Experimental models of demyelination and remyelination.
Torre-Fuentes, L; Moreno-Jiménez, L; Pytel, V; Matías-Guiu, J A; Gómez-Pinedo, U; Matías-Guiu, J
2017-08-29
Experimental animal models constitute a useful tool to deepen our knowledge of central nervous system disorders. In the case of multiple sclerosis, however, there is no such specific model able to provide an overview of the disease; multiple models covering the different pathophysiological features of the disease are therefore necessary. We reviewed the different in vitro and in vivo experimental models used in multiple sclerosis research. Concerning in vitro models, we analysed cell cultures and slice models. As for in vivo models, we examined such models of autoimmunity and inflammation as experimental allergic encephalitis in different animals and virus-induced demyelinating diseases. Furthermore, we analysed models of demyelination and remyelination, including chemical lesions caused by cuprizone, lysolecithin, and ethidium bromide; zebrafish; and transgenic models. Experimental models provide a deeper understanding of the different pathogenic mechanisms involved in multiple sclerosis. Choosing one model or another depends on the specific aims of the study. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalachev, L. V.
2016-06-01
We present a simple model of experimental setup for in vitro study of drug release from drug eluting stents and drug propagation in artificial tissue samples representing blood vessels. The model is further reduced using the assumption on vastly different characteristic diffusion times in the stent coating and in the artificial tissue. The model is used to derive a relationship between the times at which the measurements have to be taken for two experimental platforms, with corresponding artificial tissue samples made of different materials with different drug diffusion coefficients, to properly compare the drug release characteristics of drug eluting stents.
The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.
de Curtis, Marco; Librizzi, Laura; Uva, Laura
2016-02-15
Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.
Robinson, Joshua F; Theunissen, Peter T; van Dartel, Dorien A M; Pennings, Jeroen L; Faustman, Elaine M; Piersma, Aldert H
2011-09-01
Toxicogenomic evaluations may improve toxicity prediction of in vitro-based developmental models, such as whole embryo culture (WEC) and embryonic stem cells (ESC), by providing a robust mechanistic marker which can be linked with responses associated with developmental toxicity in vivo. While promising in theory, toxicogenomic comparisons between in vivo and in vitro models are complex due to inherent differences in model characteristics and experimental design. Determining factors which influence these global comparisons are critical in the identification of reliable mechanistic-based markers of developmental toxicity. In this study, we compared available toxicogenomic data assessing the impact of the known teratogen, methylmercury (MeHg) across a diverse set of in vitro and in vivo models to investigate the impact of experimental variables (i.e. model, dose, time) on our comparative assessments. We evaluated common and unique aspects at both the functional (Gene Ontology) and gene level of MeHg-induced response. At the functional level, we observed stronger similarity in MeHg-response between mouse embryos exposed in utero (2 studies), ESC, and WEC as compared to liver, brain and mouse embryonic fibroblast MeHg studies. These findings were strongly correlated to the presence of a MeHg-induced developmentally related gene signature. In addition, we identified specific MeHg-induced gene expression alterations associated with developmental signaling and heart development across WEC, ESC and in vivo systems. However, the significance of overlap between studies was highly dependent on traditional experimental variables (i.e. dose, time). In summary, we identify promising examples of unique gene expression responses which show in vitro-in vivo similarities supporting the relevance of in vitro developmental models for predicting in vivo developmental toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.
Advances and perspectives in in vitro human gut fermentation modeling.
Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe
2012-01-01
The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.
Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco
2010-06-13
Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.
Kocic, Ivana; Homsek, Irena; Dacevic, Mirjana; Grbic, Sandra; Parojcic, Jelena; Vucicevic, Katarina; Prostran, Milica; Miljkovic, Branislava
2012-04-01
The aim of this case study was to develop a drug-specific absorption model for levothyroxine (LT4) using mechanistic gastrointestinal simulation technology (GIST) implemented in the GastroPlus™ software package. The required input parameters were determined experimentally, in silico predicted and/or taken from the literature. The simulated plasma profile was similar and in a good agreement with the data observed in the in vivo bioequivalence study, indicating that the GIST model gave an accurate prediction of LT4 oral absorption. Additionally, plasma concentration-time profiles were simulated based on a set of experimental and virtual in vitro dissolution data in order to estimate the influence of different in vitro drug dissolution kinetics on the simulated plasma profiles and to identify biorelevant dissolution specification for LT4 immediate-release (IR) tablets. A set of experimental and virtual in vitro data was also used for correlation purposes. In vitro-in vivo correlation model based on the convolution approach was applied in order to assess the relationship between the in vitro and in vivo data. The obtained results suggest that dissolution specification of more than 85% LT4 dissolved in 60 min might be considered as biorelevant dissolution specification criteria for LT4 IR tablets. Copyright © 2012 John Wiley & Sons, Ltd.
A Model of In vitro Plasticity at the Parallel Fiber—Molecular Layer Interneuron Synapses
Lennon, William; Yamazaki, Tadashi; Hecht-Nielsen, Robert
2015-01-01
Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF—MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here. PMID:26733856
In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin
Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...
Comparison of experimental models for predicting laser-tissue interaction from 3.8-micron lasers
NASA Astrophysics Data System (ADS)
Williams, Piper C. M.; Winston, Golda C. H.; Randolph, Don Q.; Neal, Thomas A.; Eurell, Thomas E.; Johnson, Thomas E.
2004-07-01
The purpose of this study was to evaluate the laser-tissue interactions of engineered human skin and in-vivo pig skin following exposure to a single 3.8 micron laser light pulse. The goal of the study was to determine if these tissues shared common histologic features following laser exposure that might prove useful in developing in-vitro and in-vivo experimental models to predict the bioeffects of human laser exposure. The minimum exposure required to produce gross morphologic changes following a four microsecond, pulsed skin exposure for both models was determined. Histology was used to compare the cellular responses of the experimental models following laser exposure. Eighteen engineered skin equivalents (in-vitro model), were exposed to 3.8 micron laser light and the tissue responses compared to equivalent exposures made on five Yorkshire pigs (in-vivo model). Representative biopsies of pig skin were taken for histologic evaluation from various body locations immediately, one hour, and 24 hours following exposure. The pattern of epithelial changes seen following in-vitro laser exposure of the engineered human skin and in-vivo exposure of pig skin indicated a common histologic response for this particular combination of laser parameters.
A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.
Thon, Moritz P; Ford, Hugh Z; Gee, Michael W; Myerscough, Mary R
2018-01-01
There are a growing number of studies that model immunological processes in the artery wall that lead to the development of atherosclerotic plaques. However, few of these models use parameters that are obtained from experimental data even though data-driven models are vital if mathematical models are to become clinically relevant. We present the development and analysis of a quantitative mathematical model for the coupled inflammatory, lipid and macrophage dynamics in early atherosclerotic plaques. Our modeling approach is similar to the biologists' experimental approach where the bigger picture of atherosclerosis is put together from many smaller observations and findings from in vitro experiments. We first develop a series of three simpler submodels which are least-squares fitted to various in vitro experimental results from the literature. Subsequently, we use these three submodels to construct a quantitative model of the development of early atherosclerotic plaques. We perform a local sensitivity analysis of the model with respect to its parameters that identifies critical parameters and processes. Further, we present a systematic analysis of the long-term outcome of the model which produces a characterization of the stability of model plaques based on the rates of recruitment of low-density lipoproteins, high-density lipoproteins and macrophages. The analysis of the model suggests that further experimental work quantifying the different fates of macrophages as a function of cholesterol load and the balance between free cholesterol and cholesterol ester inside macrophages may give valuable insight into long-term atherosclerotic plaque outcomes. This model is an important step toward models applicable in a clinical setting.
Flux analysis of the human proximal colon using anaerobic digestion model 1.
Motelica-Wagenaar, Anne Marieke; Nauta, Arjen; van den Heuvel, Ellen G H M; Kleerebezem, Robbert
2014-08-01
The colon can be regarded as an anaerobic digestive compartment within the gastro intestinal tract (GIT). An in silico model simulating the fluxes in the human proximal colon was developed on basis of the anaerobic digestion model 1 (ADM1), which is traditionally used to model waste conversion to biogas. Model calibration was conducted using data from in vitro fermentation of the proximal colon (TIM-2), and, amongst others, supplemented with the bio kinetics of prebiotic galactooligosaccharides (GOS) fermentation. The impact of water and solutes absorption by the host was also included. Hydrolysis constants of carbohydrates and proteins were estimated based on total short chain fatty acids (SCFA) and ammonia production in vitro. Model validation was established using an independent dataset of a different in vitro model: an in vitro three-stage continuous culture system. The in silico model was shown to provide quantitative insight in the microbial community structure in terms of functional groups, and the substrate and product fluxes between these groups as well as the host, as a function of the substrate composition, pH and the solids residence time (SRT). The model confirms the experimental observation that methanogens are washed out at low pH or low SRT-values. The in silico model is proposed as useful tool in the design of experimental setups for in vitro experiments by giving insight in fermentation processes in the proximal human colon. Copyright © 2014. Published by Elsevier Ltd.
Gastric bypass: why Roux-en-Y? A review of experimental data.
Collins, Brendan J; Miyashita, Tomoharu; Schweitzer, Michael; Magnuson, Thomas; Harmon, John W
2007-10-01
To highlight the clinical and experimental rationales that support why the Roux-en-Y limb is an important surgical principle for bariatric gastric bypass. We reviewed PubMed citations for open Roux-en-Y gastric bypass (RYGBP), laparoscopic RYGBP, loop gastric bypass, chronic alkaline reflux gastritis, and duodenoesophageal reflux. We reviewed clinical and experimental articles. Clinical articles included prospective, retrospective, and case series of patients undergoing RYGBP, laparoscopic RYGBP, or loop gastric bypass. Experimental articles that were reviewed included in vivo and in vitro models of chronic duodenoesophageal reflux and its effect on carcinogenesis. No formal data extraction was performed. We reviewed published operative times, lengths of stay, and anastomotic leak rates for laparoscopic RYGBP and loop gastric bypass. For in vivo and in vitro experimental models of duodenoesophageal reflux, we reviewed the kinetics and potential molecular mechanisms of carcinogenesis. Recent data suggest that laparoscopic loop gastric bypass, performed without the creation of a Roux-en-Y gastroenterostomy, is a faster surgical technique that confers similarly robust weight loss compared with RYGBP or laparoscopic RYGBP. In the absence of a Roux limb, the long-term effects of chronic alkaline reflux are unknown. Animal models and in vitro analyses of chronic alkaline reflux suggest a carcinogenic effect.
NASA Astrophysics Data System (ADS)
Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.
2016-10-01
CoCrMo biomedical alloys were coated with a hydroxyapatite layer to improve biocompatibility and in vitro corrosion performance. A fast electrodeposition process was completed in 5 minutes for the hydroxyapatite coating. Effect of the solution temperature and applied potential on the in vitro corrosion performance of the hydroxyapatite coatings was modeled by response surface methodology (RSM) coupled with central composite design (CCD). A 5-level-2-factor experimental plan designed by CCD was used; the experimental plan contained 13 coating experiments with a temperature range from 283 K to 347 K (10 °C to 74 °C) and potential range from -1.2 to -1.9 V. Corrosion potential ( E corr) of the coatings in a simulated body fluid solution was chosen as response for the model. Predicted and experimental values fitted well with an R 2 value of 0.9481. Response surface plots of the impedance and polarization resistance ( R P) were investigated. Optimized parameters for electrodeposition of hydroxyapatite were determined by RSM as solution temperature of 305.48 K (32.33 °C) and potential of -1.55 V. Hydroxyapatite coatings fabricated at optimized parameters showed excellent crystal formation and high in vitro corrosion resistance.
Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H
2016-04-01
In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.
Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation
Smith, Gregory R.; Xie, Lu; Schwartz, Russell
2016-01-01
The environment of a living cell is vastly different from that of an in vitro reaction system, an issue that presents great challenges to the use of in vitro models, or computer simulations based on them, for understanding biochemistry in vivo. Virus capsids make an excellent model system for such questions because they typically have few distinct components, making them amenable to in vitro and modeling studies, yet their assembly can involve complex networks of possible reactions that cannot be resolved in detail by any current experimental technology. We previously fit kinetic simulation parameters to bulk in vitro assembly data to yield a close match between simulated and real data, and then used the simulations to study features of assembly that cannot be monitored experimentally. The present work seeks to project how assembly in these simulations fit to in vitro data would be altered by computationally adding features of the cellular environment to the system, specifically the presence of nucleic acid about which many capsids assemble. The major challenge of such work is computational: simulating fine-scale assembly pathways on the scale and in the parameter domains of real viruses is far too computationally costly to allow for explicit models of nucleic acid interaction. We bypass that limitation by applying analytical models of nucleic acid effects to adjust kinetic rate parameters learned from in vitro data to see how these adjustments, singly or in combination, might affect fine-scale assembly progress. The resulting simulations exhibit surprising behavioral complexity, with distinct effects often acting synergistically to drive efficient assembly and alter pathways relative to the in vitro model. The work demonstrates how computer simulations can help us understand how assembly might differ between the in vitro and in vivo environments and what features of the cellular environment account for these differences. PMID:27244559
Hunter, M L; Hughes, J A; Parker, D M; West, N X; Newcombe, R G; Addy, M
2003-05-01
To determine the in vitro erosive potential and in situ erosive effect of two new formulation low calorie carbonated orange drinks with that of two conventional diet products and water. In the in vitro study, six specimens of deciduous and permanent enamel were randomly allocated to each of the five products and a '4h' protocol employed. In the in situ study, 15 healthy volunteers participated in a single centre, single blind, 5-phase crossover study, conducted according to Good Clinical Practice, and employing a validated model. The in vitro erosive potential of the experimental formulations was less than that of the comparators at all time points. Conversely, the observed erosive potential of both experimental formulations was greater than that of the control. Consistent statistically significant differences were found in relation to permanent enamel only. Unfortunately, the in situ study did not produce results entirely consistent with those of the in vitro study. Notably, a generally progressive loss of enamel was observed in specimens exposed to the control. The data from the in vitro study show the experimental formulations to have low comparative erosivity. However, the methodologies in vitro and in situ somewhat unusually do not correlate in ranking the erosivity of drinks. The results of this study should therefore be viewed with caution, further research being clearly warranted.
Translational models of tumor angiogenesis: A nexus of in silico and in vitro models.
Soleimani, Shirin; Shamsi, Milad; Ghazani, Mehran Akbarpour; Modarres, Hassan Pezeshgi; Valente, Karolina Papera; Saghafian, Mohsen; Ashani, Mehdi Mohammadi; Akbari, Mohsen; Sanati-Nezhad, Amir
2018-03-05
Emerging evidence shows that endothelial cells are not only the building blocks of vascular networks that enable oxygen and nutrient delivery throughout a tissue but also serve as a rich resource of angiocrine factors. Endothelial cells play key roles in determining cancer progression and response to anti-cancer drugs. Furthermore, the endothelium-specific deposition of extracellular matrix is a key modulator of the availability of angiocrine factors to both stromal and cancer cells. Considering tumor vascular network as a decisive factor in cancer pathogenesis and treatment response, these networks need to be an inseparable component of cancer models. Both computational and in vitro experimental models have been extensively developed to model tumor-endothelium interactions. While informative, they have been developed in different communities and do not yet represent a comprehensive platform. In this review, we overview the necessity of incorporating vascular networks for both in vitro and in silico cancer models and discuss recent progresses and challenges of in vitro experimental microfluidic cancer vasculature-on-chip systems and their in silico counterparts. We further highlight how these two approaches can merge together with the aim of presenting a predictive combinatorial platform for studying cancer pathogenesis and testing the efficacy of single or multi-drug therapeutics for cancer treatment. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toma, Milan; Jensen, Morten Ø.; Einstein, Daniel R.
2015-07-17
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in-vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves weremore » mounted in an in vitro setup, and structural data for the mitral valve was acquired with *CT. Experimental data from the in-vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed lea et dynamics, and force vectors from the in-vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements are important in validating and adjusting material parameters in computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.« less
Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S
2016-04-01
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso
2014-12-17
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
Pyrethroids are a class of neurotoxic synthetic insecticides. Exposure to pyrethroids can be widespread because of their use in agriculture, medicine, and in residential homes and schools. Our studies are focused on generating in vitro and in vivo data for the development of phys...
Maruta, Naomichi; Marumoto, Moegi
2017-01-01
Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293
El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas
2018-02-01
Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.
Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery
Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.
2013-01-01
SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-06-30
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-01-01
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386
Design of a prototype flow microreactor for synthetic biology in vitro.
Boehm, Christian R; Freemont, Paul S; Ces, Oscar
2013-09-07
As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.
Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim
2011-08-11
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sala, Luca; van Meer, Berend J; Tertoolen, Leon G J; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris; Dieben, Michel A E; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard R; Jongbloed, Monique R M; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P H; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey L; Burton, Francis L; Mummery, Christine L
2018-02-02
There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models. © 2017 The Authors.
In vitro cell and tissue models for studying host-microbe interactions: a review.
Bermudez-Brito, Miriam; Plaza-Díaz, Julio; Fontana, Luis; Muñoz-Quezada, Sergio; Gil, Angel
2013-01-01
Ideally, cell models should resemble the in vivo conditions; however, in most in vitro experimental models, epithelial cells are cultivated as monolayers, in which the establishment of functional epithelial features is not achieved. To overcome this problem, co-culture experiments with probiotics, dendritic cells and intestinal epithelial cells and three-dimensional models attempt to reconcile the complex and dynamic interactions that exist in vivo between the intestinal epithelium and bacteria on the luminal side and between the epithelium and the underlying immune system on the basolateral side. Additional models include tissue explants, bioreactors and organoids. The present review details the in vitro models used to study host-microbe interactions and explores the new tools that may help in understanding the molecular mechanisms of these interactions.
Mobile Genetic Elements: In Silico, In Vitro, In Vivo
Arkhipova, Irina R.; Rice, Phoebe A.
2016-01-01
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic, and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, “Mobile Genetic Elements: in silico, in vitro, in vivo,” held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. PMID:26822117
Vernetti, Lawrence; Bergenthal, Luke; Shun, Tong Ying; Taylor, D. Lansing
2016-01-01
Abstract Microfluidic human organ models, microphysiology systems (MPS), are currently being developed as predictive models of drug safety and efficacy in humans. To design and validate MPS as predictive of human safety liabilities requires safety data for a reference set of compounds, combined with in vitro data from the human organ models. To address this need, we have developed an internet database, the MPS database (MPS-Db), as a powerful platform for experimental design, data management, and analysis, and to combine experimental data with reference data, to enable computational modeling. The present study demonstrates the capability of the MPS-Db in early safety testing using a human liver MPS to relate the effects of tolcapone and entacapone in the in vitro model to human in vivo effects. These two compounds were chosen to be evaluated as a representative pair of marketed drugs because they are structurally similar, have the same target, and were found safe or had an acceptable risk in preclinical and clinical trials, yet tolcapone induced unacceptable levels of hepatotoxicity while entacapone was found to be safe. Results demonstrate the utility of the MPS-Db as an essential resource for relating in vitro organ model data to the multiple biochemical, preclinical, and clinical data sources on in vivo drug effects. PMID:28781990
Singh, Nilendra; Agrawal, Megha; Doré, Sylvain
2013-08-21
Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action.
Bigham-Sadegh, Amin; Oryan, Ahmad
2015-06-01
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng
2016-08-01
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence
Loureiro, Inês; Tavares, Joana; Silva, Ana Marta; Amorim, Ana Marina; Ouaissi, Ali; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo
2012-01-01
Experimental infections with visceral Leishmania spp. are frequently performed referring to stationary parasite cultures that are comprised of a mixture of metacyclic and non-metacyclic parasites often with little regard to time of culture and metacyclic purification. This may lead to misleading or irreproducible experimental data. It is known that the maintenance of Leishmania spp. in vitro results in a progressive loss of virulence that can be reverted by passage in a mammalian host. In the present study, we aimed to characterize the loss of virulence in culture comparing the in vitro and in vivo infection and immunological profile of L. infantum stationary promastigotes submitted to successive periods of in vitro cultivation. To evaluate the effect of axenic in vitro culture in parasite virulence, we submitted L. infantum promastigotes to 4, 21 or 31 successive in vitro passages. Our results demonstrated a rapid and significant loss of parasite virulence when parasites are sustained in axenic culture. Strikingly, the parasite capacity to modulate macrophage activation decreased significantly with the augmentation of the number of in vitro passages. We validated these in vitro observations using an experimental murine model of infection. A significant correlation was found between higher parasite burdens and lower number of in vitro passages in infected Balb/c mice. Furthermore, we have demonstrated that the virulence deficit caused by successive in vitro passages results from an inadequate capacity to differentiate into amastigote forms. In conclusion, our data demonstrated that the use of parasites with distinct periods of axenic in vitro culture induce distinct infection rates and immunological responses and correlated this phenotype with a rapid loss of promastigote differentiation capacity. These results highlight the need for a standard operating protocol (SOP) when studying Leishmania species. PMID:22292094
Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li
2016-09-01
Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.
In vitro cell culture models to study the corneal drug absorption.
Reichl, Stephan; Kölln, Christian; Hahne, Matthias; Verstraelen, Jessica
2011-05-01
Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.
2013-01-01
Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action. PMID:23758534
Mariné, Marçal; Pastor, F. Javier; Sahand, Ismail H.; Pontón, José; Quindós, Guillermo; Guarro, Josep
2009-01-01
Candida dubliniensis commonly shows paradoxical or trailing growth effects in vitro in the presence of echinocandins. We tested the in vitro activities of anidulafungin, caspofungin, and micafungin against clinical isolates of C. dubliniensis and evaluated the efficacy of these drugs in two murine models of systemic infection. The three echinocandins were similarly effective in the treatment of experimental disseminated infections with C. dubliniensis strains showing or not showing abnormal growth in vitro. PMID:19786599
Mario, Débora Nunes; Guarro, Josep; Santurio, Janio Morais; Alves, Sydney Hartz
2015-01-01
We evaluated the combination of posaconazole with amphotericin B in vitro and in a murine model of systemic infections caused by Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In vitro data demonstrated a synergistic effect, and although posaconazole alone was effective against sporotrichosis, efficacy in terms of survival and burden reduction was increased with the combination. This combination might be an option against disseminated sporotrichosis, especially when itraconazole or amphotericin B at optimal doses are contraindicated. PMID:26014930
Lopes, Daniela; Jakobtorweihen, Sven; Nunes, Cláudia; Sarmento, Bruno; Reis, Salette
2017-01-01
Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both therapeutic and toxic effects. Experimental membrane models have been used to perform in vitro assessment of the effects of drugs on the biophysical properties of membranes by employing different experimental techniques. In in silico studies, molecular dynamics simulations have been used to provide new insights at an atomistic level, which enables the study of properties that are difficult or even impossible to measure experimentally. Each model and technique has its advantages and disadvantages. Hence, combining different models and techniques is necessary for a more reliable study. In this review, the theoretical backgrounds of these (in vitro and in silico) approaches are presented, followed by a discussion of the pharmacokinetic and pharmacodynamic properties of drugs that are related to their interactions with membranes. All approaches are discussed in parallel to present for a better connection between experimental and simulation studies. Finally, an overview of the molecular dynamics simulation studies used for drug-membrane interactions is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.
A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterialsmore » or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.« less
The US EPA ToxCast program aims to develop methods for mechanistically-based chemical prioritization using a suite of high throughput, in vitro assays that probe relevant biological pathways, and coupling them with statistical and machine learning methods that produce predictive ...
Matiasek, J; Domig, K J; Djedovic, G; Babeluk, R; Assadian, O
2017-05-02
The aim of this study was to investigate the bacterial bioburden in experimental in vitro wounds during the application of conventional negative pressure wound therapy (NPWT), with and without antimicrobial dressings (polyhexanide, silver), against NPWT instillation of octenidine. Experimental wounds produced in an in vitro porcine wound model were homogenously contaminated with bacterial suspension and treated with NPWT and different options. Group A: non-antimicrobial polyurethane foam dressing; group B: antimicrobial polyurethane foam dressing containing silver; group C: antimicrobial gauze dressing containing polyhexanide; group D: non-antimicrobial polyurethane foam dressing intermittently irrigated with octenidine; group E: negative control (non-antimicrobial polyurethane foam dressing without NPWT). Standard biopsies were harvested after 24 and 28 hours. This study demonstrated that the use of NPWT with intermitted instillation of octenidine (group D) or application of silver-based polyurethane foam dressings (group B) is significantly superior against Staphylococcus aureus colonisation in experimental wounds compared with non-antimicrobial polyurethane foam dressing (group A) after 48 hours. Surprisingly, the polyhexanide-based dressing (group C) used in this model showed no statistical significant effect compared with the control group (group E) after 24 or 48 hours of treatment. Both intermitted instillation of octenidine and silver-based dressings in standard NPWT were significantly superior compared with non-antimicrobial polyurethane foam dressings or PHMB coated gauze dressing after 48 hours.
Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches
2015-10-01
This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.
Fiolka, Tom; Dressman, Jennifer
2018-03-01
Various types of two stage in vitro testing have been used in a number of experimental settings. In addition to its application in quality control and for regulatory purposes, two-stage in vitro testing has also been shown to be a valuable technique to evaluate the supersaturation and precipitation behavior of poorly soluble drugs during drug development. The so-called 'transfer model', which is an example of two-stage testing, has provided valuable information about the in vivo performance of poorly soluble, weakly basic drugs by simulating the gastrointestinal drug transit from the stomach into the small intestine with a peristaltic pump. The evolution of the transfer model has resulted in various modifications of the experimental model set-up. Concomitantly, various research groups have developed simplified approaches to two-stage testing to investigate the supersaturation and precipitation behavior of weakly basic drugs without the necessity of using a transfer pump. Given the diversity among the various two-stage test methods available today, a more harmonized approach needs to be taken to optimize the use of two stage testing at different stages of drug development. © 2018 Royal Pharmaceutical Society.
Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F Saverio; Cossu, Giulio; Elvassore, Nicola
2016-12-01
: Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from patients with Duchenne muscular dystrophy (DMD), using a microengineered model. An ad hoc experimental strategy was designed to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. This microscaled in vitro model, which validated previous in vivo preclinical work, revealed that mesoangioblasts showed unexpected efficiency as compared with myoblasts in dystrophin production. Consequently, this model may be used to predict efficacy of new drugs or therapies aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo. ©AlphaMed Press.
in vitro Models if Human Embryonic Mesenchymal Transitions in Morphogenesis
Our ability to predict human developmental consequences produced by exposure to environmental chemicals is limited by the current experimental and computational models.Human heart defects are among the most common type of birth defects and affect 1% of children (~40,000 children)...
[In silico, in vitro, in omic experimental models and drug safety evaluation].
Claude, Nancy; Goldfain-Blanc, Françoise; Guillouzo, André
2009-01-01
Over the last few decades, toxicology has benefited from scientific, technical, and bioinformatic developments relating to patient safety assessment during clinical and drug marketing studies. Based on this knowledge, new in silico, in vitro, and "omic" experimental models are emerging. Although these models cannot currently replace classic safety evaluations performed on laboratory animals, they allow compounds with unacceptable toxicity to be rejected in the early stages of drug development, thereby reducing the number of laboratory animals needed. In addition, because these models are particularly adapted to mechanistic studies, they can help to improve the relevance of the data obtained, thus enabling better prevention and screening of the adverse effects that may occur in humans. Much progress remains to be done, especially in the field of validation. Nevertheless, current efforts by industrial, academic laboratories, and regulatory agencies should, in coming years, significantly improve preclinical drug safety evaluation thanks to the integration of these new methods into the drug research and development process.
Kumar, M Senthil; Schwartz, Russell
2010-12-09
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M.; Schwartz, Russell
2010-12-01
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
Mario, Débora Nunes; Guarro, Josep; Santurio, Janio Morais; Alves, Sydney Hartz; Capilla, Javier
2015-08-01
We evaluated the combination of posaconazole with amphotericin B in vitro and in a murine model of systemic infections caused by Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In vitro data demonstrated a synergistic effect, and although posaconazole alone was effective against sporotrichosis, efficacy in terms of survival and burden reduction was increased with the combination. This combination might be an option against disseminated sporotrichosis, especially when itraconazole or amphotericin B at optimal doses are contraindicated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Three-dimensional shape optimization of a cemented hip stem and experimental validations.
Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi
2015-03-01
This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.
Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures.
Domart-Coulon, I; Auzoux-Bordenave, S; Doumenc, D; Khalanski, M
2000-06-01
Short-term primary cell cultures were derived from adult marine bivalve tissues: the heart of oyster Crassostrea gigas and the gill of clam Ruditapes decussatus. These cultures were used as experimental in vitro models to assess the acute cytotoxicity of an organic molluscicide, Mexel-432, used in antibiofouling treatments in industrial cooling water systems. A microplate cell viability assay, based on the enzymatic reduction of tetrazolium dye (MTT) in living bivalve cells, was adapted to test the cytotoxicity of this compound: in both in vitro models, toxicity thresholds of Mexel-432 were compared to those determined in vivo with classic acute toxicity tests. The clam gill cell model was also used to assess the cytotoxicity of by-products of chlorination, a major strategy of biofouling control in the marine environment. The applications and limits of these new in vitro models for monitoring aquatic pollutants were discussed, in reference with the standardized Microtox test.
Parkes, Christina; Kamal, Areege; Valentijn, Anthony J; Alnafakh, Rafah; Gross, Stephane R; Barraclough, Roger; Moss, Diana; Kirwan, John; Hapangama, Dharani K
2018-01-01
Translational endometrial cancer (EC) research benefits from an in vitro experimental approach using EC cell lines. We demonstrated the steps that are required to examine estrogen-induced proliferative response, a simple yet important research question pertinent to EC, and devised a pragmatic methodological workflow for using EC cell lines in experimental models. Comprehensive review of all commercially available EC cell lines was carried out, and Ishikawa cell line was selected to study the estrogen responsiveness with HEC1A, RL95-2, and MFE280 cell lines as comparators where appropriate, examining relevant differential molecular (steroid receptors) and functional (phenotype, anchorage-independent growth, hormone responsiveness, migration, invasion, and chemosensitivity) characteristics in 2-dimensional and 3-dimensional cultures in vitro using immunocytochemistry, immunofluorescence, quantitative polymerase chain reaction, and Western blotting. In vivo tumor, formation, and chemosensitivity were also assessed in a chick chorioallantoic membrane model. Short tandem repeat analysis authenticated the purchased cell lines, whereas gifted cells deviated significantly from the published profile. We demonstrate the importance of prior assessment of the suitability of each cell line for the chosen in vitro experimental technique. Prior establishment of baseline, nonenriched conditions was required to induce a proliferative response to estrogen. The chorioallantoic membrane model was a suitable in vivo multicellular animal model for EC for producing rapid and reproducible data. We have developed a methodological guide for EC researchers when using endometrial cell lines to answer important translational research questions (exemplified by estrogen-responsive cell proliferation) to facilitate robust data, while saving time and resources.
Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans
2011-01-01
The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Grasselli, Elena; Canesi, Laura; Portincasa, Piero; Voci, Adriana; Vergani, Laura; Demori, Ilaria
2017-01-01
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in industrialized countries and is associated with increased risk of cardiovascular, hepatic and metabolic diseases. Molecular mechanisms on the root of the disrupted lipid homeostasis in NAFLD and potential therapeutic strategies can benefit of in vivo and in vitro experimental models of fatty liver. Here, we describe the high fat diet (HFD)-fed rat in vivo model, and two in vitro models, the primary cultured rat fatty hepatocytes or the FaO rat hepatoma fatty cells, mimicking human NAFLD. Liver steatosis was invariably associated with increased number/size of lipid droplets (LDs) and modulation of expression of genes coding for key genes of lipid metabolism such as peroxisome proliferator-activated receptors (Ppars) and perilipins (Plins). In these models, we tested the anti-steatotic effects of 3,5-L-diiodothyronine (T2), a metabolite of thyroid hormones. T2 markedly reduced triglyceride content and LD size acting on mRNA expression of both Ppars and Plins. T2 also stimulated mitochondrial oxidative metabolism of fatty acids. We conclude that in vivo and especially in vitro models of NAFLD are valuable tools to screen a large number of compounds counteracting the deleterious effect of liver steatosis. Because of the high and negative impact of liver steatosis on human health, ongoing experimental studies from our group are unravelling the ultimate translational value of such cellular models of NAFLD.
In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects
Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen
2010-01-01
Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147
An experimental approach towards the development of an in vitro cortical-thalamic co-culture model.
Kanagasabapathi, Thirukumaran T; Massobrio, Paolo; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J
2011-01-01
In this paper, we propose an experimental approach to develop an in vitro dissociated cortical-thalamic co-culture model using a dual compartment neurofluidic device. The device has two compartments separated by 10 μm wide and 3 μm high microchannels. The microchannels provide a physical isolation of neurons allowing only neurites to grow between the compartments. Long-term viable co-culture was maintained in the compartmented device, neurite growth through the microchannels was verified using immunofluorescence staining, and electrophysiological recordings from the co-culture system was investigated. Preliminary analysis of spontaneous activities from the co-culture shows a distinctively different firing pattern associated with cultures of individual cell types and further analysis is proposed for a deeper understanding of the dynamics involved in the network connectivity in such a co-culture system.
Improving the physiological realism of experimental models.
Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L
2016-04-06
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Synthetic thrombus model for in vitro studies of laser thrombolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, R.E.; Trajkovska, K.
1998-07-01
Laser thrombolysis is the controlled ablation of a thrombus (blood clot) blockage in a living arterial system. Theoretical modeling of the interaction of laser light with thrombi relies on the ability to perform in vitro experiments with well characterized surrogate materials. A synthetic thrombus formulation may offer more accurate results when compared to in vivo clinical experiments. The authors describe the development of new surrogate materials based on formulations incorporating chick egg, guar gum, modified food starch, and a laser light absorbing dye. The sound speed and physical consistency of the materials were very close to porcine (arterial) and humanmore » (venous) thrombi. Photographic and videotape recordings of pulsed dye laser ablation experiments under various experimental conditions were used to evaluate the new material as compared to in vitro tests with human (venous) thrombus. The characteristics of ablation and mass removal were similar to that of real thrombi, and therefore provide a more realistic model for in vitro laser thrombolysis when compared to gelatin.« less
Hindle, Michael
2011-01-01
Purpose The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Methods Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. Results The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6–2.5 µm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Conclusions Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery. PMID:21948458
Longest, P Worth; Hindle, Michael
2012-03-01
The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6-2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.
Cell sources for in vitro human liver cell culture models.
Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny
2016-09-01
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.
From Single-Cell Dynamics to Scaling Laws in Oncology
NASA Astrophysics Data System (ADS)
Chignola, Roberto; Sega, Michela; Stella, Sabrina; Vyshemirsky, Vladislav; Milotti, Edoardo
We are developing a biophysical model of tumor biology. We follow a strictly quantitative approach where each step of model development is validated by comparing simulation outputs with experimental data. While this strategy may slow down our advancements, at the same time it provides an invaluable reward: we can trust simulation outputs and use the model to explore territories of cancer biology where current experimental techniques fail. Here, we review our multi-scale biophysical modeling approach and show how a description of cancer at the cellular level has led us to general laws obeyed by both in vitro and in vivo tumors.
Lamprecht, Michael R.; Elkin, Benjamin S.; Kesavabhotla, Kartik; Crary, John F.; Hammers, Jennifer L.; Huh, Jimmy W.; Raghupathi, Ramesh
2017-01-01
Abstract The utility of in vitro models of traumatic brain injury (TBI) depends on their ability to recapitulate the in vivo TBI cascade. In this study, we used a genome-wide approach to compare changes in gene expression at several time points post-injury in both an in vitro model and an in vivo model of TBI. We found a total of 2073 differentially expressed genes in our in vitro model and 877 differentially expressed genes in our in vivo model when compared to noninjured controls. We found a strong correlation in gene expression changes between the two models (r = 0.69), providing confidence that the in vitro model represented at least part of the in vivo injury cascade. From these data, we searched for genes with significant changes in expression over time (analysis of covariance) and identified sorting protein-related receptor with A-type repeats (SORLA). SORLA directs amyloid precursor protein to the recycling pathway by direct binding and away from amyloid-beta producing enzymes. Mutations of SORLA have been linked to Alzheimer's disease (AD). We confirmed downregulation of SORLA expression in organotypic hippocampal slice cultures by immunohistochemistry and Western blotting and present preliminary data from human tissue that is consistent with these experimental results. Together, these data suggest that the in vitro model of TBI used in this study strongly recapitulates the in vivo TBI pathobiology and is well suited for future mechanistic or therapeutic studies. The data also suggest the possible involvement of SORLA in the post-traumatic cascade linking TBI to AD. PMID:26919808
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial.
Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini
2016-01-01
To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann-Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion.
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial
Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini
2016-01-01
To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann–Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion. PMID:27386011
Peri-Implant Strain in an In Vitro Model.
Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul
2015-10-01
An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.
Photodynamic therapy can kill Cryptococcus neoformans in in vitro and in vivo models
NASA Astrophysics Data System (ADS)
Prates, Renato A.; da Silva, Eriques G.; Chaves, Priscila F.; Santos, Antônio José S.; Paula, Claudete R.; Ribeiro, Martha S.
2009-02-01
Cryptococcosis is an infection caused by the encapsulated yeast Cryptococcus neoformans and the most afflicted sites are lung, skin and central nervous system. A range of studies had reported that photodynamic therapy (PDT) can inactivate yeast cells; however, the in vivo experimental models of cryptococcosis photoinactivation are not commonly reported. The aim of this study was to investigate the ability of methylene blue (MB) combined with a low-power red laser to inactivate Cryptococcus neoformans in in vitro and in vivo experimental models. To perform the in vitro study, suspension of Cryptococcus neoformans ATCC-90112 (106cfu/mL) was used. The light source was a laser (Photon Lase III, DMC, SÃ#o Carlos, Brazil) emitting at λ660nm with output power of 90mW for 6 and 9min of irradiation, resulting fluences at 108 and 162J/cm². As photosensitizer, 100μM MB was used. For the in vivo study, 10 BALB/c mice had the left paw inoculated with C. neoformans ATCC-90112 (107cfu). Twenty-four hours after inoculation, PDT was performed using 150μM MB and 100mW red laser with fluence at 180J/cm2. PDT was efficient in vitro against C. neoformans in both parameters used: 3 log reduction with 108J/cm² and 6 log reduction with 162J/cm². In the in vivo experiment, PDT was also effective; however, its effect was less expressive than in the in vitro study (about 1 log reduction). In conclusion, PDT seems to be a helpful alternative to treat dermal cryptococcosis; however, more effective parameters must be found in in vivo studies.
Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M
2016-07-07
The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nita, Loredana E; Chiriac, Aurica P; Nistor, Manuela T; Tartau, Liliana
2012-04-15
Networks based on poly(2-hydroxyethyl methacrylate-co-3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5]-undecane), synthesized through radical dispersion polymerization, were used as template for indomethacin (INN) as model drug. The copolymers were characterized by swelling studies at three pH values (2.4, 5.5 and 7.4) and two temperatures (room temperature 24 °C and physiological temperature 37 °C). Fourier transform infrared (FTIR) spectroscopic analysis was used to sustain the copolymer structures. Scanning electron microscopy (SEM) and thermogravimetric (TG) investigations were used to examine microstructure and appreciate the thermal stability of the polymer samples. The studies of the INN drug release from the copolymer networks were in vitro performed. The in vivo study results (biocompatibility tests, somatic nociceptive experimental model (tail flick test) and visceral nociceptive experimental model (writhing test)) are also reported in this paper. Copyright © 2012 Elsevier B.V. All rights reserved.
Bostrom, Mathias; O'Keefe, Regis
2009-01-01
Understanding the complex cellular and tissue mechanisms and interactions resulting in periprosthetic osteolysis requires a number of experimental approaches, each of which has its own set of advantages and limitations. In vitro models allow for the isolation of individual cell populations and have furthered our understanding of particle-cell interactions; however, they are limited because they do not mimic the complex tissue environment in which multiple cell interactions occur. In vivo animal models investigate the tissue interactions associated with periprosthetic osteolysis, but the choice of species and whether the implant system is subjected to mechanical load or to unloaded conditions are critical in assessing whether these models can be extrapolated to the clinical condition. Rigid analysis of retrieved tissue from clinical cases of osteolysis offers a different approach to studying the biologic process of osteolysis, but it is limited in that the tissue analyzed represents the end-stage of this process and, thus, may not reflect this process adequately. PMID:18612016
Bostrom, Mathias; O'Keefe, Regis
2008-01-01
Understanding the complex cellular and tissue mechanisms and interactions resulting in periprosthetic osteolysis requires a number of experimental approaches, each of which has its own set of advantages and limitations. In vitro models allow for the isolation of individual cell populations and have furthered our understanding of particle-cell interactions; however, they are limited because they do not mimic the complex tissue environment in which multiple cell interactions occur. In vivo animal models investigate the tissue interactions associated with periprosthetic osteolysis, but the choice of species and whether the implant system is subjected to mechanical load or to unloaded conditions are critical in assessing whether these models can be extrapolated to the clinical condition. Rigid analysis of retrieved tissue from clinical cases of osteolysis offers a different approach to studying the biologic process of osteolysis, but it is limited in that the tissue analyzed represents the end-stage of this process and, thus, may not reflect this process adequately.
Cauwels, Rita G E C; Pieters, Ilse Y; Martens, Luc C; Verbeeck, Ronald M H
2010-04-01
Endodontic treatment of immature teeth is often complicated because of flaring root canals and open apices for which apexification is needed. Long-term prognosis for these teeth is surprisingly low because of cervical root fractures occurring after an impact of weak forces. In this study, an experimental model was developed to determine the fracture resistance of immature teeth and to test the hypothesis that endodontic materials succeed in reinforcing them. Compact and hollow bone cylinders from bovine femurs were used as standardized samples. In order to evaluate the experimental model, fracture resistance in both groups was evaluated by determining the ultimate force to fracture (UFF) under diametral tensile stress. Analysis of variance (ANOVA) revealed a statistically significant difference between the mean values of UFF for both groups, independently of the sampling location or subject. In a following setting, the hypothesis that obturation with gutta percha (GP), mineral trioxide aggregate (MTA), or calcium phosphate bone cement (CPBC) reinforces the hollow bone samples was investigated. Obturation resulted in a significant reinforcement for all materials, but the degree of reinforcement depended on the material. The experimental model appeared to be suitable for in vitro investigation of reinforcement and fracture resistance in a standardized way.
Long-range transport and universality classes in in vitro viral infection spread
NASA Astrophysics Data System (ADS)
Manrubia, S. C.; García-Arriaza, J.; Domingo, E.; Escarmís, C.
2006-05-01
Dispersal mechanisms play a main role in the dynamics of infection spread. Recent experimental results with in vitro infections of foot-and-mouth disease virus reveal that the time needed for the virus to kill a cellular monolayer depends qualitatively on the number of viral particles required to initiate infection in a susceptible cell. A two-dimensional susceptible-infected-removed (SIR) model based on the experimental setting agrees with the observations only when viral particles are subject to long-range transport. Numerical and analytical results show that this long-range transport plays a role when a single particle causes infection, while it is inefficient when complementation between two or more particles is necessary.
Improving the physiological realism of experimental models
Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.
2016-01-01
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507
NASA Astrophysics Data System (ADS)
Catig, G. C.; Figueroa, S.; Moore, M. J.
