Sample records for vitro flow model

  1. Patient-specific in vitro models for hemodynamic analysis of congenital heart disease - Additive manufacturing approach.

    PubMed

    Medero, Rafael; García-Rodríguez, Sylvana; François, Christopher J; Roldán-Alzate, Alejandro

    2017-03-21

    Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  3. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    PubMed

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Extracorporeal bypass model of blood circulation for the study of microvascular hemodynamics.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Lee, Sang Joon

    2012-05-01

    Many studies have been performed to better understand the hemodynamics in microvessels, such as arterioles and venules. However, due to the heterogeneous features of size, shape, blood-flow velocity, and pulsatility of microvessels, conducting a systematic study on these factors has been almost impossible. Although in vitro studies have been performed for this purpose, the usefulness of in vitro data is limited by the fact that the rheological properties of blood are changed as blood is exposed to in vitro environments. The purpose of the present study is to investigate the feasibility of a rat extracorporeal bypass model that combines in vivo and in vitro models. An arteriovenous shunt loop with a sub-bypass loop of fluorinated ethylene propylene (FEP) microtube was constructed between the jugular vein and femoral artery of a rat. Three pinch valves were installed in the main loop. Microscopic images of the blood flow in the FEP tube were sequentially captured with a high-speed camera, and the whole velocity field information was obtained using a micro-particle image velocimetry technique. Experimental results reveal that the velocity fields of the blood flow inside the microtube are well measured because the FEP tube is transparent and has nearly the same refractive index as water. The flow velocity and the pulsatility index of the blood flow in the microtube can be controlled by adjusting the three pinch valves installed upstream, midstream, and downstream of the bypass loop. This hybrid model that combines in vivo and in vitro models can be useful in studying microvascular hemodynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Design of a prototype flow microreactor for synthetic biology in vitro.

    PubMed

    Boehm, Christian R; Freemont, Paul S; Ces, Oscar

    2013-09-07

    As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.

  6. Visualization and Measurement of Flow in a Model Rotating-Wall Bioreactor

    NASA Astrophysics Data System (ADS)

    Brown, Jason B.; Neitzel, G. Paul

    1997-11-01

    Fluid shear has been observed to have an effect on the in vitro growth of mammalian cells and is expected to play a role in the in vitro development of aggregates of cells into tissue. The interactions between culture media and cell constructs within a circular Couette flow bioreactor with independently rotating cylinders are investigated in model studies using flow visualization. Particle-Image Velocimetry (PIV) is used to quantify the velocity field in a plane perpendicular to the vessel axis which contains a cell construct model. This velocity field is then used to compute the instantaneous shear field. Experiments show the path of the model cell construct is dependent on the rotation rates of the cylinders.

  7. Fluid dynamics model of mitral valve flow: description with in vitro validation.

    PubMed

    Thomas, J D; Weyman, A E

    1989-01-01

    A lumped variable fluid dynamics model of mitral valve blood flow is described that is applicable to both Doppler echocardiography and invasive hemodynamic measurement. Given left atrial and ventricular compliance, initial pressures and mitral valve impedance, the model predicts the time course of mitral flow and atrial and ventricular pressure. The predictions of this mathematic formulation have been tested in an in vitro analog of the left heart in which mitral valve area and atrial and ventricular compliance can be accurately controlled. For the situation of constant chamber compliance, transmitral gradient is predicted to decay as a parabolic curve, and this has been confirmed in the in vitro model with r greater than 0.99 in all cases for a range of orifice area from 0.3 to 3.0 cm2, initial pressure gradient from 2.4 to 14.2 mm Hg and net chamber compliance from 16 to 29 cc/mm Hg. This mathematic formulation of transmitral flow should help to unify the Doppler echocardiographic and catheterization assessment of mitral stenosis and left ventricular diastolic dysfunction.

  8. Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models.

    PubMed

    Estermann, Stephan; Yuttitham, Kanokwan; Chen, Julie A; Lee, On-Tat; Stamper, Robert L

    2013-03-01

    To determine the flow characteristics of the 3 different models of the Ex-PRESS miniature glaucoma device in a controlled laboratory study. The 3 different Ex-PRESS models (P-50, R-50, and P-200; Optonol Ltd; now Alcon Lab) were tested using a gravity-driven flow test. Three samples of each of the 3 Ex-PRESS models were subjected to a constant gravitational force of fluid at 5 different pressure levels (5 to 25 mm Hg). Four measurements per sample were taken at each pressure level. The main outcome measure was flow rate (Q) (µL/min). Resistance (R) was calculated by dividing pressure (P) by the measured flow (Q). The flow rate was primarily pressure dependent. The P-200 model (internal diameter 200 µm) showed a statistically significant higher flow rate and lower resistance compared with both the P-50 and R-50 models (internal diameter 50 µm) (P<0.0001). The P-50 and R-50 models demonstrated similar flow rates (P=0.08) despite their difference in tube length (2.64 vs. 2.94 mm). The 3 models of the Ex-PRESS mini shunt behaved in vitro as simple flow resistors by creating a relatively constant resistance to flow. Tube diameter was the only parameter with significant impact on flow and resistance. All models demonstrated flow rates per unit of pressure much higher than the outflow facility of a healthy human eye.

  9. Development of an in-vitro circulatory system with known resistance and capacitance

    NASA Technical Reports Server (NTRS)

    Offerdahl, C. D.; Schaub, J. D.; Koenig, S. C.; Swope, R. D.; Ewert, D. L.; Convertino, V. A. (Principal Investigator)

    1996-01-01

    An in-vitro (hydrodynamic) model of the circulatory system was developed. The model consisted of a pump, compliant tubing, and valves for resistance. The model is used to simulate aortic pressure and flow. These parameters were measured using a Konigsburg Pressure transducer and a Triton ART2 flow probe. In addition, venous pressure and flow were measured on the downstream side of the resistance. The system has a known compliance and resistance. Steady and pulsatile flow tests were conducted to determine the resistance of the model. A static compliance test was used to determine the compliance of the system. The aortic pressure and flow obtained from the hydrodynamic model will be used to test the accuracy of parameter estimation models such as the 2-element and 4-element Windkessel models and the 3-element Westkessel model. Verifying analytical models used in determining total peripheral resistance (TPR) and systemic arterial compliance (SAC) is important because it provides insight into hemodynamic parameters that indicate baroreceptor responsiveness to situations such as changes in gravitational acceleration.

  10. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  11. Unsteady flow through in-vitro models of the glottis

    NASA Astrophysics Data System (ADS)

    Hofmans, G. C. J.; Groot, G.; Ranucci, M.; Graziani, G.; Hirschberg, A.

    2003-03-01

    The unsteady two-dimensional flow through fixed rigid in vitro models of the glottis is studied in some detail to validate a more accurate model based on the prediction of boundary-layer separation. The study is restricted to the flow phenomena occurring within the glottis and does not include effects of vocal-fold movement on the flow. Pressure measurements have been carried out for a transient flow through a rigid scale model of the glottis. The rigid model with a fixed geometry driven by an unsteady pressure is used in order to achieve a high accuracy in the specification of the geometry of the glottis. The experimental study is focused on flow phenomena as they might occur in the glottis, such as the asymmetry of the flow due to the Coanda effect and the transition to turbulent flow. It was found that both effects need a relatively long time to establish themselves and are therefore unlikely to occur during the production of normal voiced speech when the glottis closes completely during part of the oscillation cycle. It is shown that when the flow is still laminar and symmetric the prediction of the boundary-layer model and the measurement of the pressure drop from the throat of the glottis to the exit of the glottis agree within 40%. Results of the boundary-layer model are compared with a two-dimensional vortex-blob method for viscous flow. The difference between the results of the simpiflied boundary-layer model and the experimental results is explained by an additional pressure difference between the separation point and the far field within the jet downstream of the separation point. The influence of the movement of the vocal folds on our conclusions is still unclear.

  12. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  13. Accuracy of 4D Flow measurement of cerebrospinal fluid dynamics in the cervical spine: An in vitro verification against numerical simulation

    PubMed Central

    Pahlavian, Soroush Heidari; Bunck, Alexander C.; Thyagaraj, Suraj; Giese, Daniel; Loth, Francis; Hedderich, Dennis M.; Kröger, Jan Robert; Martin, Bryn A.

    2016-01-01

    Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities. PMID:27043214

  14. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.

    PubMed

    Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders

    2018-05-01

    Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.

  15. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.

    PubMed

    Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim

    2011-08-11

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Engineering-Aligned 3D Neural Circuit in Microfluidic Device.

    PubMed

    Bang, Seokyoung; Na, Sangcheol; Jang, Jae Myung; Kim, Jinhyun; Jeon, Noo Li

    2016-01-07

    The brain is one of the most important and complex organs in the human body. Although various neural network models have been proposed for in vitro 3D neuronal networks, it has been difficult to mimic functional and structural complexity of the in vitro neural circuit. Here, a microfluidic model of a simplified 3D neural circuit is reported. First, the microfluidic device is filled with Matrigel and continuous flow is delivered across the device during gelation. The fluidic flow aligns the extracellular matrix (ECM) components along the flow direction. Following the alignment of ECM fibers, neurites of primary rat cortical neurons are grown into the Matrigel at the average speed of 250 μm d(-1) and form axon bundles approximately 1500 μm in length at 6 days in vitro (DIV). Additionally, neural networks are developed from presynaptic to postsynaptic neurons at 14 DIV. The establishment of aligned 3D neural circuits is confirmed with the immunostaining of PSD-95 and synaptophysin and the observation of calcium signal transmission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    PubMed

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  18. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  19. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  20. Flow measurement in an in-vitro model of a single human alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2006-03-01

    The alveolus is the smallest and most important unit in the acinar region of the human lung. It is responsible for gas exchange between the lungs and the blood. A complete knowledge of the airflow pattern in the acinar region is necessary to predict the transport and deposition of inhaled aerosol particles. Such knowledge will benefit the pharmaceutical community in its effort to deliver therapeutic aerosols for lung-specific as well as system-wide ailments. In addition, it can also help to assess the health effects of the toxic aerosols in the environment. We have constructed an in-vitro model of a single spherical alveolus on a circular tube. The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions are reproduced by matching Reynolds and Womersley numbers. Experimental methods such as particle imaging velocimetry and laser induced fluorescence are used to study the resulting flow patterns. In particular, recirculating flow within the alveolus, and the fluid exchange between the alveolar duct and the alveolus are important for better understanding the flow in the acinar region.

  1. Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.

    PubMed

    Neville, Richard F; Gupta, Samit K; Kuraguntla, David J

    2017-06-01

    Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. In-vitro model for evaluation of pulse oximetry

    NASA Astrophysics Data System (ADS)

    Vegfors, Magnus; Lindberg, Lars-Goeran; Lennmarken, Claes; Oberg, P. Ake

    1991-06-01

    An in vitro model with blood circulating in a silicon tubing system and including an artificial arterial bed is an important tool for evaluation of the pulse oximetry technique. The oxygen saturation was measured on an artificial finger using a pulse oximeter (SpO2) and on blood samples using a hemoximeter (SaO2). Measurements were performed at different blood flows and at different blood hematocrits. An increase in steady as well as in pulsatile blood flow was followed by an increase in pulse oximeter readings and a better agreement between SpO2 and SaO2 readings. After diluting the blood with normal saline (decreased hematocrit) the agreement was further improved. These results indicate that the pulse oximeter signal is related to blood hematocrit and the velocity of blood. The flow-related dependance of SpO2 was also evaluated in a human model. These results provided evidence that the pulse oximeter signal is dependent on vascular changes.

  3. Drainage characteristics of the 3F MicroStent using a novel film occlusion anchoring mechanism.

    PubMed

    Lange, Dirk; Hoag, Nathan A; Poh, Beow Kiong; Chew, Ben H

    2011-06-01

    To determine whether the overall ureteral flow through an obstructed ureter using the 3F MicroStent™ that uses a novel film occlusion anchoring mechanism is comparable to the flow using a conventional 3F and 4.7F Double-J stent. An in vitro silicone ureter model and an ex vivo porcine urinary model (kidney and ureter) were used to measure the overall flow through obstructed and unobstructed ureters with either a 3F Double-J stent (Cook), 3F MicroStent (PercSys), or 4.7F Double-J stent (Cook). Mean flow rates were compared with descriptive statistics. Mean flow rates through the obstructed silicone ureter (12-mm stone) for the 3F MicroStent, 3F Double-J stent, and 4.7F Double-J stent were 326.7±13.3  mL/min, 283.3±19.2  mL/min, and 356.7±14.1  mL/min, respectively. In the obstructed ex vivo porcine ureter model, the flow as a percentage of free flow was 60%, 53%, and 50 %, respectively. In both ureteral models, flow rates of the 3F MicroStent and 4.7F Double-J stents were not statistically different. The 3F MicroStent demonstrated drainage equivalent to a 4.7F Double-J stent, in both in vitro silicone and ex vivo porcine obstructed urinary models. We have demonstrated the crucial first step that this 3F stent, using a novel film occlusion anchoring mechanism, has equivalent, if not slightly improved, drainage rates when compared with its larger counterpart.

  4. Videodensitometric Methods for Cardiac Output Measurements

    NASA Astrophysics Data System (ADS)

    Mischi, Massimo; Kalker, Ton; Korsten, Erik

    2003-12-01

    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  5. In vitro experiments of cerebral blood flow during aspiration thrombectomy: potential effects on cerebral perfusion pressure and collateral flow.

    PubMed

    Lally, Frank; Soorani, Mitra; Woo, Timothy; Nayak, Sanjeev; Jadun, Changez; Yang, Ying; McCrudden, John; Naire, Shailesh; Grunwald, Iris; Roffe, Christine

    2016-09-01

    Mechanical thrombectomy with stent retriever devices is associated with significantly better outcomes than thrombolysis alone in the treatment of acute ischemic stroke. Thrombus aspiration achieves high patency rates, but clinical outcomes are variable. The aim of this study was to examine the effect of different suction conditions on perfusate flow during aspiration thrombectomy. A computational fluid dynamics model of an aspiration device within a patent and occluded blood vessel was used to simulate flow characteristics using fluid flow solver software. A physical particulate flow model of a patent vessel and a vessel occluded by thrombus was then used to visualize flow direction and measure flow rates with the aspiration catheter placed 1-10 mm proximal of the thrombus, and recorded on video. The mathematical model predicted that, in a patent vessel, perfusate is drawn from upstream of the catheter tip while, in an occluded system, perfusate is drawn from the vessel proximal to the device tip with no traction on the occlusion distal of the tip. The in vitro experiments confirmed the predictions of this model. In the occluded vessel aspiration had no effect on the thrombus unless the tip of the catheter was in direct contact with the thrombus. These experiments suggest that aspiration is only effective if the catheter tip is in direct contact with the thrombus. If the catheter tip is not in contact with the thrombus, aspirate is drawn from the vessels proximal of the occlusion. This could affect collateral flow in vivo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Blood flow measurement using digital subtraction angiography for assessing hemodialysis access function

    NASA Astrophysics Data System (ADS)

    Koirala, Nischal; Setser, Randolph M.; Bullen, Jennifer; McLennan, Gordon

    2017-03-01

    Blood flow rate is a critical parameter for diagnosing dialysis access function during fistulography where a flow rate of 600 ml/min in arteriovenous graft or 400-500 ml/min in arteriovenous fistula is considered the clinical threshold for fully functioning access. In this study, a flow rate computational model for calculating intra-access flow to evaluate dialysis access patency was developed and validated in an in vitro set up using digital subtraction angiography. Flow rates were computed by tracking the bolus through two regions of interest using cross correlation (XCOR) and mean arrival time (MAT) algorithms, and correlated versus an in-line transonic flow meter measurement. The mean difference (mean +/- standard deviation) between XCOR and in-line flow measurements for in vitro setup at 3, 6, 7.5 and 10 frames/s was 118+/-63 37+/-59 31+/-31 and 46+/-57 ml/min respectively while for MAT method it was 86+/-56 57+/-72 35+/-85 and 19+/-129 ml/min respectively. The result of this investigation will be helpful for selecting candidate algorithms while blood flow computational tool is developed for clinical application.

  7. Ultrasound SIV measurement of helical valvular flow behind the great saphenous vein

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong; Kim, Jeong Ju; Lee, Sang Joon; Yeom, Eunseop; Experimental Fluid Mechanics Laboratory Team; LaboratoryMicrothermal; Microfluidic Measurements Collaboration

    2017-11-01

    Dysfunction of venous valve and induced secondary abnormal flow are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most previous studies on venous perivalvular flows were based on qualitative analyses. On the contrary, quantitative analysis on the perivalvular flows has not been fully understood yet. In this study, 3D valvular flows under in vitro and in vivo conditions were experimentally investigated using ultrasound speckle image velocimetry (SIV) for analyzing their flow characteristics. The results for in vitro model obtained by the SIV technique were compared with those derived by numerical simulation and color Doppler method to validate its measurement accuracy. Then blood flow in the human great saphenous vein was measured using the SIV with respect to the dimensionless index, helical intensity. The results obtained by the SIV method are well matched well with those obtained by the numerical simulation and color Doppler method. The hemodynamic characteristics of 3D valvular flows measured by the validated SIV method would be helpful in diagnosis of valve-related venous diseases. None.

  8. Measurement of flow and dispersion in an in-vitro model of a single human alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2006-11-01

    The acinar region of the lung consists of alveoli and respiratory bronchioles. Alveoli are the smallest units which participate in gas exchange with the blood. Alveoli can also be exploited as a delivery site for inhaled therapeutic aerosols. While gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (of the order of 500 microns), the transport and deposition of inhaled aerosol particles is influenced by convective airflow patterns. The current work focuses on measuring the airflow patterns in the acinar region using an in-vitro model of a single alveolus located on a bronchiole. The model consists of a single transparent 5/6^th hemispherical oscillating alveolus attached to a rigid circular tube. The alveolus, fabricated from an elastic latex film, is capable of expanding and contracting in phase with the oscillatory flow through the rigid tube. Realistic breathing conditions were achieved by matching Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns. Data will be presented to show the effect of oscillatory flow in the bronchiole and alveolar wall motion on the flow and dispersion within the alveolus. In particular, measurement of the recirculating flow within the alveolus, and the fluid exchange between the bronchiole and the alveolus provide insights for the transport, mixing and deposition of inhaled aerosols.

  9. A laboratory model of the aortic root flow including the coronary arteries

    NASA Astrophysics Data System (ADS)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with no coronary flow.

  10. Physiologically-relevant measurements of flow through coils and stents: towards improved modeling of endovascular treatment of intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Barbour, Michael; Levitt, Michael; Geindreau, Christian; Rolland Du Roscoat, Sabine; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto

    2016-11-01

    The hemodynamic environment in cerebral aneurysms undergoing flow-diverting stent (FDS) or coil embolization treatment plays a critical role in long-term outcomes. Standard modeling approaches to endovascular coils and FDS simplify the complex geometry into a homogenous porous volume or surface through the addition of a Darcy-Brinkman pressure loss term in the momentum equation. The inertial and viscous loss coefficients are typically derived from published in vitro studies of pressure loss across FDS and coils placed in a straight tube, where the only fluid path is across the treatment - an unrealistic representation of treatment apposition in vivo. The pressure drop across FDS and coils in side branch aneurysms located on curved parent vessels is measured. Using PIV, the velocity at the aneurysm neck plane is reconstructed and used to determine loss coefficients for better models of endovascular coils or FDS that account for physiological placement and vessel curvature. These improved models are incorporated into CFD simulations and validated against in vitro model PIV velocity, as well as compared to microCT-based coil/stent-resolving CFD simulations of patient-specific treated aneurysm flow.

  11. Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Cho, Y. I.; Crawford, D. W.; Cuffel, R. F.

    1984-01-01

    An in-vitro flow study was conducted in a mildly atherosclerotic main coronary artery casting of man using sugar-water solutions simulating blood viscosity. Steady flow results indicated substantial increases in pressure drop, and thus flow resistance at the same Reynolds number, above those for Poiseuille flow by 30 to 100 percent in the physiological Reynolds number range from about 100 to 400. Time-averaged pulsatile flow data showed additional 5 percent increases in flow resistance above the steady flow results. Both pulsatile and steady flow data from the casting were found to be nearly equal to those from a straight, axisymmetric model of the casting up to a Reynolds number of about 200, above which the flow resistance of the casting became gradually larger than the corresponding values from the axisymmetric model.

