, showed that NKTfh cells increased in number to a greater extent than total NKT cells, but proliferation was near-identical in both populations. Acquisition of the NKTfh phenotype from an adoptively transferred PD-1-depleted cell population was also evident, showing that peripheral NKT cells differentiated into NKTfh cells. Therefore, the α-GC-stimulated, CD1d-dependent increase in peripheral NKTfh cells is a result of cellular proliferation and differentiation. These findings advance our understanding of the immune response following immunization with CD1d-binding glycolipids. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo.
Park, Kyung-Won; Eun Kim, Gyoung; Morales, Rodrigo; Moda, Fabio; Moreno-Gonzalez, Ines; Concha-Marambio, Luis; Lee, Amy S; Hetz, Claudio; Soto, Claudio
2017-03-23
Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.
Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions.
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin
2018-03-15
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP ( p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP ( p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP ( p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.
Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin
2018-01-01
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions. PMID:29543727
Tan, S.J.; Fang, J.Y.; Wu, Y.; Yang, Z.; Liang, G.; Han, B.
2015-01-01
Efficiency of cell-based tissue engineering and regenerative medicine has been limited by inadequate cellular responses to injury because of aging and poor controllability of cellular interactions. Since cell progression is under a tight epigenetic regulation, epigenetic modulators such as 5-azacytidine (5-Aza-CR) have been utilized to facilitate reprogramming and development of somatic cells in 2-dimensional (2-D) settings. Nonetheless, progression of a specific tissue lineage toward the terminal phenotype is dependent not only on the genomic potential, but also on the microenvironment cues that are beyond the capability of 2-D approaches. In this study, we investigated the combined effects of matrices of variable rigidities and the treatment with the epigenetic modulator 5-Aza-CR on reprogramming adipose-derived stromal cells (ADSCs) into myoblast-like cells by utilizing tunable transglutaminase cross-linked gelatin (Col-Tgel) in vitro and in vivo. Our experiments demonstrated that cellular plasticity and trans-differentiation were significantly enhanced when ADSCs were treated with an effective dose of 5-Aza-CR (1.25 to 12.5 ng) in the optimal myogenic matrix (15 ± 5 kPa Col-Tgel). Our findings suggest that both physical signals and chemical milieu are critical for the regulation of cellular responses. PMID:26548559
Biology Based Lung Cancer Model for Chronic Low Radon Exposures
NASA Astrophysics Data System (ADS)
TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin
2008-08-01
Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.
Francis, J. P.; Richmond, P. C.; Strickland, D.; Prescott, S. L.; Pomat, W. S.; Michael, A.; Nadal‐Sims, M. A.; Edwards‐Devitt, C. J.; Holt, P. G.; Lehmann, D.
2016-01-01
Summary In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high‐risk areas have pre‐existing pneumococcal‐specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA‐induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA‐specific interferon (IFN)‐γ, tumour necrosis factor (TNF)‐α, interleukin (IL)‐5, IL‐6, IL‐10 and IL‐13 responses, and lower dPly‐IL‐6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA‐IL‐5 and PspA‐IL‐13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly‐IL‐6 responses with a higher frequency of cord antigen‐presenting cells. In the PNG cohort, higher PspA‐specific IL‐5 and IL‐6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA‐IL‐10 CBMC responses. Pneumococcus‐specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease. PMID:27859014
Manzano-León, Natalia; Quintana, Raúl; Sánchez, Brisa; Serrano, Jesús; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Tania; O’Neill, Marie S.; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Rosas, Irma
2015-01-01
Spatial variation in particulate matter–related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We compared the in vitro proinflammatory response of J774A.1 and THP-1 cells after exposure to particles, measuring subsequent TNFα and IL-6 secretion. Particle composition varied by site and size. Particle constituents were subjected to principal component analysis, identifying three components: C1 (Si, Sr, Mg, Ca, Al, Fe, Mn, endotoxin), C2 (polycyclic aromatic hydrocarbons), and C3 (Zn, S, Sb, Ni, Cu, Pb). Induced TNFα levels were higher and more heterogeneous than IL-6 levels. Cytokines produced by both cell lines only correlated with C1, suggesting that constituents associated with soil induced the inflammatory response and explain observed spatial differences. PMID:23335408
Van Laer, L; Vingerhoets, J; Vanham, G; Kestens, L; Bwayo, J; Otido, J; Piot, P; Roggen, E
1995-01-01
The cellular immune responses to fractionated Haemophilus ducreyi antigens, coated on latex beads, were assessed in patients with chancroid and in controls, using an in vitro lymphocyte proliferation assay. Several fractions of H. ducreyi antigen revealed stimulating activity. However, only the molecular size ranges 91-78 kD, 59-29 kD, and 25-21 kD induced proliferation that may be specifically related to H. ducreyi infection. Lymphocytes from four HIV- patients, successfully treated for chancroid, were not stimulated by H. ducreyi antigen. In general, lymphocytes from HIV+ chancroid patients were less responsive to H. ducreyi antigen compared with those from HIV- chancroid patients. However, two HIV-infected patients showed exceptionally strong responses to high molecular weight fractions. To our knowledge this is the first report demonstrating that H. ducreyi contains specific T cell-stimulating antigens. Based on this work, further identification and purification of the T cell antigens is feasible. PMID:7586673
Van Laer, L; Vingerhoets, J; Vanham, G; Kestens, L; Bwayo, J; Otido, J; Piot, P; Roggen, E
1995-11-01
The cellular immune responses to fractionated Haemophilus ducreyi antigens, coated on latex beads, were assessed in patients with chancroid and in controls, using an in vitro lymphocyte proliferation assay. Several fractions of H. ducreyi antigen revealed stimulating activity. However, only the molecular size ranges 91-78 kD, 59-29 kD, and 25-21 kD induced proliferation that may be specifically related to H. ducreyi infection. Lymphocytes from four HIV- patients, successfully treated for chancroid, were not stimulated by H. ducreyi antigen. In general, lymphocytes from HIV+ chancroid patients were less responsive to H. ducreyi antigen compared with those from HIV- chancroid patients. However, two HIV-infected patients showed exceptionally strong responses to high molecular weight fractions. To our knowledge this is the first report demonstrating that H. ducreyi contains specific T cell-stimulating antigens. Based on this work, further identification and purification of the T cell antigens is feasible.
Wu, Xiaoming; Shell, Steven M.; Yang, Zhengguan; Zou, Yue
2006-01-01
DNA damage triggers complex cellular responses in eukaryotic cells, including initiation of DNA repair and activation of cell cycle checkpoints. In addition to inducing cell cycle arrest, checkpoint also has been suggested to modulate a variety of other cellular processes in response to DNA damage. In this study, we present evidence showing that the cellular function of xeroderma pigmentosum group A (XPA), a major nucleotide excision repair (NER) factor, could be modulated by checkpoint kinase ataxia-telangiectasia mutated and Rad3-related (ATR) in response to UV irradiation. We observed the apparent interaction and colocalization of XPA with ATR in response to UV irradiation. We showed that XPA was a substrate for in vitro phosphorylation by phosphatidylinositol-3-kinase-related kinase family kinases whereas in cells XPA was phosphorylated in an ATR-dependent manner and stimulated by UV irradiation. The Ser196 of XPA was identified as a biologically significant residue to be phosphorylated in vivo. The XPA-deficient cells complemented with XPA-S196A mutant, in which Ser196 was substituted with an alanine, displayed significantly higher UV sensitivity compared with the XPA cells complemented with wild-type XPA. Moreover, substitution of Ser196 with aspartic acid for mimicking the phosphorylation of XPA increased the cell survival to UV irradiation. Taken together, our results revealed a potential physical and functional link between NER and the ATR-dependent checkpoint pathway in human cells and suggested that the ATR checkpoint pathway could modulate the cellular activity of NER through phosphorylation of XPA at Ser196 on UV irradiation. PMID:16540648
Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients.
Ávila, Julio; González-Fernández, Rebeca; Rotoli, Deborah; Hernández, Jairo; Palumbo, Angela
2016-12-01
Ovarian aging is associated with gradual follicular loss by atresia/apoptosis. Increased production of toxic metabolites such as reactive oxygen species (ROS) and reactive nitrogen species as well as external oxidant agents plays an important role in the process of ovarian senescence and in the pathogenesis of ovarian pathologies such as endometriosis and polycystic ovary syndrome (PCOS). This review provides a synthesis of available studies of oxidative stress (OS) in the ovary, focusing on the most recent evidence obtained in mural granulosa-lutein (GL) cells of in vitro fertilization patients. Synthesis of antioxidant enzymes such as peroxiredoxin 4, superoxide dismutase, and catalase and OS damage response proteins such as aldehyde dehydrogenase 3, member A2 decreases with aging in human GL cells, favoring an unbalance in ROS/antioxidants that mediates molecular damage and altered cellular function. The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging. Women with endometriosis and PCOS have lower antioxidant production capacity that may contribute to abnormal follicular development and infertility. Further investigation of the signaling pathways involved in cellular response to OS could shed light into molecular characterization of these diseases and development of new treatment strategies to improve reproductive potential in these women. © The Author(s) 2016.
Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings.
Skoog, Shelby A; Kumar, Girish; Zheng, Jiwen; Sumant, Anirudha V; Goering, Peter L; Narayan, Roger J
2016-12-01
Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp 3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp 3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.
Ahmad, Murrium; Rees, Robert C; McArdle, Stephanie E; Li, Geng; Mian, Shahid; Entwisle, Claire; Loudon, Peter; Ali, Selman A
2005-07-20
Direct intratumour injection of the disabled infectious single-cycle-herpes simplex virus-encoding murine granulocyte/macrophage colony-stimulating factor (DISC-HSV-mGM-CSF) into established colon carcinoma CT26 tumours induced complete tumour rejection in up to 70% of treated animals (regressors), while the remaining mice developed progressive tumours (progressors). This murine Balb/c model was used to dissect the cellular mechanisms involved in tumour regression or progression following immunotherapy. CTLs were generated by coculturing lymphocytes and parenchymal cells from the same spleens of individual regressor or progressor animals in the presence of the relevant AH-1 peptide derived from the gp70 tumour-associated antigens expressed by CT26 tumours. Tumour regression was correlated with potent CTL responses, spleen weight and cytokine (IFN-gamma) production. Conversely, progressor splenocytes exhibited weak to no CTL activity and poor IFN-gamma production, concomitant with the presence of a suppressor cell population in the progressor splenic parenchymal cell fraction. Further fractionation of this parenchymal subpopulation demonstrated that cells inhibitory to the activation of AH-1-specific CTLs, restimulated in vitro with peptide, were present in the nonadherent parenchymal fraction. In vitro depletion of progressor parenchymal CD3+/CD4+ T cells restored the CTL response of the cocultured splenocytes (regressor lymphocytes and progressor parenchymal cells) and decreased the production of IL-10, suggesting that CD3+CD4+ T lymphocytes present in the parenchymal fraction regulated the CTL response to AH-1. We examined the cellular responses associated with tumour rejection and progression, identifying regulatory pathways associated with failure to respond to immunotherapy. Copyright 2005 Wiley-Liss, Inc.
Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes.
Niskanen, Jukka; Zhang, Issan; Xue, Yanming; Golberg, Dmitri; Maysinger, Dusica; Winnik, Françoise M
2016-01-01
To evaluate the response of cells to boron nitride nanotubes (BNNTs) carrying fluorescent probes or drugs in their inner channel by assessment of the cellular localization of the fluorescent cargo, evaluation of the in vitro release and biological activity of a drug (curcumin) loaded in BNNTs. Cells treated with curcumin-loaded BNNTs and stimulated with lipopolysaccharide were assessed for nitric oxide release and stimulation of IL-6 and TNF-α. The cellular trafficking of two cell-permeant dyes and a non-cell-permeant dye loaded within BNNTs was imaged. BNNTs loaded with up to 13 wt% fluorophores were internalized by cells and controlled release of curcumin triggered cellular pathways associated with the known anti-inflammatory effects of the drug. The overall findings indicate that BNNTs can function as nanocarriers of biologically relevant probes/drugs allowing one to examine/control their local intracellular localization and biochemical effects, leading the way to applications as intracellular nanosensors.
Nawaz, Haq; Bonnier, Franck; Knief, Peter; Howe, Orla; Lyng, Fiona M; Meade, Aidan D; Byrne, Hugh J
2010-12-01
The study of the interaction of anticancer drugs with mammalian cells in vitro is important to elucidate the mechanisms of action of the drug on its biological targets. In this context, Raman spectroscopy is a potential candidate for high throughput, non-invasive analysis. To explore this potential, the interaction of cis-diamminedichloroplatinum(II) (cisplatin) with a human lung adenocarcinoma cell line (A549) was investigated using Raman microspectroscopy. The results were correlated with parallel measurements from the MTT cytotoxicity assay, which yielded an IC(50) value of 1.2 ± 0.2 µM. To further confirm the spectral results, Raman spectra were also acquired from DNA extracted from A549 cells exposed to cisplatin and from unexposed controls. Partial least squares (PLS) multivariate regression and PLS Jackknifing were employed to highlight spectral regions which varied in a statistically significant manner with exposure to cisplatin and with the resultant changes in cellular physiology measured by the MTT assay. The results demonstrate the potential of the cellular Raman spectrum to non-invasively elucidate spectral changes that have their origin either in the biochemical interaction of external agents with the cell or its physiological response, allowing the prediction of the cellular response and the identification of the origin of the chemotherapeutic response at a molecular level in the cell.
Microfluidic platform for single cell analysis under dynamic spatial and temporal stimulation.
Song, Jiyoung; Ryu, Hyunryul; Chung, Minhwan; Kim, Youngtaek; Blum, Yannick; Lee, Sung Sik; Pertz, Olivier; Jeon, Noo Li
2018-05-01
Recent research on cellular responses is shifting from static observations recorded under static stimuli to real-time monitoring in a dynamic environment. Since cells sense and interact with their surrounding microenvironment, an experimental platform where dynamically changing cellular microenvironments should be recreated in vitro. There has been a lack of microfluidic devices to support spatial and temporal stimulations in a simple and robust manner. Here, we describe a microfluidic device that generates dynamic chemical gradients and pulses in both space and time using a single device. This microfluidic device provides at least 12h of continuous stimulations that can be used to observe responses from mammalian cells. Combination of the microfluidic de-vice with live-cell imaging facilitates real-time observation of dynamic cellular response at single cell level. Using stable HEK cells with biosensors, ERK (Extracellular signal-Regulated Kinase) activities were observed un-der the pulsatile and ramping stimulations of EGF (Epidermal Growth Factor). We quantified ERK activation even at extremely low EGF concentration (0.0625µg/ml), which can not be observed using conventional techniques such as western blot. Cytoskeleton re-arrangement of the 3T3 fibroblast (stable transfection with Lifeact-GFP) was compared under abrupt and gradually changing gradient of PDGF. Copyright © 2017 Elsevier B.V. All rights reserved.
Núñez-Álvarez, Carlos A; Hernández-Ramírez, Diego F; Martinez-Castillo, Araceli; Pascual Ramos, Virginia; Cabiedes, Javier; Ortega, Alicia; Cabral, Antonio R
2017-02-01
Homozygote genotype V 247 of the β 2 -glycoprotein-I (β 2 GP-I) gene has been associated with anti-β 2 GP-I and thrombosis in patients with primary anti-phospholipid syndrome APS (PAPS). However, the cellular immune response to β 2 GP-I 247 has been little studied. To evaluate the immune cellular proliferation in response to native and non-native β 2 GP-I 247 valine/leucine phenotype from Mexican patients with PAPS. We studied 10 patients with PAPS and 10 healthy control subjects (HC). The polymorphism at position 247 of the β 2 GP-I gene was determined by PCR-RFLP and the corresponding β 2 GP-I protein was subsequently purified from normal human plasma by affinity chromatography. PBMC purified from patients and controls were stimulated with β 2 GP-I under native and in non native (reduced) conditions. We also determined the anti-β 2 GP-I production in vitro by B cell clones (EBV) generated in cocultures experiments. Differential Scanning Calorimetry (DSC) was studied to determine the structural differences between the β 2 GP-I 247 valine/leucine isoforms. Cytokine profile (IL-2, IL-4, IL-6, TNFα, INFγ) was evaluated in culture supernatants. PAPS and healthy control PBMCs had a higher proliferative response when stimulated with β 2 GP-I under reduced cultures conditions compared to non-denatured conditions. PBMCs response from PAPS patients was higher. We observed more cell proliferation in response to β 2 GP-I 247 valine/leucine or valine isoforms in non-native conditions. In contrast, this response was not significant against β 2 GP-I 247 leucine. These findings were T CD4 + -dependent. Similar results were obtained with B cell clones derived from PAPS patients, which showed more pronounced proliferation in non native conditions and higher against β 2 GP-I 247 valine. No differences were found in anti-β 2 GP-I production, but high levels of IL-6 in vitro were identified. The structural analysis of both β 2 GP-I 247 isoforms by DSC showed a major conformational change due to a single mutation in the β 2 GP-I variants. PAPS PBMCs had a higher cellular response against β 2 GP-I 247 in non-native culture conditions preferentially to the β 2 GP-I 247 valine phenotype. This effect is T CD4 + dependent and appears to be driven by tertiary structural changes adopted by β 2 GP-I 247 polymorphism. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
An overview of transcriptional regulation in response to toxicological insult.
Jennings, Paul; Limonciel, Alice; Felice, Luca; Leonard, Martin O
2013-01-01
The completion of the human genome project and the subsequent advent of DNA microarray and high-throughput sequencing technologies have led to a renaissance in molecular toxicology. Toxicogenomic data sets, from both in vivo and in vitro studies, are growing exponentially, providing a wealth of information on regulation of stress pathways at the transcriptome level. Through such studies, we are now beginning to appreciate the diversity and complexity of biological responses to xenobiotics. In this review, we aim to consolidate and summarise the major toxicologically relevant transcription factor-governed molecular pathways. It is becoming clear that different chemical entities can cause oxidative, genotoxic and proteotoxic stress, which induce cellular responses in an effort to restore homoeostasis. Primary among the response pathways involved are NFE2L2 (Nrf2), NFE2L1 (Nrf1), p53, heat shock factor and the unfolded protein response. Additionally, more specific mechanisms exist where xenobiotics act as ligands, including the aryl hydrocarbon receptor, metal-responsive transcription factor-1 and the nuclear receptor family of transcription factors. Other pathways including the immunomodulatory transcription factors NF-κB and STAT together with the hypoxia-inducible transcription factor HIF are also implicated in cellular responses to xenobiotic exposure. A less specific but equally important aspect to cellular injury controlled by transcriptional activity is loss of tissue-specific gene expression, resulting in dedifferentiation of target cells and compromise of tissue function. Here, we review these pathways and the genes they regulate in order to provide an overview of this growing field of molecular toxicology.
Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balajee, A.S.; Meador, J.A.; Su, Y.
It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellularmore » mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the differences in cellular defense mechanisms between low and high doses of low LET radiation and to define the radiation doses where the cellular DNA damage signaling and repair mechanisms tend to shift. This information is critically important to address and advance some of the low dose research program objectives of DOE. The results of this proposed study will lead to a better understanding of the mechanisms for the cellular responses to low and high doses of low LET radiation. Further, systematic analysis of the role of PIKK signaling pathways as a function of radiation dose in tissue microenvironment will provide useful mechanistic information for improving the accuracy of radiation risk assessment for low doses. Knowledge of radiation responses in tissue microenvironment is important for the accurate prediction of ionizing radiation risks associated with cancer and tissue degeneration in humans.« less
Schultz, R D
1976-01-01
The attenuated Rockborn strain of canine distemper virus is commonly used in commercial vaccines. Since immunosuppression is a common feature of virulent (Snyder Hill) distemper virus infection of the dog, an evaluation of the cellular immune functions of dogs given inoculums of the less virulent Rockborn strain was done using lymphocyte blastogenesis responses to various mitogens. Unlike the viruslent Snyder Hill strain, the attenuated distemper virus did not alter lymphocyte blastogenesis responses to phytohemaglutinin (PHA) and pokeweed mitogen (PWM) which are considered in vitro correlates of T and B cell immunity.
2005-01-01
Abstract The aim of this study was to evaluate the effect of 3 Brucella ovis subcellular protein fractions: Outer membrane (OMP), inner membrane (IMP), and cytoplasm (CP), on cellular immune response by in vitro production of interleukin (IL)-2, IL-4, and interferon (IFN)-γ. Each fraction was inoculated 3 times into Balb/c mice, primary cultures of mice spleen cells were done, and these were then stimulated with the fractions. Culture supernatants were collected at 24, 48, 72, 96, and 120 h postinoculation. Cytokine concentration was measured by Duoset-enzyme-linked immunosorbent assay (ELISA). The OMP fraction induced highest cellular immune response of 1000 pg/mL of IL-2 at 24 h, which decreased to < 100 pg/mL by 96 h. The IL-2 response for the IMP fraction was low at 24 h, but exceeded that of the OMP fraction at 72, 96, and 120 h. The CP showed a poor IL response. Regarding the IFN-γ production, OMP and IMP induced a high response at 120 h. These results open the possibility for the use of B. ovis outer and inner membrane proteins as a subcellular vaccine. PMID:15745223
Song, Li; Xiong, Dan; Hu, Maozhi; Kang, Xilong; Pan, Zhiming; Jiao, Xinan
2017-06-21
Sudden increases in the number of human A (H7N9) cases reported during December and January have been observed in previous years. Most reported infection cases are due to prior exposure to live poultry or potentially contaminated environments. Low pathogenicity of influenza A (H7N9) virus in avian species complicates timely discovery of infected birds. Therefore, there is a pressing need to develop safe and effective anti-H7N9 vaccines for poultry to reduce the risk of human infection and prevent the emergence of novel mutated strains. In addition to a good antigen, an effective vaccine also requires an appropriate adjuvant to enhance its immunogenicity. Previously, we generated an H7N9 influenza recombinant subunit vaccine (HA1-2-fliC), in which haemagglutinin globular head domain (HA1-2) was fused with flagellin (fliC), a potent TLR5 ligand, and demonstrated that HA1-2-fliC elicited effective HA1-2-specific immune responses in mice. In this study, we determined flagellin-induced expression profiles of cytokines and chemokines in different types of avian immune cells in vitro and ex vivo. We found that flagellin significantly increased the expression levels of CXCL inflammatory chemokines (CXCLi1 and CXCLi2) and CCL chemokines (MIP-1β and MCP-3) in avian macrophage HD11 cells. In addition, HA1-2-fliC induced significant upregulation of cytokines (IL-1β, IL-6, IL-18 and IFN-γ) and chemokines (CXCLi1, CXCLi2 and MIP-1β) in ex vivo splenic lymphocytes and peripheral blood mononuclear cells (PBMCs), suggesting that flagellin promoted immune responses of avian cells in vitro. We also evaluated specific humoural and cellular immune responses induced by HA1-2-fliC and found that chickens immunised intramuscularly with HA1-2-fliC showed significantly higher HA1-2-specific immunoglobulin (Ig)G titers in serum. Furthermore, HA1-2-fliC potentiated cellular immune responses, as reflected by an increase in CD4 + and CD8 + T cells and proliferation of PBMCs. Significantly higher levels of IFN-γ and IL-4 in PBMCs from chickens vaccinated with HA1-2-fliC further indicated that HA1-2-fliC promoted a balanced Th1/Th2 immune response. We demonstrated that the use of the flagellin as an adjuvant potentiated immunogenicity of influenza subunit vaccine HA1-2 in vitro and in vivo. These findings provide a basis for the development of H7N9 influenza HA1-2 subunit vaccines for chickens.
Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4
Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao
2017-01-01
Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2. PMID:28252030
Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4
NASA Astrophysics Data System (ADS)
Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao
2017-03-01
Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.
Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun
2018-05-01
Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Wilson, John T.; Keller, Salka; Manganiello, Matthew J.; Cheng, Connie; Lee, Chen-Chang; Opara, Chinonso; Convertine, Anthony; Stayton, Patrick S.
2013-01-01
Protein subunit vaccines offer important potential advantages over live vaccine vectors, but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a re-designed polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8+ T cell response (0.5% IFN-ɣ+ of CD8+) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8+ T cell responses (3.4% IFN-ɣ+ of CD8+) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4+IFN-ɣ+ (Th1) responses, and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ~7% antigen-specific CD8+ T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and augment cellular and humoral immune responses via dual-delivery of protein antigens and CpG ODN. Hence, pH-responsive polymeric nanoparticles offer promise as a delivery platform for protein subunit vaccines. PMID:23590591
Exposure of differentiated airway epithelial cells to volatile smoke in vitro.
Beisswenger, Christoph; Platz, Juliane; Seifart, Carola; Vogelmeier, Claus; Bals, Robert
2004-01-01
Cigarette smoke (CS) is the predominant pathogenetic factor in the development of chronic bronchitis and chronic obstructive pulmonary disease. The knowledge about the cellular and molecular mechanisms underlying the smoke-induced inflammation in epithelial cells is limited. The aim of this study was to develop an in vitro model to monitor the effects of volatile CS on differentiated airway epithelial cells. The airway epithelial cell line MM-39 and primary human bronchial epithelial cells were cultivated as air-liquid interface cultures and exposed directly to volatile CS. We used two types of exposure models, one using ambient air, the other using humidified and warm air. Cytokine levels were measured by quantitative PCR and ELISA. Phosphorylation of p38 MAP kinase was assessed by Western blot analysis. To reduce the smoke-induced inflammation, antisense oligonucleotides directed against the p65 subunit of NF-kappaB were applied. Exposure of epithelia to cold and dry air resulted in a significant inflammatory response. In contrast, exposure to humidified warm air did not elicit a cellular response. Stimulation with CS resulted in upregulation of mRNA for IL-6 and IL-8 and protein release. Exposure to CS combined with heat-inactivated bacteria synergistically increased levels of the cytokines. Reactions of differentiated epithelial cells to smoke are mediated by the MAP kinase p38 and the transcription factor NF-kappaB. We developed an exposure model to examine the consequences of direct exposure of differentiated airway epithelial cells to volatile CS. The model enables to measure the cellular reactions to smoke exposure and to determine the outcome of therapeutic interventions. Copyright 2004 S. Karger AG, Basel
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka
2017-06-26
Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.
Appel, David I.; Brinda, Bryan; Markowitz, John S.; Newcorn, Jeffrey H.; Zhu, Hao-Jie
2012-01-01
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography- tandem mass spectrometry (LC-MS/MS) was developed. This assay represents the first LC-MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3-atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/ml and 10 nM for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3 ng/ml to 900 ng/ml and 10 nM to 10 μM for human plasma and cellular samples, respectively (r2 > 0.999). The intra- and inter-day assay accuracy and precision were evaluated using quality control samples at 3 different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect, and recovery were also successfully demonstrated. The present assay is superior to previously published LC-MS and LC-MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. PMID:22275222
FK506 protects against articular cartilage collagenous extra-cellular matrix degradation.