2015-08-01
Ojective. Axons are guided toward desired targets through a series of choice points that they navigate by sensing cues in the cellular environment. A better understanding of how microenvironmental factors influence neurite growth during development can inform strategies to address nerve injury. Therefore, there is a need for biomimetic models to systematically investigate the influence of guidance cues at such choice points. Approach. We ran an adapted in silico biased turning axon growth model under the influence of nerve growth factor (NGF) and compared the results to corresponding in vitro experiments. We examined if growth simulations were predictive of neurite population behavior at a choice point. We used a biphasic micropatterned hydrogel system consisting of an outer cell restrictive mold that enclosed a bifurcated cell permissive region and placed a well near a bifurcating end to allow proteins to diffuse and form a gradient. Experimental diffusion profiles in these constructs were used to validate a diffusion computational model that utilized experimentally measured diffusion coefficients in hydrogels. The computational diffusion model was then used to establish defined soluble gradients within the permissive region of the hydrogels and maintain the profiles in physiological ranges for an extended period of time. Computational diffusion profiles informed the neurite growth model, which was compared with neurite growth experiments in the bifurcating hydrogel constructs. Main results. Results indicated that when applied to the constrained choice point geometry, the biased turning model predicted experimental behavior closely. Results for both simulated and in vitro neurite growth studies showed a significant chemoattractive response toward the bifurcated end containing an NGF gradient compared to the control, though some neurites were found in the end with no NGF gradient. Significance. The integrated model of neurite growth we describe will allow comparison of experimental studies against growth cone guidance computational models applied to axon pathfinding at choice points.
Evaluation of suture material characteristics in an in vitro experimental model.
Justan, I
2010-01-01
The purpose of our study was to indentify the mechanical characteristics of various suture materials. We created an in-vitro experimental flexor tendon model. Materials were divided into four groups: monofilament polypropylene non-absorbable material (group 1); monofilament long-term absorbable material (group 2); polyester multifilament non-absorbable coated material (group 3) and polyester multifilament non-absorbable uncoated material (group 4). We performed 135 tests. The mean maximal tensile strength was 62.92 N in group 1, 75.20 N in group 2, 36.38 N in group 3 and 72.4 N in group 4. Elasticity in millimetres was adjusted at the 35N level: group 1:2.01 mm, group 2:2.18 mm, group 3:2.14 and group 4:1.51 mm. With regard to its elasticity and favourable SD for tensile strength measurements, polyester multifilament non-absorbable uncoated material was considered to be the most suitable material.
In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.
Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko
2013-06-01
The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.
Bonifazi, Paolo; Difato, Francesco; Massobrio, Paolo; Breschi, Gian L; Pasquale, Valentina; Levi, Timothée; Goldin, Miri; Bornat, Yannick; Tedesco, Mariateresa; Bisio, Marta; Kanner, Sivan; Galron, Ronit; Tessadori, Jacopo; Taverna, Stefano; Chiappalone, Michela
2013-01-01
Brain-machine interfaces (BMI) were born to control "actions from thoughts" in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI-a neuromorphic chip for brain repair-to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary "bottom-up" approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of "finite size networks" which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented.
Chemotherapy in heterogeneous cultures of cancer cells with interconversion
NASA Astrophysics Data System (ADS)
Dilão, Rui
2015-02-01
Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data.
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-21
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
NASA Astrophysics Data System (ADS)
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-01
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh
2018-02-01
In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.
Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo
2015-10-18
Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks.
Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo
2015-01-01
Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks. PMID:26554533
Cheng, Weixiao; Ng, Carla A
2017-09-05
Physiologically based pharmacokinetic (PBPK) modeling is a powerful in silico tool that can be used to simulate the toxicokinetics and tissue distribution of xenobiotic substances, such as perfluorooctanoic acid (PFOA), in organisms. However, most existing PBPK models have been based on the flow-limited assumption and largely rely on in vivo data for parametrization. In this study, we propose a permeability-limited PBPK model to estimate the toxicokinetics and tissue distribution of PFOA in male rats. Our model considers the cellular uptake and efflux of PFOA via both passive diffusion and transport facilitated by various membrane transporters, association with serum albumin in circulatory and extracellular spaces, and association with intracellular proteins in liver and kidney. Model performance is assessed using seven experimental data sets extracted from three different studies. Comparing model predictions with these experimental data, our model successfully predicts the toxicokinetics and tissue distribution of PFOA in rats following exposure via both IV and oral routes. More importantly, rather than requiring in vivo data fitting, all PFOA-related parameters were obtained from in vitro assays. Our model thus provides an effective framework to test in vitro-in vivo extrapolation and holds great promise for predicting toxicokinetics of per- and polyfluorinated alkyl substances in humans.
Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products.
Weisser, Karin; Stübler, Sabine; Matheis, Walter; Huisinga, Wilhelm
2017-08-01
As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously re-evaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
2011-01-01
Background Vaginal candidiasis is a frequent and common distressing disease affecting up to 75% of the women of fertile age; most of these women have recurrent episodes. Essential oils from aromatic plants have been shown to have antimicrobial and antifungal activities. This study was aimed at assessing the anti-fungal activity of essential oil from Mentha suaveolens (EOMS) in an experimental infection of vaginal candidiasis. Methods The in vitro and in vivo activity of EOMS was assessed. The in vitro activity was evaluated under standard CLSI methods, and the in vivo analysis was carried out by exploiting a novel, non-invasive model of vaginal candidiasis in mice based on an in vivo imaging technique. Differences between essential oil treated and saline treated mice were evaluated by the non-parametric Mann-Whitney U-test. Viable count data from a time kill assay and yeast and hyphae survival test were compared using the Student's t-test (two-tailed). Results Our main findings were: i) EOMS shows potent candidastatic and candidacidal activity in an in vitro experimental system; ii) EOMS gives a degree of protection against vaginal candidiasis in an in vivo experimental system. Conclusions This study shows for the first time that the essential oil of a Moroccan plant Mentha suaveolens is candidastatic and candidacidal in vitro, and has a degree of anticandidal activity in a model of vaginal infection, as demonstrated in an in vivo monitoring imaging system. We conclude that our findings lay the ground for further, more extensive investigations to identify the active EOMS component(s), promising in the therapeutically problematic setting of chronic vaginal candidiasis in humans. PMID:21356078
Modeling RNA interference in mammalian cells
2011-01-01
Background RNA interference (RNAi) is a regulatory cellular process that controls post-transcriptional gene silencing. During RNAi double-stranded RNA (dsRNA) induces sequence-specific degradation of homologous mRNA via the generation of smaller dsRNA oligomers of length between 21-23nt (siRNAs). siRNAs are then loaded onto the RNA-Induced Silencing multiprotein Complex (RISC), which uses the siRNA antisense strand to specifically recognize mRNA species which exhibit a complementary sequence. Once the siRNA loaded-RISC binds the target mRNA, the mRNA is cleaved and degraded, and the siRNA loaded-RISC can degrade additional mRNA molecules. Despite the widespread use of siRNAs for gene silencing, and the importance of dosage for its efficiency and to avoid off target effects, none of the numerous mathematical models proposed in literature was validated to quantitatively capture the effects of RNAi on the target mRNA degradation for different concentrations of siRNAs. Here, we address this pressing open problem performing in vitro experiments of RNAi in mammalian cells and testing and comparing different mathematical models fitting experimental data to in-silico generated data. We performed in vitro experiments in human and hamster cell lines constitutively expressing respectively EGFP protein or tTA protein, measuring both mRNA levels, by quantitative Real-Time PCR, and protein levels, by FACS analysis, for a large range of concentrations of siRNA oligomers. Results We tested and validated four different mathematical models of RNA interference by quantitatively fitting models' parameters to best capture the in vitro experimental data. We show that a simple Hill kinetic model is the most efficient way to model RNA interference. Our experimental and modeling findings clearly show that the RNAi-mediated degradation of mRNA is subject to saturation effects. Conclusions Our model has a simple mathematical form, amenable to analytical investigations and a small set of parameters with an intuitive physical meaning, that makes it a unique and reliable mathematical tool. The findings here presented will be a useful instrument for better understanding RNAi biology and as modelling tool in Systems and Synthetic Biology. PMID:21272352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doinikov, Alexander A., E-mail: doinikov@bsu.by; Bouakaz, Ayache; Sheeran, Paul S.
2014-10-15
Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFCmore » droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the simulated and experimental results are compared. These errors were found to be in the ranges of 0.043–0.067 and 0.037–0.088 for OFP and DFB droplets, respectively. These values allow one to consider agreement between the simulated and experimental results as good. This agreement is attained by varying only 2 of 16 model parameters which describe the material properties of gaseous and liquid PFCs and the liquid surrounding the PFC droplet. The fitting parameters are the viscosity and the surface tension of the surrounding liquid. All other model parameters are kept invariable. Conclusions: The good agreement between the theoretical and experimental results suggests that the developed model is able to correctly describe the key physical processes underlying the vaporization dynamics of volatile PFC droplets. The necessity of varying the parameters of the surrounding liquid for fitting the experimental curves can be explained by the fact that the parts of the initial phospholipid shell of PFC droplets remain on the surface of vapor bubbles at the oscillatory stage and their presence affects the bubble dynamics.« less
2010-01-01
Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529
Liebl, Hans; Garcia, Eduardo Grande; Holzner, Fabian; Noel, Peter B.; Burgkart, Rainer; Rummeny, Ernst J.; Baum, Thomas; Bauer, Jan S.
2015-01-01
Purpose To experimentally validate a non-linear finite element analysis (FEA) modeling approach assessing in-vitro fracture risk at the proximal femur and to transfer the method to standard in-vivo multi-detector computed tomography (MDCT) data of the hip aiming to predict additional hip fracture risk in subjects with and without osteoporosis associated vertebral fractures using bone mineral density (BMD) measurements as gold standard. Methods One fresh-frozen human femur specimen was mechanically tested and fractured simulating stance and clinically relevant fall loading configurations to the hip. After experimental in-vitro validation, the FEA simulation protocol was transferred to standard contrast-enhanced in-vivo MDCT images to calculate individual hip fracture risk each for 4 subjects with and without a history of osteoporotic vertebral fractures matched by age and gender. In addition, FEA based risk factor calculations were compared to manual femoral BMD measurements of all subjects. Results In-vitro simulations showed good correlation with the experimentally measured strains both in stance (R2 = 0.963) and fall configuration (R2 = 0.976). The simulated maximum stress overestimated the experimental failure load (4743 N) by 14.7% (5440 N) while the simulated maximum strain overestimated by 4.7% (4968 N). The simulated failed elements coincided precisely with the experimentally determined fracture locations. BMD measurements in subjects with a history of osteoporotic vertebral fractures did not differ significantly from subjects without fragility fractures (femoral head: p = 0.989; femoral neck: p = 0.366), but showed higher FEA based risk factors for additional incident hip fractures (p = 0.028). Conclusion FEA simulations were successfully validated by elastic and destructive in-vitro experiments. In the subsequent in-vivo analyses, MDCT based FEA based risk factor differences for additional hip fractures were not mirrored by according BMD measurements. Our data suggests, that MDCT derived FEA models may assess bone strength more accurately than BMD measurements alone, providing a valuable in-vivo fracture risk assessment tool. PMID:25723187
Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Murakami, Takashi; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Hoffman, Robert M
2017-03-01
We have previously reported that caffeine can enhance chemotherapy efficacy of bone and soft tissue sarcoma via cell-cycle perturbation. Valproic acid has histone deacetylase (HDAC) inhibitory activity. We have also reported the anti-tumor efficacy of combination treatment with caffeine and valproic acid against osteosarcoma primary tumors in a cell-line orthotopic mouse model. In this study, we performed combination treatment of caffeine and valproic acid on osteosarcoma cell lines in vitro and in spontaneous and experimental lung metastasis mouse models of osteosarcoma. Survival of 143B-RFP human osteosarcoma cells after exposure to caffeine and valproic acid for 72 hours was determined using the WST-8 assay. IC 50 values and combination indices were calculated. Mouse models of primary osteosarcoma and spontaneous lung metastasis were obtained by orthotopic intra-tibial injection of 143B-RFP cells. Valproic acid, caffeine, and combination of both drugs were administered from day 7, five times a week, for four weeks. Six weeks after orthotopic injection, lung samples were excised and observed with a fluorescence imaging system. A mouse model of experimental lung metastasis was obtained by tail vein injection of 143B-RFP cells. The mice were treated with these agents from day 0, five times a week for four weeks. Both caffeine and valproic acid caused concentration-dependent cell kill in vitro. Synergistic efficacy of the combination treatment was observed. In the spontaneous lung-metastasis model, the number of lung metastasis was 9.0±2.6 in the untreated group (G1); 10.8±2.9 in the caffeine group (G2); 10.0±3.1 in the valproic-acid group (G3); and 3.0±1.1 in the combination group (G4); (p=6.78E-5 control vs. combination; p=0.006 valproic acid vs. combination; p=0.003 caffeine vs. combination). In the experimental lung-metastasis model, the combination group significantly reduced lung metastases and improved overall survival (p=0.0005). Efficacy of the combination of caffeine and valproic acid was observed in vitro and in spontaneous and experimental lung-metastasis mouse models of osteosarcoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Murphy, M; Bernard, E M; Ishimaru, T; Armstrong, D
1997-01-01
Voriconazole, a new azole antifungal agent, showed potent activity against clinical isolates of Aspergillus spp. in vitro. For A. fumigatus, the MIC range was < 0.03 to 0.5 microgram/ml and the MIC at which 90% of isolates are inhibited was 0.25 microgram/ml. In an experimental model of invasive pulmonary aspergillosis which mimics infection in humans, oral voriconazole at dosages of 30 mg/kg of body weight per day significantly delayed or prevented mortality. PMID:9056016
Alzheimer’s Disease: Experimental Models and Reality
Drummond, Eleanor
2017-01-01
Experimental models of Alzheimer’s disease (AD) are critical to gaining a better understanding of pathogenesis and to assess the potential of novel therapeutic approaches. The most commonly used experimental animal models are transgenic mice that overexpress human genes associated with familial AD (FAD) that result in the formation of amyloid plaques. However, AD is defined by the presence and interplay of both amyloid plaques and neurofibrillary tangle pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. A greater understanding of the strengths and weakness of each of the various models and the use of more than one model to evaluate potential therapies would help enhance the success of therapy translation from preclinical studies to patients. In this review we summarize the pathological features and limitations of the major experimental models of AD including transgenic mice, transgenic rats, various physiological models of sporadic AD and in vitro human cell culture models. PMID:28025715
Zhang, Xiuqing; Liu, Ting; Fan, Xiaohui; Ai, Ni
2017-08-01
In silico modeling of blood-brain barrier (BBB) permeability plays an important role in early discovery of central nervous system (CNS) drugs due to its high-throughput and cost-effectiveness. Natural products (NP) have demonstrated considerable therapeutic efficacy against several CNS diseases. However, BBB permeation property of NP is scarcely evaluated both experimentally and computationally. It is well accepted that significant difference in chemical spaces exists between NP and synthetic drugs, which calls into doubt on suitability of available synthetic chemical based BBB permeability models for the evaluation of NP. Herein poor discriminative performance on BBB permeability of NP are first confirmed using internal constructed and previously published drug-derived computational models, which warrants the need for NP-oriented modeling. Then a quantitative structure-property relationship (QSPR) study on a NP dataset was carried out using four different machine learning methods including support vector machine, random forest, Naïve Bayes and probabilistic neural network with 67 selected features. The final consensus model was obtained with approximate 90% overall accuracy for the cross-validation study, which is further taken to predict passive BBB permeability of a large dataset consisting of over 10,000 compounds from traditional Chinese medicine (TCM). For 32 selected TCM molecules, their predicted BBB permeability were evaluated by in vitro parallel artificial membrane permeability assay and overall accuracy for in vitro experimental validation is around 81%. Interestingly, our in silico model successfully predicted different BBB permeation potentials of parent molecules and their known in vivo metabolites. Finally, we found that the lipophilicity, the number of hydrogen bonds and molecular polarity were important molecular determinants for BBB permeability of NP. Our results suggest that the consensus model proposed in current work is a reliable tool for prioritizing potential CNS active NP across the BBB, which would accelerate their development and provide more understanding on their mechanisms, especially those with pharmacologically active metabolites. Copyright © 2017 Elsevier Inc. All rights reserved.
Antas, Paulo R Z; Brito, Marcelly M S; Peixoto, Érika; Ponte, Carlos G G; Borba, Cíntia M
2012-01-01
Paecilomyces lilacinus is an emerging pathogenic fungus that can cause different clinical manifestations ranging from cutaneous and sub-cutaneous infections to severe oculomycosis. This review discusses infections caused by P. lilacinus, as well as their symptoms and correlates of immune responses, morphological characteristics of the fungus, therapies, in vitro susceptibility tests, laboratory diagnosis and the experimental models available. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Thabet, Ahmed; Zhang, Runhui; Alnassan, Alaa-Aldin; Daugschies, Arwid; Bangoura, Berit
2017-01-15
Availability of an accurate in vitro assay is a crucial demand to determine sensitivity of Eimeria spp. field strains toward anticoccidials routinely. In this study we tested in vitro models of Eimeria tenella using various polyether ionophores (monensin, salinomycin, maduramicin, and lasalocid) and toltrazuril. Minimum inhibitory concentrations (MIC 95 , MIC 50/95 ) for the tested anticoccidials were defined based on a susceptible reference (Houghton strain), Ref-1. In vitro sporozoite invasion inhibition assay (SIA) and reproduction inhibition assay (RIA) were applied on sensitive laboratory (Ref-1 and Ref-2) and field (FS-1, FS-2, and FS-3) strains to calculate percent of inhibition under exposure of these strains to the various anticoccidials (%I SIA and%I RIA, respectively). The in vitro data were related to oocyst excretion, lesion scores, performance, and global resistance indices (GI) assessed in experimentally infected chickens. Polyether ionophores applied in the RIA were highly effective at MIC 95 against Ref-1 and Ref-2 (%I RIA ≥95%). In contrast, all tested field strains displayed reduced to low efficacy (%I RIA <95%).%I RIA values significantly correlated with oocyst excretion determined in the animal model (p<0.01) for polyether ionophores. However, this relationship could not be demonstrated for toltrazuril due to unexpected lack of in vitro sensitivity in Ref-2 (%I RIA =56.1%). In infected chickens, toltrazuril was generally effective (GI>89%) against all strains used in this study. However, adjusted GI (GI adj ) for toltrazuril-treated groups exhibited differences between reference and field strains which might indicate varying sensitivity. RIA is a suitable in vitro tool to detect sensitivity of E. tenella towards polyether ionophores, and may thus help to reduce, replace, or refine use of animal experimentation for in vivo sensitivity assays. Copyright © 2016 Elsevier B.V. All rights reserved.
Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.
2016-01-01
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052
Morin, Jean-Paul; Hasson, Virginie; Fall, Mamadou; Papaioanou, Eleni; Preterre, David; Gouriou, Frantz; Keravec, Veronika; Konstandopoulos, Athanasios; Dionnet, Frédéric
2008-06-01
Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.
Evaluation of a ureteral catheter coating by means of a BioEncrustation in vitro model.
Frant, M; Dayyoub, E; Bakowsky, U; Liefeith, K
2018-05-09
Biomaterials for applications in the urinary tract are challenged with both biofilm formation and encrustation, two highly interconnected processes. While great effort has been achieved developing promising materials there is only a limited choice of sophisticated in vitro models that are available to analyse the performance of biomaterials prior to performing delicate and expensive in vivo studies. In this study we present a complex BioEncrustation model that imitates both the processes of multi-species biofilm formation and encrustation in vitro. The resulting crystalline biofilms are compared to the deposits found on explanted ureteral stent surfaces (in vivo situation) and to deposits formed in an experimental set up that does not contain bacteria (Encrustator ® ). Further focus of this study is dedicated to employing the developed BioEncrustation model to evaluate the effect multifunctional coatings impose on the processes of biofilm formation and encrustation under in vitro conditions. The investigated TANP coating combines unspecific and broad band specific antibacterial properties with a degrading polymer matrix that is intended to inhibit crystal formation. The coating was prepared on both polyurethane and silicone tubes and the subsequent results of the in vitro BioEncrustation analyses reveal a promising potential for employing the coating to render ureteral stent surfaces more biocompatible. Copyright © 2018 Elsevier B.V. All rights reserved.
Bioreactor Technologies to Support Liver Function In Vitro
Ebrahimkhani, Mohammad R; Neiman, Jaclyn A Shepard; Raredon, Micah Sam B; Hughes, David J; Griffith, Linda G
2014-01-01
Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drive efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models. PMID:24607703
In vitro experimental investigation of voice production
Horáčcek, Jaromír; Brücker, Christoph; Becker, Stefan
2012-01-01
The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied. PMID:23181007
Cárdenas, Walter HZ; Mamani, Javier B; Sibov, Tatiana T; Caous, Cristofer A; Amaro, Edson; Gamarra, Lionel F
2012-01-01
Background Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium. Methods Finite difference methods and the Crank–Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging. Results Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results. Conclusion These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes. PMID:22745539
Jain, Harsh; Jackson, Trachette
2018-05-01
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.
Bagbanci, Sahin
2017-05-01
To evaluate the durability differences between five different type of guidewires against laser energy in an in vitro experimental ureteral model. The study was performed at the Department of Urology, Medicine Faculty of Ahi Evran University. An in vitro experimental ureteral model was created for the work; a silicon ureteral model in a saline-filled container. Experiments were performed on five different type of guidewires; ZIPwire, Sensor polytetrafluoroethylene (PTFE) Nitinol guidewire, Roadrunner ® PC wire guide, Amplatz Super Stiff, and Zebra Urologic Guidewire. These guidewires were grouped from one to five, respectively. Laser fibers were contacted to the guidewire, and laser energy was fired to the premarked tip and body parts in different adjustments. The breakage of the guidewires was detected only on the flexible tip parts in group 1a, group 1b, group 2a, group 2b, group 4a, and group 4b. The body parts of the guidewires were resistant to laser energy in all groups and did not break. The breakage of the guidewires occurred after 3 J × 10 Hz (30 W) experiment. Group 1a and 1b were different from group 2a, 2b, 4a, and 4b according to Kruskal-Wallis H test. The body parts of the guidewires in all study groups were resistant to laser energy. The tip parts of Zipwire ™ , Sensor ™ PTFE Nitinol, and Amplatz Super Stiff ™ guidewire should be kept away from the surgical field when the high power settings of the laser are being used. The body parts of the guidewires can be utilized in the surgical field safely.
Sy, S K B; Derendorf, H
2017-07-29
A β-lactamase inhibitor (BLI) confers susceptibility of β-lactamase-expressing multidrug resistant (MDR) organisms to the partnering β-lactam (BL). To discuss the experimental design and modelling strategies for two-drug combinations, using ceftazidime- and aztreonam-avibactam combinations, as examples. The information came from several publications on avibactam in vitro time-kill studies and corresponding pharmacodynamic models. The experimental design to optimally gather crucial information from constant-concentration time-kill studies is to use an agile matrix of two-drug concentration combinations that cover 0.25- to 4-fold BL minimum inhibitory concentration (MIC) relative to the BLI concentrations to be tested against the particular isolate. This shifting agile design can save substantial costs and resources, without sacrificing crucial information needed for model development. The complex synergistic BL/BLI interaction is quantitatively explored using a semi-mechanistic pharmacokinetic-pharmacodynamic (PK/PD) mathematical model that accounts for antimicrobial activities in the combination, bacteria-mediated BL degradation and inhibition of BL degradation by BLI. A predictive mathematical formulation for the two-drug killing effects preserves the correlation between the model-derived EC 50 of BL and the BL MIC. The predictive value of PK/PD model is evaluated against external data that were not used for model development, including but not limited to in vitro hollow fibre and in vivo murine infection models. As a framework for translational predictions, the goal of this modelling strategy is to significantly decrease the decision-making time by running clinical trial simulations with MIC-substituted EC 50 function for isolates of comparable susceptibility through established correlation between BL MIC and EC 50 values. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs.
Santo, Vítor E; Rebelo, Sofia P; Estrada, Marta F; Alves, Paula M; Boghaert, Erwin; Brito, Catarina
2017-01-01
There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Models of Ocular Infection with Toxoplasma Gondii
Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver
2015-01-01
Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018
Determination of replicate composite bone material properties using modal analysis.
Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander
2017-02-01
Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway
NASA Astrophysics Data System (ADS)
Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun
2016-12-01
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.
Fraser, Keith; Bruckner, Dylan M; Dordick, Jonathan S
2018-06-18
Adverse drug reactions, particularly those that result in drug-induced liver injury (DILI), are a major cause of drug failure in clinical trials and drug withdrawals. Hepatotoxicity-mediated drug attrition occurs despite substantial investments of time and money in developing cellular assays, animal models, and computational models to predict its occurrence in humans. Underperformance in predicting hepatotoxicity associated with drugs and drug candidates has been attributed to existing gaps in our understanding of the mechanisms involved in driving hepatic injury after these compounds perfuse and are metabolized by the liver. Herein we assess in vitro, in vivo (animal), and in silico strategies used to develop predictive DILI models. We address the effectiveness of several two- and three-dimensional in vitro cellular methods that are frequently employed in hepatotoxicity screens and how they can be used to predict DILI in humans. We also explore how humanized animal models can recapitulate human drug metabolic profiles and associated liver injury. Finally, we highlight the maturation of computational methods for predicting hepatotoxicity, the untapped potential of artificial intelligence for improving in silico DILI screens, and how knowledge acquired from these predictions can shape the refinement of experimental methods.
A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.
Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A
2013-01-01
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.
Modeling tuberculosis pathogenesis through ex vivo lung tissue infection.
Carranza-Rosales, Pilar; Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Lozano-Garza, Gerardo; Villarreal-Treviño, Licet; Molina-Torres, Carmen; Villarreal, Javier Vargas; Vera-Cabrera, Lucio; Castro-Garza, Jorge
2017-12-01
Tuberculosis (TB) is one of the top 10 causes of death worldwide. Several in vitro and in vivo experimental models have been used to study TB pathogenesis and induction of immune response during Mycobacterium tuberculosis infection. Precision cut lung tissue slices (PCLTS) is an experimental model, in which all the usual cell types of the organ are found, the tissue architecture and the interactions amongst the different cells are maintained. PCLTS in good physiological conditions, monitored by MTT assay and histology, were infected with either virulent Mycobacterium tuberculosis strain H37Rv or the TB vaccine strain Mycobacterium bovis BCG. Histological analysis showed that bacilli infecting lung tissue slices were observed in the alveolar septa, alveolar light spaces, near to type II pneumocytes, and inside macrophages. Mycobacterial infection of PCLTS induced TNF-α production, which is consistent with previous M. tuberculosis in vitro and in vivo studies. This is the first report of using PCLTS as a system to study M. tuberculosis infection. The PCLTS model provides a useful tool to evaluate the innate immune responses and other aspects during the early stages of mycobacterial infection. Copyright © 2017. Published by Elsevier Ltd.
Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C
2015-01-01
Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.
Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C
2015-01-01
Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408
Henriquez, Nico V; Forshew, Tim; Tatevossian, Ruth; Ellis, Matthew; Richard-Loendt, Angela; Rogers, Hazel; Jacques, Thomas S; Reitboeck, Pablo Garcia; Pearce, Kerra; Sheer, Denise; Grundy, Richard G; Brandner, Sebastian
2013-09-15
Brain tumors are thought to originate from stem/progenitor cell populations that acquire specific genetic mutations. Although current preclinical models have relevance to human pathogenesis, most do not recapitulate the histogenesis of the human disease. Recently, a large series of human gliomas and medulloblastomas were analyzed for genetic signatures of prognosis and therapeutic response. Using a mouse model system that generates three distinct types of intrinsic brain tumors, we correlated RNA and protein expression levels with human brain tumors. A combination of genetic mutations and cellular environment during tumor propagation defined the incidence and phenotype of intrinsic murine tumors. Importantly, in vitro passage of cancer stem cells uniformly promoted a glial expression profile in culture and in brain tumors. Gene expression profiling revealed that experimental gliomas corresponded to distinct subclasses of human glioblastoma, whereas experimental supratentorial primitive neuroectodermal tumors (sPNET) correspond to atypical teratoid/rhabdoid tumor (AT/RT), a rare childhood tumor. ©2013 AACR.
Healy, Sinead; McMahon, Jill M; FitzGerald, Una
2017-11-01
Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Panax notoginseng saponins (PNS) inhibits breast cancer metastasis.
Wang, Peiwei; Cui, Jingang; Du, Xiaoye; Yang, Qinbo; Jia, Chenglin; Xiong, Minqi; Yu, Xintong; Li, Li; Wang, Wenjian; Chen, Yu; Zhang, Teng
2014-07-03
Panax notoginseng (Burkill) F.H. Chen (Araliaceae) has been extensively used as a therapeutic agent to treat a variety of diseases. Panax notoginseng saponins (PNS) consist of major therapeutically active components of Panax notoginseng. PNS inhibit the growth of a variety of tumor cells in vitro and in vivo. The aim of the study is to investigate the effects and underlying mechanisms of PNS on breast cancer metastasis. 4T1 cell, a highly metastatic mouse breast carcinoma cell line, was utilized for in vitro and in vivo assays. In vitro assays were first performed to examine the effects of PNS on 4T1 cell viability, migration and invasion, respectively. Real-time PCR analyses were also performed to examine the effects of PNS on the expression of genes associated with tumor metastasis. The effect of PNS on 4T1 tumor cell metastasis was further assessed in spontaneous and experimental metastasis models in vivo. PNS treatment exhibited a dose-dependent effect on impairing 4T1 cell viability in vitro. However, when examined at a lower dose that did not affect cell viability, the migration and invasion of 4T1 cell was remarkably inhibited in vitro. Meanwhile, PNS treatment led to upregulated expression of genes known to inhibit metastasis and downregulated expression of genes promoting metastasis in cultured 4T1 cells. These results suggested a selective effect of PNS on 4T1 migration and invasion. This hypothesis was further addressed in 4T1 metastasis models in vivo. The results showed that the lung metastasis was significantly inhibited by PNS treatment in both spontaneous and experimental metastasis models. Taken together, our results demonstrated an inhibitory effect of PNS on 4T1 tumor metastasis, warranting further evaluation of PNS as a therapeutic agent for treating breast cancer metastasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review.
García, Y; Díaz-Castro, J
2013-10-01
Iron deficiency is the most common nutritional deficiency in the world. Special molecules have evolved for iron acquisition, transport and storage in soluble, nontoxic forms. Studies about the effects of iron on health are focused on iron metabolism or nutrition to prevent or treat iron deficiency and anemia. These studies are focused in two main aspects: (1) basic studies to elucidate iron metabolism and (2) nutritional studies to evaluate the efficacy of iron supplementation to prevent or treat iron deficiency and anemia. This paper reviews the advantages and disadvantages of the experimental models commonly used as well as the methods that are more used in studies related to iron. In vitro studies have used different parts of the gut. In vivo studies are done in humans and animals such as mice, rats, pigs and monkeys. Iron metabolism is a complex process that includes interactions at the systemic level. In vitro studies, despite physiological differences to humans, are useful to increase knowledge related to this essential micronutrient. Isotopic techniques are the most recommended in studies related to iron, but their high cost and required logistic, making them difficult to use. The depletion-repletion of hemoglobin is a method commonly used in animal studies. Three depletion-repletion techniques are mostly used: hemoglobin regeneration efficiency, relative biological values (RBV) and metabolic balance, which are official methods of the association of official analytical chemists. These techniques are well-validated to be used as studies related to iron and their results can be extrapolated to humans. Knowledge about the main advantages and disadvantages of the in vitro and animal models, and methods used in these studies, could increase confidence of researchers in the experimental results with less costs.
Lim, Sun Woo; Doh, Kyoung Chan; Jin, Long; Piao, Shang Guo; Heo, Seong Beom; Zheng, Yu Fen; Bae, Soo Kyung; Chung, Byung Ha; Yang, Chul Woo
2013-01-01
Background This study was performed to investigate whether ginseng has a protective effect in an experimental mouse model of cyclosporine-induced pancreatic injury. Methods Mice were treated with cyclosporine (30 mg/kg/day, subcutaneously) and Korean red ginseng extract (0.2 or 0.4 g/kg/day, oral gavage) for 4 weeks while on a 0.01% salt diet. The effect of ginseng on cyclosporine-induced pancreatic islet dysfunction was investigated by an intraperitoneal glucose tolerance test and measurements of serum insulin level, β cell area, macrophage infiltration, and apoptosis. Using an in vitro model, we further examined the effect of ginseng on a cyclosporine-treated insulin-secreting cell line. Oxidative stress was measured by the concentration of 8-hydroxy-2′-deoxyguanosine in serum, tissue sections, and culture media. Results Four weeks of cyclosporine treatment increased blood glucose levels and decreased insulin levels, but cotreatment with ginseng ameliorated the cyclosporine-induced glucose intolerance and hyperglycemia. Pancreatic β cell area was also greater with ginseng cotreatment compared with cyclosporine monotherapy. The production of proinflammatory molecules, such as induced nitric oxide synthase and cytokines, and the level of apoptotic cell death also decreased in pancreatic β cell with ginseng treatment. Consistent with the in vivo results, the in vitro study showed that the addition of ginseng protected against cyclosporine-induced cytotoxicity, inflammation, and apoptotic cell death. These in vivo and in vitro changes were accompanied by decreases in the levels of 8-hydroxy-2′-deoxyguanosine in pancreatic β cell in tissue section, serum, and culture media during cotreatment of ginseng with cyclosporine. Conclusions The results of our in vivo and in vitro studies demonstrate that ginseng has a protective effect against cyclosporine-induced pancreatic β cell injury via reducing oxidative stress. PMID:24009697
NASA Astrophysics Data System (ADS)
Volova, Larissa
One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.
Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V
2012-03-01
The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities. Copyright © 2010 Elsevier GmbH. All rights reserved.
Foligné, Benoît; Dewulf, Joëlle; Vandekerckove, Pascal; Pignède, Georges; Pot, Bruno
2010-01-01
AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice. METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70, IL-10, tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains. A murine model of acute 2-4-6-trinitrobenzene sulfonic acid (TNBS)-colitis was next used to evaluate the distinct prophylactic protective capacities of three yeast strains compared with the performance of prednisolone treatment. RESULTS: The six yeast strains all showed similar non-discriminating anti-inflammatory potential when tested on immunocompetent cells in vitro. However, although they exhibited similar colonization patterns in vivo, some yeast strains showed significant anti-inflammatory activities in the TNBS-induced colitis model, whereas others had weaker or no preventive effect at all, as evidenced by colitis markers (body-weight loss, macroscopic and histological scores, myeloperoxidase activities and blood inflammatory markers). CONCLUSION: A careful selection of strains is required among the biodiversity of yeasts for specific clinical studies, including applications in inflammatory bowel disease and other therapeutic uses. PMID:20440854
Brandon, Esther F A; Oomen, Agnes G; Rompelberg, Cathy J M; Versantvoort, Carolien H M; van Engelen, Jacqueline G M; Sips, Adrienne J A M
2006-03-01
This paper describes the applicability of in vitro digestion models as a tool for consumer products in (ad hoc) risk assessment. In current risk assessment, oral bioavailability from a specific product is considered to be equal to bioavailability found in toxicity studies in which contaminants are usually ingested via liquids or food matrices. To become bioavailable, contaminants must first be released from the product during the digestion process (i.e. become bioaccessible). Contaminants in consumer products may be less bioaccessible than contaminants in liquid or food. Therefore, the actual risk after oral exposure could be overestimated. This paper describes the applicability of a simple, reliable, fast and relatively inexpensive in vitro method for determining the bioaccessibility of a contaminant from a consumer product. Different models, representing sucking and/or swallowing were developed. The experimental design of each model can be adjusted to the appropriate exposure scenarios as determined by the risk assessor. Several contaminated consumer products were tested in the various models. Although relevant in vivo data are scare, we succeeded to preliminary validate the model for one case. This case showed good correlation and never underestimated the bioavailability. However, validation check needs to be continued.
Jabłońska-Trypuć, Agata; Wołejko, Elżbieta; Wydro, Urszula; Butarewicz, Andrzej
2017-07-03
Pesticides cause serious environmental and health problems both to humans and animals. The aim of this review is to discuss selected herbicides and fungicides regarding their mode of action and their influence on basic oxidative stress parameters and endocrine disruption properties tested in selected cell cultures in vitro. Because of numerous difficulties which animal studies are subject to, cell cultures are an excellent experimental model reflecting human exposure to different pesticides through all relevant routes. This experimental model can be used to monitor aggregate and cumulative pesticide exposures.
Protective activity of Lentinan in experimental tuberculosis.
Markova, Nadya; Kussovski, Vesselin; Drandarska, Ivanka; Nikolaeva, Sascha; Georgieva, Neli; Radoucheva, Tatyana
2003-10-01
Protective effects of Lentinan (Ajinomoto, Japan) against Mycobacterium tuberculosis infection were studied by in vitro and in vivo mouse models. The effectiveness of Lentinan administrated intraperitoneally (i.p.) before infection at a dose of 1 mg/kg three times at 2-day intervals was monitored in vivo by several parameters (body temperature; spleen weight; CFU counts of M. tuberculosis in spleen, liver and lung; and histomorphological observations). Peritoneal macrophages obtained from animals treated with Lentinan were greatly stimulated, as assayed by establishing their number, acid phosphatase activity, H2O2 production and killing ability against M. tuberculosis in vitro. The in vivo model demonstrated that administration of Lentinan before infection can mobilize host defense potential and reduce mycobacterial infection.
Preformulation experiences and in vitro model studies with spironolactone-containing suppositories.
Regdon, G; Deák, D; Regdon, G; Muskó, Z; Erös, I
2001-01-01
The optimal suppository base for the formulation of rectal suppositories containing diuretic spironolactone was selected experimentally. Model studies were carried out about the effect of solubility-increasing additives on the release of the drug from the suppositories. During the in vitro examinations acceptor phases of different pH values were used, and both diffusion time and the number of samplings were changed. Among the lipophilic and hydrophilic suppository bases studied the hydrophilic Macrogolum 1540 was found to be optimal. The release and diffusion of spironolactone was the most favourable from these suppositories. During storage these suppositories remained stable and the values of release did not decrease significantly (p < 0.05).
Zhang, Zhongshan; Wang, Xiaomei; Yu, Shuchi; Zhao, Mingxing
2011-11-01
Polysaccharides extracted from Phyllostachys edulis (Carr.) are a group of hetero polysaccharides, and their antioxidant activities were investigated employing various established in vitro systems. Available data obtained with in vitro models suggested that among the three samples, B1 (extraction with water) showed significant inhibitory effects on superoxide radical and hydroxyl radical; its reducing power was also the strongest among the three samples. These results clearly establish the possibility that polysaccharides extracted from P. edulis could be effectively employed as ingredient in health or functional food, to alleviate oxidative stress. However, comprehensive studies need to be conducted in experimental animal models. Copyright © 2011 Elsevier B.V. All rights reserved.
Testing Experimental Compounds against Leishmaniansis in Laboratory Animal Model Systems
1984-09-01
1Ox more than that tolerated by patients treated for psychiatric illness (39). In vitro phenazine methosulfate (PMS), reversibly inhibits both -DOand...mexicana amazonensis by phenazine methosulfate. Mol. Biochem. Parasitol. 10: 297-303. 41. Henriksen, T.H. and S. Lende. 1983. Treatment of diffuse cutaneous
A statistical nanomechanism of biomolecular patterning actuated by surface potential
NASA Astrophysics Data System (ADS)
Lin, Chih-Ting; Lin, Chih-Hao
2011-02-01
Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.
Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.
Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D
2014-05-01
In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available. Copyright © 2013. Published by Elsevier Ireland Ltd.
Grmaš, Jernej; Stare, Katarina; Božič, Dane; Injac, Rade; Dreu, Rok
2017-08-01
The aim of this work is to use an experimental design approach to identify and study influential formulation and delivery device properties, which can be controlled by final product manufacturer, to establish design space, within which desired in vitro performance can be reached. Combining three factors, viscosity of suspension, nozzle orifice diameter (OD), and shot weight (SW), at three levels resulted in D-optimal experimental design with 20 runs. Responses within this study were droplet size distribution (DSD) and spray pattern (SP) in vitro tests. In addition, the amount of mechanical work needed for actuation was integrated from force profiles and used as a response. Results were fit to quadratic model by regression, which allowed also for determination of second-order and interaction effects between factors. Models were further optimized by keeping significant terms only. Optimized models were used to create response surfaces and design space with confidence levels. Viscosity has a dominant effect on DSD and modest effect on SP, with lower viscosities related to generation of smaller DSD and larger SP. Orifice diameter was found to have the highest impact on SP, with larger diameter resulting in larger SP. This effect was additionally confirmed by results of Plume Geometry in vitro test. Shot weight factor exerts significant influence on all tested metrics. Work, however, did not vary greatly with suspension viscosity or orifice diameter. Shot weight is the most dominant factor for work and important for DSD having a positive effect on both responses. In the case of SP, its relationship with shot weight is described by second-order polynomial fit. Inspection of raw data revealed that density of droplets within SP area is different for different shot weights. Presented study elucidated an inherent relationship between factors and responses and established mathematical models (response surfaces) for predictive purposes to target specific in vitro performance of nasal sprays by appropriate specification of factors, taking into account control space with included risk and uncertainty analysis.
Lopes, F; Ruh, K; Combs, D K
2015-04-01
The experimental objective was to validate an in vitro model to predict total-tract neutral detergent fiber (NDF) digestibility in dairy cattle. Twenty-one diets from 7 studies conducted at University of Wisconsin-Madison were analyzed for in vitro fiber digestibility. Forages varied among diets (corn, alfalfa, tall and meadow fescue, and wheat straw silages) and nutrient composition (ranges: NDF = 22.5 to 33.8%; crude protein = 15.8 to 18.9%; nonfiber carbohydrates = 38.0 to 51.0%). Total-tract NDF digestibility (TTNDFD) observed in in vivo trials was determined using different markers as described in the individual studies. The in vitro TTNDFD model predicted total-tract fiber digestibility from the proportion of total NDF potentially digestible (pdNDF), rate of pdNDF degradation, and rate of passage of pdNDF. The model predicted TTNDFD similar to in vivo measurements. The relationship between TTNDFD measured in vivo and TTNDFD predicted by the in vitro assay was significant (R(2) = 0.68). The relationship between in vitro 30-h NDF digestibility values and in vivo total-tract NDF digestibility values was not significant, whereas in vitro 48-h NDF digestibility values were correlated (R(2) = 0.30) with in vivo TTNDFD measurements. Indigestible NDF (iNDF) showed a negative relationship (R(2) = 0.40) with TTNDFD in vivo. Each 1-percentage-unit increase of iNDF resulted in a decrease of 0.96 percentage units of total-tract NDF digestibility; however, iNDF by itself was not a good predictor of TTNDFD because of the difference among the means. This study showed that an in vitro TTNDFD model that uses iNDF, pdNDF, and rates of pdNDF digestion and passage can predict (R(2) = 0.68) total-tract NDF digestibility. Most importantly, we demonstrated the ability to predict total-tract fiber digestibility from a model based on in vitro NDF degradation, which could improve our ability to optimize forage utilization and milk production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A proposal for in vitro/GFR molecular erythema action spectrum
NASA Astrophysics Data System (ADS)
de Souza, João A. V.; Lorenzini, Fabiane; Rizzatti, Mara R.