  12. Human astrocytes/astrocyte conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells

    PubMed Central

    Siddharthan, Venkatraman; V. Kim, Yuri; Liu, Suyi; Kim, Kwang Sik

    2009-01-01

    The blood-brain barrier (BBB) is a structural and functional barrier that regulates the passage of molecules into and out of the brain to maintain the neural microenvironment. We have previously developed the in vitro BBB model with human brain microvascular endothelial cells (HBMEC). However, in vivo HBMEC are shown to interact with astrocytes and also exposed to shear stress through blood flow. In an attempt to develop the BBB model to mimic the in vivo condition we constructed the flow-based in vitro BBB model using HBMEC and human fetal astrocytes (HFA). We also examined the effect of astrocyte conditioned medium (ACM) in lieu of HFA to study the role of secreted factor(s) on the BBB properties. The tightness of HBMEC monolayer was assessed by the permeability of dextran and propidium iodide as well as by measuring the transendothelial electrical resistance (TEER). We showed that the HBMEC permeability was reduced and TEER was increased by non-contact, co-cultivation with HFA and ACM. The exposure of HBMEC to shear stress also exhibited decreased permeability. Moreover, HFA/ACM and shear flow exhibited additive effect of decreasing the permeability of HBMEC monolayer. In addition, we showed that the HBMEC expression of ZO-1 (tight junction protein) was increased by co-cultivation with ACM and in response to shear stress. These findings suggest that the non-contact co-cultivation with HFA helps maintain the barrier properties of HBMEC by secreting factor(s) into the medium. Our in vitro flow model system with the cells of human origin should be useful for studying the interactions between endothelial cells, glial cells, and secreted factor(s) as well as the role of shear stress in the barrier property of HBMEC. PMID:17368578

  13. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    DTIC Science & Technology

    2015-06-01

    K.C. and Hu, B.H. 2006. The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1): 1-19. Hillerdal, M. 1987. Cochlear blood flow ...Larsen, H.C., Angelborg, C. and Slepecky, N. 1984. Determination of the regional cochlear blood flow in the rat cochlea using non-radioactive...24-Hour JP-8 Exposure using a Cochlear Cell Model and Cellular Pathway Modulation

  14. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  15. In-vitro evidence for efficacy of antimicrobial mouthrinses

    PubMed Central

    Pan, Pauline C.; Harper, Scott; Ricci-Nittel, Danette; Lux, Renate; Shi, Wenyuan

    2010-01-01

    SUMMARY Objectives The objective of this study was to compare the antimicrobial activity of commercially available antiseptic mouthrinses against saliva-derived plaque biofilms in static and flow-through biofilm systems in vitro. Methods Nine mouthrinses were tested in a recirculating flow-through biofilm model (RFTB) with viability assessment by ATP bioluminescence. In addition, five mouthrinses were evaluated in a batch chamber slide biofilm (BCSB) model, using live- dead staining and confocal laser scanning microscopy. Results In the RFTB model, essential oil (EO) and chlorhexidine (CHX)-containing rinses showed equivalent antimicrobial activity and were more effective than a range of cetyl pyridinium chloride (CPC1) formulations. In the BCSB model, twice-daily mouthrinse exposure demonstrated that the EO rinse was significantly more effective than rinses containing amine and stannous fluorides, a combination of CPC/CHX and CPC2. EO showed biofilm kill comparable to the CHX rinse. Conclusions The present studies have shown that mouthrinses vary significantly in their capability to kill plaque biofilm bacteria in BCSB and RFTB models. The EO mouthrinse demonstrated superior antiplaque biofilm activity to AFSF, CPC/CHX, and CPC rinses and comparable activity to CHX. The methods tested may be of value for the in-vitro screening of antiseptic rinses with different modes of antimicrobial action. PMID:20621239

  16. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  17. Hemodynamic effects of long-term morphological changes in the human carotid sinus.

    PubMed

    Seong, Jaehoon; Jeong, Woowon; Smith, Nataliya; Towner, Rheal A

    2015-04-13

    Previous investigations of morphology for human carotid artery bifurcation from infancy to young adulthood found substantial growth of the internal carotid artery with advancing age, and the development of the carotid sinus at the root of the internal carotid artery during teenage years. Although the reasons for the appearance of the carotid sinus are not clearly understood yet, it has been hypothesized that the dilation of the carotid sinus serves to support pressure sensing, and slows the blood flow to reduce pulsatility to protect the brain. In order to understand this interesting evolvement at the carotid bifurcation in the aspects of fluid mechanics, we performed in vitro phase-contrast MR flow experiments using compliant silicone replicas of age-dependent carotid artery bifurcations. The silicone models in childhood, adolescence, and adulthood were fabricated using a rapid prototyping technique, and incorporated with a bench-top flow mock circulation loop using a computer-controlled piston pump. The results of the in vitro flow study showed highly complex flow characteristics at the bifurcation in all age-dependent models. However, the highest magnitude of kinetic energy was found at the internal carotid artery in the child model. The high kinetic energy in the internal carotid artery during childhood might be one of the local hemodynamic forces that initiate morphological long-term development of the carotid sinus in the human carotid bifurcation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of tartar control dentifrices in in vitro models of dentin sensitivity.

    PubMed

    Mason, S; Levan, A; Crawford, R; Fisher, S; Gaffar, A

    1991-01-01

    The effects of anticalculus dentifrices were compared with other commercially available dentifrices in in vitro models of dentin sensitivity. Changes in the hydraulic conductance of dentin discs were measured with and without a smear layer before and after treatment and also after a post-treatment acid etch. The capacity of dentifrices to occlude open dentinal tubules in vitro was also assessed by scanning electron microscopy (SEM). There was good correlation (R = 0.98) between our test and values reported in the literature. Tartar control dentifrices gave reductions in fluid flow rates through the dentin discs comparable to those obtained with Promise, Sensodyne, Thermodent and Denquel. Additionally, tartar control dentifrices did not remove microcrystalline debris (smear layers) from the surfaces of dentin in vitro. These results were confirmed by SEM. Thus, according to the hydrodynamic theory of dentin sensitivity, these in vitro results suggest that pyrophosphate-containing dentifrices should reduce dentinal sensitivity.

  19. Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior

    PubMed Central

    Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.

    2013-01-01

    We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612

  20. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  1. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    PubMed

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2018-02-01

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  2. In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects

    PubMed Central

    Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen

    2010-01-01

    Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147

  3. Development and Application of a Polymicrobial in vitro Wound Biofilm Model

    PubMed Central

    Woods, Jeremy; Boegli, Laura; Kirker, Kelly R.; Agostinho, Alessandra M.; Durch, Amanda M.; Pulcini, Elinor deLancey; Stewart, Philip S.; James, Garth A.

    2012-01-01

    Aims The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip-flow reactor, and a three-species biofilm model was established using methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and C. perfringens in the colony-drip-flow reactor model. Plate counts revealed that MRSA, P. aeruginosa, and C. perfringens grew to 7.39±0.45, 10.22±0.22, and 7.13±0.77 log CFU per membrane, respectively. The three-species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity™ AMD and Acticoat™, compared to sterile gauze controls. Microbial growth on Curity™ AMD and gauze were not significantly different, for any species, whereas Acticoat™ was found to significantly reduce growth for all three species. Conclusions Using the Colony-DFR, a three-species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of Study The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment. PMID:22353049

  4. Intra-aneurysmal flow disruption after implantation of the Medina® Embolization Device depends on aneurysm neck coverage.

    PubMed

    Frölich, Andreas Maximilian; Nawka, Marie Teresa; Ernst, Marielle; Frischmuth, Isabell; Fiehler, Jens; Buhk, Jan-Hendrik

    2018-01-01

    Flow disruption achieved by braided intrasaccular implants is a novel treatment strategy for cerebrovascular aneurysms. We hypothesized that the degree of intra-aneurysmal flow disruption can be quantified in vitro and is influenced by device position across the aneurysm neck. We tested this hypothesis using the Medina® Embolization Device (MED). Ten different patient-specific elastic vascular models were manufactured. Models were connected to a pulsatile flow circuit, filled with a blood-mimicking fluid and treated by two operators using a single MED. Intra-aneurysmal flow velocity was measured using conventional and high-frequency digital subtraction angiography (HF-DSA) before and after each deployment. Aneurysm neck coverage by the implanted devices was assessed with flat detector computed tomography on a three-point Likert scale. A total of 80 individual MED deployments were performed by the two operators. The mean intra-aneurysmal flow velocity reduction after MED implantation was 33.6% (27.5-39.7%). No significant differences in neck coverage (p = 0.99) or flow disruption (p = 0.84) were observed between operators. The degree of flow disruption significantly correlated with neck coverage (ρ = 0.42, 95% CI: 0.21-0.59, p = 0.002) as well as with neck area (ρ = -0,35, 95% CI: -0.54 --0.13, p = 0.024). On multiple regression analysis, both neck coverage and total neck area were independent predictors of flow disruption. The degree of intra-aneurysmal flow disruption after MED implantation can be quantified in vitro and varies considerably between different aneurysms and different device configurations. Optimal device coverage across the aneurysm neck improves flow disruption and may thus contribute to aneurysm occlusion.

  5. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass.

    PubMed

    Jarvis, Maria; Arnold, Michael; Ott, Jenna; Pant, Kapil; Prabhakarpandian, Balabhaskar; Mitragotri, Samir

    2017-09-01

    In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle-based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co-culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface-functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co-culture devices to assess nanoparticle-cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.

  6. In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.

    PubMed

    Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine

    2011-01-01

      Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro.   The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals).   In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively.   The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.

  7. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  8. Does Undersizing of Transcatheter Aortic Valve Bioprostheses during Valve-in-Valve Implantation Avoid Coronary Obstruction? An In Vitro Study.

    PubMed

    Stock, Sina; Scharfschwerdt, Michael; Meyer-Saraei, Roza; Richardt, Doreen; Charitos, Efstratios I; Sievers, Hans-Hinrich; Hanke, Thorsten

    2017-04-01

    Background  The transcatheter aortic valve-in-valve implantation (TAViVI) is an evolving treatment strategy for degenerated surgical aortic valve bioprostheses (SAVBs) in patients with high operative risk. Although hemodynamics is excellent, there is some concern regarding coronary obstruction, especially in SAVB with externally mounted leaflet tissue, such as the Trifecta (St. Jude Medical Inc., St. Paul, Minnesota, United States). We investigated coronary flow and hydrodynamics before and after TAViVI in a SAVB with externally mounted leaflet tissue (St. Jude Medical, Trifecta) with an undersized transcatheter aortic valve bioprosthesis (Edwards Sapien XT; Edwards Lifesciences LLC, Irvine, California, United States) in an in vitro study. Materials and Methods  An aortic root model was constructed incorporating geometric dimensions known as risk factors for coronary obstruction. Investigating the validity of this model, we primarily performed recommended TAViVI with the Sapien XT (size 26 mm) in a Trifecta (size 25 mm) in a mock circulation. Thereafter, hydrodynamic performance and coronary flow (left/right coronary diastolic flow [lCF/rCF]) after TAViVI with an undersized Sapien XT (size 23 mm) in a Trifecta (size 25 mm) were investigated at two different coronary ostia heights (COHs, 8 and 10 mm). Results  Validation of the model led to significant coronary obstruction ( p  < 0.001). Undersized TAViVI showed no significant reduction with respect to coronary flow (lCF: COH 8 mm, 0.90-0.87 mL/stroke; COH 10 mm, 0.89-0.82 mL/stroke and rCF: COH 8 mm, 0.64-0.60 mL/stroke; COH 10 mm, 0.62-0.58 mL/stroke). Mean transvalvular gradients (4-5 mm Hg, p  < 0.001) increased significantly after TAViVI. Conclusions  In our in vitro model, undersized TAViVI with the balloon-expandable Sapien XT into a modern generation SAVB (Trifecta) successfully avoided coronary flow obstruction. Georg Thieme Verlag KG Stuttgart · New York.

  9. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    NASA Astrophysics Data System (ADS)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  10. Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitro.

    PubMed

    Niehaus, Wilmari L; Howlin, Robert P; Johnston, David A; Bull, Daniel J; Jones, Gareth L; Calton, Elizabeth; Mavrogordato, Mark N; Clarke, Stuart C; Thurner, Philipp J; Faust, Saul N; Stoodley, Paul

    2016-09-01

    Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.

  11. An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.

    PubMed

    Varadarajan, Balamurugan; Vogt, Andreas; Hartwich, Volker; Vasireddy, Rakesh; Consiglio, Jolanda; Hugi-Mayr, Beate; Eberle, Balthasar

    2017-01-01

    The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.

  12. Construction of 3D multicellular microfluidic chip for an in vitro skin model.

    PubMed

    Lee, Sojin; Jin, Seon-Pil; Kim, Yeon Kyung; Sung, Gun Yong; Chung, Jin Ho; Sung, Jong Hwan

    2017-06-01

    Current in vitro skin models do not recapitulate the complex architecture and functions of the skin tissue. In particular, on-chip construction of an in vitro model comprising the epidermis and dermis layer with vascular structure for mass transport has not been reported yet. In this study, we aim to develop a microfluidic, three-dimensional (3D) skin chip with fluidic channels using PDMS and hydrogels. Mass transport within the collagen hydrogel matrix was verified with fluorescent model molecules, and a transport-reaction model of oxygen and glucose inside the skin chip was developed to aid the design of the microfluidic skin chip. Comparison of viabilities of dermal fibroblasts and HaCaT cultured in the chip with various culture conditions revealed that the presence of flow plays a crucial role in maintaining the viability, and both cells were viable after 10 days of air exposure culture. Our 3D skin chip with vascular structures can be a valuable in vitro model for reproducing the interaction between different components of the skin tissue, and thus work as a more physiologically realistic platform for testing skin reaction to cosmetic products and drugs.

  13. In vitro blood-brain barrier models: current and perspective technologies.

    PubMed

    Naik, Pooja; Cucullo, Luca

    2012-04-01

    Even in the 21st century, studies aimed at characterizing the pathological paradigms associated with the development and progression of central nervous system diseases are primarily performed in laboratory animals. However, limited translational significance, high cost, and labor to develop the appropriate model (e.g., transgenic or inbred strains) have favored parallel in vitro approaches. In vitro models are of particular interest for cerebrovascular studies of the blood-brain barrier (BBB), which plays a critical role in maintaining the brain homeostasis and neuronal functions. Because the BBB dynamically responds to many events associated with rheological and systemic impairments (e.g., hypoperfusion), including the exposure of potentially harmful xenobiotics, the development of more sophisticated artificial systems capable of replicating the vascular properties of the brain microcapillaries are becoming a major focus in basic, translational, and pharmaceutical research. In vitro BBB models are valuable and easy to use supporting tools that can precede and complement animal and human studies. In this article, we provide a detailed review and analysis of currently available in vitro BBB models ranging from static culture systems to the most advanced flow-based and three-dimensional coculture apparatus. We also discuss recent and perspective developments in this ever expanding research field. Copyright © 2011 Wiley Periodicals, Inc.

  14. In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping.

    PubMed

    Minich, L L; Tani, L Y; Hawkins, J A; Bartkowiak, R R; Royall, M L; Pantalos, G M

    2001-04-01

    OBJECTIVES: To evaluate the effect of aortic compliance on pediatric intra-aortic balloon pumping (IABP). DESIGN: In vitro study using a mechanical model of the pediatric left heart circulation. SETTING: Cardiovascular fluid dynamics research laboratory. SUBJECT: Pulsatile flow system simulating the pediatric left heart circulation and two different aortas with compliances comparable to those of the pediatric aorta (0.12 and 0.07 mL/mm Hg). INTERVENTIONS: Measurements were made at a baseline peak aortic flow of 4 L/min, at simulated shock (1.7 L/min), and with 1:1 IABP (rates, 130 and 150 bpm; balloon volumes, 2.5 and 5.0 mL). MEASUREMENTS AND MAIN RESULTS: Peak flow rates were measured in the ascending aorta, coronary arterial system, and brachiocephalic arterial systems. Aortic pressure was measured in the ascending aorta. For both aortas (0.12 and 0.07 mL/mm Hg), IABP resulted in diastolic augmentation (38 +/- 8 and 43 +/- 16 mm Hg) and afterload reduction (4 +/- 2 and 6 +/- 3 mm Hg). For both aortas, compared to shock, IABP resulted in significant increases in coronary arterial and brachiocephalic arterial flow and aortic pressure for both aortas. Aortic flow significantly increased only in the less-compliant aorta. CONCLUSIONS: In a laboratory model of pediatric left heart circulation, IABP results in diastolic augmentation, afterload reduction, and improved hemodynamics, even in aortas of greater compliance.

  15. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report.

    PubMed

    Acevedo-Bolton, Gabriel; Jou, Liang-Der; Dispensa, Bradley P; Lawton, Michael T; Higashida, Randall T; Martin, Alastair J; Young, William L; Saloner, David

    2006-08-01

    The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. We followed a group of patients with giant intracranial aneurysms who have no clear surgical options. One patient demonstrated dramatic aneurysm growth and was selected for further analysis. The aneurysm geometry and input and output flow conditions were measured with contrast-enhanced magnetic resonance angiography and phase-contrast magnetic resonance imaging. The data was imported into a computational fluid dynamics program and the velocity fields and wall shear stress distributions were calculated for the presenting physiological condition and for cases in which the opposing vertebral arteries were either occluded or opened. These models were validated with in vitro flow experiments using a geometrically exact silicone flow phantom. Simulation indicated that altering the flow ratio in the two vertebrals would deflect the main blood jet into the aneurysm belly, and that this would likely reduce the extent of the region of low wall shear stress in the growth zone. Computational fluid dynamics flow simulations in a complex patient-specific aneurysm geometry were validated by in vivo and in vitro phase-contrast magnetic resonance imaging, and were shown to be useful in modeling the likely hemodynamic impact of interventional treatment of the aneurysm.

  16. Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots.

    PubMed

    Sersa, I; Vidmar, J; Grobelnik, B; Mikac, U; Tratar, G; Blinc, A

    2007-06-07

    Axially directed blood plasma flow can significantly accelerate thrombolysis of non-occlusive blood clots. Viscous forces caused by shearing of blood play an essential role in this process, in addition to biochemical fibrinolytic reactions. An analytical mathematical model based on the hypothesis that clot dissolution dynamics is proportional to the power of the flowing blood plasma dissipated along the clot is presented. The model assumes cylindrical non-occlusive blood clots with the flow channel in the centre, in which the flow is assumed to be laminar and flow rate constant at all times during dissolution. Effects of sudden constriction on the flow and its impact on the dissolution rate are also considered. The model was verified experimentally by dynamic magnetic resonance (MR) microscopy of artificial blood clots dissolving in an in vitro circulation system, containing plasma with a magnetic resonance imaging contrast agent and recombinant tissue-type plasminogen activator (rt-PA). Sequences of dynamically acquired 3D low resolution MR images of entire clots and 2D high resolution MR images of clots in the axial cross-section were used to evaluate the dissolution model by fitting it to the experimental data. The experimental data fitted well to the model and confirmed our hypothesis.

  17. Laser Speckle Imaging of Blood Flow Beneath Static Scattering Media

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin Anderson

    Laser speckle imaging (LSI) is a wide-field optical imaging technique that provides information about the movement of scattering particles in biological samples. LSI is used to create maps of relative blood flow and perfusion in samples such as the skin, brain, teeth, gingiva, and other biological tissues. The presence of static, or non-moving, optical scatterers affects the ability of LSI to provide true quantitative and spatially resolved measurements of blood flow. With in vitro experiments using tissue-simulating phantoms, we determined that temporal analysis of raw speckle image sequences improved the quantitative accuracy of LSI to measure flow beneath a static scattering layer. We then applied the temporal algorithm to assess the potential of LSI to monitor oral health. We designed and tested two generations of miniature LSI devices to measure flow in the pulpal chamber of teeth and in the gingiva. Our preliminary clinical pilot data indicated that speckle contrast may correlate with gingival health. To improve visualization of subsurface blood vessels, we developed a technique called photothermal LSI. We applied a short pulse of laser energy to selectively perturb the motion of red blood cells, increasing the signal from vasculature relative to the surroundings. To study the spectral and depth dependence of laser speckle contrast, we developed a Monte Carlo model of light and momentum transport to simulate speckle contrast. With an increase in the thickness of the overlying static-scattering layer, we observed a quadratic decrease in the quantity of dynamically scattered light collected by the detector. We next applied the model to study multi-exposure speckle imaging (MESI), a method that purportedly improves quantitative accuracy of subsurface blood flow measurements. We unexpectedly determined that MESI faced similar depth limitations as conventional LSI, findings that were supported by in vitro experimental data. Finally, we used the model to study the effects of epidermal melanin absorption on LSI, and demonstrated that speckle contrast is less sensitive to varying melanin content than reflectance. We then proposed a two-wavelength measurement protocol that may enable melanin-independent LSI measurements of blood flow in patients with varying skin types. In conclusion, through in vitro and in silico experiments, we were able to further the understanding of the depth dependent origins of laser speckle contrast as well as the inherent limitations of this technology.

  18. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  19. Activity of Imipenem against Klebsiella pneumoniae Biofilms In Vitro and In Vivo

    PubMed Central

    Chen, Ping; Seth, Akhil K.; Abercrombie, Johnathan J.; Mustoe, Thomas A.

    2014-01-01

    Encapsulated Klebsiella pneumoniae has emerged as one of the most clinically relevant and more frequently encountered opportunistic pathogens in combat wounds as the result of nosocomial infection. In this report, we show that imipenem displayed potent activity against established K. pneumoniae biofilms under both static and flow conditions in vitro. Using a rabbit ear model, we also demonstrated that imipenem was highly effective against preformed K. pneumoniae biofilms in wounds. PMID:24247132

  20. Evaluation of In Vitro and In Vivo Flow Rate Dependency of Budesonide/Formoterol Easyhaler®

    PubMed Central

    Malmberg, L. Pekka; Everard, Mark L.; Haikarainen, Jussi

    2014-01-01

    Abstract Background: The Easyhaler® (EH) device-metered dry powder inhaler containing budesonide and formoterol is being developed for asthma and chronic obstructive pulmonary disease (COPD). As a part of product optimization, a series of in vitro and in vivo studies on flow rate dependency were carried out. Methods: Inspiratory flow parameters via EH and Symbicort® Turbuhaler® (TH) inhalers were evaluated in 187 patients with asthma and COPD. The 10th, 50th, and 90th percentile flow rates achieved by patients were utilized to study in vitro flow rate dependency of budesonide/formoterol EH and Symbicort TH. In addition, an exploratory pharmacokinetic study on pulmonary deposition of active substances for budesonide/formoterol EH in healthy volunteers was performed. Results: Mean inspiratory flow rates through EH were 64 and 56 L/min in asthmatics and COPD patients, and through TH 79 and 72 L/min, respectively. Children with asthma had marginally lower PIF values than the adults. The inspiratory volumes were similar in all groups between the inhalers. Using weighted 10th, 50th, and 90th percentile flows the in vitro delivered doses (DDs) and fine particle doses (FPDs) for EH were rather independent of flow as 98% of the median flow DDs and 89%–93% of FPDs were delivered already at 10th percentile air flow. Using±15% limits, EH and TH had similar flow rate dependency profiles between 10th and 90th percentile flows. The pharmacokinetic study with budesonide/formoterol EH in healthy subjects (n=16) revealed a trend for a flow-dependent increase in lung deposition for both budesonide and formoterol. Conclusions: Comparable in vitro flow rate dependency between budesonide/formoterol EH and Symbicort TH was found using the range of clinically relevant flow rates. The results of the pharmacokinetic study were in accordance with the in vitro results showing only a trend of flow rate-dependant increase in lung deposition of active substances with EH. PMID:24978441

  1. Effects of Nebulizer Position, Gas Flow, and CPAP on Aerosol Bronchodilator Delivery: An In Vitro Study.

    PubMed

    Ball, Lorenzo; Sutherasan, Yuda; Caratto, Valentina; Sanguineti, Elisa; Marsili, Maria; Raimondo, Pasquale; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2016-03-01

    The aim of this study was to investigate the effects of different delivery circuit configurations, nebulizer positions, CPAP levels, and gas flow on the amount of aerosol bronchodilator delivered during simulated spontaneous breathing in an in vitro model. A pneumatic lung simulator was connected to 5 different circuits for aerosol delivery, 2 delivering CPAP through a high-flow generator tested at 30, 60, and 90 L/min supplementary flow and 5, 10, and 15 cm H2O CPAP and 3 with no CPAP: a T-piece configuration with one extremity closed with a cap, a T-piece configuration without cap and nebulizer positioned proximally, and a T-piece configuration without cap and nebulizer positioned distally. Albuterol was collected with a filter, and the percentage amount delivered was measured by infrared spectrophotometry. Configurations with continuous high-flow CPAP delivered higher percentage amounts of albuterol compared with the configurations without CPAP (9.1 ± 6.0% vs 6.2 ± 2.8%, P = .03). Among configurations without CPAP, the best performance was obtained with a T-piece with one extremity closed with a cap. In CPAP configurations, the highest delivery (13.8 ± 4.4%) was obtained with the nebulizer placed proximal to the lung simulator, independent of flow. CPAP at 15 cm H2O resulted in the highest albuterol delivery (P = .02). Based on our in vitro study, without CPAP, a T-piece with a cap at one extremity maximizes albuterol delivery. During high-flow CPAP, the nebulizer should always be placed proximal to the patient, after the T-piece, using the highest CPAP clinically indicated. Copyright © 2016 by Daedalus Enterprises.