Siebelt, M; van der Windt, A E; Groen, H C; Sandker, M; Waarsing, J H; Müller, C; de Jong, M; Jahr, H; Weinans, H
2014-04-01
Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Velasquillo, Cristina; Silva-Bermudez, Phaedra; Vázquez, Nadia; Martínez, Alan; Espadín, Andres; García-López, Julieta; Medina-Vega, Antonio; Lecona, Hugo; Pichardo-Baena, Raúl; Ibarra, Clemente; Shirai, Keiko
2017-10-01
Autologous skin transplantation is today's "gold standard" treatment for full-thickness burns. However, when > 30% of total body surface area is damaged, there is an important shortage of autologous donor sites for skin grafting; then, treatment alternatives become crucial. Such alternatives can be based on polymeric scaffolds capable of functioning as protective covers and cells/factors carriers. Chitosan (CTS) is a natural-derived polymer with relevant biological-related properties but poor mechanical performance. Improved mechanical properties can be achieved through lactic acid grafting (LA-g); nevertheless, LA-g affects the biological response towards the CTS-based materials. In this work, CTS-LA scaffolds with different LA-g percentages were synthesized and evaluated to determine appropriate LA-g degrees for full-thickness burns treatment. In vitro results indicated that the higher the LA-g percentage, the lower the capability of the scaffolds to sustain fibroblasts culture. Scaffolds with LA-g around 28% (CTS-LA28) sustained cell culture and allowed normal cell functionality. Further evaluation of CTS-LA28 as acellular and cellular grafts in a full-thickness burn mouse model showed that at 28 days post-burn, macroscopic characteristic of the reparation tissue were closer to healthy skin when cellular grafts were used for treatment; histological evaluation also showed that dermis cellularity and collagenous fibers structure were similar to those in healthy skin when cellular grafts were used for burns treatment. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2875-2891, 2017. © 2017 Wiley Periodicals, Inc.
Shao, Yue; Fu, Jianping
2014-03-12
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1988-05-01
Periodontal disease is characterized by a loss of connective tissue...obtained for bone cells and fibroblasts. • " S,. O. ipr’ 0 II. LITERATURE REVIEW A . Periodontal Regeneration Periodontal disease is characterized by a ...fracture are felt to involve a similar sequence of cellular events. Since periodontal disease also involves the loss of soft tissue structures, such
Genetic variants in cellular transport do not affect mesalamine response in ulcerative colitis
Huang, Hailiang; Rivas, Manuel; Kaplan, Jess L.; Daly, Mark J.; Winter, Harland S.
2018-01-01
Background and aims Mesalamine is commonly used to treat ulcerative colitis (UC). Although mesalamine acts topically, in vitro data suggest that intracellular transport is required for its beneficial effect. Genetic variants in mucosal transport proteins may affect this uptake, but the clinical relevance of these variants has not been studied. The aim of this study was to determine whether variants in genes involved in cellular transport affect the response to mesalamine in UC. Methods Subjects with UC from a 6-week clinical trial using multiple doses of mesalamine were genotyped using a genome-wide array that included common exome variants. Analysis focused on cellular transport gene variants with a minor allele frequency >5%. Mesalamine response was defined as improvement in Week 6 Physician’s Global Assessment (PGA) and non-response as a lack of improvement in Week 6 PGA. Quality control thresholds included an individual genotyping rate of >90%, SNP genotyping rate of >98%, and exclusion for subjects with cryptic relatedness. All included variants met Hardy-Weinberg equilibrium (p>0.001). Results 457 adults with UC were included with 280 responders and 177 non-responders. There were no common variants in transporter genes that were associated with response to mesalamine. The genetic risk score of responders was similar to that of non-responders (p = 0.18). Genome-wide variants demonstrating a trend towards mesalamine response included ST8SIA5 (p = 1x10-5). Conclusions Common transporter gene variants did not affect response to mesalamine in adult UC. The response to mesalamine may be due to rare genetic events or environmental factors such as the intestinal microbiome. PMID:29579042
NASA Astrophysics Data System (ADS)
Wille-Reece, Ulrike; Flynn, Barbara J.; Loré, Karin; Koup, Richard A.; Kedl, Ross M.; Mattapallil, Joseph J.; Weiss, Walter R.; Roederer, Mario; Seder, Robert A.
2005-10-01
Induction and maintenance of antibody and T cell responses will be critical for developing a successful vaccine against HIV. A rational approach for generating such responses is to design vaccines or adjuvants that have the capacity to activate specific antigen-presenting cells. In this regard, dendritic cells (DCs) are the most potent antigen-presenting cells for generating primary T cell responses. Here, we report that Toll-like receptor (TLR) agonists and ligands that activate DCs in vitro influence the magnitude and quality of the cellular immune response in nonhuman primates (NHPs) when administered with HIV Gag protein. NHPs immunized with HIV Gag protein and a TLR7/8 agonist or a TLR9 ligand [CpG oligodeoxynucleotides (CpG ODN)] had significantly increased Gag-specific T helper 1 and antibody responses, compared with animals immunized with HIV Gag protein alone. Importantly, conjugating the HIV Gag protein to the TLR7/8 agonist (Gag-TLR7/8 conjugate) dramatically enhanced the magnitude and altered the quality of the T helper 1 response, compared with animals immunized with HIV Gag protein and the TLR7/8 agonist or CpG ODN. Furthermore, immunization with the Gag-TLR7/8 conjugate vaccine elicited Gag-specific CD8+ T responses. Collectively, our results show that conjugating HIV Gag protein to a TLR7/8 agonist is an effective way to elicit broad-based adaptive immunity in NHPs. This type of vaccine formulation should have utility in preventive or therapeutic vaccines in which humoral and cellular immunity is required. vaccine | dendritic cell | cross-presentation | cellular immunity
NASA Astrophysics Data System (ADS)
Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.
2018-06-01
A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.
Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo
We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retardingmore » ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. - Highlights: •Hemin treatment protected monocyte-derived macrophages against Zika virus (ZIKV) infection. •Innate cellular protection against ZIKV infection correlated with Nrf2-dependent HO-1 expression. •Stimulation of innate cellular responses may provide a therapeutic strategy against ZIKV infection.« less
Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium.
Miyoshi, Hiroyuki; VanDussen, Kelli L; Malvin, Nicole P; Ryu, Stacy H; Wang, Yi; Sonnek, Naomi M; Lai, Chin-Wen; Stappenbeck, Thaddeus S
2017-01-04
Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE 2 ) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE 2 -Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE 2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury. © 2016 The Authors.
Shuh, Maureen; Derse, David
2000-01-01
The human T-cell leukemia virus type 1 Tax protein activates the expression of cellular immediate early genes controlled by the serum response element (SRE), which contains both the serum response factor (SRF) binding element (CArG box) and the ternary complex factor (TCF) binding element (Ets box). We show that TCF binding is necessary for Tax activation of the SRE and that Tax directly interacts with TCFs in vitro. In addition, Tax interactions with CREB binding protein (CBP) and p300- and CBP-associated factor were found to be essential for Tax activation of SRF-mediated transcription. PMID:11070040
Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.
Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique
2009-09-01
The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.
A preliminary study on the potential of manuka honey and platelet-rich plasma in wound healing.
Sell, Scott A; Wolfe, Patricia S; Spence, Andrew J; Rodriguez, Isaac A; McCool, Jennifer M; Petrella, Rebecca L; Garg, Koyal; Ericksen, Jeffery J; Bowlin, Gary L
2012-01-01
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration.
A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing
Sell, Scott A.; Wolfe, Patricia S.; Spence, Andrew J.; Rodriguez, Isaac A.; McCool, Jennifer M.; Petrella, Rebecca L.; Garg, Koyal; Ericksen, Jeffery J.; Bowlin, Gary L.
2012-01-01
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration. PMID:23304152
In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic.
Kalmodia, Sushma; Molla, Atiar Rahaman; Basu, Bikramjit
2010-04-01
The aim of the present study was to examine the cellular functionality and antimicrobial properties of SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics (GC) containing fluorophlogopite as major crystalline phase. The cellular morphology and cell adhesion study using human osteoblast-like Saos-2 cells and mouse fibroblast L929 cells reveals good in vitro cytocompatibility of GC. The potential use of the GC for biomedical application was also assessed by in vitro synthesis of the alkaline phosphatase (ALP) activity of Saos-2 cells. It is proposed that B(2)O(3) actively enhances the cell adhesion and supports osteoconduction process, whereas, fluorine component significantly influences cell viability. The Saos-2 and L929 cells on GC shows extensive multidirectional network of actin cytoskeleton. The in vitro results of this study illustrate how small variation in fluorine and boron in base glass composition influences significantly the biocompatibility and antimicrobial bactericidal property, as evaluated using a range of biochemical assays. Importantly, it shows that the cell viability and osteoconduction can be promoted in glass ceramics with lower fluorine content. The underlying reasons for difference in biological properties are analyzed and reported. It is suggested that oriented crystalline morphology in the lowest fluorine containing glass ceramic enhanced cellular spreading. Overall, the in vitro cell adhesion, cell flattening, cytocompatibility and antimicrobial study of the three different compositions of glass ceramic clearly reveals that microstructure and base glass composition play an important role in enhancing the cellular functionality and antimicrobial property.
Interferon lambda inhibits dengue virus replication in epithelial cells.
Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo
2015-09-28
In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.
Lancaster, Graeme I; Febbraio, Mark A
2005-01-01
The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.
Al-Lamki, Rafia S; Bradley, John R; Pober, Jordan S
2017-01-01
Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology.
Al-Lamki, Rafia S.; Bradley, John R.; Pober, Jordan S.
2017-01-01
Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology. PMID:28955710
Kim, Jocelyn T.; Liu, Yarong; Kulkarni, Rajan P.; Lee, Kevin K.; Dai, Bingbing; Lovely, Geoffrey; Ouyang, Yong; Wang, Pin; Yang, Lili; Baltimore, David
2018-01-01
Dendritic cell (DC) activation and antigen presentation are critical for efficient priming of T cell responses. Here, we study how lentiviral vectors (LVs) deliver antigen and activate DCs to generate T cell immunization in vivo. We report that antigenic proteins delivered in vector particles via pseudotransduction were sufficient to stimulate an antigen-specific immune response. The delivery of the viral genome encoding the antigen increased the magnitude of this response in vivo but was irrelevant in vitro. Activation of DCs by LVs was independent of MyD88, TRIF, and MAVS, ruling out an involvement of Toll-like receptor or RIG-I–like receptor signaling. Cellular DNA packaged in LV preparations induced DC activation by the host STING (stimulator of interferon genes) and cGAS (cyclic guanosine monophosphate–adenosine monophosphate synthase) pathway. Envelope-mediated viral fusion also activated DCs in a phosphoinositide 3-kinase–dependent but STING-independent process. Pseudotransduction, transduction, viral fusion, and delivery of cellular DNA collaborate to make the DC-targeted LV preparation an effective immunogen. PMID:28733470
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E; von Bredow, Benjamin; Ding, Shilei; Medjahed, Halima; Delgado, Gloria G; Brassard, Nathalie; Stürzel, Christina M; Kirchhoff, Frank; Hahn, Beatrice H; Parsons, Matthew S; Kaufmann, Daniel E; Evans, David T; Finzi, Andrés
2018-03-20
The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a "closed" conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands. IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cytotoxicity (ADCC) in protection against HIV-1 transmission and disease progression. However, there are conflicting reports regarding the ability of nonneutralizing antibodies targeting CD4-inducible (CD4i) Env epitopes to mediate ADCC. Here, we performed a side-by-side comparison of different methods currently being used in the field to measure ADCC responses to HIV-1. We found that assays which are unable to differentiate virus-infected from uninfected cells greatly overestimate ADCC responses mediated by antibodies to CD4i epitopes and underestimate responses mediated by broadly neutralizing antibodies (bNAbs). Our results strongly argue for the use of assays that measure ADCC against HIV-1-infected cells expressing physiologically relevant conformations of Env to evaluate correlates of protection in vaccine trials. Copyright © 2018 Richard et al.
Goodwin, B J; Moore, J O; Weinberg, J B
1984-02-01
Freshly isolated human leukemia cells have been shown in the past to display varying in vitro responses to phorbol diesters, depending on their cell type. Specific receptors for the phorbol diesters have been demonstrated on numerous different cells. This study was designed to characterize the receptors for phorbol diesters on leukemia cells freshly isolated from patients with different kinds of leukemia and to determine if differences in binding characteristics for tritium-labeled phorbol 12,13-dibutyrate (3H-PDBu) accounted for the different cellular responses elicited in vitro by phorbol diesters. Cells from 26 patients with different kinds of leukemia were studied. PDBu or phorbol 12-myristate 13-acetate (PMA) caused cells from patients with acute myeloblastic leukemia (AML), acute promyelocytic (APML), acute myelomonocytic (AMML), acute monocytic (AMoL), acute erythroleukemia (AEL), chronic myelocytic leukemia (CML) in blast crisis (myeloid), acute undifferentiated leukemia (AUL), and hairy cell leukemia (HCL) (n = 15) to adhere to plastic and spread. However, they caused no adherence or spreading and only slight aggregation of cells from patients with acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or CML-blast crisis (lymphoid) (n = 11). All leukemia cells studied, irrespective of cellular type, displayed specific receptors for 3H-PDBu. The time courses for binding by all leukemia types were similar, with peak binding at 5-10 min at 37 degrees C and 120 min at 4 degrees C. The binding affinities were similar for patients with ALL (96 +/- 32 nM, n = 4), CLL (126 +/- 32 nM, n = 6), and acute nonlymphoid leukemia (73 +/- 14 nM, n = 11). Likewise, the numbers of specific binding sites/cell were comparable for the patients with ALL (6.2 +/- 1.3 X 10(5) sites/cell, n = 4), CLL (5.0 +/- 2.0 X 10(5) sites/cell, n = 6), and acute nonlymphoid leukemia (4.4 +/- 1.9 X 10(5) sites/cell, n = 11). Thus, the differing responses to phorbol diesters of various types of freshly isolated leukemia cells appear to be due to differences other than initial ligand-receptor binding.
NASA Astrophysics Data System (ADS)
Hanif, Muhammad; Meier, Samuel; Nazarov, Alexey; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael; Keppler, Bernhard; Hartinger, Christian
2013-10-01
The synthesis and in vitro cytotoxicity of a series of RuII(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.
Using ToxCast data to reconstruct dynamic cell state ...
AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging (HCI) allows multiplexed measurements of cellular phenotypic changes induced by chemical exposures. For a large chemical inventory having limited concentration-time series data, the deconvolution of cellular response profiles into transitive or irrevocable state trajectories is an important consideration. Objectives. Our goal was to analyze temporal and concentration-related cellular changes measured using HCI to identify the “tipping point” at which the cells did not show recovery towards a normal phenotypic state. Methods. The effects of 976 chemicals (ToxCast Phase I and II) were evaluated using HCI as a function of concentration and time in HepG2 cells over a 72-hr exposure period to concentrations ranging from 0.4- to 200 µM. The cellular endpoints included nuclear p53 accumulation, JNK, markers of oxidative stress, cytoskeletal changes, mitochondrial energization and density, cell viability and cell cycle progression. A novel computational model was developed to interpret dynamic multidimensional system responses as cell-state trajectories. Results. Analysis of cell-state trajectories showed that HepG2 cells were resilient to the effects of 178 chemicals up to the highest co
Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.
2016-01-01
Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137
Hashemzadeh, Mohammad Reza; Mahdavi-Shahri, Nasser; Bahrami, Ahmad Reza; Kheirabadi, Masoumeh; Naseri, Fatemeh; Atighi, Mitra
2015-08-01
Rabbit ear wound repair is an accepted model for studies of tissue regeneration, leading to scar less wound repair. It is believed that a specific tissue, blastema, is responsible for such interesting capacity of tissue regeneration. To test this idea further and to elucidate the cellular events happening during the ear wound repair, we designed some controlled experiments in vitro. Small pieces of the ear were punched and washed immediately with normal saline. The tissues were then cultured in the Dulbecco's Modified Eagle(')s Medium, supplemented with fetal bovine serum in control group. As a treatment vitamin A and C was used to evaluate the differentiation potency of the tissue. These tissues were fixed, sectioned, stained, and microscopically studied. Micrographs of electron microscopy provided evidences revealing dedifferentiation of certain cells inside the punched tissues after incubation in tissue culture medium. The histological studies revealed that cells of the tissue (i) can undergo cellular proliferation, (ii) differentiate to epithelial, condrogenic, and osteogenic tissues, and (iii) regenerate the wounds. These results could be used for interpretation of the possible events happening during tissue engineering and wound repair in vitro. An important goal of this study is to create a tissue engineering and tissue banking model, so that in the future it could be used in further blastema tissue studies at different levels.
Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming
2013-09-15
This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.
He, Qiang; Jia, Zhanwei; Zhang, Ying; Ren, Xiumin
2017-03-01
We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin-induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Guo, Jingjing; Sun, Xiahui; Yin, Huiquan; Wang, Ting; Li, Yan; Zhou, Chunxue; Zhou, Huaiyu; He, Shenyi; Cong, Hua
2018-01-01
Multiple antigenic peptide (MAP) vaccines have advantages over traditional Toxoplasma gondii vaccines, but are more susceptible to enzymatic degradation. As an effective delivery system, chitosan microspheres (CS) can overcome this obstacle and act as a natural adjuvant to promote T helper 1 (Th1) cellular immune responses. In this study, we use chitosan microparticles to deliver multiple antigenic epitopes from GRA10 (G10E), containing three dominant epitopes. When G10E was entrapped within chitosan microparticles (G10E-CS), adequate peptides for eliciting immune response were loaded in the microsphere core and this complex released G10E peptides stably. The efficiency of G10E-CS was detected both in vitro , via cell culture, and through in vivo mouse immunization. In vitro , G10E-CS activated Dendritic Cells (DC) and T lymphocytes by upregulating the secretion of costimulatory molecules (CD40 and CD86). In vivo , Th1 biased cellular and humoral immune responses were activated in mice vaccinated with G10E-CS, accompanied by significantly increased production of IFN-γ, IL-2, and IgG, and decreases in IL-4, IL-10, and IgG1. Immunization with G10E-CS conferred significant protection with prolonged survival in mice model of acute toxoplasmosis and statistically significant decreases in cyst burden in murine chronic toxoplasmosis. The results from this study indicate that chitosan microspheres used as an effective system to deliver a linked antigenic peptides is a promising strategy for the development of efficient vaccine against T. gondii .
Truong, Warren Ty; Su, Yingying; Gloria, Danmar; Braet, Filip; Thordarson, Pall
2015-02-01
Herein we report an approach to assess in vitro cellular responses to the dissolution or degradation products from Fmoc-diphenylalanine (Fmoc-FF) self-assembled hydrogels. Three cell lines were used in these studies and two-way ANOVA was used to assess (i) the age of gel dissolution and degradation products and (ii) exposure time on cell fate and state, using viability assays in conjunction with time-lapse fluorescence and high-resolution scanning electron microscopy investigation. The studies show that leaching time but not the exposure time affects the overall cell viability. The cytotoxic effect was only observed once the gel is completely dissolved. Further analysis revealed that the principal mechanism of cell death is necrosis. In addition, the effect of chemotherapeutics (5-fluorouracil and paclitaxel) released from the Fmoc-FF gel (with addition before and after gelation) on colorectal cancer cells were investigated using this methodology, demonstrating enhanced activity of these drugs compared to bulk control. This enhanced activity, however, appears to be a combination of the apoptosis caused by the cancer drugs and necrosis caused by gel dissolution and degradation products. Given that in vivo studies by others on Fmoc-peptides that this material is not harmful to animals, our work highlights that conventional in vitro cellular assays may yield conflicting messages when used for the evaluation of cytotoxicity and drug release from self-assembled gels such as Fmoc-FF and that better in vitro models, (e.g. 3D cell culture systems) need to be developed to evaluate these materials for biomedical applications.
Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine
Chung, Yeonseok
2015-01-01
Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366
Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination.
Michel, Nico; Osen, Wolfram; Gissmann, Lutz; Schumacher, Ton N M; Zentgraf, Hanswalter; Müller, Martin
2002-03-01
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. For immunotherapy of HPV-16-associated diseases the E7 protein is considered a prime candidate, as it is expressed in all HPV-16-positive tumors. Unfortunately, the E7 protein is a very poor inducer of a cytotoxic T-cell response, when being used as antigen in DNA vaccination. Here we demonstrate that after fusion to protein export/import signals such as the herpes simplex virus ferry protein VP22, E7 can translocate in vitro from VP22-E7-expressing cells to neighboring cells that do not carry the VP22-E7 gene. In vivo, the VP22-E7 fusion shows significantly increased efficiency in inducing a cytotoxic T-cell response. Our data suggest that the export function of VP22 plays a major role in this phenomenon, since VP22 can be replaced by classical protein export signals, without impairing the induction of the E7-specific cellular immune response. However, all E7 fusion constructs showed significantly elevated protein steady-state levels, which might also account for the observed boost in immunogenicity. (C)2002 Elsevier Science (USA).
Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements.
Kopp, Richard F; Leech, Colin A; Roe, Michael W
2014-03-01
Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 μM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 μM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.
Nonlinear ultrasound imaging of nanoscale acoustic biomolecules
NASA Astrophysics Data System (ADS)
Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.
2017-02-01
Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.
Nelo-Bazán, María Alejandra; Latorre, Pedro; Bolado-Carrancio, Alfonso; Pérez-Campo, Flor M; Echenique-Robba, Pablo; Rodríguez-Rey, José Carlos; Carrodeguas, José Alberto
2016-03-01
Attempts to elucidate the cellular function of MTCH1 (mitochondrial carrier homolog 1) have not yet rendered a clear insight into the function of this outer mitochondrial membrane protein. Classical biochemical and cell biology approaches have not produced the expected outcome. In vitro experiments have indicated a likely role in the regulation of cell death by apoptosis, and its reported interaction with presenilin 1 suggests a role in the cellular pathways in which this membrane protease participates, nevertheless in vivo data are missing. In an attempt to identify cellular pathways in which this protein might participate, we have studied its promoter looking for transcriptional regulators. We have identified several putative binding sites for EGR-1 (Early growth response 1; a protein involved in growth, proliferation and differentiation), in the proximal region of the MTCH1 promoter. Chromatin immunoprecipitation showed an enrichment of these sequences in genomic DNA bound to EGR-1 and transient overexpression of EGR-1 in cultured HEK293T cells induces an increase of endogenous MTCH1 levels. We also show that MTCH1 levels increase in response to treatment of cells with doxorubicin, an apoptosis inducer through DNA damage. The endogenous levels of MTCH1 decrease when EGR-1 levels are lowered by RNA interference. Our results indicate that EGR-1 is a transcriptional regulator of MTCH1 and give some clues about the cellular processes in which MTCH1 might participate. Copyright © 2015 Elsevier B.V. All rights reserved.
Olivares-Vicente, Marilo; Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Segura-Carretero, Antonio; Joven, Jorge; Encinar, Jose Antonio; Micol, Vicente
2018-01-01
Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
In vitro studies of actin filament and network dynamics
Mullins, R Dyche; Hansen, Scott D
2013-01-01
Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766
Duan, Dehui; Sigano, Dina M.; Kelley, James A.; Lai, Christopher C.; Lewin, Nancy E.; Kedei, Noemi; Peach, Megan L.; Lee, Jeewoo; Abeyweera, Thushara P.; Rotenberg, Susan A.; Kim, Hee; Kim, Young Ho; Kazzouli, Saïd El; Chung, Jae-Uk; Young, Howard A.; Young, Matthew R.; Baker, Alyson; Colburn, Nancy H.; Haimovitz-Friedman, Adriana; Truman, Jean-Philip; Parrish, Damon A.; Deschamps, Jeffrey R.; Perry, Nicholas A.; Surawski, Robert J.; Blumberg, Peter M.; Marquez, Victor E.
2008-01-01
Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed “chemical zip codes”, are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these “chemical zip codes”. It is postulated that after binding to protein kinase C (PKC) isozymes or other non-kinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCα to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses. PMID:18698758
Cassard, Lydie; Cohen-Solal, Joel F G; Fournier, Emilie M; Camilleri-Broët, Sophie; Spatz, Alain; Chouaïb, Salem; Badoual, Cécile; Varin, Audrey; Fisson, Sylvain; Duvillard, Pierre; Boix, Charlotte; Loncar, Shannon M; Sastre-Garau, Xavier; Houghton, Alan N; Avril, Marie-Françoise; Gresser, Ion; Fridman, Wolf H; Sautès-Fridman, Catherine
2008-12-15
During melanoma progression, patients develop anti-tumor immunity including the production of anti-tumor antibodies. Although the strategies developed by malignant cells to escape anti-tumor cellular immunity have been extensively investigated, little is known about tumor resistance to humoral immunity. The main effect of IgG antibodies is to activate the immune response by binding to host Fc gamma receptors (FcgammaR) expressed by immune cells. We previously reported in a limited study that some human metastatic melanoma cells ectopically express the FcgammaRIIB1, an inhibitory isoform of FcgammaR. By analyzing a large panel of different types of human primary and metastatic solid tumors, we report herein that expression of FcgammaRIIB is restricted to melanoma and is acquired during tumor progression. We show that FcgammaRIIB expression prevents the lysis of human metastatic melanoma cells by NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro, independently of the intracytoplasmic region of FcgammaRIIB. Using experimental mouse models, we demonstrate that expression of FcgammaRIIB protects B16F0 melanoma tumors from the ADCC induced by monoclonal and polyclonal anti-tumor IgG in vivo. Thus, our results identify FcgammaRIIB as a marker of human metastatic melanoma that impairs the tumor susceptibility to FcgammaR-dependent innate effector responses. (c) 2008 Wiley-Liss, Inc.
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-01-01
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-02-03
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.
Localization and Sub-Cellular Shuttling of HTLV-1 Tax with the miRNA Machinery
Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Narayanan, Aarthi; Coley, William; Jaworski, Elizabeth; Roman, Jessica; Popratiloff, Anastas; Mahieux, Renaud; Kehn-Hall, Kylene; Kashanchi, Fatah
2012-01-01
The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus. PMID:22808228
Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Bruder, Joseph T.; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.
2004-01-01
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the β-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing β-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to β-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-β-galactosidase antibody levels following vector administration. However, cellular responses to β-galactosidase were significantly enhanced, with the frequency of CD4+ as well as the CD8+ β-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing β-galactosidase: BALB/c mice implanted with the CT26 syngeneic β-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines. PMID:14963160
Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection.
Sengupta, Nabonita; Ghosh, Sourish; Vasaikar, Suhas V; Gomes, James; Basu, Anirban
2014-01-01
In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥ 1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.
Impact of CDT Toxin on Human Diseases.
Faïs, Tiphanie; Delmas, Julien; Serres, Arnaud; Bonnet, Richard; Dalmasso, Guillaume
2016-07-15
Cytolethal distending toxin (CDT) is found in Gram-negative bacteria, especially in certain Proteobacteria such as the Pasteurellaceae family, including Haemophilus ducreyi and Aggregatibacter (Actinobacillus) actinomycetemcomitans, in the Enterobacteriaceae family and the Campylobacterales order, including the Campylobacter and Helicobacter species. In vitro and in vivo studies have clearly shown that this toxin has a strong effect on cellular physiology (inflammation, immune response modulation, tissue damage). Some works even suggest a potential involvement of CDT in cancers. In this review, we will discuss these different aspects.
Tumour response endpoints in the BA1112 rat sarcoma.
Martin, D. F.; Moulder, J. E.; Fischer, J. J.