2008-08-01
We propose an erythema action spectrum based on experimental molecular measurements named molecular erythema action spectrum or in vitro/GFR, where the acronym GFR represents our research group name, Grupo de Física das Radiaçöes. The in vitro methodology was developed by using a derma tissue simulator (TSD), as a radiation protection shield, and monochromatic ultraviolet (UV) sources of 254, 310, 365, 380, and 400 nm. The irradiance from each source was monitored through spectroradiometry in order to obtain the exposure dose over a period of time. Changes in the chemical structure were monitored by Fourier transform infrared spectroscopy (FTIR) and UV and visible spectroscopy (UV-vis). The samples were analyzed by UV-vis at each 200 up to 1000 J/m2 and at each 400 up to 2000 J/m2. FTIR was performed only for samples exposed to a maximum dose of 2000 J/m2. The in vitro action parameters were obtained by considering the redshift revealed through UV-vis analysis, as being the molecular quantification of minimal erythema, and the chemical bond rupture of TSD molecules associated with erythema, revealed through FTIR. The in vitro/GFR action spectrum shows that UV-A and UV-B radiation are equally responsible for the damage observed in TSD. When this proposal was compared to the CIE erythema action spectrum from ISO [ISO17166 CIE S 007/E, Erythema Reference Action Spectrum and Standard Erythema Dose (CIE Central Bureau, Austria, 1998)], similarities could be observed in wavelengths less than 280 nm in UV-B region. However, for wavelengths higher than 300 nm, the efficiency of this radiation to induce damage, mainly in the UV-A part, was much higher than predicted in CIE model. The increasing concern on UV-A radiation, assumed to be as responsible as UV-B for inducing most of the already observed skin injuries, may be better understood when observing the experimental model presented in in vitro/GFR action spectrum.
Molecular determinants of blood-brain barrier permeation.
Geldenhuys, Werner J; Mohammad, Afroz S; Adkins, Chris E; Lockman, Paul R
2015-01-01
The blood-brain barrier (BBB) is a microvascular unit which selectively regulates the permeability of drugs to the brain. With the rise in CNS drug targets and diseases, there is a need to be able to accurately predict a priori which compounds in a company database should be pursued for favorable properties. In this review, we will explore the different computational tools available today, as well as underpin these to the experimental methods used to determine BBB permeability. These include in vitro models and the in vivo models that yield the dataset we use to generate predictive models. Understanding of how these models were experimentally derived determines our accurate and predicted use for determining a balance between activity and BBB distribution.
Molecular determinants of blood–brain barrier permeation
Geldenhuys, Werner J; Mohammad, Afroz S; Adkins, Chris E; Lockman, Paul R
2015-01-01
The blood–brain barrier (BBB) is a microvascular unit which selectively regulates the permeability of drugs to the brain. With the rise in CNS drug targets and diseases, there is a need to be able to accurately predict a priori which compounds in a company database should be pursued for favorable properties. In this review, we will explore the different computational tools available today, as well as underpin these to the experimental methods used to determine BBB permeability. These include in vitro models and the in vivo models that yield the dataset we use to generate predictive models. Understanding of how these models were experimentally derived determines our accurate and predicted use for determining a balance between activity and BBB distribution. PMID:26305616
Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming
2015-10-13
Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.
Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel - Apocynaceae.
Mousinho, Kristiana C; Oliveira, Cecília de C; Ferreira, José Roberto de O; Carvalho, Adriana A; Magalhães, Hemerson Iury F; Bezerra, Daniel P; Alves, Ana Paula N N; Costa-Lotufo, Letícia V; Pessoa, Claúdia; de Matos, Mayara Patrícia V; Ramos, Márcio V; Moraes, Manoel O
2011-09-01
Himatanthus drasticus (Mart.) Plumel - Apocynaceae is a medicinal plant popularly known as Janaguba. Its bark and latex have been used by the public for cancer treatment, among other medicinal uses. However, there is almost no scientific research report on its medicinal properties. The aim of this study was to investigate the antitumor effects of Himatanthus drasticus latex proteins (HdLP) in experimental models. The in vitro cytotoxic activity of the HdLP was determined on cultured tumor cells. HdLP was also tested for its ability to induce lysis of mouse erythrocytes. In vivo antitumor activity was assessed in two experimental models, Sarcoma 180 and Walker 256 carcinosarcoma. Additionally, its effects on the immunological system were also investigated. HdLP did not show any significant in vitro cytotoxic effect at experimental exposure levels. When intraperitoneally administered, HdLP was active against both in vivo experimental tumors. However, it was inactive by oral administration. The histopathological analysis indicates that the liver and kidney were only weakly affected by HdLP treatment. It was also demonstrated that HdLP acts as an immunomodulatory agent, increasing the production of OVA-specific antibodies. Additionally, it increased relative spleen weight and the incidence of megakaryocyte colonies. In summary, HdLP has some interesting anticancer activity that could be associated with its immunostimulating properties. Copyright © 2011. Published by Elsevier Ireland Ltd.
Barber, I; Scharsack, J P
2010-03-01
Plerocercoids of the pseudophyllidean cestode Schistocephalus solidus infect the three-spined stickleback Gasterosteus aculeatus, with important consequences for the biology of host fish. Techniques for culturing the parasite in vitro and generating infective stages that can be used to infect sticklebacks experimentally have been developed, and the system is increasingly used as a laboratory model for investigating aspects of host-parasite interactions. Recent experimental laboratory studies have focused on the immune responses of hosts to infection, the consequences of infection for the growth and reproductive development of host fish and the effects of infection on host behaviour. Here we introduce the host and the parasite, review the major findings of these recent experimental infection studies and identify further aspects of host parasite interactions that might be investigated using the system.
Extracorporeal bypass model of blood circulation for the study of microvascular hemodynamics.
Nam, Kweon-Ho; Yeom, Eunseop; Lee, Sang Joon
2012-05-01
Many studies have been performed to better understand the hemodynamics in microvessels, such as arterioles and venules. However, due to the heterogeneous features of size, shape, blood-flow velocity, and pulsatility of microvessels, conducting a systematic study on these factors has been almost impossible. Although in vitro studies have been performed for this purpose, the usefulness of in vitro data is limited by the fact that the rheological properties of blood are changed as blood is exposed to in vitro environments. The purpose of the present study is to investigate the feasibility of a rat extracorporeal bypass model that combines in vivo and in vitro models. An arteriovenous shunt loop with a sub-bypass loop of fluorinated ethylene propylene (FEP) microtube was constructed between the jugular vein and femoral artery of a rat. Three pinch valves were installed in the main loop. Microscopic images of the blood flow in the FEP tube were sequentially captured with a high-speed camera, and the whole velocity field information was obtained using a micro-particle image velocimetry technique. Experimental results reveal that the velocity fields of the blood flow inside the microtube are well measured because the FEP tube is transparent and has nearly the same refractive index as water. The flow velocity and the pulsatility index of the blood flow in the microtube can be controlled by adjusting the three pinch valves installed upstream, midstream, and downstream of the bypass loop. This hybrid model that combines in vivo and in vitro models can be useful in studying microvascular hemodynamics. Copyright © 2012 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Background: Bovine besnoitiosis, caused by the protozoan Besnoitia besnoiti, reduces productivity and fertility of affected herds. Besnoitiosis continues to expand in Europe and no effective control tools are currently available. Experimental models are urgently needed. Herein, we describe for the f...
Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model
Majety, Meher; Pradel, Leon P.; Gies, Manuela; Ries, Carola H.
2015-01-01
In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME. PMID:26053043
Vaca-González, J J; Gutiérrez, M L; Guevara, J M; Garzón-Alvarado, D A
2017-01-01
Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.
Prevention of root caries with dentin adhesives.
Grogono, A L; Mayo, J A
1994-04-01
This in vitro investigation determined the feasibility of using dentin adhesives to protect root surfaces against caries. The roots of 22 recently extracted human teeth were all painted with a protective lacquer leaving two unprotected small windows. On each specimen, one window (control) was left untreated and the other window (experimental) was treated using a dentin adhesive (Scotchbond Multi-Purpose). The roots were then immersed in an in vitro acetate/calcium/phosphate demineralization model at pH 4.3. After 70 days, the samples were removed and sectioned through the windows. The undecalcified ground sections were examined under transmitted and polarized light. Lesions characteristic of natural root caries were seen in the untreated control windows. No such lesions were apparent in the experimental windows. The results of this preliminary study suggest that dentin adhesives may provide protection against root caries.
Experimental models of hepatotoxicity related to acute liver failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maes, Michaël; Vinken, Mathieu, E-mail: mvinken@vub.ac.be; Jaeschke, Hartmut
Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposuremore » or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camlin, Nicole J.; McLaughlin, Eileen A., E-mail: eileen.mclaughlin@newcastle.edu.au; Holt, Janet E.
A finite number of oocytes are established within the mammalian ovary prior to birth to form a precious ovarian reserve. Damage to this limited pool of gametes by environmental factors such as cigarette smoke and its constituents therefore represents a significant risk to a woman's reproductive capacity. Although evidence from human studies to date implicates a detrimental effect of cigarette smoking on female fertility, these retrospective studies are limited and present conflicting results. In an effort to more clearly understand the effect of cigarette smoke, and its chemical constituents, on female fertility, a variety of in vivo and in vitromore » animal models have been developed. This article represents a systematic review of the literature regarding four of experimental model types: 1) direct exposure of ovarian cells and follicles to smoking constituents’ in vitro, 2) direct exposure of whole ovarian tissue with smoking constituents in vitro, 3) whole body exposure of animals to smoking constituents and 4) whole body exposure of animals to cigarette smoke. We summarise key findings and highlight the strengths and weaknesses of each model system, and link these to the molecular mechanisms identified in smoke-induced fertility changes. - Highlights: • In vivo exposure to individual cigarette smoke chemicals alters female fertility. • The use of in vitro models in determining molecular mechanisms • Whole cigarette smoke inhalation animal models negatively affect ovarian function.« less
Morel, O; Monceau, E; Tran, N; Malartic, C; Morel, F; Barranger, E; Côté, J F; Gayat, E; Chavatte-Palmer, P; Cabrol, D; Tsatsaris, V
2009-06-01
To evaluate radiofrequency (RF) efficiency and safety for the ablation of retained placenta in humans, using a pregnant sheep model. Experimental study. Laboratory of Surgery School, Nancy, France. Three pregnant ewes/ten human placentas. Various RF procedures were tested in pregnant ewes on 50 placentomes (individual placental units). Reproducibility of the best procedure was then evaluated in a further 20 placentomes and on ten human term placentas in vitro after delivery. Placental tissues destruction, lesions' size, myometrial lesions. Low power (100 W) and low target temperatures (60 degrees C) lead to homogenous tissue destruction, without myometrial lesion. No significant difference was observed in terms of lesion size and procedure duration for in the placentomes of pregnant ewe in vivo and in human placentas in vitro. The diameter of the ablation could be correlated with the tines deployment. The placental tissue structure is very permissive to RF energy, which suggests that RF could be used for the ablation of retained placenta, providing optimal control of tissue destruction. These results call for further experimental evaluations.
Synthetic in vitro transcriptional oscillators
Kim, Jongmin; Winfree, Erik
2011-01-01
The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modular platform for the systematic construction of arbitrary circuits and requires only two essential enzymes, bacteriophage T7 RNA polymerase and Escherichia coli ribonuclease H, to produce and degrade RNA signals. In this study, we design and experimentally demonstrate three transcriptional oscillators in vitro. First, a negative feedback oscillator comprising two switches, regulated by excitatory and inhibitory RNA signals, showed up to five complete cycles. To demonstrate modularity and to explore the design space further, a positive-feedback loop was added that modulates and extends the oscillatory regime. Finally, a three-switch ring oscillator was constructed and analyzed. Mathematical modeling guided the design process, identified experimental conditions likely to yield oscillations, and explained the system's robust response to interference by short degradation products. Synthetic transcriptional oscillators could prove valuable for systematic exploration of biochemical circuit design principles and for controlling nanoscale devices and orchestrating processes within artificial cells. PMID:21283141
Optimising experimental research in respiratory diseases: an ERS statement.
Bonniaud, Philippe; Fabre, Aurélie; Frossard, Nelly; Guignabert, Christophe; Inman, Mark; Kuebler, Wolfgang M; Maes, Tania; Shi, Wei; Stampfli, Martin; Uhlig, Stefan; White, Eric; Witzenrath, Martin; Bellaye, Pierre-Simon; Crestani, Bruno; Eickelberg, Oliver; Fehrenbach, Heinz; Guenther, Andreas; Jenkins, Gisli; Joos, Guy; Magnan, Antoine; Maitre, Bernard; Maus, Ulrich A; Reinhold, Petra; Vernooy, Juanita H J; Richeldi, Luca; Kolb, Martin
2018-05-01
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality. Copyright ©ERS 2018.
Ghosh, Avijit; Maurer, Tristan S; Litchfield, John; Varma, Manthema V; Rotter, Charles; Scialis, Renato; Feng, Bo; Tu, Meihua; Guimaraes, Cris R W; Scott, Dennis O
2014-10-01
In this work, we leverage a mathematical model of the underlying physiochemical properties of tissues and physicochemical properties of molecules to support the development of hepatoselective glucokinase activators. Passive distribution is modeled via a Fick-Nernst-Planck approach, using in vitro experimental data to estimate the permeability of both ionized and neutral species. The model accounts for pH and electrochemical potential across cellular membranes, ionization according to Henderson-Hasselbalch, passive permeation of the neutral species using Fick's law, and passive permeation of the ionized species using the Nernst-Planck equation. The mathematical model of the physiochemical system allows derivation of a single set of parameters governing the distribution of drug molecules across multiple conditions both in vitro and in vivo. A case study using this approach in the development of hepatoselective glucokinase activators via organic anion-transporting polypeptide-mediated hepatic uptake and impaired passive distribution to the pancreas is described. The results for these molecules indicate the permeability penalty of the ionized form is offset by its relative abundance, leading to passive pancreatic exclusion according to the Nernst-Planck extension of Fickian passive permeation. Generally, this model serves as a useful construct for drug discovery scientists to understand subcellular exposure of acids or bases using specific physiochemical properties. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Building an experimental model of the human body with non-physiological parameters.
Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi
2017-03-01
New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.
Building an experimental model of the human body with non-physiological parameters
Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi
2017-01-01
New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851
Thurnheer, T; Giertsen, E; Gmür, R; Guggenheim, B
2008-09-01
Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model. Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64.5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose. The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose. By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.
Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon
2015-01-01
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, Rachel Rogers, E-mail: idz7@cdc.gov; Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602; Fisher, Jeffrey
ABSTRACT: Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the rolemore » of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. - Highlights: • The PBPK model for PFOA in the rat explores the role of OATs in sex-specific clearance. • Descriptions of OAT kinetics were extrapolated from in vitro studies. • Model predictions showed good fit with experimental data for male and female rats.« less
Dendritic cells exposed in vitro to TGF-β1 ameliorate experimental autoimmune myasthenia gravis
YARILIN, D; DUAN, R; HUANG, Y-M; XIAO, B-G
2002-01-01
Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG), characterized by an autoaggressive T-cell-dependent antibody-mediated immune response directed against the acetylcholine receptor (AChR) of the neuromuscular junction. Dendritic cells (DC) are unique antigen-presenting cells which control T- and B-cell functions and induce immunity or tolerance. Here, we demonstrate that DC exposed to TGF-β1 in vitro mediate protection against EAMG. Freshly prepared DC from spleen of healthy rats were exposed to TGF-β1 in vitro for 48 h, and administered subcutaneously to Lewis rats (2 × 106DC/rat) on day 5 post immunization with AChR in Freund’s complete adjuvant. Control EAMG rats were injected in parallel with untreated DC (naive DC) or PBS. Lewis rats receiving TGF-β1-exposed DC developed very mild symptoms of EAMG without loss of body weight compared with control EAMG rats receiving naive DC or PBS. This effect of TGF-β1-exposed DC was associated with augmented spontaneous and AChR-induced proliferation, IFN-γ and NO production, and decreased levels of anti-AChR antibody-secreting cells. Autologous DC exposed in vitro to TGF-β1 could represent a new opportunity for DC-based immunotherapy of antibody-mediated autoimmune diseases. PMID:11876742
Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar
2017-03-04
The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.
Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P
2011-12-01
Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.
Stem cells, in vitro gametogenesis and male fertility.
Nagamatsu, Go; Hayashi, Katsuhiko
2017-12-01
Reconstitution in culture of biological processes, such as differentiation and organization, is a key challenge in regenerative medicine, and one in which stem cell technology plays a central role. Pluripotent stem cells and spermatogonial stem cells are useful materials for reconstitution of germ cell development in vitro , as they are capable of differentiating into gametes. Reconstitution of germ cell development, termed in vitro gametogenesis, will provide an experimental platform for a better understanding of germ cell development, as well as an alternative source of gametes for reproduction, with the potential to cure infertility. Since germ cells are the cells for 'the next generation', both the culture system and its products must be carefully evaluated. In this issue, we summarize the progress in in vitro gametogenesis, most of which has been made using mouse models, as well as the future challenges in this field. © 2017 Society for Reproduction and Fertility.
Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R
2010-01-01
Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.
Mateo-Fernández, Marcos; Merinas-Amo, Tania; Moreno-Millán, Miguel; Alonso-Moraga, Ángeles; Demyda-Peyrás, Sebastián
2016-01-01
The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™ (CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determined in vivo using the Drosophila model. Their cytotoxic activities were determined using the HL-60 in vitro cancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage in in vivo and in vitro models.
Merinas-Amo, Tania; Moreno-Millán, Miguel; Alonso-Moraga, Ángeles; Demyda-Peyrás, Sebastián
2016-01-01
The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™ (CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determined in vivo using the Drosophila model. Their cytotoxic activities were determined using the HL-60 in vitro cancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage in in vivo and in vitro models. PMID:27471731
In vitro molecular machine learning algorithm via symmetric internal loops of DNA.
Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak
2017-08-01
Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.
New experimental models of the blood-brain barrier for CNS drug discovery
Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca
2017-01-01
Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770
Experimental methods and transport models for drug delivery across the blood-brain barrier.
Fu, Bingmei M
2012-06-01
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.
Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier
Fu, Bingmei M
2017-01-01
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587
NASA Astrophysics Data System (ADS)
Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš
2015-12-01
Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.
New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda
2014-01-01
Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.
Koch, R J; Goode, R L; Simpson, G T
1997-04-01
The purpose of this study was to develop an in vitro serum-free keloid fibroblast model. Keloid formation remains a problem for every surgeon. Prior evaluations of fibroblast characteristics in vitro, especially those of growth factor measurement, have been confounded by the presence of serum-containing tissue culture media. The serum itself contains growth factors, yet has been a "necessary evil" to sustain cell growth. The design of this study is laboratory-based and uses keloid fibroblasts obtained from five patients undergoing facial (ear lobule) keloid removal in a university-affiliated clinic. Keloid fibroblasts were established in primary cell culture and then propagated in a serum-free environment. The main outcome measures included sustained keloid fibroblast growth and viability, which was comparable to serum-based models. The keloid fibroblast cell cultures exhibited logarithmic growth, sustained a high cellular viability, maintained a monolayer, and displayed contact inhibition. Demonstrating model consistency, there was no statistically significant difference between the mean cell counts of the five keloid fibroblast cell lines at each experimental time point. The in vitro growth of keloid fibroblasts in a serum-free model has not been done previous to this study. The results of this study indicate that the proliferative characteristics described are comparable to those of serum-based models. The described model will facilitate the evaluation of potential wound healing modulators, and cellular effects and collagen modifications of laser resurfacing techniques, and may serve as a harvest source for contaminant-free fibroblast autoimplants. Perhaps its greatest utility will be in the evaluation of endogenous and exogenous growth factors.
2013-01-01
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research. PMID:24274743
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
Caccavale, Justin; Fiumara, David; Stapf, Michael; Sweitzer, Liedeke; Anderson, Hannah J; Gorky, Jonathan; Dhurjati, Prasad; Galileo, Deni S
2017-12-11
Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other similar intrinsic or extrinsic stimuli that influence cancer or other cell behavior. This modeling framework of a commonly used experimental motility assay (scratch assay) should be useful to both researchers of cell motility and students in a cell biology teaching laboratory.
Dola, Vasantha Rao; Soni, Awakash; Agarwal, Pooja; Ahmad, Hafsa; Raju, Kanumuri Siva Rama; Rashid, Mamunur; Wahajuddin, Muhammad; Srivastava, Kumkum; Haq, W.; Dwivedi, A. K.; Puri, S. K.
2016-01-01
ABSTRACT A novel 4-aminoquinoline derivative [(S)-7-chloro-N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)-quinolin-4-amine triphosphate] exhibiting curative activity against chloroquine-resistant malaria parasites has been identified for preclinical development as a blood schizonticidal agent. The lead molecule selected after detailed structure-activity relationship (SAR) studies has good solid-state properties and promising activity against in vitro and in vivo experimental malaria models. The in vitro absorption, distribution, metabolism, and excretion (ADME) parameters indicate a favorable drug-like profile. PMID:27956423
Azzarelli, Roberta; Oleari, Roberto; Lettieri, Antonella; Andre', Valentina; Cariboni, Anna
2017-01-01
Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration. PMID:28448448
2013-01-01
Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery. PMID:23773766
Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I
2013-06-18
Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.
Decazes, J M; Ernst, J D; Sande, M A
1983-01-01
Ceftriaxone was highly active in eliminating Escherichia coli from the cerebrospinal fluid of rabbits infected with experimental meningitis. However, concentrations equal to or greater than 10 times the minimal bactericidal concentration had to be achieved to ensure optimal efficacy (rate of kill, 1.5 log10 CFU/ml per h). In contrast to other beta-lactams studied in this model, ceftriaxone concentrations in cerebrospinal fluid progressively increased, whereas serum steady state was obtained by constant infusion. The percent penetration was 2.1% after 1 h of therapy, in contrast to 8.9% after 7 h (P less than 0.001). In vitro time-kill curves done in cerebrospinal fluid or broth more closely predicted the drug concentrations required for a maximum cidal effect in vivo than that predicted by determinations of minimal inhibitory or bactericidal concentrations. PMID:6316841
Carton, Flavia; Calderan, Laura; Malatesta, Manuela
2017-11-28
Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.
Carton, Flavia; Calderan, Laura; Malatesta, Manuela
2017-01-01
Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601
Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J
2007-06-07
The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.
Prolonged Febrile Seizures in the Immature Rat Model Enhance Hippocampal Excitability Long Term
Dube, Celine; Chen, Kang; Eghbal-Ahmadi, Mariam; Brunson, Kristen; Soltesz, Ivan; Baram, Tallie Z.
2011-01-01
Febrile seizures (FSs) constitute the most prevalent seizure type during childhood. Whether prolonged FSs alter limbic excitability, leading to spontaneous seizures (temporal lobe epilepsy) during adulthood, has been controversial. Recent data indicate that, in the immature rat model, prolonged FSs induce transient structural changes of some hippocampal pyramidal neurons and long-term functional changes of hippocampal circuitry. However, whether these neuroanatomical and electrophysiological changes promote hippocampal excitability and lead to epilepsy has remained unknown. By using in vivo and in vitro approaches, we determined that prolonged hyperthermia-induced seizures in immature rats caused long-term enhanced susceptibility to limbic convulsants that lasted to adulthood. Thus, extensive hippocampal electroencephalographic and behavioral monitoring failed to demonstrate spontaneous seizures in adult rats that had experienced hyperthermic seizures during infancy. However, 100% of animals developed hippocampal seizures after systemic administration of a low dose of kainate, and most progressed to status epilepticus. Conversely, a minority of normothermic and hyperthermic controls had (brief) seizures, none developing status epilepticus. In vitro, spontaneous epileptiform discharges were not observed in hippocampal-entorhinal cortex slices derived from either control or experimental groups. However, Schaeffer collateral stimulation induced prolonged, self-sustaining, status epilepticus-like discharges exclusively in slices from experimental rats. These data indicate that hyperthermic seizures in the immature rat model of FSs do not cause spontaneous limbic seizures during adulthood. However, they reduce thresholds to chemical convulsants in vivo and electrical stimulation in vitro, indicating persistent enhancement of limbic excitability that may facilitate the development of epilepsy. PMID:10716253
Challenges for Preclinical Investigations of Human Biofield Modalities
Gronowicz, Gloria; Bengston, William
2015-01-01
Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042
NASA Astrophysics Data System (ADS)
Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.
1995-01-01
Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2016-01-01
The purpose of the study was to verify the finite element analysis model of three-unite fixed partial denture with in vitro electronic strain analysis and analyze clinical situation with the verified model. First, strain gauges were attached to the critical areas of a three-unit fixed partial denture. Strain values were measured under 300 N load perpendicular to the occlusal plane. Secondly, a three-dimensional finite element model in accordance with the electronic strain analysis experiment was constructed from the scanning data. And the strain values obtained by finite element analysis and in vitro measurements were compared. Finally, the clinical destruction of the fixed partial denture was evaluated with the verified finite element analysis model. There was a mutual agreement and consistency between the finite element analysis results and experimental data. The finite element analysis revealed that failure will occur in the veneer layer on buccal surface of the connector under occlusal force of 570 N. The results indicate that the electronic strain analysis is an appropriate and cost saving method to verify the finite element model. The veneer layer on buccal surface of the connector is the weakest area in the fixed partial denture. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.
Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V
2016-03-21
Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation
Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.
2015-01-01
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072
Life-span of in vitro differentiated Plasmodium falciparum gametocytes.
Gebru, Tamirat; Lalremruata, Albert; Kremsner, Peter G; Mordmüller, Benjamin; Held, Jana
2017-08-11
The sexual stages (gametocytes) of Plasmodium falciparum do not directly contribute to the pathology of malaria but are essential for transmission of the parasite from the human host to the mosquito. Mature gametocytes circulate in infected human blood for several days and their circulation time has been modelled mathematically from data of previous in vivo studies. This is the first time that longevity of gametocytes is studied experimentally in vitro. The in vitro longevity of P. falciparum gametocytes of 1 clinical isolate and 2 laboratory strains was assessed by three different methods: microscopy, flow cytometry and reverse transcription quantitative real-time PCR (RT-qPCR). Additionally, the rate of gametocytogenesis of the used P. falciparum strains was compared. The maximum in vitro lifespan of P. falciparum gametocytes reached almost 2 months (49 days by flow cytometry, 46 days by microscopy, and at least 52 days by RT-qPCR) from the starting day of gametocyte culture to death of last parasite in the tested strains with an average 50% survival rate of 6.5, 2.6 and 3.5 days, respectively. Peak gametocytaemia was observed on average 19 days after initiation of gametocyte culture followed by a steady decline due to natural decay of the parasites. The rate of gametocytogenesis was highest in the NF54 strain. Plasmodium falciparum mature gametocytes can survive up to 16-32 days (at least 14 days for mature male gametocytes) in vitro in absence of the influence of host factors. This confirms experimentally a previous modelling estimate that used molecular tools for gametocyte detection in treated patients. The survival time might reflect the time the parasite can be transmitted to the mosquito after clearance of asexual parasites. These results underline the importance of efficient transmission blocking agents in the fight against malaria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubiak-Szepietowska, Monika, E-mail: Monika.Dubiak-Szepietowska@fh-jena.de; Karczmarczyk, Aleksandra; Jönsson-Niedziółka, Martin
The emergence of human-based models is incontestably required for the study of complex physiological pathways and validation of reliable in vitro methods as alternative for in vivo studies in experimental animals for toxicity assessment. With this objective, we have developed and tested three dimensional environments for cells using different types of hydrogels including transglutaminase-cross-linked gelatin, collagen type I, and growth-factor depleted Matrigel. Cells grown in Matrigel exhibited the greatest cell proliferation and spheroid diameter. Moreover, analysis of urea and albumin biosynthesis revealed that the created system allowed the immortalized liver cell line HepG2 to re-establish normal hepatocyte-like properties which weremore » not observed under the conditions of conventional cell cultures. This study presents a scalable technology for production of complex-shaped liver multicellular spheroids as a system which improves the predictive value of cell-based assays for safety and risk assessment. The time- and dose-dependent toxicity of nanoparticles demonstrates a higher cytotoxic effect when HepG2 cells grown as monolayer than embedded in hydrogels. The experimental setup provided evidence that the cell environment has significant influence on cell sensitivity and that liver spheroid is a useful and novel tool to examine nanoparticle dosing effect even at the level of in vitro studies. Therefore, this system can be applied to a wide variety of potentially hostile compounds in basic screening to provide initial warning of adverse effects and trigger subsequent analysis and remedial actions. - Highlights: • Comparison of HepG2 cells growth in Matrigel, Collagen I gel and gelatin gel. • Examination of nanoparticles (NP) dosing effect at the level of in vitro studies. • Influence of the cell culture media composition on the cytotoxic effect of NP.« less
2010-01-01
Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis. PMID:20525330
Puttananjaiah, Shilpa; Chatterji, Anil; Salimath, Bharati
2014-01-01
BACKGROUND/OBJECTIVES Abundant consumption of seaweeds in the diet is epidemiologically linked to the reduction in risk of developing cancer. In larger cases, however, identification of particular seaweeds that are accountable for these effects is still lacking, hindering the recognition of competent dietary-based chemo preventive approaches. The aim of this research was to establish the antiproliferative potency and angiosuppressive mode of action of Stoechospermum marginatum seaweed methanolic extract using various experimental models. MATERIALS/METHODS Among the 15 seaweeds screened for antiproliferative activity against Ehrlich ascites tumor (EAT) cell line, Stoechospermum marginatum extract (SME) was found to be the most promising. Therefore, it was further investigated for its anti-proliferative activity in-vitro against choriocarcinoma (BeWo) and non-transformed Human embryonic kidney (HEK 293) cells, and for its anti-migratory/tube formation activity against HUVEC cells in-vitro. Subsequently, the angiosuppressive activity of S. marginatum was established by inhibition of angiogenesis in in-vivo (peritoneal angiogenesis and chorioallantoic membrane assay) and ex-vivo (rat cornea assay) models. RESULTS Most brown seaweed extracts inhibited the proliferation of EAT cells, while green and red seaweed extracts were much less effective. According to the results, SME selectively inhibited proliferation of BeWo cells in-vitro in a dose-dependent manner, but had a lesser effect on HEK 293 cells. SME also suppressed the migration and tube formation of HUVEC cells in-vitro. In addition, SME was able to suppress VEGF-induced angiogenesis in the chorio allantoic membrane, rat cornea, and tumor induced angiogenesis in the peritoneum of EAT bearing mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provided further evidence of its angiosuppressive activity. CONCLUSIONS Altogether, the data underline that VEGF mediated angiogenesis is the target for the angiosuppressive action of SME and could potentially be useful in cancer prevention or treatment involving stimulated angiogenesis. PMID:25110556
Sampaziotis, Fotios; de Brito, Miguel Cardoso; Madrigal, Pedro; Bertero, Alessandro; Saeb-Parsy, Kourosh; Soares, Filipa A C; Schrumpf, Elisabeth; Melum, Espen; Karlsen, Tom H; Bradley, J Andrew; Gelson, William Th; Davies, Susan; Baker, Alastair; Kaser, Arthur; Alexander, Graeme J; Hannan, Nicholas R F; Vallier, Ludovic
2015-08-01
The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.
Low-Turnover Drug Molecules: A Current Challenge for Drug Metabolism Scientists.
Hutzler, J Matthew; Ring, Barbara J; Anderson, Shelby R
2015-12-01
In vitro assays using liver subcellular fractions or suspended hepatocytes for characterizing the metabolism of drug candidates play an integral role in the optimization strategy employed by medicinal chemists. However, conventional in vitro assays have limitations in their ability to predict clearance and generate metabolites for low-turnover (slowly metabolized) drug molecules. Due to a rapid loss in the activity of the drug-metabolizing enzymes, in vitro incubations are typically performed for a maximum of 1 hour with liver microsomes to 4 hours with suspended hepatocytes. Such incubations are insufficient to generate a robust metabolic response for compounds that are slowly metabolized. Thus, the challenge of accurately estimating low human clearance with confidence has emerged to be among the top challenges that drug metabolism scientists are confronted with today. In response, investigators have evaluated novel methodologies to extend incubation times and more sufficiently measure metabolism of low-turnover drugs. These methods include plated human hepatocytes in monoculture, and a novel in vitro methodology using a relay of sequential incubations with suspended cryopreserved hepatocytes. In addition, more complex in vitro cellular models, such as HepatoPac (Hepregen, Medford, MA), a micropatterned hepatocyte-fibroblast coculture system, and the HµREL (Beverley Hills, CA) hepatic coculture system, have been developed and characterized that demonstrate prolonged enzyme activity. In this review, the advantages and disadvantages of each of these in vitro methodologies as it relates to the prediction of clearance and metabolite identification will be described in an effort to provide drug metabolism scientists with the most up-to-date experimental options for dealing with the complex issue of low-turnover drug candidates. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paini, Alicia, E-mail: alicia.paini@rdls.nestle.co; Nestle Research Center, PO Box 44, Lausanne; Punt, Ans
2010-05-15
Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro datamore » on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.« less
Experimental and theoretical studies of implant assisted magnetic drug targeting
NASA Astrophysics Data System (ADS)
Aviles, Misael O.
One way to achieve drug targeting in the body is to incorporate magnetic nanoparticles into drug carriers and then retain them at the site using an externally applied magnetic field. This process is referred to as magnetic drug targeting (MDT). However, the main limitation of MDT is that an externally applied magnetic field alone may not be able to retain a sufficient number of magnetic drug carrier particles (MDCPs) to justify its use. Such a limitation might not exist when high gradient magnetic separation (HGMS) principles are applied to assist MDT by means of ferromagnetic implants. It was hypothesized that an Implant Assisted -- MDT (IA-MDT) system would increase the retention of the MDCPs at a target site where an implant had been previously located, since the magnetic forces are produced internally. With this in mind, the overall objective of this work was to demonstrate the feasibility of an IA-MDT system through mathematical modeling and in vitro experimentation. The mathematical models were developed and used to demonstrate the behavior and limitations of IA-MDT, and the in vitro experiments were designed and used to validate the models and to further elucidate the important parameters that affect the performance of the system. IA-MDT was studied with three plausible implants, ferromagnetic stents, seed particles, and wires. All implants were studied theoretically and experimentally using flow through systems with polymer particles containing magnetite nanoparticles as MDCPs. In the stent studies, a wire coil or mesh was simply placed in a flow field and the capture of the MDCPs was studied. In the other cases, a porous polymer matrix was used as a surrogate capillary tissue scaffold to study the capture of the MDCPs using wires or particle seeds as the implant, with the seeds either fixed within the polymer matrix or captured prior to capturing the MDCPs. An in vitro heart tissue perfusion model was also used to study the use of stents. In general, all the results demonstrated that IA-MDT is indeed feasible and that careful modification of the MDCP properties and implant properties are fundamental to the success of this technology.
Myllynen, Päivi; Vähäkangas, Kirsi
2013-02-01
Over the decades several ex vivo and in vitro models which utilize delivered human placenta have been developed to study various placental functions. The use of models originating from human placenta to study transplacental transfer and related mechanisms is an attractive option because human placenta is relatively easily available for experimental studies. After delivery placenta has served its purpose and is usually disposed of. The purpose of this review is to give an overview of the use of human placental models for the studies on human placental transfer and related mechanisms such as transporter functions and xenobiotic metabolism. Human placental perfusion, the most commonly used continuous cell lines, primary cells and tissue culture, as well as subcellular fractions are briefly introduced and their major advantages and disadvantages are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Raghnaill, Michelle Nic; Bramini, Mattia; Ye, Dong; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Åberg, Christoffer; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A
2014-03-07
Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known 'toxic' and 'non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during long-term accumulation.
Experimental psychiatric illness and drug abuse models: from human to animal, an overview.
Edwards, Scott; Koob, George F
2012-01-01
Preclinical animal models have supported much of the recent rapid expansion of neuroscience research and have facilitated critical discoveries that undoubtedly benefit patients suffering from psychiatric disorders. This overview serves as an introduction for the following chapters describing both in vivo and in vitro preclinical models of psychiatric disease components and briefly describes models related to drug dependence and affective disorders. Although there are no perfect animal models of any psychiatric disorder, models do exist for many elements of each disease state or stage. In many cases, the development of certain models is essentially restricted to the human clinical laboratory domain for the purpose of maximizing validity, whereas the use of in vitro models may best represent an adjunctive, well-controlled means to model specific signaling mechanisms associated with psychiatric disease states. The data generated by preclinical models are only as valid as the model itself, and the development and refinement of animal models for human psychiatric disorders continues to be an important challenge. Collaborative relationships between basic neuroscience and clinical modeling could greatly benefit the development of new and better models, in addition to facilitating medications development.
Lanckriet, A; Timbermont, L; De Gussem, M; Marien, M; Vancraeynest, D; Haesebrouck, F; Ducatelle, R; Van Immerseel, F
2010-02-01
Necrotic enteritis poses an important health risk to broilers. The ionophore anticoccidials lasalocid, salinomycin, maduramicin, narasin and a combination of narasin and nicarbazin were tested in feed for their prophylactic effect on the incidence of necrotic enteritis in a subclinical experimental infection model that uses coccidia as a predisposing factor. In addition, drinking water medication with the antibiotics amoxicillin, tylosin and lincomycin was evaluated as curative treatment in the same experimental model. The minimal inhibitory concentrations (MICs) of all antibiotics and anticoccidials were determined in vitro against 51 Clostridium perfringens strains isolated from broilers. The strains examined appeared uniformly susceptible to lasalocid, maduramicin, narasin, salinomycin, amoxicillin and tylosin, whereas an extended frequency distribution range of MICs for lincomycin was seen, indicating acquired resistance in 36 isolates in the higher range of MICs. Nicarbazin did not inhibit the in vitro growth of the C. perfringens strains even at a concentration of 128 microg/ml. Supplementation of the diet from day 1 onwards with lasalocid, salinomycin, narasin or maduramicin led to a reduction in birds with necrotic enteritis lesions as compared with the non-medicated infected control group. A combination product of narasin and nicarbazin had no significant protective effect. Treatment with amoxicillin, lincomycin and tylosin completely stopped the development of necrotic lesions.
Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo
2017-01-03
Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.
Plasmodium knowlesi: from severe zoonosis to animal model.
Cox-Singh, Janet; Culleton, Richard
2015-06-01
Plasmodium knowlesi malaria is a newly described zoonosis in Southeast Asia. Similarly to Plasmodium falciparum, P. knowlesi can reach high parasitaemia in the human host and both species cause severe and fatal illness. Interpretation of host-parasite interactions in studies of P. knowlesi malaria adds a counterpoint to studies on P. falciparum. However, there is no model system for testing the resulting hypotheses on malaria pathophysiology or for developing new interventions. Plasmodium knowlesi is amenable to genetic manipulation in vitro and several nonhuman primate species are susceptible to experimental infection. Here, we make a case for drawing on P. knowlesi as both a human pathogen and an experimental model to lift the roadblock between malaria research and its translation into human health benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical modelling of tissue formation in chondrocyte filter cultures.
Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J
2011-12-17
In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.
Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander
2012-01-01
Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR–like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746
In vitro models for evaluation of periodontal wound healing/regeneration.
Weinreb, Miron; Nemcovsky, Carlos E
2015-06-01
Periodontal wound healing and regeneration are highly complex processes, involving cells, matrices, molecules and genes that must be properly choreographed and orchestrated. As we attempt to understand and influence these clinical entities, we need experimental models to mimic the various aspects of human wound healing and regeneration. In vivo animal models that simulate clinical situations of humans can be costly and cumbersome. In vitro models have been devised to dissect wound healing/regeneration processes into discrete, analyzable steps. For soft tissue (e.g. gingival) healing, in vitro models range from simple culture of cells grown in monolayers and exposed to biological modulators or physical effectors and materials, to models in which cells are 'injured' by scraping and subsequently the 'wound' is filled with new or migrating cells, to three-dimensional models of epithelial-mesenchymal recombination or tissue explants. The cells employed are gingival keratinocytes, fibroblasts or endothelial cells, and their proliferation, migration, attachment, differentiation, survival, gene expression, matrix production or capillary formation are measured. Studies of periodontal regeneration also include periodontal ligament fibroblasts or progenitors, osteoblasts or osteoprogenitors, and cementoblasts. Regeneration models measure cellular proliferation, attachment and migration, as well as gene expression, transfer and differentiation into a mineralizing phenotype and biomineralization. Only by integrating data from models on all levels (i.e. a single cell to the whole organism) can various critical aspects of periodontal wound healing/regeneration be fully evaluated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effects of Isatis root polysaccharide in mice infected with H3N2 swine influenza virus.
Wang, Xuebing; Xue, Yang; Li, Yongliang; Liu, Fang; Yan, Yanhua; Zhang, Hongying; Jin, Qianyue
2018-05-01
Isatis root polysaccharide (IRPS) has gained attention in the field of virology. However, very few studies have evaluated the effects of IRPS on H3N2 swine influenza virus (SIV). The antiviral activities of IRPS against SIV were investigated in vitro through three different modes and in vivo in an experimental mouse model of SIV infection. Mice were treated by oral gavage with various doses of IRPS before being experimentally infected with SIV A/swine/Henan/2010(H3N2). The antiviral effects of IRPS were evaluated by clinical signs, weight, histopathology, cytokine levels in lung homogenates and serum nitric oxide (NO) and IgG levels at 2, 5 and 9 d post-infection. IRPS demonstrated an inhibitory effect on SIV in Madin-Darby canine kidney cells. Additionally, IRPS significantly improved symptoms, reduced pathological changes and enhanced serum levels of NO and IgG in SIV-infected mice. Furthermore, detection of cytokines in lung homogenates showed IRPS could alter cytokine production to improve immune responses and systemic ability to repair inflammation. Moreover, IRPS extenuated the pulmonary inflammatory response. The results show that various concentrations of IRPS exert antiviral effects in vitro and in vivo. In an experimental mouse model of SIV infection, IRPS at a dose of 75 mg/kg was effective. Copyright © 2018. Published by Elsevier Ltd.
Kurth, Ina; Franke, Katja; Pompe, Tilo; Bornhäuser, Martin; Werner, Carsten
2011-06-14
Polymeric microcavities functionalized with extracellular matrix components were used as an experimental in vitro model to investigate principles of hematopoietic stem and progenitor cell (HSPC) fate control. Using human CD133+ HSPC we could demonstrate distinct differences in HSPC cycling and differentiation dependence on the adhesion ligand specificity (i.e., heparin, collagen I) and cytokine levels. The presented microcavity platform provides a powerful in vitro approach to explore the role of exogenous cues in HSPC fate decisions and can therefore be instrumental to progress in stem cell biology and translational research toward new therapies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Shengqiang; Jiang, Yingjuan; Wan, Fengchun; Wu, Jitao; Gao, Zhenli; Liu, Dongfu
2017-08-01
Cancer-associated fibroblasts (CAFs) are dominant components of the prostate cancer (PCa) stroma. However, the contrasting effects of CAFs and adjacent normal prostate fibroblasts (NPFs) are still poorly defined. The senescence of non-immortalized CAFs after subculture may limit the cell number and influence experimental results of in vitro studies. In this study, we immortalized CAFs to study their role in PCa carcinogenesis, proliferation, and invasion. We cultured and immortalized CAFs and NPFs, then compared their effect on epithelial malignant transformation by using in vitro co-culture, soft agar assay, and a mouse renal capsule xenograft model. We also compared their roles in PCa progression by using in vitro co-culture, cell viability assays, invasion assays, and a mouse xenograft model. For the mechanistic study, we screened a series of growth factors by using real-time polymerase chain reaction. The CAFs and NPFs were successfully cultured, immortalized, and characterized. The CAFs were able to transform prostate epithelial cells into malignant cells, but NPFs were not. The CAFs were more active in promoting proliferation of and invasion by PCa cells, and in secreting higher levels of a series of growth factors. The immortalized CAFs were more supportive of PCa carcinogenesis and progression. Targeting CAFs might be a potential option for PCa therapy. Immortalized CAFs and NPFs will also be valuable resources for future experimental exploration. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Lien, Gi-Shih; Liu, Chih-Wen; Jiang, Joe-Air; Chuang, Cheng-Long; Teng, Ming-Tsung
2012-07-01
This paper presents a novel solution of a hand-held external controller to a miniaturized capsule endoscope in the gastrointestinal (GI) tract. Traditional capsule endoscopes move passively by peristaltic wave generated in the GI tract and the gravity, which makes it impossible for endoscopists to manipulate the capsule endoscope to the diagnostic disease areas. In this study, the main objective is to present an endoscopic capsule and a magnetic field navigator (MFN) that allows endoscopists to remotely control the locomotion and viewing angle of an endoscopic capsule. The attractive merits of this study are that the maneuvering of the endoscopic capsule can be achieved by the external MFN with effectiveness, low cost, and operation safety, both from a theoretical and an experimental point of view. In order to study the magnetic interactions between the endoscopic capsule and the external MFN, a magnetic-analysis model is established for computer-based finite-element simulations. In addition, experiments are conducted to show the control effectiveness of the MFN to the endoscopic capsule. Finally, several prototype endoscopic capsules and a prototype MFN are fabricated, and their actual capabilities are experimentally assessed via in vitro and ex vivo tests using a stomach model and a resected porcine stomach, respectively. Both in vitro and ex vivo test results demonstrate great potential and practicability of achieving high-precision rotation and controllable movement of the capsule using the developed MFN.