  2. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals.

    PubMed

    Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2016-06-30

    The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of collision on the flow through in-vitro rigid models of the vocal folds

    NASA Astrophysics Data System (ADS)

    Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.

    2003-12-01

    Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.

  4. Prevalidation of in vitro continuous flow exposure systems as alternatives to in vivo inhalation safety evaluation experimentations: outcome from MAAPHRI-PCRD5 research program.

    PubMed

    Morin, Jean-Paul; Hasson, Virginie; Fall, Mamadou; Papaioanou, Eleni; Preterre, David; Gouriou, Frantz; Keravec, Veronika; Konstandopoulos, Athanasios; Dionnet, Frédéric

    2008-06-01

    Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.

  5. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  6. In Vitro Comparison of Aerosol Delivery Using Different Face Masks and Flow Rates With a High-Flow Humidity System.

    PubMed

    Lin, Hui-Ling; Harwood, Robert J; Fink, James B; Goodfellow, Lynda T; Ari, Arzu

    2015-09-01

    Aerosol drug delivery to infants and small children is influenced by many factors, such as types of interface, gas flows, and the designs of face masks. The purpose of this in vitro study was to evaluate aerosol delivery during administration of gas flows across the range used clinically with high-flow humidity systems using 2 aerosol masks. A spontaneous lung model was used to simulate an infant/young toddler up to 2 y of age and pediatric breathing patterns. Nebulized salbutamol by a vibrating mesh nebulizer positioned at the inlet of a high-flow humidification system at gas flows of 3, 6, and 12 L/min was delivered via pediatric face masks to a pediatric face mannequin attached to a filter. Aerosol particle size distribution exiting the vibrating mesh nebulizer and at the mask position distal to the heated humidifier with 3 flows was measured with a cascade impactor. Eluted drug from the filters and the impactor was analyzed with a spectrophotometer (n = 3). Statistical analysis was performed by analysis of variance with a significant level of P < .05. The inhaled mass was between 2.8% and 8.1% among all settings and was significantly lower at 12 L/min (P = .004) in the pediatric model. Drug delivery with pediatric breathing was greater than with infant breathing (P = .004). The particle size distribution of aerosol emitted from the nebulizer was larger than the heated humidified aerosol exiting the tubing (P = .002), with no difference between the 3 flows (P = .10). The flows of gas entering the mask and breathing patterns influence aerosol delivery, independent of the face mask used. Aerosol delivery through a high-flow humidification system via mask could be effective with both infant and pediatric breathing patterns. Copyright © 2015 by Daedalus Enterprises.

  7. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  8. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  9. Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model.

    PubMed

    Lynch, R J M; ten Cate, J M

    2006-01-01

    The aim was to investigate the anti-caries properties of calcium glycerophosphate (CaGP) using an in vitro bacterial flow cell model. Four flow cells, inoculated from a chemostat containing a seven-organism bacterial consortium, were pulsed with sucrose twice daily, to provide an acidic challenge and pH-cycling conditions. Blocks of enamel and dentine were mounted in each flow cell. In a study on the effect of CaGP concentration, CaGP was pulsed into three of the flow cells, at the same time as the sucrose, to give concentrations of 0.10, 0.25 and 0.50%. Water was pulsed into the fourth flow cell with the sucrose. Microradiography revealed a significant dose response of decreasing demineralization as CaGP concentration increased. Reductions at 0.25 and 0.5% were significant when compared to the control. A second study investigated the effect of timing of CaGP pulsing, relative to sucrose, on enamel and dentine demineralization. CaGP (flow cell concentration 0.2%), was pulsed 1 h before, during or 1 h after the sucrose pulse; a water control was employed. In enamel, pulsing CaGP before the sucrose reduced demineralization significantly compared to concurrent pulsing, which in turn gave a significant reduction compared to pulsing after sucrose, which did not reduce demineralization significantly compared to the water control. In dentine, CaGP reduced demineralization significantly only when pulsed before the sucrose. The findings suggest that in vivo, the anti-caries potential of CaGP may be greater if it is applied before a cariogenic challenge. Copyright (c) 2006 S. Karger AG, Basel.

  10. Branched hybrid vessel: in vitro loaded hydrodynamic forces influence the tissue architecture.

    PubMed

    Kobashi, T; Matsuda, T

    2000-01-01

    This study was conducted to investigate how a continuous load of hydrodynamic stresses influences the tissue architecture of a branched hybrid vessel in vitro. Tubular hybrid medial tissue of small (3 mm) and large (6 mm) diameters, prepared by thermal gelation of a cold mixed solution of bovine smooth muscle cells (SMCs) and type I collagen in glass molds, was assembled into a branched hybrid medial tissue by end-to-side anastomosis. After a 2-week culture period, bovine endothelial cells (ECs) were seeded onto the luminal surface. The branched hybrid vessel was connected to a mock circulatory loop system and tested for two modes of flow: 1) low flow rate for 24 h, 2) high flow rate for 24 or 72 h. After exposure to a low flow rate for 24 h, cobblestone appearance of the ECs was dominant. After exposure to a high flow rate, EC alignment in the direction of flow was observed in the branch region, except at the region of predicted flow separation where ECs retained their polygonal configuration. Elongation of SMCs with no preferential orientation was observed in the case of vessels exposed to a high flow rate for 24 h, and circumferential orientation was prominent in those exposed to a high flow rate for 72 h. On the other hand, collagen fibrils exhibited no preferential orientation in either case. After injection of Evans blue-albumin conjugate into the circulating medium, the luminal surface of the hybrid vessel exposed to a high flow rate for 24 h was examined by confocal laser scanning microscopy. The fluorescence intensity was low at the high shear zone in the branch region, while at the flow separation region it was very high, indicating the increased albumin permeability at the latter region. These findings reflect region-specific tissue architecture in the branch region, in response to the local flow pattern, and may provide an in vitro atherosclerosis model as well as a fundamental basis for the development of functional branched hybrid grafts.

  11. In vitro evaluation of heat and moisture exchangers designed for spontaneously breathing tracheostomized patients.

    PubMed

    Brusasco, Claudia; Corradi, Francesco; Vargas, Maria; Bona, Margherita; Bruno, Federica; Marsili, Maria; Simonassi, Francesca; Santori, Gregorio; Severgnini, Paolo; Kacmarek, Robert M; Pelosi, Paolo

    2013-11-01

    Heat and moisture exchangers (HMEs) are commonly used in chronically tracheostomized spontaneously breathing patients, to condition inhaled air, maintain lower airway function, and minimize the viscosity of secretions. Supplemental oxygen (O2) can be added to most HMEs designed for spontaneously breathing tracheostomized patients. We tested the efficiency of 7 HMEs designed for spontaneously breathing tracheostomized patients, in a normothermic model, at different minute ventilations (VE) and supplemental O2 flows. HME efficiency was evaluated using an in vitro lung model at 2 VE (5 and 15 L/min) and 4 supplemental O2 flows (0, 3, 6, and 12 L/min). Wet and dry temperatures of the inspiratory flow were measured, and absolute humidity was calculated. In addition, HME efficiency at 0, 12, and 24 h use was evaluated, as well as resistance to flow at 0 and 24 h. The progressive increase in O2 flow from 0 to 12 L/min was associated with a reduction in temperature and absolute humidity. Under the same conditions, this effect was greater at lower VE. The HME with the best performance provided an absolute humidity of 26 mg H2O/L and a temperature of 27.8 °C. No significant changes in efficiency or resistance were detected during the 24 h evaluation. The efficiency of HMEs in terms of temperature and absolute humidity is significantly affected by O2 supplementation and V(E).

  12. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.

    PubMed

    Longest, P Worth; Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-12-01

    The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.

  13. Correlation Between Contrast Time-Density Time on Digital Subtraction Angiography and Flow: An in Vitro Study.

    PubMed

    Brunozzi, Denise; Shakur, Sophia F; Ismail, Rahim; Linninger, Andreas; Hsu, Chih-Yang; Charbel, Fady T; Alaraj, Ali

    2018-02-01

    Digital subtraction angiography (DSA) provides an excellent anatomic characterization of cerebral vasculature, but hemodynamic assessment is often qualitative and subjective. Various clinical algorithms have been produced to semiquantify flow from the data obtained from DSA, but few have tested them against reliable flow values. An arched flow model was created and injected with contrast material. Seventeen injections were acquired in anterior-posterior and lateral DSA projections, and 4 injections were acquired in oblique projection. Image intensity change over the angiogram cycle of each DSA run was analyzed through a custom MATLAB code. Time-density plots obtained were divided into 3 components (time-density times, TDTs): TDT 10%-100% (time needed for contrast material to change image intensity from 10% to 100%), TDT 100%-10% (time needed for contrast material to change image intensity from 100% to 10%), and TDT 25%-25% (time needed for contrast material to change from 25% image intensity to 25%). Time-density index (TDI) was defined as model cross-sectional area to TDT ratio, and it was measured against different flow rates. TDI 10%-100% , TDI 100%-10% , and TDI 25%-25% all correlated significantly with flow (P < 0.001). TDI 10%-100% , TDI 100%-10% , and TDI 25%-25% showed, respectively, a correlation coefficient of 0.91, 0.91, and 0.97 in the anterior-posterior DSA projections (P < 0.001). In the lateral DSA projection, TDI 100%-10% showed a weaker correlation (r = 0.57; P = 0.03). Also in the oblique DSA projection, TDIs correlated significantly with flow. TDI on DSA correlates significantly with flow. Although in vitro studies might overlook conditions that occur in patients, this method appears to correlate with the flow and could offer a semiquantitative method to evaluate the cerebral blood flow. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evaluation of Flow Biosensor Technology in a Chronically-Instrumented Non-Human Primate Model

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Reister, C.; Schaub, J.; Muniz, G.; Ferguson, T.; Fanton, J. W.

    1995-01-01

    The Physiology Research Branch of Brooks AFB conducts both human and non-human primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to indentify the particular mechanisms that invoke these responses. Primary investigative research efforts in a non-human primate model require the calculation of total peripheral resistance (TPR), systemic arterial compliance (SAC), and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. We have evaluated commercially available electromagnetic (EMF) and transit-time flow measurement techniques. In vivo and in vitro experiments demonstrated that the average error of these techniques is less than 25 percent for EMF and less than 10 percent for transit-time.

  15. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    NASA Astrophysics Data System (ADS)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  16. Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Spence, C. J. T.; Buchmann, N. A.; Jermy, M. C.

    2012-03-01

    Nasal high flow (NHF) cannulae are used to deliver heated and humidified air to patients at steady flows ranging from 5 to 50 l/min. In this study, the flow velocities in the nasal cavity across the complete respiratory cycle during natural breathing and with NHF has been mapped in vitro using time-resolved stereoscopic particle image velocimetry (SPIV). An anatomically accurate silicone resin model of a complete human nasal cavity was constructed using CT scan data and rapid prototyping. Physiological breathing waveforms were reproduced in vitro using Reynolds and Womersley number matching and a piston pump driven by a ball screw and stepper motor. The flow pattern in the nasal cavity with NHF was found to differ significantly from natural breathing. Velocities of 2.4 and 3.3 ms-1 occurred in the nasal valve during natural breathing at peak expiration and inspiration, respectively; however, on expiration, the maximum velocity of 3.8 ms-1 occurred in the nasopharynx. At a cannula flow rate of 30 l/min, maximal velocities of 13.6 and 16.5 ms-1 at peak expiration and inspiration, respectively, were both located in the cannula jet within the nasal valve. Results are presented that suggest the quasi-steady flow assumption is invalid in the nasal cavity during natural breathing; however, it was valid with NHF. Cannula flow has been found to continuously flush the nasopharyngeal dead space, which may enhance carbon dioxide removal and increase oxygen fraction.

  17. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo.

    PubMed

    Fitzgerald, Daniel J; Renick, Paul J; Forrest, Emma C; Tetens, Shannon P; Earnest, David N; McMillan, Jillian; Kiedaisch, Brett M; Shi, Lei; Roche, Eric D

    2017-01-01

    Examination of clinical samples indicates bacterial biofilms are present in the majority of chronic wounds, and substantial evidence suggests biofilms contribute significantly to delayed healing. Bacteria in biofilms are highly tolerant of antimicrobials, and little data exist to guide the choice of anti-biofilm wound therapy. Cadexomer iodine (CI) was recently reported to have superior efficacy compared to diverse wound dressings against Pseudomonas aeruginosa biofilms in an ex vivo model. In the current study, the strong performance of CI vs. P. aeruginosa biofilm was confirmed using colony and colony drip-flow in vitro wound biofilm models. Similar in vitro efficacy of CI was also demonstrated against mature Staphylococcus aureus biofilms using the same models. Additionally, the rapid kill of mature S. aureus and P. aeruginosa colony biofilms was visualized by confocal microscopy using Live/Dead fluorescent stains. Superior in vitro efficacy of CI vs. staphylococcal biofilms was further demonstrated against methicillin-resistant S. aureus (MRSA) using multiple biofilm models with log reduction, Live/Dead, and metabolic endpoints. Comparator antimicrobial dressings, including silver-based dressings used throughout and other active agents used in individual models, elucidated only limited effects against the mature biofilms. Given the promising in vitro activity, CI was tested in an established mouse model of MRSA wound biofilm. CI had significantly greater impact on MRSA biofilm in mouse wounds than silver dressings or mupirocin based on Gram-stained histology sections and quantitative microbiology from biopsy samples (>4 log reduction in CFU/g vs. 0.7-1.6, p < 0.0001). The superior efficacy for CI in these in vitro and in vivo models suggests CI topical products may represent a better choice to address established bacterial biofilm in chronic wounds. © 2016 by the Wound Healing Society.

  18. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  19. An in vitro analysis of a carotid artery stent with a protective porous membrane.

    PubMed

    Müller-Hülsbeck, Stefan; Hüsler, Erhard J; Schaffner, Silvio R; Jahnke, Thomas; Glass, Christoph; Wenke, Rüdiger; Heller, Martin

    2004-11-01

    To prove the effectiveness of a new stent concept with integrated protection (MembraX [MX]) by comparing it with five cerebral protection devices designed for carotid angioplasty in an in vitro model. Two simulation series of embolization from carotid angioplasty have been performed. In the first series, polyvinyl-alcohol particles (150-250 microm [small], 355-500 microm [medium], 710-1000 microm [large]; 5 mg each) were injected into a silicone flow model simulating the aortic arch with a carotid bifurcation. The particles were injected proximally to the partially deployed MX stent or one of the following protection devices: Angioguard (AG), FilterWire EX (EX), Trap, Neuroshield (NS), or GuardWire Plus (GW). Particles evading the protection device were caught in a filter at the end of the flow model and weighed. In the second series, human plaque material (8-12 particles; total weight 6.09 +/- 0.01 mg; 500-1500 microm) was injected into the model with the respective devices. MX was compared with the AG, EX, Trap, and NS devices. MX had the most effective overall filtration performance for polyvinyl alcohol particles in the effluent of the internal carotid artery (ICA; 0.43 mg, 2.9%), compared with NS (0.53 mg, 3.5%), GW (1.10 mg, 7.0%), EX and AG (1.18 and 1.21 mg, respectively; 7.8% and 8.0%), and Trap (1.24 mg, 8.2%). MX performed best for the small particles (2.0% passed particles into ICA; P < .05 compared with all). Human plaque material was retained best in the in vitro model by MX (0.0%), followed by NS (0.8%), EX (1.3%), Trap (2.6%), and AG (4.4%). In vitro, none of the tested devices had the ability to prevent embolization completely. Comparing current designs, the MX device captured the highest percentage of the three different particle groups. Tested with human plaque emboli, MX performed effectively in filtering the particles in the ICA.

  20. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation.

    PubMed

    Carrigy, Nicholas B; Ruzycki, Conor A; Golshahi, Laleh; Finlay, Warren H

    2014-06-01

    Respiratory tract deposition models provide a useful method for optimizing the design and administration of inhaled pharmaceutical aerosols, and can be useful for estimating exposure risks to inhaled particulate matter. As aerosol must first pass through the extrathoracic region prior to reaching the lungs, deposition in this region plays an important role in both cases. Compared to adults, much less extrathoracic deposition data are available with pediatric subjects. Recently, progress in magnetic resonance imaging and computed tomography scans to develop pediatric extrathoracic airway replicas has facilitated addressing this issue. Indeed, the use of realistic replicas for benchtop inhaler testing is now relatively common during the development and in vitro evaluation of pediatric respiratory drug delivery devices. Recently, in vitro empirical modeling studies using a moderate number of these realistic replicas have related airway geometry, particle size, fluid properties, and flow rate to extrathoracic deposition. Idealized geometries provide a standardized platform for inhaler testing and exposure risk assessment and have been designed to mimic average in vitro deposition in infants and children by replicating representative average geometrical dimensions. In silico mathematical models have used morphometric data and aerosol physics to illustrate the relative importance of different deposition mechanisms on respiratory tract deposition. Computational fluid dynamics simulations allow for the quantification of local deposition patterns and an in-depth examination of aerosol behavior in the respiratory tract. Recent studies have used both in vitro and in silico deposition measurements in realistic pediatric airway geometries to some success. This article reviews the current understanding of pediatric in vitro and in silico deposition modeling via oral and nasal inhalation.

  1. Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI-Dependent Manner in an In Vitro Venous Thrombosis Model.

    PubMed

    Lehmann, Marcus; Schoeman, Rogier M; Krohl, Patrick J; Wallbank, Alison M; Samaniuk, Joseph R; Jandrot-Perrus, Martine; Neeves, Keith B

    2018-05-01

    The objective of this study was to measure the role of platelets and red blood cells on thrombus propagation in an in vitro model of venous valvular stasis. A microfluidic model with dimensional similarity to human venous valves consists of a sinus distal to a sudden expansion, where for sufficiently high Reynolds numbers, 2 countercurrent vortices arise because of flow separation. The primary vortex is defined by the points of flow separation and reattachment. A secondary vortex forms in the deepest recess of the valve pocket characterized by low shear rates. An initial fibrin gel formed within the secondary vortex of a tissue factor-coated valve sinus. Platelets accumulated at the interface of the fibrin gel and the primary vortex. Red blood cells at physiological hematocrits were necessary to provide an adequate flux of platelets to support thrombus growth out of the valve sinus. A subpopulation of platelets that adhered to fibrin expose phosphatidylserine. Platelet-dependent thrombus growth was attenuated by inhibition of glycoprotein VI with a blocking Fab fragment or D-dimer. A 3-step process regulated by hemodynamics was necessary for robust thrombus propagation: First, immobilized tissue factor initiates coagulation and fibrin deposition within a low flow niche defined by a secondary vortex in the pocket of a model venous valve. Second, a primary vortex delivers platelets to the fibrin interface in a red blood cell-dependent manner. Third, platelets adhere to fibrin, activate through glycoprotein VI, express phosphatidylserine, and subsequently promote thrombus growth beyond the valve sinus and into the bulk flow. © 2018 American Heart Association, Inc.

  2. Alteration of intraaneurysmal hemodynamics by placement of a self-expandable stent. Laboratory investigation.

    PubMed

    Tateshima, Satoshi; Tanishita, Kazuo; Hakata, Yasuhiro; Tanoue, Shin-ya; Viñuela, Fernando

    2009-07-01

    Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery-ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by approximately 23-40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43-64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22-51%. The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.

  3. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.

    PubMed

    Engelhardt, Lucas; Röhm, Martina; Mavoungou, Chrystelle; Schindowski, Katharina; Schafmeister, Annette; Simon, Ulrich

    2016-06-01

    Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.

  4. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  5. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.

    PubMed

    Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M

    2008-03-01

    The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.

  6. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.

    PubMed

    Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L

    2016-02-01

    The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth.

  7. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    PubMed Central

    Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe

    2006-01-01

    Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051

  8. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.

    PubMed

    Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D

    2015-05-15

    An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

  9. Development of a flow feedback pulse duplicator system with rhesus monkey arterial input impedance characteristics

    NASA Technical Reports Server (NTRS)

    Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1999-01-01

    An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.

  10. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  11. Single camera volumetric velocimetry in aortic sinus with a percutaneous valve

    NASA Astrophysics Data System (ADS)

    Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit

    2016-11-01

    Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.

  12. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo.

    PubMed

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon G J; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris; Dieben, Michel A E; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard R; Jongbloed, Monique R M; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P H; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey L; Burton, Francis L; Mummery, Christine L

    2018-02-02

    There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models. © 2017 The Authors.

  13. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo

    PubMed Central

    David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.