1980-01-01
The rat rhabdomyosarcoma BA1112 has a number of features which make it a useful model for the study of tumour response to radiation therapy. It is a transplantable tumour, isologous to an inbred line of WAG/Rij rats and it elicits no demonstrable host immune response. The tumour grows locally at the implantation site and rarely metastasizes. It is known to contain hypoxic cells which reoxygenate during a prolonged course of fractionated radiation therapy. The growth and radiation response characteristics of the tumour have remained stable for over 15 years. A newly developed in vitro assay for tumour cell clonogenicity greatly facilitates the measurement of radiation dose-response curves and the monitoring of cell response following in vivo treatment. The in vivo response of the tumour to fractionated radiation therapy is analysed in terms of cellular response, reoxygenation and cell proliferation. PMID:6932936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi
2014-01-15
Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effectsmore » of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro.« less
Ward, Roberta J; Lallemand, Frederic; de Witte, Philippe; Crichton, Robert R; Piette, Jacques; Tipton, Keith; Hemmings, Karl; Pitard, Arnaud; Page, Mike; Della Corte, Laura; Taylor, Deanna; Dexter, David
2011-03-15
The ability of a taurine prodrug, ethane β-sultam, to reduce cellular inflammation has been investigated, in vitro, in primary cultures of alveolar macrophages and an immortilised N9 microglial cell line and in vivo in an animal model of inflammation and control rats. Ethane β-sultam showed enhanced ability to reduce the inflammatory response in alveolar macrophages, as assayed by the lipopolysaccharide-stimulated-nitric oxide release, (LPS stimulated-NO), in comparison to taurine both in vitro (10 nM, 50 nM) and in vivo (0.15 mmol/kg/day by gavage). In addition, ethane β-sultam, (50, 100 and 1000 nM) significantly reduced LPS-stimulated glutamate release from N9 microglial cells to a greater extent than taurine. The anti-inflammatory response of taurine was shown to be mediated via stabilisation of IkBα. The use of a taurine prodrug as therapeutic agents, for the treatment of neurological conditions, such as Parkinson's and Alzheimer's disease and alcoholic brain damage, where activated phagocytic cells contribute to the pathogenesis, may be of great potential. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.
2000-01-01
BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.
Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C
2003-01-01
Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O(2)), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 +/- 1.3 pg/ml versus 34.8 +/- 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.
iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo
Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.
2013-01-01
Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871
iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo .
Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M; Brennan, Patrick J; Banerjee, Pinaki P; Wiener, Susan J; Orange, Jordan S; Brenner, Michael B; Grupp, Stephan A; Nichols, Kim E
2014-01-01
Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we found that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially induced by iNKT cell agonists of varying T-cell receptor (TCR) affinities, such as OCH, α-galactosyl ceramide, and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of TCR signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell–deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T lymphoma. ©2013 AACR.
Li, Mengshuang; Xin, Meng; Guo, Chuanlong; Lin, Guiming; Wu, Xianggen
2017-11-01
A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics. The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer. Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy. The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL-PVA-PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution. These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.
SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication
Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong
2016-01-01
ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro. Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication. PMID:27630238
Misstear, Karen; Chanas, Simon A.; Rezaee, S. A. Rahim; Colman, Rachel; Quinn, Laura L.; Long, Heather M.; Goodyear, Oliver; Lord, Janet M.; Hislop, Andrew D.
2012-01-01
Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200. PMID:22491458
Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua; ...
2015-01-08
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less
Establishing a Cell-based Assay for Assessment of Cellular Metabolism on Chemical Toxicity
A major drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. To help address this challenge, we are established a method for assessing the impact of cellular metabolism on chemical-based cellular toxicity. A commonly used h...
Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues
Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan
2016-01-01
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284
Influence of beam shape on in-vitro cellular transformations in human skin fibroblasts
NASA Astrophysics Data System (ADS)
Mthunzi, Patience; Forbes, Andrew; Hawkins, Denise; Abrahamse, Heidi; Karsten, Aletta E.
2005-08-01
A variety of strategies have been utilised for prevention and treatment of chronic wounds such as leg ulcers, diabetic foot ulcers and pressure sores1. Low Level Laser Therapy (LLLT) has been reported to be an invaluable tool in the enhancement of wound healing through stimulating cell proliferation, accelerating collagen synthesis and increasing ATP synthesis in mitochondria to name but a few2. This study focused on an in-vitro analysis of the cellular responses induced by treatment with three different laser beam profiles namely, the Gaussian (G), Super Gaussian (SG) and Truncated Gaussian (TG), on normal wounded irradiated (WI) and wounded non-irradiated (WNI) human skin fibroblast cells (WS1), to test their influence in wound healing at 632.8 nm using a helium neon (HeNe) laser. For each beam profile, measurements were made using average energy densities over the sample ranging from 0.2 to 1 J, with single exposures on normal wounded cells. The cells were subjected to different post irradiation incubation periods, ranging from 0 to 24 hours to evaluate the duration (time) dependent effects resulting from laser irradiation. The promoted cellular alterations were measured by increase in cell viability, cell proliferation and cytotoxicity. The results obtained showed that treatment with the G compared to the SG and TG beams resulted in a marked increase in cell viability and proliferation. The data also showed that when cells undergo laser irradiation some cellular processes are driven by the peak energy density rather than the energy of the laser beam. We show that there exist threshold values for damage, and suggest optimal operating regimes for laser based wound healing.
Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe
2006-01-01
Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051
NASA Astrophysics Data System (ADS)
Wei, Lulu; Lu, Beibei; Cui, Lin; Peng, Xueying; Wu, Jianning; Li, Deqiang; Liu, Zhiyong; Guo, Xuhong
2017-12-01
A novel type of amphiphilic pH-responsive folate-poly(ɛ-caprolactone)- block-poly(2-hydroxyethylmethacrylate)- co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL- b-P(HEMA- co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with 1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). The in vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX-loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.
Grada, Ayman; Otero-Vinas, Marta; Prieto-Castrillo, Francisco; Obagi, Zaidal; Falanga, Vincent
2017-02-01
Collective cell migration is a hallmark of wound repair, cancer invasion and metastasis, immune responses, angiogenesis, and embryonic morphogenesis. Wound healing is a complex cellular and biochemical process necessary to restore structurally damaged tissue. It involves dynamic interactions and crosstalk between various cell types, interaction with extracellular matrix molecules, and regulated production of soluble mediators and cytokines. In cutaneous wound healing, skin cells migrate from the wound edges into the wound to restore skin integrity. Analysis of cell migration in vitro is a useful assay to quantify alterations in cell migratory capacity in response to experimental manipulations. Although several methods exist to study cell migration (such as Boyden chamber assay, barrier assays, and microfluidics-based assays), in this short report we will explain the wound healing assay, also known as the "in vitro scratch assay" as a simple, versatile, and cost-effective method to study collective cell migration and wound healing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2011-01-01
Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.
Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neuronsmore » in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC{sub 50} equaled rat brain levels associated with seizure. • PBPK-predicted human brain levels at seizure also equaled EC{sub 50} cell concentrations. • In vitro MEA results are predictive of lindane in vivo dose–response in rats/humans.« less
Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan
2017-10-27
TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
1981-01-01
A highly specific and reproducible antigen-induced, antigen-specific culture and assay system for antibody production by human peripheral blood B lymphocytes has been developed. The system is clearly T cell and monocyte dependent and is independent of exogenous mitogens. The major factors in our ability to trigger specific antibody production with antigen alone have been the use of extremely low concentrations of antigen in vitro (doses several orders of magnitude below those inducing a peak blastogenic response), careful attention to in vitro cell density and culture vessel geometry, and appreciation of the kinetics of the circulating antigen-inducible B cell repertoire. A dichotomy and overlap between antigen-induced, antigen-specific and antigen-induced, polyclonal responses was observed in the study of doubly immunized individuals. Whereas antibody responses highly specific for the antigen in culture were observed under one set of culture conditions (flat-bottomed vessels, 1.5 x 10(6) cells), switching to another culture system (round-bottomed vessels, 5 x 10(5) cells) resulted in polyclonal responses to antigen. Despite these culture condition-related differences in the induction of antibody synthesis, the suppression of specific antibody production that occurred at high concentrations of antigen was specific only for the antigen in culture. The capability to easily and reproducibly look at truly antigen-induced, antigen specific antibody production should be a major tool in furthering the understanding of human B cell activation and immunoregulation. PMID:6169778
Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.
Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P
2016-11-01
Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.
Jordan, Jacqueline A; Verhoff, Ashley M; Morgan, Julie E; Fischer, David G
2009-12-01
Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al(2)O(3) (0.7 μm) and fine SiO(2) (mean 1.6 μm) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 μm) and fine (0.5 μm) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO(2) and Al(2)O(3) (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO(2) for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO(2) for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO(2) resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al(2)O(3). Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles.
Sohn, Sook-Young; Hearing, Patrick
2016-06-14
The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoylation of multiple cellular proteins and subsequent proteasomal degradation of some of them, but the detailed mechanism of E4-ORF3 function remained unknown. Here, we investigate the role of E4-ORF3 in the sumoylation process by using transcription intermediary factor (TIF)-1γ as a substrate. Remarkably, we discovered that purified E4-ORF3 protein stimulates TIF-1γ sumoylation in vitro, demonstrating that E4-ORF3 acts as a small ubiquitin-like modifier (SUMO) E3 ligase. Furthermore, E4-ORF3 significantly increases poly-SUMO3 chain formation in vitro in the absence of substrate, showing that E4-ORF3 has SUMO E4 elongase activity. An E4-ORF3 mutant, which is defective in protein multimerization, exhibited severely decreased activity, demonstrating that E4-ORF3 self-assembly is required for these activities. Using a SUMO3 mutant, K11R, we found that E4-ORF3 facilitates the initial acceptor SUMO3 conjugation to TIF-1γ as well as poly-SUMO chain elongation. The E4-ORF3 protein displays no SUMO-targeted ubiquitin ligase activity in our assay system. These studies reveal the mechanism by which E4-ORF3 targets specific cellular proteins for sumoylation and proteasomal degradation and provide significant insight into how a small viral protein can play a role as a SUMO E3 ligase and E4-like SUMO elongase to impact a variety of cellular responses.
Newton Ede, Matthew P; Philp, Ashleigh M; Philp, Andrew; Richardson, Stephen M; Mohammad, Saeed; Jones, Simon W
2016-05-01
A study examining the clinical protocol of scoliosis wound irrigation, demonstrating povidone-iodine's (PVI) effect on human osteoblast cells. Primary and immortal cell line osteoblasts were treated with 0.35% PVI for 3 minutes, and analyzed for proliferation rate, oxidative capacity, and mineralization. To model spinal wound irrigation with dilute PVI in vitro, in order to investigate the effect of PVI on osteoblast proliferation, metabolism, and bone mineralization. Previously PVI irrigation has been proposed as a safe and effective practice to avoid bacterial growth after spinal surgery. However, recent evidence in multiple cell types suggests that PVI has a deleterious effect on cellular viability and cellular function. Primary and immortal human osteoblast cells were exposed to either phosphate buffered saline control or with 0.35% PVI for 3 minutes. Cellular proliferation was measured over the duration of 7 days by MTS assay. Oxygen consumption rate, extracellular acidification rate, and proton production rate were analyzed using a Seahorse XF24 Bioanalyzer. Protein expression of the electron transport chain subunits CII-SDHB, CIII-UQRCR2, and CV-ATP5A was measured via Western blotting. Mineralized bone nodules were stained with alizarin red. Expressed as a percentage of normal osteoblast proliferation, osteoblasts exposed to 0.35% PVI exhibited a significant 24% decrease in proliferation after 24 hours. This was a sustained response, resulting in a 72% decline in cellular proliferation at 1 week. There was a significant reduction in oxygen consumption rate, extracellular acidification rate, and proton production rate (P < 0.05), in osteoblasts that had been exposed to 0.35% PVI for 3 minutes, coupled with a marked reduction in the protein expression of CII-SDHB. Osteoblasts exposed to 0.35% PVI exhibited reduced bone nodule mineralization compared to control phosphate buffered saline exposed osteoblasts (P < 0.01). PVI has a rapid and detrimental effect on human osteoblast cellular proliferation, metabolic function, and bone nodule mineralization. NA.
Alayli, Farah; Melis, Marta; Kabat, Juraj; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Emerson, Suzanne U.
2018-01-01
Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro. PMID:29538454
Factors inducing in-stent restenosis: an in-vitro model.
Santin, M; Morris, C; Harrison, M; Mikhalovska, L; Lloyd, A W; Mikhalovsky, S
2004-05-01
In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.
Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno
2014-01-01
The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.
A Cellular Automata Model of Bone Formation
Van Scoy, Gabrielle K.; George, Estee L.; Asantewaa, Flora Opoku; Kerns, Lucy; Saunders, Marnie M.; Prieto-Langarica, Alicia
2017-01-01
Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. PMID:28189632
Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.
2016-01-01
Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279
Leukocyte susceptibility and immune response against Vibrio parahaemolyticus in Totoaba macdonaldi.
Reyes-Becerril, Martha; Alamillo, Erika; Sánchez-Torres, Luvia; Ascencio-Valle, Felipe; Perez-Urbiola, Juan C; Angulo, Carlos
2016-12-01
Vibrio parahaemolyticus is a serious pathogen that affects aquaculture. Nonetheless, to the best of our knowledge, no studies have focused on its immunological implications in Totoaba macdonaldi. Thus, the early immune response to V. parahaemolyticus in juveniles of totoaba was studied at 24 h post-infection with an in vivo study. In addition, changes in cellular innate immune parameters - phagocytosis, respiratory burst activity and viability (annexin V/propidium iodide) - were evaluated in vitro in head-kidney, spleen and thymus leukocytes at 6 and 24 h after bacterial stimulation by flow cytometry. Simultaneously, the expression levels of two immune-relevant genes (IL-1β and IL-8) were measured by using real time PCR. During in vivo study, mRNA transcripts of IL-1β were highly expressed in spleen, thymus and intestine and down-regulated in liver after 24 h post-infection. IL-8 gene expression was upregulated in spleen, intestine and liver compared to that of non-infected fish and down-regulated in thymus after 24 h post-infection. Generally, the results showed a significant decrease in cellular immune responses during the infection, principally in phagocytic ability and respiratory burst. The survival or viability of stimulated leukocytes was significantly reduced causing necrosis and apoptosis, indicating a robust killing response by V. parahaemolyticus. Finally the in vitro analysis showed that transcript levels of IL-1β and IL-8 were up-regulated during stimulation with V. parahaemolyticus in head-kidney, spleen and intestine and down-regulated in thymus at any time of the experiment. Although V. parahaemolyticus has been reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of early-immune response in juvenile totoaba and these immune parameters may be reliable indicators and can be useful in the health control of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.
2016-01-01
ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method developed, reliable results can be obtained at 2 weeks. This method will be important for vaccine and antimicrobial screening work, as it will allow a greater number of candidates to be screened in the same amount of time, which will increase the likelihood that a favorable candidate will be found to be subjected to further testing. PMID:27371585
Paillot, R; Daly, J M; Juillard, V; Minke, J M; Hannant, D; Kydd, J H
2005-08-22
Equine cytotoxic T lymphocyte (CTL) responses to equine herpesvirus-1 (EHV-1) are well characterised but little is known about the cytokine response after infection or vaccination. EHV-1 is common in horses and infects lymphocytes in vivo. This virus was used as a model to measure the synthesis of interferon gamma (IFN-gamma) by equine peripheral blood mononuclear cells (PBMC) after in vivo infection and/or in vitro stimulation with EHV-1. Both flow cytometry and ELISPOT assays were used to quantify equine IFN-gamma using a mouse anti-bovine IFN-gamma monoclonal antibody (clone CC302; shown to cross-react with recombinant equine IFN-gamma) and a rabbit anti-canine IFN-gamma polyclonal antibody. The percentage of PBMC synthesising IFN-gamma after in vitro stimulation with EHV-1 increased with age. In yearlings infected experimentally with EHV-1, PBMC showed two peaks of IFN-gamma synthesis, 11 and 56 days after infection. The IFN-gamma synthesis was principally associated with CD8(+) cells. The patterns of IFN-gamma synthesis detected by intracellular IFN-gamma staining or ELISPOT were compared with CTL data and shown to be similar. These methods were also applied successfully to frozen samples of PBMC. Measurement of equine IFN-gamma using these simple techniques can now be applied to future studies on protective cellular immune responses following virus infection and/or vaccination of horses.
MEDIA SERUM LEVELS AND IN VITRO HEPATIC ABSORPTION OF LINDANE
High plasma protein binding is known to reduce the tissue uptake of chemicals in vivo, but the extent of its importance in vitro is less clear. Experiments were conducted to determine the cellular uptake of lindane in vitro under different conditions. Lindane was selected because...
Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice.
Gong, Li; Huang, Qin; Fu, Aikun; Wu, YanPing; Li, Yali; Xu, Xiaogang; Huang, Yi; Yu, Dongyou; Li, Weifen
2018-01-01
Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4 + cells and CD8 + T-cells, but only BS04 increased the percentage of CD3 + cells and CD3 + CD4 + cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.
Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye; Kang, Sang-Moo
2017-10-01
Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.
The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less
Olami, Hilla; Zilberman, Meital
2016-02-01
Interest in the development of new bioresorbable structures for various tissue engineering applications is on the rise. In the current study, we developed and studied novel soy protein-based porous blends as potential new scaffolds for such applications. Soy protein has several advantages over the various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the present study, blends of soy protein with other polymers (gelatin, pectin and alginate) were added and chemically cross-linked using the cross-linking agents carbodiimide or glyoxal, and the porous structure was obtained through lyophilization. The resulting blend porous structures were characterized using environmental scanning microscopy, and the cytotoxicity of these scaffolds was examined in vitro. The biocompatibility of the scaffolds was also evaluated in vitro by seeding and culturing human fibroblasts on these scaffolds. Cell growth morphology and adhesion were examined histologically. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical cross-linking with freeze-drying. The achieved blend structures combine suitable porosity with a large pore size (100-300 µm). The pore structure in the soy-alginate scaffolds possesses adequate interconnectivity compared to that of the soy-gelatin scaffolds. However, porous structure was not observed for the soy-pectin blend, which presented a different structure with significantly lower porosities than all other groups. The in vitro evaluation of these porous soy blends demonstrated that soy-alginate blends are advantageous over soy-gelatin blends and exhibited adequate cytocompatibility along with better cell infiltration and stability. These soy protein scaffolds may be potentially useful as a cellular/acellular platform for skin regeneration applications. © The Author(s) 2015.
Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, S.; Tebby, C.
Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-timemore » cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.« less
Stellavato, Antonietta; Tirino, Virginia; de Novellis, Francesca; Della Vecchia, Antonella; Cinquegrani, Fabio; De Rosa, Mario; Papaccio, Gianpaolo; Schiraldi, Chiara
2016-09-01
Cartilage tissue engineering, with in vitro expansion of autologus chondrocytes, is a promising technique for tissue regeneration and is a new potential strategy to prevent and/or treat cartilage damage (e.g., osteoarthritis). The aim of this study was (i) to investigate and compare the effects of new biotechnological chondroitin (BC) and a commercial extractive chondroitin sulfate (CS) on human chondrocytes in vitro culture; (ii) to evaluate the anti-inflammatory effects of the innovative BC compared to extractive CS. A chondrogenic cell population was isolated from human nasoseptal cartilage and in vitro cultures were studied through time-lapse video microscopy (TLVM), immunohistochemical staining and cytometry. In order to investigate the effect of BC and CS on phenotype maintainance, chondrogenic gene expression of aggrecan (AGN), of the transcriptor factor SOX9, of the types I and II collagen (COL1A1 and COL1A2), were quantified through transcriptional and protein evaluation at increasing cultivation time and passages. In addition to resemble the osteoarthritis-like in vitro model, chondrocytes were treated with IL-1β and the anti-inflammatory activity of BC and CS was assessed using cytokines quantification by multiplex array. BC significantly enhances cell proliferation also preserving chondrocyte phenotype increasing type II collagen expression up to 10 days of treatment and reduces inflammatory response in IL-1β treated chondrocytes respect to CS treated cells. Our results, taken together, suggest that this new BC is of foremost importance in translational medicine because it can be applied in novel scaffolds and pharmaceutical preparations aiming at cartilage pathology treatments such as the osteoarthritis. J. Cell. Biochem. 117: 2158-2169, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Kilaparty, Surya P; Agarwal, Rakhee; Singh, Pooja; Kannan, Krishnaswamy; Ali, Nawab
2016-07-01
Inositol polyphosphates represent a group of differentially phosphorylated inositol metabolites, many of which are implicated to regulate diverse cellular processes such as calcium mobilization, vesicular trafficking, differentiation, apoptosis, etc. The metabolic network of these compounds is complex and tightly regulated by various kinases and phosphatases present predominantly in the cytosol. Multiple inositol polyphosphate phosphatase 1 (Minpp1) is the only known endoplasmic reticulum (ER) luminal enzyme that hydrolyzes various inositol polyphosphates in vitro as well as in vivo conditions. However, access of the Minpp1 to cytosolic substrates has not yet been demonstrated clearly and hence its physiological function. In this study, we examined a potential role for Minpp1 in ER stress-induced apoptosis. We generated a custom antibody and characterized its specificity to study the expression of Minpp1 protein in multiple mammalian cells under experimentally induced cellular stress conditions. Our results demonstrate a significant increase in the expression of Minpp1 in response to a variety of cellular stress conditions. The protein expression was corroborated with the expression of its mRNA and enzymatic activity. Further, in an attempt to link the role of Minpp1 to apoptotic stress, we studied the effect of Minpp1 expression on apoptosis following silencing of the Minpp1 gene by its specific siRNA. Our results suggest an attenuation of apoptotic parameters following knockdown of Minpp1. Thus, in addition to its known role in inositol polyphosphate metabolism, we have identified a novel role for Minpp1 as a stress-responsive protein. In summary, our results provide, for the first time, a probable link between ER stress-induced apoptosis and Minpp1 expression.
Prasanth, K. Reddisiva; Barajas, Daniel
2014-01-01
ABSTRACT RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a “matchmaker” that brings the viral p92pol replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. PMID:25540361
Poorgholy, Nahid; Massoumi, Bakhshali; Ghorbani, Marjan; Jaymand, Mehdi; Hamishehkar, Hamed
2018-08-01
This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe 3 O 4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.
Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin
2014-09-01
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.
Ravera, Silvia; Cossu, Vanessa; Tappino, Barbara; Nicchia, Elena; Dufour, Carlo; Cavani, Simona; Sciutto, Andrea; Bolognesi, Claudia; Columbaro, Marta; Degan, Paolo; Cappelli, Enrico
2018-02-01
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting. © 2017 Wiley Periodicals, Inc.
Saha, Subrata; Musib, Mrinal
2011-01-01
Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.
Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N
2012-12-01
Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.
Lu, Yu; Huang, Yifan; Luo, Li; Liu, Zhenguang; Bo, Ruonan; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun
2018-01-01
Background Poly lactide (PLA) was proved in the last years to be good for use in sustained drug delivery and as carriers for vaccine antigens. In our previous research, pachyman (PHY)-encapsulated PLA (PHYP) nanospheres were synthesized and their function of controlling drug release was demonstrated. Purpose In order to modify the fast drug-release rate of PHY when inoculated alone, the maturation of bone marrow dendritic cells (BMDCs) in vitro and their immunological enhancement in vivo were explored using PHYP nanospheres. Methods The maturation and antigen uptake of BMDCs were evaluated, both alone and with formulated antigen PHYP nanospheres, ie, ovalbumin (OVA)-loaded PHYP nanospheres, as an antigen delivery system, to investigate antigen-specific humoral and cellular immune responses. Results The results indicated that, when stimulated by PHYP, the BMDCs matured as a result of upregulated expression of co-stimulatory molecules; the mechanism was elucidated by tracing fluorescently labeled antigens in confocal laser scanning microscopy images and observing the uptake of nanospheres by transmission electron microscopy. It was further revealed that mice inoculated with OVA-PHYP had augmented antigen-specific IgG antibodies, increased cytokine secretion by splenocytes, increased splenocyte proliferation, and activation of cluster of differentiation (CD)4+ and CD8+ T cells in vivo. Elevated immune responses were produced by OVA-PHYP, possibly owing to the activation and maturation of dendritic cells (in draining lymph nodes). Conclusion It was corroborated that PHY- and/or OVA-encapsulated PLA nanospheres elicited prominent antigen-presenting effects on BMDCs and heightened humoral and cellular immune responses compared with other formulations. PMID:29416336
Regulation of cellular growth by the Drosophila target of rapamycin dTOR
Zhang, Hongbing; Stallock, James P.; Ng, Joyce C.; Reinhard, Christoph; Neufeld, Thomas P.
2000-01-01
The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability. PMID:11069888
2016-03-28
PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS ANTHONY B. POLITO III, Maj, USAF, BSC, PhD, MT(ASCP)SBB March 2016 Final Report for March...HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS. 5a. CONTRACT NUMBER 5b...These findings identify MTAB-TA GNRs as prime candidates for use in nano-based bio -imaging and photo-thermal applications. 15. SUBJECT TERMS
Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...
Miller, N W; Deuter, A; Clem, L W
1986-01-01
Vigorous mixed leucocyte reactions (MLR) were obtained using channel catfish peripheral blood leucocytes (PBL) when equal numbers of responder and stimulator cells (5 X 10(5) cells each) were cocultured. The use of 2000 rads of X-irradiation was sufficient to block subsequent proliferative responses of the stimulator cells. The cellular requirements for channel catfish MLR responses were assessed by using three functionally distinct leucocyte subpopulations isolated from the PBL. B cells (sIg+ lymphocytes) and T cells (sIg- lymphocytes) were isolated by an indirect panning procedure employing a monoclonal antibody specific for channel catfish Ig. A third population, monocytes, was isolated or depleted by adherence to baby hamster kidney cell microexudate-coated surfaces or adherence to Sephadex G-10, respectively. The results indicated that only the T cells were able to respond in the fish MLR, with monocytes being required as accessory cells. In contrast, all three cell types could function as stimulator cells. In addition, it was observed that low in vitro culture temperatures inhibited the generation of channel catfish MLRs, thereby supporting the contention that low temperature immunosuppression in fish results from a preferential inhibition of the generation of primary T-cell responses. PMID:2944817
Positional differences in the wound transcriptome of skin and oral mucosa
2010-01-01
Background When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. Recent studies suggest that intrinsic differences in inflammation, growth factor production, levels of stem cells, and cellular proliferation capacity may underlie the exceptional healing that occurs in oral mucosa. The current study was designed to compare the transcriptomes of oral mucosal and skin wounds in order to identify critical differences in the healing response at these two sites using an unbiased approach. Results Using microarray analysis, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent sized wounds. Samples were examined from days 0 to 10 and spanned all stages of the wound healing process. Using unwounded matched tissue as a control, filtering identified 1,479 probe sets in skin wounds yet only 502 probe sets in mucosal wounds that were significantly differentially expressed over time. Clusters of genes that showed similar patterns of expression were also identified in each wound type. Analysis of functionally related gene expression demonstrated dramatically different reactions to injury between skin and mucosal wounds. To explore whether site-specific differences might be derived from intrinsic differences in cellular responses at each site, we compared the response of isolated epithelial cells from skin and oral mucosa to a defined in vitro stimulus. When cytokine levels were measured, epithelial cells from skin produced significantly higher amounts of proinflammatory cytokines than cells from oral mucosa. Conclusions The results provide the first detailed molecular profile of the site-specific differences in the genetic response to injury in mucosa and skin, and suggest the divergent reactions to injury may derive from intrinsic differences in the cellular responses at each site. PMID:20704739
Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068
Positional differences in the wound transcriptome of skin and oral mucosa.