Yu, Zechen; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E; Jiang, Huanhuan
2017-08-01
To better characterize biological responses to atmospheric organic aerosols, the efficient delivery of aerosol to in vitro lung cells is necessary. In this study, chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device, the particle dose was predicted for various sampling parameters such as particle size, ESP deposition voltage, and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example, RNA in the ALI BEAS-2B cells in vitro was stable at 0.15L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e., viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15L/minute, and no cellular RNA decay occurred. Copyright © 2017. Published by Elsevier Ltd.
Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian
2016-01-01
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467
Pele, Laetitia; Haas, Carolin T; Hewitt, Rachel; Faria, Nuno; Brown, Andy; Powell, Jonathan
2015-01-01
Aim To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. Material & methods The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. Results Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. Conclusion In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes. PMID:24991724
Hikima, Tomohiro; Kaneda, Noriaki; Matsuo, Kyouhei; Tojo, Kakuji
2012-01-01
The objective of this study is to establish a relationship of the skin penetration parameters between the three-dimensional cultured human epidermis LabCyte EPI-MODEL (LabCyte) and hairless mouse (HLM) skin penetration in vitro and to predict the skin penetration and plasma concentration profile in human. The skin penetration experiments through LabCyte and HLM skin were investigated using 19 drugs that have a different molecular weight and lipophilicity. The penetration flux for LabCyte reached 30 times larger at maximum than that for HLM skin. The human data can be estimated from the in silico approach with the diffusion coefficient (D), the partition coefficient (K) and the skin surface concentration (C) of drugs by assuming the bi-layer skin model for both LabCyte and HLM skin. The human skin penetration of β-estradiol, prednisolone, testosterone and ethynylestradiol was well agreed between the simulated profiles and in vitro experimental data. Plasma concentration profiles of β-estradiol in human were also simulated and well agreed with the clinical data. The present alternative method may decrease human or animal skin experiment for in vitro skin penetration.
Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment†
Olalekan, Susan A.; Burdette, Joanna E.; Getsios, Spiro; Woodruff, Teresa K.
2017-01-01
Abstract Three-dimensional (3D) in vitro models have been established to study the physiology and pathophysiology of the endometrium. With emerging evidence that the native extracellular matrix (ECM) provides appropriate cues and growth factors essential for tissue homeostasis, we describe, a novel 3D endometrium in vitro model developed from decellularized human endometrial tissue repopulated with primary endometrial cells. Analysis of the decellularized endometrium using mass spectrometry revealed an enrichment of cell adhesion molecules, cytoskeletal proteins, and ECM proteins such as collagen IV and laminin. Primary endometrial cells within the recellularized scaffolds proliferated and remained viable for an extended period of time in vitro. In order to evaluate the hormonal response of cells within the scaffolds, the recellularized scaffolds were treated with a modified 28-day hormone regimen to mimic the human menstrual cycle. At the end of 28 days, the cells within the endometrial scaffold expressed both estrogen and progesterone receptors. In addition, decidualization markers, IGFBP-1 and prolactin, were secreted upon addition of dibutyryl cyclic AMP indicative of a decidualization response. This 3D model of the endometrium provides a new experimental tool to study endometrial biology and drug testing. PMID:28449068
Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi
2015-12-01
In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kroll, Tina; Elmenhorst, David; Matusch, Andreas; Wedekind, Franziska; Weisshaupt, Angela; Beer, Simone; Bauer, Andreas
2013-08-01
While the selective 5-hydroxytryptamine type 2a receptor (5-HT2AR) radiotracer [18F]altanserin is well established in humans, the present study evaluated its suitability for quantifying cerebral 5-HT2ARs with positron emission tomography (PET) in albino rats. Ten Sprague Dawley rats underwent 180 min PET scans with arterial blood sampling. Reference tissue methods were evaluated on the basis of invasive kinetic models with metabolite-corrected arterial input functions. In vivo 5-HT2AR quantification with PET was validated by in vitro autoradiographic saturation experiments in the same animals. Overall brain uptake of [18F]altanserin was reliably quantified by invasive and non-invasive models with the cerebellum as reference region shown by linear correlation of outcome parameters. Unlike in humans, no lipophilic metabolites occurred so that brain activity derived solely from parent compound. PET data correlated very well with in vitro autoradiographic data of the same animals. [18F]Altanserin PET is a reliable tool for in vivo quantification of 5-HT2AR availability in albino rats. Models based on both blood input and reference tissue describe radiotracer kinetics adequately. Low cerebral tracer uptake might, however, cause restrictions in experimental usage.
Cherenkov radiation imaging of beta emitters: in vitro and in vivo results
NASA Astrophysics Data System (ADS)
Spinelli, Antonello E.; Boschi, Federico; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Fenzi, Alberto; Menegazzi, Marta; Sbarbati, Andrea; Del Vecchio, Antonella; Calandrino, Riccardo
2011-08-01
The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from 18F and 32P. The main difference between 18F and 32P is mainly the number of the emitted light photons, more precisely the same activity of 32P emits more CR photons with respect to 18F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of 18F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.
Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver
Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans
2015-01-01
Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785
Zamek-Gliszczynski, MJ; Lee, CA; Poirier, A; Bentz, J; Chu, X; Ellens, H; Ishikawa, T; Jamei, M; Kalvass, JC; Nagar, S; Pang, KS; Korzekwa, K; Swaan, PW; Taub, ME; Zhao, P; Galetin, A
2013-01-01
This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug–drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science. PMID:23588311
Plaschke, Konstanze; Kopitz, Jürgen
2015-04-01
There is accumulating evidence for a pathogenetic link between sporadic Alzheimer's disease (AD) and diabetes mellitus (DM). At subdiabetogenic doses, the cerebral administration of the diabetogenic substance streptozotocin (STZ) induces an insulin-resistant brain state (IRBS). The aim of the present pilot study was to investigate the effect of STZ on Alzheimer-like characteristics such as amyloid precursor protein (APP) cleavage secretases, betaA4 fragment, and glycogen synthase kinase (GSK) in vitro. Different STZ concentrations (0-5 mM) and incubation intervals (0-48 h) were tested to find appropriate cell culture conditions for further biochemical analyses in human neuroblastoma cells (SK-N-MC). Lactate dehydrogenase (LDH) was measured spectrophotometrically. Intracellular ATP was determined using bioluminescent luciferase assay. Secretase activity (alpha, beta, and gamma) was measured by employing commercial fluorometric secretase activity assay kits, betaA4 fragment by immunoprecipitation. Glycogen synthase kinase-3alpha/beta (total and phospho-GSK) content was assayed by ELISA technique. In vitro STZ administration (1 mM) induced a significant reduction in intracellular ATP concentration without pronounced cell death after 24 and 48 h as measured by LDH. Under these experimental conditions, a significant increase in beta-secretase and a significant drop in alpha-secretase were obtained, whereas gamma-secretase was not changed significantly. Simultaneously, the betaA4 concentration was increased by about threefold. Furthermore, STZ significantly increased total GSK and markedly decreased phospho-GSK. A direct link between STZ, intracellular ATP deficit, and Alzheimer-related enzymes was shown in this in vitro pilot study. Thus, these results support the hypothesis that sporadic AD is being recognized as an IRBS, which can be modulated by in vitro STZ model. Continuing investigations relating pathogenetic mechanisms and AD-like hallmarks are necessary to modulate different cascades of the IRBS using in vitro models.
Complete In Vitro Life Cycle of Trypanosoma congolense: Development of Genetic Tools
Plazolles, Nicolas; Baltz, Théo
2010-01-01
Background Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi) has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i) genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii) in vitro differentiation techniques lasted several months, (iii) absence of long-term bloodstream forms (BSF) in vitro culture prevented genomic analyses. Methodology/Principal Findings We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement. Conclusions/Significance We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life cycle. It represents a very useful tool to understand pathogenesis mechanisms and to study potential therapeutic targets either in vitro or in vivo using a mouse model. PMID:20209144
Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre
2017-11-01
Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.
In vitro ovine articular chondrocyte proliferation: experiments and modelling.
Mancuso, L; Liuzzo, M I; Fadda, S; Pisu, M; Cincotti, A; Arras, M; La Nasa, G; Concas, A; Cao, G
2010-06-01
This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed (1) was adopted for quantitative interpretation of these experimental data. The model is based on a 1-D (that is, mass-structured), single-staged population balance approach capable of taking into account contact inhibition at confluence. The model's parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model's parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at 'balanced growth', to be adequately predicted.
Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira
2013-01-01
Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems.
Bravetti, Anne-Lise; Mesnage, Stéphane; Lefort, Agnès; Chau, Françoise; Eckert, Catherine; Garry, Louis; Arthur, Michel; Fantin, Bruno
2009-04-01
The bactericidal activity of amoxicillin was investigated against Enterococcus faecalis JH2-2 and against an isogenic mutant deficient in the production of the N-acetylglucosaminidase AtlA. Comparison of the two strains indicated that this autolysin contributes to killing by amoxicillin both in vitro and in a rabbit model of experimental endocarditis.
Lapergue, Bertrand; Dang, Bao Quoc; Desilles, Jean-Philippe; Ortiz-Munoz, Guadalupe; Delbosc, Sandrine; Loyau, Stéphane; Louedec, Liliane; Couraud, Pierre-Olivier; Mazighi, Mikael; Michel, Jean-Baptiste; Meilhac, Olivier; Amarenco, Pierre
2013-03-01
We have previously reported that intravenous injection of high-density lipoproteins (HDLs) was neuroprotective in an embolic stroke model. We hypothesized that HDL vasculoprotective actions on the blood-brain barrier (BBB) may decrease hemorrhagic transformation-associated with tissue plasminogen activator (tPA) administration in acute stroke. We used tPA alone or in combination with HDLs in vivo in 2 models of focal middle cerebral artery occlusion (MCAO) (embolic and 4-hour monofilament MCAO) and in vitro in a model of BBB. Sprague-Dawley rats were submitted to MCAO, n=12 per group. The rats were then randomly injected with tPA (10 mg/kg) or saline with or without human plasma purified-HDL (10 mg/kg). The therapeutic effects of HDL and BBB integrity were assessed blindly 24 hours later. The integrity of the BBB was also tested using an in vitro model of human cerebral endothelial cells under oxygen-glucose deprivation. tPA-treated groups had significantly higher mortality and rate of hemorrhagic transformation at 24 hours in both MCAO models. Cotreatment with HDL significantly reduced stroke-induced mortality versus tPA alone (by 42% in filament MCAO, P=0.009; by 73% in embolic MCAO, P=0.05) and tPA-induced intracerebral parenchymal hematoma (by 92% in filament MCAO, by 100% in embolic MCAO; P<0.0001). This was consistent with an improved BBB integrity. In vitro, HDLs decreased oxygen-glucose deprivation-induced BBB permeability (P<0.05) and vascular endothelial cadherin disorganization. HDL injection decreased tPA-induced hemorrhagic transformation in rat models of MCAO. Both in vivo and in vitro results support the vasculoprotective action of HDLs on BBB under ischemic conditions.
Fold or hold: experimental evolution in vitro
Collins, S; Rambaut, A; Bridgett, S J
2013-01-01
We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change. PMID:24003997
Mechanisms of physiological and epileptic HFO generation
Jefferys, John G.R.; de la Prida, Liset Menendez; Wendling, Fabrice; Bragin, Anatol; Avoli, Massimo; Timofeev, Igor; Lopes da Silva, Fernando H.
2016-01-01
High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs. PMID:22420980
Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V
2012-10-01
The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.
Nemmar, Abderrahim; Holme, Jørn A.; Rosas, Irma; Schwarze, Per E.
2013-01-01
Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques. PMID:23865044
Toxcast and the Use of Human Relevant In Vitro Exposures ...
The path for incorporating new approach methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. These challenges include sufficient coverage of toxicological mechanisms to meaningfully interpret negative test results, development of increasingly relevant test systems, computational modeling to integrate experimental data, putting results in a dose and exposure context, characterizing uncertainty, and efficient validation of the test systems and computational models. The presentation will cover progress at the U.S. EPA in systematically addressing each of these challenges and delivering more human-relevant risk-based assessments. This abstract does not necessarily reflect U.S. EPA policy. Presentation at the British Toxicological Society Annual Congress on ToxCast and the Use of Human Relevant In Vitro Exposures: Incorporating high-throughput exposure and toxicity testing data for 21st century risk assessments .
In vitro antioxidant activities of leaf and root extracts of Albizia antunesiana harms.
Chipiti, Talent; Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Md Shahidul
2013-01-01
The antioxidative activities of the ethanol and aqueous extracts of the leaf and root samples of Albizia antunesiana were determined across a series of four in vitro models. The results showed that all the extracts had reducing power (Fe(3+)- Fe2+), DPPH, hydroxyl and nitric oxide radical scavenging abilities. The ethanol root extract had more potent antioxidant power in all the experimental models and possesses a higher total phenol content of 216.6 +/- 6.7 mg/g. The GC-MS analysis of the aqueous and ethanol extracts of the roots and leaves indicated that several aromatic phenolic compounds, a coumarin and some common triterpenoids were present in these extracts. Data from this study suggest that the leaves and roots of Albizia antunesiana possessed antioxidative activities that varied depending on the solvents.
RAT PLACENTATION: AN EXPERIMENTAL MODEL FOR INVESTIGATING THE HEMOCHORIAL MATERNAL-FETAL INTERFACE
Soares, Michael J.; Chakraborty, Damayanti; Rumi, M.A. Karim; Konno, Toshihiro; Renaud, Stephen J.
2011-01-01
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research. PMID:22284666
Expression of a model gene in prostate cancer cells lentivirally transduced in vitro and in vivo.
Bastide, C; Maroc, N; Bladou, F; Hassoun, J; Maitland, N; Mannoni, P; Bagnis, C
2003-01-01
In a preclinical model for prostate cancer gene therapy, we have tested lentiviral vectors as a practical possibility for the transfer and long-term expression of the EGFP gene both in vitro and in vivo. The human prostate cancer cell lines DU145 and PC3 were transduced using experimental conditions which permitted analysis of the expression from a single proviral vector per cell. The transduced cells stably expressed the EGFP transgene for 4 months. After injection of the transduced cell populations into Nod-SCID mice a decrease in EGFP was only observed in a minority of cases, while the majority of tumors maintained transgene expression at in vitro levels. In vivo injection of viral vector preparations directly into pre-established subcutaneous or orthotopic tumor masses, obtained by implantation of untransduced PC3 and DU145 cells led to a high transduction efficiency. While the efficiency of direct intratumoral transduction was proportional to the dose of virus injected, the results indicated some technical limitations inherent in these approaches to prostate cancer gene therapy.
Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity
Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta
2016-01-01
Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944
NASA Astrophysics Data System (ADS)
Bocca, Cleverson C.; Rittner, Roberto; Höehr, Nelci F.; Pinheiro, Glaucia M. S.; Abiko, Layara A.; Basso, Ernani A.
2010-11-01
This work presents a detailed theoretical and experimental study on the inhibitory properties of 2- N,N-dimethylaminecyclohexyl 1- N',N'-dimethylcarbamate isomers and their methylsulfate salts against the cholinesterases enzymes. The in vitro inhibition test performed by the Ellman's method showed that the salt form compounds were more active than the neutral ones in cholinesterases inhibition. The trans salt showed good selectivity towards the inhibition of erythrocyte cholinesterase with a maximum limit around 90% and 55% for the plasma cholinesterase inhibition. Molecular modeling, docking and experimental results performed in this study showed to be important initial steps toward the development of a novel pharmaceuticals in the fight against Alzheimer's disease.
Luján, Emmanuel; Soto, Daniela; Rosito, María S; Soba, Alejandro; Guerra, Liliana N; Calvo, Juan C; Marshall, Guillermo; Suárez, Cecilia
2018-05-09
Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.
Busatto, Carlos; Pesoa, Juan; Helbling, Ignacio; Luna, Julio; Estenoz, Diana
2018-01-30
Poly(lactic-co-glycolic acid) (PLGA) microparticles containing progesterone were prepared by the solvent extraction/evaporation and microfluidic techniques. Microparticles were characterized by their size distribution, encapsulation efficiency, morphology and thermal properties. The effect of particle size, polydispersity and polymer degradation on the in vitro release of the hormone was studied. A triphasic release profile was observed for larger microparticles, while smaller microspheres showed a biphasic release profile. This behavior is related to the fact that complete drug release was achieved in a few days for smaller microparticles, during which polymer degradation effects are still negligible. A mathematical model was developed that predicts the progesterone release profiles from different-sized PLGA microspheres. The model takes into account both the dissolution and diffusion of the drug in the polymeric matrix as well as the autocatalytic effect of polymer degradation. The model was adjusted and validated with novel experimental data. Simulation results are in very good agreement with experimental results. Copyright © 2017 Elsevier B.V. All rights reserved.
Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model.
Su, Wenru; Li, Zuohong; Jia, Yu; Zhuo, Yehong
2014-01-01
Glaucoma is a leading cause of irreversible blindness. Injury of retinal ganglion cells (RGCs) accounts for visual impairment of glaucoma. Here, we report rapamycin protects RGCs from death in experimental glaucoma model and the underlying mechanisms. Our results showed that treatment with rapamycin dramatically promote RGCs survival in a rat chronic ocular hypertension model. This protective action appears to be attributable to inhibition of neurotoxic mediators release and/or direct suppression of RGC apoptosis. In support of this mechanism, in vitro, rapamycin significantly inhibits the production of NO, TNF-α in BV2 microglials by modulating NF-κB signaling. In experimental animals, treatment with rapamycin also dramatically inhibited the activation of microglials. In primary RGCs, rapamycin was capable of direct suppression the apoptosis of primary RGCs induced by glutamate. Mechanistically, rapamycin-mediated suppression of RGCs apoptosis is by sparing phosphorylation of Akt at a site critical for maintenance of its survival-promoting activity in cell and animal model. These results demonstrate that rapamycin is neuroprotective in experimental glaucoma, possibly via decreasing neurotoxic releasing and suppressing directly apoptosis of RGCs.
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
Rodent models of insomnia: a review of experimental procedures that induce sleep disturbances.
Revel, Florent G; Gottowik, Juergen; Gatti, Sylvia; Wettstein, Joseph G; Moreau, Jean-Luc
2009-06-01
Insomnia, the most common sleep disorder, is characterized by persistent difficulty in falling or staying asleep despite adequate opportunity to sleep, leading to daytime fatigue and mental dysfunction. As sleep is a sophisticated physiological process generated by a network of neuronal systems that cannot be reproduced in-vitro, pre-clinical development of hypnotic drugs requires in-vivo investigations. Accordingly, this review critically evaluates current and putative rodent models of insomnia which could be used to screen novel hypnotics. Only few valid insomnia models are currently available, although many experimental conditions lead to disturbance of physiological sleep. We categorized these conditions as a function of the procedure used to induce perturbation of sleep, and we discuss their respective advantages and pitfalls with respect to validity, feasibility and translational value to human research.
Brooks, Danielle; Zimmer, Alexandra; Wakefield, Lalage; Lyle, L Tiffany; Difilippantonio, Simone; Tucci, Fabio C; Illiano, Stephane; Annunziata, Christina M; Steeg, Patricia S
2018-05-04
The lysophosphatidic acid receptor 1 (LPAR1) is mechanistically implicated in both tumor metastasis and tissue fibrosis. Previously, metastasis was increased when fulminant fibrosis was first induced in mice, suggesting a direct connection between these processes. The current report examined the extent of metastasis-induced fibrosis in breast cancer model systems, and tested the metastasis preventive efficacy and fibrosis attenuation of antagonists for LPAR1 and Idiopathic Pulmonary Fibrosis (IPF) in breast and ovarian cancer models. Staining analysis demonstrated only focal, low-moderate levels of fibrosis in lungs from eleven metastasis model systems. Two orally available LPAR1 antagonists, SAR100842 and EPGN9878, significantly inhibited breast cancer motility to LPA in vitro . Both compounds were negative for metastasis prevention and failed to reduce fibrosis in the experimental MDA-MB-231T and spontaneous murine 4T1 in vivo breast cancer metastasis models. SAR100842 demonstrated only occasional reductions in invasive metastases in the SKOV3 and OVCAR5 ovarian cancer experimental metastasis models. Two approved drugs for IPF, nintedanib and pirfenidone, were investigated. Both were ineffective at preventing MDA-MB-231T metastasis, with no attenuation of fibrosis. In summary, metastasis-induced fibrosis is only a minor component of metastasis in untreated progressive breast cancer. LPAR1 antagonists, despite in vitro evidence of specificity and efficacy, were ineffective in vivo as oral agents, as were approved IPF drugs. The data argue against LPAR1 and fibrosis as monotherapy targets for metastasis prevention in triple-negative breast cancer and ovarian cancer.
Cherwa, James E; Tyson, Joshua; Bedwell, Gregory J; Brooke, Dewey; Edwards, Ashton G; Dokland, Terje; Prevelige, Peter E; Fane, Bentley A
2017-01-01
During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity. Copyright © 2016 American Society for Microbiology.
Kurd, Forouzan; Samavati, Vahid
2015-03-01
Polysaccharides from Spirulina platensis algae (SP) were extracted by ultrasound-assisted extraction procedure. The optimal conditions for ultrasonic extraction of SP were determined by response surface methodology. The four parameters were, extraction time (X1), extraction temperature (X2), ultrasonic power (X3) and the ratio of water to raw material (X4), respectively. The experimental data obtained were fitted to a second-order polynomial equation. The optimum conditions were extraction time of 25 min, extraction temperature 85°C, ultrasonic power 90 W and ratio of water to raw material 20 mL/g. Under these optimal conditions, the experimental yield was 13.583±0.51%, well matched with the predicted models with the coefficients of determination (R2) of 0.9971. Then, we demonstrated that SP polysaccharides had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Overall, SP may have potential applications in the medical and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.
Computational analysis of blood clot dissolution using a vibrating catheter tip.
Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee
2012-04-01
We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.
Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.
Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo
2017-03-01
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Cserpán, Dorottya; Meszéna, Domokos; Wittner, Lucia; Tóth, Kinga; Ulbert, István; Somogyvári, Zoltán
2017-01-01
Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus. PMID:29148974
Kaveh, Kamran; Takahashi, Yutaka; Farrar, Michael A; Storme, Guy; Guido, Marcucci; Piepenburg, Jamie; Penning, Jackson; Foo, Jasmine; Leder, Kevin Z; Hui, Susanta K
2017-07-01
Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is characterized by a very poor prognosis and a high likelihood of acquired chemo-resistance. Although tyrosine kinase inhibitor (TKI) therapy has improved clinical outcome, most ALL patients relapse following treatment with TKI due to the development of resistance. We developed an in vitro model of Nilotinib-resistant Ph+ leukemia cells to investigate whether low dose radiation (LDR) in combination with TKI therapy overcome chemo-resistance. Additionally, we developed a mathematical model, parameterized by cell viability experiments under Nilotinib treatment and LDR, to explain the cellular response to combination therapy. The addition of LDR significantly reduced drug resistance both in vitro and in computational model. Decreased expression level of phosphorylated AKT suggests that the combination treatment plays an important role in overcoming resistance through the AKT pathway. Model-predicted cellular responses to the combined therapy provide good agreement with experimental results. Augmentation of LDR and Nilotinib therapy seems to be beneficial to control Ph+ leukemia resistance and the quantitative model can determine optimal dosing schedule to enhance the effectiveness of the combination therapy.
Fiber optic micro sensor for the measurement of tendon forces
2012-01-01
A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868
Brummelhuis, Walter J; Joles, Jaap A; Stam, Jord C; Adams, Hendrik; Goldschmeding, Roel; Detmers, Frank J; El Khattabi, Mohamed; Maassen, Bram T; Verrips, C Theo; Braam, Branko
2010-08-01
Staphylococcus aureus produces the superantigen toxic shock syndrome toxin 1 (TSST-1). When the bacterium invades the human circulation, this toxin can induce life-threatening gram-positive sepsis. Current sepsis treatment does not remove bacterial toxins. Variable domains of llama heavy-chain antibodies (VHH) against toxic shock syndrome toxin 1 ([alpha]-TSST-1 VHH) were previously found to be effective in vitro. We hypothesized that removing TSST-1 with [alpha]-TSST-1 VHH hemofiltration filters would ameliorate experimental sepsis in pigs. After assessing in vitro whether timely removing TSST-1 interrupted TSST-1-induced mononuclear cell TNF-[alpha] production, VHH-coated filters were applied in a porcine sepsis model. Clinical course, survival, plasma interferon [gamma], and TSST-1 levels were similar with and without VHH-coated filters as were TSST-1 concentrations before and after the VHH filter. Plasma TSST-1 levels were much lower than anticipated from the distribution of the amount of infused TSST-1, suggesting compartmentalization to space or adhesion to surface not accessible to hemofiltration or pheresis techniques. Removing TSST-1 from plasma was feasible in vitro. However, the [alpha]-TSST-1 VHH adsorption filter-based technique was ineffective in vivo, indicating that improvement of VHH-based hemofiltration is required. Sequestration likely prevented the adequate removal of TSST-1. The latter warrants further investigation of TSST-1 distribution and clearance in vivo.
Bradford, Benjamin D; Seiberling, Kristin A; Park, Francine E; Hiebert, Jared C; Chang, Dennis F
2013-06-01
If not adequately cleaned, rigid nasal endoscopes (RNEs) have the potential to cause iatrogenic cross-contamination. To test the efficacy of various disinfection methods in reducing bacterial load on RNEs in vitro. In vitro model. Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae contamination was separately induced on RNEs in vitro. Two experimental sets were completed. The RNEs were disinfected using the following protocols: 30-second scrub with antimicrobial soap (ABS) and water, 30-second scrub with 70% isopropyl alcohol (IA), 30-second scrub with ABS followed by 30-second scrub with IA, 30-second scrub with germicidal cloth, isolated 5-minute soak in an enzymatic soap solution, 5- and 10-minute soaks in ortho-phthalaldehyde, 0.55%, solution (Cidex OPA), and isolated 30-second rinse with tap water, all with 30-second precleaning and postcleaning rinses with tap water. Two sets of experiments (experiment sets A and B) were carried out with a 30-second tap water rinse after inoculation of each RNE. This was followed by immediate cleaning in set A and a 1-hour air-dry delay in set B. Otherwise there were no differences in the disinfection protocols between sets for each method noted. Effectiveness of various disinfection protocols in cleaning rigid nasal endoscopes experimentally inoculated with bacteria commonly found in the upper aerodigestive tract. Positive cultures following disinfection indicated ineffective or incomplete disinfection. Most cleaning methods were effective in eliminating S aureus, S pneumoniae, and H influenzae from the scopes following experimental contamination. Continued growth of P aeruginosa was found after all of the disinfection trials in experiment set A with the exception of a 10-minute immersion in Cidex OPA, and in set B except for the 10-minute Cidex OPA immersion and ABS plus IA trials. Most cleaning methods used in our trials appear to properly disinfect RNEs after in vitro inoculation with S aureus, S pneumoniae, and H influenzae. However, it appears that disinfectants may be less effective in cleaning rigid scopes experimentally inoculated with P aeruginosa. There is a paucity of published data regarding cross-contamination during rigid nasal endoscopy, and these results should guide future studies and to some extent practice to avoid iatrogenic spread of contamination.
Unsteady flow through in-vitro models of the glottis
NASA Astrophysics Data System (ADS)
Hofmans, G. C. J.; Groot, G.; Ranucci, M.; Graziani, G.; Hirschberg, A.
2003-03-01
The unsteady two-dimensional flow through fixed rigid in vitro models of the glottis is studied in some detail to validate a more accurate model based on the prediction of boundary-layer separation. The study is restricted to the flow phenomena occurring within the glottis and does not include effects of vocal-fold movement on the flow. Pressure measurements have been carried out for a transient flow through a rigid scale model of the glottis. The rigid model with a fixed geometry driven by an unsteady pressure is used in order to achieve a high accuracy in the specification of the geometry of the glottis. The experimental study is focused on flow phenomena as they might occur in the glottis, such as the asymmetry of the flow due to the Coanda effect and the transition to turbulent flow. It was found that both effects need a relatively long time to establish themselves and are therefore unlikely to occur during the production of normal voiced speech when the glottis closes completely during part of the oscillation cycle. It is shown that when the flow is still laminar and symmetric the prediction of the boundary-layer model and the measurement of the pressure drop from the throat of the glottis to the exit of the glottis agree within 40%. Results of the boundary-layer model are compared with a two-dimensional vortex-blob method for viscous flow. The difference between the results of the simpiflied boundary-layer model and the experimental results is explained by an additional pressure difference between the separation point and the far field within the jet downstream of the separation point. The influence of the movement of the vocal folds on our conclusions is still unclear.
Ex vitro composite plants: an inexpensive, rapid method for root biology.
Collier, Ray; Fuchs, Beth; Walter, Nathalie; Kevin Lutke, William; Taylor, Christopher G
2005-08-01
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex vitro method for producing composite plants described in this report represents a significant advance over existing composite plant induction protocols, which rely on expensive and time-consuming in vitro conditions. The utility of the new system is validated by expression and RNAi silencing of GFP in transgenic roots of composite plants, and is bolstered further by experimental disruption, via RNAi silencing, of endogenous plant resistance to the plant parasitic nematode Meloidogyne incognita in transgenic roots of Lycopersicon esculentum cv. Motelle composite plants. Critical parameters of the method are described and discussed herein.
Evaluation of mucoadhesive potential of gum cordia, an anionic polysaccharide.
Ahuja, Munish; Kumar, Suresh; Kumar, Ashok
2013-04-01
The study involves mucoadhesive evaluation by formulating buccal discs using fluconazole as the model drug. The effect of compression pressure and gum cordia/lactose ratio on the ex vivo bioadhesion time and in vitro release of fluconazole was optimized using central composite experimental design. It was observed that the response ex vivo bioadhesion time was affected significantly by the proportion of gum cordia in the buccal discs while the in vitro release of fluconazole from the buccal discs was influenced significantly by the compression pressure. The optimized batch of buccal discs comprised of gum cordia/lactose - 0.66, fluconazole - 20 mg and was compressed at the pressure of 6600 kg. Further, it provided the ex vivo bioadhesion of 22 h and in vitro release of 80% in 24h. In conclusion, gum cordia is a promising bucoadhesive polymer. Copyright © 2012 Elsevier B.V. All rights reserved.
Wolfe, Benjamin E.; Button, Julie E.; Santarelli, Marcela; Dutton, Rachel J.
2014-01-01
SUMMARY Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function. PMID:25036636
In vitro analysis of polyurethane foam as a topical hemostatic agent.
Broekema, Ferdinand I; van Oeveren, Wim; Zuidema, Johan; Visscher, Susan H; Bos, Rudolf R M
2011-04-01
Topical hemostatic agents can be used to treat problematic bleedings in patients who undergo surgery. Widely used are the collagen- and gelatin-based hemostats. This study aimed to develop a fully synthetic, biodegradable hemostatic agent to avoid exposure to animal antigens. In this in vitro study the suitability of different newly developed polyurethane-based foams as a hemostatic agent has been evaluated and compared to commonly used agents. An experimental in vitro test model was used in which human blood flowed through the test material. Different modified polyurethane foams were compared to collagen and gelatin. The best coagulation was achieved with collagen. The results of the polyurethane foam improved significantly by increasing the amount of polyethylene glycol. Therefore, the increase of the PEG concentration seems a promising approach. Additional in vivo studies will have to be implemented to assess the application of polyurethane foam as a topical hemostatic agent.
Shirshin, Evgeny A; Nikonova, Elena E; Kuzminov, Fedor I; Sluchanko, Nikolai N; Elanskaya, Irina V; Gorbunov, Maxim Y; Fadeev, Victor V; Friedrich, Thomas; Maksimov, Eugene G
2017-09-01
Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10 -5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.
Pluronic F127/chitosan blend microspheres for mucoadhesive drug delivery
NASA Astrophysics Data System (ADS)
Gu, W. Z.; Hu, X. F.
2017-01-01
Pluronic F127/chitosan blend microspheres were prepared via emulsification and cross-linking process using glutaraldehyde as a cross-linker. Compared with chitosan microspheres fabricated under the same experimental conditions, blend microspheres exhibited better physical stability and higher swelling capacity. Puerarin, a traditional Chinese medicine, was incorporated into microparticlesas the model drug. The in vitro release of puerarin from blend microspheres was reduced because of the improved compatibility of the drug with the matrices. According to the results from in vitro adhesion experiments, mucoadhesive behavior of blend microspheres on a mucosa-like surface was similar to that of chitosan microspheres, despite their good ability of anti-protein absorption in solution.
Ahmed, Danish; Kumar, Vikas; Sharma, Manju; Verma, Amita
2014-05-13
Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis.
2014-01-01
Background Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Methods Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Results Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. Conclusion The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis. PMID:24886138
Siles-Lucas, Mar; Hemphill, Andrew
2002-01-01
Cestode worms, commonly also known as 'flat' worms or tapeworms, are an important class of endoparasitic organisms. In order to complete their life cycle, they infect intermediate and definitive hosts in succession, through oral ingestion of eggs or larvae, respectively. Serious disease in humans or other mammalian hosts is mostly caused by the larval stages. Echinococcus spp. and Taenia spp. have been extensively investigated in the laboratory due to the fact that they represent important veterinary medical challenges and also cause grave diseases in humans. In contrast, Hymenolepis spp. and Mesocestoides spp. infections are relatively rare in humans, but these parasites have been extensively studied because their life cycle stages can be easily cultured in vitro, and can also be conveniently maintained in laboratory animal hosts. Thus they are more easily experimentally accessible, and represent important models for investigating the various aspects of cestode biology. This review will focus on in vitro and in vivo models which have been developed for studies on the host-parasite relationship during infection with Echinococcus, Taenia, Hymenolepis, Mesocestoides and Spirometra, and will cover the use of these models to investigate the morphology and ultrastructure of respective genera, the immunological relationship with the host and the development of vaccination approaches, as well as applications of these models for studies on parasite metabolism, physiology and gene expression. In addition, the use of these models in the development of chemotherapeutic measures against cestode infections is reviewed.
Cardioprotection activity and mechanism of Astragalus polysaccharide in vivo and in vitro.
Liu, Debin; Chen, Lei; Zhao, Jianye; Cui, Kang
2018-05-01
Astragalus polysaccharides (ASP) is extracted from Astragalus, and is the main active ingredient of Astragalus membranaceus. The purpose of this study was to investigate the protective effect of ASP on rat cardiomyocytes damage induced by myocardial ischemia and reperfusion injury (MVRI) and isoprenaline(ISO) in vivo and in vitro. The model of cardiomyocytes damage was induced using MVRI in a rat in vivo and also using ISO in cell. After ASP intervention, the protective effect of ASP on cardiomyocytes was evaluated by animal experimental and cell experimental. The results show that ASP can relieve the increase of cell volume in myocardium, reduce the apoptosis of cell in myocardial tissue caused by MVRI in vivo. At the cellular level, ASP can reverse the decrease of cell activity induced by ISO, inhibit the apoptosis, and decrease the levels of intracellular reactive oxygen species. Mechanistically at the molecular level, these effects are elicited via down-regulation of the protein levels of caspase-3 and bax and up-regulation of the protein levels of bcl-2 in both in vivo and in vitro. These results demonstrate that ASP has a protective efficacy in MVRI/ISO-treated cardiomyocytes by inhibiting the apoptosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses.
Zambelli, Alison M; Brothers, Kimberly M; Hunt, Kristin M; Romanowski, Eric G; Nau, Amy C; Dhaliwal, Deepinder K; Shanks, Robert M Q
2015-09-01
To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses (CLs) in vitro. Using an in vitro model, the diffusion of three antimicrobials through SH CLs was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of 4 hr. The amount of each diffused antimicrobial was determined by comparing the experimental value with a standard curve. A biological assay was performed to validate the CL diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least four independent replicates. Our data show detectable moxifloxacin and PHMB diffusion through SH CLs at 30 min, whereas AmB diffusion remained below the limit of detection within the 4-hr experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 min on bacterial lawns, whereas PHMB and AmB failed to demonstrate killing on microbial lawns over the course of the 60-min experiment. In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through SH CLs. Further studies regarding the clinical benefit of using these agents along with bandage CL for corneal pathologic condition are warranted.
Zalay, Osbert C; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg(2+)/high-K(+)) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg(2+)/high-K(+) solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg(2+)/high-K(+) solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg2+/high-K+) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg2+/high-K+ solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg2+/high-K+ solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
Quiroga-Campano, Ana L; Panoskaltsis, Nicki; Mantalaris, Athanasios
2018-03-02
Demand for high-value biologics, a rapidly growing pipeline, and pressure from competition, time-to-market and regulators, necessitate novel biomanufacturing approaches, including Quality by Design (QbD) principles and Process Analytical Technologies (PAT), to facilitate accelerated, efficient and effective process development platforms that ensure consistent product quality and reduced lot-to-lot variability. Herein, QbD and PAT principles were incorporated within an innovative in vitro-in silico integrated framework for upstream process development (UPD). The central component of the UPD framework is a mathematical model that predicts dynamic nutrient uptake and average intracellular ATP content, based on biochemical reaction networks, to quantify and characterize energy metabolism and its adaptive response, metabolic shifts, to maintain ATP homeostasis. The accuracy and flexibility of the model depends on critical cell type/product/clone-specific parameters, which are experimentally estimated. The integrated in vitro-in silico platform and the model's predictive capacity reduced burden, time and expense of experimentation resulting in optimal medium design compared to commercially available culture media (80% amino acid reduction) and a fed-batch feeding strategy that increased productivity by 129%. The framework represents a flexible and efficient tool that transforms, improves and accelerates conventional process development in biomanufacturing with wide applications, including stem cell-based therapies. Copyright © 2018. Published by Elsevier Inc.
Yang, Anxiong; Berry, David A; Kaltenbacher, Manfred; Döllinger, Michael
2012-02-01
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. © 2012 Acoustical Society of America
Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael
2012-01-01
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511
NASA Astrophysics Data System (ADS)
Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
The time for electrical conduction blockade induced by a photodynamic reaction was studied on a myocardial cell wire in vitro and an in silico simulation model was constructed to understand the necessary time for electrical conduction blockade for the wire. Vulnerable state of the cells on a laser interaction would be an unstable and undesirable state since the cells might progress to completely damaged or repaired to change significantly therapeutic effect. So that in silico model, which can calculate the vulnerable cell state, is needed. Understanding an immediate electrical conduction blockade is needed for our proposed new methodology for tachyarrhythmia catheter ablation applying a photodynamic reaction. We studied the electrical conduction blockade occurrence on the electrical conduction wire made of cultured myocardial cells in a line shape and constructed in silico model based on this experimental data. The intracellular Ca2+ ion concentrations were obtained using Fluo-4 AM dye under a confocal laser microscope. A cross-correlation function was used for the electrical conduction blockade judgment. The photodynamic reaction was performed under the confocal microscopy with 3-120 mW/cm2 in irradiance by the diode laser with 663 nm in wavelength. We obtained that the time for the electrical conduction blockade decreased with the irradiance increasing. We constructed a simulation model composed of three states; living cells, vulnerable cells, and blocked cells, using the obtained experimental data and we found the rate constant by an optimization using a conjugate gradient method.
Rowe, Rachel K.; Harrison, Jordan L.; Thomas, Theresa C.; Pauly, James R.; Adelson, P. David; Lifshitz, Jonathan
2013-01-01
The use of animal modeling in traumatic brain injury (TBI) research is justified by the lack of sufficiently comprehensive in vitro and computer modeling that incorporates all components of the neurovascular unit. Valid animal modeling of TBI requires accurate replication of both the mechanical forces and secondary injury conditions observed in human patients. Regulatory requirements for animal modeling emphasize the administration of appropriate anesthetics and analgesics unless withholding these drugs is scientifically justified. The objective of this review is to present scientific justification for standardizing the use of anesthetics and analgesics, within a study, when modeling TBI in order to preserve study validity. Evidence for the interference of anesthetics and analgesics in the natural course of brain injury calls for consistent consideration of pain management regimens when conducting TBI research. Anesthetics administered at the time of or shortly after induction of brain injury can alter cognitive, motor, and histological outcomes following TBI. A consistent anesthesia protocol based on experimental objectives within each individual study is imperative when conducting TBI studies to control for the confounding effects of anesthesia on outcome parameters. Experimental studies that replicate the clinical condition are essential to gain further understanding and evaluate possible treatments for TBI. However, with animal models of TBI it is essential that investigators assure a uniform drug delivery protocol that minimizes confounding variables, while minimizing pain and suffering. PMID:23877609
Metz, Zachary P; Ding, Tong; Baumler, David J
2018-01-01
Listeria monocytogenes is a microorganism of great concern for the food industry and the cause of human foodborne disease. Therefore, novel methods of control are needed, and systems biology is one such approach to identify them. Using a combination of computational techniques and laboratory methods, genome-scale metabolic models (GEMs) can be created, validated, and used to simulate growth environments and discern metabolic capabilities of microbes of interest, including L. monocytogenes. The objective of the work presented here was to generate GEMs for six different strains of L. monocytogenes, and to both qualitatively and quantitatively validate these GEMs with experimental data to examine the diversity of metabolic capabilities of numerous strains from the three different serovar groups most associated with foodborne outbreaks and human disease. Following qualitative validation, 57 of the 95 carbon sources tested experimentally were present in the GEMs, and; therefore, these were the compounds from which comparisons could be drawn. Of these 57 compounds, agreement between in silico predictions and in vitro results for carbon source utilization ranged from 80.7% to 91.2% between strains. Nutrient utilization agreement between in silico predictions and in vitro results were also conducted for numerous nitrogen, phosphorous, and sulfur sources. Additionally, quantitative validation showed that the L. monocytogenes GEMs were able to generate in silico predictions for growth rate and growth yield that were strongly and significantly (p < 0.0013 and p < 0.0015, respectively) correlated with experimental results. These findings are significant because they show that these GEMs for L. monocytogenes are comparable to published GEMs of other organisms for agreement between in silico predictions and in vitro results. Therefore, as with the other GEMs, namely those for Escherichia coli, Staphylococcus aureus, Vibrio vulnificus, and Salmonella spp., they can be used to determine new methods of growth control and disease treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunassekaran, G.R., E-mail: gunassekaran@yahoo.co.in; Kalpana Deepa Priya, D.; Gayathri, R.