    2011-01-01

    Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085

  14. In vitro study of near-wall flow in a cerebral aneurysm model with and without coils.

    PubMed

    Goubergrits, L; Thamsen, B; Berthe, A; Poethke, J; Kertzscher, U; Affeld, K; Petz, C; Hege, H-C; Hoch, H; Spuler, A

    2010-09-01

    Coil embolization procedures change the flow conditions in the cerebral aneurysm and, therefore, in the near-wall region. Knowledge of these flow changes may be helpful to optimize therapy. The goal of this study was to investigate the effect of the coil-packing attenuation on the near-wall flow and its variability due to differences in the coil structure. An enlarged transparent model of an ACA aneurysm was fabricated on the basis of CT angiography. The near-wall flow was visualized by using a recently proposed technique called Wall-PIV. Coil-packing attenuation of 10%, 15%, and 20% were investigated and compared with an aneurysmal flow without coils. Then the flow variability due to the coil introduction was analyzed in 10 experiments by using a packing attenuation of 15%. A small packing attenuation of 10% already alters the near-wall flow significantly in a large part of the aneurysmal sac. These flow changes are characterized by a slow flow with short (interrupted) path lines. An increased packing attenuation expands the wall area exposed to the altered flow conditions. This area, however, depends on the coil position and/or on the 3D coil structure in the aneurysm. To our knowledge, this is the first time the near-wall flow changes caused by coils in an aneurysm model have been visualized. It can be concluded that future hydrodynamic studies of coil therapy should include an investigation of the coil structure in addition to the coil-packing attenuation.

  15. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    PubMed

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  16. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.

    2011-01-01

    Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328

  17. Pressure-flow relationships in in vitro model of compartment syndrome.

    PubMed

    Shrier, I; Magder, S

    1995-07-01

    Compartment syndrome is a condition in which an increase in intramuscular pressure decreases blood flow to skeletal muscle. According to the Starling resistor (i.e., vascular waterfall) model of blood flow, the decrease in flow could occur through an increase in arterial resistance (Rart) or an increase in the critical closing pressure (Pcrit). To determine which explains the decrease in flow, we pump perfused a canine gastrocnemius muscle placed within an airtight box, controlled box pressures (Pbox) so that flow ranged from 100 to 50%, and measured Pcrit, Rart, arterial compliance, small venular pressure (measured by the double-occlusion technique), and venous pressure. An increase in Pbox limited flow mainly through an increase in Pcrit (75-85%), with only small changes in Rart (15-25%) and no change in arterial compliance. Increases in Pbox also produced a vascular waterfall in the venous circulation, but small venular transmural pressure always remained less than control levels. We conclude that increases in Pbox mostly limit blood flow through increases in Pcrit and that Rart plays a minor role. Transmural pressure across the small venules decreases with increases in intramuscular pressure, which contradicts the currently held belief that compartment syndrome is due to a cycle of swelling-ischemia-swelling.

  18. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials.

    PubMed

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M; Roberts, Jeffrey T

    2015-07-15

    The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of pulsatile flowfield in healthy thoracic aorta models.

    PubMed

    Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen

    2010-02-01

    Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the anterior wall of the brachiocephalic artery, similar implication reported in a number of previous studies.

  20. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    PubMed

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  1. Design and Characterization of a Microfabricated Hydrogen Clearance Blood Flow Sensor

    PubMed Central

    Walton, Lindsay R.; Edwards, Martin A.; McCarty, Gregory S.; Wightman, R. Mark

    2016-01-01

    Background Modern cerebral blood flow (CBF) detection favors the use of either optical technologies that are limited to cortical brain regions, or expensive magnetic resonance. Decades ago, inhalation gas clearance was the choice method of quantifying CBF, but this suffered from poor temporal resolution. Electrolytic H2 clearance (EHC) generates and collects gas in situ at an electrode pair, which improves temporal resolution, but the probe size has prohibited meaningful subcortical use. New Method We microfabricated EHC electrodes to an order of magnitude smaller than those existing, on the scale of 100 µm, to permit use deep within the brain. Results Novel EHC probes were fabricated. The devices offered exceptional signal-to-noise, achieved high collection efficiencies (40 – 50%) in vitro, and agreed with theoretical modeling. An in vitro chemical reaction model was used to confirm that our devices detected flow rates higher than those expected physiologically. Computational modeling that incorporated realistic noise levels demonstrated devices would be sensitive to physiological CBF rates. Comparison with Existing Method The reduced size of our arrays makes them suitable for subcortical EHC measurements, as opposed to the larger, existing EHC electrodes that would cause substantial tissue damage. Our array can collect multiple CBF measurements per minute, and can thus resolve physiological changes occurring on a shorter timescale than existing gas clearance measurements. Conclusion We present and characterize microfabricated EHC electrodes and an accompanying theoretical model to interpret acquired data. Microfabrication allows for the high-throughput production of reproducible devices that are capable of monitoring deep brain CBF with sub-minute resolution. PMID:27102042

  2. In vitro flow measurements in ion sputtered hydrocephalus shunts

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.

    1989-01-01

    This paper describes an experimental procedure for accurate measurements of the pressure-drop/flow rate relationship in hydrocephalus shunts. Using a fish-hook arrangement, small flow rates in a perforated ion-sputtered Teflon microtubule were measured in vitro in a pressured system and were correlated with pressure in the system. Results indicate that appropriate drainage rates could be obtained in the physiological range for hydrocephalus shunts.

  3. Effects of unripe Citrus hassaku fruits extract and its flavanone glycosides on blood fluidity.

    PubMed

    Itoh, Kimihisa; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Matsuda, Hideaki

    2010-01-01

    The enhancement of blood fluidity may lead to improvements in skin problems resulting from unsmooth circulation or blood stagnation. Since a 50% ethanolic extract (CH-ext) obtained from unripe Citrus hassaku fruits may be a useful ingredient in skin-whitening cosmetics, the present study was designed to examine the effect of CH-ext on blood fluidity. CH-ext concentration-dependently inhibited in vitro collagen-induced rabbit platelet aggregation and in vitro polybrene-induced rat erythrocyte aggregation. The CH-ext showed in vitro fibrinolysis activity in fibrin plate assay. Activity-guided fractionation of the CH-ext using antiplatelet activity, inhibitory activity of erythrocyte aggregation, and fibrinolysis activity revealed that these activities of CH-ext were attributable to naringenin-7-glycoside (prunin). Successive oral administration of CH-ext to rats inhibited the lipopolysaccharide (LPS)-induced decrease of blood platelets and fibrinogen, and LPS-induced increase of fibrin degradation products (FDP) in LPS-induced disseminated intravascular coagulation (DIC) model rats. Effects of CH-ext on blood fluidity were analyzed by a micro channel array flow analyzer (MC-FAN). Preventive oral administration of CH-ext to rats showed dose-dependent reduction of the passage time of whole blood flow of the DIC model rats in comparison with that of the vehicle control rats. These results imply that CH-ext may have effects which improve effects on blood fluidity.

  4. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    PubMed

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  5. Designing a Microfluidic Device with Integrated Ratiometric Oxygen Sensors for the Long-Term Control and Monitoring of Chronic and Cyclic Hypoxia

    PubMed Central

    Grist, Samantha M.; Schmok, Jonathan C.; Liu, Meng-Chi (Andy); Chrostowski, Lukas; Cheung, Karen C.

    2015-01-01

    Control of oxygen over cell cultures in vitro is a topic of considerable interest, as chronic and cyclic hypoxia can alter cell behaviour. Both static and transient hypoxic levels have been found to affect tumour cell behaviour; it is potentially valuable to include these effects in early, in vitro stages of drug screening. A barrier to their inclusion is that rates of transient hypoxia can be a few cycles/hour, which is difficult to reproduce in traditional in vitro cell culture environments due to long diffusion distances from control gases to the cells. We use a gas-permeable three-layer microfluidic device to achieve spatial and temporal oxygen control with biologically-relevant switching times. We measure the oxygen profiles with integrated, ratiometric optical oxygen sensors, demonstrate sensor and system stability over multi-day experiments, and characterize a pre-bleaching process to improve sensor stability. We show, with both finite-element modelling and experimental data, excellent control over the oxygen levels by the device, independent of fluid flow rate and oxygenation for the operating flow regime. We measure equilibration times of approximately 10 min, generate complex, time-varying oxygen profiles, and study the effects of oxygenated media flow rates on the measured oxygen levels. This device could form a useful tool for future long-term studies of cell behaviour under hypoxia. PMID:26287202

  6. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis.

    PubMed

    Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.

  7. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis

    PubMed Central

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862

  8. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  9. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model.

    PubMed

    Wong, Linda; Hill, Beth L; Hunsberger, Benjamin C; Bagwell, C Bruce; Curtis, Adam D; Davis, Bruce H

    2015-01-01

    Leuko64™ (Trillium Diagnostics) is a flow cytometric assay that measures neutrophil CD64 expression and serves as an in vitro indicator of infection/sepsis or the presence of a systemic acute inflammatory response. Leuko64 assay currently utilizes QuantiCALC, a semiautomated software that employs cluster algorithms to define cell populations. The software reduces subjective gating decisions, resulting in interanalyst variability of <5%. We evaluated a completely automated approach to measuring neutrophil CD64 expression using GemStone™ (Verity Software House) and probability state modeling (PSM). Four hundred and fifty-seven human blood samples were processed using the Leuko64 assay. Samples were analyzed on four different flow cytometer models: BD FACSCanto II, BD FACScan, BC Gallios/Navios, and BC FC500. A probability state model was designed to identify calibration beads and three leukocyte subpopulations based on differences in intensity levels of several parameters. PSM automatically calculates CD64 index values for each cell population using equations programmed into the model. GemStone software uses PSM that requires no operator intervention, thus totally automating data analysis and internal quality control flagging. Expert analysis with the predicate method (QuantiCALC) was performed. Interanalyst precision was evaluated for both methods of data analysis. PSM with GemStone correlates well with the expert manual analysis, r(2) = 0.99675 for the neutrophil CD64 index values with no intermethod bias detected. The average interanalyst imprecision for the QuantiCALC method was 1.06% (range 0.00-7.94%), which was reduced to 0.00% with the GemStone PSM. The operator-to-operator agreement in GemStone was a perfect correlation, r(2) = 1.000. Automated quantification of CD64 index values produced results that strongly correlate with expert analysis using a standard gate-based data analysis method. PSM successfully evaluated flow cytometric data generated by multiple instruments across multiple lots of the Leuko64 kit in all 457 cases. The probability-based method provides greater objectivity, higher data analysis speed, and allows for greater precision for in vitro diagnostic flow cytometric assays. © 2015 International Clinical Cytometry Society.

  10. Overcoming spatio-temporal limitations using dynamically scaled in vitro PC-MRI - A flow field comparison to true-scale computer simulations of idealized, stented and patient-specific left main bifurcations.

    PubMed

    Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Gilbert, Kathleen; Cowan, Brett

    2016-08-01

    The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ 2 <;5.8×10 -4 ). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r 2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.

  11. II. Model building: an electrical theory of control of growth and development in animals, prompted by studies of exogenous magnetic field effects (paper I), and evidence of DNA current conduction, in vitro.

    PubMed

    Elson, Edward

    2009-01-01

    A theory of control of cellular proliferation and differentiation in the early development of metazoan systems, postulating a system of electrical controls "parallel" to the processes of molecular biochemistry, is presented. It is argued that the processes of molecular biochemistry alone cannot explain how a developing organism defies a stochastic universe. The demonstration of current flow (charge transfer) along the long axis of DNA through the base-pairs (the "pi-way) in vitro raises the question of whether nature may employ such current flows for biological purposes. Such currents might be too small to be accessible to direct measurement in vivo but conduction has been measured in vitro, and the methods might well be extended to living systems. This has not been done because there is no reasonable model which could stimulate experimentation. We suggest several related, but detachable or independent, models for the biological utility of charge transfer, whose scope admittedly outruns current concepts of thinking about organization, growth, and development in eukaryotic, metazoan systems. The ideas are related to explanations proposed to explain the effects demonstrated on tumors and normal tissues described in Article I (this issue). Microscopic and mesoscopic potential fields and currents are well known at sub-cellular, cellular, and organ systems levels. Not only are such phenomena associated with internal cellular membranes in bioenergetics and information flow, but remarkable long-range fields over tissue interfaces and organs appear to play a role in embryonic development (Nuccitelli, 1992 ). The origin of the fields remains unclear and is the subject of active investigation. We are proposing that similar processes could play a vital role at a "sub-microscopic level," at the level of the chromosomes themselves, and could play a role in organizing and directing fundamental processes of growth and development, in parallel with the more discernible fields and currents described.

  12. A new contrast-assisted method in microcirculation volumetric flow assessment

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Yi; Chen, Yung-Sheng; Yeh, Chih-Kuang

    2007-03-01

    Microcirculation volumetric flow rate is a significant index in diseases diagnosis and treatment such as diabetes and cancer. In this study, we propose an integrated algorithm to assess microcirculation volumetric flow rate including estimation of blood perfused area and corresponding flow velocity maps based on high frequency destruction/contrast replenishment imaging technique. The perfused area indicates the blood flow regions including capillaries, arterioles and venules. Due to the echo variance changes between ultrasonic contrast agents (UCAs) pre- and post-destruction two images, the perfused area can be estimated by the correlation-based approach. The flow velocity distribution within the perfused area can be estimated by refilling time-intensity curves (TICs) after UCAs destruction. Most studies introduced the rising exponential model proposed by Wei (1998) to fit the TICs. Nevertheless, we found the TICs profile has a great resemblance to sigmoid function in simulations and in vitro experiments results. Good fitting correlation reveals that sigmoid model was more close to actual fact in describing destruction/contrast replenishment phenomenon. We derived that the saddle point of sigmoid model is proportional to blood flow velocity. A strong linear relationship (R = 0.97) between the actual flow velocities (0.4-2.1 mm/s) and the estimated saddle constants was found in M-mode and B-mode flow phantom experiments. Potential applications of this technique include high-resolution volumetric flow rate assessment in small animal tumor and the evaluation of superficial vasculature in clinical studies.

  13. In Vitro Engineering of Vascularized Tissue Surrogates

    PubMed Central

    Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo

    2013-01-01

    In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835

  14. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds.

    PubMed

    Breynaert, Annelies; Bosscher, Douwina; Kahnt, Ariane; Claeys, Magda; Cos, Paul; Pieters, Luc; Hermans, Nina

    2015-08-01

    The biological effects of polyphenols depend on their mechanism of action in the body. This is affected by bioconversion by colon microbiota and absorption of colonic metabolites. We developed and validated an in vitro continuous flow dialysis model with colon phase (GastroIntestinal dialysis model with colon phase) to study the gastrointestinal metabolism and absorption of phenolic food constituents. Chlorogenic acid was used as model compound. The physiological conditions during gastrointestinal digestion were mimicked. A continuous flow dialysis system simulated the one-way absorption by passive diffusion from lumen to mucosa. The colon phase was developed using pooled faecal suspensions. Several methodological aspects including implementation of an anaerobic environment, adapted Wilkins Chalgren broth medium, 1.10(8) CFU/mL bacteria suspension as inoculum, pH adaptation to 5.8 and implementation of the dialysis system were conducted. Validation of the GastroIntestinal dialysis model with colon phase system showed a good recovery and precision (CV < 16 %). Availability of chlorogenic acid in the small intestinal phase (37 ± 3 %) of the GastroIntestinal dialysis model with colon phase is comparable with in vivo studies on ileostomy patients. In the colon phase, the human faecal microbiota deconjugated chlorogenic acid to caffeic acid, 3,4-dihydroxyphenyl propionic acid, 4-hydroxybenzoic acid, 3- or 4-hydroxyphenyl acetic acid, 2-methoxy-4-methylphenol and 3-phenylpropionic acid. The GastroIntestinal dialysis model with colon phase is a new, reliable gastrointestinal simulation system. It permits a fast and easy way to predict the availability of complex secondary metabolites, and to detect metabolites in an early stage after digestion. Isolation and identification of these metabolites may be used as references for in vivo bioavailability experiments and for investigating their bioactivity in in vitro experiments. Georg Thieme Verlag KG Stuttgart · New York.

  15. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.

    PubMed

    Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko

    2013-06-01

    The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  16. In vitro estimation of pressure drop across tracheal tubes during high-frequency percussive ventilation.

    PubMed

    Ajčević, M; Lucangelo, U; Ferluga, M; Zin, W A; Accardo, A

    2014-02-01

    Tracheal tubes (TT) are used in clinical practice to connect an artificial ventilator to the patient's airways. It is important to know the pressure used to overcome tube impedance to avoid lung injury. Although high-frequency percussive ventilation (HFPV) has been increasingly used, the mechanical behavior of TT under HFPV has not yet been described. Thus, we aimed at characterizing in vitro the pressure drop across TT (ΔPTT) by identifying the model that best fits the measured pressure-flow (P-V̇) relationships during HFPV under different working pressures (PWork), percussive frequencies and mechanical loads. Three simple models relating ΔPTT and flow (V̇) were tested. Model 1 is characterized by linear resistive [Rtube ⋅ V̇(t)] and inertial [I · V̈(t)] terms. Model 2 takes into consideration Rohrer's approach [K1· V̇(t) + K2 ⋅V̇(t)] and inertance [I ·V̈(t)]. In model 3 the pressure drop caused by friction is represented by the non-linear Blasius component [Kb· V̇(1.75)(t)] and the inertial term [I· V̈(t)]. Model 1 presented a significantly higher root mean square error of approximation than models 2 and 3, which were similar. Thus, model 1 was not as accurate as the latter, possibly due to turbulence. Model 3 presented the most robust resistance-related coefficient. Estimated inertances did not vary among the models using the same tube. In conclusion, in HFPV ΔPTT can be easily calculated by the physician using model 3.

  17. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.

    PubMed

    Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S

    2012-01-10

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effect of aorto-iliac bifurcation and iliac stenosis on flow dynamics in an abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Patel, Shivam; Usmani, Abdullah Y.; Muralidhar, K.

    2017-06-01

    Physiological flows in rigid diseased arterial flow phantoms emulating an abdominal aortic aneurysm (AAA) under rest conditions with aorto-iliac bifurcation and iliac stenosis are examined in vitro through 2D PIV measurements. Flow characteristics are first established in the model resembling a symmetric AAA with a straight outlet tube. The influence of aorto-iliac bifurcation and iliac stenosis on AAA flow dynamics is then explored through a comparison of the nature of flow patterns, vorticity evolution, vortex core trajectory and hemodynamic factors against the reference configuration. Specifically, wall shear stress and oscillatory shear index in the bulge portion of the models are of interest. The results of this investigation indicate overall phenomenological similarity in AAA flow patterns across the models. The pattern is characterized by a central jet and wall-bounded vortices whose strength increases during the deceleration phase as it moves forward. The central jet impacts the wall of AAA at its distal end. In the presence of an aorto-iliac bifurcation as well as iliac stenosis, the flow patterns show diminished strength, expanse and speed of propagation of the primary vortices. The positions of the instantaneous vortex cores, determined using the Q-function, correlate with flow separation in the bulge, flow resistance due to a bifurcation, and the break in symmetry introduced by a stenosis in one of the legs of the model. Time-averaged WSS in a healthy aorta is around 0.70 N m-2 and is lowered to the range ±0.2 N m-2 in the presence of the downstream bifurcation with a stenosed common iliac artery. The consequence of changes in the flow pattern within the aneurysm on disease progression is discussed.

  19. Computational models of aortic coarctation in hypoplastic left heart syndrome: considerations on validation of a detailed 3D model.

    PubMed

    Biglino, Giovanni; Corsini, Chiara; Schievano, Silvia; Dubini, Gabriele; Giardini, Alessandro; Hsia, Tain-Yen; Pennati, Giancarlo; Taylor, Andrew M

    2014-05-01

    Reliability of computational models for cardiovascular investigations strongly depends on their validation against physical data. This study aims to experimentally validate a computational model of complex congenital heart disease (i.e., surgically palliated hypoplastic left heart syndrome with aortic coarctation) thus demonstrating that hemodynamic information can be reliably extrapolated from the model for clinically meaningful investigations. A patient-specific aortic arch model was tested in a mock circulatory system and the same flow conditions were re-created in silico, by setting an appropriate lumped parameter network (LPN) attached to the same three-dimensional (3D) aortic model (i.e., multi-scale approach). The model included a modified Blalock-Taussig shunt and coarctation of the aorta. Different flow regimes were tested as well as the impact of uncertainty in viscosity. Computational flow and pressure results were in good agreement with the experimental signals, both qualitatively, in terms of the shape of the waveforms, and quantitatively (mean aortic pressure 62.3 vs. 65.1 mmHg, 4.8% difference; mean aortic flow 28.0 vs. 28.4% inlet flow, 1.4% difference; coarctation pressure drop 30.0 vs. 33.5 mmHg, 10.4% difference), proving the reliability of the numerical approach. It was observed that substantial changes in fluid viscosity or using a turbulent model in the numerical simulations did not significantly affect flows and pressures of the investigated physiology. Results highlighted how the non-linear fluid dynamic phenomena occurring in vitro must be properly described to ensure satisfactory agreement. This study presents methodological considerations for using experimental data to preliminarily set up a computational model, and then simulate a complex congenital physiology using a multi-scale approach.

  20. Computational modelling of the scaffold-free chondrocyte regeneration: a two-way coupling between the cell growth and local fluid flow and nutrient concentration.

    PubMed

    Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B

    2015-11-01

    The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.

  1. Fluid mechanics of spinner-flask bioreactors

    NASA Astrophysics Data System (ADS)

    Sucosky, Philippe; Neitzel, G. Paul

    2000-11-01

    The dynamic environment within bioreactors used for in vitro tissue growth has been observed to affect the development of mammalian cells. Many studies have shown that moderate mechanical stress enhances growth of some tissues whereas high shear levels and turbulence seem to damage cells. In order to optimize the design and the operating conditions of bioreactors, it is important to understand the fluid-dynamic characteristics and to control the stress levels within these devices. The present research focuses on the characterization of the flow field within a spinner-flask bioreactor. The dynamic properties of the flow are investigated experimentally using particle-image velocimetry with a refractive-index-matched model. Phase-locked ensemble-averaging is employed to provide some information on the turbulence characteristics of the model culture medium in the vicinity of a model tissue construct.

  2. Impact of an Anticaries Mouthrinse on In Vitro Remineralization and Microbial Control

    PubMed Central

    Sun, Frank C.; Engelman, E. Eric; McGuire, James A.; Kosmoski, Gabrielle; Carratello, Lauren; Ricci-Nittel, Danette; Zhang, Jane Z.; Schemehorn, Bruce R.; Gambogi, Robert J.