Chen, Lin; Arbieva, Zarema H; Guo, Shujuan; Marucha, Phillip T; Mustoe, Thomas A; DiPietro, Luisa A
2010-08-12
When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. Recent studies suggest that intrinsic differences in inflammation, growth factor production, levels of stem cells, and cellular proliferation capacity may underlie the exceptional healing that occurs in oral mucosa. The current study was designed to compare the transcriptomes of oral mucosal and skin wounds in order to identify critical differences in the healing response at these two sites using an unbiased approach. Using microarray analysis, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent sized wounds. Samples were examined from days 0 to 10 and spanned all stages of the wound healing process. Using unwounded matched tissue as a control, filtering identified 1,479 probe sets in skin wounds yet only 502 probe sets in mucosal wounds that were significantly differentially expressed over time. Clusters of genes that showed similar patterns of expression were also identified in each wound type. Analysis of functionally related gene expression demonstrated dramatically different reactions to injury between skin and mucosal wounds. To explore whether site-specific differences might be derived from intrinsic differences in cellular responses at each site, we compared the response of isolated epithelial cells from skin and oral mucosa to a defined in vitro stimulus. When cytokine levels were measured, epithelial cells from skin produced significantly higher amounts of proinflammatory cytokines than cells from oral mucosa. The results provide the first detailed molecular profile of the site-specific differences in the genetic response to injury in mucosa and skin, and suggest the divergent reactions to injury may derive from intrinsic differences in the cellular responses at each site.
Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
A FRET-Based Ratiometric Chemosensor for in Vitro Cellular Fluorescence Analyses of pH
Zhou, Xianfeng; Su, Fengyu; Lu, Hongguang; Senechal-Willis, Patti; Tian, Yanqing; Johnson, Roger H.; Meldrum, Deirdre R.
2011-01-01
Ratiometric fluorescence sensing is an important technique for precise and quantitative analysis of biological events occurring under complex conditions by simultaneously recording fluorescence intensities at two wavelengths and calculating their ratios. Herein, we design a ratiometric chemosensor for pH that is based on photo-induced electron transfer (PET) and binding-induced modulation of fluorescence resonance energy transfer (FRET) mechanisms. This ratiometric chemosensor was constructed by introduction of a pH-insensitive coumarin fluorophore as a FRET donor into a pH-sensitive amino-naphthalimide derivative as the FRET acceptor. The sensor exhibited clear dual-mission signal changes in blue and green spectral windows upon pH changes. The pH sensor was applied for not only measuring cellular pH, but also for visualizing stimulus-responsive changes of intracellular pH values. PMID:21982292
DMF, but not other fumarates, inhibits NF-κB activity in vitro in an Nrf2-independent manner.
Gillard, Geoffrey O; Collette, Brian; Anderson, John; Chao, Jianhua; Scannevin, Robert H; Huss, David J; Fontenot, Jason D
2015-06-15
Fumarate-containing pharmaceuticals are potent therapeutic agents that influence multiple cellular pathways. Despite proven clinical efficacy, there is a significant lack of data that directly defines the molecular mechanisms of action of related, yet distinct fumarate compounds. We systematically compared the impact of dimethyl fumarate (DMF), monomethyl fumarate (MMF) and a mixture of monoethyl fumarate salts (Ca(++), Mg(++), Zn(++); MEF) on defined cellular responses. We demonstrate that DMF inhibited NF-κB-driven cytokine production and nuclear translocation of p65 and p52 in an Nrf2-independent manner. Equivalent doses of MMF and MEF did not affect NF-κB signaling. These results highlight a key difference in the biological impact of related, yet distinct fumarate compounds. Copyright © 2015. Published by Elsevier B.V.
Sheets, Anthony R; Demidova-Rice, Tatiana N; Shi, Lei; Ronfard, Vincent; Grover, Komel V; Herman, Ira M
2016-01-01
Debridement, the removal of diseased, nonviable tissue, is critical for clinicians to readily assess wound status and prepare the wound bed for advanced therapeutics or downstream active healing. Removing necrotic slough and eschar through surgical or mechanical methods is less specific and may be painful for patients. Enzymatic debridement agents, such as Clostridial collagenase, selectively and painlessly degrade devitalized tissue. In addition to its debriding activities, highly-purified Clostridial collagenase actively promotes healing, and our past studies reveal that extracellular matrices digested with this enzyme yield peptides that activate cellular migratory, proliferative and angiogenic responses to injury in vitro, and promote wound closure in vivo. Intriguingly, while collagenase Santyl® ointment, a sterile preparation containing Clostridial collagenases and other non-specific proteases, is a well-accepted enzymatic debridement agent, its role as an active healing entity has never been established. Based on our previous studies of pure Clostridial collagenase, we now ask whether the mixture of enzymes contained within Santyl® produces matrix-derived peptides that promote cellular injury responses in vitro and stimulate wound closure in vivo. Here, we identify novel collagen fragments, along with collagen-associated peptides derived from thrombospondin-1, multimerin-1, fibronectin, TGFβ-induced protein ig-h3 and tenascin-C, generated from Santyl® collagenase-digested human dermal capillary endothelial and fibroblastic matrices, which increase cell proliferation and angiogenic remodeling in vitro by 50-100% over controls. Using an established model of impaired healing, we further demonstrate a specific dose of collagenase from Santyl® ointment, as well as the newly-identified and chemically-synthesized ECM-derived peptides significantly increase wound re-epithelialization by 60-100% over saline-treated controls. These results not only confirm and extend our earlier studies using purified collagenase- and matrix-derived peptides to stimulate healing in vitro and in vivo, but these Santyl®-generated, matrix-derived peptides may also represent exciting new opportunities for creating advanced wound healing therapies that are enabled by enzymatic debridement and potentially go beyond debridement.
Shi, Lei; Ronfard, Vincent; Grover, Komel V.; Herman, Ira M.
2016-01-01
Debridement, the removal of diseased, nonviable tissue, is critical for clinicians to readily assess wound status and prepare the wound bed for advanced therapeutics or downstream active healing. Removing necrotic slough and eschar through surgical or mechanical methods is less specific and may be painful for patients. Enzymatic debridement agents, such as Clostridial collagenase, selectively and painlessly degrade devitalized tissue. In addition to its debriding activities, highly-purified Clostridial collagenase actively promotes healing, and our past studies reveal that extracellular matrices digested with this enzyme yield peptides that activate cellular migratory, proliferative and angiogenic responses to injury in vitro, and promote wound closure in vivo. Intriguingly, while collagenase Santyl® ointment, a sterile preparation containing Clostridial collagenases and other non-specific proteases, is a well-accepted enzymatic debridement agent, its role as an active healing entity has never been established. Based on our previous studies of pure Clostridial collagenase, we now ask whether the mixture of enzymes contained within Santyl® produces matrix-derived peptides that promote cellular injury responses in vitro and stimulate wound closure in vivo. Here, we identify novel collagen fragments, along with collagen-associated peptides derived from thrombospondin-1, multimerin-1, fibronectin, TGFβ-induced protein ig-h3 and tenascin-C, generated from Santyl® collagenase-digested human dermal capillary endothelial and fibroblastic matrices, which increase cell proliferation and angiogenic remodeling in vitro by 50–100% over controls. Using an established model of impaired healing, we further demonstrate a specific dose of collagenase from Santyl® ointment, as well as the newly-identified and chemically-synthesized ECM-derived peptides significantly increase wound re-epithelialization by 60–100% over saline-treated controls. These results not only confirm and extend our earlier studies using purified collagenase- and matrix-derived peptides to stimulate healing in vitro and in vivo, but these Santyl®-generated, matrix-derived peptides may also represent exciting new opportunities for creating advanced wound healing therapies that are enabled by enzymatic debridement and potentially go beyond debridement. PMID:27459729
Nguyen, Thanh Yen; Liew, Chee Gee; Liu, Huinan
2013-01-01
Magnesium (Mg) is a promising biodegradable metallic material for applications in cellular/tissue engineering and biomedical implants/devices. To advance clinical translation of Mg-based biomaterials, we investigated the effects and mechanisms of Mg degradation on the proliferation and pluripotency of human embryonic stem cells (hESCs). We used hESCs as the in vitro model system to study cellular responses to Mg degradation because they are sensitive to toxicants and capable of differentiating into any cell types of interest for regenerative medicine. In a previous study when hESCs were cultured in vitro with either polished metallic Mg (99.9% purity) or pre-degraded Mg, cell death was observed within the first 30 hours of culture. Excess Mg ions and hydroxide ions induced by Mg degradation may have been the causes for the observed cell death; hence, their respective effects on hESCs were investigated for the first time to reveal the potential mechanisms. For this purpose, the mTeSR®1 hESC culture media was either modified to an alkaline pH of 8.1 or supplemented with 0.4–40 mM of Mg ions. We showed that the initial increase of media pH to 8.1 had no adverse effect on hESC proliferation. At all tested Mg ion dosages, the hESCs grew to confluency and retained pluripotency as indicated by the expression of OCT4, SSEA3, and SOX2. When the supplemental Mg ion dosages increased to greater than 10 mM, however, hESC colony morphology changed and cell counts decreased. These results suggest that Mg-based implants or scaffolds are promising in combination with hESCs for regenerative medicine applications, providing their degradation rate is moderate. Additionally, the hESC culture system could serve as a standard model for cytocompatibility studies of Mg in vitro, and an identified 10 mM critical dosage of Mg ions could serve as a design guideline for safe degradation of Mg-based implants/scaffolds. PMID:24146887
Micro- and nanotechnology in cardiovascular tissue engineering.
Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica
2011-12-09
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
Gagnon, Dominique; Gibson, Thomas W G; Singh, Ameet; zur Linden, Alex R; Kazienko, Jaimie E; LaMarre, Jonathan
2016-04-08
Low-level laser therapy (LLLT) has been used clinically as a treatment modality for a variety of medical conditions including wound-healing processes. It is an attractive and emerging method to enhance wound healing and improve clinical outcomes both in human and veterinary medicine. Despite the fact that the use of LLLT continues to gain in popularity, there is no universally accepted theory that defends all its cellular effects and beneficial biological processes in tissue repair. The present study was designed to evaluate the effect of LLLT on cellular migration and proliferation of cultured canine epidermal keratinocytes (CPEK) in an in vitro wound healing model. Keratinocyte migration and proliferation were assessed using a scratch migration assay and a proliferation assay, respectively. Fifteen independent replicates were performed for each assay. Canine epidermal keratinocyte cells exposed to LLLT with 0.1, 0.2, and 1.2 J/cm(2) migrated significantly more rapidly (p < 0.03) and showed significantly higher rates of proliferation (p < 0.0001) compared to non-irradiated cells cultured in the same medium and cells exposed to the higher energy dose of 10 J/cm(2). Irradiation with 10 J/cm(2) was characterized by decreased cellular migration and proliferation. These results revealed that LLLT has a measurable, dose-dependent effect on two different aspects of keratinocyte biology in vitro. In this in vitro wound-healing model, LLLT increased cellular migration and proliferation at doses of 0.1, 0.2, and 1.2 J/cm(2) while exposure to 10 J/cm(2) decreased cellular migration and proliferation. These data suggest that the beneficial effects of LLLT in vivo may be due, in part, to effects on keratinocyte behavior.
Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease
Foster, Meika; Samman, Samir
2012-01-01
In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057
Low-Turnover Drug Molecules: A Current Challenge for Drug Metabolism Scientists.
Hutzler, J Matthew; Ring, Barbara J; Anderson, Shelby R
2015-12-01
In vitro assays using liver subcellular fractions or suspended hepatocytes for characterizing the metabolism of drug candidates play an integral role in the optimization strategy employed by medicinal chemists. However, conventional in vitro assays have limitations in their ability to predict clearance and generate metabolites for low-turnover (slowly metabolized) drug molecules. Due to a rapid loss in the activity of the drug-metabolizing enzymes, in vitro incubations are typically performed for a maximum of 1 hour with liver microsomes to 4 hours with suspended hepatocytes. Such incubations are insufficient to generate a robust metabolic response for compounds that are slowly metabolized. Thus, the challenge of accurately estimating low human clearance with confidence has emerged to be among the top challenges that drug metabolism scientists are confronted with today. In response, investigators have evaluated novel methodologies to extend incubation times and more sufficiently measure metabolism of low-turnover drugs. These methods include plated human hepatocytes in monoculture, and a novel in vitro methodology using a relay of sequential incubations with suspended cryopreserved hepatocytes. In addition, more complex in vitro cellular models, such as HepatoPac (Hepregen, Medford, MA), a micropatterned hepatocyte-fibroblast coculture system, and the HµREL (Beverley Hills, CA) hepatic coculture system, have been developed and characterized that demonstrate prolonged enzyme activity. In this review, the advantages and disadvantages of each of these in vitro methodologies as it relates to the prediction of clearance and metabolite identification will be described in an effort to provide drug metabolism scientists with the most up-to-date experimental options for dealing with the complex issue of low-turnover drug candidates. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Garijo, N; Manzano, R; Osta, R; Perez, M A
2012-12-07
Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog
2015-10-01
The present study reports the tetanus toxoid (TT)-loaded layer-by-layer nanoassemblies (layersomes) with enhanced protection, permeation, and presentation for comprehensive oral immunization. The stable and lyophilized TT-loaded layersomes were prepared by a thin-film hydration method followed by alternate layer-by-layer coating of an electrolyte. The developed system was assessed for in vitro stability of antigen and formulation, cellular uptake, ex vivo intestinal uptake, and immunostimulatory response using a suitable experimental protocol. Layersomes improved the stability in simulated biological media as well as protected the integrity/conformation and native 3D structure of TT as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence spectroscopy, respectively. The cell culture studies demonstrated a 3.8-fold higher permeation of layersomes in Caco-2 cells and an 8.5-fold higher uptake by antigen-presenting cells (RAW 264.7). The TT-loaded layersomes elicited a complete immunostimulatory profile consisting of higher systemic (serum IgG titer), mucosal (sIgA titer), and cellular (interleukin-2 (IL-2) and interferon-γ (IFN-γ) levels) immune response after peroral administration in mice. The modified TT inhibition assay further confirmed the elicitation of complete protective levels of anti-TT antibody (>0.1 IU/mL) by layersomes. In conclusion, the proposed strategy is expected to contribute significantly in the field of stable liposome technology for mass immunization through the oral route.
Zhang, Xiao-Hui; Wu, Hong; Tang, Shu; Li, Qiao-Ning; Xu, Jiao; Zhang, Miao; Su, Ya-Nan; Yin, Bin; Zhao, Qi-Ling; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong
2017-06-30
To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken ( Gallus gallus ) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.
IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa.
Altmeier, Simon; Toska, Albulena; Sparber, Florian; Teijeira, Alvaro; Halin, Cornelia; LeibundGut-Landmann, Salomé
2016-09-01
Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease.
2011-01-01
Background Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro) and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro) SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver nanoparticles using C. reinhardtii as a model system. PMID:22152042
Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W
2013-01-01
Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.
Neuroprotection of Sex Steroids
Liu, Mingyue; Kelley, Melissa H.; Herson, Paco S.; Hurn, Patricia D.
2011-01-01
Sex steroids are essential for reproduction and development in animals and humans, and sex steroids also play an important role in neuroprotection following brain injury. New data indicate that sex-specific responses to brain injury occur at the cellular and molecular levels. This review summarizes the current understanding of neuroprotection by sex steroids, particularly estrogen, androgen, and progesterone, based on both in vitro and in vivo studies. Better understanding of the role of sex steroids under physiological and pathological conditions will help us to develop novel effective therapeutic strategies for brain injury. PMID:20595940
Mechanism of Actin-Based Motility
NASA Astrophysics Data System (ADS)
Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France
2001-05-01
Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.
Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András
2017-01-01
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Zhu, Lei; Zhang, Fan; Yang, Li-Jun; Ge, Yang; Wei, Qing-Fang; Ou, Yu
2016-07-01
EPSAH is an exopolysaccharide from Aphanothece halophytica GR02. The present study was designed to evaluate its toxicity and adjuvant potential in the specific cellular and humoral immune responses in ovalbumin (OVA) in mice. EPSAH did not cause any mortality and side effects when the mice were administered subcutaneously twice at the dose of 50 mg·kg(-1). Hemolytic activity in vitro indicated that EPSAH was non-hemolytic. Splenocyte proliferation in vitro was assayed with different concentrations of EPSAH. The mice were immunized subcutaneously with OVA 0.1 mg alone or with OVA 0.1 mg dissolved in saline containing Alum (0.2 mg) or EPSAH (0.2, 0.4, or 0.8 mg) on Day 1 and 15. Two weeks later, splenocyte proliferation, natural killer (NK) cell activity, production of cytokines IL-2 from splenocytes, and serum OVA-specific antibody titers were measured. Phagocytic activity, production of pro-inflammatory cytokines IL-1 and IL-12 in mice peritoneal macrophages were also determined. EPSAH showed a dose-dependent stimulating effect on mitogen-induced proliferation. The Con A-, LPS-, and OVA-induced splenocyte proliferation and the serum OVA-specific IgG, IgG1, and IgG2a antibody titers in the immunized mice were significantly enhanced. EPSAH also significantly promoted the production of Th1 cytokine IL-2. Besides, EPSAH remarkably increased the killing activities of NK cells from splenocytes in the immunized mice. In addition, EPSAH enhanced phagocytic activity and the generation of pro-inflammatory cytokines IL-1 and IL-12 in macrophages. These results indicated that EPSAH had a strong potential to increase both cellular and humoral immune responses, particularly promoting the development of Th1 polarization. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada
2017-03-28
Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.
LL-37 modulates human neutrophil responses to influenza A virus
Tripathi, Shweta; Verma, Anamika; Kim, Eun-Jeong; White, Mitchell R.; Hartshorn, Kevan L.
2014-01-01
Recent studies have shown that the human cathelicidin, LL-37, has antiviral activity against IAV in vitro and in vivo. Neutrophils are important cellular components of the initial innate response to IAV infection. In addition to its direct antimicrobial activities, LL-37 has important immunomodulatory effects. In this study, we explore how LL-37 affects interactions of IAV with human neutrophils. LL-37 did not alter neutrophil uptake of IAV but significantly increased neutrophil H2O2 responses to the virus. IAV stimulated production of NETs in vitro, and this response was increased by preincubating the virus with LL-37. NADPH-oxidase blockade did not reduce IAV-induced NET formation or the increased NET response stimulated by LL-37 + IAV. The increased respiratory burst and NET responses were, however, inhibited by preincubating cells with a formyl peptide receptor blocker, indicating that LL-37 engages these receptors when complexed with IAV. Responses to IAV alone were not inhibited by formyl peptide receptor blockade. It has been reported that LL-37 reduces proinflammatory cytokine responses during IAV infection in vivo. We now show that IAV alone potentiated release of IL-8 from neutrophils, and preincubation with LL-37 reduced IAV-stimulated IL-8 release. These results confirm that LL-37 modulates human neutrophil responses to IAV in a distinctive manner and could have important bearing on the protective effects of LL-37 during IAV infection in vivo. PMID:25082153
NASA Astrophysics Data System (ADS)
Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer
2017-06-01
The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the inflammatory responses result from a combination of endotoxin contamination, the MoS2 nanomaterials themselves, and the stabilizing surfactant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.
2012-11-01
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a highmore » VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black-Right-Pointing-Pointer Endothelial VEGFR levels are modulated during this response. Black-Right-Pointing-Pointer The cell regulates VEGF-A bioavailability and cell survival. Black-Right-Pointing-Pointer This may partly underlie endothelial dysfunction seen in many pathologies.« less
Domogala, Anna; Madrigal, J Alejandro; Saudemont, Aurore
2016-06-01
Natural killer (NK) cells offer the potential for a powerful cellular immunotherapy because they can target malignant cells without being direct effectors of graft-versus-host disease. We have previously shown that high numbers of functional NK cells can be differentiated in vitro from umbilical cord blood (CB) CD34(+) cells. To develop a readily available, off-the-shelf cellular product, it is essential that NK cells differentiated in vitro can be frozen and thawed while maintaining the same phenotype and functions. We evaluated the phenotype and function of fresh and frozen NK cells differentiated in vitro. We also assessed whether the concentration of NK cells at the time of freezing had an impact on cell viability. We found that cell concentration of NK cells at the time of freezing did not have an impact on their viability and on cell recovery post-thaw. Moreover, freezing of differentiated NK cells in vitro did not affect their phenotype, cytotoxicity and degranulation capacity toward K562 cells, cytokine production and proliferation. We are therefore able to generate large numbers of functional NK cells from CB CD34(+) cells that maintain the same phenotype and function post-cryopreservation, which will allow for multiple infusions of a highly cytotoxic NK cell product. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki
Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductasemore » 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.« less
Development of an in vitro Hepatocyte Model to Investigate Chemical Mode of Action
There is a clear need to identify and characterize the potential of liver in vitro models that can be used to replace animals for mode of action analysis. Our goal is to use in vitro models for mode of action prediction which recapitulate critical cellular processes underlying in...
Park, Hyeon Ung; Jeong, Jae-Hoon; Chung, Jay H; Brady, John N
2004-06-24
Checkpoint kinase 1 (Chk1) mediates diverse cellular responses to genotoxic stress, regulating the network of genome-surveillance pathways that coordinate cell cycle progression with DNA repair. Chk1 is essential for mammalian development and viability, and has been shown to be important for both S and G(2) checkpoints. We now present evidence that the HTLV-1 Tax protein interacts directly with Chk1 and impairs its kinase activities in vitro and in vivo. The direct and physical interaction of Chk1 and Tax was observed in HTLV-1-infected T cells (C81, HuT 102 and MT-2) and transfected fibroblasts (293 T) by coimmunoprecipitation and by in vitro GST pull-down assays. Interestingly, Tax inhibited the kinase activity of Chk1 protein in in vitro and in vivo kinase assays. Consistent with these results, Tax inhibited the phosphorylation-dependent degradation of Cdc25A and G(2) arrest in response to gamma-irradiation (IR) in a dose-dependent manner in vivo. The G(2) arrest did not require Chk2 or p53. These studies provide the first example of a viral transforming protein targeting Chk1 and provide important insights into checkpoint pathway regulation.
Engineering an in vitro organotypic model for studying cardiac hypertrophy.
Jain, Aditi; Hasan, Jafar; Desingu, Perumal Arumugam; Sundaresan, Nagalingam R; Chatterjee, Kaushik
2018-05-01
Neonatal cardiomyocytes cultured on flat surfaces are commonly used as a model to study cardiac failure of diverse origin. A major drawback of such a system is that the cardiomyocytes do not exhibit alignment, organization and calcium transients, similar to the native heart. Therefore, there is a need to develop in vitro platforms that recapitulate the cellular microenvironment of the murine heart as organotypic models to study cardiovascular diseases. In this study, we report an engineered platform that mimics cardiac cell organization and function of the heart. For this purpose, microscale ridges were fabricated on silicon using ultraviolet lithography and reactive ion etching techniques. Physical characterization of the microstructures was done using scanning electron microscopy and atomic force microscopy. Cardiomyocytes grown on these micro-ridges showed global parallel alignment and elliptical nuclear morphology as observed in the heart. Interestingly, calcium currents traversed the engineered cardiomyocytes in a coordinated and directional manner. Moreover, the cardiomyocytes on the engineered substrates were found to be responsive to hypertrophic stimuli, as observed by the expression of a fetal gene, atrial natriuretic peptide and increase in calcium transients upon agonist treatment. Taken together, our work demonstrates that micro-ridges can be used to obtain cardiomyocyte response in vitro, which closely resembles mammalian heart. Copyright © 2018 Elsevier B.V. All rights reserved.
Cell mechanics and immune system link up to fight infections
NASA Astrophysics Data System (ADS)
Ekpenyong, Andrew; Man, Si Ming; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Guck, Jochen; Bryant, Clare
2015-03-01
Infectious diseases, in which pathogens invade and colonize host cells, are responsible for one third of all mortality worldwide. Host cells use special proteins (immunoproteins) and other molecules to fight viral and bacterial invaders. The mechanisms by which immunoproteins enable cells to reduce bacterial loads and survive infections remain unclear. Moreover, during infections, some immunoproteins are known to alter the cytoskeleton, the structure that largely determines cellular mechanical properties. We therefore used an optical stretcher to measure the mechanical properties of primary immune cells (bone marrow derived macrophages) during bacterial infection. We found that macrophages become stiffer upon infection. Remarkably, macrophages lacking the immunoprotein, NLR-C4, lost the stiffening response to infection. This in vitro result correlates with our in vivo data whereby mice lacking NLR-C4 have more lesions and hence increased bacterial distribution and spread. Thus, the immune-protein-dependent increase in cell stiffness in response to bacterial infection (in vitro result) seems to have a functional role in the system level fight against pathogens (in vivo result). We will discuss how this functional link between cell mechanical properties and innate immunity, effected by actin polymerization, reduces the spread of infection.
Vassart, Amelia; Wolferen, Marleen; Orell, Alvaro; Hong, Ye; Peeters, Eveline; Albers, Sonja-Verena; Charlier, Daniel
2013-01-01
Sa-Lrp is a member of the leucine-responsive regulatory protein (Lrp)-like family of transcriptional regulators in Sulfolobus acidocaldarius. Previously, we demonstrated the binding of Sa-Lrp to the control region of its own gene in vitro. However, the function and cofactor of Sa-Lrp remained an enigma. In this work, we demonstrate that glutamine is the cofactor of Sa-Lrp by inducing the formation of octamers and increasing the DNA-binding affinity and sequence specificity. In vitro protein-DNA interaction assays indicate that Sa-Lrp binds to promoter regions of genes with a variety of functions including ammonia assimilation, transcriptional control, and UV-induced pili synthesis. DNA binding occurs with a specific affinity for AT-rich binding sites, and the protein induces DNA bending and wrapping upon binding, indicating an architectural role of the regulator. Furthermore, by analyzing an Sa-lrp deletion mutant, we demonstrate that the protein affects transcription of some of the genes of which the promoter region is targeted and that it is an important determinant of the cellular aggregation phenotype. Taking all these results into account, we conclude that Sa-Lrp is a glutamine-responsive global transcriptional regulator with an additional architectural role. PMID:23255531
Hernández-Bule, María Luisa; Trillo, María Angeles; Cid, María Antonia; Leal, Jocelyne; Ubeda, Alejandro
2007-03-01
Capacitive-resistive electric transfer (CRET) therapy is a non-invasive technique currently applied to the treatment of skin, muscle and tendon injuries that uses 0.45-0.6 MHz electric currents to transdermically and focally increase the internal temperature of targeted tissues. Because CRET electrothermal treatment has been reported to be more effective than other thermal therapies, it has been proposed that the electric stimulus could induce responses in exposed tissues that are cooperative or synergic with the thermal effects of the treatment. Previous studies by our group, investigating the nature of the alleged electric response, have shown that short, repeated stimuli with 0.57-MHz currents at subthermal levels could provoke partial, cytotoxic effects on human neuroblastoma cells in vitro. The aim of the present study was to investigate the response from another human cell type, the human hepatocarcinoma HepG2 line, during and after the exposure to 0.57-MHz CRET currents at subthermal densities. The electric stimuli provoked a decrease in the proliferation rate of the cultures, possibly due to an electrically-induced blocking of the cell cycle in a fraction of the cellular population.
Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude.
Mariggiò, Maria A; Falone, Stefano; Morabito, Caterina; Guarnieri, Simone; Mirabilio, Alessandro; Pilla, Raffaele; Bucciarelli, Tonino; Verratti, Vittore; Amicarelli, Fernanda
2010-01-01
Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.
Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages.
Rezende, T M B; Vargas, D L; Cardoso, F P; Sobrinho, A P R; Vieira, L Q
2005-12-01
To test the effect of two commercial brands of grey mineral trioxide aggregate (ProRoot and MTA-Angelus) on cytokine production by M1 and M2 inflammatory macrophages. M1 (from C57BL/6 mice) and M2 peritoneal inflammatory macrophages (from C57BL/6 IL12p40-/- mice) were obtained and cultured in vitro in the presence of MTA. The cellular viability and the production of tumour necrosis factor-alpha, interleukin (IL)-12 and IL-10 in response to stimulation with interferon-gamma and Fusobacterium nucleatum or Peptostreptococcus anaerobius were evaluated. Data were analysed by Mann-Whitney, Kruskal-Wallis and anova tests. The cements did not interfere with cellular viability or with cytokine production by either type of macrophage. However, M2 macrophages produced higher levels of IL-10 when stimulated with F. nucleatum than M1 macrophages (P < 0.05). The brands of MTA evaluated did not interfere in the cytokine response by M1 or M2 macrophages to the two bacteria tested. However, a difference in cytokine production between the two types of macrophages was found.
A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations
Thiel, Christoph; Cordes, Henrik; Fabbri, Lorenzo; Aschmann, Hélène Eloise; Baier, Vanessa; Atkinson, Francis; Blank, Lars Mathias; Kuepfer, Lars
2017-01-01
Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. PMID:28151932
Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens
NASA Astrophysics Data System (ADS)
Siau, Jia Wei; Coffill, Cynthia R.; Zhang, Weiyun Villien; Tan, Yaw Sing; Hundt, Juliane; Lane, David; Verma, Chandra; Ghadessy, Farid
2016-09-01
The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.
Induction of cellular and molecular immunomodulatory pathways by vitamin A and Flavonoids
Patel, Sapna; Vajdy, Michael
2016-01-01
Introduction A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. Areas Covered Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of Vitamin A and select flavonoids in induction of innate and adaptive B and T cell responses, including TH1, TH2 and Treg. Expert Opinion While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immuno-modulatory compounds. PMID:26185959
Spitta, Luis F; Diegeler, Sebastian; Baumstark-Khan, Christa; Hellweg, Christine E
2018-02-01
Epidemiological studies show that there is a link between urban water pollution and increase in human morbidity and mortality. With the increase in number of new substances arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop biological test systems for fast evaluation of potential risks to humans and the environmental ecosystems. Here, a combined cellular reporter assay based on the cellular survival and the stress-induced activation of the survival-promoting factor nuclear factor κB (NF-κB) and its use for the detection of cytotoxicity and cancer-related stress responses is presented. A total of 14 chemicals that may be found in trace-amounts in ground water levels are applied and tested with the presented assay. The project is embedded within the joint research project TOX-BOX which aims to develop a harmonized testing strategy for risk management of anthropogenic trace substances in potable water. The assay identified carbendazim as a NF-κB-activating agent in mammalian cells.
In vitro analysis of metabolic predisposition to drug hypersensitivity reactions.
Riley, R J; Leeder, J S
1995-01-01
Idiosyncratic hypersensitivity reactions may account for up to 25% of all adverse reactions, and pose a constant problem to physicians because of their unpredictable nature, potentially fatal outcome and resemblance to other disease processes. Current understanding of how drug allergy arises is based largely on the hapten hypothesis: since most drugs are not chemically reactive per se, they must be activated metabolically to reactive species which may become immunogenic through interactions with cellular macromolecules. The role of drug metabolism is thus pivotal to the hapten hypothesis both in activation of the parent compound and detoxification of the reactive species. Although conjugation reactions may occasionally produce potential immunogens (for example, the generation of acylglucuronides from non-steroidal anti-inflammatory drugs such as diclofenac), bioactivation is catalysed most frequently by cytochrome P450 (P450) enzymes. The multifactorial nature of hypersensitivity reactions, particularly the role of often unidentified, reactive drug metabolites in antigen generation, has hampered the routine diagnosis of these disorders by classical immunological methods designed to detect circulating antibodies or sensitized T cells. Similarly, species differences in drug metabolism and immune system regulation have largely precluded the establishment of appropriate animal models with which to examine the immunopathological mechanisms of these toxicities. However, the combined use of in vitro toxicity assays incorporating human tissues and in vivo phenotyping (or, ultimately, in vitro genotyping) methods for drug detoxification pathways may provide the metabolic basis for hypersensitivity reactions to several drugs. This brief review highlights recent efforts to unravel the bases for hypersensitivity reactions to these therapeutic agents (which include anticonvulsants and sulphonamides) using drug metabolism and immunochemical approaches. In particular, examples are provided which illustrate breakthroughs in the identification of the chemical nature of the reactive metabolites which become bound to cellular macromolecules, the enzyme systems responsible for their generation and (possibly) detoxification, and the target proteins implicated in the subsequent immune response. PMID:7813099
Mathematical modeling improves EC50 estimations from classical dose-response curves.
Nyman, Elin; Lindgren, Isa; Lövfors, William; Lundengård, Karin; Cervin, Ida; Sjöström, Theresia Arbring; Altimiras, Jordi; Cedersund, Gunnar
2015-03-01
The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman. © 2015 FEBS.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng
2015-09-01
Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available: Synthesis procedure, 1HNMR, ESI-MS and additional data. See DOI: 10.1039/c5nr04045k
Antoine, Elizabeth E; Cornat, François P; Barakat, Abdul I
2016-12-01
Although vascular disease is a leading cause of mortality, in vitro tools for controlled, quantitative studies of vascular biological processes in an environment that reflects physiological complexity remain limited. We developed a novel in vitro artery that exhibits a number of unique features distinguishing it from tissue-engineered or organ-on-a-chip constructs, most notably that it allows deployment of endovascular devices including stents, quantitative real-time tracking of cellular responses and detailed measurement of flow velocity and lumenal shear stress using particle image velocimetry. The wall of the stentable in vitro artery consists of an annular collagen hydrogel containing smooth muscle cells (SMCs) and whose lumenal surface is lined with a monolayer of endothelial cells (ECs). The system has in vivo dimensions and physiological flow conditions and allows automated high-resolution live imaging of both SMCs and ECs. To demonstrate proof-of-concept, we imaged and quantified EC wound healing, SMC motility and altered shear stresses on the endothelium after deployment of a coronary stent. The stentable in vitro artery provides a unique platform suited for a broad array of research applications. Wide-scale adoption of this system promises to enhance our understanding of important biological events affecting endovascular device performance and to reduce dependence on animal studies. © 2016 The Author(s).
The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.
2008-07-05
The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 formore » capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.« less
Vitiligo: A Possible Model of Degenerative Diseases
Bellei, Barbara; Pitisci, Angela; Ottaviani, Monica; Ludovici, Matteo; Cota, Carlo; Luzi, Fabiola; Dell'Anna, Maria Lucia; Picardo, Mauro
2013-01-01
Vitiligo is characterized by the progressive disappearance of pigment cells from skin and hair follicle. Several in vitro and in vivo studies show evidence of an altered redox status, suggesting that loss of cellular redox equilibrium might be the pathogenic mechanism in vitiligo. However, despite the numerous data supporting a pathogenic role of oxidative stress, there is still no consensus explanation underlying the oxidative stress-driven disappear of melanocytes from the epidermis. In this study, in vitro characterization of melanocytes cultures from non-lesional vitiligo skin revealed at the cellular level aberrant function of signal transduction pathways common with neurodegenerative diseases including modification of lipid metabolism, hyperactivation of mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB), constitutive p53-dependent stress signal transduction cascades, and enhanced sensibility to pro-apoptotic stimuli. Notably, these long-term effects of subcytotoxic oxidative stress are also biomarkers of pre-senescent cellular phenotype. Consistent with this, vitiligo cells showed a significant increase in p16 that did not correlate with the chronological age of the donor. Moreover, vitiligo melanocytes produced many biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as interleukin-6 (IL-6), matrix metallo proteinase-3 (MMP3), cyclooxygenase-2 (Cox-2), insulin-like growth factor-binding protein-3 and 7 (IGFBP3, IGFBP7). Together, these data argue for a complicated pathophysiologic puzzle underlying melanocytes degeneration resembling, from the biological point of view, neurodegenerative diseases. Our results suggest new possible targets for intervention that in combination with current therapies could correct melanocytes intrinsic defects. PMID:23555779
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
A cellular automata model of bone formation.
Van Scoy, Gabrielle K; George, Estee L; Opoku Asantewaa, Flora; Kerns, Lucy; Saunders, Marnie M; Prieto-Langarica, Alicia
2017-04-01
Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. Copyright © 2017 Elsevier Inc. All rights reserved.
Helm, Katharina; Beyreis, Marlena; Mayr, Christian; Ritter, Markus; Jakab, Martin; Kiesslich, Tobias; Plaetzer, Kristjan
2017-01-01
For in vitro cytotoxicity testing, discrimination of apoptosis and necrosis represents valuable information. Viability analysis performed at two different time points post treatment could serve such a purpose because the dynamics of metabolic activity of apoptotic and necrotic cells is different, i.e. a more rapid decline of cellular metabolism during necrosis whereas cellular metabolism is maintained during the entire execution phase of apoptosis. This study describes a straightforward approach to distinguish apoptosis and necrosis. A431 human epidermoid carcinoma cells were treated with different concentrations/doses of actinomycin D (Act-D), 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), Ro 31-8220, H2O2 and photodynamic treatment (PDT). The resazurin viability signal was recorded at 2 and 24 hrs post treatment. Apoptosis and necrosis were verified by measuring caspase 3/7 and membrane integrity. Calculation of the difference curve between the 2 and 24 hrs resazurin signals yields the following information: a positive difference signal indicates apoptosis (i.e. high metabolic activity at early time points and low signal at 24 hrs post treatment) while an early reduction of the viability signal indicates necrosis. For all treatments, this dose-dependent sequence of cellular responses could be confirmed by independent assays. Simple and cost-effective viability analysis provides reliable information about the dose ranges of a cytotoxic agent where apoptosis or necrosis occurs. This may serve as a starting point for further in-depth characterisation of cytotoxic treatments. © 2017 The Author(s)Published by S. Karger AG, Basel.
Hooper, K A; Macon, N D; Kohn, J
1998-09-05
Previous studies demonstrated that poly(DTE carbonate) and poly (DTE adipate), two tyrosine-derived polymers, have suitable properties for use in biomedical applications. This study reports the evaluation of the in vivo tissue response to these polymers in comparison to poly(L-lactic acid) (PLLA). Typically, the biocompatibility of a material is determined through histological evaluations as a function of implantation time in a suitable animal model. However, due to changes that can occur in the tissue response at different stages of the degradation process, a fixed set of time points is not ideal for comparative evaluations of materials having different rates of degradation. Therefore the tissue response elicited by poly(DTE carbonate), poly(DTE adipate), and PLLA was evaluated as a function of molecular weight. This allowed the tissue response to be compared at corresponding stages of degradation. Poly(DTE adipate) consistently elicited the mildest tissue response, as judged by the width and lack of cellularity of the fibrous capsule formed around the implant. The tissue response to poly(DTE carbonate) was mild throughout the 570 day study. However, the response to PLLA fluctuated as a function of the degree of degradation, exhibiting an increase in the intensity of inflammation as the implant began to lose mass. At the completion of the study, tissue ingrowth into the degrading and disintegrating poly(DTE adipate) implant was evident while no comparative ingrowth of tissue was seen for PLLA. The similarity of the in vivo and in vitro degradation rates of each polymer confirmed the absence of enzymatic involvement in the degradation process. A comparison of molecular weight retention, water uptake, and mass loss in vivo with two commonly used in vitro systems [phosphate-buffered saline (PBS) and simulated body fluid (SBF)] demonstrated that for the two tyrosine-derived polymers the in vivo results were equally well simulated in vitro with PBS and SBF. However, for PLLA the in vivo results were better simulated in vitro using PBS.
Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism
Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.
2015-01-01
Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798
Curran, Judith M; Chen, Rui; Stokes, Robert; Irvine, Eleanor; Graham, Duncan; Gubbins, Earl; Delaney, Deany; Amro, Nabil; Sanedrin, Raymond; Jamil, Haris; Hunt, John A
2010-03-01
The development of homogenously nano-patterned chemically modified surfaces that can be used to initiate a cellular response, particularly stem cell differentiation, in a highly controlled manner without the need for exogenous biological factors has never been reported, due to that fact that precisely defined and reproducible systems have not been available that can be used to study cell/material interactions and unlock the potential of a material driven cell response. Until now material driven stem cell (furthermore any cell) responses have been variable due to the limitations in definition and reproducibility of the underlying substrate and the lack of true homogeneity of modifications that can dictate a cellular response at a sub-micron level that can effectively control initial cell interactions of all cells that contact the surface. Here we report the successful design and use of homogenously molecularly nanopatterned surfaces to control initial stem cell adhesion and hence function. The highly specified nano-patterned arrays were compared directly to silane modified bulk coated substrates that have previously been proven to initiate mesenchymal stem cell (MSC) differentiation in a heterogenous manner, the aim of this study was to prove the efficiency of these previously observed cell responses could be enhanced by the incorporation of nano-patterns. Nano-patterned surfaces were prepared by Dip Pen Nanolithography (DPN) to produce arrays of 70 nm sized dots separated by defined spacings of 140, 280 and 1000 nm with terminal functionalities of carboxyl, amino, methyl and hydroxyl and used to control cell growth. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and will change the capabilities for stem cell definition in vitro and then cell based medical therapies. In addition to highlighting the ability of the materials to control stem cell functionality on an unprecedented scale this research also introduces the successful scale-up of DPN and the novel chemistries and systems to facilitate the production of homogeneously patterned substrates (5 mm2) that are applicable for use in in vitro cell conditions over prolonged periods for complete control of material driven cell responses.
El-Malah, Shimaa S.; Yang, Zhenquan; Hu, Maozhi; Li, Qiuchun; Pan, Zhiming; Jiao, Xinan
2014-01-01
Vibrio parahaemolyticus (Vp) is one of the emergent food-borne pathogens that are commensally associated with various shellfish species throughout the world. It is strictly environmental and many strains are pathogenic to humans. The virulent strains cause distinct diseases, including wound infections, septicemia, and most commonly, acute gastroenteritis, which is acquired through the consumption of raw or undercooked seafood, especially shellfish. Vp has two type three secretion systems (T3SSs), which triggering its cytotoxicity and enterotoxicity via their effectors. To better understand the pathogenesis of Vp, we established a cell infection model in vitro using a non-phagocytic cell line. Caco-2 cells were infected with different strains of Vp (pandemic and non-pandemic strains) and several parameters of cytotoxicity were measured together with adhesion and invasion indices, which reflect the pathogen's virulence. Our results show that Vp adheres to cell monolayers and can invade non-phagocytic cells. It also survives and persists in non-phagocytic cells by modulating reactive oxygen species (ROS), allowing its replication, and resulting in complete cellular destruction. We conclude that the pathogenicity of Vp is based on its capacities for adhesion and invasion. Surprisingly's; enhanced of ROS resistance period could promote the survival of Vp inside the intestinal tract, facilitating tissue infection by repressing the host's oxidative stress response. PMID:25566508
Biological characterization of a novel in vitro cell irradiator
Fowler, Tyler L.; Fisher, Michael M.; Bailey, Alison M.; Bednarz, Bryan P.
2017-01-01
To evaluate the overall robustness of a novel cellular irradiator we performed a series of well-characterized, dose-responsive assays to assess the consequences of DNA damage. We used a previously described novel irradiation system and a traditional 137Cs source to irradiate a cell line. The generation of reactive oxygen species was assessed using chloromethyl-H2DCFDA dye, the induction of DNA DSBs was observed using the comet assay, and the initiation of DNA break repair was assessed through γH2AX image cytometry. A high correlation between physical absorbed dose and biologic dose was seen for the production of intracellular reactive oxygen species, physical DNA double strand breaks, and modulation of the cellular double stand break pathway. The results compared favorably to irradiation with a traditional 137Cs source. The rapid, straightforward tests described form a reasonable approach for biologic characterization of novel irradiators. These additional testing metrics go beyond standard physics testing such as Monte Carlo simulation and thermo-luminescent dosimeter evaluation to confirm that a novel irradiator can produce the desired dose effects in vitro. Further, assessment of these biological metrics confirms that the physical handling of the cells during the irradiation process results in biologic effects that scale appropriately with dose. PMID:29232400
Methods of measuring Protein Disulfide Isomerase activity: a critical overview
NASA Astrophysics Data System (ADS)
Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise
2014-09-01
Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.
Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery
Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O
2011-01-01
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493
Mukhopadhyay, Indranil; Kulkarni, Abhay; Aranake, Sarika; Karnik, Pallavi; Shetty, Mahesh; Thorat, Sandeep; Ghosh, Indraneel; Wale, Dinesh; Bhosale, Vikram; Khairatkar-Joshi, Neelima
2014-01-01
Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1. PMID:24819048
Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.
2013-01-01
Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189
Das, Dipankar; Rameshbabu, Arun Prabhu; Ghosh, Paulomi; Patra, Priyapratim; Dhara, Santanu; Pal, Sagar
2017-09-01
The present article demonstrates the targeted delivery of doxorubicin hydrochloride to human osteosarcoma cancer cell lines (MG 63) using functionalized dextrin based crosslinked, pH responsive and biocompatible nanogel. The nanogel has been prepared through Michael-type addition reaction using dextrin (Dxt), N, N'-methylene bisacrylamide (MBA, as crosslinker), acrylic acid (AA, as monomer) and potassium persulfate (KPS, as initiator). The structure, composition, morphology of the nanogel have been explored using FTIR and 1 H NMR spectroscopy, XRD, TGA, DSC, CHN and AFM analyses. The TEM analysis confirmed that the size of nanogel appeared within 100nm, while DLS study indicates that the diameter of the nanogel remained between 113 and 126nm. The AFM study implied the porous morphology of the synthesized nanogel. The rheological study suggests the gel behaviour of the synthesized nanogel at 37±0.1°C. Difference in% swelling at pH 5.5 and 7.4 indicates pH-responsiveness of the nanogel. The in vitro cytocompatibility results ascertained that the nanogel is non-toxic to human mesenchymal stem cells (hMSCs). In vitro cellular uptake study confirmed that FITC-loaded nanogel can cross the cellular membrane and be well uptake by the cell cytoplasm. The nanogel could efficiently encapsulate doxorubicin hydrochloride (Dox) with the loading efficiency of 27±0.2% after 72h. The Dox-loaded nanogel demonstrates anti-cancer activity towards MG 63 cancer cells and release the encapsulated drug in a controlled way. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Lingyu; Yu, Linfen; Grist, Samantha; Cheung, Karen C; Chen, David D Y
2017-11-15
Cell culture systems based on polydimethylsiloxane (PDMS) microfluidic devices offer great flexibility because of their simple fabrication and adaptability. PDMS devices also make it straightforward to set up parallel experiments and can facilitate process automation, potentially speeding up the drug discovery process. However, cells grown in PDMS-based systems can develop in different ways to those grown with conventional culturing systems because of the differences in the containers' surfaces. Despite the growing number of studies on microfluidic cell culture devices, the differences in cellular behavior in PDMS-based devices and normal cell culture systems are poorly characterized. In this work, we investigated the proliferation and autophagy of MCF7 cells cultured in uncoated and Parylene-C coated PDMS wells. Using a quantitative method combining solid phase extraction and liquid chromatography mass spectrometry we developed, we showed that Tamoxifen uptake into the surfaces of uncoated PDMS wells can change the drug's effective concentration in the culture medium, affecting the results of Tamoxifen-induced autophagy and cytotoxicity assays. Such changes must be carefully analyzed before transferring in vitro experiments from a traditional culture environment to a PDMS-based microfluidic system. We also found that cells cultured in Parylene-C coated PDMS wells showed similar proliferation and drug response characteristics to cells cultured in standard polystyrene (PS) plates, indicating that Parylene-C deposition offers an easy way of limiting the uptake of small molecules into porous PDMS materials and significantly improves the performance of PDMS-based device for cell related research. Copyright © 2017 Elsevier B.V. All rights reserved.
In vitro testing of Nd:YAG laser processed calcium phosphate coatings.
De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W
2006-11-01
Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.
A major focus in toxicology research is the development of new in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 Phase I che...
Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong
2017-11-29
The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.
Zhang, Shuang-Wei; Liu, Yu; Wang, Fang; Qiang, Jiao; Liu, Pan; Zhang, Jun; Xu, Jin-Wen
2017-01-01
The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague-Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.
Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo
2015-01-01
Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962
A general mechanism for intracellular toxicity of metal-containing nanoparticles
NASA Astrophysics Data System (ADS)
Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo
2014-05-01
The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h
Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity.
Li, Li-Fang; Xu, Zhi-Wen; Liu, Nai-Yong; Wu, Guo-Xing; Ren, Xue-Min; Zhu, Jia-Ying
2018-06-01
Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom-injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom. © 2018 Wiley Periodicals, Inc.
Intravenous immunoglobulin and Alzheimer's disease immunotherapy.
Solomon, Beka
2007-02-01
Amyloid-beta peptide (Abeta) contributes to the acute progression of Alzheimer's disease (AD) and has become the main target for therapeutics. Active immunization with Abeta in individuals with AD has been efficacious; however, some patients developed side effects, possibly related to an autoimmune response. Evidence that intravenous immunoglobulin (IVIg), an FDA-approved purified immunoglobulin fraction from normal human donor blood, shows promise of passive immunotherapy for AD is reviewed. Investigations into the molecular effects of IVIg on Abeta clearance, using the BV-2 cellular microglia line, demonstrate that IVIg dissolves Abeta fibrils in vitro, increases cellular tolerance to Abeta, enhances microglial migration toward Abeta deposits, and mediates phagocytosis of Abeta. Preliminary clinical results indicate that IVIg, which contains natural antibodies against the Abeta, warrants further study into its potential to deliver a controlled immune attack on the peptide, avoiding the immune toxicities that have had a negative impact on the first clinical trials of vaccine against Abeta.
Mohr, S; Hallak, H; de Boitte, A; Lapetina, E G; Brüne, B
1999-04-02
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.
Akiyama, Benjamin M.; Laurence, Hannah M.; Massey, Aaron R.; ...
2016-11-10
The outbreak of Zika virus (ZIKV) and associated fetal microcephaly mandates efforts to understand the molecular processes of infection. Related flaviviruses produce noncoding subgenomic flaviviral RNAs (sfRNAs) that are linked to pathogenicity in fetal mice. These viruses make sfRNAs by co-opting a cellular exonuclease via structured RNAs called xrRNAs. We found that ZIKV-infected monkey and human epithelial cells, mouse neurons, and mosquito cells produce sfRNAs. The RNA structure that is responsible for ZIKV sfRNA production forms a complex fold that is likely found in many pathogenic flaviviruses. Mutations that disrupt the structure affect exonuclease resistance in vitro and sfRNA formationmore » during infection. The complete ZIKV xrRNA structure clarifies the mechanism of exonuclease resistance and identifies features that may modulate function in diverse flaviviruses.« less
Gillissen, A; Jaworska, M; Orth, M; Coffiner, M; Maes, P; App, E M; Cantin, A M; Schultze-Werninghaus, G
1997-03-01
Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC), and NAG, both known to have excellent mucolytic capabilities, were tested for their ability to enhance cellular antioxidant defence mechanisms. To accomplish this, both drugs were tested in vitro for their capacity: (1) to inhibit O2- and H2O2 in cell-free assay systems; (2) to reduce O2- and H2O2 released by polymorphonuclear leukocytes (PMN); and (3) for their cellular glutathione (GSH) precursor effect. In comparison with GSH, NAL and NAC inhibited H2O2, but not O2-, in cell-free, in vitro test systems in a similar manner. The anti-H2O2 effect of these drugs was as potent as that of GSH, an important antioxidant in mammalian cells. To enhance cellular GSH levels, increasing concentrations (0-2 x 10(-4) mol l-1) of both substances were added to a transformed alveolar cell line (A549 cells). After NAC administration (2 x 10(-4) mol l-1), total intracellular GSH (GSH + 2GSSG) levels reached 4.5 +/- 1.1 x 10(-6) mol per 10(6) cells, whereas NAL increased GSH to 8.3 +/- 1.6 x 10(-6) mol per 10(6) cells. NAC and NAL administration also induced extracellular GSH secretion; about two-fold (NAC), and 1.5-fold (NAL), respectively. The GSH precursor potency of cystine was about two-fold higher than that of NAL and NAC, indicating that the deacetylation process of NAL and NAC slows the ability of both drugs to induce cellular glut production and secretion. Buthionine-sulphoximine, which is an inhibitor of GSH synthetase, blocked the cellular GSH precursor effect of all substances. In addition, these data demonstrate that NAC and NAL reduce H2O2 released by freshly-isolated cultured blood PMN from smokers with chronic obstructive pulmonary disease (COPD) (n = 10) in a similar manner (about 45% reduction of H2O2 activity by NAC or NAL at 4 x 10(-6) mol l-1). In accordance with the results obtained from cell-free, in vitro assays, O2- released by PMN was not affected. Ambroxol (concentrations: 10(-9)-10(-3) mol l-1) did not reduce activity levels of H2O2 and O2- in vitro. Due to the basic effect of dissolved lysine, which separates easily in solution from NAL, the acidic function of the remaining NAC molecule is almost completely neutralized [at concentration 2 x 10(-4) M: pH 3.6 (NAC), pH 6.4 (NAL)]. Due to their function as H2O2 scavengers, and due to their ability to enhance cellular glutathione levels, NAL and NAC both have potent antioxidant capabilities in vitro. The advantage of NAL over NAC is two-fold; it enhances intracellular GSH levels twice as effectively, and it forms neutral pH solutions whereas NAC is acidic. Concluding from these in vitro results, NAL could be an interesting alternative to enhance the antioxidant capacity at the epithelial surface of the lung by aerosol administration.
Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery
NASA Astrophysics Data System (ADS)
Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang
2015-02-01
We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06714b
Carey, Alison J; Tan, Chee Keong; Mirza, Shaper; Irving-Rodgers, Helen; Webb, Richard I; Lam, Alfred; Ulett, Glen C
2014-02-15
Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (10(6)-10(7) CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration
Genius, Just; Geiger, Johanna; Bender, Andreas; Möller, Hans-Jürgen; Klopstock, Thomas; Rujescu, Dan
2012-01-01
Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity. PMID:22347384
Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity
Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.
2017-01-01
The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968
Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye
2017-01-01
Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination. PMID:29093654
A cascade reaction network mimicking the basic functional steps of adaptive immune response
NASA Astrophysics Data System (ADS)
Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong
2015-10-01
Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.