2011-08-12
Highlights: {yields} Gossypol is a well known polyphenolic compound used for anticancer studies but we are the first to report that gossypol has antitumor effect on MNNG induced gastric cancer in experimental animal models. {yields} Our study shows that gossypol inhibits the proliferation of AGS (human gastric adenocarcinoma) cell line. {yields} In animal models, gossypol extends the survival of cancer bearing animals and also protects the cells from carcinogenic effect. {yields} So we suggest that gossypol would be a potential chemotherapeutic and chemopreventive agent for gastric cancer. -- Abstract: The present study has evaluated the chemopreventive effects of gossypol onmore » N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C{sub 30}H{sub 30}O{sub 8}, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients with gastric cancer.« less
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆
Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan
2016-01-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875
Sriskandan, Shiranee; Ferguson, Melissa; Elliot, Victoria; Faulkner, Lee; Cohen, Jonathan
2006-07-01
Polyclonal human intravenous immunoglobulin (IVIG) has been advocated as an adjunct to therapy in severe invasive streptococcal toxic shock because of its ability to neutralize superantigen toxins. The aim of this study was to assess IVIG therapeutic efficacy in an experimental model of streptococcal toxic shock. To confirm the in vitro activity of IVIG against the Streptococcus pyogenes strain used in the study, IVIG was tested for superantigen neutralizing and bacterial opsonizing activity prior to in vivo studies. To evaluate the in vivo effects of IVIG in terms of microbiological outcome and disease severity in a superantigen-sensitive transgenic model of streptococcal shock, HLA-DQ transgenic mice were treated with IVIG either at the time of infection or after infection with S. pyogenes. Antibiotics were included in some studies. The IVIG preparation neutralized superantigenicity of S. pyogenes in vitro and enhanced bacterial killing in a whole blood assay. When given to mice at the time of S. pyogenes infection, IVIG neutralized circulating superantigens and reduced systemic inflammatory response. Remarkably, IVIG-enhanced systemic clearance of bacteria and enhanced neutrophil infiltrate into the infected tissues. However, when used in combination with penicillin and clindamycin in a delayed treatment setting, IVIG did not confer additional therapeutic benefit, in terms of inflammatory response, bacterial clearance or survival. IVIG monotherapy can confer benefit in experimental streptococcal shock, but extension of these findings to the clinical situation will require further evaluation.
Abbasi, Mitra; Small, Ben G; Patel, Nikunjkumar; Jamei, Masoud; Polak, Sebastian
2017-02-01
To determine the predictive performance of in silico models using drug-specific preclinical cardiac electrophysiology data to investigate drug-induced arrhythmia risk (e.g. Torsade de pointes (TdP)) in virtual human subjects. To assess drug proarrhythmic risk, we used a set of in vitro electrophysiological measurements describing ion channel inhibition triggered by the investigated drugs. The Cardiac Safety Simulator version 2.0 (CSS; Simcyp, Sheffield, UK) platform was used to simulate human left ventricular cardiac myocyte action potential models. This study shows the impact of drug concentration changes on particular ionic currents by using available experimental data. The simulation results display safety threshold according to drug concentration threshold and log (threshold concentration/ effective therapeutic plasma concentration (ETPC)). We reproduced the underlying biophysical characteristics of cardiac cells resulted in effects of drugs associated with cardiac arrhythmias (action potential duration (APD) and QT prolongation and TdP) which were observed in published 3D simulations, yet with much less computational burden.
Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George
2007-10-01
To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.
Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E
2017-07-01
Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bandeira, Ana Carla Balthar; da Silva, Talita Prato; de Araujo, Glaucy Rodrigues; Araujo, Carolina Morais; da Silva, Rafaella Cecília; Lima, Wanderson Geraldo; Bezerra, Frank Silva; Costa, Daniela Caldeira
2017-02-01
Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.
Salerno, Simona; Bartolo, Loredana De
2017-01-01
In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein.
Grandjean, Thomas R B; Chappell, Mike J; Yates, James T W; Jones, Kevin; Wood, Gemma; Coleman, Tanya
2011-11-01
A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent breast cancer resistance protein inhibitor, Fumitremorgin C (FTC), present is described. FTC is reported to almost completely annul resistance mediated by BCRP in vitro. This non-linear compartmental model has seven macroscopic sub-units, with 14 rate parameters. It describes the relationship between the concentration of Hoechst 33342 and FTC, initially spiked in the medium, and the observed change in fluorescence due to Hoechst 33342 binding to DNA. Structural identifiability analysis has been performed using two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model fits gave very good agreement with in vitro data provided by AstraZeneca across a variety of experimental scenarios. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Daniel D.; Department of Biomedical Engineering, University of California Davis, Davis, CA; Villarreal, Fernando D.
As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with amore » special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.« less
Videodensitometric Methods for Cardiac Output Measurements
NASA Astrophysics Data System (ADS)
Mischi, Massimo; Kalker, Ton; Korsten, Erik
2003-12-01
Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.
Immunotoxins: magic bullets or misguided missiles?
Vitetta, E S; Thorpe, P E; Uhr, J W
1993-05-01
Thirteen years have passed since specific in vitro and in vivo killing of tumour cells by immunotoxins was first described. Why, then, has it taken so long to determine whether these drugs will have a major impact on the treatment of cancer, AIDS and autoimmune disease? The answer is that the transfer of basic discoveries to the clinic is a slow, multistep, interdisciplinary process. Thus, immunotoxin molecules must be designed and redesigned by the basic scientist depending on the efficacy and toxicity shown in vitro and in relevant experimental models. Next, each version must be evaluated by clinicians in humans through a lengthy process (1-3 years) in which the dose regimen is optimized and in which new problems and issues frequently emerge. These problems must again be modelled and studied in animals before additional clinical trials are initiated. In this article, Ellen Vitetta and colleagues discuss both basic and clinical aspects of the development of immunotoxin therapy.
Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems
Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng
2014-01-01
As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems. PMID:25538941
Synthetic biology outside the cell: linking computational tools to cell-free systems.
Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng
2014-01-01
As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.
Investigation of pulsatile flowfield in healthy thoracic aorta models.
Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen
2010-02-01
Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the anterior wall of the brachiocephalic artery, similar implication reported in a number of previous studies.
Animal models for testing anti-prion drugs.
Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín
2013-01-01
Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.
Howe, Katharine; Gibson, G. Gordon; Coleman, Tanya; Plant, Nick
2009-01-01
The impact of transport proteins in the disposition of chemicals is becoming increasingly evident. Alteration in disposition can cause altered pharmacokinetic and pharmacodynamic parameters, potentially leading to reduced efficacy or overt toxicity. We have developed a quantitative in silico model, based upon literature and experimentally derived data, to model the disposition of carboxydichlorofluroscein (CDF), a substrate for the SLCO1A/B and ABCC subfamilies of transporters. Kinetic parameters generated by the in silico model closely match both literature and experimentally derived kinetic values, allowing this model to be used for the examination of transporter action in primary rat hepatocytes. In particular, we show that the in silico model is suited to the rapid, accurate determination of Ki values, using 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571) as a prototypical pan-ABCC inhibitor. In vitro-derived data are often used to predict in vivo response, and we have examined how differences in protein expression levels between these systems may affect chemical disposition. We show that ABCC2 and ABCC3 are overexpressed in sandwich culture hepatocytes by 3.5- and 2.3-fold, respectively, at the protein level. Correction for this in markedly different disposition of CDF, with the area under the concentration versus time curve and Cmax of intracellular CDF increasing by 365 and 160%, respectively. Finally, using kinetic simulations we show that ABCC2 represents a fragile node within this pathway, with alterations in ABCC2 having the most prominent effects on both the Km and Vmax through the pathway. This is the first demonstration of the utility of modeling approaches to estimate the impact of drug transport processes on chemical disposition. PMID:19022944
NASA Astrophysics Data System (ADS)
Paul, Shirshendu
Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed with the goal of demonstrating their potential as ultrasound agents with simultaneous imaging and drug/gene delivery applications --- 'dual-purpose' contrast agents. Both in vitro acoustic studies and ultrasound imaging (performed in NDSU by our collaborators) showed the echogenicity of the various formulations studied. We believe that this echogenicity results from the larger diameter liposomes present in the polydisperse suspension obtained after reconstitution of the lyophilized powders. Although, ultrasound excitation (< 5 MHz) alone was incapable of causing optimal release of contents, a dual-triggering strategy (with enzymes or redox) proved successful, resulting in a total release of up to 80-90%. Considering these experimental results, it can be concluded that these novel formulations hold the potential of providing powerful treatment strategies for many diseases, including cardiovascular ones and various cancers.
Thiel, A; Etheve, S; Fabian, E; Leeman, W R; Plautz, J R
2015-10-01
Consumer health risk assessment for feed additives is based on the estimated human exposure to the additive that may occur in livestock edible tissues compared to its hazard. We present an approach using alternative methods for consumer health risk assessment. The aim was to use the fewest possible number of animals to estimate its hazard and human exposure without jeopardizing the safety upon use. As an example we selected the feed flavoring substance piperine and applied in silico modeling for residue estimation, results from literature surveys, and Read-Across to assess metabolism in different species. Results were compared to experimental in vitro metabolism data in rat and chicken, and to quantitative analysis of residues' levels from the in vivo situation in livestock. In silico residue modeling showed to be a worst case: the modeled residual levels were considerably higher than the measured residual levels. The in vitro evaluation of livestock versus rodent metabolism revealed no major differences in metabolism between the species. We successfully performed a consumer health risk assessment without performing additional animal experiments. As shown, the use and combination of different alternative methods supports animal welfare consideration and provides future perspective to reducing the number of animals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.
Varadarajan, Balamurugan; Vogt, Andreas; Hartwich, Volker; Vasireddy, Rakesh; Consiglio, Jolanda; Hugi-Mayr, Beate; Eberle, Balthasar
2017-01-01
The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.
Shen, Haitao; Liu, Chenglin; Zhang, Dongping; Yao, Xiyang; Zhang, Kai; Li, Haiying; Chen, Gang
2017-03-02
Cell death is a hallmark of second brain injury after intracerebral hemorrhage (ICH); however, the mechanism still has not been fully illustrated. In this study, we explored whether necroptosis, a type of regulated necrosis, has an essential role in brain injury after ICH. We found that inhibiting receptor-interacting protein 1 (RIP1) - a core element of the necroptotic pathway - by a specific chemical inhibitor or genetic knockdown attenuated brain injury in a rat model of ICH. Furthermore, necroptosis of cultured neurons could be induced by conditioned medium from microglia stimulated with oxygen hemoglobin, and this effect could be inhibited by TNF-α inhibitor, indicating that TNF-α secreted from activated microglia is an important factor in inducing necroptosis of neurons. Undoubtedly, overexpression of RIP1 increased conditioned medium-induced necroptosis in vitro, but this effect was partially diminished in mutation of serine kinase phosphorylation site of RIP1, showing that phosphorylation of RIP1 is the essential molecular mechanism of necroptosis, which was activated in the in vitro model of ICH. Collectively, our investigation identified that necroptosis is an important mechanism of cell death in brain injury after ICH, and inhibition of necroptosis may be a potential therapeutic intervention of ICH.
Shen, Haitao; Liu, Chenglin; Zhang, Dongping; Yao, Xiyang; Zhang, Kai; Li, Haiying; Chen, Gang
2017-01-01
Cell death is a hallmark of second brain injury after intracerebral hemorrhage (ICH); however, the mechanism still has not been fully illustrated. In this study, we explored whether necroptosis, a type of regulated necrosis, has an essential role in brain injury after ICH. We found that inhibiting receptor-interacting protein 1 (RIP1) – a core element of the necroptotic pathway – by a specific chemical inhibitor or genetic knockdown attenuated brain injury in a rat model of ICH. Furthermore, necroptosis of cultured neurons could be induced by conditioned medium from microglia stimulated with oxygen hemoglobin, and this effect could be inhibited by TNF-α inhibitor, indicating that TNF-α secreted from activated microglia is an important factor in inducing necroptosis of neurons. Undoubtedly, overexpression of RIP1 increased conditioned medium-induced necroptosis in vitro, but this effect was partially diminished in mutation of serine kinase phosphorylation site of RIP1, showing that phosphorylation of RIP1 is the essential molecular mechanism of necroptosis, which was activated in the in vitro model of ICH. Collectively, our investigation identified that necroptosis is an important mechanism of cell death in brain injury after ICH, and inhibition of necroptosis may be a potential therapeutic intervention of ICH. PMID:28252651
Tinti, Laura; Spreafico, Adriano; Braconi, Daniela; Millucci, Lia; Bernardini, Giulia; Chellini, Federico; Cavallo, Giovanni; Selvi, Enrico; Galeazzi, Mauro; Marcolongo, Roberto; Gallagher, James A; Santucci, Annalisa
2010-10-01
Alkaptonuria (AKU) is a rare autosomal recessive disease, associated with deficiency of homogentisate 1,2-dioxygenase activity in the liver. This leads to an accumulation of homogentisic acid (HGA) and its oxidized derivatives in polymerized form in connective tissues especially in joints. Currently, AKU lacks an appropriate therapy. Hence, we propose a new treatment for AKU using the antioxidant N-acetylcysteine (NAC) administered in combinations with ascorbic acid (ASC) since it has been proven that NAC counteracts the side-effects of ASC. We established an in vitro cell model using human articular primary chondrocytes challenged with an excess of HGA (0.33 mM). We used this experimental model to undertake pre-clinical testing of potential antioxidative therapies for AKU, evaluating apoptosis, viability, proliferation, and metabolism of chondrocytes exposed to HGA and treated with NAC and ASC administered alone or in combination addition of both. NAC decreased apoptosis induced in chondrocytes by HGA, increased chondrocyte growth reduced by HGA, and partially restored proteoglycan release inhibited by HGA. A significantly improvement in efficacy was found with combined addition of the two antioxidants in comparison with NAC and ASC alone. Our novel in vitro AKU model allowed us to demonstrate the efficacy of the co-administration of NAC and ASC to counteract the negative effects of HGA for the treatment of ochronotic arthropathy. (c) 2010 Wiley-Liss, Inc.
Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo
2016-01-01
The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robla Costales, David; Junquera, Luis; García Pérez, Eva; Gómez Llames, Sara; Álvarez-Viejo, María; Meana-Infiesta, Álvaro
2016-10-01
The aims of this study were twofold: first, to evaluate the production of cartilaginous tissue in vitro and in vivo using a novel plasma-derived scaffold, and second, to test the repair of experimental defects made on ears of New Zealand rabbits (NZr) using this approach. Scaffolds were seeded with chondrocytes and cultured in vitro for 3 months to check in vitro cartilage production. To evaluate in vivo cartilage production, a chondrocyte-seeded scaffold was transplanted subcutaneously to a nude mouse. To check in vivo repair, experimental defects made in the ears of five New Zealand rabbits (NZr) were filled with chondrocyte-seeded scaffolds. In vitro culture produced mature chondrocytes with no extracellular matrix (ECM). Histological examination of redifferentiated in vitro cultures showed differentiated chondrocytes adhered to scaffold pores. Subcutaneous transplantation of these constructs to a nude mouse produced cartilage, confirmed by histological study. Experimental cartilage repair in five NZr showed cartilaginous tissue repairing the defects, mixed with calcified areas of bone formation. It is possible to produce cartilaginous tissue in vivo and to repair experimental auricular defects by means of chondrocyte cultures and the novel plasma-derived scaffold. Further studies are needed to determine the significance of bone formation in the samples. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Li, Jun; Kong, Wei-jia; Zhao, Xue-yan; Hu, Yu-juan
2008-11-01
To set up the oxidative stress experimental model of rat cochlea with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Cultured marginal cells of rat were treated by 200, 300, 400, 600 and 800 micromol/L hydrogen peroxide (H(2)O(2)) for 0.5, 1, 2, 4, 16 and 24 hours, respectively. Cell viability was assessed by the CCK-8 assay. The content of the lipid peroxidation production malondialdehyde (MDA) were detected in H(2)O(2) induced marginal cells injury with different concentration H(2)O(2). Apoptosis was assessed by flow cytometry by propidium sodium staining. The expression of the cleaved-caspase-3 was assessed by Western blot. Being exposed to H(2)O(2), marginal cells displayed nuclear pyknosis and margination, cytoplasmic condensation, cell shrinkage and formation of membrane and bounded apoptotic bodies. A time-dependent and dose-dependent decrease of cellular viability was detected with the treatment of H(2)O(2). Cellular maleic dialdehyde was generated in proportion to the concentration of H(2)O(2) at 2 hours and the number of apoptotic cells increased significantly (P < 0. 05). Western blot showed the expression of the cleaved-caspase-3 increased when 200 micromol/L, 300 micromol/L and 400 micromol/L H(2)O(2) treated cultured marginal cells. Thereafter the expression of the cleaved-caspase-3 decreased with 600 micromol/L H(2)O(2) and with 800 micromol/L H(2)O(2) the expression of cleaved-caspase-3 was weak. The findings indicated that the experimental model can be established successfully using cultured cells exposed to H(2)O(2) and activation of caspase-3 is associated with hydrogen peroxide induced rat marginal cells the oxidative stress injury.
Wang, Feng-Jie; Cui, Dan; Qian, Wei-Dong
2018-05-14
This study aimed to explore whether the adoptive transfusion of autologous CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs) has a therapeutic effect on Experimental autoimmune neuritis (EAN) model rats, and it provides new experimental and theoretical bases for the immunotherapy of Guillain-Barre syndrome (GBS). CD4+CD25+ Tregs were sorted from the spleens of rats using immunomagnetic bead separation techniques combined with flow cytometry. Their in vitro inhibitory function was determined using a lymphocyte proliferation inhibition test, and their purity was confirmed by flow cytometry. Cells were stimulated using CD3/CD28 monoclonal antibodies and were cultured in culture medium containing interleukin 2 (IL-2), transforming growth factor-β (TGF-β) and rapamycin. After 15 days of amplification, CD4+CD25+ Tregs were collected and transfused into EAN model rats. Changes in the pathology and electron microscopical morphology of rat sciatic nerves in the normal group, untreated group, low-dose group (2 × 107) and high-dose group (4 × 107) were observed, and the expression of CD4+CD25+FOXP3 in peripheral blood in the four groups of rats was detected by flow cytometry. Compared with rats in the untreated group, rats in the treatment groups had significantly reduced infiltration of inflammatory cells in the sciatic nerve, as well as myelin and axonal damage. Additionally, the CD4+CD25+ Tregs levels in peripheral blood were significantly higher than those in the untreated group (P< 0. 05). Moreover, the therapeutic effect became more significant with an increase in the dose of adoptive transfusion. Adoptive transfusion of CD4+CD25+ Tregs into EAN model rats has significant therapeutic effects. © 2018 The Author(s). Published by S. Karger AG, Basel.
Sheridan, Michael Peter; Regev-Shoshani, Gilly; Martins, James; Vimalanathan, Selvarani; Miller, Chris
2016-12-01
Bovine respiratory disease complex (BRDc) is a multi-factorial disease, involving both viral and bacterial pathogens, that negatively impacts the cattle feedlot industry. A nitric oxide releasing solution (NORS) has been developed and shown to have potential in the prevention of BRDc. This study investigated the underlying immunological mechanisms through which the nitroslyating agent NORS provides protection against the development of BRDc in susceptible cattle. An in vitro BRDc experimental model was designed using bovine peripheral blood mononuclear cells (PBMCs) which were infected with bovine herpesvirus 1 (BHV-1) and subsequently cultured with lipopolysaccharides (LPS) extracted from Mannheimia haemolytica bacteria. The cells were treated with NORS following viral infection to reflect the timing of administering the NORS treatment in feedlots during initial processing. An expression and protein analysis of key genes involved in the innate immune response was carried out. The BRDc model produced significant increases in gene expression (p<0.01) and protein release (p<0.05) of the proinflammatory cytokines IL-1β and TNF. Treatment with NORS reduced the protein levels of IL-1β (0.39-fold↓) (p<0.05) and TNF (0.48-fold↓) (p<0.01) in the BRDc experimental group when compared against the non-treatment BRDc controls. TLR4 expression, having been significantly reduced under the BRDc experimental conditions (0.33-fold↓) (p<0.05), increased significantly (0.76-fold↑) (p<0.05) following NORS treatment. This study provides evidence suggesting that NO may protect against the development of BRDc by limiting deleterious inflammation while simultaneously increasing TLR4 expression and enhancing the ability of the host to detect and respond to bacterial pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.
Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J
2017-08-01
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S
1984-05-01
Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.
Huang, Sheng-He; He, Lina; Zhou, Yanhong; Wu, Chun-Hua; Jong, Ambrose
2009-01-01
The purpose of this study was to examine prophylactic efficacy of probiotics in neonatal sepsis and meningitis caused by E. coli K1. The potential inhibitory effect of Lactobacillus rhamnosus GG (LGG) on meningitic E. coli K1 infection was examined by using (i) in vitro inhibition assays with E44 (a CSF isolate from a newborn baby with E. coli meningitis), and (ii) the neonatal rat model of E. coli sepsis and meningitis. The in vitro studies demonstrated that LGG blocked E44 adhesion, invasion, and transcytosis in a dose-dependent manner. A significant reduction in the levels of pathogen colonization, E. coli bacteremia, and meningitis was observed in the LGG-treated neonatal rats, as assessed by viable cultures, compared to the levels in the control group. In conclusion, probiotic LGG strongly suppresses meningitic E. coli pathogens in vitro and in vivo. The results support the use of probiotic strains such as LGG for prophylaxis of neonatal sepsis and meningitis. PMID:20016677
Huang, Sheng-He; He, Lina; Zhou, Yanhong; Wu, Chun-Hua; Jong, Ambrose
2009-01-01
The purpose of this study was to examine prophylactic efficacy of probiotics in neonatal sepsis and meningitis caused by E. coli K1. The potential inhibitory effect of Lactobacillus rhamnosus GG (LGG) on meningitic E. coli K1 infection was examined by using (i) in vitro inhibition assays with E44 (a CSF isolate from a newborn baby with E. coli meningitis), and (ii) the neonatal rat model of E. coli sepsis and meningitis. The in vitro studies demonstrated that LGG blocked E44 adhesion, invasion, and transcytosis in a dose-dependent manner. A significant reduction in the levels of pathogen colonization, E. coli bacteremia, and meningitis was observed in the LGG-treated neonatal rats, as assessed by viable cultures, compared to the levels in the control group. In conclusion, probiotic LGG strongly suppresses meningitic E. coli pathogens in vitro and in vivo. The results support the use of probiotic strains such as LGG for prophylaxis of neonatal sepsis and meningitis.
A three-dimensional neural spheroid model for capillary-like network formation.
Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane
2018-04-01
In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis
Gillies, Kendall; Krone, Stephen M.; Nagler, James J.; Schultz, Irvin R.
2016-01-01
Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. PMID:27096735
A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis.
Gillies, Kendall; Krone, Stephen M; Nagler, James J; Schultz, Irvin R
2016-04-01
Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales.
Modeling growth and dissemination of lymphoma in a co-evolving lymph node: a diffuse-domain approach
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John
2013-03-01
While partial differential equation models of tumor growth have successfully described various spatiotemporal phenomena observed for in-vitro tumor spheroid experiments, one challenge towards taking these models to further study in-vivo tumors is that instead of relatively static tissue culture with regular boundary conditions, in-vivo tumors are often confined in organ tissues that co-evolve with the tumor growth. Here we adopt a recently developed diffuse-domain method to account for the co-evolving domain boundaries, adapting our previous in-vitro tumor model for the development of lymphoma encapsulated in a lymph node, which may swell or shrink due to proliferation and dissemination of lymphoma cells and treatment by chemotherapy. We use the model to study the induced spatial heterogeneity, which may arise as an emerging phenomenon in experimental observations and model analysis. Spatial heterogeneity is believed to lead to tumor infiltration patterns and reduce the efficacy of chemotherapy, leaving residuals that cause cancer relapse after the treatment. Understanding the spatiotemporal evolution of in-vivo tumors can be an essential step towards more effective strategies of curing cancer. Supported by NIH-PSOC grant 1U54CA143907-01.
NASA Astrophysics Data System (ADS)
Leonard, Fransisca; Curtis, Louis T.; Yesantharao, Pooja; Tanei, Tomonori; Alexander, Jenolyn F.; Wu, Min; Lowengrub, John; Liu, Xuewu; Ferrari, Mauro; Yokoi, Kenji; Frieboes, Hermann B.; Godin, Biana
2016-06-01
Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to impaired transport of both low- and high-molecular weight drugs into the lesions and to high washout rate. Nanoparticle albumin-bound-paclitaxel (nAb-PTX) has demonstrated benefits in clinical trials when compared to paclitaxel and docetaxel. However, its therapeutic efficacy for breast cancer liver metastasis is disappointing. As macrophages are the most abundant cells in the liver tumor microenvironment, we design a multistage system employing macrophages to deliver drugs into hypovascularized metastatic lesions, and perform in vitro, in vivo, and in silico evaluation. The system encapsulates nAb-PTX into nanoporous biocompatible and biodegradable multistage vectors (MSV), thus promoting nAb-PTX retention in macrophages. We develop a 3D in vitro model to simulate clinically observed hypo-perfused tumor lesions surrounded by macrophages. This model enables evaluation of nAb-PTX and MSV-nab PTX efficacy as a function of transport barriers. Addition of macrophages to this system significantly increases MSV-nAb-PTX efficacy, revealing the role of macrophages in drug transport. In the in vivo model, a significant increase in macrophage number, as compared to unaffected liver, is observed in mice, confirming the in vitro findings. Further, a mathematical model linking drug release and retention from macrophages is implemented to project MSV-nAb-PTX efficacy in a clinical setting. Based on macrophage presence detected via liver tumor imaging and biopsy, the proposed experimental/computational approach could enable prediction of MSV-nab PTX performance to treat metastatic cancer in the liver.Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to impaired transport of both low- and high-molecular weight drugs into the lesions and to high washout rate. Nanoparticle albumin-bound-paclitaxel (nAb-PTX) has demonstrated benefits in clinical trials when compared to paclitaxel and docetaxel. However, its therapeutic efficacy for breast cancer liver metastasis is disappointing. As macrophages are the most abundant cells in the liver tumor microenvironment, we design a multistage system employing macrophages to deliver drugs into hypovascularized metastatic lesions, and perform in vitro, in vivo, and in silico evaluation. The system encapsulates nAb-PTX into nanoporous biocompatible and biodegradable multistage vectors (MSV), thus promoting nAb-PTX retention in macrophages. We develop a 3D in vitro model to simulate clinically observed hypo-perfused tumor lesions surrounded by macrophages. This model enables evaluation of nAb-PTX and MSV-nab PTX efficacy as a function of transport barriers. Addition of macrophages to this system significantly increases MSV-nAb-PTX efficacy, revealing the role of macrophages in drug transport. In the in vivo model, a significant increase in macrophage number, as compared to unaffected liver, is observed in mice, confirming the in vitro findings. Further, a mathematical model linking drug release and retention from macrophages is implemented to project MSV-nAb-PTX efficacy in a clinical setting. Based on macrophage presence detected via liver tumor imaging and biopsy, the proposed experimental/computational approach could enable prediction of MSV-nab PTX performance to treat metastatic cancer in the liver. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07796f
Kwag, Jeehyun; Jang, Hyun Jae; Kim, Mincheol; Lee, Sujeong
2014-01-01
Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin–Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons. PMID:25100320
Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso
2017-01-01
The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100
Bioelectric modulation of wound healing in a 3D in vitro model of tissue-engineered bone.
Sundelacruz, Sarah; Li, Chunmei; Choi, Young Jun; Levin, Michael; Kaplan, David L
2013-09-01
Long-standing interest in bioelectric regulation of bone fracture healing has primarily focused on exogenous stimulation of bone using applied electromagnetic fields. Endogenous electric signals, such as spatial gradients of resting potential among non-excitable cells in vivo, have also been shown to be important in cell proliferation, differentiation, migration, and tissue regeneration, and may therefore have as-yet unexplored therapeutic potential for regulating wound healing in bone tissue. To study this form of bioelectric regulation, there is a need for three-dimensional (3D) in vitro wound tissue models that can overcome limitations of current in vivo models. We present a 3D wound healing model in engineered bone tissue that serves as a pre-clinical experimental platform for studying electrophysiological regulation of wound healing. Using this system, we identified two electrophysiology-modulating compounds, glibenclamide and monensin, that augmented osteoblast mineralization. Of particular interest, these compounds displayed differential effects in the wound area compared to the surrounding tissue. Several hypotheses are proposed to account for these observations, including the existence of heterogeneous subpopulations of osteoblasts that respond differently to bioelectric signals, or the capacity of the wound-specific biochemical and biomechanical environment to alter cell responses to electrophysiological treatments. These data indicate that a comprehensive characterization of the cellular, biochemical, biomechanical, and bioelectrical components of in vitro wound models is needed to develop bioelectric strategies to control cell functions for improved bone regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mura, Paola; Orlandini, Serena; Cirri, Marzia; Maestrelli, Francesca; Mennini, Natascia; Casella, Giada; Furlanetto, Sandra
2018-06-15
The work was aimed at developing an in vitro method able to provide rapid and reliable evaluation of drug absorption through buccal mucosa. Absorption simulator apparatus endowed with an artificial membrane was purposely developed by experimental design. The apparent permeation coefficient (P app ) through excised porcine buccal mucosa of naproxen, selected as model drug, was the target value to obtain with the artificial membrane. The multivariate approach enabled systematic evaluation of the effect on the response (P app ) of simultaneous variations of the variables (kind of lipid components for support impregnation and relative amounts). A screening phase followed by a response-surface study allowed optimization of the lipid-mixture composition to obtain the desired P app value, and definition of a design space where all mixture components combinations fulfilled the desired target at a fixed probability level. The method offers a useful tool for a quick screening in the early stages of drug discovery and/or in preformulation studies, improving efficiency and chance of success in the development of buccal delivery systems. Further studies with other model drugs are planned to confirm the buccal absorption predictive capacity of the developed membrane. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee
2017-01-01
Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders.
Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee
2017-01-01
Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders. PMID:28740387
NASA Astrophysics Data System (ADS)
Burkhart, Timothy A.
The distal radius is one of the most common fracture sites in humans, often resulting from a forward fall with more than 60 % of all fractures to the wrist requiring some form of surgical intervention. Although there is a general consensus regarding the risk factors for distal radius fractures resulting from forward falling, prevention of these injuries requires a more thorough understanding of the injury mechanisms. Therefore the overall purpose of this dissertation was to assess the response of the upper extremity to impact loading to improve the understanding of distal radius fracture mechanisms and the effectiveness of joint kinematic strategies for reducing the impact effects. Three main studies were conducted that utilized in vivo, in vitro and numerical techniques. In vitro impact testing of the distal radius revealed that fracture will occur at a mean (SD) resultant impact force and velocity of 2142.1(1228.7) N and 3.4 (0.7) m/s, respectively. Based on the failure data, multi-variate injury criteria models were produced, highlighting the dynamic and multidirectional nature of distal radius fractures The in vitro investigation was also used to develop and validate a finite element model of the distal radius. Dynamic impacts were simulated in LS-DYNARTM and the resulting z-axis force validation metrics (0.23--0.54) suggest that this is a valid model. A comparison of the experimental fracture patterns to those predicted numerically (i.e. von-Mises stress criteria) shows the finite element model is capable of accurately predicting bone failure. Finally, an in vivo fall simulation apparatus was designed and built that was found to reliably (Intraclass Correlation Coefficients > 0.6) apply multi-directional motion and upper extremity impacts indicative of forward falls. This study revealed that, to some extent, individuals are capable of selected an impact strategy that minimizes the significant injury variables that were outlined in the in vitro investigation, with very little instruction. The body of work presented here has the potential to be used to develop distal radius fracture prevention methods in an attempt to improve the health and well being of those individuals currently at the highest risk of sustaining these injuries.
Quiney, Daniel; Nishio Ayre, Wayne; Milward, Paul
2017-07-01
Existing in vitro methods for testing denture adhesives do not fully replicate the complex oral geometries and environment; and in vivo methods are qualitative, prone to bias and not easily reproducible. The purpose of this study was to develop a novel, quantitative and more accurate model to test the effect of adhesives on the retentive force of mandibular free end saddle partial dentures. An in vitro model was developed based on an anatomically accurate cast of a clinical case. Experimentally, the amount of adhesive was varied (0.2g-1g) and the tensile force required for displacement was measured. Different commercially available adhesives were then tested at the optimum volume using the in vitro model. A 3D finite element model of the denture was used to assess how the forces to induce denture displacement varied according to the position of the force along the saddle length. The mass of adhesive was found to significantly alter retention forces, with 0.4-0.7g being the optimum range for this particular scenario. Use of adhesives significantly improved mandibular free end saddle partial denture retention with the worst performing adhesive increasing retention nine-fold whilst the best performing adhesive increased retention twenty three-fold. The finite element model revealed that 77% more force was required to displace the denture by positioning forces towards the mesial end of the saddle compared to the distal end. An in vitro denture adhesive model was developed, which demonstrated that mass of adhesive plays a significant role in enhancing denture retention and supported the design principle of placing as few teeth as clinically necessary on the distal end of the free end saddles. Limiting the position of teeth on free end saddles to the mesial and mid portion of the saddle will reduce displacements caused by mastication. The movement of mandibular free end saddle partial dentures can be restricted with the use of denture adhesives. Altering the mass of adhesive used can further improve the retention of mandibular free end saddle partial dentures for patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tarao, Hiroo; Hayashi, Noriyuki; Hamamoto, Isao; Isaka, Katsuo
A numerical method, which is newly developed here, is used in order to calculate internal body resistances in a voxelized biological model. By using this method, the internal resistances of an anatomical human model were calculated for the two current paths: 1400 Ω for a hand to foot, and 1500 Ω for a hand to hand. They are compared with experimental ones (500 ∼ 600 Ω for the hand to foot and 500 ∼ 700 Ω for the hand to hand), resulting in the conclusion that the numerical values of the internal resistance are twice or three times higher than the experimental ones. While there is the discrepancy between the calculated and measured results in the absolute values, the profiles of their relative values along the current paths showed good agreement. This implies that the factors such as the anisotropy of muscle conductivity and the difference between in vivo and in vitro conductivities need to be considered. In fact, in consideration of those factors, the calculated results approached the experimental ones.
Computational and experimental model of transdermal iontophorethic drug delivery system.
Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran
2017-11-30
The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.
Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong
2013-10-01
Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.
Modelling the balance between quiescence and cell death in normal and tumour cell populations.
Spinelli, Lorenzo; Torricelli, Alessandro; Ubezio, Paolo; Basse, Britta
2006-08-01
When considering either human adult tissues (in vivo) or cell cultures (in vitro), cell number is regulated by the relationship between quiescent cells, proliferating cells, cell death and other controls of cell cycle duration. By formulating a mathematical description we see that even small alterations of this relationship may cause a non-growing population to start growing with doubling times characteristic of human tumours. Our model consists of two age structured partial differential equations for the proliferating and quiescent cell compartments. Model parameters are death rates from and transition rates between these compartments. The partial differential equations can be solved for the steady-age distributions, giving the distribution of the cells through the cell cycle, dependent on specific model parameter values. Appropriate formulas can then be derived for various population characteristic quantities such as labelling index, proliferation fraction, doubling time and potential doubling time of the cell population. Such characteristic quantities can be estimated experimentally, although with decreasing precision from in vitro, to in vivo experimental systems and to the clinic. The model can be used to investigate the effects of a single alteration of either quiescence or cell death control on the growth of the whole population and the non-trivial dependence of the doubling time and other observable quantities on particular underlying cell cycle scenarios of death and quiescence. The model indicates that tumour evolution in vivo is a sequence of steady-states, each characterised by particular death and quiescence rate functions. We suggest that a key passage of carcinogenesis is a loss of the communication between quiescence, death and cell cycle machineries, causing a defect in their precise, cell cycle dependent relationship.
Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak
2017-11-25
Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
Ramirez, Christina N; Li, Wenji; Zhang, Chengyue; Wu, Renyi; Su, Shan; Wang, Chao; Gao, Linbo; Yin, Ran; Kong, Ah-Ng
2017-12-20
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
Cai, Song; Ling, Chuwen; Lu, Jun; Duan, Songwei; Wang, Yingzhao; Zhu, Huining; Lin, Ruibang; Chen, Liang; Pan, Xingchang; Cai, Muyi; Gu, Huaiyu
2017-01-01
A primary pathogeny of epilepsy is excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs). To find potential molecules to inhibit AMPARs, high-throughput screening was performed in a library of tetrapeptides in silico. Computational results suggest that some tetrapeptides bind stably to the AMPAR. We aligned these sequences of tetrapeptide candidates with those from in vitro digestion of the trout skin protein. Among salmon-derived products, Glu-Gly-Ala-Arg (EGAR) showed a high biological affinity toward AMPAR when tested in silico. Accordingly, natural EGAR was hypothesized to have anticonvulsant activity, and in vitro experiments showed that EGAR selectively inhibited AMPAR-mediated synaptic transmission without affecting the electrophysiological properties of hippocampal pyramidal neurons. In addition, EGAR reduced neuronal spiking in an in vitro seizure model. Moreover, the ability of EGAR to reduce seizures was evaluated in a rodent epilepsy model. Briefer and less severe seizures versus controls were shown after mice were treated with EGAR. In conclusion, the promising experimental results suggest that EGAR inhibitor against AMPARs may be a target for antiepilepsy pharmaceuticals. Epilepsy is a common brain disorder characterized by the occurrence of recurring, unprovoked seizures. Twenty to 30 % of persons with epilepsy do not achieve adequate seizure control with any drug. Here we provide a possibility in which a natural and edible tetrapeptide, EGAR, can act as an antiepileptic agent. We have combined computation with in vitro experiments to show how EGAR modulates epilepsy. We also used an animal model of epilepsy to prove that EGAR can inhibit seizures in vivo. This study suggests EGAR as a potential pharmaceutical for the treatment of epilepsy.
A conservation law for virus infection kinetics in vitro.
Kakizoe, Yusuke; Morita, Satoru; Nakaoka, Shinji; Takeuchi, Yasuhiro; Sato, Kei; Miura, Tomoyuki; Beauchemin, Catherine A A; Iwami, Shingo
2015-07-07
Conservation laws are among the most important properties of a physical system, but are not commonplace in biology. We derived a conservation law from the basic model for viral infections which consists in a small set of ordinary differential equations. We challenged the conservation law experimentally for the case of a virus infection in a cell culture. We found that the derived, conserved quantity remained almost constant throughout the infection period, implying that the derived conservation law holds in this biological system. We also suggest a potential use for the conservation law in evaluating the accuracy of experimental measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sersa, I; Vidmar, J; Grobelnik, B; Mikac, U; Tratar, G; Blinc, A
2007-06-07
Axially directed blood plasma flow can significantly accelerate thrombolysis of non-occlusive blood clots. Viscous forces caused by shearing of blood play an essential role in this process, in addition to biochemical fibrinolytic reactions. An analytical mathematical model based on the hypothesis that clot dissolution dynamics is proportional to the power of the flowing blood plasma dissipated along the clot is presented. The model assumes cylindrical non-occlusive blood clots with the flow channel in the centre, in which the flow is assumed to be laminar and flow rate constant at all times during dissolution. Effects of sudden constriction on the flow and its impact on the dissolution rate are also considered. The model was verified experimentally by dynamic magnetic resonance (MR) microscopy of artificial blood clots dissolving in an in vitro circulation system, containing plasma with a magnetic resonance imaging contrast agent and recombinant tissue-type plasminogen activator (rt-PA). Sequences of dynamically acquired 3D low resolution MR images of entire clots and 2D high resolution MR images of clots in the axial cross-section were used to evaluate the dissolution model by fitting it to the experimental data. The experimental data fitted well to the model and confirmed our hypothesis.
Capelli, Claudio; Biglino, Giovanni; Petrini, Lorenza; Migliavacca, Francesco; Cosentino, Daria; Bonhoeffer, Philipp; Taylor, Andrew M; Schievano, Silvia
2012-12-01
Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients' suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.
Formulation and in vitro evaluation of Hydrodynamically balanced system for theophylline delivery.
Nayak, Amit Kumar; Malakar, Jadupati
2011-06-01
The objective of the present study was to formulate hydrodynamically balanced systems (HBSs) of theophylline as single unit capsules. They were formulated by physical blending of theophylline with hydroxypropyl methyl cellulose, polyethylene oxide, polyvinyl pyrrolidone, ethyl cellulose, liquid paraffin, and lactose in different ratios. These theophylline HBS capsules were evaluated for weight uniformity, drug content uniformity, in vitro floating behavior and drug release in simulated gastric fluids (pH 1.2). All these formulated HBS capsules containing theophylline were floated well over 6 hours with no floating lag time, and also showed sustained in vitro drug release in simulated gastric fluid over 6 hours. The theophylline release from these capsules was more sustained with the addition of release modifiers (ethyl cellulose and liquid paraffin). The drug release pattern from these capsules was correlated well with first order model (F-1 to F-5) and Korsmeyer-Peppas model (F-6 and F-7) with the non-Fickian (anomalous) diffusion mechanism. These experimental results clearly indicated that these theophylline HBS capsules were able to remain buoyant in the gastric juice for longer period, which may improve oral bioavailability of theophylline.
Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís
2012-01-01
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures.
Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís
2012-01-01
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures. PMID:22470527
Berntsen, Hanne Friis; Berg, Vidar; Thomsen, Cathrine; Ropstad, Erik; Zimmer, Karin Elisabeth
2017-01-01
Amongst the substances listed as persistent organic pollutants (POP) under the Stockholm Convention on Persistent Organic Pollutants (SCPOP) are chlorinated, brominated, and fluorinated compounds. Most experimental studies investigating effects of POP employ single compounds. Studies focusing on effects of POP mixtures are limited, and often conducted using extracts from collected specimens. Confounding effects of unmeasured substances in such extracts may bias the estimates of presumed causal relationships being examined. The aim of this investigation was to design a model of an environmentally relevant mixture of POP for use in experimental studies, containing 29 different chlorinated, brominated, and perfluorinated compounds. POP listed under the SCPOP and reported to occur at the highest levels in Scandinavian food, blood, or breast milk prior to 2012 were selected, and two different mixtures representing varying exposure scenarios constructed. The in vivo mixture contained POP concentrations based upon human estimated daily intakes (EDIs), whereas the in vitro mixture was based upon levels in human blood. In addition to total in vitro mixture, 6 submixtures containing the same concentration of chlorinated + brominated, chlorinated + perfluorinated, brominated + perfluorinated, or chlorinated, brominated or perfluorinated compounds only were constructed. Using submixtures enables investigating the effect of adding or removing one or more chemical groups. Concentrations of compounds included in feed and in vitro mixtures were verified by chemical analysis. It is suggested that this method may be utilized to construct realistic mixtures of environmental contaminants for toxicity studies based upon the relative levels of POP to which individuals are exposed.
Peptides of the Constant Region of Antibodies Display Fungicidal Activity
Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania
2012-01-01
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523
Sun, W; Adams, R N; Miagkov, A; Lu, Y; Juon, H-S; Drachman, D B
2012-10-15
Current immunotherapy of myasthenia gravis (MG) is often effective, but entails risks of infection and neoplasia. The "Guided Missile" strategy described here is designed to target and eliminate the individual's unique AChR-specific T cell repertoire, without otherwise interfering with the immune system. We genetically engineered dendritic cells to present AChR epitopes and simultaneously express Fas ligand in an ongoing EAMG model. In both in vitro and in vivo experiments, these engineered cells specifically killed AChR-responsive T cells without otherwise damaging the immune system. AChR antibodies were markedly reduced in the treated mice. Translation of this method to treat human MG is possible. Copyright © 2012 Elsevier B.V. All rights reserved.