    2014-01-01

    Objective. The objective of this research was to evaluate the caries control potential of a new fluoride mouthrinse that also contained antimicrobial agents and a biofilm disrupting agent using different in vitro models. Methods. Four in vitro studies were conducted to assess the performance of this three pronged approach to caries control: (1) traditional enamel fluoride uptake, (2) surface microhardness study using pH cycling model and subsequent fluoride uptake, (3) a salivary biofilm flow-through study to determine the anti-microbial activity, and (4) a single species biofilm model measuring effect on biofilm matrix disruption. Results. The data showed that a LISTERINE rinse with fluoride, essential oils and xylitol was superior in promoting enamel fluoride uptake and in enhancing antimicrobial activity over traditional commercially available fluoridated products. An increase of the surface microhardness was observed when the LISTERINE rinse was used in combination with fluoridated toothpaste versus the fluoridated toothpaste alone. Finally, it was demonstrated that xylitol solutions disrupted and reduced the biovolume of biofilm matrix of mature Streptococcus mutans. Conclusion. These in vitro studies demonstrated that a fluoride mouthrinse with antimicrobial agent and biofilm matrix disrupting agent provided multifaceted and enhanced anti-caries efficacy by promoting remineralization, reducing acidogenic bacteria and disrupting biofilm matrix. PMID:24648842

  3. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells.

    PubMed

    Jiang, Xiao-Yu; Sarsons, Christopher D; Gomez-Garcia, M Juliana; Cramb, David T; Rinker, Kristina D; Childs, Sarah J

    2017-04-01

    Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    PubMed Central

    Bazan, Ovandir; Ortiz, Jayme Pinto; Vieira Junior, Francisco Ubaldo; Vieira, Reinaldo Wilson; Antunes, Nilson; Tabacow, Fabio Bittencourt Dutra; Costa, Eduardo Tavares; Petrucci Junior, Orlando

    2013-01-01

    Introduction In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. Objective To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models) exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. Methods To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. ) and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. Results It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. Conclusions Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM) is superior to the 21 AJ - 501 model (Master Series). Based on the results, future studies can choose to focus on specific regions of the these valves. PMID:24598950

  5. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  6. Convection-enhanced delivery of targeted quantum dot-immunoliposome hybrid nanoparticles to intracranial brain tumor models.

    PubMed

    Weng, Kevin C; Hashizume, Rintaro; Noble, Charles O; Serwer, Laura P; Drummond, Daryl C; Kirpotin, Dmitri B; Kuwabara, Anne M; Chao, Lucy X; Chen, Fanqing F; James, Charles D; Park, John W

    2013-12-01

    The aim of this work is to evaluate combining targeting strategy and convection-enhanced delivery in brain tumor models by imaging quantum dot-immunoliposome hybrid nanoparticles. An EGF receptor-targeted, quantum dot-immunoliposome hybrid nanoparticle (QD-IL) was synthesized. In vitro uptake was measured by flow cytometry and intracellular localization was imaged by confocal microscopy. In the in vivo study, QD-ILs were delivered to intracranial xenografts via convection-enhanced delivery and fluorescence was monitored noninvasively in real-time. QD-ILs exhibited specific and efficient uptake in vitro and exhibited approximately 1.3- to 5.0-fold higher total fluorescence compared with nontargeted counterpart in intracranial brain tumor xenografts in vivo. QD-ILs serve as an effective imaging agent in vitro and in vivo, and the data suggest that ligand-directed liposomal nanoparticles in conjunction with convection-enhanced delivery may offer therapeutic benefits for glioblastoma treatment as a result of specific and efficient uptake by malignant cells.

  7. Computational prediction of hemolysis in a centrifugal ventricular assist device.

    PubMed

    Pinotti, M; Rosa, E S

    1995-03-01

    This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.

  8. In vitro dose comparison of Respimat® inhaler with dry powder inhalers for COPD maintenance therapy.

    PubMed

    Ciciliani, Anna-Maria; Langguth, Peter; Wachtel, Herbert

    2017-01-01

    Combining in vitro mouth-throat deposition measurements, cascade impactor data and computational fluid dynamics (CFD) simulations, four different inhalers were compared which are indicated for chronic obstructive pulmonary disease (COPD) treatment. The Respimat inhaler, the Breezhaler, the Genuair, and the Ellipta were coupled to the idealized Alberta throat model. The modeled dose to the lung (mDTL) was collected downstream of the Alberta throat model using either a filter or a next generation impactor (NGI). Idealized breathing patterns from COPD patient groups - moderate and very severe COPD - were applied. Theoretical lung deposition patterns were assessed by an individual path model. For the Respimat the mDTL was found to be 59% (SD 5%) for the moderate COPD breathing pattern and 67% (SD 5%) for very severe COPD breathing pattern. The percentages refer to nominal dose (ND) in vitro. This is in the range of 44%-63% in vivo in COPD patients who display large individual variability. Breezhaler showed a mDTL of 43% (SD 2%) for moderate disease simulation and 51% (SD 2%) for very severe simulation. The corresponding results for Genuair are mDTL of 32% (SD 2%) for moderate and 42% (SD 1%) for very severe disease. Ellipta vilanterol particles showed a mDTL of 49% (SD 3%) for moderate and 55% (SD 2%) for very severe disease simulation, and Ellipta fluticasone particles showed a mDTL of 33% (SD 3%) and 41% (SD 2%), respectively for the two breathing patterns. Based on the throat output and average flows of the different inhalers, CFD simulations were performed. Laminar and turbulent steady flow calculations indicated that deposition occurs mainly in the small airways. In summary, Respimat showed the lowest amount of particles depositing in the mouth-throat model and the highest amount reaching all regions of the simulation lung model.

  9. In vitro dose comparison of Respimat® inhaler with dry powder inhalers for COPD maintenance therapy

    PubMed Central

    Ciciliani, Anna-Maria; Langguth, Peter; Wachtel, Herbert

    2017-01-01

    Background Combining in vitro mouth–throat deposition measurements, cascade impactor data and computational fluid dynamics (CFD) simulations, four different inhalers were compared which are indicated for chronic obstructive pulmonary disease (COPD) treatment. Methods The Respimat inhaler, the Breezhaler, the Genuair, and the Ellipta were coupled to the idealized Alberta throat model. The modeled dose to the lung (mDTL) was collected downstream of the Alberta throat model using either a filter or a next generation impactor (NGI). Idealized breathing patterns from COPD patient groups – moderate and very severe COPD – were applied. Theoretical lung deposition patterns were assessed by an individual path model. Results and conclusion For the Respimat the mDTL was found to be 59% (SD 5%) for the moderate COPD breathing pattern and 67% (SD 5%) for very severe COPD breathing pattern. The percentages refer to nominal dose (ND) in vitro. This is in the range of 44%–63% in vivo in COPD patients who display large individual variability. Breezhaler showed a mDTL of 43% (SD 2%) for moderate disease simulation and 51% (SD 2%) for very severe simulation. The corresponding results for Genuair are mDTL of 32% (SD 2%) for moderate and 42% (SD 1%) for very severe disease. Ellipta vilanterol particles showed a mDTL of 49% (SD 3%) for moderate and 55% (SD 2%) for very severe disease simulation, and Ellipta fluticasone particles showed a mDTL of 33% (SD 3%) and 41% (SD 2%), respectively for the two breathing patterns. Based on the throat output and average flows of the different inhalers, CFD simulations were performed. Laminar and turbulent steady flow calculations indicated that deposition occurs mainly in the small airways. In summary, Respimat showed the lowest amount of particles depositing in the mouth–throat model and the highest amount reaching all regions of the simulation lung model. PMID:28603412

  10. Life-span of in vitro differentiated Plasmodium falciparum gametocytes.

    PubMed

    Gebru, Tamirat; Lalremruata, Albert; Kremsner, Peter G; Mordmüller, Benjamin; Held, Jana

    2017-08-11

    The sexual stages (gametocytes) of Plasmodium falciparum do not directly contribute to the pathology of malaria but are essential for transmission of the parasite from the human host to the mosquito. Mature gametocytes circulate in infected human blood for several days and their circulation time has been modelled mathematically from data of previous in vivo studies. This is the first time that longevity of gametocytes is studied experimentally in vitro. The in vitro longevity of P. falciparum gametocytes of 1 clinical isolate and 2 laboratory strains was assessed by three different methods: microscopy, flow cytometry and reverse transcription quantitative real-time PCR (RT-qPCR). Additionally, the rate of gametocytogenesis of the used P. falciparum strains was compared. The maximum in vitro lifespan of P. falciparum gametocytes reached almost 2 months (49 days by flow cytometry, 46 days by microscopy, and at least 52 days by RT-qPCR) from the starting day of gametocyte culture to death of last parasite in the tested strains with an average 50% survival rate of 6.5, 2.6 and 3.5 days, respectively. Peak gametocytaemia was observed on average 19 days after initiation of gametocyte culture followed by a steady decline due to natural decay of the parasites. The rate of gametocytogenesis was highest in the NF54 strain. Plasmodium falciparum mature gametocytes can survive up to 16-32 days (at least 14 days for mature male gametocytes) in vitro in absence of the influence of host factors. This confirms experimentally a previous modelling estimate that used molecular tools for gametocyte detection in treated patients. The survival time might reflect the time the parasite can be transmitted to the mosquito after clearance of asexual parasites. These results underline the importance of efficient transmission blocking agents in the fight against malaria.

  11. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA (multielectrode array) or nanowire electrode array to study electrophysiology in neuronal network. Also, "diode-like" microgrooves to control the number of neuronal processes is embedded in this platform. Chapter 6 concludes with a possible future direction of this work. Interfacing micro/nanotechnology with primary neuron culture would open many doors in fundamental neuroscience research and also biomedical innovation.

  12. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System.

    PubMed

    de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver

    2015-12-01

    The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.

  13. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.

    PubMed

    Brown, Jacquelyn A; Pensabene, Virginia; Markov, Dmitry A; Allwardt, Vanessa; Neely, M Diana; Shi, Mingjian; Britt, Clayton M; Hoilett, Orlando S; Yang, Qing; Brewer, Bryson M; Samson, Philip C; McCawley, Lisa J; May, James M; Webb, Donna J; Li, Deyu; Bowman, Aaron B; Reiserer, Ronald S; Wikswo, John P

    2015-09-01

    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

  14. Methicillin Resistant Staphylococcus Aureus Biofilm Formation Over A Separated Flow Region Under Steady And Pulsatile Flow Conditions

    NASA Astrophysics Data System (ADS)

    Salek, M. Mehdi; Martinuzzi, Robert

    2012-02-01

    Several researchers have observed that the formation, morphology and susceptibility of bacterial biofilms are affected by the local hydrodynamic condition and, in particular, shear stresses acting on the fluid-biofilm interface. A backwards facing step (BFS) experimental model has been widely utilized as an in vitro model to examine and characterize the effect of flow separation and recirculation zones comparable to those present within various medical devices as well as those observed in vivo. The specific geometry of BFS covers a vide range of flow features observed in physiological or environmental conditions. The hypothesis of this study is that the flow behavior and structures can effectively contribute to the transport and attachment of cells and affecting the morphology of adhered colonies as well as suspended structures (i.e. biofilm streamers). Hence, the formation of the recirculation region occurring within a backward facing step (BFS) under steady and pulsatile conditions as well as three-dimensional flow structures arising close to the side walls are investigated to correlate to biofilms behavior. This hypothesis is investigated using a backward facing step incorporated into a flow cell under steady and pulsatile flow regimes to study the growth of methicillin resistant Staphylococcus aureus (MRSA) UC18 as the study microorganism.

  15. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Soria, J.; Jermy, M. C.

    2013-05-01

    Compliant (flexible) structures play an important role in several biological flows including the lungs, heart and arteries. Coronary heart disease is caused by a constriction in the artery due to a build-up of atherosclerotic plaque. This plaque is also of major concern in the carotid artery which supplies blood to the brain. Blood flow within these arteries is strongly influenced by the movement of the wall. To study these problems experimentally in vitro, especially using flow visualisation techniques, can be expensive due to the high-intensity and high-repetition rate light sources required. In this work, time-resolved particle image velocimetry using a relatively low-cost light-emitting diode illumination system was applied to the study of a compliant flow phantom representing a stenosed (constricted) carotid artery experiencing a physiologically realistic flow wave. Dynamic similarity between in vivo and in vitro conditions was ensured in phantom construction by matching the distensibility and the elastic wave propagation wavelength and in the fluid system through matching Reynolds ( Re) and Womersley number ( α) with a maximum, minimum and mean Re of 939, 379 and 632, respectively, and a α of 4.54. The stenosis had a symmetric constriction of 50 % by diameter (75 % by area). Once the flow rate reached a critical value, Kelvin-Helmholtz instabilities were observed to occur in the shear layer between the main jet exiting the stenosis and a reverse flow region that occurred at a radial distance of 0.34 D from the axis of symmetry in the region on interest 0-2.5 D longitudinally downstream from the stenosis exit. The instability had an axis-symmetric nature, but as peak flow rate was approached this symmetry breaks down producing instability in the flow field. The characteristics of the vortex train were sensitive not only to the instantaneous flow rate, but also to whether the flow was accelerating or decelerating globally.

  16. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    PubMed

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck

    2016-11-01

    Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.

  18. Direct numerical simulation of cellular-scale blood flow in microvascular networks

    NASA Astrophysics Data System (ADS)

    Balogh, Peter; Bagchi, Prosenjit

    2017-11-01

    A direct numerical simulation method is developed to study cellular-scale blood flow in physiologically realistic microvascular networks that are constructed in silico following published in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. The model resolves large deformation of individual red blood cells (RBC) flowing in such complex networks. The vascular walls and deformable interfaces of the RBCs are modeled using the immersed-boundary methods. Time-averaged hemodynamic quantities obtained from the simulations agree quite well with published in vivo data. Our simulations reveal that in several vessels the flow rates and pressure drops could be negatively correlated. The flow resistance and hematocrit are also found to be negatively correlated in some vessels. These observations suggest a deviation from the classical Poiseuille's law in such vessels. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that RBC jamming results in several orders of magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. Funded by NSF CBET 1604308.

  19. High-flow oxygen therapy: pressure analysis in a pediatric airway model.

    PubMed

    Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel

    2012-05-01

    The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.

  20. The hydrodynamic basis of the vacuum cleaner effect in continuous-flow PCNL instruments: an empiric approach and mathematical model.

    PubMed

    Mager, R; Balzereit, C; Gust, K; Hüsch, T; Herrmann, T; Nagele, U; Haferkamp, A; Schilling, D

    2016-05-01

    Passive removal of stone fragments in the irrigation stream is one of the characteristics in continuous-flow PCNL instruments. So far the physical principle of this so-called vacuum cleaner effect has not been fully understood yet. The aim of the study was to empirically prove the existence of the vacuum cleaner effect and to develop a physical hypothesis and generate a mathematical model for this phenomenon. In an empiric approach, common low-pressure PCNL instruments and conventional PCNL sheaths were tested using an in vitro model. Flow characteristics were visualized by coloring of irrigation fluid. Influence of irrigation pressure, sheath diameter, sheath design, nephroscope design and position of the nephroscope was assessed. Experiments were digitally recorded for further slow-motion analysis to deduce a physical model. In each tested nephroscope design, we could observe the vacuum cleaner effect. Increase in irrigation pressure and reduction in cross section of sheath sustained the effect. Slow-motion analysis of colored flow revealed a synergism of two effects causing suction and transportation of the stone. For the first time, our model showed a flow reversal in the sheath as an integral part of the origin of the stone transportation during vacuum cleaner effect. The application of Bernoulli's equation provided the explanation of these effects and confirmed our experimental results. We widen the understanding of PCNL with a conclusive physical model, which explains fluid mechanics of the vacuum cleaner effect.

  1. Antimicrobial Penetration and Efficacy in an In Vitro Oral Biofilm Model ▿ †

    PubMed Central

    Corbin, Audrey; Pitts, Betsey; Parker, Albert; Stewart, Philip S.

    2011-01-01

    The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials. PMID:21537022

  2. Blood Perfusion in Microfluidic Models of Pulmonary Capillary Networks: Role of Geometry and Hematocrit

    NASA Astrophysics Data System (ADS)

    Stauber, Hagit; Waisman, Dan; Sznitman, Josue; Technion-IIT Team; Department of Neonatology Carmel Medical Center; Faculty of Medicine-Technion IIT Collaboration

    2015-11-01

    Microfluidic platforms are increasingly used to study blood microflows at true physiological scale due to their ability to overcome manufacturing obstacle of complex anatomical morphologies, such as the organ-specific architectures of the microcirculation. In the present work, we utilize microfluidic platforms to devise in vitro models of the underlying pulmonary capillary networks (PCN), where capillary lengths and diameters are similar to the size of RBCs (~ 5-10 μm). To better understand flow characteristics and dispersion of red blood cells (RBCs) in PCNs, we have designed microfluidic models of alveolar capillary beds inspired by the seminal ``sheet flow'' model of Fung and Sobin (1969). Our microfluidic PCNs feature confined arrays of staggered pillars with diameters of ~ 5,7 and 10 μm, mimicking the dense structure of pulmonary capillary meshes. The devices are perfused with suspensions of RBCs at varying hematocrit levels under different flow rates. Whole-field velocity patterns using micro-PIV and single-cell tracking using PTV are obtained with fluorescently-labelled RBCs and discussed. Our experiments deliver a real-scale quantitative description of RBC perfusion characteristics across the pulmonary capillary microcirculation.

  3. Cerebral blood flow reduction in Alzheimer's disease: impact of capillary occlusions on mice and humans

    NASA Astrophysics Data System (ADS)

    Berg, Maxime; Merlo, Adlan; Peyrounette, Myriam; Doyeux, Vincent; Smith, Amy; Cruz-Hernandez, Jean; Bracko, Oliver; Haft-Javaherian, Mohammad; Nishimura, Nozomi; Schaffer, Chris B.; Davit, Yohan; Quintard, Michel; Lorthois, Sylvie

    2017-11-01

    Alzheimer's disease may be the most common form of dementia, yet a satisfactory diagnosis procedure has still to be found. Recent studies suggest that a significant decrease of cerebral blood flow, probably caused by white blood cells stalling small vessels, may be among the earliest biological markers. To assess this hypothesis we derive a blood flow model, validate it against in vitro controlled experiments and in vivo measurements made on mice. We then investigate the influence of capillary occlusions on regional perfusion (sum of all arteriole flowrates feeding the network) of large mice and humans anatomical networks. Consistent with experiments, we observe no threshold effect, so that even a small percentage of occlusions (2-4%) leads to significant blood flow decrease (5-12%). We show that both species share the same linear dependance, suggesting possible translation from mice to human. ERC BrainMicroFlow GA61510, CALMIP HPC (Grant 2017-1541).

  4. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    PubMed

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  5. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.

    PubMed

    Boersen, Johannes T; Groot Jebbink, Erik; Versluis, Michel; Slump, Cornelis H; Ku, David N; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-12-01

    Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configuration is different from a bifurcation with a tapered trajectory of the flow lumen into the two limbs and may induce unfavorable flow conditions. These include low and oscillatory wall shear stress (WSS), linked to atherosclerosis, and high shear rates that may result in thrombosis. An in vitro study was performed to assess the impact of EVAR and EVAS on flow patterns and WSS. Four abdominal aortic aneurysm phantoms were constructed, including three stented models, to study the influence of the flow divider on flow (Endurant [Medtronic, Minneapolis, Minn], AFX [Endologix, Irvine, Calif], and Nellix [Endologix]). Experimental models were tested under physiologic resting conditions, and flow was visualized with laser particle imaging velocimetry, quantified by shear rate, WSS, and oscillatory shear index (OSI) in the suprarenal aorta, renal artery (RA), and common iliac artery. WSS and OSI were comparable for all models in the suprarenal aorta. The RA flow profile in the EVAR models was comparable to the control, but a region of lower WSS was observed on the caudal wall compared with the control. The EVAS model showed a stronger jet flow with a higher shear rate in some regions compared with the other models. Small regions of low WSS and high OSI were found near the distal end of all stents in the common iliac artery compared with the control. Maximum shear rates in each region of interest were well below the pathologic threshold for acute thrombosis. The different stent designs do not influence suprarenal flow. Lower WSS is observed in the caudal wall of the RA after EVAR and a higher shear rate after EVAS. All stented models have a small region of low WSS and high OSI near the distal outflow of the stents. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  7. Numerical simulation of particle transport and deposition in the pulmonary vasculature.

    PubMed

    Sohrabi, Salman; Zheng, Junda; Finol, Ender A; Liu, Yaling

    2014-12-01

    To quantify the transport and adhesion of drug particles in a complex vascular environment, computational fluid particle dynamics (CFPD) simulations of blood flow and drug particulate were conducted in three different geometries representing the human lung vasculature for steady and pulsatile flow conditions. A fully developed flow profile was assumed as the inlet velocity, and a lumped mathematical model was used for the calculation of the outlet pressure boundary condition. A receptor-ligand model was used to simulate the particle binding probability. The results indicate that bigger particles have lower deposition fraction due to less chance of successful binding. Realistic unsteady flow significantly accelerates the binding activity over a wide range of particle sizes and also improves the particle deposition fraction in bifurcation regions when comparing with steady flow condition. Furthermore, surface imperfections and geometrical complexity coupled with the pulsatility effect can enhance fluid mixing and accordingly particle binding efficiency. The particle binding density at bifurcation regions increases with generation order and drug carriers are washed away faster in steady flow. Thus, when studying drug delivery mechanism in vitro and in vivo, it is important to take into account blood flow pulsatility in realistic geometry. Moreover, tissues close to bifurcations are more susceptible to deterioration due to higher uptake.

  8. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  9. Quantification of thrombus formation in malapposed coronary stents deployed in vitro through imaging analysis.