Negri, Pedro; Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin
2017-08-15
Many biotic and abiotic stressors impact bees' health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees' fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera ( A. mellifera ). Here we show results supporting that the supplementation of bee larvae's diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection.
Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin
2017-01-01
Many biotic and abiotic stressors impact bees’ health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees’ fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera (A. mellifera). Here we show results supporting that the supplementation of bee larvae’s diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection. PMID:28809782
Wang, Jun; Hwang, Kiwook; Braas, Daniel; Dooraghi, Alex; Nathanson, David; Campbell, Dean O.; Gu, Yuchao; Sandberg, Troy; Mischel, Paul; Radu, Caius; Chatziioannou, Arion F.; Phelps, Michael E.; Christofk, Heather; Heath, James R.
2014-01-01
We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. Methods A portable in vitro molecular imaging system, comprised of a microchip and a beta-particle imaging camera, permits routine cell-based radioassays on small number of either suspension or adherent cells. We investigate the response kinetics of model lymphoma and glioblastoma cancer cell lines to [18F]fluorodeoxyglucose ([18F]FDG) uptake following drug exposure. Those responses are correlated with kinetic changes in the cell cycle, or with changes in receptor-tyrosine kinase signaling. Results The platform enables radioassays directly on multiple cell types, and yields results comparable to conventional approaches, but uses smaller sample sizes, permits a higher level of quantitation, and doesn’t require cell lysis. Conclusion The kinetic analysis enabled by the platform provides a rapid (~1 hour) drug screening assay. PMID:23978446
Massari, Caio M; Castro, Adalberto A; Dal-Cim, Tharine; Lanznaster, Débora; Tasca, Carla I
2016-12-01
Parkinson's disease (PD) involves the loss of striatal dopaminergic neurons, although other neurotransmitters and brain areas are also involved in its pathophysiology. In rodent models to PD it has been shown statins improve cognitive and motor deficits and attenuate inflammatory responses evoked by PD-related toxins. Statins are the drugs most prescribed to hypercholesterolemia, but neuroprotective effects have also been attributed to statins treatment in humans and in animal models. This study aimed to establish an in vitro model of 6-hydroxydopamine (6-OHDA)-induced toxicity, used as an initial screening test to identify effective drugs against neural degeneration related to PD. The putative neuroprotective effect of atorvastatin against 6-OHDA-induced toxicity in rat striatal, cerebrocortical and hippocampal slices was also evaluated. 6-OHDA (100μM) decreased cellular viability in slices obtained from rat cerebral cortex, hippocampus and striatum. 6-OHDA also induced an increased reactive oxygen species (ROS) production and mitochondrial dysfunction. Co-incubation of 6-OHDA with atorvastatin (10μM) or MK-801 (50μM) an N-methyl-d-aspartate (NMDA) receptor antagonist, partially attenuated the cellular damage evoked by 6-OHDA in the three brain areas. Atorvastatin partially reduced ROS production in the hippocampus and striatum and disturbances of mitochondria membrane potential in cortex and striatum. 6-OHDA-induced toxicity in vitro displays differences among the brain structures, but it is also observed in cerebrocortical and hippocampal slices, besides striatum. Copyright © 2016 Elsevier B.V. All rights reserved.
Dielectric elastomer actuator for mechanical loading of 2D cell cultures.
Poulin, Alexandre; Saygili Demir, Cansaran; Rosset, Samuel; Petrova, Tatiana V; Shea, Herbert
2016-09-21
We demonstrate the use of dielectric elastomer actuators (DEAs) for mechanical stimulation of cells in vitro. The development of living tissues is regulated by their mechanical environment through the modification of fundamental cellular functions such as proliferation, differentiation and gene expression. Mechanical cues have been linked to numerous pathological conditions, and progress in cellular mechanobiology could lead to better diagnosis and treatments of diseases such as atherosclerosis and cancers. Research in this field heavily relies on in vitro models due to the high complexity of the in vivo environment. Current in vitro models however build on bulky and often complex sets of mechanical motors or pneumatic systems. In this work we present an alternative approach based on DEAs, a class of soft actuators capable of large deformation (>100%) and fast response time (<1 ms). The key advantage of DEAs is that they can be integrated within the culture substrate, therefore providing a very compact solution. Here we present a DEA-based deformable bioreactor which can generate up to 35% uniaxial tensile strain, and is compatible with standard cell culture protocols. Our transparent device also includes a static control area, and enables real-time optical monitoring of both the stimulated and control cell populations. As a proof of concept we cycled a population of lymphatic endothelial cells (LECs) between 0% and 10% strain at a 0.1 Hz frequency for 24 h. We observe stretch-induced alignment and elongation of LECs, providing the first demonstration that DEAs can be interfaced with living cells and used to control their mechanical environment.
Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function.
Pan, Min-Hsiung; Wu, Jia-Ching; Ho, Chi-Tang; Badmaev, Vladimir
2017-05-12
Background Immunity and Longevity Methods A water extract of Curcuma longa (L.) [vern. Turmeric] roots (TurmericImmune™) standardized for a minimum 20 % of turmeric polysaccharides ukonan A, B, C and D was evaluated for its biological properties in in vitro tissue culture studies. Results The water extract of turmeric (TurP) exhibited induced-nitric oxide (NO) production in RAW264.7 macrophages. These results suggested the immunomodulatory effects of TurP. In addition, the polysaccharides up-regulated function of telomerase reverse transcriptase (TERT) equally to the phenolic compound from turmeric, curcumin. Conclusions The ukonan family of polysaccharides may assist in promoting cellular immune responses, tissue repair and lifespan by enhancing immune response and telomere function.
Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency.
Pindolia, Kirit; Li, Hong; Cardwell, Cisley; Wolf, Barry
2014-05-01
Biotinidase deficiency is an autosomal recessively inherited metabolic disorder that can be easily and effectively treated with pharmacological doses of the vitamin, biotin. Untreated children with profound biotinidase deficiency may exhibit neurological, cutaneous and cellular immunological abnormalities, specifically candida infections. To better understand the immunological dysfunction in some symptomatic individuals with biotinidase deficiency, we studied various aspects of immunological function in a genetically engineered knock-out mouse with biotinidase deficiency. The mouse has no detectable biotinidase activity and develops neurological and cutaneous symptoms similar to those seen in symptomatic children with the disorder. Mice with profound biotinidase deficiency on a biotin-restricted diet had smaller thymuses and spleens than identical mice fed a biotin-replete diet or wildtype mice on either diet; however, the organ to body weight ratios were not significantly different. Thymus histology was normal. Splenocyte subpopulation study showed a significant increase in CD4 positive cells. In addition, in vitro lymphocyte proliferation assays consistently showed diminished proliferation in response to various immunological stimuli. Not all symptomatic individuals with profound biotinidase deficiency develop immunological dysfunction; however, our results do show significant alterations in cellular immunological function that may contribute and/or provide a mechanism(s) for the cellular immunity abnormalities in individuals with biotinidase deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
Cell source determines the immunological impact of biomimetic nanoparticles.
Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio
2016-03-01
Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. Copyright © 2015. Published by Elsevier Ltd.
Ge, Xiaochun; Li, Guo-Jing; Wang, Sheng-Bing; Zhu, Huifen; Zhu, Tong; Wang, Xun; Xia, Yiji
2007-01-01
Plants have evolved complicated regulatory systems to control immune responses. Both positive and negative signaling pathways interplay to coordinate development of a resistance response with the appropriate amplitude and duration. AtNUDT7, a Nudix domain-containing protein in Arabidopsis (Arabidopsis thaliana) that hydrolyzes nucleotide derivatives, was found to be a negative regulator of the basal defense response, and its loss-of-function mutation results in enhanced resistance to infection by Pseudomonas syringae. The nudt7 mutation does not cause a strong constitutive disease resistance phenotype, but it leads to a heightened defense response, including accelerated activation of defense-related genes that can be triggered by pathogenic and nonpathogenic microorganisms. The nudt7 mutation enhances two distinct defense response pathways: one independent of and the other dependent on NPR1 and salicylic acid accumulation. In vitro enzymatic assays revealed that ADP-ribose and NADH are preferred substrates of NUDT7, and the hydrolysis activity of NUDT7 is essential for its biological function and is sensitive to inhibition by Ca2+. Further analyses indicate that ADP-ribose is not likely the physiological substrate of NUDT7. However, the nudt7 mutation leads to perturbation of cellular redox homeostasis and a higher level of NADH in pathogen-challenged leaves. The study suggests that the alteration in cellular antioxidant status caused by the nudt7 mutation primes the cells for the amplified defense response and NUDT7 functions to modulate the defense response to prevent excessive stimulation. PMID:17660350
Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D
2015-03-01
RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
[Bone marrow stromal damage mediated by immune response activity].
Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H
1994-01-01
The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.
Gatterdam, Karl; Joest, Eike F; Gatterdam, Volker; Tampé, Robert
2018-05-29
Small chemical/biological interaction pairs are at the forefront in tracing proteins' function and interaction at high signal-to-background ratio in cellular pathways. Pharma ventures have eager plans to develop trisNTA probes for in vitro and in vivo screening of His-tagged protein targets. However, the optimal design of scaffold, linker, and chelator head yet deserves systematic investigations to achieve highest affinity and kinetic stability for in vitro and especially cell applications. In this study, we report on a library of N-nitrilotriacetic acid (NTA) based multivalent chelator heads (MCHs) built up on linear, cyclic, and dendritic scaffolds and contrast these with regard to their binding affinity and stability for labeling of cellular His-tagged proteins. Furthermore, we assign a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we describe fundamental differences between the MCH scaffold and define a cyclic trisNTA chelator, which displays the highest affinity and kinetic stability of all reversible, low-molecular weight interaction pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity
Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta
2016-01-01
Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944
NASA Astrophysics Data System (ADS)
Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier
2016-02-01
Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.
Sirenko, Oksana; Grimm, Fabian A.; Ryan, Kristen R.; Iwata, Yasuhiro; Chiu, Weihsueh A.; Parham, Frederick; Wignall, Jessica A.; Anson, Blake; Cromwell, Evan F.; Behl, Mamta; Rusyn, Ivan; Tice, Raymond R.
2017-01-01
An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30 min or 24 hrs and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of tested chemicals exhibited effects on cardiomyocyte rhythm after 30 min of exposure. After 24 hours, the effects on cell rhythm without cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes were visualized using Toxicological Prioritization Index (ToxPi) and showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential to alter cardiomyocyte function at high exposures, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. PMID:28259702
Sirenko, Oksana; Grimm, Fabian A; Ryan, Kristen R; Iwata, Yasuhiro; Chiu, Weihsueh A; Parham, Frederick; Wignall, Jessica A; Anson, Blake; Cromwell, Evan F; Behl, Mamta; Rusyn, Ivan; Tice, Raymond R
2017-05-01
An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30min or 24h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca 2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30min of exposure. In contrast, after 24h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. Copyright © 2017. Published by Elsevier Inc.
Hisbergues, M; Magi, M; Rigaux, P; Steuve, J; Garcia, L; Goudercourt, D; Pot, B; Pestel, J; Jacquet, A
2007-09-01
Lactic acid bacteria (LAB) were reported to reduce some allergic manifestations in mice and humans but their impact on the aeroallergen-dependent immune mechanisms is still debated. The potential capacities of Lactobacillus plantarum NCIMB8826 to reduce the allergic response induced by Der p 1, the major house dust mite allergen of Dermatophagoides pteronyssinus, were evaluated in vivo and in vitro. Methods First, the effect of the intranasal co-administration of LAB and purified Der p 1 allergen before a sensitization protocol was evaluated. The allergen-specific antibody and cellular responses as well as airway inflammation were measured. Second, the impact of LAB on the cytokine profile of spleens cells from Der p 1-sensitized mice was assessed. Third, upon stimulation with LAB, the levels of cytokine produced by dendritic cells derived from the bone marrow (BMDCs) of wild-type, Toll-like receptor 2 (TLR2)-, TLR4- and MyD88-KO mice were compared. Results The co-application of L. plantarum and Der p 1 induced a T-helper type 1 (Th1)-biased allergen-specific IgG response, the absence of specific IgE response and favoured the production of INF-gamma upon allergen re-stimulation. Moreover, the previous LAB administration reduced the development of bronchoalveolar lavage eosinophilia usually induced by aerosol exposure. Additionally, the studied LAB strain was shown to modify in vitro the cytokine level produced by Der p 1-sensitized spleen cells mainly towards a Th1 profile. Finally, L. plantarum stimulated high IL-12 and moderate IL-10 production in mouse BMDCs notably through the TLR2-, MyD88-dependent and TLR4-independent pathway. In vivo co-administration of probiotic LAB with Der p 1 might prevent the development of the mite allergic response. The probiotic L. plantarum was shown to display in vitro therapeutic potentials for the treatment of allergy and to trigger the immune system by a TLR2- and MyD88-dependent signalling pathway.
In vitro toxicity of nanoparticles in BRL 3A rat liver cells.
Hussain, S M; Hess, K L; Gearhart, J M; Geiss, K T; Schlager, J J
2005-10-01
This study was undertaken to address the current deficient knowledge of cellular response to nanosized particle exposure. The study evaluated the acute toxic effects of metal/metal oxide nanoparticles proposed for future use in industrial production methods using the in vitro rat liver derived cell line (BRL 3A). Different sizes of nanoparticles such as silver (Ag; 15, 100 nm), molybdenum (MoO(3); 30, 150 nm), aluminum (Al; 30, 103 nm), iron oxide (Fe(3)O(4); 30, 47 nm), and titanium dioxide (TiO(2); 40 nm) were evaluated for their potential toxicity. We also assessed the toxicity of relatively larger particles of cadmium oxide (CdO; 1 microm), manganese oxide (MnO(2); 1-2 microm), and tungsten (W; 27 microm), to compare the cellular toxic responses with respect to the different sizes of nanoparticles with different core chemical compositions. For toxicity evaluations, cellular morphology, mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH) levels, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were assessed under control and exposed conditions (24h of exposure). Results showed that mitochondrial function decreased significantly in cells exposed to Ag nanoparticles at 5-50 microg/ml. However, Fe(3)O(4), Al, MoO(3) and TiO(2) had no measurable effect at lower doses (10-50 microg/ml), while there was a significant effect at higher levels (100-250 microg/ml). LDH leakage significantly increased in cells exposed to Ag nanoparticles (10-50 microg/ml), while the other nanoparticles tested displayed LDH leakage only at higher doses (100-250 microg/ml). In summary the Ag was highly toxic whereas, MoO(3) moderately toxic and Fe(3)O(4), Al, MnO(2) and W displayed less or no toxicity at the doses tested. The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, reduced mitochondrial membrane potential and increase in ROS levels, which suggested that cytotoxicity of Ag (15, 100 nm) in liver cells is likely to be mediated through oxidative stress.
Cellular Dysfunction in the Diabetic Fibroblast
Lerman, Oren Z.; Galiano, Robert D.; Armour, Mary; Levine, Jamie P.; Gurtner, Geoffrey C.
2003-01-01
Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O2), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 ± 1.3 pg/ml versus 34.8 ± 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients. PMID:12507913
Skonieczna, Magdalena; Cieslar-Pobuda, Artur; Saenko, Yuriy; Foksinski, Marek; Olinski, Ryszard; Rzeszowska-Wolny, Joanna; Wiechec, Emilia
2017-01-01
The voltage-dependent anion channels (VDAC) play an essential role in the cross talk between mitochondria and the rest of the cell. Their implication in cell life and cell death has been studied extensively in recent years. In this work we studied the impact of mitochondrial membrane (VDACs) on cell survival and response to X-ionizing radiation (IR) of human lymphoblastoid K562 cells. The inhibition of VDACs was achieved by 4,4`-diisothiocyanostilbene-2,2`-disulfonic acid (DIDS) inhibitor and in vitro experiments including clonogenity assay, UV-visible spectrophotometry, comet assay and FACS analysis were implemented. Inhibition of VDAC led to augmentation of IR-induced apoptosis and ROS production. Additionally, DIDS affected repair of IR-induced DNA strand breaks and was in line with both induction of apoptosis and caspase activity. The IR-induced NO production was potently reduced by inhibition of VDAC. Our results suggest that VDAC control cellular response to ionizing radiation through modulation of the ROS- and NO-dependent signaling pathways. Inhibition of VDAC with DIDS induced apoptosis in irradiated K562 lymphoblastoid cells points at DIDS, as a promising agent to enhance the effectiveness of radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Anarjan, Navideh; Jafarizadeh-Malmiri, Hoda; Nehdi, Imededdine Arbi; Sbihi, Hassen Mohamed; Al-Resayes, Saud Ibrahim; Tan, Chin Ping
2015-01-01
Nanodispersion systems allow incorporation of lipophilic bioactives, such as astaxanthin (a fat soluble carotenoid) into aqueous systems, which can improve their solubility, bioavailability, and stability, and widen their uses in water-based pharmaceutical and food products. In this study, response surface methodology was used to investigate the influences of homogenization time (0.5–20 minutes) and speed (1,000–9,000 rpm) in the formation of astaxanthin nanodispersions via the solvent-diffusion process. The product was characterized for particle size and astaxanthin concentration using laser diffraction particle size analysis and high performance liquid chromatography, respectively. Relatively high determination coefficients (ranging from 0.896 to 0.969) were obtained for all suggested polynomial regression models. The overall optimal homogenization conditions were determined by multiple response optimization analysis to be 6,000 rpm for 7 minutes. In vitro cellular uptake of astaxanthin from the suggested individual and multiple optimized astaxanthin nanodispersions was also evaluated. The cellular uptake of astaxanthin was found to be considerably increased (by more than five times) as it became incorporated into optimum nanodispersion systems. The lack of a significant difference between predicted and experimental values confirms the suitability of the regression equations connecting the response variables studied to the independent parameters. PMID:25709435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.
2007-08-15
Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposuresmore » to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.« less
In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion
Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping
2012-01-01
Objective To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. Materials and methods A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. Results The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. Conclusion The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on mouse skin fibroblasts. PMID:22679361
In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.
Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping
2012-01-01
To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on mouse skin fibroblasts.
Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients.
Kennedy, Richard B; Poland, Gregory A; Ovsyannikova, Inna G; Oberg, Ann L; Asmann, Yan W; Grill, Diane E; Vierkant, Robert A; Jacobson, Robert M
2016-06-14
Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impaired Innate, Humoral, and Cellular Immunity Despite a Take in Smallpox Vaccine Recipients
Kennedy, Richard B.; Poland, Gregory A.; Ovsyannikova, Inna G.; Oberg, Ann L.; Asmann, Yan W.; Grill, Diane E.; Vierkant, Robert A.; Jacobson, Robert M.
2017-01-01
Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or “take” at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as “protected.” However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1,000) cohorts of recipients of either Dryvax® or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections. PMID:27177944
Zhuang, Weihua; Xu, Yangyang; Li, Gaocan; Hu, Jun; Ma, Boxuan; Yu, Tao; Su, Xin; Wang, Yunbing
2018-05-21
Intelligent polymeric micelles for antitumor drug delivery and tumor bioimaging have drawn a broad attention because of their reduced systemic toxicity, enhanced efficacy of drugs, and potential application of tumor diagnosis. Herein, we developed a multifunctional polymeric micelle system based on a pH and redox dual-responsive mPEG-P(TPE- co-AEMA) copolymer for stimuli-triggered drug release and aggregation-induced emission (AIE) active imaging. These mPEG-P(TPE- co-AEMA)-based micelles showed excellent biocompatibility and emission property, exhibiting great potential application for cellular imaging. Furthermore, the antitumor drug doxorubicin (DOX) could be encapsulated during self-assembly process with high loading efficiency, and a DOX-loaded micelle system with a size of 68.2 nm and narrow size distribution could be obtained. DOX-loaded micelles demonstrated great tumor suppression ability in vitro, and the dual-responsive triggered intracellular drug release could be further traced. Moreover, DOX-loaded micelles could efficiently accumulate at the tumor site because of enhanced permeability and retention effect and long circulation of micelles. Compared with free DOX, DOX-loaded micelles exhibited better antitumor effect and significantly reduced adverse effects. Given the efficient accumulation targeting to tumor tissue, dual-responsive drug release, and excellent AIE property, this polymeric micelle would be a potential candidate for cancer therapy and diagnosis.
Butterworth, K T; Coulter, J A; Jain, S; Forker, J; McMahon, S J; Schettino, G; Prise, K M; Currell, F J; Hirst, D G
2010-01-01
High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 μg ml−1. This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy. PMID:20601762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana
2014-10-15
According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less
Chirilă, M; Hristescu, S; Manda, G; Neagu, M; Olinescu, A
1992-01-01
Human peripheral blood lymphocytes from healthy controls, immunodepressed patients presenting chronic bacterial infections or neoplasias and from allergic patients were stimulated in vitro with phytohemagglutinin (PHA) in culture medium supplemented or not with 1 x 10(-7), 1 x 10(-15) or 1 x 10(-30) succussed dilutions or bee venom or phosphorus in tridistilled water. The most significant inhibition due to DNA incorporation was noted in lymphocytes from allergic patients cultivated in media supplemented with 1 x 10(-30) succussed substance dilution in the presence of PHA. The cells from immunodepressed patients did not show a significant inhibition at 1 x 10(-30) dilution. Hypothetically, we try to explain these findings as the expression of the changes induced by the succussed solution on the water molecule which in turn, influences the chemical structure of the cellular membrane and implicitly, its functions.
NASA Astrophysics Data System (ADS)
Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna
2017-03-01
Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.
Guo, Jiubiao; Wang, Jinglin; Gao, Shan; Ji, Bin; Waichi Chan, Edward; Chen, Sheng
2015-11-20
Potent inhibitors to reverse Botulinum neurotoxins (BoNTs) activity in neuronal cells are currently not available. A better understanding of the substrate recognition mechanism of BoNTs enabled us to design a novel class of peptide inhibitors which were derivatives of the BoNT/A substrate, SNAP25. Through a combination of in vitro, cellular based, and in vivo mouse assays, several potent inhibitors of approximately one nanomolar inhibitory strength both in vitro and in vivo have been identified. These compounds represent the first set of inhibitors that exhibited full protection against BoNT/A intoxication in mice model with undetectable toxicity. Our findings validated the hypothesis that a peptide inhibitor targeting the two BoNT structural regions which were responsible for substrate recognition and cleavage respectively could exhibit excellent inhibitory effect, thereby providing insight on future development of more potent inhibitors against BoNTs.
Human cellular immune responsiveness following space flight
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Dardano, J. R.
1983-01-01
Peripheral circulating lymphocytes were separated from astronaut blood samples three times before and two times after the first four US Space Shuttle flights. The ability of the in vitro T lymphocytes to respond to Phytohemagglutinin by blastogenesis was found to be reduced for each crewmember following spaceflight. In addition, the astronauts experienced a postflight increase in neutrophils and a decrease in eosinophils. These postflight changes in leukocytes are shown to increase with subjectively-evaluated increases in the incidence of inflight stress, indicating that stress, and not hypogravity, is likely to be the major effector of these changes.
Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi
2010-07-02
Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Haruhisa; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; Guan, Jianjun
2010-07-02
Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion.more » Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.« less
Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D
2012-12-01
The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level.
FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology
Knudsen, Thomas B.; Keller, Douglas A.; Sander, Miriam; Carney, Edward W.; Doerrer, Nancy G.; Eaton, David L.; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L.; Mendrick, Donna L.; Tice, Raymond R.; Watkins, Paul B.; Whelan, Maurice
2015-01-01
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. PMID:25628403
Basile, Adriana; Sorbo, Sergio; Conte, Barbara; Cardi, Manuela; Esposito, Sergio
2013-11-01
Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days. At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens. When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition. These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.
Anderson, Devon E; Johnstone, Brian
2017-01-01
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com
An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30 min or 24 h and effects on cardiomyocyte beating andmore » cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca{sup 2+} flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30 min of exposure. In contrast, after 24 h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. - Highlights: • The cardiotoxic potential of a broad range of environmental chemicals was evaluated. • Human iPSC cardiomyocytes were used for multiparametric in vitro profiling. • Dose-response relationships were established for functional and cytotoxicity assays. • Computational data integration provided chemical-specific bioactivity profiles. • An assessment of the profiles revealed chemical class-specific similarities.« less
Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao
2015-12-01
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated that the developed DOX-PLGA/PEI/P-gp shRNA NBs is a potential, safe and efficient theranotic agent for cancer therapy and diagnostics.
Cibulski, Samuel Paulo; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; Quirici, Lenora; Roehe, Paulo Michel; Ferreira, Fernando; Silveira, Fernando
2016-02-24
In the last decades, significant efforts have been dedicated to the search for novel vaccine adjuvants. In this regard, saponins and its formulations as "immunostimulating complexes" (ISCOMs) have shown to be capable of stimulating potent humoral and cellular immune responses, enhanced cytokine production and activation of cytotoxic T cells. The immunological activity of ISCOMs formulated with a saponin fraction extracted from Quillaja brasiliensis (QB-90 fraction) as an alternative to classical ISCOMs based on Quil A(®) (IQA) is presented here. The ISCOMs prepared with QB-90, named IQB-90, typically consist of 40-50 nm, spherical, cage-like particles, built up by QB-90, cholesterol, phospholipids and antigen (ovalbumin, OVA). These nanoparticles were efficiently uptaken in vitro by murine bone marrow-derived dendritic cells. Subcutaneously inoculated IQB-90 induced strong serum antibody responses encompassing specific IgG1 and IgG2a, robust DTH reactions, significant T cell proliferation and increases in Th1 (IFN-γ and IL-2) cytokine responses. Intranasally delivered IQB-90 elicited serum IgG and IgG1, and mucosal IgA responses at distal systemic sites (nasal passages, large intestine and vaginal lumen). These results indicate that IQB-90 is a promising alternative to classic ISCOMs as vaccine adjuvants, capable of enhancing humoral and cellular immunity to levels comparable to those induced by ISCOMs manufactured with Quillaja saponaria saponins. Copyright © 2016 Elsevier Ltd. All rights reserved.
AKT Kinase Activity Is Required for Lithium to Modulate Mood-Related Behaviors in Mice
Pan, Jen Q; Lewis, Michael C; Ketterman, Josh K; Clore, Elizabeth L; Riley, Misha; Richards, Keenan R; Berry-Scott, Erin; Liu, Xiulin; Wagner, Florence F; Holson, Edward B; Neve, Rachael L; Biechele, Travis L; Moon, Randall T; Scolnick, Edward M; Petryshen, Tracey L; Haggarty, Stephen J
2011-01-01
Bipolar disorder (BP) is a debilitating psychiatric disorder, affecting ∼2% of the worldwide population, for which the etiological basis, pathogenesis, and neurocircuitry remain poorly understood. Individuals with BP suffer from recurrent episodes of mania and depression, which are commonly treated with the mood stabilizer lithium. However, nearly half of BP patients do not respond adequately to lithium therapy and the clinically relevant mechanisms of lithium for mood stabilization remain elusive. Here, we modeled lithium responsiveness using cellular assays of glycogen synthase kinase 3 (GSK-3) signaling and mood-related behavioral assays in inbred strains of mice that differ in their response to lithium. We found that activating AKT through phosphosrylation of a key regulatory site (Thr308) was associated with lithium response—activation of signaling pathways downstream of GSK-3 in cells and attenuation of mood-related behaviors in mice—and this response was attenuated by selective and direct inhibition of AKT kinase activity. Conversely, the expression of constitutively active AKT1 in both the cellular and behavioral assays conferred lithium sensitivity. In contrast, selective and direct GSK-3 inhibition by the ATP-competitive inhibitor CHIR99021 bypassed the requirement for AKT activation and modulated behavior in both lithium-responsive and non-responsive mouse strains. These results distinguish the mechanism of action of lithium from direct GSK-3 inhibition both in vivo and in vitro, and highlight the therapeutic potential for selective GSK-3 inhibitors in BP treatment. PMID:21389981
Biotransformation and ToxCast™
A major focus in toxicology research is the development of in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 ToxCast Phase I...