Frake, Paul C; Howell, Rebecca J; Joshi, Arjun S
2012-07-01
To test the strength of internal fixation of mandibular condyle fractures repaired with titanium miniplates versus titanium intramedullary implants. Prospective laboratory experimentation in urethane mandible models and human cadaveric mandibles. Materials testing laboratory at an academic medical center. Osteotomies of the mandibular condyle were created in 40 urethane hemimandible models and 24 human cadaveric specimens. Half of the samples in each group were repaired with traditional miniplates, and the other half were repaired with intramedullary titanium implants. Anteroposterior and mediolateral loads were applied to the samples, and the displacement was measured with reference to the applied force. Titanium intramedullary implants demonstrated statistically significant improved strength and stiffness versus miniplates in the urethane model experimental groups. Despite frequent plastic deformation and mechanical failures of the miniplates, a 1.6-mm-diameter titanium intramedullary pin did not mechanically fail in any of the cases. Intramedullary implantation failures were due to secondary fracture of the adjacent cortical bone or experimental design limitations including rotation of the smooth pin implant. Mechanical implant failures that were encountered with miniplate fixation were not seen with titanium intramedullary implants. These intramedullary implants provide stronger and more rigid fixation of mandibular condyle fractures than miniplates in this in vitro model.
Stochastic simulations of fatty-acid proto-cell models
NASA Astrophysics Data System (ADS)
Mavelli, F.; Ruiz-Mirazo, K.
2007-06-01
In this contribution we tackle the problem of simulating the time behavior of self-assembling fatty acid vesicles in different experimental conditions. These systems have been (and are being) explored by various labs as possible precursor models of cellular compartments. By means of our recently developed stochastic simulation platform ('ENVIRONMENT') we are able to reproduce quite satisfactorily experimental data that have been reported on the different growth behavior of this type of proto-cellular systems, depending on the level of osmotic pressure they are under. The work here presented is part of a more general attempt to gain insight into the problem of how self-assembling vesicles (closed bilayer structures) could progressively turn into minimal self-producing and self-reproducing cells: i.e., into interesting candidates for (proto-)biological systems. This involves crossing the traditional gap between in silico and in vitro approaches, as we try to do here, convinced that major adavances in the field require the correct integration of both theoretical and experimental endeavors.
[Effects of lycopene on the skeletal system].
Sołtysiak, Patrycja; Folwarczna, Joanna
2015-02-21
Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system.
Pfohl-Leszkowicz, A; Hadjeba-Medjdoub, K; Ballet, N; Schrickx, J; Fink-Gremmels, J
2015-01-01
The aim of this paper was to evaluate the capacity of several yeast-based products, derived from baker's and brewer's yeasts, to sequester the mycotoxin ochratoxin A (OTA) and to decrease its rate of absorption and DNA adduct formation in vivo. The experimental protocol included in vitro binding studies using isotherm models, in vivo chicken experiments, in which the serum and tissue concentrations of OTA were analysed in the absence and presence of the test compounds, and the profile of OTA-derived metabolites and their associated DNA adducts were determined. Additionally in vitro cell culture studies (HK2 cells) were applied to assess further the effects for yeast cell product enriched with glutathione (GSH) or selenium. Results of the in vitro binding assay in a buffer system indicated the ability of the yeast-based products, as sequester of OTA, albeit at a different level. In the in vitro experiments in chickens, decreased serum and tissue concentrations of treated animals confirmed that yeast-based products are able to prevent the absorption of OTA. A comparison of the binding affinity in a standard in vitro binding assay with the results obtained in an in vivo chicken experiment, however, showed a poor correlation and resulted in a different ranking of the products. More importantly, we could show that yeast-based products actively modulate the biotransformation of OTA in vivo as well as in vitro in a cell culture model. This effect seems to be attributable to residual enzymatic activities in the yeast-based products. An enrichment of yeast cell wall products with GSH or selenium further modulated the profile of the generated OTA metabolites and the associated pattern of OTA-induced DNA adducts by increasing the conversion of OTA into less toxic metabolites such as OTA, OTB and 4-OH-OTA. A reduced absorption and DNA adduct formation was particularly observed with GSH-enriched yeast, whereas selenium-enriched yeasts could counteract the OTA-induced decrease in cell viability, but at the same time increased the OTA-DNA adducts formation. These findings indicate the need for an in-depth characterisation of yeast-based products used as mycotoxin-mitigating feed additives, in in vivo models with target animal species taking into account not only their ability to sequester toxins in the gastrointestinal tract but also their potential effects on the biotransformation of mycotoxins.
Toward computer simulation of high-LET in vitro survival curves.
Heuskin, A-C; Michiels, C; Lucas, S
2013-09-21
We developed a Monte Carlo based computer program called MCSC (Monte Carlo Survival Curve) able to predict the survival fraction of cells irradiated in vitro with a broad beam of high linear energy transfer particles. Three types of cell responses are studied: the usual high dose response, the bystander effect and the low-dose hypersensitivity (HRS). The program models the broad beam irradiation and double strand break distribution following Poisson statistics. The progression of cells through the cell cycle is taken into account while the repair takes place. Input parameters are experimentally determined for A549 lung carcinoma cells irradiated with 10 and 20 keV µm(-1) protons, 115 keV µm(-1) alpha particles and for EAhy926 endothelial cells exposed to 115 keV µm(-1) alpha particles. Results of simulations are presented and compared with experimental survival curves obtained for A549 and EAhy296 cells. Results are in good agreement with experimental data for both cell lines and all irradiation protocols. The benefits of MCSC are several: the gain of time that would have been spent performing time-consuming clonogenic assays, the capacity to estimate survival fraction of cell lines not forming colonies and possibly the evaluation of radiosensitivity parameters of given individuals.
Zhang, Xiaoai; Liao, Zhenkai; Wu, Peng; Chen, Liding; Chen, Xiao Dong
2018-04-01
Previously, we have prepared a version of the dynamic in vitro rat stomach system (DIVRS-II or Biomimic Rat II). It was constructed and tested by showing similar digestive behaviors with those occurred in vivo. In the present work, a 3D-printed plastic mold was employed to create highly repeatable silicone rat stomach model. It has been seen to have shortened the time to handcraft a model like that used in DIVRS-II. The maximum mechanical force of the current stomach model generated by rolling extrusion is found to be more stable probably due to the more uniform wall thickness of the new model. Then the effects of the simulated gastric secretion patterns and contraction frequency of the system on the in vitro digestibility of casein powder suspensions were investigated. The results have shown that the location of the gastric secretion injection has an impact on experimental digestibility. The position of rolling-extrusion area, established at the central part of glandular portion (stomach B), displayed the highest digestibility compared to that at the other locations. Furthermore, the extent of digestion was positively correlated with the contraction frequency of the model stomach system, with the maximum frequency of 12cpm giving the highest digestibility. This highest digestibility is almost the same as the average value found in vivo. The better digestive performance produced by optimizing the gastric secretion pattern and contraction frequency may be both resulted from the improved mixing efficiency of the food matrix with digestive juice. This study shows that it is possible to achieve what in vivo in a simulated digestion device, which may be used for future food and nutrition studies in vitro. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pachón-Ibáñez, María E; Labrador-Herrera, Gema; Cebrero-Cangueiro, Tania; Díaz, Caridad; Smani, Younes; Del Palacio, José P; Rodríguez-Baño, Jesús; Pascual, Alvaro; Pachón, Jerónimo; Conejo, M Carmen
2018-01-01
Despite the relevance of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) infections there are a scarce number of studies to evaluate in vivo the efficacy of combinations therapies. The bactericidal activity of colistin, rifampin, and its combination was studied (time-kill curves) against four clonally unrelated clinical isolates of CP-Kp, producing VIM-1, VIM-1 plus DHA-1(acquired AmpC β-lactamase), OXA-48 plus CTX-M-15 (extended spectrum β-lactamase) and KPC-3, respectively, with colistin MICs of 0.5, 64, 0.5, and 32 mg/L, respectively. The efficacies of antimicrobials in monotherapy and in combination were tested in a murine peritoneal sepsis model, against all the CP-Kp. Their efficacies were tested in the pneumonia model against the OXA-48 plus CTX-M-15 producers. The development of colistin-resistance was analyzed for the colistin-susceptible strains in vitro and in vivo . In vitro , colistin plus rifampin was synergistic against all the strains at 24 h. In vivo , compared to the controls, rifampin alone reduced tissue bacterial concentrations against VIM-1 and OXA-48 plus CTX-M-15 strains; CMS plus rifampin reduced tissue bacterial concentrations of these two CP-Kp and of the KPC-3 strain. Rifampin and the combination increased the survival against the KPC-3 strain; in the pneumonia model, the combination also improved the survival. No resistant mutants appeared with the combination. In conclusion, CMS plus rifampin had a low and heterogeneous efficacy in the treatment of severe peritoneal sepsis model due to CP-Kp producing different carbapenemases, increasing survival only against the KPC-3 strain. The combination showed efficacy in the less severe pneumonia model. The combination prevented in vitro and in vivo the development of colistin resistant mutants.
Pachón-Ibáñez, María E.; Labrador-Herrera, Gema; Cebrero-Cangueiro, Tania; Díaz, Caridad; Smani, Younes; del Palacio, José P.; Rodríguez-Baño, Jesús; Pascual, Alvaro; Pachón, Jerónimo; Conejo, M. Carmen
2018-01-01
Despite the relevance of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) infections there are a scarce number of studies to evaluate in vivo the efficacy of combinations therapies. The bactericidal activity of colistin, rifampin, and its combination was studied (time–kill curves) against four clonally unrelated clinical isolates of CP-Kp, producing VIM-1, VIM-1 plus DHA-1(acquired AmpC β-lactamase), OXA-48 plus CTX-M-15 (extended spectrum β-lactamase) and KPC-3, respectively, with colistin MICs of 0.5, 64, 0.5, and 32 mg/L, respectively. The efficacies of antimicrobials in monotherapy and in combination were tested in a murine peritoneal sepsis model, against all the CP-Kp. Their efficacies were tested in the pneumonia model against the OXA-48 plus CTX-M-15 producers. The development of colistin-resistance was analyzed for the colistin-susceptible strains in vitro and in vivo. In vitro, colistin plus rifampin was synergistic against all the strains at 24 h. In vivo, compared to the controls, rifampin alone reduced tissue bacterial concentrations against VIM-1 and OXA-48 plus CTX-M-15 strains; CMS plus rifampin reduced tissue bacterial concentrations of these two CP-Kp and of the KPC-3 strain. Rifampin and the combination increased the survival against the KPC-3 strain; in the pneumonia model, the combination also improved the survival. No resistant mutants appeared with the combination. In conclusion, CMS plus rifampin had a low and heterogeneous efficacy in the treatment of severe peritoneal sepsis model due to CP-Kp producing different carbapenemases, increasing survival only against the KPC-3 strain. The combination showed efficacy in the less severe pneumonia model. The combination prevented in vitro and in vivo the development of colistin resistant mutants.
Bruner-Tran, Kaylon L; Eisenberg, Esther; Yeaman, Grant R; Anderson, Ted A; McBean, Judith; Osteen, Kevin G
2002-10-01
The cyclic expression of matrix metalloproteinases (MMPs) by human endometrium has been suggested to play a role in the invasive process necessary to establish endometriosis. The ability of progesterone exposure to inhibit endometrial MMP-3 and MMP-7 expression requires the local action of TGF beta and may also be linked to the local production of retinoic acid by stromal cells. A continuous expression of several MMPs in endometriotic lesions has been reported, indicating a failure of progesterone or locally produced factors to suppress these enzymes. To address cell-specific MMP regulation associated with endometriosis, we examined expression of MMP-3 and MMP-7 mRNA in eutopic endometrium and endometriotic lesions acquired during the secretory phase of the menstrual cycle. We examined the in vitro regulation of MMP-3 and MMP-7 protein in similar tissues. We also examined the in vitro regulation of MMP secretion by progesterone, retinoic acid, and TGF beta in endometriosis tissues relative to the establishment of experimental disease. Our studies indicate that either eutopic or ectopic tissue from women with endometriosis exhibit patterns of altered MMP regulation in vivo. A lack of responsiveness to progesterone was demonstrated in vitro, associated with a failure to suppress MMP expression and an enhanced ability of the tissue to establish experimental endometriosis. However, in vitro treatments with retinoic acid and TGF beta restored the ability of progesterone to suppress MMPs in vitro and prevented the establishment of experimental disease.
[Animal experimentation in the discovery and production of veterinary vaccines].
Audonnet, J Ch; Lechenet, J; Verschuere, B
2007-08-01
Veterinary vaccine research, development and production facilities must aim to improve animal welfare, respond to public concerns and meet regulatory requirements, while at the same time fulfilling their objective of producing evermore effective and safer vaccines. The use of animal experimentation for the development of new veterinary vaccines is inevitable, as no in vitro model can predict a candidate vaccine's ability to induce protection in the target species. Against the backdrop of ethical and regulatory constraints, constant progress is being made in creating the best possible conditions for animal experimentation. Keeping up to date with the constant changes in the field of animal ethics requires a particular effort on the part of the pharmaceutical industry, which must make careful changes to product registration documentation in accordance with each new development.
Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A.; Rusyn, Ivan; Tropsha, Alexander
2009-01-01
Background Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Objective A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. Methods and results A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values from chemical descriptors. All models were extensively validated using special protocols. Conclusions The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity. PMID:19672406
Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A; Rusyn, Ivan; Tropsha, Alexander
2009-08-01
Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public-private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC(50)) and in vivo rodent median lethal dose (LD(50)) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure-activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD(50) values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC(50) and LD(50). However, a linear IC(50) versus LD(50) correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC(50) and LD(50) values: One group comprises compounds with linear IC(50) versus LD(50) relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD(50) values from chemical descriptors. All models were extensively validated using special protocols. The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity.
Oesch, F; Fabian, E; Landsiedel, Robert
2018-06-18
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Docobo-Pérez, F; Fernández-Cuenca, F; Pachón-Ibáñez, M E; Pascual, A; Pichardo, C; Martínez-Martínez, L; Pachón, J
2008-06-01
The algorithms included in most automated systems used for antimicrobial susceptibility testing (e.g., Vitek 2) consider that Escherichia coli isolates resistant to cefoxitin are AmpC-hyperproducers and, consequently, resistant also to amoxycillin-clavulanate. However, a recent study revealed that 30% of E. coli clinical isolates resistant to cefoxitin remained susceptible in vitro to amoxycillin-clavulanate. The aim of the present study was to evaluate the in-vivo efficacy of amoxycillin-clavulanate in the treatment of an experimental model of pneumonia, using two clonally related isolates (with identical repetitive extragenic palindromic sequence (REP)-PCR patterns) of AmpC-non-hyperproducing and OmpF-lacking E. coli (Ec985 and Ec571) that were resistant to cefoxitin and susceptible to cefotaxime and amoxycillin-clavulanate. MICs were determined using a microdilution technique, and in-vitro bactericidal activity was tested using time-kill assays. The in-vivo efficacy of amoxycillin, amoxycillin-clavulanate and cefotaxime against both isolates was tested in a murine pneumonia model using immunocompetent C57BL/6 mice. Ec571 (a TEM-1/2 producer) was resistant to amoxycillin, whereas Ec985 (a TEM-1/2 non-producer) was susceptible. Amoxycillin, amoxycillin-clavulanate and cefotaxime were bactericidal for Ec985, and amoxycillin-clavulanate and cefotaxime were bactericidal for Ec571 at different concentrations and time-points, as determined using time-kill assays. Treatment with amoxycillin, amoxycillin-clavulanate and cefotaxime reduced the bacterial lung concentration of Ec985 compared with non-treated controls (p <0.05), whereas amoxycillin-clavulanate and cefotaxime showed efficacy against Ec571 when compared with the control and amoxycillin groups (p <0.05). Regardless of the exact underlying mechanism(s) of resistance, amoxycillin-clavulanate was effective in the experimental murine model in the treatment of pneumonia caused by AmpC-non-hyperproducing strains of E. coli resistant to cefoxitin.
Garza-Cuartero, Laura; McCarthy, Elaine; Brady, Joseph; Cassidy, Joseph; Hamilton, Clare; Sekiya, Mary; NcNair, Jim; Mulcahy, Grace
2015-12-15
Mycobacterium bovis causes 3.1% of human tuberculosis cases, as described by the World Health Organisation. In cattle, this organism causes bovine tuberculosis (BTB) which can have a prevalence of up to 39.5% in some developing countries. In developed countries, although the prevalence of BTB has been reduced through eradication programmes, complete eradication has in some cases proved elusive, with prevalences in cattle of 0.5% in the Republic of Ireland and of 4.3% in the UK. As the tuberculous granuloma is the fundamental lesion that reflects the pathogenesis, immune control and progression of BTB, we aimed to develop an in vitro model of the early-stage bovine tuberculous granuloma, in order to model the early stages of BTB, while also reducing the use of experimentally infected animals. In vitro models of human and ovine mycobacterial granulomas have previously been developed; however, so far, there is no model for the BTB granuloma. As the disease in cattle differs in a number of ways from that in other species, we consider this to be a significant gap in the tools available to study the pathogenesis of BTB. By combining bovine monocyte-derived macrophages infected with M. bovis-BCG and autologous lymphocytes we have developed an early-stage tuberculous bovine granuloma model. In the model, 3D cell aggregations formed a spherical-shape that grew for up to 11 days post-infection. This bovine tuberculous granuloma model can aid in the study of such lesion development, and in comparative studies of pathogenesis, such as, for example, the question of mycobacterial latency in bovine tuberculosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Hallifax, D; Houston, J B
2009-03-01
Mechanistic prediction of unbound drug clearance from human hepatic microsomes and hepatocytes correlates with in vivo clearance but is both systematically low (10 - 20 % of in vivo clearance) and highly variable, based on detailed assessments of published studies. Metabolic capacity (Vmax) of commercially available human hepatic microsomes and cryopreserved hepatocytes is log-normally distributed within wide (30 - 150-fold) ranges; Km is also log-normally distributed and effectively independent of Vmax, implying considerable variability in intrinsic clearance. Despite wide overlap, average capacity is 2 - 20-fold (dependent on P450 enzyme) greater in microsomes than hepatocytes, when both are normalised (scaled to whole liver). The in vitro ranges contrast with relatively narrow ranges of clearance among clinical studies. The high in vitro variation probably reflects unresolved phenotypical variability among liver donors and practicalities in processing of human liver into in vitro systems. A significant contribution from the latter is supported by evidence of low reproducibility (several fold) of activity in cryopreserved hepatocytes and microsomes prepared from the same cells, between separate occasions of thawing of cells from the same liver. The large uncertainty which exists in human hepatic in vitro systems appears to dominate the overall uncertainty of in vitro-in vivo extrapolation, including uncertainties within scaling, modelling and drug dependent effects. As such, any notion of quantitative prediction of clearance appears severely challenged.
Hobbs, Marcia M.; Anderson, James E.; Balthazar, Jacqueline T.; Kandler, Justin L.; Carlson, Russell W.; Ganguly, Jhuma; Begum, Afrin A.; Duncan, Joseph A.; Lin, Jessica T.; Sparling, P. Frederick; Jerse, Ann E.; Shafer, William M.
2013-01-01
ABSTRACT Phosphoethanolamine (PEA) on Neisseria gonorrhoeae lipid A influences gonococcal inflammatory signaling and susceptibility to innate host defenses in in vitro models. Here, we evaluated the role of PEA-decorated gonococcal lipid A in competitive infections in female mice and in male volunteers. We inoculated mice and men with mixtures of wild-type N. gonorrhoeae and an isogenic mutant that lacks the PEA transferase, LptA. LptA production conferred a marked survival advantage for wild-type gonococci in the murine female genital tract and in the human male urethra. Our studies translate results from test tube to animal model and into the human host and demonstrate the utility of the mouse model for studies of virulence factors of the human-specific pathogen N. gonorrhoeae that interact with non-host-restricted elements of innate immunity. These results validate the use of gonococcal LptA as a potential target for development of novel immunoprophylactic strategies or antimicrobial treatments. IMPORTANCE Gonorrhea is one of the most common bacterial sexually transmitted infections, and increasing antibiotic resistance threatens the use of currently available antimicrobial therapies. In this work, encompassing in vitro studies and in vivo studies of animal and human models of experimental genital tract infection, we document the importance of lipid A’s structure, mediated by a single bacterial enzyme, LptA, in enhancing the fitness of Neisseria gonorrhoeae. The results of these studies suggest that novel agents targeting LptA may offer urgently needed prevention or treatment strategies for gonorrhea. PMID:24255126
Choi, Jae-Won; Bae, Ji-Hyeon; Jeong, Chang-Mo; Huh, Jung-Bo
2017-05-01
Implant angulation should be considered when selecting an attachment. Some in vitro studies have investigated the relationship between implant angulation and changes in the retention force of the stud attachment, but few studies have evaluated the effect of cyclic loading and repeated cycles of insertion and removal on the stud attachment. The purpose of this in vitro study was to evaluate the effects of implant angulation on the retentive characteristics of overdentures with 2 different stud attachments, an experimental system and O-rings in red and orange, after cyclic loading and repeated insertion and removal cycles. The canine region of a mandibular experimental model was fitted with 2 implant fixtures with 2 different stud attachment systems at implant angulations of 0, 15, or 30 degrees. A mastication simulator was used to simulate cyclic loading, and a universal testing machine was used to evaluate retentive force changes after repeated insertion and removal cycles. To simulate the numbers of mastication and insertion and removal cycles per annum, 400000 cyclic loadings and 1080 insertion and removal cycles were performed. Wear patterns and attachment surface deformations were evaluated by scanning electron microscopy. Data were analyzed using the Kruskal-Wallis test, Mann-Whitney U test with Bonferroni correction (α=.05/3=.017), and the paired-sample Student t test (α=.05). When retentive forces before and after testing were compared, O-ring showed significant retention loss at all implant angulations (P<.001). In contrast, the experimental system showed little retention loss in the 0- and 15-degree models (P>.05), whereas the 30-degree model showed a significant increase in retentive force (P=.001). At all implant angulations, retention loss increased significantly for the orange O-ring, followed by the red O-ring, and the experimental system (P<.001). Scanning electron microscopy analysis showed more intense wear in the matrix than the patrix (abutment that matches to matrix) and more severe wear and deformation of the O-ring rubber matrix than of the experimental zirconia ball. Upon completion of the experiment, wear and deformation were found for all attachment systems. Even when implants are not installed in parallel, the experimental system can be used without involving great loss of retention. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Strauss, Mariana; Rodrigues, Jean Henrique S; Lo Presti, María Silvina; Bazán, Paola Carolina; Báez, Alejandra Lidia; Paglini-Oliva, Patricia; Nakamura, Celso Vataru; Bustamante, Juan Manuel; Rivarola, Héctor Walter
2018-06-01
Combination therapies based on the available drugs have been proposed as promising therapeutic alternatives for many diseases. Clomipramine (CLO) has been found to modify the evolution of the experimental infection. The objective of this study was to evaluate the combined effect of benznidazole (BZ) and clomipramine (CLO) against different life-stages of Trypanosoma cruzi in vitro and their efficacy in a murine model. Life-stages of T. cruzi, BZ-partially-resistant (Y) strain, were incubated with BZ and CLO and isobolograms and combination index (CI) were obtained. Swiss mice were infected with trypomastigotes and different treatment schedules were performed, each of which consisted of 30 consecutive daily doses. Treatment efficacy was evaluated by comparing parasitemia, qPCR, survival and histological analysis. These results were analyzed using multivariate analysis to determine the combined effect of the drugs in vivo. CLO + BZ showed synergistic activity in vitro against the clinically relevant life-stages of T. cruzi. The most susceptible forms were the intracellular amastigotes (CI: 0.20), followed by trypomastigotes (CI: 0.60), with no toxicity upon mammalian cells. The combination of both drugs CLO (1.25 mg/kg) and BZ (6.25 mg/kg), in vivo, significantly diminished the parasitic load in blood and the mortality rate. CLO + BZ presented a similar inflammatory response in cardiac and skeletal muscle (amount of inflammatory cells) to BZ (6.25 mg/kg). Finally, the results from the principal component analysis reaffirmed that both drugs administered in combination presented higher activity compared with the individual administration in the acute experimental model. Copyright © 2018 Elsevier Inc. All rights reserved.
Tenan, Mirna; Ferrari, Paolo; Sappino, André‐Pascal
2016-01-01
Aluminium salts, present in many industrial products of frequent use like antiperspirants, anti‐acid drugs, food additives and vaccines, have been incriminated in contributing to the rise in breast cancer incidence in Western societies. However, current experimental evidence supporting this hypothesis is limited. For example, no experimental evidence that aluminium promotes tumorigenesis in cultured mammary epithelial cells exists. We report here that long‐term exposure to concentrations of aluminium—in the form of aluminium chloride (AlCl3)—in the range of those measured in the human breast, transform normal murine mammary gland (NMuMG) epithelial cells in vitro as revealed by the soft agar assay. Subcutaneous injections into three different mouse strains with decreasing immunodeficiency, namely, NOD SCID gamma (NSG), NOD SCID or nude mice, revealed that untreated NMuMG cells form tumors and metastasize, to a limited extent, in the highly immunodeficient and natural killer (NK) cell deficient NSG strain, but not in the less permissive and NK cell competent NOD SCID or nude strains. In contrast, NMuMG cells transformed in vitro by AlCl3 form large tumors and metastasize in all three mouse models. These effects correlate with a mutagenic activity of AlCl3. Our findings demonstrate for the first time that concentrations of aluminium in the range of those measured in the human breast fully transform cultured mammary epithelial cells, thus enabling them to form tumors and metastasize in well‐established mouse cancer models. Our observations provide experimental evidence that aluminium salts could be environmental breast carcinogens. PMID:27541736
Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena
2017-02-01
Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.
Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses
Zambelli, Alison M.; Brothers, Kimberly M.; Hunt, Kristin M.; Romanowski, Eric G.; Nau, Amy C.; Dhaliwal, Deepinder K.; Shanks, Robert M. Q.
2014-01-01
Objectives To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses in vitro. Methods Using an in vitro model, the diffusion of three antimicrobials through SH contact lenses was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of four hours. The amount of each diffused antimicrobial was determined by comparing the experimental value to a standard curve. A biological assay was performed to validate the contact lens diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least 4 independent replicates. Results Our data show detectable moxifloxacin and PHMB diffusion through SH contact lenses at 30 minutes, while amphotericin B diffusion remained below the limit of detection within the 4 hour experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 minutes on bacterial lawns, whereas PHMB and amphotericin B failed to demonstrate killing on microbial lawns over the course of the 60 minute experiment. Conclusions In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through silicone hydrogel contact lenses. Further studies regarding the clinical benefit of using these agents along with bandage contact lens use for corneal pathology are warranted. PMID:25806673
Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V
2013-08-01
In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, K S; Bayer, A S
1985-07-01
We evaluated the activity of BMY-28142 against a K1 E. coli strain and a type III group B streptococcal strain in vitro and in vivo and compared the results with those of cefotaxime and penicillin G, respectively. In vitro, the MICs and MBCs of BMY-28142 were close to those of cefotaxime (less than or equal to 2-fold difference) for E. coli and fourfold less than those of penicillin G for group B streptococci. In vivo studies with an experimental bacteremia and meningitis model in newborn rats revealed that the mean penetration of BMY-28142 into the cerebrospinal fluid was 15% that of concomitant levels in serum and that significantly greater bactericidal titers were achieved in blood and cerebrospinal fluid for both test organisms with BMY-28142 than with cefotaxime and penicillin G. However, the overall efficacy of BMY-28142 was similar to that of cefotaxime for the E. coli infection and that of penicillin G for the group B streptococcal infection. This was shown by similar rates of bacterial clearance from blood and cerebrospinal fluid and similar mortality rates. These findings indicate that the activity of BMY-28142 is bactericidal in vitro and in vivo against E. coli and group B streptococci, suggesting that this agent may be a suitable alternative for the therapy of E. coli and group B streptococcal bacteremia and meningitis.
Viability of ligaments after freezing: an experimental study in a rabbit model.
Frank, C; Edwards, P; McDonald, D; Bodie, D; Sabiston, P
1988-01-01
Our purpose in this study was to assess ligament fibroblast viability after freezing by quantifying the subsequent ability of fibroblasts to synthesize collagen in vitro. Both medial collateral ligament (MCL) complexes from 40 adolescent rabbits were studied. Collagen production was determined by in vitro incubation of ligaments in 3H-proline (a collagen precursor) and subsequent analysis of 3H-hydroxyproline (a marker of newly synthesized collagen). Autoradiographs determined the distributions of ligament cell activity. All right MCL complexes served as fresh controls, providing a baseline of collagen production. Each left MCL was assigned to an experimental group and was either incubated fresh (10 animals); "killed" by drying, multiple freeze thawing, or cycloheximide (six animals); or slowly frozen at -70 degrees C without cryoprotection (24 animals). Collagen production of rapidly thawed ligaments was studied by proline incubation at 1 day, 9 days, or 6 weeks after freezing and was compared with that of contralateral fresh controls. Results demonstrate that some cells in the substance of these rabbit ligaments retained the ability to synthesize collagen in vitro after being frozen for up to 6 weeks. Mean collagen production of frozen ligaments was decreased, but tests of mean and median values as well as ratios were statistically similar to fresh contralateral ligaments in all animals. This postfreezing ligament cell survival and collagen production after -70 degrees C storage may have implications for ligament transplantation.
Mariotti, Erika; Veronese, Mattia; Dunn, Joel T; Southworth, Richard; Eykyn, Thomas R
2015-06-01
To assess the feasibility of using a hybrid Maximum-Entropy/Nonlinear Least Squares (MEM/NLS) method for analyzing the kinetics of hyperpolarized dynamic data with minimum a priori knowledge. A continuous distribution of rates obtained through the Laplace inversion of the data is used as a constraint on the NLS fitting to derive a discrete spectrum of rates. Performance of the MEM/NLS algorithm was assessed through Monte Carlo simulations and validated by fitting the longitudinal relaxation time curves of hyperpolarized [1-(13) C] pyruvate acquired at 9.4 Tesla and at three different flip angles. The method was further used to assess the kinetics of hyperpolarized pyruvate-lactate exchange acquired in vitro in whole blood and to re-analyze the previously published in vitro reaction of hyperpolarized (15) N choline with choline kinase. The MEM/NLS method was found to be adequate for the kinetic characterization of hyperpolarized in vitro time-series. Additional insights were obtained from experimental data in blood as well as from previously published (15) N choline experimental data. The proposed method informs on the compartmental model that best approximate the biological system observed using hyperpolarized (13) C MR especially when the metabolic pathway assessed is complex or a new hyperpolarized probe is used. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.
A monomer-trimer model supports intermittent glucagon fibril growth
NASA Astrophysics Data System (ADS)
Košmrlj, Andrej; Cordsen, Pia; Kyrsting, Anders; Otzen, Daniel E.; Oddershede, Lene B.; Jensen, Mogens H.
2015-03-01
We investigate in vitro fibrillation kinetics of the hormone peptide glucagon at various concentrations using confocal microscopy and determine the glucagon fibril persistence length 60μm. At all concentrations we observe that periods of individual fibril growth are interrupted by periods of stasis. The growth probability is large at high and low concentrations and is reduced for intermediate glucagon concentrations. To explain this behavior we propose a simple model, where fibrils come in two forms, one built entirely from glucagon monomers and one entirely from glucagon trimers. The opposite building blocks act as fibril growth blockers, and this generic model reproduces experimental behavior well.
[Bone marrow stromal damage mediated by immune response activity].
Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H
1994-01-01
The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.
Experimental models of liver fibrosis.
Yanguas, Sara Crespo; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Leclercq, Isabelle; Vinken, Mathieu
2016-05-01
Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.
Natsch, Andreas; Emter, Roger; Ellis, Graham
2009-01-01
Tests for skin sensitization are required prior to the market launch of new cosmetic ingredients. Significant efforts are made to replace the current animal tests. It is widely recognized that this cannot be accomplished with a single in vitro test, but that rather the integration of results from different in vitro and in silico assays will be needed for the prediction of the skin sensitization potential of chemicals. This has been proposed as a theoretical scheme so far, but no attempts have been made to use experimental data to prove the validity of this concept. Here we thus try for the first time to fill this widely cited concept with data. To this aim, we integrate and report both novel and literature data on 116 chemicals of known skin sensitization potential on the following parameters: (1) peptide reactivity as a surrogate for protein binding, (2) induction of antioxidant/electrophile responsive element dependent luciferase activity as a cell-based assay; (3) Tissue Metabolism Simulator skin sensitization model in silico prediction; and (4) calculated octanol-water partition coefficient. The results of the in vitro assays were scaled into five classes from 0 to 4 to give an in vitro score and compared to the local lymph node assay (LLNA) data, which were also scaled from 0 to 4 (nonsensitizer/weak/moderate/strong/extreme). Different ways of evaluating these data have been assessed to rate the hazard of chemicals (Cooper statistics) and to also scale their potency. With the optimized model an overall accuracy for predicting sensitizers of 87.9% was obtained. There is a linear correlation between the LLNA score and the in vitro score. However, the correlation needs further improvement as there is still a relatively high variation in the in vitro score between chemicals belonging to the same sensitization potency class.
Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome
Griffiths, Lisa A.; Persaud, Shanta J.; Jones, Peter M.; Howell, Simon L.; Welsh, Nils
2016-01-01
Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome. PMID:26953716
Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.
King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils
2016-05-01
Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.
Advances in In Vitro and In Silico Tools for Toxicokinetic Dose ...
Recent advances in vitro assays, in silico tools, and systems biology approaches provide opportunities for refined mechanistic understanding for chemical safety assessment that will ultimately lead to reduced reliance on animal-based methods. With the U.S. commercial chemical landscape encompassing thousands of chemicals with limited data, safety assessment strategies that reliably predict in vivo systemic exposures and subsequent in vivo effects efficiently are a priority. Quantitative in vitro-in vivo extrapolation (QIVIVE) is a methodology that facilitates the explicit and quantitative application of in vitro experimental data and in silico modeling to predict in vivo system behaviors and can be applied to predict chemical toxicokinetics, toxicodynamics and also population variability. Tiered strategies that incorporate sufficient information to reliably inform the relevant decision context will facilitate acceptance of these alternative data streams for safety assessments. This abstract does not necessarily reflect U.S. EPA policy. This talk will provide an update to an international audience on the state of science being conducted within the EPA’s Office of Research and Development to develop and refine approaches that estimate internal chemical concentrations following a given exposure, known as toxicokinetics. Toxicokinetic approaches hold great potential in their ability to link in vitro activities or toxicities identified during high-throughput screen
Kowalski, Caitlin H; Beattie, Sarah R; Fuller, Kevin K; McGurk, Elizabeth A; Tang, Yi-Wei; Hohl, Tobias M; Obar, Joshua J; Cramer, Robert A
2016-09-20
Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence of A. fumigatus in this model. To test this hypothesis, we performed in vitro fitness and in vivo virulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates of A. fumigatus Among these isolates, we observed a strong correlation between fitness in low oxygen in vitro and virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence of A. fumigatus isolates in the context of steroid-mediated murine immunosuppression. Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus. Copyright © 2016 Kowalski et al.
Salar-Behzadi, Sharareh; Wu, Shengqian; Mercuri, Annalisa; Meindl, Claudia; Stranzinger, Sandra; Fröhlich, Eleonore
2017-10-30
The growing interest in the inhalable pharmaceutical products requires advanced approaches to safe and fast product development, such as in silico tools that can be used for estimating the bioavailability and toxicity of developed formulation. GastroPlus™ is one of the few available software packages for in silico simulation of PBPK profile of inhalable products. It contains a complementary module for calculating the lung deposition, the permeability and the systemic absorption of inhalable products. Experimental values of lung deposition and permeability can also be used. This study aims to assess the efficiency of simulation by applying experimental permeability and deposition values, using budesonide as a model substance. The lung deposition values were obtained from the literature, the lung permeability data were experimentally determined by culturing Calu-3 cells under air-liquid interface and submersed conditions to morphologically resemble bronchial and alveolar epithelial cells, respectively. A two-compartment PK model was created for i.v. administration and used as a background for the in silico simulation of the plasma profile of budesonide after inhalation. The predicted plasma profile was compared with the in vivo data from the literature and the effects of experimental lung deposition and permeability on prediction were assessed. The developed model was significantly improved by using realistic lung deposition data combined with experimental data for peripheral permeability. Copyright © 2017 Elsevier B.V. All rights reserved.
Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line
Shipley, Mackenzie M.; Mangold, Colleen A.; Szpara, Moriah L.
2016-01-01
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. PMID:26967710
Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.
Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L
2016-02-17
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
Pelisch, Nicolas; Dan, Takashi; Ichimura, Atsuhiko; Sekiguchi, Hiroki; Vaughan, Douglas E; van Ypersele de Strihou, Charles; Miyata, Toshio
2015-01-01
Multiple sclerosis (MS) is characterized by inflammatory demyelination and deposition of fibrinogen in the central nervous system (CNS). Elevated levels of a critical inhibitor of the mammalian fibrinolitic system, plasminogen activator inhibitor 1 (PAI-1) have been demonstrated in human and animal models of MS. In experimental studies that resemble neuroinflammatory disease, PAI-1 deficient mice display preserved neurological structure and function compared to wild type mice, suggesting a link between the fibrinolytic pathway and MS. We previously identified a series of PAI-1 inhibitors on the basis of the 3-dimensional structure of PAI-1 and on virtual screening. These compounds have been reported to provide a number of in vitro and in vivo benefits but none was tested in CNS disease models because of their limited capacity to penetrate the blood-brain barrier (BBB). The existing candidates were therefore optimized to obtain CNS-penetrant compounds. We performed an in vitro screening using a model of BBB and were able to identify a novel, low molecular PAI-1 inhibitor, TM5484, with the highest penetration ratio among all other candidates. Next, we tested the effects on inflammation and demyelination in an experimental allergic encephalomyelitis mice model. Results were compared to either fingolimod or 6α-methylprednisolone. Oral administration of TM5484 from the onset of signs, ameliorates paralysis, attenuated demyelination, and axonal degeneration in the spinal cord of mice. Furthermore, it modulated the expression of brain-derived neurotrophic factor, which plays a protective role in neurons against various pathological insults, and choline acetyltransferase, a marker of neuronal density. Taken together, these results demonstrate the potential benefits of a novel PAI-1 inhibitor, TM5484, in the treatment of MS.
Moghaddam, Zeinab Hormozi; Mokhtari-Dizaji, Manijhe; Movahedin, Mansoureh; Ravari, Mohammad Ehsan
2017-07-01
Considering the use of physical and mechanical stimulation, such as low-intensity ultrasound for proliferation and differentiation of stem cells, it is essential to understand the physical and acoustical mechanisms of acoustic waves in vitro. Mechanical index is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the mechanical index was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. Due to low intensity of ultrasound, Rayleigh integral model has been used for acoustic pressure computation. The acoustic pressure and mechanical index equations are modeled and solved to estimate optimal mechanical index for 28, 40, 150kHz and 1MHz frequencies. This model are solved in different intensities and distances from transducer in cylindrical coordinates. Based on the results of the mechanical index, regions with threshold mechanical index of 0.7 were identified for extracting of radiation arrangement to cell medium. Acoustic pressure distribution along the axial and radial was extracted. In order to validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1MHz and 40kHz. Low-intensity ultrasound with 0.40 mechanical index is more effective on enhancing the proliferation rate of the spermatogonia stem cells during the seven days of culture. In contrast, higher mechanical index has a harmful effect on the spermatogonial stem cells. Thus, considering cavitation threshold of different materials is necessary to find effective mechanical index ranges on proliferation for the used frequencies. This acoustic propagation model and ultrasound mechanical index assessments can be used with acceptable accuracy, for the extraction special arrangement of acoustic exposure used in biological conditions in vitro. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.
Mesenchymal stem cells protective effect in adriamycin model of nephropathy.
Magnasco, Alberto; Corselli, Mirko; Bertelli, Roberta; Ibatici, Adalberto; Peresi, Monica; Gaggero, Gabriele; Cappiello, Valentina; Chiavarina, Barbara; Mattioli, Girolamo; Gusmano, Rosanna; Ravetti, Jean Louis; Frassoni, Francesco; Ghiggeri, Gian Marco
2008-01-01
Mesenchymal stem cells (MSCs) may be of value in regeneration of renal tissue after damage; however, lack of biological knowledge and variability of results in animal models limit their utilization. We studied the effects of MSCs on podocytes in vitro and in vivo utilizing adriamycin (ADR) as a model of renal toxicity. The in vivo experimental approach was carried out in male Sprague-Dawley rats (overall 60 animals) treated with different ADR schemes to induce acute and chronic nephrosis. MSCs were given a) concomitantly to ADR in tail vein or b) in aorta and c) in tail vein 60 days after ADR. Homing was assessed with PKH26-MSCs. MSCs rescued podocytes from apoptosis induced by ADR in vitro. The maximal effect (80% rescue) was obtained with MSCs/podocytes coculture ratio of 1:1 for 72 h. All rats treated with ADR developed nephrosis. MSCs did not modify the clinical parameters (i.e., proteinuria, serum creatinine, lipids) but protected the kidney from severe glomerulosclerosis when given concomitantly to ADR. Rats given MSCs 60 days after ADR developed the same severe renal damage. Only a few MSCs were found in renal tubule-interstitial areas 1-24 h after injection and no MSCs were detected in glomeruli. MSCs reduced apoptosis of podocytes treated with ADR in vitro. Early and repeated MSCs infusion blunted glomerular damage in chronic ADR-induced nephropathy. MSCs did not modify proteinuria and progression to renal failure, which implies lack of regenerative potential in this model.
Mortensen, Joachim Høg
2013-01-01
Therapeutic advances do not circumvent the devastating fact that the survival rate in glioblastoma multiforme (GBM) is less than 5%. Nanoparticles consisting of liposome-based therapeutics are provided against a variety of cancer types including GBM, but available liposomal formulations are provided without targeting moieties, which increases the dosing demands to reach therapeutic concentrations with risks of side effects. We prepared PEGylated immunoliposomes (ILs) conjugated with anti-human epidermal growth factor receptor (EGFR) antibodies Cetuximab (α-hEGFR-ILs). The affinity of the α-hEGFR-ILs for the EGF receptor was evaluated in vitro using U87 mg and U251 mg cells and in vivo using an intracranial U87 mg xenograft model. The xenograft model was additionally analyzed with respect to permeability to endogenous albumin, tumor size, and vascularization. The in vitro studies revealed significantly higher binding of α-hEGFR-ILs when compared with liposomes conjugated with isotypic nonimmune immunoglobulin. The uptake and internalization of the α-hEGFR-ILs by U87 mg cells were further confirmed by 3D deconvolution analyses. In vivo, the α-hEGFR-ILs accumulated to a higher extent inside the tumor when compared to nonimmune liposomes. The data show that α-hEGFR-ILs significantly enhance the uptake and accumulation of liposomes in this experimental model of GBM suggestive of improved specific nanoparticle-based delivery. PMID:24175095
Fenske, Stefanie; Pröbstle, Rasmus; Auer, Franziska; Hassan, Sami; Marks, Vanessa; Pauza, Danius H; Biel, Martin; Wahl-Schott, Christian
2016-01-01
The normal heartbeat slightly fluctuates around a mean value; this phenomenon is called physiological heart rate variability (HRV). It is well known that altered HRV is a risk factor for sudden cardiac death. The availability of genetic mouse models makes it possible to experimentally dissect the mechanism of pathological changes in HRV and its relation to sudden cardiac death. Here we provide a protocol that allows for a comprehensive multilevel analysis of heart rate (HR) fluctuations. The protocol comprises a set of techniques that include in vivo telemetry and in vitro electrophysiology of intact sinoatrial network preparations or isolated single sinoatrial node (SAN) cells. In vitro preparations can be completed within a few hours, with data acquisition within 1 d. In vivo telemetric ECG requires 1 h for surgery and several weeks for data acquisition and analysis. This protocol is of interest to researchers investigating cardiovascular physiology and the pathophysiology of sudden cardiac death.