    PubMed

    Brown, Jonathan; O'Brien, Caroline C; Lopes, Augusto C; Kolandaivelu, Kumaran; Edelman, Elazer R

    2018-04-11

    Stent thrombosis is a major complication of coronary stent and scaffold intervention. While often unanticipated and lethal, its incidence is low making mechanistic examination difficult through clinical investigation alone. Thus, throughout the technological advancement of these devices, experimental models have been indispensable in furthering our understanding of device safety and efficacy. As we refine model systems to gain deeper insight into adverse events, it is equally important that we continue to refine our measurement methods. We used digital signal processing in an established flow loop model to investigate local flow effects due to geometric stent features and ultimately its relationship to thrombus formation. A new metric of clot distribution on each microCT slice termed normalized clot ratio was defined to quantify this distribution. Three under expanded coronary bare-metal stents were run in a flow loop model to induce clotting. Samples were then scanned in a MicroCT machine and digital signal processing methods applied to analyze geometric stent conformation and spatial clot formation. Results indicated that geometric stent features play a significant role in clotting patterns, specifically at a frequency of 0.6225 Hz corresponding to a geometric distance of 1.606 mm. The magnitude-squared coherence between geometric features and clot distribution was greater than 0.4 in all samples. In stents with poor wall apposition, ranging from 0.27 mm to 0.64 mm maximum malapposition (model of real-world heterogeneity), clots were found to have formed in between stent struts rather than directly adjacent to struts. This early work shows how the combination of tools in the areas of image processing and signal analysis can advance the resolution at which we are able to define thrombotic mechanisms in in vitro models, and ultimately, gain further insight into clinical performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Chitosan–Sodium Tetradecyl Sulfate Hydrogel: Characterization and Preclinical Evaluation of a Novel Sclerosing Embolizing Agent for the Treatment of Endoleaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehtabi, Fatemeh; Dumont-Mackay, Vincent; Fatimi, Ahmed

    PurposeTo compare the efficacy of an embolization agent with sclerosing properties (made of chitosan and sodium tetradecyl sulfate, CH–STS) with a similar embolization agent but without sclerosing properties (made of chitosan, CH) in treating endoleaks in a canine endovascular aneurysm repair model.MethodsTwo chitosan-based radiopaque hydrogels were prepared, one with STS and one without STS. Their rheological, injectability, and embolizing properties were assessed in vitro; afterwards, their efficacy in occluding endoleaks was compared in a canine bilateral aneurysm model reproducing type I endoleaks (n = 9 each). The primary endpoint was endoleak persistence at 3 or 6 months, assessed on a CT scan andmore » macroscopic examination. Secondary endpoints were the occurrence of stent-graft (SG) thrombosis, the evolution of the aneurysm mean diameter, as well as aneurysm healing and inflammation scores in pathology examinations.ResultsIn vitro experiments showed that both products gelled rapidly and presented initial storage moduli greater than 800 Pa, which increased with time. Both gels were compatible with microcatheter injection and occlude flow up to physiological pressure in vitro. In a type I endoleak model, the injection of CH–STS sclerosing gel tended to reduce the risk of occurrence of endoleaks, compared to CH non-sclerosing agent (2/9 vs. 6/9, p = 0.069). No case of SG thrombosis was observed. Moderate inflammation was found around both gels, with a comparable intensity score in both CH and CH–STS groups (2.6 ± 0.9 and 2.7 ± 0.9, respectively; p = 0.789).ConclusionsFlow occlusion combined with chemical endothelial denudation appears promising for the treatment of endoleaks.Level of EvidenceN/A.« less

  11. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    PubMed Central

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  12. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M A; Henshaw, W D; Wang, S L

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flowmore » in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating/stagnant flow with very low shear stress that may be thrombogenic.« less

  13. Computational analysis of blood clot dissolution using a vibrating catheter tip.

    PubMed

    Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee

    2012-04-01

    We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.

  14. Differentiated NSC-34 cells as an in vitro cell model for VX.

    PubMed

    Kanjilal, Baishali; Keyser, Brian M; Andres, Devon K; Nealley, Eric; Benton, Betty; Melber, Ashley A; Andres, Jaclynn F; Letukas, Valerie A; Clark, Offie; Ray, Radharaman

    2014-10-01

    The US military has placed major emphasis on developing therapeutics against nerve agents (NA). Current efforts are hindered by the lack of effective in vitro cellular models to aid in the preliminary screening of potential candidate drugs/antidotes. The development of an in vitro cellular model to aid in discovering new NA therapeutics would be highly beneficial. In this regard, we have examined the response of a differentiated hybrid neuronal cell line, NSC-34, to the NA VX. VX-induced apoptosis of differentiated NSC-34 cells was measured by monitoring the changes in caspase-3 and caspase-9 activity post-exposure. Differentiated NSC-34 cells showed an increase in caspase-3 activity in a manner dependent on both time (17-23 h post-exposure) and dose (10-100 nM). The maximal increase in caspase-3 activity was found to be at 20-h post-exposure. Caspase-9 activity was also measured in response to VX and was found to be elevated at all concentrations (10-100 nM) tested. VX-induced cell death was also observed by utilizing annexin V/propidium iodide flow cytometry. Finally, VX-induced caspase-3 or -9 activities were reduced with the addition of pralidoxime (2-PAM), one of the current therapeutics used against NA toxicity, and dizocilpine (MK-801). Overall the data presented here show that differentiated NSC-34 cells are sensitive to VX-induced cell death and could be a viable in vitro cell model for screening NA candidate therapeutics.

  15. Comparison of valvular resistance, stroke work loss, and Gorlin valve area for quantification of aortic stenosis. An in vitro study in a pulsatile aortic flow model.

    PubMed

    Voelker, W; Reul, H; Nienhaus, G; Stelzer, T; Schmitz, B; Steegers, A; Karsch, K R

    1995-02-15

    Valvular resistance and stroke work loss have been proposed as alternative measures of stenotic valvular lesions that may be less flow dependent and, thus, superior over valve area calculations for the quantification of aortic stenosis. The present in vitro study was designed to compare the impacts of valvular resistance, stroke work loss, and Gorlin valve area as hemodynamic indexes of aortic stenosis. In a pulsatile aortic flow model, rigid stenotic orifices in varying sizes (0.5, 1.0, 1.5 and 2.0 cm2) and geometry were studied under different hemodynamic conditions. Ventricular and aortic pressures were measured to determine the mean systolic ventricular pressure (LVSPm) and the transstenotic pressure gradient (delta Pm). Transvalvular flow (Fm) was assessed with an electromagnetic flowmeter. Valvular resistance [VR = 1333.(delta Pm/Fm)] and stroke work loss [SWL = 100.(delta Pm/LVSPm)] were calculated and compared with aortic valve area [AVA = Fm/(50 square root of delta Pm)]. The measurements were performed for a large range of transvalvular flows. At low-flow states, flow augmentation (100-->200 mL/s) increased calculated valvular resistance between 21% (2.0 cm2 orifice) and 66% (0.5-cm2 orifice). Stroke work loss demonstrated an increase from 43% (2.0 cm2) to 100% (1.0 cm2). In contrast, Gorlin valve area revealed only a moderate change from 29% (2.0 cm2) to 5% (0.5 cm2). At physiological flow rates, increase in transvalvular flow (200-->300 mL/s) did not alter calculated Gorlin valve area, whereas valvular resistance and stroke work loss demonstrated a continuing increase. Our experimental results were adopted to interpret the results of three clinical studies in aortic stenosis. The flow-dependent increase of Gorlin valve area, which was found in the cited clinical studies, can be elucidated as true further opening of the stenotic valve but not as a calculation error due to the Gorlin formula. Within the physiological range of flow, calculated aortic valve area was less dependent on hemodynamic conditions than were valvular resistance and stroke work loss, which varied as a function of flow. Thus, for the assessment of the severity of aortic stenosis, the Gorlin valve area is superior over valvular resistance and stroke work loss, which must be indexed for flow to adequately quantify the hemodynamic severity of the obstruction.

  16. Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator.

    PubMed

    Yu, Zechen; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E; Jiang, Huanhuan

    2017-08-01

    To better characterize biological responses to atmospheric organic aerosols, the efficient delivery of aerosol to in vitro lung cells is necessary. In this study, chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device, the particle dose was predicted for various sampling parameters such as particle size, ESP deposition voltage, and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example, RNA in the ALI BEAS-2B cells in vitro was stable at 0.15L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e., viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15L/minute, and no cellular RNA decay occurred. Copyright © 2017. Published by Elsevier Ltd.

  17. The Influence of Positioning of the Nellix Endovascular Aneurysm Sealing System on Suprarenal and Renal Flow: An In Vitro Study.

    PubMed

    Boersen, Johannes T; Groot Jebbink, Erik; Van de Velde, Lennart; Versluis, Michel; Lajoinie, Guillaume; Slump, Cornelius H; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-10-01

    To examine the influence of device positioning and infrarenal neck diameter on flow patterns in the Nellix endovascular aneurysm sealing (EVAS) system. The transition of the aortic flow lumen into two 10-mm-diameter stents after EVAS creates a mismatched area. Flow recirculation may affect local wall shear stress (WSS) profiles and residence time associated with atherosclerosis and thrombosis. To examine these issues, 7 abdominal aortic aneurysm flow phantoms were created, including 3 unstented controls and 3 stented models with infrarenal neck diameters of 24, 28, and 32 mm. Stents were positioned within the instructions for use (IFU). Another 28-mm model was created to evaluate lower positioning of the stents outside the IFU (28-mm LP). Flow was visualized using optical particle imaging velocimetry (PIV) and quantified by time-averaged WSS (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) in the aorta at the anteroposterior (AP) midplane, lateral midplane, and renal artery AP midplane levels. Flow in the aorta AP midplane was similar in all models. Vortices were observed in the stented models in the lateral midplane near the anterior and posterior walls. In the 32-mm IFU and 28-mm LP models, a steady state of vortices appeared, with varying location during a cycle. In all models, a low TAWSS (<10 -2 Pa) was observed at the anterior wall of the aorta with peak OSI of 0.5 and peak RRT of 10 4 Pa -1 . This region was more proximally located in the stented models. The 24- and 28-mm IFU models showed flow with a higher velocity at the renal artery inflow compared to controls. TAWSS in the renal artery was lower near the orifice in all models, with the largest area in the 24-mm IFU model. OSI and RRT in the renal artery were near zero for all models. EVAS enhances vorticity proximal to the seal zone, especially with lower positioning of the device and in larger neck diameters. Endobags just below the renal artery affect the flow profile in a minor area of this artery in 24- and 28-mm necks, while lower stent positioning does not influence the renal artery flow profile.

  18. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier.

    PubMed

    Partyka, Paul P; Godsey, George A; Galie, John R; Kosciuk, Mary C; Acharya, Nimish K; Nagele, Robert G; Galie, Peter A

    2017-01-01

    Transport of fluid and solutes is tightly controlled within the brain, where vasculature exhibits a blood-brain barrier and there is no organized lymphatic network facilitating waste transport from the interstitial space. Here, using a compliant, three-dimensional co-culture model of the blood-brain barrier, we show that mechanical stimuli exerted by blood flow mediate both the permeability of the endothelial barrier and waste transport along the basement membrane. Application of both shear stress and cyclic strain facilitates tight junction formation in the endothelial monolayer, with and without the presence of astrocyte endfeet in the surrounding matrix. We use both dextran perfusion and TEER measurements to assess the initiation and maintenance of the endothelial barrier, and microparticle image velocimetry to characterize the fluid dynamics within the in vitro vessels. Application of pulsatile flow to the in vitro vessels induces pulsatile strain to the vascular wall, providing an opportunity to investigate stretch-induced transport along the basement membrane. We find that a pulsatile wave speed of approximately 1 mm/s with Womersley number of 0.004 facilitates retrograde transport of high molecular weight dextran along the basement membrane between the basal endothelium and surrounding astrocytes. Together, these findings indicate that the mechanical stress exerted by blood flow is an important regulator of transport both across and along the walls of cerebral microvasculature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Efficacy of various side-to-side toothbrushes and impact of brushing parameters on noncontact biofilm removal in an interdental space model.

    PubMed

    Schmidt, Julia C; Astasov-Frauenhoffer, Monika; Waltimo, Tuomas; Weiger, Roland; Walter, Clemens

    2017-06-01

    The objective of this study was to evaluate the efficacy of four different side-to-side toothbrushes and the impact of various brushing parameters on noncontact biofilm removal in an adjustable interdental space model. A three-species biofilm, consisting of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus sanguinis, was formed in vitro on protein-coated titanium disks using a flow chamber combined with a static biofilm growth model. Subsequently, the biofilm-coated disks were exposed to four different powered toothbrushes (A, B, C, D). The parameters distance (0 and 1 mm), brushing time (2, 4, and 6 s), interdental space width (1, 2, and 3 mm), and toothbrush angulation (45° and 90°) were tested. The biofilm volumes were determined using volumetric analyses with confocal laser scanning microscope (Zeiss LSM700) images and Imaris version 7.7.2 software. The median percentages of simulated interdental biofilm reduction by the tested toothbrushes ranged from 7 to 64 %. The abilities of the analyzed toothbrushes to reduce the in vitro biofilm differed significantly (p < 0.05). Three of the tested toothbrushes (A, B, C) were able to significantly reduce a simulated interdental biofilm by noncontact brushing (p ≤ 0.005). The brushing parameters and their combinations tested in the experiments revealed only minor effects on in vitro interdental biofilm reduction (p > 0.05). A three-species in vitro biofilm could be altered by noncontact brushing with toothbrushes A, B, and C in an artificial interdental space model. Certain side-to-side toothbrushes demonstrate in vitro a high efficacy in interdental biofilm removal without bristle-to-biofilm contact.

  20. In vitro ovine articular chondrocyte proliferation: experiments and modelling.

    PubMed

    Mancuso, L; Liuzzo, M I; Fadda, S; Pisu, M; Cincotti, A; Arras, M; La Nasa, G; Concas, A; Cao, G

    2010-06-01

    This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed (1) was adopted for quantitative interpretation of these experimental data. The model is based on a 1-D (that is, mass-structured), single-staged population balance approach capable of taking into account contact inhibition at confluence. The model's parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model's parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at 'balanced growth', to be adequately predicted.

  1. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    PubMed

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  2. Percutaneous Venous Thrombectomy Using the Arrow-Trerotola Percutaneous Thrombolytic Device (PTD) with Temporary Caval Filtration: In Vitro Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildberger, Joachim Ernst, E-mail: wildberg@rad.rwth-aachen.de; Haage, Patrick; Bovelander, Jan

    2005-04-15

    Purpose. To evaluate the size and quantity of downstream emboli after thrombectomy using the Arrow-Trerotola Percutaneous Thrombolytic Device (PTD) with or without temporary filtration for extensive iliofemoral and iliocaval thrombi in an in vitro flow model. Methods. Iliocaval thrombi were simulated by clotted bovine blood in a flow model (semilucent silicone tubings, diameter 12-16 mm). Five experimental set-ups were performed 10 times each; thrombus particles and distribution were measured in the effluent. First, after retrograde insertion, mechanical thrombectomy was performed using the PTD alone. Then a modified self-expanding tulip-shaped temporary vena cava stent filter was inserted additionally at the beginningmore » of each declotting procedure and removed immediately after the intervention without any manipulation within or at the filter itself. In a third step, the filter was filled with thrombus only. Here, two experiments were performed: Careful closure within the flow circuit without any additional fragmentation procedure and running the PTD within the filter lumen, respectively. In the final set-up, mechanical thrombectomy was performed within the thrombus-filled tubing as well as in the filter lumen. The latter was closed at the end of the procedure and both devices were removed from the flow circuit. Results. Running the PTD in the flow circuit without filter protection led to a fragmentation of 67.9% ({+-}7.14%) of the clot into particles {<=}500 {mu}m; restoration of flow was established in all cases. Additional placement of the filter safely allowed maceration of 82.9% ({+-}5.59%) of the thrombus. Controlled closure of the thrombus-filled filter within the flow circuit without additional mechanical treatment broke up 75.2% ({+-}10.49%), while additional mechanical thrombectomy by running the PTD within the occluded filter led to dissolution of 90.4% ({+-}3.99%) of the initial clot. In the final set-up, an overall fragmentation rate of 99.6% ({+-}0.44%) was achieved. Conclusions. The combined use of the Arrow-Trerotola PTD and a temporary vena cava stent filter proved to be effective for even large clot removal in this experimental set-up.« less

  3. [Analysis on microdialysis probe recovery of baicalin in vitro and in vivo based on LC-MS/MS].

    PubMed

    Chen, Teng-Fei; Liu, Jian-Xun; Zhang, Ying; Lin, Li; Song, Wen-Ting; Yao, Ming-Jiang

    2017-06-01

    To further study the brain behavior and the pharmacokinetics of baicalin in intercellular fluid of brain, and study the recovery rate and stability of brain and blood microdialysis probe of baicalin in vitro and in vivo. The concentration of baicalin in brain and blood microdialysates was determined by LC-MS/MS and the probe recovery for baicalin was calculated. The effects of different flow rates (0.50, 1.0, 1.5, 2.0,3.0 μL•min⁻¹) on recovery in vitro were determined by incremental method and decrement method. The effects of different drug concentrations (50.00, 200.0, 500.0, 1 000 μg•L⁻¹) and using times (0, 1, 2) on recovery in vitro were determined by incremental method. The probe recovery stability and effect of flow rate on recovery in vivo were determined by decrement method, and its results were compared with those in in vitro trial. The in vitro recovery of brain and blood probe of baicalin was decreased with the increase of flow rate under the same concentration; and at the same flow rate, different concentrations of baicalin had little influence on the recovery. The probe which had been used for 2 times showed no obvious change in probe recovery by syringe with 2% heparin sodium and ultrapure water successively. In vitro recovery rates obtained by incremental method and decrement method were approximately equal under the same condition, and the in vivo recovery determined by decrement method was similar with the in vitro results and they were showed a good stability within 10 h. The results showed that decrement method can be used for pharmacokinetic study of baicalin, and can be used to study probe recovery in vivo at the same time. Copyright© by the Chinese Pharmaceutical Association.

  4. Response Of Mineralizing And Non-Mineralizing Bone Cells To Fluid Flow: An In Vitro Model For Mechanotransruction

    NASA Technical Reports Server (NTRS)

    Makuch, Lauren A.

    2004-01-01

    Humans reach peak bone mass at age 30. After this point, we lose 1 to 2 percent of bone mass each decade. In the microgravity environment of space, astronauts lose bone mass at an accelerated rate of 1 to 2 percent each month. When astronauts travel to Mars, they may be in space for as long as 3 years. During this time, they may lose about half of their bone mass from weight-bearing bones. This loss may be irreversible. The drastic loss in bone that astronauts experience in space makes them much more vulnerable to fractures. In addition, the corresponding removal of calcium from bone results in higher levels of calcium in the blood, which increases the risk of developing kidney stones. Currently, studies are being conducted which investigate factors governing bone adaptation and mechanotransduction. Bone is constantly adapting in response to mechanical stimuli. Increased mechanical loading stimulates bone formation and suppresses bone resorption. Reduction in mechanical loading caused by bedrest, disuse, or microgravity results in decreased bone formation and possibly increased bone resorption. Osteoblasts and osteoclasts are the two main cell types that participate in bone remodeling. Osteoblasts are anabolic (bone-forming) cells and osteoclasts are catabolic (bone-resorbing) cells. In microgravity, the activity of osteoblasts slows down and the activity of osteoclasts may speed up, causing a loss of bone density. Mechanotransduction, the molecular mechanism by which mechanical stimuli are converted to biochemical signals, is not yet understood. Exposure of cells to fluid flow imposes a shear stress on the cells. Several studies have shown that the shear stress that results from fluid flow induces a cellular response similar to that induced by mechanical loading. Thus, fluid flow can be used as an in vitro model to simulate the mechanical stress that bone cells experience in vivo. Previous in vitro studies have shown that fluid flow induces several responses in osteoblasts, including increased proliferation, osteoblastic differentiation, alkaline phosphatase activity, and production of nitric oxide, prostaglandins, and osteopontin. Several proteins have been implicated in osteoblastic mechanotransduction including Bone Morphogenetic Protein-2 (BMP-2), parathyroid hormone, 1,25-dihydroxyvitamin D3 receptor, osteopontin (OPN), osteoprotegerin (OPG), and alkaline phosphatase (AP). We will characterize relative levels of each protein in mineralizing or non-mineralizing MC3T3 osteoblastic cells that have been exposed to fluid flow compared to non-fluid flow using immunofluorescent staining and two- photon laser microscopy as well as western blotting. Because calcium-mediated pathways are important in osteoblastic signaling, we will transfect MC3T3 cells with cameleon probes for Ca2+ containing YFP and CFP. Results will be analyzed using FRET/FLIM to study differential release of intracellular Ca(2+) in response to fluid flow and conditions inducing matrix mineralization. In addition, we plan to conduct several microarray experiments to determine differential gene expression in MC3T3 cells in response to fluid flow and conditions inducing mineralization.

  5. Effect of Phase Lag on Fluid Flow and Particle Dispersion in a Single Human Alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2007-11-01

    The human lung can be divided into (1) the conducting airways, and (2) the acini. The acini are responsible for gas exchange and consist of alveoli and bronchioles. The acini are useful delivery sites for inhaled therapeutic aerosols. In normal lung function the alveolus expands and contracts in phase with the bronchiole airflow oscillation. Lung diseases such as emphysema compromise the elasticity of the lung. Consequently, the alveolus may not oscillate in-phase with the oscillating bronchiole airflow. We have previously studied flow and particle transport in an alveolus for in-phase flow. The current work focuses on measuring out-of-phase airflow patterns and particle transport in an in-vitro model of a single expanding/contracting human alveolus. The model consists of a transparent, elastic, oscillating alveolus (represented by a 5/6th hemisphere) attached to a rigid circular tube. Realistic tidal breathing conditions were achieved by matching Reynolds and Womersley numbers. Flow patterns were measured using PIV; these velocity maps were subsequently used to calculate particle transport and deposition on the alveolar wall.

  6. Four-dimensional Doppler ultrasound measurements in carotid bifurcation models: effect of concentric versus eccentric stenosis

    NASA Astrophysics Data System (ADS)

    Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.

    2001-05-01

    A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.