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
High content cell-based assay for the inflammatory pathway
NASA Astrophysics Data System (ADS)
Mukherjee, Abhishek; Song, Joon Myong
2015-07-01
Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.
Nocini, Pier Francesco; Zanotti, Guglielmo; Castellani, Roberto; Grasso, Silvia; Cristofaro, Maria Giulia; De Santis, Daniele
2013-06-01
To evaluate fundamental cell functions, such as adhesion, IL-6 production and proliferation of human gingival keratinocytes cultured on a newly engineered collagen matrix (CM-10826) and to assess the degree of specific biocompatibility of this new device. Primary cultures of human keratinocytes were derived "in vitro" from biopsies of independent donors. Their true epithelial origin was ensured by the expression of cytokeratin 14. Adhesion, proliferation and production of IL-6 cytokine was then measured in the presence or absence of CM-10826 activity or of its relevant components. Functional tests revealed that keratinocytes adhered to CM-10826 and up-regulated their basal IL-6 production. The type of keratinocytes used expressed cytokeratin 14. Proliferation experiments demonstrated that the best cellular response was observed in the presence of Collagen I, the main component of CM-10826. No undesired effects were observed as for keratinocyte viability, morphology or differentiation. Our results demonstrate that CM-10826 has a favourable biological effect on the "in vitro" response of gingival keratinocytes in terms of IL-6 production, cell growth and adhesion. These findings may encourage a possible use of this collagen membrane as a tissue which, alone, may substitute for autologous gingival grafts thereby overcoming the limitations of autologous tissue. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Wang, Sheng; Yang, Weitao; Du, Hongli; Guo, Fangfang; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Zhang, Bingbo
2016-04-01
Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO&DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO&DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO&DOX-PPLVs have nanosized structures (˜80 nm), excellent colloidal stability, good biocompatibility, as well as T 2-weighted MRI capability with a relatively high T 2 relaxivity (r 2 = 213.82 mM-1 s-1). In vitro drug release studies reveal that the release rate of DOX from the SPIO&DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO&DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO&DOX-PPLVs have excellent T 2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO&DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications.
Li, Bin; Zhang, Xiao-Xue; Huang, Hao-Yan; Chen, Li-Qing; Cui, Jing-Hao; Liu, Yanli; Jin, Hehua; Lee, Beom-Jin; Cao, Qing-Ri
2018-05-30
This study aims to construct and evaluate RGD-decorated chitosan (CS)-functionalized pH-responsive single-walled carbon nanotube (SWCNT) carriers using docetaxel (DTX) as a model anticancer drug. DTX was loaded onto SWCNT via π-π stacking interaction (SWCNT-DTX), followed by the non-covalent conjugation of RGD-decorated CS to SWCNT-DTX to prepare RGD-CS-SWCNT-DTX. The RGD-CS-SWCNT-DTX showed significantly higher drug release than the pure drug, giving higher release rate at pH 5.0 (68%) than pH 7.4 (49%). The RGD-CS-SWCNT-DTX could significantly inhibit the growth of A549 tumor cells in vitro, and the uptake amount of A549 cells was obviously higher than that of MCF-7 cells. Meanwhile, the cellular uptake of RGD-CS-SWCNT-DTX was higher than that of CS-SWCNT-DTX in A549 cells, mainly through clathrin and caveolae-mediated endocytosis. The RGD-CS-SWCNT-DTX significantly inhibited tumor growth of A549 cell-bearing nude mice through active tumor-targeting ability. Furthermore, no pathological changes were found in tissues and organs. The result demonstrated that RGD-CS-SWCNT-DTX displayed high drug loading, pH-responsive drug release, remarkable antitumor effect in vitro and in vivo, and also good safety to animal body. Copyright © 2018 Elsevier B.V. All rights reserved.
Critical role of type 1 cytokines in controlling initial infection with Burkholderia mallei.
Rowland, Caroline A; Lertmemongkolchai, Ganjana; Bancroft, Alison; Haque, Ashraful; Lever, M Stephen; Griffin, Kate F; Jackson, Matthew C; Nelson, Michelle; O'Garra, Anne; Grencis, Richard; Bancroft, Gregory J; Lukaszewski, Roman A
2006-09-01
Burkholderia mallei is a gram-negative bacterium which causes the potentially fatal disease glanders in humans; however, there is little information concerning cell-mediated immunity to this pathogen. The role of gamma interferon (IFN-gamma) during B. mallei infection was investigated using a disease model in which infected BALB/c mice normally die between 40 and 60 days postinfection. IFN-gamma knockout mice infected with B. mallei died within 2 to 3 days after infection, and there was uncontrolled bacterial replication in several organs, demonstrating the essential role of IFN-gamma in the innate immune response to this pathogen. Increased levels of IFN-gamma, interleukin-6 (IL-6), and monocyte chemoattractant protein 1 were detected in the sera of immunocompetent mice in response to infection, and splenic mRNA expression of IFN-gamma, IL-6, IL-12p35, and IL-27 was elevated 24 h postinfection. The effects of IL-18, IL-27, and IL-12 on stimulation of the rapid IFN-gamma production were investigated in vitro by analyzing IFN-gamma production in the presence of heat-killed B. mallei. IL-12 was essential for IFN-gamma production in vitro; IL-18 was also involved in induction of IFN-gamma, but IL-27 was not required for IFN-gamma production in response to heat-killed B. mallei. The main cellular sources of IFN-gamma were identified in vitro as NK cells, CD8+ T cells, and TCRgammadelta T cells. Our data show that B. mallei is susceptible to cell-mediated immune responses which promote expression of type 1 cytokines. This suggests that development of effective vaccines against glanders should target the production of IFN-gamma.
Yu, Zechen; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E; Jiang, Huanhuan
2017-08-01
To better characterize biological responses to atmospheric organic aerosols, the efficient delivery of aerosol to in vitro lung cells is necessary. In this study, chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device, the particle dose was predicted for various sampling parameters such as particle size, ESP deposition voltage, and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example, RNA in the ALI BEAS-2B cells in vitro was stable at 0.15L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e., viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15L/minute, and no cellular RNA decay occurred. Copyright © 2017. Published by Elsevier Ltd.
Pang, Pengfei; Li, Bing; Hu, Xiaojun; Kang, Zhuang; Guan, Shouhai; Gong, Faming; Meng, Xiaochun; Li, Dan; Huang, Mingsheng; Shan, Hong
2014-04-08
To examine the feasibility and efficacy of using superparamagnetic iron oxide nanoparticles coated with polyethylene glycol-grafted polyethylenimine (PEG-g-PEI-SPION) as a carrier for gene delivery into human adipose derived mesenchymal stem cells (hADMSCs) and in vitro cellular magnetic resonance imaging (MRI). PEG-g-PEI-SPION was synthesized as previously reported. Gel electrophoresis was performed to assess the pDNA condensation capacity of PEG-g-PEI-SPION. The particle size and zeta potential of PEG-g-PEI-SPION/pDNA complexes were determined by dynamic light scattering. Cytotoxicity of PEG-g-PEI-SPION was evaluated by CCK-8 assay with hADMSCs. Gene transfection efficiency of PEG-g-PEI-SPION in hADMSCs was quantified by flow cytometry. The cellular internalization of PEG-g-PEI-SPION/pDNA nanocomplexes was studied by confocal laser scanning microscopy and Prussian blue staining. MRI function of PEG-g-PEI-SPION was studied by in vitro cellular MRI scanning. PEG-g-PEI-SPION condensed pDNA to form stable complexes of 80-100 nm in diameter and showed low cytotoxicity in hADMSCs. At the optimal N/P ratio of 20, PEG-g-PEI-SPION/pDNA obtained the highest transfection efficiency of 22.8% ± 3.6% in hADMSCs. And it was higher than that obtained with lipofectamine 11.2% ± 2.6% (P < 0.05). Furthermore, hADMSCs labeled with PEG-g-PEI-SPION showed sensitive low signal intensity on MRI T2-weighted images in vitro. PEG-g-PEI-SPION is an efficient and MRI-visible nano-vector for gene delivery into hADMSCs.
What quantitative mechanical loading stimulates in vitro cultivation best?
Natenstedt, Jerry; Kok, Aimee C; Dankelman, Jenny; Tuijthof, Gabrielle Jm
2015-12-01
Articular cartilage has limited regeneration capacities. One of the factors that appear to affect the in vitro cultivation of articular cartilage is mechanical stimulation. So far, no combination of parameters has been identified that offers the best results. The goal is to review the literature in search of the best available set of quantitative mechanical stimuli that lead to optimal in vitro cultivation.The databases Scopus and PubMed were used to survey the literature, and strict in- and exclusion criteria were applied regarding the presence of quantitative data. The review was performed by studying the type of loading (hydrostatic compression or direct compression), the loading magnitude, the frequency and the loading regime (duration of the loading) in comparison to quantitative evidence of cartilage quality response (cellular, signaling and mechanical).Thirty-three studies met all criteria of which 8 studied human, 20 bovine, 2 equine, 1 ovine, 1 porcine and 1 canine cells using four different types of cultivated constructs. Six studies investigated loading magnitude within the same setup, three studies the frequency, and seven the loading regime. Nine studies presented mechanical tissue response. The studies suggest that a certain threshold exits for enhanced cartilage in vitro cultivation of explants (>20 % strain and 0.5 Hz), and that chondrocyte-seeded cultivated constructs show best results when loaded with physiological mechanical stimuli. That is a loading pressure between 5-10 MPa and a loading frequency of 1 Hz exerted at intermittent intervals for a period of a week or longer. Critical aspects remain to be answered for translation into in vivo therapies.
Vijayalaxmi; Leal, B Z; Meltz, M L; Pickard, W F; Bisht, K S; Roti Roti JL; Straube, W L; Moros, E G
2001-01-01
Freshly collected peripheral blood samples from four healthy human volunteers were diluted with RPMI 1640 tissue culture medium and exposed in sterile T-75 tissue culture flasks in vitro for 24 h to 835.62 MHz radiofrequency (RF) radiation, a frequency employed for customer-to-base station transmission of cellular telephone communications. An analog signal was used, and the access technology was frequency division multiple access (FDMA, continuous wave). A nominal net forward power of 68 W was used, and the nominal power density at the center of the exposure flask was 860 W/m(2). The mean specific absorption rate in the exposure flask was 4.4 or 5.0 W/kg. Aliquots of diluted blood that were sham-exposed or exposed in vitro to an acute dose of 1.50 Gy of gamma radiation were used as negative or positive controls. Immediately after the exposures, the lymphocytes were stimulated with a mitogen, phytohemagglutinin, and cultured for 48 or 72 h to determine the extent of genetic damage, as assessed from the frequencies of chromosomal aberrations and micronuclei. The extent of alteration in the kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to mitotic indices, incidence of exchange aberrations, excess fragments, binucleate cells, and micronuclei. In contrast, the response of the lymphocytes exposed to gamma radiation was significantly different from both RF-radiation- and sham-exposed cells for all of these indices. Thus, under the experimental conditions tested, there is no evidence for the induction of chromosomal aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 835.62 MHz RF radiation at SARs of 4.4 or 5.0 W/kg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvan, M.J. III.
1993-01-01
Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentationmore » analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.« less
Harrill, Joshua A; Freudenrich, Theresa; Wallace, Kathleen; Ball, Kenneth; Shafer, Timothy J; Mundy, William R
2018-04-05
Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to identify potential developmental neurotoxicants and to distinguish specific from generalized cytotoxic effects with a high degree of success. Published by Elsevier Inc.
Burbank, Lindsey P; Stenger, Drake C
2016-05-01
Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.
Zeidler, Julianna D; Fernandes-Siqueira, Lorena O; Carvalho, Ana S; Cararo-Lopes, Eduardo; Dias, Matheus H; Ketzer, Luisa A; Galina, Antonio; Da Poian, Andrea T
2017-08-25
Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Lorenzo, Daniel; Velluti, Julio C
2004-01-01
The noradrenergic modulation of neuronal properties has been described at different levels of the mammalian brain. Although the anatomical characteristics of the noradrenergic system are well known in reptiles, functional data are scarce. In our study the noradrenergic modulation of cortical electrogenesis in the turtle medial cortex was studied in vitro using a combination of field and intracellular recordings. Turtle EEG consists of a low voltage background interspersed by spontaneous large sharp waves (LSWs). Noradrenaline (NA, 5-40 microM) induced (or enhanced) the generation of LSWs in a dose-dependent manner. Pharmacological experiments suggest the participation of alpha and beta receptors in this effect. In medial cortex neurons NA induced a hyperpolarization of the resting potential and a decrease of input resistance. Both effects were observed also after TTX treatment. Noradrenaline increased the response of the cells to depolarizing pulses, resulting in an upward shift of the frequency/current relation. In most cells the excitability change was mediated by a decrease of the spike voltage threshold resulting in the reduction of the amount of depolarization needed to fire the cell (voltage threshold minus resting potential). As opposed to the mechanisms reported in mammalian neurons, no changes in the frequency adaptation or the post-train afterhyperpolarization were observed. The NA effects at the cellular level were not reproduced by noradrenergic agonists. Age- and species-dependent properties in the pharmacology of adrenergic receptors could be involved in this result. Cellular effects of NA in turtle cortex are similar to those described in mammals, although the increase in cellular excitability seems to be mediated by a different mechanism. Copyright 2004 S. Karger AG, Basel
Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.
2013-01-01
Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268
Monick, Martha M; Baltrusaitis, Jonas; Powers, Linda S; Borcherding, Jennifer A; Caraballo, Juan C; Mudunkotuwa, Imali; Peate, David W; Walters, Katherine; Thompson, Jay M; Grassian, Vicki H; Gudmundsson, Gunnar; Comellas, Alejandro P
2013-06-01
On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20-100 µg/cm(2)), primary rat and human alveolar macrophages (5-20 µg/cm(2)), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.
Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted “mesenchyme-like” phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. PMID:24942569
Saathoff, Harald; Leisner, Thomas; Al-Rawi, Marco; Simon, Michael; Seemann, Gunnar; Dössel, Olaf; Mülhopt, Sonja; Paur, Hanns-Rudolf; Fritsch-Decker, Susanne
2014-01-01
Summary Background: Investigations on adverse biological effects of nanoparticles (NPs) in the lung by in vitro studies are usually performed under submerged conditions where NPs are suspended in cell culture media. However, the behaviour of nanoparticles such as agglomeration and sedimentation in such complex suspensions is difficult to control and hence the deposited cellular dose often remains unknown. Moreover, the cellular responses to NPs under submerged culture conditions might differ from those observed at physiological settings at the air–liquid interface. Results: In order to avoid problems because of an altered behaviour of the nanoparticles in cell culture medium and to mimic a more realistic situation relevant for inhalation, human A549 lung epithelial cells were exposed to aerosols at the air–liquid interphase (ALI) by using the ALI deposition apparatus (ALIDA). The application of an electrostatic field allowed for particle deposition efficiencies that were higher by a factor of more than 20 compared to the unmodified VITROCELL deposition system. We studied two different amorphous silica nanoparticles (particles produced by flame synthesis and particles produced in suspension by the Stöber method). Aerosols with well-defined particle sizes and concentrations were generated by using a commercial electrospray generator or an atomizer. Only the electrospray method allowed for the generation of an aerosol containing monodisperse NPs. However, the deposited mass and surface dose of the particles was too low to induce cellular responses. Therefore, we generated the aerosol with an atomizer which supplied agglomerates and thus allowed a particle deposition with a three orders of magnitude higher mass and of surface doses on lung cells that induced significant biological effects. The deposited dose was estimated and independently validated by measurements using either transmission electron microscopy or, in case of labelled NPs, by fluorescence analyses. Surprisingly, cells exposed at the ALI were less sensitive to silica NPs as evidenced by reduced cytotoxicity and inflammatory responses. Conclusion: Amorphous silica NPs induced qualitatively similar cellular responses under submerged conditions and at the ALI. However, submerged exposure to NPs triggers stronger effects at much lower cellular doses. Hence, more studies are warranted to decipher whether cells at the ALI are in general less vulnerable to NPs or specific NPs show different activities dependent on the exposure method. PMID:25247141
Hodgkinson, Natasha; Kruger, Cherie Ann; Mokwena, Mpho; Abrahamse, Heidi
2017-12-01
Cervical cancer is the most common gynecological malignancy worldwide, and the leading cause of cancer related deaths among females. Conventional treatment for early cervical cancer is radical hysterectomy. In locally advanced cancer the treatment of choice is concurrent chemo radiation. Although such treatment methods show promise, they do have adverse side effects. To minimize these effects, as well as prevent cancer re-occurrence, new treatment methods are being investigated. Photodynamic therapy (PDT) involves the selective uptake of a photosensitizer (PS) by cancer cells, illumination with light of an appropriate wavelength that triggers a photochemical reaction leading to the generation of reactive oxygen and subsequent tumor regression. The effect of PDT on a cervical cancer cell line (HeLa) was assessed by exposing cultured cells to a sulphonated zinc phthalocyanine PS (ZnPcS mix ) and irradiating the cells using a 673nm diode laser. The effects were measured using the Trypan blue viability assay, adenosine triphosphate assay (ATP) luminescence assay for proliferation, Lactate Dehydrogenase (LDH) membrane integrity cytotoxicity assay, and fluorescent microscopy to assess PS cellular localization and nuclear damage. Fluorescent microscopy revealed localization of the PS in the cytoplasm and perinuclear region of HeLa cells. PDT treated cellular responses showed dose dependent structural changes, with decreased cell viability and proliferation, as well as considerable membrane damage. Hoechst stained cells also revealed DNA damage in PDT treated cells. The final findings from this study suggest that ZnPcS mix is a promising PS for the PDT treatment of cervical cancer in vitro, where a significant 85% cellular cytotoxicity with only 25% cellular viability was noted in cells which received 1μM ZnPcS mix when an 8J/cm 2 fluence was applied. Copyright © 2017 Elsevier B.V. All rights reserved.
Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*
Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.
2012-01-01
Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666
Hsieh, Chia-Jung; Chen, Yu-Cheng; Hsieh, Pei-Ying; Liu, Shi-Rong; Wu, Shu-Pao; Hsieh, You-Zung; Hsu, Hsin-Yun
2015-06-03
We chemically tuned the oxidation status of graphene oxide (GO) and constructed a GO-based nanoplatform combined with a pH-sensitive fluorescence tracer that is designed for both pH sensing and pH-responsive drug delivery. A series of GOs oxidized to distinct degrees were examined to optimize the adsorption of the model drug, poly dT30. We determined that highly oxidized GO was a superior drug-carrier candidate in vitro when compared to GOs oxidized to lesser degrees. In the cell experiment, the synthesized pH-sensitive rhodamine dye was first applied to monitor cellular pH; under acidic conditions, protonated rhodamine fluoresces at 588 nm (λex=561 nm). When the dT30-GO nanocarrier was introduced into cells, a rhodamine-triggered competition reaction occurred, and this led to the release of the oligonucleotides and the quenching of rhodamine fluorescence by GO. Our results indicate high drug loading (FAM-dT30/GO=25/50 μg/mL) and rapid cellular uptake (<0.5 h) of the nanocarrier which can potentially be used for targeted RNAi delivery to the acidic milieu of tumors.
Waldeck, H.; Kao, W. J.
2013-01-01
Characterization of the degradation mechanisms and resulting products of biodegradable materials is critical in understanding the behavior of the material including solute transport and biological response. Previous mathematical analyses of a semi-interpenetrating network (sIPN) containing both labile gelatin and a stable cross-linked poly(ethylene glycol) (PEG) network found that diffusion-based models alone were unable to explain the release kinetics of solutes from the system. In this study, degradation of the sIPN and its effect on solute release and swelling kinetics were investigated. The kinetics of the primary mode of degradation, gelatin dissolution, was dependent on temperature, preparation methods, PEGdA and gelatin concentration, and the weight ratio between the gelatin and PEG. The gelatin dissolution rate positively correlated with both matrix swelling and the release kinetics of high-molecular-weight model compound, FITC-dextran. Coupled with previous in vitro studies, the kinetics of sIPN degradation provided insights into the time-dependent changes in cellular response including adhesion and protein expression. These results provide a facile guide in material formulation to control the delivery of high-molecular-weight compounds with concomitant modulation of cellular behavior. PMID:21801489
Time‐ and concentration‐dependent genomic responses of the rat airway to inhaled nickel sulfate
Campbell, J. L.; Dodd, D. E.; Oller, A. R.; Clewell, H. J.
2017-01-01
While insoluble nickel subsulfide (Ni3S2) was carcinogenic in the lung in a 2‐year rat bioassay, soluble nickel sulfate hexahydrate (NiSO4*6H2O) was not. To investigate whether differences in the cellular responses to these two nickel compounds could underlie their differential activities, we conducted parallel studies to determine the gene expression changes in micro‐dissected lung distal airway cells from Fischer 344 rats following inhalation of the two compounds for one and four weeks (6 hr per day, 5 days per week). The results of the Ni3S2 study have been reported previously; this paper reports the results for NiSO4 and provides a comparative analysis. The cellular responses to NiSO4 were highly similar to those previously reported for Ni3S2, and a set of genes was identified whose expression could be used as biomarkers for comparing cellular nickel effects from in vitro or in vivo studies with soluble NiSO4 and particulate Ni3S2. Evaluation of the genomic concentration‐responses for the two compounds suggests that the highest inhaled concentration in the tumor bioassay for NiSO4, which was limited by toxicity, may not have achieved the Ni concentrations at which tumors were observed in the Ni3S2 bioassay. However, several key differences in the immune responses to NiSO4 and Ni3S2 were identified that may result from the differential intracellular disposition of Ni from NiSO4 entering the cell as an ion rather than as a slowly soluble Ni3S2 particle. These differences may also contribute to the observation of tumors in the bioassay for Ni3S2 but not NiSO4. Environ. Mol. Mutagen. 58:607–618, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:28862355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping; Wang, Li; Shen, Haibin
Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsivenessmore » of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-L-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer. - Highlights: • Niclosamide is active against cervical cancer cells in vitro and in vivo. • Niclosamide sensitizes cervical cancer cell response to paclitaxel. • Niclosamide induces mitochondrial dysfunction and oxidative damage. • Niclosamide inhibits mTOR signaling in an oxidative stress-dependent manner.« less
Farshid, Behzad; Lalwani, Gaurav; Sitharaman, Balaji
2015-01-01
This study investigates the in vitro cytocompatibility of one- and two-dimensional (1-D and 2-D) carbon and inorganic nanomaterial reinforced polymeric nanocomposites fabricated using biodegradable polymer poly (propylene fumarate), crosslinking agent N-vinyl pyrrolidone (NVP) and following nanomaterials: single- and multi- walled carbon nanotubes, single- and multi- walled graphene oxide nanoribbons, graphene oxide nanoplatelets, molybdenum disulfide nanoplatelets, or tungsten disulfide nanotubes dispersed between 0.02–0.2 wt% concentrations in the polymer. The extraction media of unreacted components, crosslinked nanocomposites and their degradation products between 1X-100X dilutions were examined for effects on viability and attachment employing two cell lines: NIH3T3 fibroblasts and MC3T3 pre-osteoblasts. The extraction media of unreacted PPF/NVP elicited acute dose-dependent cytotoxicity attributed to leaching of unreacted components into cell culture media. However, extraction media of crosslinked nanocomposites showed no dose dependent adverse effects. Further, all crosslinked nanocomposites showed high viability (78–100%), high cellular attachment (40–55%), and spreading that was confirmed by confocal and scanning electron microscopy. Degradation products of nanocomposites showed a mild dose-dependent cytotoxicity possibly due to acidic degradation components of PPF. In general, compared to PPF control, none of the nanocomposites showed significant differences in cellular response to the unreacted components, crosslinked nanocomposites and their degradation products. The initial minor cytotoxic response and lower cell attachment numbers were observed only for a few nanocomposite groups; these effects were absent at later time points for all PPF nanocomposites. The favorable cytocompatibility results for all the nanocomposites opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications. PMID:25367032
Correia, Clara R; Santos, Tírcia C; Pirraco, Rogério P; Cerqueira, Mariana T; Marques, Alexandra P; Reis, Rui L; Mano, João F
2017-04-15
Capsules coated with polyelectrolytes and co-encapsulating adipose stem (ASCs) and endothelial (ECs) cells with surface modified microparticles are developed. Microparticles and cells are freely dispersed in a liquified core, responsible to maximize the diffusion of essential molecules and allowing the geometrical freedom for the autonomous three-dimensional (3D) organization of cells. While the membrane wraps all the instructive cargo elements within a single structure, the microparticles provide a solid 3D substrate for the encapsulated cells. Our hypothesis is that inside this isolated biomimetic 3D environment, ECs would lead ASCs to differentiate into the osteogenic lineage to ultimately generate a mineralized tissue in vivo. For that, capsules encapsulating only ASCs (MONO capsules) or co-cultured with ECs (CO capsules) are subcutaneously implanted in nude mice up to 6weeks. Capsules implanted immediately after production or after 21days of in vitro osteogenic stimulation are tested. The most valuable outcome of the present study is the mineralized tissue in CO capsules without in vitro pre-differentiation, with similar levels compared to the pre-stimulated capsules in vitro. We believe that the proposed bioencapsulation strategy is a potent self-regulated system, which might find great applicability in bone tissue engineering. The diffusion efficiency of essential molecules for cell survival is a main issue in cell encapsulation. Former studies reported the superior biological outcome of encapsulated cells within liquified systems. However, most cells used in TE are anchorage-dependent, requiring a solid substrate to perform main cellular processes. We hypothesized that liquified capsules encapsulating microparticles are a promising attempt. Inspired by the multiphenotypic cellular environment of bone, we combine the concept of liquified capsules with co-cultures of stem and endothelial cells. After implantation, results show that co-cultured capsules without in vitro stimulation were able to form a mineralized tissue in vivo. We believe that the present ready-to-use TE strategy requiring minimum in vitro manipulation will find great applicability in bone tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Human Innate Immune Responses to Hexamethylene Diisocyanate (HDI) and HDI-Albumin Conjugates
Wisnewski, Adam V.; Liu, Qing; Liu, Jian; Redlich, Carrie A.