Moffie, B G; Hoogeterp, J J; Lim, T; Douwes-Idema, A E; Mattie, H
1993-03-01
The activity of netilmicin and tobramycin against Pseudomonas aeruginosa was assessed in vitro in the presence of constant and exponentially declining concentrations, and in mice in an experimental thigh infection. The activity in vitro at constant concentrations was expressed as the maximal killing rate (ER) during 3 h of exposure. On the basis of the quantitative relation between E(R) and the drug concentration, the numbers of cfu expected at consecutive times, at constant as well as at declining concentrations, were predicted. The relationship between observed numbers and predicted values of ERt were similar under both conditions for both drugs. On the same basis the numbers of cfu expected in the experimental thigh infection were predicted. There was indeed a significant linear relationship between observed numbers of cfu in homogenized muscle and the values predicted on the basis of the pharmacokinetics of the aminoglycosides, but the slope of this relationship was only 0.22. There was no difference in this respect between the two antibiotics. It is concluded that the efficacy of netilmicin and tobramycin against P. aeruginosa is considerably less in vivo than in vitro, but the relation is about the same for the two drugs; therefore the slightly higher activity of tobramycin in vitro is relevant in the in-vivo situation.
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.
2008-02-01
This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.
Shahmirzadi, Danial; Li, Ronny X; Konofagou, Elisa E
2012-11-01
Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV² and E measurements using the combined simulation and experimental findings (R² = 0.98) confirming the relationship established by the aforementioned equation.
Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis
Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.
2011-01-01
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination. PMID:21705418
Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.
Zambonin, Jessica L; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M; Turnbull, Doug M; Trapp, Bruce D; Lassmann, Hans; Franklin, Robin J M; Mahad, Don J
2011-07-01
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.
van der Horst, Arjen; van den Broek, Chantal N; van de Vosse, Frans N; Rutten, Marcel C M
2012-03-01
A patient-specific mechanical description of the coronary arterial wall is indispensable for individualized diagnosis and treatment of coronary artery disease. A way to determine the artery's mechanical properties is to fit the parameters of a constitutive model to patient-specific experimental data. Clinical data, however, essentially lack information about the stress-free geometry of an artery, which is necessary for constitutive modeling. In previous research, it has been shown that a way to circumvent this problem is to impose extra modeling constraints on the parameter estimation procedure. In this study, we propose a new modeling constraint concerning the in-situ fiber orientation (β (phys)). β (phys), which is a major contributor to the arterial stress-strain behavior, was determined for porcine and human coronary arteries using a mixed numerical-experimental method. The in-situ situation was mimicked using in-vitro experiments at a physiological axial pre-stretch, in which pressure-radius and pressure-axial force were measured. A single-layered, hyperelastic, thick-walled, two-fiber material model was accurately fitted to the experimental data, enabling the computation of stress, strain, and fiber orientation. β (phys) was found to be almost equal for all vessels measured (36.4 ± 0.3)°, which theoretically can be explained using netting analysis. In further research, this finding can be used as an extra modeling constraint in parameter estimation from clinical data.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2012-08-01
The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.
Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks
Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil
2011-01-01
Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388
Optimum Heart Rate to Minimize Pulsatile External Cardiac Power
NASA Astrophysics Data System (ADS)
Pahlevan, Niema; Gharib, Morteza
2011-11-01
The workload on the left ventricle is composed of steady and pulsatile components. Clinical investigations have confirmed that an abnormal pulsatile load plays an important role in the pathogenesis of left ventricular hypertrophy (LVH) and progression of LVH to congestive heart failure (CHF). The pulsatile load is the result of the complex dynamics of wave propagation and reflection in the compliant arterial vasculature. We hypothesize that aortic waves can be optimized to reduce the left ventricular (LV) pulsatile load. We used an in-vitro experimental approach to investigate our hypothesis. A unique hydraulic model was used for in-vitro experiments. This model has physical and dynamical properties similar to the heart-aorta system. Different compliant models of the artificial aorta were used to test the hypothesis under various aortic rigidities. Our results indicate that: i) there is an optimum heart rate that minimizes LV pulsatile power (this is in agreement with our previous computational study); ii) introducing an extra reflection site at the specific location along the aorta creates constructive wave conditions that reduce the LV pulsatile power.
Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology.
Reyes, Leticia; Herrera, David; Kozarov, Emil; Roldán, Silvia; Progulske-Fox, Ann
2013-04-01
The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis. © 2013 European Federation of Periodontology and American Academy of Periodontology.
On the nature of seizure dynamics
Stacey, William C.; Quilichini, Pascale P.; Ivanov, Anton I.
2014-01-01
Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one for the control of time course, including the alternation between ‘normal’ and ictal periods (slow time scale). We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical parameters contributing to the five state variables in our model system. We show that these parameters apply to specific experimental conditions and propose that there exists a wide array of possible biophysical mechanisms for seizure genesis, while preserving central invariant properties. Epileptor and the seizure taxonomy will guide future modeling and translational research by identifying universal rules governing the initiation and termination of seizures and predicting the conditions necessary for those transitions. PMID:24919973
Molecular and functional aspects of menstruation in the macaque.
Brenner, Robert M; Slayden, Ov D
2012-12-01
Much of our understanding of the molecular control of menstruation arises from laboratory models that experimentally recapitulate some, but not all, aspects of uterine bleeding observed in women. These models include: in vitro culture of endometrial explants or isolated endometrial cells, transplantation of human endometrial tissue into immunodeficient mice and the induction of endometrial breakdown in appropriately pretreated mice. Each of these models has contributed to our understanding of molecular and cellular mechanisms of menstruation, but nonhuman primates, especially macaques, are the animal model of choice for evaluating therapies for menstrual disorders. In this chapter we review some basic aspects of menstruation, with special emphasis on the macaque model and its relevance to the clinical issues of irregular and heavy menstrual bleeding (HMB).
Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.
Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C
2013-09-01
Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.
Diffusing-wave polarimetry for tissue diagnostics
NASA Astrophysics Data System (ADS)
Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor
2014-03-01
We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.
A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth
Loizidou, Marilena; Stylianopoulos, Triantafyllos; Hawkes, David J.
2017-01-01
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature. PMID:28125582
Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon
2015-11-01
Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.
Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P
2016-07-01
In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.
Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie
2016-06-15
Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Xing, Junhao; Yang, Lingyun; Li, Hui; Li, Qing; Zhao, Leilei; Wang, Xinning; Zhang, Yuan; Zhou, Muxing; Zhou, Jinpei; Zhang, Huibin
2015-05-05
The coagulation enzyme factor Xa (fXa) plays a crucial role in the blood coagulation cascade. In this study, three-dimensional fragment based drug design (FBDD) combined with structure-based pharmacophore (SBP) model and structural consensus docking were employed to identify novel fXa inhibitors. After a multi-stage virtual screening (VS) workflow, two hit compounds 3780 and 319 having persistent high performance were identified. Then, these two hit compounds and several analogs were synthesized and screened for in-vitro inhibition of fXa. The experimental data showed that most of the designed compounds displayed significant in vitro potency against fXa. Among them, compound 9b displayed the greatest in vitro potency against fXa with the IC50 value of 23 nM and excellent selectivity versus thrombin (IC50 = 40 μM). Moreover, the prolongation of the prothrombin time (PT) was measured for compound 9b to evaluate its in vitro anticoagulant activity. As a result, compound 9b exhibited pronounced anticoagulant activity with the 2 × PT value of 8.7 μM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Medicinal Plants from Mexico, Central America, and the Caribbean Used as Immunostimulants
Juárez-Vázquez, María del Carmen; Campos-Xolalpa, Nimsi
2016-01-01
A literature review was undertaken by analyzing distinguished books, undergraduate and postgraduate theses, and peer-reviewed scientific articles and by consulting worldwide accepted scientific databases, such as SCOPUS, Web of Science, SCIELO, Medline, and Google Scholar. Medicinal plants used as immunostimulants were classified into two categories: (1) plants with pharmacological studies and (2) plants without pharmacological research. Medicinal plants with pharmacological studies of their immunostimulatory properties were subclassified into four groups as follows: (a) plant extracts evaluated for in vitro effects, (b) plant extracts with documented in vivo effects, (c) active compounds tested on in vitro studies, and (d) active compounds assayed in animal models. Pharmacological studies have been conducted on 29 of the plants, including extracts and compounds, whereas 75 plants lack pharmacological studies regarding their immunostimulatory activity. Medicinal plants were experimentally studied in vitro (19 plants) and in vivo (8 plants). A total of 12 compounds isolated from medicinal plants used as immunostimulants have been tested using in vitro (11 compounds) and in vivo (2 compounds) assays. This review clearly indicates the need to perform scientific studies with medicinal flora from Mexico, Central America, and the Caribbean, to obtain new immunostimulatory agents. PMID:27042188
Kim, K S; Manocchio, M; Anthony, B F
1984-11-01
We evaluated the activity of ampicillin and chloramphenicol in vitro and in vivo against an Escherichia coli K1 strain. In vitro, the strain was relatively susceptible to both antibiotics (MIC and MBC of ampicillin, 2 and 4 micrograms/ml; MIC and MBC of chloramphenicol, 4 and 64 micrograms/ml). Checkerboard determinations of MBCs of drug combinations were consistent with antibiotic antagonism. Killing curves with concentrations of antibiotics similar to in vivo levels in blood and cerebrospinal fluid of infected rats indicated antagonism within the first 4 h and an indifferent effect of the combination at 24 h. Paradoxically, the combination was significantly more effective than ampicillin or chloramphenicol alone in vivo in infant rats. This was shown by (i) more rapid bacterial clearance from the blood and cerebrospinal fluid, (ii) a decreased incidence of meningitis in bacteremic animals, and (iii) improved survival. These findings illustrate a divergence between the effects of ampicillin and chloramphenicol against E. coli in vitro and in vivo and suggest that this combination is an effective synergistic regimen in this experimental model of E. coli bacteremia and meningitis.
Medicinal Plants from Mexico, Central America, and the Caribbean Used as Immunostimulants.
Alonso-Castro, Angel Josabad; Juárez-Vázquez, María Del Carmen; Campos-Xolalpa, Nimsi
2016-01-01
A literature review was undertaken by analyzing distinguished books, undergraduate and postgraduate theses, and peer-reviewed scientific articles and by consulting worldwide accepted scientific databases, such as SCOPUS, Web of Science, SCIELO, Medline, and Google Scholar. Medicinal plants used as immunostimulants were classified into two categories: (1) plants with pharmacological studies and (2) plants without pharmacological research. Medicinal plants with pharmacological studies of their immunostimulatory properties were subclassified into four groups as follows: (a) plant extracts evaluated for in vitro effects, (b) plant extracts with documented in vivo effects, (c) active compounds tested on in vitro studies, and (d) active compounds assayed in animal models. Pharmacological studies have been conducted on 29 of the plants, including extracts and compounds, whereas 75 plants lack pharmacological studies regarding their immunostimulatory activity. Medicinal plants were experimentally studied in vitro (19 plants) and in vivo (8 plants). A total of 12 compounds isolated from medicinal plants used as immunostimulants have been tested using in vitro (11 compounds) and in vivo (2 compounds) assays. This review clearly indicates the need to perform scientific studies with medicinal flora from Mexico, Central America, and the Caribbean, to obtain new immunostimulatory agents.
Dendritic integration: 60 years of progress.
Stuart, Greg J; Spruston, Nelson
2015-12-01
Understanding how individual neurons integrate the thousands of synaptic inputs they receive is critical to understanding how the brain works. Modeling studies in silico and experimental work in vitro, dating back more than half a century, have revealed that neurons can perform a variety of different passive and active forms of synaptic integration on their inputs. But how are synaptic inputs integrated in the intact brain? With the development of new techniques, this question has recently received substantial attention, with new findings suggesting that many of the forms of synaptic integration observed in vitro also occur in vivo, including in awake animals. Here we review six decades of progress, which collectively highlights the complex ways that single neurons integrate their inputs, emphasizing the critical role of dendrites in information processing in the brain.
López, T; Figueras, F; Manjarrez, J; Bustos, J; Alvarez, M; Silvestre-Albero, J; Rodríguez-Reinoso, F; Martínez-Ferre, A; Martínez, E
2010-05-01
Novel nanostructured TiO2 and SiO2 based biocatalysts, with 3-4 wt. % of Pt have been developed. The obtained materials exhibit a high surface area together with a broad pore size distribution. The method of synthesis allowed obtaining high dispersed platinum metal nanoparticles. In vitro DNA reactivity test of the biocatalysts were carried out by electrophoresis and formation of DNA adducts was observed. The most active biocatalyst was H2PtCl6/SiO2. These biocatalysts were also tested in an experimental model of C6 brain tumours in Wistar rats. Administration of the material was made by stereotactic brain surgery to place it directly in the malignant tissue. A significant decrease in tumour size and weight as well as morphologic changes in cancer cells were observed. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection.
Shtanko, Olena; Sakurai, Yasuteru; Reyes, Ann N; Noël, Romain; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien; Davey, Robert A
2018-01-01
Members of the family Filoviridae cause severe, often fatal disease in humans, for which there are no approved vaccines and only a few experimental drugs tested in animal models. Retro-2, a small molecule that inhibits retrograde trafficking of bacterial and plant toxins inside host cells, has been demonstrated to be effective against a range of bacterial and virus pathogens, both in vitro and in animal models. Here, we demonstrated that Retro-2 and its derivatives, Retro-2.1 and compound 25, blocked infection by Ebola virus and Marburg virus in vitro. We show that the derivatives were more potent inhibitors of infection as compared to the parent compound. Pseudotyped virus assays indicated that the compounds affected virus entry into cells while virus particle localization to Niemann-Pick C1-positive compartments showed that they acted at a late step in virus entry. Our work demonstrates a potential for Retro-type drugs to be developed into anti-filoviral therapeutics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Multitargeted therapy of cancer by silymarin
Ramasamy, Kumaraguruparan; Agarwal, Rajesh
2008-01-01
Silymarin, a flavonolignan from milk thistle (Silybum marianum) plant, is used for the protection against various liver conditions in both clinical settings and experimental models. In this review, we summarize the recent investigations and mechanistic studies regarding possible molecular targets of silymarin for cancer prevention. Number of studies has established the cancer chemopreventive role of silymarin in both in vivo and in vitro models. Silymarin modulates imbalance between cell survival and apoptosis through interference with the expressions of cell cycle regulators and proteins involved in apoptosis. In addition, silymarin also showed anti-inflammatory as well as anti-metastatic activity. Further, the protective effects of silymarin and its major active constituent, silibinin, studied in various tissues, suggest a clinical application in cancer patients as an adjunct to estabilished therapies, to prevent or reduce chemotherapy as well as radiotherapy-induced toxicity. This review focuses on the chemistry and analogues of silymarin, multiple possible molecular mechanisms, in vitro as well as in vivo anticancer activities, and studies on human clinical trials. PMID:18472213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Terentyuk, G S; Khlebtsov, B N
2012-06-30
The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and themore » optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.« less
Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar
2013-12-01
For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.
The occupational physician's point of view: the model of man-made vitreous fibers.
Brochard, P; Pairon, J C; Bignon, J
1994-01-01
This article gives a detailed description of the procedure the occupational physician uses in interpreting the available scientific data to provide useful information for prevention of pulmonary diseases related to man-made mineral fibers, particularly lung cancer and mesothelioma. As it is difficult to reach definite conclusions from human data on the toxicity of specific fibers, an experimental approach is needed. Concerning animal data, we emphasize that adequate inhalation studies are the "gold standard" for extrapolating to humans. However, experiments using intracavitary injection or cells in vitro may represent indicative tests for a possible carcinogenic effect. Such tests should be used to assess the intrinsic carcinogenicity of fibers, but they must be confirmed by adequate inhalation models. Despite the present uncertainties, a proposal is made that could make it possible to classify fibers according to their toxicologic potential, grading them in accordance with physicochemical parameters, in vitro testing, and animal experiments. This procedure may be applicable to nonvitreous fibers and to organic fibers. PMID:7882952
Pericàs, J M; García-de-la-Mària, C; Brunet, M; Armero, Y; García-González, J; Casals, G; Almela, M; Quintana, E; Falces, C; Ninot, S; Fuster, D; Llopis, J; Marco, F; Moreno, A; Miró, J M
2017-06-01
Previous studies showed development of daptomycin non-susceptibility (DNS: MIC >4 mg/L) in Enterococcus faecalis infections. However, no studies have assessed the efficacy of the combination of daptomycin/ampicillin against E. faecalis strains developing DNS in the experimental endocarditis (EE) model. To assess the in vitro and in vivo efficacy of daptomycin at 10 mg/kg/day, daptomycin/ampicillin and ampicillin/ceftriaxone against two high-level aminoglycoside-resistant E. faecalis strains, one developing DNS after in vitro exposure to daptomycin and another that did not (DS). Subculture of 82 E. faecalis strains from patients with endocarditis with daptomycin MICs, time-kill and in vivo experiments using the EE model. 33% of the strains (27 of 82) displayed DNS after subculture with daptomycin. Daptomycin MIC rose from 0.5-2 to 8-16 mg/L. In time-kill experiments, when using a high inoculum (10 8 cfu/mL), daptomycin/ampicillin was synergistic for one-third of DS strains and none of DNS strains, while ampicillin/ceftriaxone retained synergy in all cases. In the EE model, daptomycin did not significantly reduce cfu/g from vegetations compared with control against either strain, while daptomycin/ampicillin reduced significantly more cfu/g than daptomycin against the DS strain, but not against the DNS strain [2.9 (2.0-4.1) versus 6.1 (4.5-8.0); P = 0.002]. Ampicillin/ceftriaxone was synergistic and bactericidal against both strains, displaying the same activity as daptomycin/ampicillin against the DS strain. Performance of an Etest for daptomycin MIC after subculture with daptomycin inhibitory doses on strains of high-level aminoglycoside-resistant E. faecalis endocarditis may be an easy test to predict the in vivo efficacy of daptomycin/ampicillin. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Use of Physiologically Based Pharmacokinetic (PBPK) Models ...
EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. This report describes and demonstrates techniques necessary to extrapolate and incorporate in vitro derived metabolic rate constants in PBPK models. It also includes two case study examples designed to demonstrate the applicability of such data for health risk assessment and addresses the quantification, extrapolation and interpretation of advanced biochemical information on human interindividual variability of chemical metabolism for risk assessment application. It comprises five chapters; topics and results covered in the first four chapters have been published in the peer reviewed scientific literature. Topics covered include: Data Quality ObjectivesExperimental FrameworkRequired DataTwo example case studies that develop and incorporate in vitro metabolic rate constants in PBPK models designed to quantify human interindividual variability to better direct the choice of uncertainty factors for health risk assessment. This report is intended to serve as a reference document for risk assors to use when quantifying, extrapolating, and interpretating advanced biochemical information about human interindividual variability of chemical metabolism.
Schwengber, Alex; Prado, Héctor J; Bonelli, Pablo R; Cukierman, Ana L
2017-07-01
Buckypapers based on different types of carbon nanotubes with and without the addition of four model drugs, two of basic nature (clonidine hydrochloride, selegiline hydrochloride) and the others of acidic character (flurbiprofen, ketorolac tromethamine) were prepared and characterized. The influence of the conditions employed in the preparation of the buckypapers (dispersion time and solvents used in the preparation, as well as the type of carbon nanotubes used and the characteristics of the drug involved) on their conductivity was especially examined. The in vitro performance of the drug loaded buckypapers as passive and active transdermal drug release systems, the latter being modulated by means of the application of electric voltages, was studied. Passive drug loaded buckypapers presented characteristic release profiles, also depending on the drug used, which indicate differences in the drug-carbon nanotubes non-covalent interactions. Application of electrical biases of appropriate polarities enabled the modulation of the drug release profiles in any desired direction. Different mathematical models were fitted to passive and electromodulated experimental release data for the four model drugs. Among these models, the most appropriate for data description was a two-compartment pseudo-second-order one. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells
Ruedel, Anke; Hofmeister, Simone; Bosserhoff, Anja-Katrin
2013-01-01
High-density cell culture is widely used for the analysis of cartilage development of human mesenchymal stem cells (HMSCs) in vitro. Several cell culture systems, as micromass, pellet culture and alginate culture, are applied by groups in the field to induce chondrogenic differentiation of HMSCs. A draw back of all model systems is the high amount of cells necessary for the experiments. Further, handling of large experimental approaches is difficult due to culturing e.g. in 15 ml tubes. Therefore, we aimed to develop a new model system based on “hanging drop” cultures using 10 to 100 fold less cells. Here, we demonstrate that differentiation of chondrogenic cells was induced as previously shown in other model systems. Real time RT-PCR analysis demonstrated that Collagen type II and MIA/CD-RAP were upregulated during culturing whereas for induction of hypertrophic markers like Collagen type X and AP-2 epsilon treatment with TGF beta was needed. To further test the system, siRNA against Sox9 was used and effects on chondrogenic gene expression were evaluated. In summary, the hanging drop culture system was determined to be a promising tool for in vitro chondrogenic studies. PMID:24294400
Recent developments in skin mimic systems to predict transdermal permeation.
Waters, Laura J
2015-01-01
In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.
Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.
Manga, Ramya D; Jha, Prateek K
2017-02-01
Hydrogels consisting of weakly charged acidic/basic groups are ideal candidates for carriers in oral delivery, as they swell in response to pH changes in the gastrointestinal tract, resulting in drug entrapment at low pH conditions of the stomach and drug release at high pH conditions of the intestine. We have developed 1-dimensional mathematical models to study the drug release behavior through pH-responsive hydrogels. Models are developed for 3 different cases that vary in the level of rigor, which together can be applied to predict both in vitro (drug release from carrier) and in vivo (drug concentration in the plasma) behavior of hydrogel-drug formulations. A detailed study of the effect of hydrogel and drug characteristics and physiological conditions is performed to gain a fundamental insight into the drug release behavior, which may be useful in the design of pH-responsive drug carriers. Finally, we describe a successful application of these models to predict both in vitro and in vivo behavior of docetaxel-loaded micelle in a pH-responsive hydrogel, as reported in a recent experimental study. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Use of ferrets for electrophysiologic monitoring of ion transport
Kaza, Niroop; Raju, S. Vamsee; Cadillac, Joan M.; Trombley, John A.; Rasmussen, Lawrence; Tang, Liping; Dohm, Erik; Harrod, Kevin S.
2017-01-01
Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases. PMID:29077751
Gordillo, S; Guirado, E; Gil, O; Díaz, J; Amat, I; Molinos, S; Vilaplana, C; Ausina, V; Cardona, P-J
2006-07-01
Real-time RT-PCR was used to quantify the expression of genes possibly involved in Mycobacterium tuberculosis latency in in vitro and murine models. Exponential and stationary phase (EP and SP) bacilli were exposed to decreasing pH levels (from 6.5 to 4.5) in an unstirred culture, and mRNA levels for 16S rRNA, sigma factors sigA,B,E,F,G,H and M, Rv0834c, icl, nirA, narG, fpbB, acr, rpoA, recA and cysH were quantified. The expression of acr was the one that best correlated with the CFU decrease observed in SP bacilli. In the murine model, the expressions of icl, acr and sigF tended to decrease when bacillary counts increased and vice versa. Values from immunodepressed mice (e.g. alpha/beta T cells, TNF, IFN-gamma and iNOs knock out strains), with accelerated bacillary growth rate, confirmed this fact. Finally, the expression of acr was maintained in mice following long-term treatment with antibiotics. The quantification of acr expression could be useful for monitoring the presence of latent bacilli in some murine models of tuberculosis.
Use of ferrets for electrophysiologic monitoring of ion transport.
Kaza, Niroop; Raju, S Vamsee; Cadillac, Joan M; Trombley, John A; Rasmussen, Lawrence; Tang, Liping; Dohm, Erik; Harrod, Kevin S; Rowe, Steven M
2017-01-01
Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases.
Kancirová, Ivana; Jašová, Magdaléna; Waczulíková, Iveta; Ravingerová, Táňa; Ziegelhöffer, Attila; Ferko, Miroslav
2016-01-01
Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored. Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax (P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy. Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria. PMID:27482342
An In Vitro Comparison of Non-Vital Bleaching Techniques in the Discolored Tooth.
1981-03-01
Thirty-nine extracted anterior teeth with intact crowns were immersed in 5.25% sodium hypochlorite solution for approximately eight hours to loosen...tooth" model described previously was utilized.10 The experimental teeth with lingual access openings were placed in 5.25% sodium hypochlorite ...time was highly significant (p<O.O000). The bleaching of discolored non-vital teeth is an important phase of endodontic therapy. Bleaching is an attempt
Transmyocardial laser revascularization
NASA Astrophysics Data System (ADS)
Aretz, H. Thomas
1996-09-01
Transmyocardial laser revascularization (TMR) for the treatment of medically unresponsive angina pectoris has been shown to be clinically effective. The mechanism of its action, however, is not quite understood. Over the last five years my collaborators and I have conducted a variety of in vivo and in vitro studies using different animal models, lasers and experimental protocols. The results seem to indicate that the mechanism of action of TMR is related to neovascularization rather than chronically patent channels, as originally proposed.
Cao, Lei; Kwara, Awewura; Greenblatt, David J
2017-12-01
Excessive exposure to acetaminophen (APAP, paracetamol) can cause liver injury through formation of a reactive metabolite that depletes hepatic glutathione and causes hepatocellular oxidative stress and damage. Generation of this metabolite is mediated by Cytochrome-P450 (CYP) isoforms, mainly CYP2E1. A number of naturally occurring flavonoids can mitigate APAP-induced hepatotoxicity in experimental animal models. Our objective was to determine the mechanism of these protective effects and to evaluate possible human applicability. Two flavonoids, luteolin and quercetin, were evaluated as potential inhibitors of eight human CYP isoforms, of six UDP-glucuronosyltransferase (UGT) isoforms and of APAP glucuronidation and sulfation. The experimental model was based on in-vitro metabolism by human liver microsomes, using isoform-specific substrates. Luteolin and quercetin inhibited human CYP isoforms to varying degrees, with greatest potency towards CYP1A2 and CYP2C8. However, 50% inhibitory concentrations (IC 50 values) were generally in the micromolar range. UGT isoforms were minimally inhibited. Both luteolin and quercetin inhibited APAP sulfation but not glucuronidation. Inhibition of human CYP activity by luteolin and quercetin occurred with IC 50 values exceeding customary in-vivo human exposure with tolerable supplemental doses of these compounds. The findings indicate that luteolin and quercetin are not likely to be of clinical value for preventing or treating APAP-induced hepatotoxicity. © 2017 Royal Pharmaceutical Society.
Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)
NASA Astrophysics Data System (ADS)
Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.
2007-02-01
Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.
Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert
2013-03-01
The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.
Yang, Xi; Papoian, Thomas
2018-02-27
Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Development of a high- versus low-pathogenicity model of the free-living amoeba Naegleria fowleri.
Burri, Denise C; Gottstein, Bruno; Zumkehr, Béatrice; Hemphill, Andrew; Schürch, Nadia; Wittwer, Matthias; Müller, Norbert
2012-10-01
Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.
Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L.; Pijnappels, Daniël A.; Panfilov, Alexander V.
2016-01-01
Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities. PMID:27332890
Zhou, Jian-Rong; Kanda, Yurina; Tanaka, Anna; Manabe, Hideyuki; Nohara, Toshihiro; Yokomizo, Kazumi
2016-01-20
The increasing incidence of atopic dermatitis during recent decades has prompted the development of safe and effective agents for prevention of atopic diseases. Esculeoside A, a glycoside of spirosolane type, is identified as a major component in ripe tomato fruits. The present study investigated the effects of esculeoside A and its aglycon esculeogenin A on hyaluronidase activity in vitro and antiallergy in experimental dermatitis mice. Esculeogenin A/esculeoside A (esculeogenin A equivalent) with an IC50 of about 2 μM/9 μM dose-dependently inhibited hyaluronidase activity measured by a modified Morgan-Elson method. Oral treatment with esculeoside A 10 mg/kg of experimental dermatitis mice for 4 weeks significantly decreased the skin clinical score to 2.5 without any detectable side effects compared with 6.75 of the control. The scratching frequency of esculeoside A 100 mg/kg application was decreased significantly as 107.5 times compared with 296.67 times of the control. Thus, the present study showed that esculeoside A/esculeogenin A significantly blocks hyaluronidase activity in vitro and that esculeoside A ameliorates mouse experimental dermatitis.
* Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process.
Fawzy El-Sayed, Karim M; Dörfer, Christof E
2017-12-01
The human periodontium is a uniquely complex vital structure, supporting and anchoring the teeth in their alveolar sockets, thereby playing a decisive role in tooth homeostasis and function. Chronic periodontitis is a highly prevalent immune-inflammatory disease of the periodontium, affecting 15% of adult individuals, and is characterized by progressive destruction of the periodontal tooth-investing tissues, culminating in their irreversible damage. Current periodontal evidence-based treatment strategies achieve periodontal healing via repair processes, mostly combating the inflammatory component of the disease, to halt or reduce prospective periodontal tissue loss. However, complete periodontal tissue regeneration remains a hard fought-for goal in the field of periodontology and multiple in vitro and in vivo studies have been conducted, in the conquest to achieve a functional periodontal tissue regeneration in humans. The present review evaluates the current status of periodontal regeneration attempted through tissue-engineering concepts, ideal requirements for experimental animal models under investigation, the methods of induction and classification of the experimentally created periodontal defects, types of experimental defects employed in the diverse animal studies, as well as the current state of knowledge obtained from in vivo animal experiments, with special emphasis on large animal models.
Victorio, Gerardo Becerra; Bourdon, Lorena Michele Brennan; Benavides, Leonel García; Huerta-Olvera, Selene G; Plascencia, Arturo; Villanueva, José; Martinez-Lopez, Erika; Hernández-Cañaveral, Iván Isidro
2017-05-01
Infective endocarditis is a disease characterised by heart valve lesions, which exhibit extracellular matrix proteins that act as a physical barrier to prevent the passage of antimicrobial agents. The genus Candida has acquired clinical importance given that it is increasingly being isolated from cases of nosocomial infections. To evaluate the activity of caspofungin compared to that of liposomal amphotericin B against Candida albicans in experimental infective endocarditis. Wistar rats underwent surgical intervention and infection with strains of C. albicans to develop infective endocarditis. Three groups were formed: the first group was treated with caspofungin, the second with liposomal amphotericin B, and the third received a placebo. In vitro sensitivity was first determined to further evaluate the effect of these treatments on a rat experimental model of endocarditis by semiquantitative culture of fibrinous vegetations and histological analysis. Our semiquantitative culture of growing vegetation showed massive C. albicans colonisation in rats without treatment, whereas rats treated with caspofungin showed significantly reduced colonisation, which was similar to the results obtained with liposomal amphotericin B. The antifungal activity of caspofungin is similar to that of liposomal amphotericin B in an experimental model of infective endocarditis caused by C. albicans.
Ultraviolet-B radiation causes an upregulation of survivin in human keratinocytes and mouse skin.
Aziz, Moammir Hasan; Ghotra, Amaninderapal S; Shukla, Yogeshwer; Ahmad, Nihal
2004-01-01
Understanding of the mechanism of ultraviolet (UV)-mediated cutaneous damages is far from complete. The cancer-specific expression of Survivin, a member of the inhibitor of apoptosis family of proteins, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a target for cancer treatment. This study was designed to investigate the modulation of Survivin during UV response, both in vitro and in vivo. We used UV-B-mediated damages in normal human epidermal keratinocytes (NHEK) cells as an in vitro model and SKH-1 hairless mouse model for the in vivo studies. For in vitro studies, NHEK were treated with UV-B and samples were processed at 5, 15, 30 min, 1, 3, 6, 12 and 24 h after treatment. Our data demonstrated that UV-B exposure (50 mJ/cm2) to NHEK resulted in a significant upregulation in Survivin messenger RNA (mRNA) and protein levels. We also observed that UV-B exposure to NHEK resulted in significant (1) decrease in Smac/DIABLO and (2) increase in p53. For in vivo studies, the SKH-1 hairless mice were subjected to a single exposure of UV-B (180 mJ/cm2), and samples were processed at 3, 6, 12 and 24 h after UV-B exposure. UV-B treatment resulted in a significant increase in protein or mRNA levels (or both) of Survivin, phospho-Survivin and p53 and a concomitant decrease in Smac/DIABLO in mouse skin. This study demonstrated, for the first time, the involvement of Survivin (and the associated events) in UV-B response in vitro and in vivo in experimental models regarded to have relevance to human situations.
Experimental models to study cholangiocyte biology
Tietz, Pamela S.; Chen, Xian-Ming; Gong, Ai-Yu; Huebert, Robert C.; Masyuk, Anatoliy; Masyuk, Tatyana; Splinter, Patrick L.; LaRusso, Nicholas F.
2002-01-01
Cholangiocytes-the epithelial cells which line the bile ducts-are increasingly recognized as important transporting epithelia actively involved in the absorption and secretion of water, ions, and solutes. This recognition is due in part to the recent development of new experimental models. New biologic concepts have emerged including the identification and topography of receptors and flux proteins on the apical and/or basolateral membrane which are involved in the molecular mechanisms of ductal bile secretion. Individually isolated and/or perfused bile duct units from livers of rats and mice serve as new, physiologically relevant in vitro models to study cholangiocyte transport. Biliary tree dimensions and novel insights into anatomic remodeling of proliferating bile ducts have emerged from three-dimensional reconstruction using CT scanning and sophisticated software. Moreover, new pathologic concepts have arisen regarding the interaction of cholangiocytes with pathogens such as Cryptosporidium parvum. These concepts and associated methodologies may provide the framework to develop new therapies for the cholangiopathies, a group of important hepatobiliary diseases in which cholangiocytes are the target cell. PMID:11833061
Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H
2011-01-01
BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919
Bill, Kate Lynn J.; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J.; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J.; Prudner, Bethany C.; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E.
2016-01-01
Purpose Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a “hallmark” of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the p53-MDM2 axis as a potential therapeutic target for DDLPS. Here we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. Experimental Design The therapeutic effectiveness of SAR405838 was compared to the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. Results SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. Conclusion SAR405838 is currently in early phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. PMID:26475335
Riccardi, Keith; Li, Zhenhong; Brown, Janice A; Gorgoglione, Matthew F; Niosi, Mark; Gosset, James; Huard, Kim; Erion, Derek M; Di, Li
2016-10-01
Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Widzowski, D; Maciag, C; Zacco, A; Hudzik, T; Liu, J; Nyberg, S; Wood, M W
2015-01-01
Background and Purpose Quetiapine has a range of clinical activity distinct from other atypical antipsychotic drugs, demonstrating efficacy as monotherapy in bipolar depression, major depressive disorder and generalized anxiety disorder. The neuropharmacological mechanisms underlying this clinical profile are not completely understood; however, the major active metabolite, norquetiapine, has been shown to have a distinct in vitro pharmacological profile consistent with a broad therapeutic range and may contribute to the clinical profile of quetiapine. Experimental Approach We evaluated quetiapine and norquetiapine, using in vitro binding and functional assays of targets known to be associated with antidepressant and anxiolytic drug actions and compared these activities with a representative range of established antipsychotics and antidepressants. To determine how the in vitro pharmacological properties translate into in vivo activity, we used preclinical animal models with translational relevance to established antidepressant‐like and anxiolytic‐like drug action. Key Results Norquetiapine had equivalent activity to established antidepressants at the noradrenaline transporter (NET), while quetiapine was inactive. Norquetiapine was active in the mouse forced swimming and rat learned helplessness tests. In in vivo receptor occupancy studies, norquetiapine had significant occupancy at NET at behaviourally relevant doses. Both quetiapine and norquetiapine were agonists at 5‐HT1A receptors, and the anxiolytic‐like activity of norquetiapine in rat punished responding was blocked by the 5‐HT1A antagonist, WAY100635. Conclusions and Implications Quetiapine and norquetiapine have multiple in vitro pharmacological actions, and results from preclinical studies suggest that activity at NET and 5‐HT1A receptors contributes to the antidepressant and anxiolytic effects in patients treated with quetiapine. PMID:26436896
Tolerogenic Dendritic Cells Generated by In Vitro Treatment With SAHA Are Not Stable In Vivo.
Thewissen, Kristof; Broux, Bieke; Hendriks, Jerome J A; Vanhees, Mandy; Stinissen, Piet; Slaets, Helena; Hellings, Niels
2016-01-01
The aim of this study is to examine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can generate dendritic cells (DCs) with a stable tolerogenic phenotype to counteract autoimmune responses in an animal model of multiple sclerosis. We investigated if the tolerogenic potency of DCs could be increased by continuous treatment during in vitro differentiation toward DCs compared to standard 24-h in vitro treatment of already terminally differentiated DCs. We show that in vitro treatment with SAHA reduces the generation of new CD11c(+) DCs out of mouse bone marrow. SAHA-generated DCs show reduced antigen-presenting function as evidenced by a reduction in myelin endocytosis, a decreased MHC II expression, and a failure to upregulate costimulatory molecules upon LPS challenge. In addition, SAHA-generated DCs display a reduction in proinflammatory cytokines and molecules involved in apoptosis induction, inflammatory migration, and TLR signaling, and they are less immunostimulatory compared to untreated DCs. We demonstrated that the underlying mechanism involves a diminished STAT1 phosphorylation and was independent of STAT6 activation. Although in vitro results were promising, SAHA-generated DCs were not able to alleviate the development of experimental autoimmune encephalomyelitis in mice. In vitro washout experiments demonstrated that the tolerogenic phenotype of SAHA-treated DCs is reversible. Taken together, while SAHA potently boosts tolerogenic properties in DCs during the differentiation process in vitro, SAHA-generated DCs were unable to reduce autoimmunity in vivo. Our results imply that caution needs to be taken when developing DC-based therapies to induce tolerance in the context of autoimmune disease.
Computational knee ligament modeling using experimentally determined zero-load lengths.
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.
Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects
Gupta, Raj K.; Przekwas, Andrzej
2013-01-01
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI. PMID:23755039
Model-based analysis of keratin intermediate filament assembly
NASA Astrophysics Data System (ADS)
Martin, Ines; Leitner, Anke; Walther, Paul; Herrmann, Harald; Marti, Othmar
2015-09-01
The cytoskeleton of epithelial cells consists of three types of filament systems: microtubules, actin filaments and intermediate filaments (IFs). Here, we took a closer look at type I and type II IF proteins, i.e. keratins. They are hallmark constituents of epithelial cells and are responsible for the generation of stiffness, the cellular response to mechanical stimuli and the integrity of entire cell layers. Thereby, keratin networks constitute an important instrument for cells to adapt to their environment. In particular, we applied models to characterize the assembly of keratin K8 and K18 into elongated filaments as a means for network formation. For this purpose, we measured the length of in vitro assembled keratin K8/K18 filaments by transmission electron microscopy at different time points. We evaluated the experimental data of the longitudinal annealing reaction using two models from polymer chemistry: the Schulz-Zimm model and the condensation polymerization model. In both scenarios one has to make assumptions about the reaction process. We compare how well the models fit the measured data and thus determine which assumptions fit best. Based on mathematical modelling of experimental filament assembly data we define basic mechanistic properties of the elongation reaction process.
Raja, Meera R.; Jozefik, Jennifer K.; Spaho, Lidia; Chen, Haimei; Bally, Marcel B.; Mazar, Andrew P.; Avram, Michael J.; Winter, Jane N.; Gordon, Leo I.; Shea, Lonnie D.; O’Halloran, Thomas V.; Woodruff, Teresa K.
2013-01-01
Advances in cancer therapy have increased the rate of survival of young cancer patients; however, female lymphoma patients frequently face a temporary or permanent loss of fertility when treated with traditional cytotoxic agents. The potential loss of fertility is an important concern that can influence treatment decisions for many premenopausal cancer patients. The negative effect of chemotherapeutic agents and treatment protocols to patients’ fertility–referred to as fertotoxicity–are thus an increasingly important cancer survivorship issue. We have developed a novel nanoscale formulation of arsenic trioxide, a potent drug for treatment of hematological malignancies, and demonstrate that it has significantly better activity in a murine lymphoma model than the free drug. In parallel, we have developed a novel in vitro assay of ovarian follicle function that predicts in vivo ovarian toxicity of therapeutic agents. Our results reveal that the nanotherapeutic agent is not only more active against lymphoma, but is fertoprotective, i.e., it is much less deleterious to ovarian function than the parent drug. Thus, our in vitro assay allows rapid evaluation of both established and experimental anticancer drugs on ovarian reserve and can inform the selection of efficacious and fertility-sparing treatment regimens for reproductive-age women diagnosed with cancer. PMID:23526987
Connolly, Niamh M C; Theurey, Pierre; Adam-Vizi, Vera; Bazan, Nicolas G; Bernardi, Paolo; Bolaños, Juan P; Culmsee, Carsten; Dawson, Valina L; Deshmukh, Mohanish; Duchen, Michael R; Düssmann, Heiko; Fiskum, Gary; Galindo, Maria F; Hardingham, Giles E; Hardwick, J Marie; Jekabsons, Mika B; Jonas, Elizabeth A; Jordán, Joaquin; Lipton, Stuart A; Manfredi, Giovanni; Mattson, Mark P; McLaughlin, BethAnn; Methner, Axel; Murphy, Anne N; Murphy, Michael P; Nicholls, David G; Polster, Brian M; Pozzan, Tullio; Rizzuto, Rosario; Satrústegui, Jorgina; Slack, Ruth S; Swanson, Raymond A; Swerdlow, Russell H; Will, Yvonne; Ying, Zheng; Joselin, Alvin; Gioran, Anna; Moreira Pinho, Catarina; Watters, Orla; Salvucci, Manuela; Llorente-Folch, Irene; Park, David S; Bano, Daniele; Ankarcrona, Maria; Pizzo, Paola; Prehn, Jochen H M
2018-03-01
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.
Inhibitory effect of magnolol on tumour metastasis in mice.
Ikeda, Koji; Sakai, Yoshimichi; Nagase, Hisamitsu
2003-09-01
It has previously been reported that magnolol, a phenolic compound isolated from Magnolia obovata, inhibited tumour cell invasion in vitro. The purpose of this study was to investigate the antimetastatic effect of magnolol on tumour metastasis in vivo with experimental and spontaneous metastasis models and to clarify the mechanism. The antimetastatic effects of magnolol were evaluated by an experimental liver and spleen metastasis model using L5178Y-ML25 lymphoma, or an experimental and spontaneous lung metastasis model using B16-BL6 melanoma. Intraperitoneal (i.p.) administration of 2 or 10 mg/kg of magnolol significantly suppressed liver and spleen metastasis or lung metastasis. As for the spontaneous lung metastasis model using B16-BL6 melanoma, multiple i.p. administrations of 10 mg/kg of magnolol after and before tumour inoculation significantly suppressed lung metastasis and primary tumour growth. In addition, magnolol significantly inhibited B16-BL6 cell invasion of the reconstituted basement membrane (Matrigel, MG) without affecting cell growth. These data from the in vivo experiments suggest that magnolol possesses strong antimetastatic ability and that it may be a lead compound for drug development. The antimetastatic action of magnolol is considered to be due to its ability to inhibit tumour cell invasion. Copyright 2003 John Wiley & Sons, Ltd.
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan
2016-04-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.
Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C.; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe
2015-01-01
In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor’s fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source. PMID:26559530
Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe
2015-01-01
In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor's fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.
RAIN-Droplet: A Novel 3-D in vitro Angiogenesis Model
Zeitlin, Benjamin D.; Dong, Zhihong; Nör, Jacques E.