  7. Computational fluid model incorporating liver metabolic activities in perfusion bioreactor.

    PubMed

    Hsu, Myat Noe; Tan, Guo-Dong Sean; Tania, Marshella; Birgersson, Erik; Leo, Hwa Liang

    2014-05-01

    The importance of in vitro hepatotoxicity testing during early stages of drug development in the pharmaceutical industry demands effective bioreactor models with optimized conditions. While perfusion bioreactors have been proven to enhance mass transfer and liver specific functions over a long period of culture, the flow-induced shear stress has less desirable effects on the hepatocytes liver-specific functions. In this paper, a two-dimensional human liver hepatocellular carcinoma (HepG2) cell culture flow model, under a specified flow rate of 0.03 mL/min, was investigated. Besides computing the distribution of shear stresses acting on the surface of the cell culture, our numerical model also investigated the cell culture metabolic functions such as the oxygen consumption, glucose consumption, glutamine consumption, and ammonia production to provide a fuller analysis of the interaction among the various metabolites within the cell culture. The computed albumin production of our 2D flow model was verified by the experimental HepG2 culture results obtained over 3 days of culture. The results showed good agreement between our experimental data and numerical predictions with corresponding cumulative albumin production of 2.9 × 10(-5) and 3.0 × 10(-5)  mol/m(3) , respectively. The results are of importance in making rational design choices for development of future bioreactors with more complex geometries. © 2013 Wiley Periodicals, Inc.

  8. In vitro comparison of support capabilities of intra-aortic balloon pump and Impella 2.5 left percutaneous.

    PubMed

    Schampaert, Stéphanie; van't Veer, Marcel; van de Vosse, Frans N; Pijls, Nico H J; de Mol, Bas A; Rutten, Marcel C M

    2011-09-01

    The Impella 2.5 left percutaneous (LP), a relatively new transvalvular assist device, challenges the position of the intra-aortic balloon pump (IABP), which has a long record in supporting patients after myocardial infarction and cardiac surgery. However, while more costly and more demanding in management, the advantages of the Impella 2.5 LP are yet to be established. The aim of this study was to evaluate the benefits of the 40 cc IABP and the Impella 2.5 LP operating at 47,000 rpm in vitro, and compare their circulatory support capabilities in terms of cardiac output, coronary flow, cardiac stroke work, and arterial blood pressure. Clinical scenarios of cardiogenic preshock and cardiogenic shock (CS), with blood pressure depression, lowered cardiac output, and constant heart rate of 80 bpm, were modeled in a model-controlled mock circulation, featuring a systemic, pulmonary, and coronary vascular bed. The ventricles, represented by servomotor-operated piston pumps, included the Frank-Starling mechanism. The systemic circulation was modeled with a flexible tube having close-to-human aortic dimensions and compliance properties. Proximally, it featured a branch mimicking the brachiocephalic arteries and a physiological correct coronary flow model. The rest of the systemic and pulmonary impedance was modeled by four-element Windkessel models. In this system, the enhancement of coronary flow and blood pressure was tested with both support systems under healthy and pathological conditions. Hemodynamic differences between the IABP and the Impella 2.5 LP were small. In our laboratory model, both systems approximately yielded a 10% cardiac output increase and a 10% coronary flow increase. However, since the Impella 2.5 LP provided significantly better left ventricular unloading, the circulatory support capabilities were slightly in favor of the Impella 2.5 LP. On the other hand, pulsatility was enhanced with the IABP and lowered with the Impella 2.5 LP. The support capabilities of both the IABP and the Impella 2.5 LP strongly depended on the simulated hemodynamic conditions. Maximum hemodynamic benefits were achieved when mechanical circulatory support was applied on a simulated scenario of deep CS. © 2011, Copyright Eindhoven University of Technology (TU/e). Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions.

    PubMed

    Moore, N; Doty, D; Zielstorff, M; Kariv, I; Moy, L Y; Gimbel, A; Chevillet, J R; Lowry, N; Santos, J; Mott, V; Kratchman, L; Lau, T; Addona, G; Chen, H; Borenstein, J T

    2018-05-25

    Recapitulation of the tumor microenvironment is critical for probing mechanisms involved in cancer, and for evaluating the tumor-killing potential of chemotherapeutic agents, targeted therapies and immunotherapies. Microfluidic devices have emerged as valuable tools for both mechanistic studies and for preclinical evaluation of therapeutic agents, due to their ability to precisely control drug concentrations and gradients of oxygen and other species in a scalable and potentially high throughput manner. Most existing in vitro microfluidic cancer models are comprised of cultured cancer cells embedded in a physiologically relevant matrix, collocated with vascular-like structures. However, the recent emergence of immune checkpoint inhibitors (ICI) as a powerful therapeutic modality against many cancers has created a need for preclinical in vitro models that accommodate interactions between tumors and immune cells, particularly for assessment of unprocessed tumor fragments harvested directly from patient biopsies. Here we report on a microfluidic model, termed EVIDENT (ex vivo immuno-oncology dynamic environment for tumor biopsies), that accommodates up to 12 separate tumor biopsy fragments interacting with flowing tumor-infiltrating lymphocytes (TILs) in a dynamic microenvironment. Flow control is achieved with a single pump in a simple and scalable configuration, and the entire system is constructed using low-sorption materials, addressing two principal concerns with existing microfluidic cancer models. The system sustains tumor fragments for multiple days, and permits real-time, high-resolution imaging of the interaction between autologous TILs and tumor fragments, enabling mapping of TIL-mediated tumor killing and testing of various ICI treatments versus tumor response. Custom image analytic algorithms based on machine learning reported here provide automated and quantitative assessment of experimental results. Initial studies indicate that the system is capable of quantifying temporal levels of TIL infiltration and tumor death, and that the EVIDENT model mimics the known in vivo tumor response to anti-PD-1 ICI treatment of flowing TILs relative to isotype control treatments for syngeneic mouse MC38 tumors.

  10. IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.

    PubMed

    Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier

    2017-04-05

    To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.

  11. The influence of artery wall curvature on the anatomical assessment of stenosis severity derived from fractional flow reserve: a computational fluid dynamics study.

    PubMed

    Govindaraju, Kalimuthu; Viswanathan, Girish N; Badruddin, Irfan Anjum; Kamangar, Sarfaraz; Salman Ahmed, N J; Al-Rashed, Abdullah A A A

    2016-11-01

    This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.

  12. Therapeutic Effect of CD4+CD25+ Regulatory T Cells Amplified In Vitro on Experimental Autoimmune Neuritis in Rats.

    PubMed

    Wang, Feng-Jie; Cui, Dan; Qian, Wei-Dong

    2018-05-14

    This study aimed to explore whether the adoptive transfusion of autologous CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs) has a therapeutic effect on Experimental autoimmune neuritis (EAN) model rats, and it provides new experimental and theoretical bases for the immunotherapy of Guillain-Barre syndrome (GBS). CD4+CD25+ Tregs were sorted from the spleens of rats using immunomagnetic bead separation techniques combined with flow cytometry. Their in vitro inhibitory function was determined using a lymphocyte proliferation inhibition test, and their purity was confirmed by flow cytometry. Cells were stimulated using CD3/CD28 monoclonal antibodies and were cultured in culture medium containing interleukin 2 (IL-2), transforming growth factor-β (TGF-β) and rapamycin. After 15 days of amplification, CD4+CD25+ Tregs were collected and transfused into EAN model rats. Changes in the pathology and electron microscopical morphology of rat sciatic nerves in the normal group, untreated group, low-dose group (2 × 107) and high-dose group (4 × 107) were observed, and the expression of CD4+CD25+FOXP3 in peripheral blood in the four groups of rats was detected by flow cytometry. Compared with rats in the untreated group, rats in the treatment groups had significantly reduced infiltration of inflammatory cells in the sciatic nerve, as well as myelin and axonal damage. Additionally, the CD4+CD25+ Tregs levels in peripheral blood were significantly higher than those in the untreated group (P< 0. 05). Moreover, the therapeutic effect became more significant with an increase in the dose of adoptive transfusion. Adoptive transfusion of CD4+CD25+ Tregs into EAN model rats has significant therapeutic effects. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. A new alternative method for testing skin irritation using a human skin model: a pilot study.

    PubMed

    Miles, A; Berthet, A; Hopf, N B; Gilliet, M; Raffoul, W; Vernez, D; Spring, P

    2014-03-01

    Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. In vivo and in vitro measurements of cerebral aneurysm hemodynamics

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Toloui, Mostafa; van de Moortele, Pierre-Francois; Jagadeesan, Bharathi; Coletti, Filippo

    2017-11-01

    The hemodynamics of cerebral aneurysms is thought to play a critical role in their formation, growth, and potential rupture. Our understanding in this area, however, comes mostly from in vitro experiments and numerical simulations, which have limited realism. In vivo measurements of the intracranial blood flow can be obtained by Magnetic Resonance Imaging (MRI), but they typically suffer from limited accuracy and inadequate resolution. Here we present a direct comparison between in vivo and in vitro measurements of the flow inside an internal carotid artery aneurysm. For both, we use 4D (i.e. volumetric and time-resolved) MRI velocimetry performed in a 7 Tesla magnet at sub-millimeter resolution. The in vitro measurements are carried out in a 3D printed aneurysm replica scaled up by a factor three, effectively increasing the spatial resolution. The patient-specific inflow waveform and the corresponding Reynolds and Womersley numbers are matched in a flow loop that mimics the impedance of the vascular bed. Direct comparison of the velocity fields allows assessing the robustness of the in vivo measurements, while highlighting the insight achievable in vitro. The data also represents a comprehensive test case for numerical simulations.

  15. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  16. An ovarian bioreactor for in vitro culture of the whole bovine ovary: a preliminary report.

    PubMed

    Zanotelli, Matthew R; Henningsen, Joseph D; Hopkins, Patrick M; Dederich, Aaron P; Herman, Tessa; Puccinelli, Tracy J; Salih, Sana M

    2016-08-04

    Improved cancer therapeutics and enhanced cancer survivorship have emphasized the severe long-term side effects of chemotherapy. Specifically, studies have linked many chemotherapy agents with primary ovarian insufficiency, although an exact insult model has not yet been determined. To investigate and ultimately solve this problem, a novel device for extended study of mammalian ovaries in vitro was developed. A bioreactor was fabricated for bovine ovarian culture that provides intravascular delivery of media to the ovary through isolation and cannulation of a main ovarian artery branch. Whole ovaries were cultured in vitro using three methods: (1) continuously supplied fresh culture media, (2) recirculated culture media, or (3) continuously supplied fresh culture media supplemented with 500 nM doxorubicin for 24 or 48 h. TUNEL assay was used to assess apoptotic cell percentages in the three groups as compared to uncultured baseline ovaries. The ovary culture method was shown to maintain cell viability by effectively delivering nutrient-enriched pH-balanced media at a constant flow rate. Lower apoptosis observed in ovaries cultured in continuously supplied fresh culture media illustrates that this culture device and method are the first to sustain whole bovine ovary viability for 48 h. Meanwhile, the increase in the percentage of cell apoptosis with doxorubicin treatment indicates that the device can provide an alternative model for testing chemotherapy and chemoprotection treatments to prevent primary ovarian insufficiency in cancer patients. An ovarian bioreactor with consistent culture media flow through an ovarian vasculature-assisted approach maintains short-term whole bovine ovary viability.

  17. In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation

    PubMed Central

    Little, Stephen H.; Igo, Stephen R.; Pirat, Bahar; McCulloch, Marti; Hartley, Craig J.; Nosé, Yukihiko; Zoghbi, William A.

    2012-01-01

    The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flowmeter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p <0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p <0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions. PMID:17493476

  18. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  19. In vitro analysis of polyurethane foam as a topical hemostatic agent.

    PubMed

    Broekema, Ferdinand I; van Oeveren, Wim; Zuidema, Johan; Visscher, Susan H; Bos, Rudolf R M

    2011-04-01

    Topical hemostatic agents can be used to treat problematic bleedings in patients who undergo surgery. Widely used are the collagen- and gelatin-based hemostats. This study aimed to develop a fully synthetic, biodegradable hemostatic agent to avoid exposure to animal antigens. In this in vitro study the suitability of different newly developed polyurethane-based foams as a hemostatic agent has been evaluated and compared to commonly used agents. An experimental in vitro test model was used in which human blood flowed through the test material. Different modified polyurethane foams were compared to collagen and gelatin. The best coagulation was achieved with collagen. The results of the polyurethane foam improved significantly by increasing the amount of polyethylene glycol. Therefore, the increase of the PEG concentration seems a promising approach. Additional in vivo studies will have to be implemented to assess the application of polyurethane foam as a topical hemostatic agent.

  20. A new device for intraoperative renal blood flow measurement during open-heart surgery: an experimental study and the clinical pilot study.

    PubMed

    Tirilomis, Theodor; Popov, Aron F; Hanekop, Gunnar G; Braeuer, Anselm; Quintel, Michael; Schoendube, Friedrich A; Friedrich, Martin G

    2013-10-01

    Renal blood flow (RBF) may vary during cardiopulmonary bypass and low flow may cause insufficient blood supply of the kidney triggering renal failure postoperatively. Still, a valid intraoperative method of continuous RBF measurement is not available. A new catheter combining thermodilution and intravascular Doppler was developed, first calibrated in an in vitro model, and the catheter specific constant was determined. Then, application of the device was evaluated in a pilot study in an adult cardiovascular population. The data of the clinical pilot study revealed high correlation between the flow velocities detected by intravascular Doppler and the RBF measured by thermodilution (Pearson's correlation range: 0.78 to 0.97). In conclusion, the RBF can be measured excellently in real time using the new catheter, even under cardiopulmonary bypass. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  1. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  2. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  3. In vitro and clinical characterization of the valved holding chamber AeroChamber Plus® Flow-Vu® for administrating tiotropium Respimat® in 1-5-year-old children with persistent asthmatic symptoms.

    PubMed

    Wachtel, Herbert; Nagel, Mark; Engel, Michael; El Azzi, Georges; Sharma, Ashish; Suggett, Jason

    2018-04-01

    When characterizing inhalation products, a comprehensive assessment including in vitro, pharmacokinetic (PK), and clinical data is required. We conducted a characterization of tiotropium Respimat ® when administered with AeroChamber Plus ® Flow-Vu ® anti-static valved holding chamber (test VHC) with face mask in 1-5-year-olds with persistent asthmatic symptoms. In vitro tiotropium dose and particle size distribution delivered into a cascade impactor were evaluated under fixed paediatric and adult flow rates between actuation and samplings. The tiotropium mass likely to reach children's lungs was assessed by tidal breathing simulations and an ADAM-III Child Model. PK exposure to tiotropium in preschool children with persistent asthmatic symptoms (using test VHC) was compared with pooled data from nine Phase 2/3 trials in older children, adolescents, and adults with symptomatic persistent asthma not using test VHC. At fixed inspiratory flow rates, emitted mass and fine particle dose decreased under lower flow conditions; dose reduction was observed when Respimat ® was administered by test VHC at paediatric flow rates. In <5-year-old children, such a dose reduction is appropriate. In terms of dose per kg/body weight, in vitro-delivered dosing in children was comparable with adults. Transmission and aerosol holding properties of Respimat ® when administered with test VHC were fully sufficient for aerosol delivery to patients. At zero delay, particles <5 μm (most relevant fraction) exhibited a transfer efficacy of ≥60%. The half-time was>10 s, allowing multiple breaths. Standardized tidal inhalation resulted in an emitted mass from the test VHC of approximately one-third of labelled dose, independent of coordination and face mask use, indicating predictable tiotropium administration by test VHC with Respimat ® . Tiotropium exposure in 1-5-year-old patients using the test VHC, when adjusted by height or body surface, was comparable with that in older age groups without VHCs; no overexposure was observed. Adverse events were less frequent with tiotropium (2.5 μg, n = 20 [55.6%]; 5 μg, n = 18 [58.1%]) than placebo (n = 25 [73.5%]). Our findings provide good initial evidence to suggest that tiotropium Respimat ® may be administered with AeroChamber Plus ® Flow-Vu ® VHC in 1-5-year-old patients with persistent asthmatic symptoms. To confirm the clinical efficacy and safety in these patients, additional trials are required. The trial was registered under NCT01634113 at http://www.clinicaltrials.gov. Copyright © 2018. Published by Elsevier Ltd.

  4. Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies

    PubMed Central

    Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung

    2016-01-01

    Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental conditions for long-term hepatocyte cell culture using the QV bioreactor. This system facilitated the use of low system volumes coupled with higher flow rates. This design supports cellular respiration by increasing oxygen concentrations in the vicinity of the cells and facilitates long-term kinetic studies of low clearance test compounds. These two goals were achieved while simultaneously keeping the shear stress experienced by the cells within acceptable limits. PMID:27747210

  5. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.

    PubMed

    Gao, Hang; Bijnens, Nathalie; Coisne, Damien; Lugiez, Mathieu; Rutten, Marcel; D'hooge, Jan

    2015-01-01

    Despite the availability of multiple ultrasound approaches to left ventricular (LV) flow characterization in two dimensions, this technique remains in its childhood and further developments seem warranted. This article describes a new methodology for tracking the 2-D LV flow field based on ultrasound data. Hereto, a standard speckle tracking algorithm was modified by using a dynamic kernel embedding Navier-Stokes-based regularization in an iterative manner. The performance of the proposed approach was first quantified in synthetic ultrasound data based on a computational fluid dynamics model of LV flow. Next, an experimental flow phantom setup mimicking the normal human heart was used for experimental validation by employing simultaneous optical particle image velocimetry as a standard reference technique. Finally, the applicability of the approach was tested in a clinical setting. On the basis of the simulated data, pointwise evaluation of the estimated velocity vectors correlated well (mean r = 0.84) with the computational fluid dynamics measurement. During the filling period of the left ventricle, the properties of the main vortex obtained from the proposed method were also measured, and their correlations with the reference measurement were also calculated (radius, r = 0.96; circulation, r = 0.85; weighted center, r = 0.81). In vitro results at 60 bpm during one cardiac cycle confirmed that the algorithm properly measures typical characteristics of the vortex (radius, r = 0.60; circulation, r = 0.81; weighted center, r = 0.92). Preliminary qualitative results on clinical data revealed physiologic flow fields. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Erosion protection by calcium lactate/sodium fluoride rinses under different salivary flows in vitro.

    PubMed

    Borges, Alessandra B; Scaramucci, Taís; Lippert, Frank; Zero, Domenick T; Hara, Anderson T

    2014-01-01

    This study investigated the effect of a calcium lactate prerinse on sodium fluoride protection in an in vitro erosion-remineralization model simulating two different salivary flow rates. Enamel and dentin specimens were randomly assigned to 6 groups (n = 8), according to the combination between rinse treatments - deionized water (DIW), 12 mM NaF (NaF) or 150 mM calcium lactate followed by NaF (CaL + NaF) - and unstimulated salivary flow rates - 0.5 or 0.05 ml/min - simulating normal and low salivary flow rates, respectively. The specimens were placed into custom-made devices, creating a sealed chamber on the specimen surface connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min, followed by artificial saliva (0.5 or 0.05 ml/min) for 60 min. This cycle was repeated 4×/day for 3 days. Rinse treatments were performed daily 30 min after the 1st and 4th erosive challenges, for 1 min each time. Surface loss was determined by optical profilometry. KOH-soluble fluoride and structurally bound fluoride were determined in specimens at the end of the experiment. Data were analyzed by 2-way ANOVA and Tukey tests (α = 0.05). NaF and CaL + NaF exhibited significantly lower enamel and dentin loss than DIW, with no difference between them for normal flow conditions. The low salivary flow rate increased enamel and dentin loss, except for CaL + NaF, which presented overall higher KOH-soluble and structurally bound fluoride levels. The results suggest that the NaF rinse was able to reduce erosion progression. Although the CaL prerinse considerably increased F availability, it enhanced NaF protection against dentin erosion only under hyposalivatory conditions.

  7. MULTI-LABORATORY STUDY OF FLOW-INDUCED HEMOLYSIS USING THE FDA BENCHMARK NOZZLE MODEL

    PubMed Central

    Herbertson, Luke H.; Olia, Salim E.; Daly, Amanda; Noatch, Christopher P.; Smith, William A.; Kameneva, Marina V.; Malinauskas, Richard A.

    2015-01-01

    Multilaboratory in vitro blood damage testing was performed on a simple nozzle model to determine how different flow parameters and blood properties affect device-induced hemolysis and to generate data for comparison with computational fluid dynamics-based predictions of blood damage as part of an FDA initiative for assessing medical device safety. Three independent laboratories evaluated hemolysis as a function of nozzle entrance geometry, flow rate, and blood properties. Bovine blood anticoagulated with acid citrate dextrose solution (2–80 h post-draw) was recirculated through nozzle-containing and paired nozzle-free control loops for 2 h. Controlled parameters included hematocrit (36 ± 1.5%), temperature (25°C), blood volume, flow rate, and pressure. Three nozzle test conditions were evaluated (n = 26–36 trials each): (i) sudden contraction at the entrance with a blood flow rate of 5 L/min, (ii) gradual cone at the entrance with a 6-L/min blood flow rate, and (iii) sudden-contraction inlet at 6 L/min. The blood damage caused only by the nozzle model was calculated by subtracting the hemolysis generated by the paired control loop test. Despite high intralaboratory variability, significant differences among the three test conditions were observed, with the sharp nozzle entrance causing the most hemolysis. Modified index of hemolysis (MIHnozzle) values were 0.292 ± 0.249, 0.021 ± 0.128, and 1.239 ± 0.667 for conditions i–iii, respectively. Porcine blood generated hemolysis results similar to those obtained with bovine blood. Although the interlaboratory hemolysis results are only applicable for the specific blood parameters and nozzle model used here, these empirical data may help to advance computational fluid dynamics models for predicting blood damage. PMID:25180887

  8. Flow Behavior in the Left Heart Ventricle Following Apico-Aortic Bypass Surgery

    NASA Astrophysics Data System (ADS)

    Shahriari, Shahrokh; Jeyhani, Morteza; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Apico-aortic bypass (AAB) surgery is an alternative for transcatheter aortic valve implantation (TAVI) to reduce left ventricle (LV) overload in patients with severe aortic stenosis (AS). It consists in connecting the apex of the LV to the descending thoracic aorta with a valved conduit. Postoperative flow assessments show that two thirds of the outflow is conducted from the LV apex to the conduit, while only one third crosses the native aortic valve. In this study, we performed high speed particle image velocimetry (PIV) measurements of flow pattern within an in vitro elastic model of LV in the presence of a very severe AS, before and after AAB. Results indicate that AAB effectively relieves the LV outflow obstruction; however, it also leads to abnormal ventricular flow patterns. Normal LV flow dynamics is characterized by an emerging mitral jet flow followed by the development of a vortical flow with velocities directed towards the aortic valve, while measurements in the presence of AAB show systolic flow bifurcating to the apical conduit and to the aortic valve outflow tract. This study provides the first insight into the LV flow structure after AAB including outflow jets and disturbed stagnation regions.