2011-01-01
Background Isocyanates, a leading cause of occupational asthma, are known to induce adaptive immune responses; however, innate immune responses, which generally precede and regulate adaptive immunity, remain largely uncharacterized. Objective Identify and characterize cellular, molecular and systemic innate immune responses induced by hexamethylene diisocyanate (HDI). Methods Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with HDI-albumin conjugates or control antigen, and changes in phenotype, gene, and protein expression were characterized by flow cytometry, microarray, Western blot and ELISA. Cell uptake of isocyanate was visualized microscopically using HDI-albumin conjugates prepared with fluorescently-labeled albumin. In vivo, human HDI exposure was performed via specific inhalation challenge, and subsequent changes in PBMCs and serum proteins were measured by flow cytometry and ELISA. Genotypes were determined by PCR. Results Human monocytes take-up HDI-albumin conjugates and undergo marked changes in morphology and gene/protein expression in vitro. The most significant (p 0.007 – 0.05) changes in mircoarray gene expression were noted in lysosomal genes, especially peptidases and proton pumps involved in antigen processing. Chemokines that regulate monocyte/macrophage trafficking (MIF, MCP-1), and pattern recognition receptors that bind chitin (chitinases) and oxidized low-density lipoprotein (CD68) were also increased following isocyanate-albumin exposure. In vivo, HDI exposed subjects exhibited an acute increase in the percentage of PBMCs with the same HDI-albumin responsive phenotype characterized in vitro (HLA-DR+/CD11c+ with altered light scatter properties). An exposure-dependent decrease (46±11%; p<0.015) in serum concentrations of chitinase-3-like-1 was also observed, in individuals that lack the major (type 1) human chitinase (due to genetic polymorphism), but not in individuals possessing at least one functional chitinase-1 allele. Conclusions Previously unrecognized innate immune responses to HDI and HDI-albumin conjugates could influence the clinical spectrum of exposure reactions. PMID:18498542
Choi, Kyoungju; Ortega, Maria T; Jeffery, Brett; Riviere, Jim E; Monteiro-Riviere, Nancy A
2016-01-22
In vitro cell culture systems are a useful tool to rapidly assess the potential safety or toxicity of chemical constituents of food. Here, we investigated oxidative stress and organ-specific antioxidant responses by 7 potential dietary ingredients using canine in vitro culture of hepatocytes, proximal tubule cells (CPTC), bone marrow-derived mesenchymal stem cells (BMSC) and enterocyte-like cells (ELC). Cellular production of free radical species by denatonium benzoate (DB), epigallocatechin gallate (EPI), eucalyptol (EUC), green tea catechin extract (GTE) and sodium copper chlorophyllin (SCC), tetrahydroisohumulone (TRA) as well as xylitol (XYL) were continuously measured for reactive oxygen/nitrogen species (ROS/RNS) and superoxide (SO) for up to 24h. DB and TRA showed strong prooxidant activities in hepatocytes and to a lesser degree in ELC. DB was a weak prooxidant in BMSC. In contrast DB and TRA were antioxidants in CPTC. EPI was prooxidant in hepatocytes and BMSC but showed prooxidant and antioxidant activity in CPTC. SCC in hepatocytes (12.5mg/mL) and CPTC (0.78mg/mL) showed strong prooxidant and antioxidant activity in a concentration-dependent manner. GTE was effective antioxidant only in ELC. EUC and XYL did not induce ROS/RNS in all 4 cell types. SO production by EPI and TRA increased in hepatocytes but decreased by SCC in hepatocytes and ELC. These results suggest that organ-specific responses to oxidative stress by these potential prooxidant compounds may implicate a mechanism of their toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya
2006-08-01
In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.
Activation of WIP1 Phosphatase by HTLV-1 Tax Mitigates the Cellular Response to DNA Damage
Dayaram, Tajhal; Lemoine, Francene J.; Donehower, Lawrence A.; Marriott, Susan J.
2013-01-01
Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome. PMID:23405243
Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark
2015-01-01
ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608
Usta, O. B.; McCarty, W. J.; Bale, S.; Hegde, M.; Jindal, R.; Bhushan, A.; Golberg, I.; Yarmush, M. L.
2015-01-01
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism’s toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop “organs-on-a-chip”. One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results. PMID:26167518
Effects of BCG infection on the susceptibility of mouse macrophages to endotoxin.
Peavy, D L; Baughn, R E; Musher, D M; Musher, D M
1979-01-01
Mice infected intravenously with Mycobacterium bovis (BCG) are 100 to 1,000 times more sensitive to the lethal effects of bacterial lipopolysaccharides (LPS). Since BCG infection results in macrophage activation and LPS may cause pathophysiological effects through interaction with this cell type, it was of interest to determine whether macrophages from BCG-infected animals were more susceptible to the toxic effects of LPS in vitro. When LPS-susceptible, C57BL/6 mice were infected with BCG, a significant reduction in the 50% lethal dose of LPS was first observed after 7 days and persisted for several weeks. Macrophages from these animals had greatly increased susceptibility to LPS in vitro, which correlated with the development of acquired cellular resistance as determined by their ability to inhibit the growth of Listeria monocytogenes. In contrast, BCG infection of C3H/HeJ mice, a strain resistant to LPS, did not alter the 50% lethal dose of LPS for these animals or increase the sensitivity of their peritoneal macrophages to LPS in vitro. These results indicate that susceptibility of BCG-infected mice to the lethal effects of LPS parallels the susceptibility of their macrophages in vitro; release of vasoactive substances from LPS-susceptible activated macrophages in vivo may be, in part, responsible for lethality. PMID:378847
Dietary Phytochemicals Promote Health by Enhancing Antioxidant Defence in a Pig Model.
Selby-Pham, Sophie N B; Cottrell, Jeremy J; Dunshea, Frank R; Ng, Ken; Bennett, Louise E; Howell, Kate S
2017-07-14
Phytochemical-rich diets are protective against chronic diseases and mediate their protective effect by regulation of oxidative stress (OS). However, it is proposed that under some circumstances, phytochemicals can promote production of reactive oxygen species (ROS) in vitro, which might drive OS-mediated signalling. Here, we investigated the effects of administering single doses of extracts of red cabbage and grape skin to pigs. Blood samples taken at baseline and 30 min intervals for 4 hours following intake were analyzed by measures of antioxidant status in plasma, including Trolox equivalent antioxidant capacity (TEAC) and glutathione peroxidase (GPx) activity. In addition, dose-dependent production of hydrogen peroxide (H₂O₂) by the same extracts was measured in untreated commercial pig plasma in vitro. Plasma from treated pigs showed extract dose-dependent increases in non-enzymatic (plasma TEAC) and enzymatic (GPx) antioxidant capacities. Similarly, extract dose-dependent increases in H₂O₂ were observed in commercial pig plasma in vitro. The antioxidant responses to extracts by treated pigs were highly correlated with their respective yields of H₂O₂ production in vitro. These results support that dietary phytochemicals regulate OS via direct and indirect antioxidant mechanisms. The latter may be attributed to the ability to produce H₂O₂ and to thereby stimulate cellular antioxidant defence systems.
Tsai, Yi-Ting; Patty, Kaitlen M; Weng, Hong; Tang, Ewin N.; Nair, Ashwin; Hu, Wen-Jing; Tang, Liping
2014-01-01
Plasticity of macrophages (MΦ) phenotypes exist in a spectrum from classically activated (M1) cells, to alternatively activated (M2) cells, contributing to both the normal healing of tissues and the pathogenesis of implant failure. Here, folate- and mannose-based optical probes were fabricated to simultaneously determine the degree of MΦ polarization. In vitro tests show the ability of these probes to specifically target M1 and M2 cells. In an in vivo murine model, they were able to distinguish between M1-dominated inflammatory response to infection and M2-dominated regenerative response to particle implants. Finally, the probes were used to assess the inflammatory/ regenerative property of biomaterial implants. Our results show that these probes can be used to monitor and quantify the dynamic processes of MΦ polarization and their role in cellular responses in real time. PMID:24726956
Host-Parasite Relationship in Cystic Echinococcosis: An Evolving Story
Siracusano, Alessandra; Delunardo, Federica; Teggi, Antonella; Ortona, Elena
2012-01-01
The larval stage of Echinococcus granulosus causes cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system, E. granulosus modulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite. In vitro and in vivo immunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation of E. granulosus infection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story of E. granulosus infection in man. PMID:22110535
Jin, Xing-Kun; Li, Shuang; Guo, Xiao-Nv; Cheng, Lin; Wu, Min-Hao; Tan, Shang-Jian; Zhu, You-Ting; Yu, Ai-Qing; Li, Wei-Wei; Wang, Qun
2013-12-01
The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom
Chen, Weiqiang; Shao, Yue; Li, Xiang; Zhao, Gang; Fu, Jianping
2015-01-01
Summary During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography. PMID:25883674
Real-time analysis of Drosophila post-embryonic haemocyte behaviour.
Sampson, Christopher J; Williams, Michael J
2012-01-01
The larval stage of the model organism Drosophila is frequently used to study host-pathogen interactions. During embryogenesis the cellular arm of the immune response, consisting of macrophage-like cells known as plasmatocytes, is extremely motile and functions to phagocytise pathogens and apoptotic bodies, as well as produce extracellular matrix. The cellular branch of the larval (post-embryonic) innate immune system consists of three cell types--plasmatocytes, crystal cells and lamellocytes--which are involved in the phagocytosis, encapsulation and melanisation of invading pathogens. Post-embryonic haemocyte motility is poorly understood thus further characterisation is required, for the purpose of standardisation. In order to examine post-embryonic haemocyte cytoskeletal dynamics or migration, the most commonly used system is in vitro cell lines. The current study employs an ex vivo system (an adaptation of in vitro cell incubation using primary cells), in which primary larval or pre-pupal haemocytes are isolated for short term analysis, in order to discover various aspects of their behaviour during events requiring cytoskeleton dynamics. The ex vivo method allows for real-time analysis and manipulation of primary post-embryonic haemocytes. This technique was used to characterise, and potentially standardised, larval and pre-pupal haemocyte cytoskeleton dynamics, assayed on different extracellular matrices. Using this method it was determined that, while larval haemocytes are unable to migrate, haemocytes recovered from pre-pupae are capable of migration.
Inhibitors of the Diadenosine Tetraphosphate Phosphorylase Rv2613c of Mycobacterium tuberculosis.
Götz, Kathrin H; Hacker, Stephan M; Mayer, Daniel; Dürig, Jan-Niklas; Stenger, Steffen; Marx, Andreas
2017-10-20
The intracellular concentration of diadenosine tetraphospate (Ap 4 A) increases upon exposure to stress conditions. Despite being discovered over 50 years ago, the cellular functions of Ap 4 A are still enigmatic. If and how the varied Ap 4 A is a signal and involved in the signaling pathways leading to an appropriate cellular response remain to be discovered. Because the turnover of Ap 4 A by Ap 4 A cleaving enzymes is rapid, small molecule inhibitors for these enzymes would provide tools for the more detailed study of the role of Ap 4 A. Here, we describe the development of a high-throughput screening assay based on a fluorogenic Ap 4 A substrate for the identification and optimization of small molecule inhibitors for Ap 4 A cleaving enzymes. As proof-of-concept we screened a library of over 42 000 compounds toward their inhibitory activity against the Ap 4 A phosphorylase (Rv2613c) of Mycobacterium tuberculosis (Mtb). A sulfanylacrylonitril derivative with an IC 50 of 260 ± 50 nM in vitro was identified. Multiple derivatives were synthesized to further optimize their properties with respect to their in vitro IC 50 values and their cytotoxicity against human cells (HeLa). In addition, we selected two hits to study their antimycobacterial activity against virulent Mtb to show that they might be candidates for further development of antimycobacterial agents against multidrug-resistant Mtb.
Moscato, Emilia H.; Jain, Ankit; Peng, Xiaoyu; Hughes, Ethan G.; Dalmau, Josep; Balice-Gordon, Rita J.
2010-01-01
Recently, several novel, potentially lethal, and treatment-responsive syndromes that affect hippocampal and cortical function have been shown to be associated with auto-antibodies against synaptic antigens, notably glutamate or GABA-B receptors. Patients with these auto-antibodies, sometimes associated with teratomas and other neoplasms, present with psychiatric symptoms, seizures, memory deficits, and decreased level of consciousness. These symptoms often improve dramatically after immunotherapy or tumor resection. Here we discuss studies of the cellular and synaptic effects of these antibodies in hippocampal neurons in vitro and preliminary work in rodent models. Our work suggests that patient antibodies lead to rapid and reversible removal of neurotransmitter receptors from synaptic sites, leading to changes in synaptic and circuit function that in turn are likely to lead to behavioral deficits. We also discuss several of the many questions raised by these and related disorders. Determining the mechanisms underlying these novel anti-neurotransmitter receptor encephalopathies will provide insights into the cellular and synaptic bases of the memory and cognitive deficits that are hallmarks of these disorders, and potentially suggest avenues for therapeutic intervention. PMID:20646055
Smoking, p53 Mutation, and Lung Cancer
Gibbons, Don L.; Byers, Lauren A.; Kurie, Jonathan M.
2014-01-01
This issue marks the 50th Anniversary of the release of the U.S. Surgeon General’s Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models. PMID:24442106
Magnetic domain wall tweezers: a new tool for mechanobiology studies on individual target cells.
Monticelli, M; Conca, D V; Albisetti, E; Torti, A; Sharma, P P; Kidiyoor, G; Barozzi, S; Parazzoli, D; Ciarletta, P; Lupi, M; Petti, D; Bertacco, R
2016-08-07
In vitro tests are of fundamental importance for investigating cell mechanisms in response to mechanical stimuli or the impact of the genotype on cell mechanical properties. In particular, the application of controlled forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in the emerging field of mechanobiology. Here, we present an on-chip device based on magnetic domain wall manipulators, which allows the application of finely controlled and localized forces on target living cells. In particular, we demonstrate the application of a magnetic force in the order of hundreds of pN on the membrane of HeLa cells cultured on-chip, via manipulation of 1 μm superparamagnetic beads. Such a mechanical stimulus produces a sizable local indentation of the cellular membrane of about 2 μm. Upon evaluation of the beads' position within the magnetic field originated by the domain wall, the force applied during the experiments is accurately quantified via micromagnetic simulations. The obtained value is in good agreement with that calculated by the application of an elastic model to the cellular membrane.
Mohanty, Chitralekha; Zielinska-Chomej, Katarzyna; Edgren, Margareta; Hirayama, Ryoichi; Murakami, Takeshi; Lind, Bengt; Toma-Dasu, Iuliana
2014-06-01
The use of ion radiation therapy is growing due to the continuously increasing positive clinical experience obtained. Therefore, there is a high interest in radio-biological experiments comparing the relative efficiency in cell killing of ions and photons as photons are currently the main radiation modality used for cancer treatment. This comparison is particularly important since the treatment planning systems (TPSs) used at the main ion therapy Centers make use of parameters describing the cellular response to photons, respectively ions, determined in vitro. It was, therefore, the aim of this article to compare the effects of high linear energy transfer (LET) ion radiation with low LET photons and determine whether the cellular response to low LET could predict the response to high LET irradiation. Clonogenic cell survival data of five tumor cell lines irradiated with different ion beams of similar, clinically-relevant, LET were studied in relation to response to low LET photons. Two mathematical models were used to fit the data, the repairable-conditionally repairable damage (RCR) model and the linear quadratic (LQ) model. The results indicate that the relative biological efficiency of the high LET radiation assessed with the RCR model could be predicted based only on the response to the low LET irradiation. The particular features of the RCR model indicate that tumor cells showing a large capacity for repairing the damage will have the larger benefit from radiation therapy with ion beams. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Phase separation and the formation of cellular bodies
NASA Astrophysics Data System (ADS)
Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.
Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.
Major, Danielle; Derbes, Rebecca S.; Wang, He; Roy-Engel, Astrid M.
2016-01-01
Large quantities of dispersants were used as a method to disperse the roughly 210 million gallons of spilled crude oil that consumed the Gulf of Mexico. Little is known if the oil-dispersant and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to Corexit dispersants EC9500 and EC9527, Water Accommodated Fraction (WAF) -crude, WAF-9500 + Oil, and WAF-9527 + Oil. Cellular cytotoxicity to WAF-dispersed oil samples was observed at concentrations greater than 1000 ppm with over 70% of observed cellular death. At low concentration exposures (100 and 300 ppm) DNA damage was evidenced by the detection of single strand breaks (SSBs) and double strand breaks (DSBs) as measured by alkaline and neutral comet assay analyses. Immunoblot analyses of the phosphorylated histone H2A.X (ɣ-H2A.X) and tumor suppressor p53 protein confirmed activation of the DNA damage response due to the exposure-induced DNA breaks. Although, many xenobiotics interfere with DNA repair pathways, in vitro evaluation of the nucleotide excision repair (NER) and DSB repair pathways appear to be unaffected by the oil-dispersant mixtures tested. Overall, this study supports that oil-dispersant mixtures induce genotoxic effects in culture. PMID:27563691
Evaluation of Late Effects of Heavy-Ion Radiation on Mesenchymal Stem Cells
NASA Technical Reports Server (NTRS)
Gonda, S.R.; Behravesh, E.; Huff, J.L.; Johnson, F.
2005-01-01
The overall objective of this recently funded study is to utilize well-characterized model test systems to assess the impact of pluripotent stem cell differentiation on biological effects associated with high-energy charged particle radiation. These stem cells, specifically mesenchymal stem cells (MSCs), have the potential for differentiation into bone, cartilage, fat, tendons, and other tissue types. The characterization of the regulation mechanisms of MSC differentiation to the osteoblastic lineage by transcription factors, such as Runx2/Cbfa1 and Osterix, and osteoinductive proteins such as members of the bone morphogenic protein family are well established. More importantly, for late biological effects, MSCs have been shown to contribute to tissue restructuring and repair after tissue injury. The complex regulation of and interactions between inflammation and repair determine the eventual outcome of the responses to tissue injury, for which MSCs play a crucial role. Additionally, MSCs have been shown to respond to reactive oxygen species, a secondary effector of radiation, by differentiating. With this, we hypothesized that differentiation of MSCs can alter or exacerbate the damage initiated by radiation, which can ultimately lead to late biological effects of misrepair/fibrosis which may ultimately lead to carcinogenesis. Currently, studies are underway to examine high-energy X-ray radiation at low and high doses, approximately 20 and 200 Rad, respectively, on cytogenetic damage and gene modulation of isolated MSCs. These cells, positive for MSC surface markers, were obtained from three persons. In vitro cell samples were harvested during cellular proliferation and after both cellular recovery and differentiation. Future work will use established in vitro models of increasing complexity to examine the value of traditional 2D tissue-culture techniques, and utilize 3D in vitro tissue culture techniques that can better assess late effects associated with radiation.
Jia, Lee; Wong, Hong
2001-01-01
The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (Papp; cm sec−1) of CapNO across the endothelial monolayers was 6.0×10−5, higher than that of Cap (3.13×10−5), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The Papp of CapNO and Cap across Caco-2 cells were 3.15×10−5 and 1.53×10−5, respectively. The low Papp of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H2-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects. PMID:11739246
Jia, L; Wong, H
2001-12-01
1. The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. 2. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (P(app); cm sec(-1)) of CapNO across the endothelial monolayers was 6.0 x 10(-5), higher than that of Cap (3.13 x 10(-5)), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The P(app) of CapNO and Cap across Caco-2 cells were 3.15 x 10(-5) and 1.53 x 10(-5), respectively. The low P(app) of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. 3. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. 4. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H(2)-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. 5. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects.
Effects of methyltestosterone on immunity against Salmonella Pullorum in dwarf chicks.
Li, H; Zhang, Y; Zuo, S F; Lian, Z X; Li, N
2009-12-01
This study was conducted to determine effects of methyltestosterone on innate immunity and adaptive immunity against Salmonella Pullorum in dwarf chicks. In vivo experiment, comparisons of pathological sections, viable counts of bacteria, specific antibody levels, and subsets of T lymphocytes were set forth between chicks with or without 10(-7) M methyltestosterone treatment (2 d of age through 21 d of age) and challenged with 5 x 10(8) virulent Salmonella Pullorum (7 d of age), and in vitro experiment, phagocytic and killing abilities, reactive oxygen intermediate production, and reactive nitrogen intermediate production of monocytes-macrophages treated with high (10(-8) M/10(6) cell) or physiological (10(-14) M/10(6) cell) concentration of methyltestosterone were examined after Salmonella Pullorum infection. The results showed that (1) in vivo, administration of methyltestosterone enhanced susceptibility to Salmonella Pullorum infection and depressed cellular immunity against Salmonella Pullorum, whereas it had no effect on humoral immunity in dwarf chicks; (2) in vitro, at high concentration, methyltestosterone reduced (P < 0.05) monocytes-macrophages mediated reactive oxygen intermediate-dependent killing of Salmonella Pullorum, whereas low concentration of methyltestosterone enhanced (P < 0.05) reactive oxygen intermediate-dependent killing of Salmonella Pullorum in male dwarf chicks but not in females; and (3) although challenged with Salmonella Pullorum, phagocytic ability and monocytes-macrophages mediated reactive nitrogen intermediate-dependent killing were not affected by methyltestosterone in vitro. The results indicated that methyltestosterone affected the immune response to Salmonella Pullorum in dwarf chicks by changing monocytes-macrophages mediated reactive oxygen intermediate-dependent killing and cellular immunity, and the effects were dose-dependent; furthermore, the former 2 pathways played important roles in preventing Salmonella Pullorum infection in dwarf chicks, although the mechanism needs further study.
Qin, Li; Yang, Yun-bo; Yang, Yi-xin; Zhu, Neng; Gong, Yong-zhen; Zhang, Cai-ping; Li, Shun-xiang; Liao, Duan-fang
2014-01-01
Aim: To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. Methods: VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. Results: Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. Conclusion: Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway. PMID:25087996
Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltens, Ralph, E-mail: ralph.feltens@ufz.d; UFZ- Helmholtz Centre for Environmental Research, Department of Proteomics, Permoserstrasse 15, D-04318 Leipzig; Moegel, Iljana, E-mail: iljana.moegel@ufz.d
Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-kappaB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasismore » on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase pi1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.« less
Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing
2014-10-01
In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leong, Pou Kuan; Wong, Hoi Shan; Chen, Jihang; Chan, Wing Man; Leung, Hoi Yan; Ko, Kam Ming
2016-01-01
Schisandrin A (Sch A) and schisandrin B (Sch B) are active components of Schisandrae Fructus. We compared the biochemical mechanism underlying the anti-inflammatory action of Sch A and Sch B, using cultured lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and concanavalin (ConA)-stimulated mouse splenocytes. Pre-incubation with Sch A or Sch B produced an anti-inflammatory action in LPS-stimulated RAW264.7 cells, as evidenced by the inhibition of the pro-inflammatory c-Jun N-terminal kinases/p38 kinase/nuclear factor-κB signaling pathway as well as the suppression of various pro-inflammatory cytokines and effectors, with the extent of inhibition by Sch A being more pronounced. The greater activity of Sch A in anti-inflammatory response was associated with a greater decrease in cellular reduced glutathione (GSH) level and a greater increase in glutathione S-transferase activity than corresponding changes produced by Sch B. However, upon incubation, only Sch B resulted in the activation of the nuclear factor (erythroid-derived 2)-like factor 2 and the induction of a significant increase in the expression of thioredoxin (TRX) in RAW264.7 cells. The Sch B-induced increase in TRX expression was associated with the suppression of pro-inflammatory cytokines and effectors in LPS-stimulated macrophages. Studies in a mouse model of inflammation (carrageenan-induced paw edema) indicated that while long-term treatment with either Sch A or Sch B suppressed the extent of paw edema, only acute treatment with Sch A produced a significant degree of inhibition on the inflammatory response. Although only Sch A decreased the cellular GSH level and suppressed the release of pro-inflammatory cytokines and cell proliferation in ConA-simulated splenocytes in vitro, both Sch A and Sch B treatments, while not altering cellular GSH levels, suppressed ConA-stimulated splenocyte proliferation ex vivo. These results suggest that Sch A and Sch B may act differentially on activating GST/ depleting cellular GSH and inducing an antioxidant response involved in their anti-inflammatory actions. PMID:27195753
Rimington, Rowan P; Capel, Andrew J; Player, Darren J; Bibb, Richard J; Christie, Steven D R; Lewis, Mark P
2018-06-13
The integration of additive manufacturing (AM) technology within biological systems holds significant potential, specifically when refining the methods utilized for the creation of in vitro models. Therefore, examination of cellular interaction with the physical/physicochemical properties of 3D-printed polymers is critically important. In this work, skeletal muscle (C 2 C 12 ), neuronal (SH-SY5Y) and hepatic (HepG2) cell lines are utilized to ascertain critical evidence of cellular behavior in response to 3D-printed candidate polymers: Clear-FL (stereolithography, SL), PA-12 (laser sintering, LS), and VeroClear (PolyJet). This research outlines initial critical evidence for a framework of polymer/AM process selection when 3D printing biologically receptive scaffolds, derived from industry standard, commercially available AM instrumentation. C 2 C 12 , SH-SY5Y, and HepG2 cells favor LS polymer PA-12 for applications in which cellular adherence is necessitated. However, cell type specific responses are evident when cultured in the chemical leachate of photopolymers (Clear-FL and VeroClear). With the increasing prevalence of 3D-printed biointerfaces, the development of rigorous cell type specific biocompatibility data is imperative. Supplementing the currently limited database of functional 3D-printed biomaterials affords the opportunity for experiment-specific AM process and polymer selection, dependent on biological application and intricacy of design features required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jostes, Sina; Nettersheim, Daniel; Fellermeyer, Martin; Schneider, Simon; Hafezi, François; Honecker, Friedemann; Schumacher, Valerie; Geyer, Matthias; Kristiansen, Glen; Schorle, Hubert
2017-07-01
Type II testicular germ cell cancers (TGCT) are the most frequently diagnosed tumours in young men (20-40 years) and are classified as seminoma or non-seminoma. TGCTs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas (embryonal carcinomas) displays only incomplete remission or relapse and requires novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumour therapy, which interferes with the function of 'bromodomain and extraterminal (BET)' proteins. JQ1-treated TGCT cell lines display up-regulation of genes indicative for DNA damage and cellular stress response and induce cell cycle arrest. Embryonal carcinoma (EC) cell lines, which presented as JQ1 sensitive, display down-regulation of pluripotency factors and induction of mesodermal differentiation. In contrast, seminoma-like TCam-2 cells tolerated higher JQ1 concentrations and were resistant to differentiation. ECs xenografted in vivo showed a reduction in tumour size, proliferation rate and angiogenesis in response to JQ1. Finally, the combination of JQ1 and the histone deacetylase inhibitor romidepsin allowed for lower doses and less frequent application, compared with monotherapy. Thus, we propose that JQ1 in combination with romidepsin may serve as a novel therapeutic option for (mixed) TGCTs. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Bioengineered vascular constructs as living models for in vitro cardiovascular research.
Wolf, Frederic; Vogt, Felix; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra
2016-09-01
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M
2015-03-01
The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.
Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M.
2015-01-01
The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes. (185 words). PMID:25855056
Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.
2018-01-01
ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. PMID:29437971
[Effects of ezrin silencing on pancreatic cancer cell line Panc-1].
Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie
2012-12-01
To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.
A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. To address this challenge, we present a method for assessing the impact of cellular metabolism on chemical-based cellular toxicity. A cell line with low endogenous meta...
This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The ex...
High-throughput assays that can quantify chemical-induced changes at the cellular and molecular level have been recommended for use in chemical safety assessment. High-throughput, high content imaging assays for the key cellular events of neurodevelopment have been proposed to ra...