2012-01-01
Angiogenesis is fundamentally required for the initialization, development and metastatic spread of cancer. A rapidly expanding number of new experimental, chemical modulators of endothelial cell function have been described for the therapeutic inhibition of angiogenesis in cancer. Despite this expansion there has been very limited parallel growth of in vitro angiogenesis models or experimental tools. Here we present the Responsive Angiogenic Implanted Network (RAIN)-Droplet model and novel angiogenesis assay using an endothelial cell culture model of microvascular endothelial cells encapsulated in a spontaneously self-assembling, toroidal hydrogel droplet uniquely yielding discrete, pre-formed, angiogenic networks that may be embedded in 3-D matrices. On embedding, radial growth of capillary-like sprouts and cell invasion was observed. The sprouts formed as both outgrowths from endothelial cells on the surface of the droplets but also, uniquely, from the pre-formed network structures within the droplet. We demonstrate proof-of-principle for the utility of the model showing significant inhibition of sprout formation (p<0.001) in the presence of bevacizumab, an anti-angiogenic antibody. Using the RAIN-Droplet assay we also demonstrate a novel dose dependent pro-angiogenic function for the characteristically anti-angiogenic multi-kinase inhibitor sorafenib. Exposure of endothelial cells in 3-D culture to low, non-lethal doses (<1 μM) of sorafenib after initiation of sprouting resulted in the formation of significantly (p<0.05) more endothelial sprouts compared to controls over a 48-hour period. Higher doses of sorafenib (5 μM) resulted in a significant (p<0.05) reduction of sprouting over the same time period. The RAIN-Droplet model is a highly versatile and simply constructed 3-D focal sprouting approach well suited for the study of vascular morphogenesis and for preclinical testing of drugs. Furthermore, the RAIN-Droplet model has facilitated the discovery of a novel pro-angiogenic capacity for sorafenib which may impact the clinical application and dosing regimen of that drug. PMID:22565576
Kinetic and Stochastic Models of 1D yeast ``prions"
NASA Astrophysics Data System (ADS)
Kunes, Kay
2005-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.
Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis.
Soler, Laura; Labas, Valérie; Thélie, Aurore; Grasseau, Isabelle; Teixeira-Gomes, Ana-Paula; Blesbois, Elisabeth
2016-06-01
Currently, evaluation of sperm quality is primarily based on in vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in vitro male fertility testing. In the present study, we performed larger standardized experimental procedures designed for the development of fertility- predictive mathematical models based on sperm cell MALDI-TOF MS profiles acquired through a fast, automated method. This intact cell MALDI-TOF MS-based method showed high diagnostic accuracy in identifying fertile/subfertile males in a large male population of known fertility from two distinct genetic lineages (meat and egg laying lines). We additionally identified 40% of the m/z peaks observed in sperm MS profiles through a top-down high-resolution protein identification analysis. This revealed that the MALDI-TOF MS spectra obtained from intact sperm cells contained a large proportion of protein degradation products, many implicated in important functional pathways in sperm such as energy metabolism, structure and movement. Proteins identified by our predictive model included diverse and important functional classes providing new insights into sperm function as it relates to fertility differences in this experimental system. Thus, in addition to the chicken model system developed here, with the use of appropriate models these methods should effectively translate to other animal taxa where similar tests for fertility are warranted. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Knutsdottir, Hildur; Condeelis, John S.; Palsson, Eirikur
2016-01-01
High density of macrophages in mammary tumors has been associated with a higher risk of metastasis and thus increased mortality in women. The EGF/CSF-1 paracrine signaling increases the number of invasive tumor cells by both recruiting tumor cells further away and manipulating the macrophages’ innate ability to open up a passage into blood vessels thus promoting intravasation and finally metastasis. A 3-D individual-cell-based model is introduced, to better understand the tumor cell–macrophage interactions, and to explore how changing parameters of the paracrine signaling system affects the number of invasive tumor cells. The simulation data and videos of the cell movements correlated well with findings from both in vitro and in vivo experimental results. The model demonstrated how paracrine signaling is necessary to achieve co-migration of tumor cells and macrophages towards a specific signaling source. We showed how the paracrine signaling enhances the number of both invasive tumor cells and macrophages. The simulations revealed that for the in vitro experiments the imposed no-flux boundary condition might be affecting the results, and that changing the setup might lead to different experimental findings. In our simulations, the 3 : 1 tumor cell/macrophage ratio, observed in vivo, was robust for many parameters but sensitive to EGF signal strength and fraction of macrophages in the tumor. The model can be used to identify new agents for targeted therapy and we suggest that a successful strategy to prevent or limit invasion of tumor cells would be to block the tumor cell–macrophage paracrine signaling. This can be achieved by either blocking the EGF or CSF-1 receptors or supressing the EGF or CSF-1 signal. PMID:26686751
Zhu, Guoqi; Li, Junyao; He, Ling; Wang, Xuncui; Hong, Xiaoqi
2015-01-01
Background and Purpose Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. Experimental Approaches I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. Key Results Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) –induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg−1) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP+) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. Conclusions and Implications Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models. PMID:25560396
Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the-often occupational-exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo model matched that of the in vivo system.
Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the—often occupational—exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. In conclusion: i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo model matched that of the in vivo system. PMID:27487020
2012-01-01
Background Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. Methods For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. Results The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. Conclusions In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases. PMID:22709446
Fávaro, Wagner J; Nunes, Odilon S; Seiva, Fabio Rf; Nunes, Iseu S; Woolhiser, Lisa K; Durán, Nelson; Lenaerts, Anne J
2012-06-18
Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases.
Albright, Emily R.
2013-01-01
Human cytomegalovirus (HCMV) is a significant human pathogen that achieves lifelong persistence by establishing latent infections in undifferentiated cells of the myeloid lineage, such as CD34+ hematopoietic progenitor cells. When latency is established, viral lytic gene expression is silenced in part by a cellular intrinsic defense consisting of Daxx and histone deacetylases (HDACs) because pp71, the tegument transactivator that travels to the nucleus and inactivates this defense at the start of a lytic infection in differentiated cells, remains in the cytoplasm. Because the current in vitro and ex vivo latency models have physiological and practical limitations, we evaluated two CD34+ myeloblastic cell lines, KG-1 and Kasumi-3, for their ability to establish, maintain, and reactivate HCMV experimental latent infections. Tegument protein pp71 was cytoplasmic, and immediate-early (IE) genes were silenced as in primary CD34+ cells. However, in contrast to what occurs in primary CD34+ cells ex vivo or in NT2 and THP-1 in vitro model systems, viral IE gene expression from the laboratory-adapted AD169 genome was not induced in the presence of HDAC inhibitors in either KG-1 or Kasumi-3 cells. Furthermore, while the clinical strain FIX was able to reactivate from Kasumi-3 cells, AD169 was not, and neither strain reactivated from KG-1 cells. Thus, KG-1 and Kasumi-3 experimental latent infections differ in important parameters from those in primary CD34+ cell populations. Aspects of latency illuminated through the use of these myeloblastoid cell lines should not be considered independently but integrated with results obtained in primary cell systems when paradigms for HCMV latency are proposed. PMID:23824798
Nassif, Ali; Berbar, Tsouria; Le Goff, Stéphane; Berdal, Ariane; Sadoun, Michael; Fournier, Benjamin P. J.
2016-01-01
Objectives The development of CAD—CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN), for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal) as an in vitro experimental model. Methods Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC) and gingiva (GSC): Enamic (VITA®), Experimental Hybrid Material (EHM), EHM with initiator (EHMi) and polymerized Z100™ composite material (3M®). After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro. Results Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay), however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells. Clinical Significance The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD—CAM blocks. PMID:27196425
Statins and Thyroid Carcinoma: a Meta-Analysis.
Zhao, Junyu; Xu, Chunmei; Yao, Jinming; Yu, Changzhen; Liao, Lin; Dong, Jianjun
2018-06-19
Experimental studies have reported the antineoplastic effects of statins in thyroid carcinoma; however, observational studies suggested that statins might increase the risk of thyroid carcinoma. Therefore, this study evaluated the antineoplastic effects of statins in both in vitro studies and animal models, as well as the epidemiological evidence. Databases-PubMed, Cochrane Library, SinoMed, CNKI, Wanfang, and clinical trial registries- were searched. A meta-analysis was performed with sufficiently homogeneous studies. Eighteen articles were involved. In in vitro studies, statins showed a concentration-dependent inhibition of cell line growth (weighted mean difference -34.68, 95% confidence interval -36.53 to -32.83). A significant efficacy of statin-induced apoptosis was observed (weighted mean difference [95% confidence interval]: 24 h, 57.50 [55.98-59.03]; 48 h, 23.43 [22.19-24.66]; 72 h, 51.29 [47.52-55.07]). Early apoptosis was increased in a dose- and time-dependent manner. In in vivo antitumor studies, lovastatin inhibited tumor growth, as shown by a reduction in tumor volume. However, two clinical studies showed discordant results from the experimental studies. Experimental studies revealed the antineoplastic efficacy of statins but statins were associated with thyroid carcinoma in clinical studies. This discrepancy may be due to the different concentrations of statins used and the effects of hyperlipidemia interventions, and thus further study is required. © 2018 The Author(s). Published by S. Karger AG, Basel.
Engelhardt, Lucas; Röhm, Martina; Mavoungou, Chrystelle; Schindowski, Katharina; Schafmeister, Annette; Simon, Ulrich
2016-06-01
Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.
Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C
2009-01-01
Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.
Dietrich, Michael; Helling, Niklas; Hilla, Alexander; Heskamp, Annemarie; Issberner, Andrea; Hildebrandt, Thomas; Kohne, Zippora; Küry, Patrick; Berndt, Carsten; Aktas, Orhan; Fischer, Dietmar; Hartung, Hans-Peter; Albrecht, Philipp
2018-03-07
In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG 35-55 -induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful.
Rejuvenation of allogenic red cells: benefits and risks.
Aujla, H; Woźniak, M; Kumar, T; Murphy, G J
2018-06-04
To review preclinical and clinical studies that have evaluated the effects of red cell rejuvenation in vivo and in vitro and to assess the potential risks and benefits from their clinical use. A systematic review and narrative synthesis of the intervention of red cell rejuvenation using a red cell processing solution containing inosine, pyruvate, phosphate and adenine. Outcomes of interest in vitro were changes in red cell characteristics including adenosine triphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG), deformability and the accumulation of oxidized lipids and other reactive species in the red cell supernatant. Outcomes in vivo were 24-h post-transfusion survival and the effects on oxygen delivery, organ function and inflammation in transfused recipients. The literature search identified 49 studies evaluating rejuvenated red cells. In vitro rejuvenation restored cellular properties including 2,3-DPG and ATP to levels similar to freshly donated red cells. In experimental models, in vivo transfusion of rejuvenated red cells improved oxygen delivery and myocardial, renal and pulmonary function when compared to stored red cells. In humans, in vivo 24-h survival of rejuvenated red cells exceeded 75%. In clinical studies, rejuvenated red cells were found to be safe, with no reported adverse effects. In one adult cardiac surgery trial, transfusion of rejuvenated red cells resulted in improved myocardial performance. Transfusion of rejuvenated red cells reduces organ injury attributable to the red cell storage lesion without adverse effects in experimental studies in vivo. The clinical benefits of this intervention remain uncertain. © 2018 International Society of Blood Transfusion.
Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model.
Kubatka, Peter; Kapinová, Andrea; Kružliak, Peter; Kello, Martin; Výbohová, Desanka; Kajo, Karol; Novák, Miroslav; Chripková, Martina; Adamkov, Marián; Péč, Martin; Mojžiš, Ján; Bojková, Bianka; Kassayová, Monika; Stollárová, Nadežda; Dobrota, Dušan
2015-04-01
There has been considerable interest in both clinical and preclinical research about the role of phytochemicals in the reduction of risk for cancer in humans. The aim of this study was to determine the antineoplastic effects of Chlorella pyrenoidosa in experimental breast cancer in vivo and in vitro. In this experiment, the antineoplastic effects of C. pyrenoidosa in the chemoprevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats were evaluated. Chlorella powder was administered through diet at concentrations of 0.3% and 3%. The experiment was terminated 14 wk after carcinogen administration. At autopsy, mammary tumors were removed and prepared for histopathological and immunohistochemical analysis. In vitro cytotoxicity assay, parameters of apoptosis, and proliferation after chlorella treatment in human breast adenocarcinoma (MCF-7) cells were carried out. Basic parameters of experimental carcinogenesis, mechanism of action (biomarkers of apoptosis, proliferation, and angiogenesis), chosen metabolic variables, and side effects after long-term chlorella treatment in animals were assessed. Chlorella at higher concentration suppressed tumor frequency by 61% (P < 0.02) and lengthened tumor latency by 12.5 d (P < 0.02) in comparison with the controls. Immunohistochemical analysis of rat tumor cells showed caspase-7 expression increase by 73.5% (P < 0.001) and vascular endothelial growth factor receptor-2 expression decrease by 19% (P = 0.07) after chlorella treatment. In a parallel in vitro study, chlorella significantly decreased survival of MCF-7 cells in a dose-dependent manner. In chlorella-treated MCF-7 cells, a significant increase in cells having sub-G0/G1 DNA content and significant increase of early apoptotic and late apoptotic/necrotic cells after annexin V/PI staining assay were found. Decreases in mitochondrial membrane potential and increasing reactive oxygen species generation were observed in the chlorella-treated MCF-7 cells. This study is the first report on the antineoplastic effects of C. pyrenoidosa in experimental breast cancer in vivo and in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.
Ng, Jowin Kai Wei; Zhang, Summer Lixin; Tan, Hwee Cheng; Yan, Benedict; Maria Martinez Gomez, Julia; Tan, Wei Yu; Lam, Jian Hang; Tan, Grace Kai Xin; Ooi, Eng Eong; Alonso, Sylvie
2014-01-01
Dengue (DEN) represents the most serious arthropod-borne viral disease. DEN clinical manifestations range from mild febrile illness to life-threatening hemorrhage and vascular leakage. Early epidemiological observations reported that infants born to DEN-immune mothers were at greater risk to develop the severe forms of the disease upon infection with any serotype of dengue virus (DENV). From these observations emerged the hypothesis of antibody-dependent enhancement (ADE) of disease severity, whereby maternally acquired anti-DENV antibodies cross-react but fail to neutralize DENV particles, resulting in higher viremia that correlates with increased disease severity. Although in vitro and in vivo experimental set ups have indirectly supported the ADE hypothesis, direct experimental evidence has been missing. Furthermore, a recent epidemiological study has challenged the influence of maternal antibodies in disease outcome. Here we have developed a mouse model of ADE where DENV2 infection of young mice born to DENV1-immune mothers led to earlier death which correlated with higher viremia and increased vascular leakage compared to DENV2-infected mice born to dengue naïve mothers. In this ADE model we demonstrated the role of TNF-α in DEN-induced vascular leakage. Furthermore, upon infection with an attenuated DENV2 mutant strain, mice born to DENV1-immune mothers developed lethal disease accompanied by vascular leakage whereas infected mice born to dengue naïve mothers did no display any clinical manifestation. In vitro ELISA and ADE assays confirmed the cross-reactive and enhancing properties towards DENV2 of the serum from mice born to DENV1-immune mothers. Lastly, age-dependent susceptibility to disease enhancement was observed in mice born to DENV1-immune mothers, thus reproducing epidemiological observations. Overall, this work provides direct in vivo demonstration of the role of maternally acquired heterotypic dengue antibodies in the enhancement of dengue disease severity and offers a unique opportunity to further decipher the mechanisms involved. PMID:24699622
Lundquist, P; Artursson, P
2016-11-15
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Dyszkiewicz-Konwińska, M; Bryja, A; Jopek, K; Budna, J; Khozmi, R; Jeseta, M; Bukowska, D; Antosik, P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B
2017-01-01
Recently, using experimental animal model, we demonstrated that porcine buccal pouch mucosal cells reflect increased proliferation capability during primary cultivation in vitro. Although the histological structure and morphogenesis in oral cavity is well recognized, the molecular mechanisms which regulate this process still need further investigation. This study was aimed to analyze the molecular marker expression profile involved in morphogenesis and differentiation capacity of porcine buccal pouch mucosal cells during their long-term primary cultivation in vitro. The experiment was performed on buccal pouch mucosal cells isolated from 80 pubertal crossbred Landrace gilts. After collection, the cells were treated enzymatically and transferred into a primary in vitro culture (IVC) system and cultured for 30 days. The cells were collected for RNA isolation after 7, 15 and 30 days of IVC and were checked for their real-time proliferative status using the RTCA system. We found an increased expression of FN1 and SOX9 genes when calculated against ACTB after 7, and 30 days of IVC, (P less than 0.01, P less than 0.001, respectively). The CXCL12 mRNA was down-regulated after 7, 15 and 30 days of IVC, but not statistically significant. Similar expression profile was observed when calculated against HPRT, however, DAB2 was found to be higher expressed at day 15 of IVC, (P less than 0.05). The cell index measured during real-time cell proliferation was substantially increased between 96 h and 147h of IVC and reached the log phase. Since FN1 and SOX9 revealed significant increase of expression after long-term culture in vitro, it is suggested that expression of these differentiation and stemness genes is accompanied by cell proliferation. Moreover, FN1 and SOX9 might be recognized as new markers of buccal pouch mucosal cell proliferation and differentiation in pigs in in vitro primary culture model.
[Ecology and transmission of Mycobacterium ulcerans].
Marsollier, L; Aubry, J; Saint-André, J-P; Robert, R; Legras, P; Manceau, A-L; Bourdon, S; Audrain, C; Carbonnelle, B
2003-10-01
Mycobacterium ulcerans is an environmental pathogen concerning mainly the tropical countries; it is the causative agent of Buruli ulcer, which has become the third most important mycobacterial disease. In spite of water-linked epidemiological studies to identify the sources of M. ulcerans, the reservoir and the mode of transmission of this organism remain elusive. To determine the ecology and the mode of transmission of M. ulcerans we have set up an experimental model. This experimental model demonstrated that water bugs were able to transmit M. ulcerans by bites. In insects, the bacilli were localized exclusively within salivary glands, where it could both multiply contrary to other mycobacteria species. In another experimental study, we report that the crude extracts from aquatic plants stimulate in vitro the growth of M. ulcerans as much as the biofilm formation by M. ulcerans has been observed on aquatic plants. Given that the water bugs are essentially carnivorous, it is difficult to imagine a direct contact in the contamination of aquatic bugs and plants. It seems very likely that an intermediate host exists. In an endemic area of Daloa in Côte d'Ivoire, our observations were confirmed.
Sezek, Sinan; Aksakal, Bunyamin; Gürger, Murat; Malkoc, Melih; Say, Y
2016-08-12
Total deformation and stability of straight and helical compression plates were studied by means of the finite element method (FEM) and in vitro biomechanical experiments. Fixations of transverse (TF) and oblique (45°) bone (OF) fractures have been analyzed on sheep tibias by designing the straight compression (SP) and Helical Compression Plate (HP) models. The effects of axial compression, bending and torsion loads on both plating systems were analyzed in terms of total displacements. Numerical models and experimental models suggested that under compression loadings, bone fracture gap closures for both fracture types were found to be in the favor of helical plate designs. The helical plate (HP) fixations provided maximum torsional resistance compared to the (SP) fixations. The fracture gap closure and stability of helical plate fixation for transverse fractures was determined to be higher than that found for the oblique fractures. The comparison of average compression stress, bending and torsion moments showed that the FEM and experimental results are in good agreement and such designs are likely to have a positive impact in future bone fracture fixation designs.
Gholami, Babak; Comerford, Andrew; Ellero, Marco
2015-11-01
A multiscale Lagrangian particle solver introduced in our previous work is extended to model physiologically realistic near-wall cell dynamics. Three-dimensional simulation of particle trajectories is combined with realistic receptor-ligand adhesion behaviour to cover full cell interactions in the vicinity of the endothelium. The selected stochastic adhesion model, which is based on a Monte Carlo acceptance-rejection method, fits in our Lagrangian framework and does not compromise performance. Additionally, appropriate inflow/outflow boundary conditions are implemented for our SPH solver to enable realistic pulsatile flow simulation. The model is tested against in-vitro data from a 3D geometry with a stenosis and sudden expansion. In both steady and pulsatile flow conditions, results show close agreement with the experimental ones. Furthermore we demonstrate, in agreement with experimental observations, that haemodynamics alone does not account for adhesion of white blood cells, in this case U937 monocytic human cells. Our findings suggest that the current framework is fully capable of modelling cell dynamics in large arteries in a realistic and efficient manner.
Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D
2015-05-15
An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.
Harju, Mikael; Hamers, Timo; Kamstra, Jorke H; Sonneveld, Edwin; Boon, Jan P; Tysklind, Mats; Andersson, Patrik L
2007-04-01
In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A, and hexabromocyclododecane, have been identified as potential endocrine disruptors. Quantitative structure-activity relationship models were built based on the in vitro potencies of 26 selected BFRs. The in vitro assays included interactions with, for example, androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptor, plus competition with thyroxine for its plasma carrier protein (transthyretin), inhibition of estradiol sulfation via sulfotransferase, and finally, rate of metabolization. The QSAR modeling, a number of physicochemical parameters were calculated describing the electronic, lipophilic, and structural characteristics of the molecules. These include frontier molecular orbitals, molecular charges, polarities, log octanol/water partitioning coefficient, and two- and three-dimensional molecularproperties. Experimental properties were included and measured for PBDEs, such as their individual ultraviolet spectra (200-320 nm) and retention times on three different high-performance liquid chromatography columns and one nonpolar gas chromatography column. Quantitative structure-activity relationship models based on androgen antagonism and metabolic degradation rates generally gave similar results, suggesting that lower-brominated PBDEs with bromine substitutions in ortho positions and bromine-free meta- and para positions had the highest potencies and metabolic degradation rates. Predictions made for the constituents of the technical flame retardant Bromkal 70-5DE found BDE 17 to be a potent androgen antagonist and BDE 66, which is a relevant PBDE in environmental samples, to be only a weak antagonist.
[Itraconazole action on Toxoplasma gondii].
Jamra, L M; Amato Neto, V; Braz, L M; Camargo, M E
1992-01-01
With the purpose to increase our knowledge about the spectrum of therapeutic action of itraconazole, the activity of a new triazolic derivative against Toxoplasma gondii was studied in vivo and in vitro with the aid of an experimental infection model in mice. The trial also aimed at a possible improvement of the therapy of toxoplasmosis in regard to safety and dosing easiness. The present study has not shown significant activity of itraconazole against Toxoplasma gondii, differing from a previous observation that showed it's activity against Trypanosoma cruzi.
Characteristics and Impact of Animal Models Used for Sports Medicine Research
2012-09-01
arthroscopic ro- tator cuff repairs : double-row compared with single-row fixation. J Bone Joint Surg Am. 2006; 88:403-410. 24. Ma CB, MacGillivary JD...Clabeaux J, et al. Biomechanical evaluation of arthroscopic rotator cuff stitches. J Bone Joint Surg Am. 2004; 86:1211-1216. 25. Elder CL, Dahners LE...absorbable meniscal repair de- vices as a function of hydrolysis time. An in vitro experimental study. Am J Sports Med. 2001; 29:118-123. 15. Proctor CS
2013-10-01
epitopes from Epstein - Barr virus (EBV), Cytomegalovirus, influenza and tetanus toxoid linked to the LC3 tag were constructed and in vitro transcribed...of these proteins in the CNS, their ability to elicit MS-like disease in the mouse experimental autoimmune encephalitis model, and the presence of T...Goverman, J. 2009. Autoimmune T cell responses in the central nervous system . Nat. Rev. Immunol. 9: 393-407. 3. Jahn, O., S. Tenzer, and H. B
2010-04-01
the start of the experiment and remained so throughout the rest of the experimental period (Fig 4, Table 2). Mean core temperature observed was 36.72...removal [4, 9]. At temperatures less than 32ºC the body experiences a severe decrease in intrinsic metabolic rate. At less than 24ºC endocrine...in the field are thus forced to base their procurement decisions on either personal anecdotal experience or manufacturer claims of performance or
Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.
2014-01-01
Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829
Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P
2014-01-01
Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122-130 µmol m(-2) s(-1). Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work.
T'jollyn, Huybrecht; Snoeys, Jan; Van Bocxlaer, Jan; De Bock, Lies; Annaert, Pieter; Van Peer, Achiel; Allegaert, Karel; Mannens, Geert; Vermeulen, An; Boussery, Koen
2017-06-01
Although the measurement of cytochrome P450 (CYP) contributions in metabolism assays is straightforward, determination of actual in vivo contributions might be challenging. How representative are in vitro for in vivo CYP contributions? This article proposes an improved strategy for the determination of in vivo CYP enzyme-specific metabolic contributions, based on in vitro data, using an in vitro-in vivo extrapolation (IVIVE) approach. Approaches are exemplified using tramadol as model compound, and CYP2D6 and CYP3A4 as involved enzymes. Metabolism data for tramadol and for the probe substrates midazolam (CYP3A4) and dextromethorphan (CYP2D6) were gathered in human liver microsomes (HLM) and recombinant human enzyme systems (rhCYP). From these probe substrates, an activity-adjustment factor (AAF) was calculated per CYP enzyme, for the determination of correct hepatic clearance contributions. As a reference, tramadol CYP contributions were scaled-back from in vivo data (retrograde approach) and were compared with the ones derived in vitro. In this view, the AAF is an enzyme-specific factor, calculated from reference probe activity measurements in vitro and in vivo, that allows appropriate scaling of a test drug's in vitro activity to the 'healthy volunteer' population level. Calculation of an AAF, thus accounts for any 'experimental' or 'batch-specific' activity difference between in vitro HLM and in vivo derived activity. In this specific HLM batch, for CYP3A4 and CYP2D6, an AAF of 0.91 and 1.97 was calculated, respectively. This implies that, in this batch, the in vitro CYP3A4 activity is 1.10-fold higher and the CYP2D6 activity 1.97-fold lower, compared to in vivo derived CYP activities. This study shows that, in cases where the HLM pool does not represent the typical mean population CYP activities, AAF correction of in vitro metabolism data, optimizes CYP contributions in the prediction of hepatic clearance. Therefore, in vitro parameters for any test compound, obtained in a particular batch, should be corrected with the AAF for the respective enzymes. In the current study, especially the CYP2D6 contribution was found, to better reflect the average in vivo situation. It is recommended that this novel approach is further evaluated using a broader range of compounds.
Wu, Ming-Jui; Chen, Wei-Ling; Kan, Chung-Dann; Yu, Fan-Ming; Wang, Su-Chin; Lin, Hsiu-Hui; Lin, Chia-Hung
2015-12-01
In physical examinations, hemodialysis access stenosis leading to dysfunction occurs at the venous anastomosis site or the outflow vein. Information from the inflow stenosis, such as blood pressure, pressure drop, and flow resistance increases, allows dysfunction screening from the stage of early clots and thrombosis to the progression of outflow stenosis. Therefore, this study proposes dysfunction screening model in experimental arteriovenous grafts (AVGs) using the fractional-order extractor (FOE) and the color relation analysis (CRA). A Sprott system was designed using an FOE to quantify the differences in transverse vibration pressures between the inflow and outflow sites of an AVG. Experimental analysis revealed that the degree of stenosis (DOS) correlated with an increase in fractional-order dynamic errors (FODEs). Exponential regression was used to fit a non-linear curve and can be used to quantify the relationship between the FODEs and DOS (R (2) = 0.8064). The specific ranges were used to evaluate the stenosis degree, such as DOS: <50, 50-80, and >80%. A CRA-based screening method was derived from the hue angle-saturation-value color model, which describes perceptual color relationships for the DOS. It has a flexibility inference manner with color visualization to represent the different stenosis degrees, which has average accuracy >90% superior to the traditional methods. This in vitro experimental study demonstrated that the proposed model can be used for dysfunction screening in stenotic AVGs.
In Vitro Screening for Cytotoxic Activity of Herbal Extracts
Lombardi, Valter R. M.; Cacabelos, Ramón
2017-01-01
Experimental studies have shown that a variety of chemopreventive plant components affect tumor initiation, promotion, and progression and the main difference, between botanical medicines and synthetic drugs, resides in the presence of complex metabolite mixtures shown by botanical medicine which in turn exert their action on different levels and via different mechanisms. In the present study, we performed an in vitro screening of ethanol extracts from commercial plants in order to investigate potential antitumor activity against human tumor cell lines. Experimental results obtained through a variety of methods and techniques indicated that extracts of I. verum, G. glabra, R. Frangula, and L. usitatissimum present significant reduction in in vitro tumor cell proliferation, suggesting these extracts as possible chemotherapeutical adjuvants for different cancer treatments. PMID:28386288
Garrido-Mesa, José; Algieri, Francesca; Rodriguez-Nogales, Alba; Utrilla, Maria Pilar; Rodriguez-Cabezas, Maria Elena; Zarzuelo, Antonio; Ocete, Maria Angeles; Garrido-Mesa, Natividad; Galvez, Julio
2015-07-01
Immunomodulatory antibiotics have been proposed for the treatment of multifactorial conditions such as inflammatory bowel disease. Probiotics are able to attenuate intestinal inflammation, being considered as safe when chronically administered. The aim of the study was to evaluate the anti-inflammatory effects of doxycycline, a tetracycline with immunomodulatory properties, alone and in association with the probiotic Saccharomyces boulardii CNCMI-745. Doxycycline was assayed both in vitro (Caco-2 epithelial cells and RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis and the dextran sodium sulfate (DSS) model of mouse colitis. In addition, the anti-inflammatory effect of the association of doxycycline and the probiotic was evaluated in vitro and in vivo in a DSS model of reactivated colitis in mice. Doxycycline displayed immunomodulatory activity in vitro, reducing IL-8 production by intestinal epithelial cells and nitric oxide by macrophages. Doxycycline administration to TNBS-colitic rats (5, 10 and 25 mg/kg) ameliorated the intestinal inflammatory process, being its efficacy comparable to that previously showed by minocycline. Doxycycline treatment was also effective in reducing acute intestinal inflammation in the DSS model of mouse colitis. The association of doxycycline and S. boulardii helped managing colitis in a reactivated model of colitis, by reducing intestinal inflammation and accelerating the recovery and attenuating the relapse. This was evidenced by a reduced disease activity index, colonic tissue damage and expression of inflammatory mediators. This study confirms the intestinal anti-inflammatory activity of doxycycline and supports the potential use of its therapeutic association with S. boulardii for the treatment of inflammatory bowel diseases, in which doxycycline is used to induce remission and long term probiotic administration helps to prevent the relapses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determining the direction of tooth grinding: an in vitro study.
ten Berge, F; te Poel, J; Ranjitkar, S; Kaidonis, J A; Lobbezoo, F; Hughes, T E; Townsend, G C
2012-08-01
The analysis of microwear patterns, including scratch types and widths, has enabled reconstruction of the dietary habits and lifestyles of prehistoric and modern humans. The aim of this in vitro study was to determine whether an assessment of microwear features of experimental scratches placed on enamel, perpendicularly to the direction of grinding, could predict the grinding direction. Experimental scratches were placed using a scalpel blade on standardised wear facets that had been prepared by wearing opposing enamel surfaces in an electromechanical tooth wear machine. These control 'baseline' facets (with unworn experimental scratches) were subjected to 50 wear cycles, so that differential microwear could be observed on the leading and trailing edges of the 'final' facets. In Group 1 (n=28), the 'footprint' microwear patterns corresponding to the known grinding direction of specimens in the tooth wear machine were identified. Then, they were used to predict the direction of tooth grinding blindly in the same sample after a 2-week intermission period. To avoid overfitting the predictive model, its sensitivity was also cross-validated in a new sample (Group 2, n=14). A crescent-shaped characteristic observed in most experimental scratches matched the grinding direction on all occasions. The best predictor of the direction of grinding was a combined assessment of the leading edge microwear pattern and the crescent characteristic (82.1% in Group 1 and 92.9% in Group 2). In conclusion, a simple scratch test can determine the direction of tooth grinding with high reliability, although further improvement in sensitivity is desirable. © 2012 Blackwell Publishing Ltd.
Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko
2018-03-08
Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.
Trypanosoma cruzi infectivity assessment in "in vitro" culture systems by automated cell counting.
Liempi, Ana; Castillo, Christian; Cerda, Mauricio; Droguett, Daniel; Duaso, Juan; Barahona, Katherine; Hernández, Ariane; Díaz-Luján, Cintia; Fretes, Ricardo; Härtel, Steffen; Kemmerling, Ulrike
2015-03-01
Chagas disease is an endemic, neglected tropical disease in Latin America that is caused by the protozoan parasite Trypanosoma cruzi. In vitro models constitute the first experimental approach to study the physiopathology of the disease and to assay potential new trypanocidal agents. Here, we report and describe clearly the use of commercial software (MATLAB(®)) to quantify T. cruzi amastigotes and infected mammalian cells (BeWo) and compared this analysis with the manual one. There was no statistically significant difference between the manual and the automatic quantification of the parasite; the two methods showed a correlation analysis r(2) value of 0.9159. The most significant advantage of the automatic quantification was the efficiency of the analysis. The drawback of this automated cell counting method was that some parasites were assigned to the wrong BeWo cell, however this data did not exceed 5% when adequate experimental conditions were chosen. We conclude that this quantification method constitutes an excellent tool for evaluating the parasite load in cells and therefore constitutes an easy and reliable ways to study parasite infectivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun
2017-01-01
CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433
Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad
2015-03-01
The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.
In vitro effects of nanosized diamond particles on macrophages.
Shkurupy, V A; Arkhipov, S A; Neshchadim, D V; Akhramenko, E S; Troitskii, A V
2015-02-01
The effects of synthetic diamond nanoparticles (4-6 nm) on mouse macrophage biotropism and biocompatibility and the modulation of the macrophage functions (expression of IL-1α, TNF-α, GM-CSF, bFGF, and TGF-β) by nanoparticles in different concentrations were studied in vitro during exposure of different duration. Macrophage endocytosis of nanodiamonds increased with increasing the concentration of nanoparticles in culture and incubation time. Nanodiamonds exhibited high biotropism and biocompatibility towards macrophages; in doses of 10-20 μg/ml, they induced expression of GM-CSF and TGF-β, inhibited expression of bFGF, and did not stimulate IL-1α and TNF-α. These data indicate that nanodiamond capture by macrophages in the studied experimental model led to modulation of the functional status of macrophages that determine their capacity to stimulate reparative processes without increasing proinflammatory and profibrogenic status.
Li, Jing; Oupický, David
2014-01-01
Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo. PMID:24726746
Jewkes, Rachel; Burton, Hanna E; Espino, Daniel M
2018-02-02
The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending) and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries.
Jewkes, Rachel; Burton, Hanna E.; Espino, Daniel M.
2018-01-01
The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending) and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries. PMID:29393899
Arab, Mohammad M.; Yadollahi, Abbas; Ahmadi, Hamed; Eftekhari, Maliheh; Maleki, Masoud
2017-01-01
The efficiency of a hybrid systems method which combined artificial neural networks (ANNs) as a modeling tool and genetic algorithms (GAs) as an optimizing method for input variables used in ANN modeling was assessed. Hence, as a new technique, it was applied for the prediction and optimization of the plant hormones concentrations and combinations for in vitro proliferation of Garnem (G × N15) rootstock as a case study. Optimizing hormones combination was surveyed by modeling the effects of various concentrations of cytokinin–auxin, i.e., BAP, KIN, TDZ, IBA, and NAA combinations (inputs) on four growth parameters (outputs), i.e., micro-shoots number per explant, length of micro-shoots, developed callus weight (CW) and the quality index (QI) of plantlets. Calculation of statistical values such as R2 (coefficient of determination) related to the accuracy of ANN-GA models showed a considerably higher prediction accuracy for ANN models, i.e., micro-shoots number: R2 = 0.81, length of micro-shoots: R2 = 0.87, CW: R2 = 0.88, QI: R2 = 0.87. According to the results, among the input variables, BAP (19.3), KIN (9.64), and IBA (2.63) showed the highest values of variable sensitivity ratio for proliferation rate. The GA showed that media containing 1.02 mg/l BAP in combination with 0.098 mg/l IBA could lead to the optimal proliferation rate (10.53) for G × N15 rootstock. Another objective of the present study was to compare the performance of predicted and optimized cytokinin–auxin combination with the best optimized obtained concentrations of our other experiments. Considering three growth parameters (length of micro-shoots, micro-shoots number, and proliferation rate), the last treatment was found to be superior to the rest of treatments for G × N15 rootstock in vitro multiplication. Very little difference between the ANN predicted and experimental data confirmed high capability of ANN-GA method in predicting new optimized protocols for plant in vitro propagation. PMID:29163583
Physical Regulation of the Self-Assembly of Tobacco Mosaic Virus Coat Protein
Kegel, Willem K.; van der Schoot, Paul
2006-01-01
We present a statistical mechanical model based on the principle of mass action that explains the main features of the in vitro aggregation behavior of the coat protein of tobacco mosaic virus (TMV). By comparing our model to experimentally obtained stability diagrams, titration experiments, and calorimetric data, we pin down three competing factors that regulate the transitions between the different kinds of aggregated state of the coat protein. These are hydrophobic interactions, electrostatic interactions, and the formation of so-called “Caspar” carboxylate pairs. We suggest that these factors could be universal and relevant to a large class of virus coat proteins. PMID:16731551
The coevolution of ova defensiveness with sperm competitiveness in house mice.
Firman, Renée C; Gomendio, Montserrat; Roldan, Eduardo R S; Simmons, Leigh W
2014-04-01
Theoretical models have suggested that sperm competition can lead to increased ova resistance to fertilization. While there is some comparative evidence that this might be true, there is no experimental evidence to show that ova defensiveness evolves in response to sperm competition. We performed a series of in vitro fertilization assays to gauge the fertilizability of ova produced by female house mice from experimental populations that evolved either with or without sperm competition. Our analysis revealed that after 24 generations of experimental evolution, females that evolved under a polygamous regime produced more defensive ova than females that evolved under a monogamous regime. We therefore provide the first direct line of evidence that sperm competition can generate sexual conflict at the gametic level and lead to asymmetries in fertilization rates among populations. Our results show that females respond to sperm competition via fertilization barriers that have the potential to mediate sperm entry.
Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies
NASA Astrophysics Data System (ADS)
Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.
2017-01-01
For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.
In vitro cytotoxicity testing of 30 reference chemicals to predict acute human and animal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barile, F.A.; Arjun, S.; Borges, L.
1991-03-11
This study was conducted in cooperation with the Scandinavian Society of Cell Toxicology, as part of the Multicenter Evaluation for In Vitro Cytotoxicity (MEIC), and was designed to develop an in vitro model for predicting acute human and animal toxicity. The technique relies on the ability of cultured transformed rat lung epithelial cells (L2) to incorporate radiolabled amino acids into newly synthesized proteins in the absence or presence of increasing doses of the test chemical, during a 24-hr incubation. IC50 values were extrapolated from the dose-response curves after linear regression analysis. Human toxic blood concentrations estimated from rodent LD50 valuesmore » suggest that our experimental IC50's are in close correlation with the former. Validation of the data by the MEIC committee shows that our IC50 values predicted human lethal dosage as efficient as rodent LD50's. It is anticipated that this and related procedures may supplement or replace currently used animal protocols for predicting human toxicity.« less
Briguglio, Irene; Laurini, Erik; Pirisi, Maria Antonietta; Piras, Sandra; Corona, Paola; Fermeglia, Maurizio; Pricl, Sabrina; Carta, Antonio
2017-12-01
In this paper we report the synthesis, in vitro anticancer activity, and the experimental/computational characterization of mechanism of action of a new series of E isomers of triazolo[4,5-b/c]pyridin-acrylonitrile derivatives (6c-g, 7d-e, 8d-e, 9c-f, 10d-e, 11d-e). All new compounds are endowed with moderate to interesting antiproliferative activity against 9 different cancer cell lines derived from solid and hematological human tumors. Fluorescence-based assays prove that these molecules interfere with tubulin polymerization. Furthermore, isothermal titration calorimetry (ITC) provides full tubulin/compound binding thermodynamics, thereby ultimately qualifying and quantifying the interactions of these molecular series with the target protein. Lastly, the analysis based on the tight coupling of in vitro and in silico modeling of the interactions between tubulin and the title compounds allows to propose a molecular rationale for their biological activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Battaglia, Luigi; Gallarate, Marina; Peira, Elena; Chirio, Daniela; Solazzi, Ilaria; Giordano, Susanna Marzia Adele; Gigliotti, Casimiro Luca; Riganti, Chiara; Dianzani, Chiara
2015-06-01
Glioblastoma, the most common primary brain tumor in adults, has an inauspicious prognosis, given that overcoming the blood-brain barrier is the major obstacle to the pharmacological treatment of brain tumors. As neoangiogenesis plays a key role in glioblastoma growth, the US Food and Drug Administration approved bevacizumab (BVZ), an antivascular endothelial growth factor antibody for the treatment of recurrent glioblastoma in patients whose the initial therapy has failed. In this experimental work, BVZ was entrapped in solid lipid nanoparticles (SLNs) prepared by the fatty-acid coacervation technique, thanks to the formation of a hydrophobic ion pair. BVZ activity, which was evaluated by means of four different in vitro tests on HUVEC cells, increased by 100- to 200-fold when delivered in SLNs. Moreover, SLNs can enhance the permeation of fluorescently labelled BVZ through an hCMEC/D3 cell monolayer—an in vitro model of the blood brain barrier. These results are promising, even if further in vivo studies are required to evaluate the effective potential of BVZ-loaded SLNs in glioblastoma treatment.
Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems
Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J.; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K.V.; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty
2016-01-01
Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients. PMID:27556862
Hofmann, H; Braun, K
1995-05-26
The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.
Gualtieri, Maurizio; Grollino, Maria Giuseppa; Consales, Claudia; Costabile, Francesca; Manigrasso, Maurizio; Avino, Pasquale; Aufderheide, Michaela; Cordelli, Eugenia; Di Liberto, Luca; Petralia, Ettore; Raschellà, Giuseppe; Stracquadanio, Milena; Wiedensohler, Alfred; Pacchierotti, Francesca; Zanini, Gabriele
2018-09-01
Air pollution and particulate matter are recognised cause of increased disease incidence in exposed population. The toxicological processes underlying air pollution associated effects have been investigated by in vivo and/or in vitro experimentation. The latter is usually performed by exposing cells cultured under submerged condition to particulate matter concentration quite far from environmental exposure expected in humans. Here we report for the first time the feasibility of a direct exposure of air liquid interface cultured cells to environmental concentration of particulate matter. Inflammatory proteins release was analysed in cell medium while differential expression of selected genes was analysed in cells. Significant association of anti-oxidant genes was observed with secondary and aged aerosol, while cytochrome activation with primary and PAHs enriched ultrafine particles. The results obtained clearly show the opportunity to move from the lab bench to the field for properly understanding the toxicological effects also of ultrafine particles on selected in vitro models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanisms of selective antitumor action of cold atmospheric plasma
NASA Astrophysics Data System (ADS)
Graves, David; Bauer, Georg
2016-09-01
Transformed (precancerous) cells are known to be subject to elimination through intercellular RONS-dependent apoptosis-inducing signaling. It is a remarkable fact that the chemical species utilized by apoptosis induction in transformed cells are essentially identical to chemical species created by cold atmospheric plasma (CAP) in aqueous solutions. The association between CAP-induced biochemistry and natural cell anti-tumor mechanisms offers the opportunity to establish a rationale for the observed successes of CAP in selectively eliminating tumor cells in vitro and in vivo. In particular, 1O2 appears to act to selectively induce apoptosis in tumor cells, and can also result in self-perpetuating, cell-to-cell apoptotic signaling. Various CAP-generated liquid phase species can react to form 1O2, thus providing a hypothetical mechanism to explain how CAP can trigger therapeutic apoptosis in tumors. The analysis of model experiments performed with defined RONS in vitro implies that CAP-derived 1O2 induces the mechanism through which CAP acts selectively against cancer cells in vitro and tumors in vivo. This hypothesis needs to be tested experimentally in order to establish its validity.