  9. Histotripsy Thrombolysis on Retracted Clots

    PubMed Central

    Zhang, Xi; Owens, Gabe E.; Cain, Charles A.; Gurm, Hitinder S.; Macoskey, Jonathan; Xu, Zhen

    2016-01-01

    Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free, and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage when compared to the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus, and a dual-pass multi-focus strategy. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results in this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. PMID:27166017

  10. Effects of bulk and free surface shear flows on amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Posada, David; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2008-11-01

    Amyloid diseases such as Alzheimer's and Huntington's, among others, are characterized by the conversion of monomers to oligomers (precursors) and then to amyloid fibrils. Besides factors such as concentration, pH, and ionic strength, evidence exists that shearing flow strongly influences amyloid formation in vitro. Also, during fibrillation in the presence of either gas or solid surfaces, both the polarity and roughness of the surfaces play a significant role in the kinetics of the fibrillation process. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field, we can identify the flow and interfacial conditions that impact protein aggregation kinetics. The present flow system consists of an annular region, bounded by stationary inner and outer cylinders and driven by rotation of the floor, with either a hydrophobic (air) or hydrophilic (solid) interface. We show both the combined and separated effects of shear and interfacial hydrophobicity on the fibrillation process, and the use of interfacial shear viscosity as a parameter for quantifying the oligomerization process.

  11. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration

    PubMed Central

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F.; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-01-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. PMID:28013101

  12. Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow

    PubMed Central

    Kusunose, Jiro; Zhang, Hua; Gagnon, M. Karen J.; Pan, Tingrui; Simon, Scott I.; Ferrara, Katherine W.

    2012-01-01

    The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum–sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (KD ~ 300 µM) and VCAM-1-targeting (KD ~ 30 µM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm2), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium. PMID:22855121

  13. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  14. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.

    PubMed

    Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F

    2016-10-25

    This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.

  15. In vitro flow cytometry-based screening platform for cellulase engineering

    PubMed Central

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  16. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.

    PubMed

    Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas

    2018-05-01

    Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.

  17. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    PubMed

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society

  18. Development of a solvent-free analytical method for paracetamol quantitative determination in Blood Brain Barrier in vitro model.

    PubMed

    Langlois, Marie-Hélène; Vekris, Antonios; Bousses, Christine; Mordelet, Elodie; Buhannic, Nathalie; Séguard, Céline; Couraud, Pierre-Olivier; Weksler, Babette B; Petry, Klaus G; Gaudin, Karen

    2015-04-15

    A Reversed Phase-High Performance Liquid Chromatography/Diode Array Detection method was developed and validated for paracetamol quantification in cell culture fluid from an in vitro Blood Brain Barrier model. The chromatographic method and sample preparation were developed using only aqueous solvents. The column was a XTerra RP18 150 × 4.6mm, 3.5 μm with a guard column XTerra RP18 20 × 4.6 mm, 3.5 μm at 35 °C and the mobile phase was composed by 100% formate buffer 20 mM at pH 4 and flow rate was set at 1 mL/min. The detection was at 242 nm. The sample was injected at 10 μL. Validation was performed using the accuracy profile approach. The analytical procedure was validated with the acceptance limits at ± 10% over a range of concentration from 1 to 58 mg L(-1). The procedure was then used in routine to determine paracetamol concentration in a brain blood barrier in vitro model. Application of the Unither paracetamol formulation in Blood Brain Barrier model allowed the determination and comparison of the transcellular passage of paracetamol at 37 °C and 4 °C, that excludes paracellular or non specific leakage. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. In vitro three-dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker.

    PubMed

    Shi, Chaoyang; Tercero, Carlos; Ikeda, Seiichi; Ooe, Katsutoshi; Fukuda, Toshio; Komori, Kimihiro; Yamamoto, Kiyohito

    2012-09-01

    It is desirable to reduce aortic stent graft installation time and the amount of contrast media used for this process. Guidance with augmented reality can achieve this by facilitating alignment of the stent graft with the renal and mesenteric arteries. For this purpose, a sensor fusion is proposed between intravascular ultrasound (IVUS) and magnetic trackers to construct three-dimensional virtual reality models of the blood vessels, as well as improvements to the gradient vector flow snake for boundary detection in ultrasound images. In vitro vasculature imaging experiments were done with hybrid probe and silicone models of the vasculature. The dispersion of samples for the magnetic tracker in the hybrid probe increased less than 1 mm when the IVUS was activated. Three-dimensional models of the descending thoracic aorta, with cross-section radius average error of 0.94 mm, were built from the data fusion. The development of this technology will enable reduction in the amount of contrast media required for in vivo and real-time three-dimensional blood vessel imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Characterization of vascular permeability using a biomimetic microfluidic blood vessel model

    PubMed Central

    Thomas, Antony; Wang, Shunqiang; Sohrabi, Salman; Orr, Colin; He, Ran; Shi, Wentao; Liu, Yaling

    2017-01-01

    The inflammatory response in endothelial cells (ECs) leads to an increase in vascular permeability through the formation of gaps. However, the dynamic nature of vascular permeability and external factors involved is still elusive. In this work, we use a biomimetic blood vessel (BBV) microfluidic model to measure in real-time the change in permeability of the EC layer under culture in physiologically relevant flow conditions. This platform studies the dynamics and characterizes vascular permeability when the EC layer is triggered with an inflammatory agent using tracer molecules of three different sizes, and the results are compared to a transwell insert study. We also apply an analytical model to compare the permeability data from the different tracer molecules to understand the physiological and bio-transport significance of endothelial permeability based on the molecule of interest. A computational model of the BBV model is also built to understand the factors influencing transport of molecules of different sizes under flow. The endothelial monolayer cultured under flow in the BBV model was treated with thrombin, a serine protease that induces a rapid and reversible increase in endothelium permeability. On analysis of permeability data, it is found that the transport characteristics for fluorescein isothiocyanate (FITC) dye and FITC Dextran 4k Da molecules are similar in both BBV and transwell models, but FITC Dextran 70k Da molecules show increased permeability in the BBV model as convection flow (Peclet number > 1) influences the molecule transport in the BBV model. We also calculated from permeability data the relative increase in intercellular gap area during thrombin treatment for ECs in the BBV and transwell insert models to be between 12% and 15%. This relative increase was found to be within range of what we quantified from F-actin stained EC layer images. The work highlights the importance of incorporating flow in in vitro vascular models, especially in studies involving transport of large size objects such as antibodies, proteins, nano/micro particles, and cells. PMID:28344727

  1. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome.

    PubMed

    Shrier, I; Baratz, A; Magder, S

    1997-03-01

    Blood flow through skeletal muscle is best modeled with a vascular waterfall at the arteriolar level. Under these conditions, flow is determined by the difference between perfusion pressure (Pper) and the waterfall pressure (Pcrit), divided by the arterial resistance (Ra). By pump perfusing an isolated canine gastrocnemius muscle (n = 6) after it was placed within an airtight box, with and without adenosine infusion, we observed an interaction between the pressure surrounding a muscle (as occurs in compartment syndrome) and baseline vascular tone. We titrated adenosine concentration to double baseline flow. We measured Pcrit and Ra at box pressures (Pbox), which resulted in 100 (Pbox = 0), 90, 75, and 50% flow without adenosine; and 200, 180, 150, 100, and 50% flow with adenosine. Without adenosine, each 10% decline in flow was associated with a 5.7 mmHg increase in Pcrit (P < 0.01). With adenosine, the same decrease in flow was associated with a 2.6-mmHg increase in Pcrit (P < 0.01). Values of Pcrit at 50% of flow were almost identical. Each 10% decrease in flow was also associated with 2.2% increase in Ra with or without adenosine (P < 0.001). Ra decreased with adenosine infusion (P < 0.05), and there was no interaction between adenosine and flow (P > 0.9). We conclude that increases in pressure surrounding a muscle limit flow primarily through changes in Pcrit with and without adenosine-induced vasodilation. The interaction between Pbox and adenosine with respect to Pcrit but not Ra suggests that Pbox affects the tone of the vessels responsible for Pcrit but not Ra.

  3. Physiology of spermatozoa at high dilution rates: the influence of seminal plasma.

    PubMed

    Maxwell, W M; Johnson, L A

    1999-12-01

    Extensive dilution of spermatozoa, as occurs during flow-cytometric sperm sorting, can reduce their motility and viability. These effects may be minimized by the use of appropriate dilution and collection media, containing balanced salts, energy sources, egg yolk and some protein. Dilution and flow-cytometric sorting of spermatozoa, which involves the removal of seminal plasma, also destabilizes sperm membranes leading to functional capacitation. This membrane destabilization renders the spermatozoa immediately capable of fertilization in vitro, or in vivo after deposition close to the site of fertilization, but shortens their lifespan, resulting in premature death if the cells are deposited in the female tract distant from the site of fertilization or are held in vitro at standard storage temperatures. This functional capacitation can be reversed in boar spermatozoa by inclusion of seminal plasma in the medium used to collect the cells from the cell sorter and, consequently, reduces their in vitro fertility. It has yet to be determined whether seminal plasma would have similar effects on flow cytometrically sorted spermatozoa of other species, and what its effects might be on the in vivo fertility of flow sorted boar.

  4. Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment

    PubMed Central

    Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan

    2018-01-01

    Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062

  5. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study.

    PubMed

    Wang, Shoei-Shen; Chou, Nai-Kuan; Chung, Tze-Wen

    2009-12-01

    Accelerated thrombolysis by pressure-driven permeation has been demonstrated in in vitro and in vivo animal models by using plasminogen activators (PAs) encapsulated liposomes or PEG microparticles. Recent reports have also described acceleration of thrombolysis using tissue type PA (t-PA) encapsulated in PLGA nanoparticles (NPs) coated with chitosan (CS) or CS-GRGD by interactions between the NPs and blood clots. However, the permeation through and dissolving patterns in thrombolysis with the aforementioned microparticles or NPs, which may be clinically relevant to the recovery status of the posttreatments, have not been reported. Therefore, this work studied such phenomena in thrombolysis with t-PA encapsulated in NPs. The t-PA solution and the NPs exhibited distinctly different permeation patterns of dissolved clots. Plasma permeates through clots showed a stream flow or burst flow phenomena when lyzed with NPs shelled with CS or CS-GRGD, respectively, whereas a diffusion pattern was observed in those lyzed with t-PA solution. At the outlet position of clots, the clots dissolved with PLGA/CS and PLGA/CS-GRGD NPs revealed extremely rough surfaces to a depth of 100 mum, indicating that a cross-permeation direction of clot lysis occurred, while those dissolved with t-PA solution showed slightly rough surfaces to a depth of 12 mum. Permeation through and clot dissolution patterns of thrombolysis with t-PA encapsulated in NPs shelled with CS or CS-GRGD distinctly differed from those dissolved with t-PA solutions in this in vitro thrombolysis model, These findings may be relevant to posttreatment of patients with conventional PA thrombolysis. Copyright 2008 Wiley Periodicals, Inc.

  6. A Permeability-Limited Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctanoic acid (PFOA) in Male Rats.

    PubMed

    Cheng, Weixiao; Ng, Carla A

    2017-09-05

    Physiologically based pharmacokinetic (PBPK) modeling is a powerful in silico tool that can be used to simulate the toxicokinetics and tissue distribution of xenobiotic substances, such as perfluorooctanoic acid (PFOA), in organisms. However, most existing PBPK models have been based on the flow-limited assumption and largely rely on in vivo data for parametrization. In this study, we propose a permeability-limited PBPK model to estimate the toxicokinetics and tissue distribution of PFOA in male rats. Our model considers the cellular uptake and efflux of PFOA via both passive diffusion and transport facilitated by various membrane transporters, association with serum albumin in circulatory and extracellular spaces, and association with intracellular proteins in liver and kidney. Model performance is assessed using seven experimental data sets extracted from three different studies. Comparing model predictions with these experimental data, our model successfully predicts the toxicokinetics and tissue distribution of PFOA in rats following exposure via both IV and oral routes. More importantly, rather than requiring in vivo data fitting, all PFOA-related parameters were obtained from in vitro assays. Our model thus provides an effective framework to test in vitro-in vivo extrapolation and holds great promise for predicting toxicokinetics of per- and polyfluorinated alkyl substances in humans.

  7. In-vitro characterization of buccal iontophoresis: the case of sumatriptan succinate.

    PubMed

    Telò, Isabella; Tratta, Elena; Guasconi, Barbara; Nicoli, Sara; Pescina, Silvia; Govoni, Paolo; Santi, Patrizia; Padula, Cristina

    2016-06-15

    Buccal administration of sumatriptan succinate might be an interesting alternative to the present administration routes, due to its non-invasiveness and rapid onset of action, but because of its low permeability, a permeation enhancement strategy is required. The aim of this work was then to study, in-vitro, buccal iontophoresis of sumatriptan succinate. Permeation experiments were performed in-vitro across pig esophageal epithelium, a recently proposed model of human buccal mucosa, using vertical diffusion cells. The iontophoretic behavior of the tissue was characterized by measuring its isoelectric point (Na(+) transport number and the electroosmotic flow of acetaminophen determination) and by evaluating tissue integrity after current application. The results obtained confirm the usefulness of pig esophageal epithelium as an in-vitro model membrane for buccal drug delivery. The application of iontophoresis increased sumatriptan transport, proportionally to the current density applied, without tissue damage: electrotransport was the predominant mechanism. Integrating the results of the present work with literature data on the transport of other molecules across the buccal mucosa and across the skin, we can draw a general conclusion: the difference in passive transport across buccal mucosa and across the skin is influenced by permeant lipophilicity and by the penetration pathway. Finally, buccal iontophoretic administration of sumatriptan allows to administer 6mg of the drug in 1h, representing a promising alternative to the current administration routes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Distinct Properties of Human M-CSF and GM-CSF Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement.

    PubMed

    Lescoat, Alain; Ballerie, Alice; Augagneur, Yu; Morzadec, Claudie; Vernhet, Laurent; Fardel, Olivier; Jégo, Patrick; Jouneau, Stéphane; Lecureur, Valérie

    2018-03-17

    Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.

  9. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable for the generation of human 3D neural in vitro models, which can be used to feed high-throughput screening platforms, contributing to expand the available in vitro tools for drug screening and toxicological studies.

  10. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.

    PubMed

    Wang, Shiying; Wang, Claudia Y; Unnikrishnan, Sunil; Klibanov, Alexander L; Hossack, John A; Mauldin, F William

    2015-11-01

    The objective of this study was to optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom-modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as "control peak"). In agreement with in vitro results, the control peak phenomenon was observed in vivo in a murine model. This study provides the first optical observation of microbubble-binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called control peak was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging.

  11. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels with In Vivo Results

    PubMed Central

    Wang, Shiying; Wang, Claudia Y.; Unnikrishnan, Sunil; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2015-01-01

    Objectives To optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Materials and Methods Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Results Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as “control peak”). In agreement with in vitro results, the “control peak” phenomenon was observed in vivo in a murine model. Conclusions This study provides the first optical observation of microbubble binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called “control peak” was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force, and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging. PMID:26135018

  12. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  13. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.

    PubMed

    Lesman, Ayelet; Blinder, Yaron; Levenberg, Shulamit

    2010-02-15

    Novel tissue-culture bioreactors employ flow-induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three-dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear-stress values within the physiological range of those naturally sensed by vascular cells (1-10 dyne/cm(2)), and will thereby provide suitable conditions for vascular tissue-engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell-layer thicknesses of 0, 50, 75, 100, and 125 microm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear-stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell-layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in-depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. 2009 Wiley Periodicals, Inc.

  14. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  15. Numerical Assessment of Novel Helical/Spiral Grafts with Improved Hemodynamics for Distal Graft Anastomoses

    PubMed Central

    Kabinejadian, Foad; McElroy, Michael; Ruiz-Soler, Andres; Leo, Hwa Liang; Slevin, Mark A.; Badimon, Lina

    2016-01-01

    In the present work, numerical simulations were conducted for a typical end-to-side distal graft anastomosis to assess the effects of inducing secondary flow, which is believed to remove unfavourable flow environment. Simulations were carried out for four models, generated based on two main features of 'out-of-plane helicity' and 'spiral ridge' in the grafts as well as their combination. Following a qualitative comparison against in vitro data, various mean flow and hemodynamic parameters were compared and the results showed that helicity is significantly more effective in inducing swirling flow in comparison to a spiral ridge, while their combination could be even more effective. In addition, the induced swirling flow was generally found to be increasing the wall shear stress and reducing the flow stagnation and particle residence time within the anastomotic region and the host artery, which may be beneficial to the graft longevity and patency rates. Finally, a parametric study on the spiral ridge geometrical features was conducted, which showed that the ridge height and the number of spiral ridges have significant effects on inducing swirling flow, and revealed the potential of improving the efficiency of such designs. PMID:27861485

  16. Histotripsy Thrombolysis on Retracted Clots.

    PubMed

    Zhang, Xi; Owens, Gabe E; Cain, Charles A; Gurm, Hitinder S; Macoskey, Jonathan; Xu, Zhen

    2016-08-01

    Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage compared with the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus and dual-pass multi-focus. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results of this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions

    PubMed Central

    Akenhead, Michael L.; Horrall, Nolan M.; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y.

    2015-01-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s−1 shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia). PMID:26065495

  18. Rapid multi-wavelength optical assessment of circulating blood volume without a priori data

    NASA Astrophysics Data System (ADS)

    Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.

    2016-03-01

    The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.

  19. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions.

    PubMed

    Akenhead, Michael L; Horrall, Nolan M; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y

    2015-09-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).

  20. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    PubMed

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. © 2015 Wiley Periodicals, Inc.

  1. Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study.

    PubMed

    El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas

    2018-02-01

    Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.

  2. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  3. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  4. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  5. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.

  6. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science. PMID:26966512

  7. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    PubMed

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis. © 2014 UICC.

  8. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis.

    PubMed

    Forrest, Osric A; Ingersoll, Sarah A; Preininger, Marcela K; Laval, Julie; Limoli, Dominique H; Brown, Milton R; Lee, Frances E; Bedi, Brahmchetna; Sadikot, Ruxana T; Goldberg, Joanna B; Tangpricha, Vin; Gaggar, Amit; Tirouvanziam, Rabindra

    2018-05-09

    Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention. ©2018 Society for Leukocyte Biology.

  9. Human endothelial cell responses to cardiovascular inspired pulsatile shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Matthew; Baugh, Lauren; Black, Lauren, III; Kemmerling, Erica

    2016-11-01

    It is well established that hemodynamic shear stress regulates blood vessel structure and the development of vascular pathology. This process can be studied via in vitro models of endothelial cell responses to pulsatile shear stress. In this study, a macro-scale cone and plate viscometer was designed to mimic various shear stress waveforms found in the body and apply these stresses to human endothelial cells. The device was actuated by a PID-controlled DC gear-motor. Cells were exposed to 24 hours of pulsatile shear and then imaged and stained to track their morphology and secretions. These measurements were compared with control groups of cells exposed to constant shear and no shear. The results showed that flow pulsatility influenced levels of secreted proteins such as VE-cadherin and neuroregulin IHC. Cell morphology was also influenced by flow pulsatility; in general cells exposed to pulsatile shear stress developed a higher aspect ratio than cells exposed to no flow but a lower aspect ratio than cells exposed to steady flow.

  10. Microfabrication of human organs-on-chips.

    PubMed

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  11. Effects of Chaos in Peristaltic Flows: Towards Biological Applications

    NASA Astrophysics Data System (ADS)

    Wakeley, Paul W.; Blake, John R.; Smith, David J.; Gaffney, Eamonn A.

    2006-11-01

    One in seven couples in the Western World will have problems conceiving naturally and with the cost of state provided fertility treatment in the United Kingdom being over USD 3Million per annum and a round of treatment paid for privately costing around USD 6000, the desire to understand the mechanisms of infertility is leading to a renewed interest in collaborations between mathematicians and reproductive biologists. Hydrosalpinx is a condition in which the oviduct becomes blocked, fluid filled and dilated. Many women with this condition are infertile and the primary method of treatment is in vitro fertilisation, however, it is found that despite the embryo being implanted into the uterus, the hydrosalpinx adversely affects the implantation rate. We shall consider a mathematical model for peristaltic flow with an emphasis towards modelling the fluid flow in the oviducts and the uterus of humans. We shall consider the effects of chaotic behavior on the system and demonstrate that under certain initial conditions trapping regions can be formed and discuss our results with a view towards understanding the effects of hydrosalpinx.

  12. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    PubMed

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.

  13. Air-Abrasive Disinfection of Implant Surfaces in a Simulated Model of Periimplantitis.

    PubMed

    Quintero, David George; Taylor, Robert Bonnie; Miller, Matthew Braden; Merchant, Keith Roshanali; Pasieta, Scott Anthony

    2017-06-01

    This in vitro study aimed to evaluate the ability of air-powder abrasion to decontaminate dental implants. Twenty-six implants were inoculated with a Streptococcus sanguinis biofilm media in a novel periimplantitis defect model. Six implants served as controls, and 20 implants were disinfected with either the Cavitron JET Plus or the AIR-FLOW PERIO air-powder abrasion units. Residual bacteria were cultured, and colony forming units (CFUs) were totaled at 24 hours. As expected, negative control implant cultures showed no evidence of viable bacteria. Bacterial growth was observed on all positive control cultures, whereas only 15% of the experimental cultures displayed evidence of viable bacteria. The average CFU per streak for the positive control was 104 compared with a maximum of 10 and 4 CFUs for the Cavitron JET Plus and AIR-FLOW PERIO, respectively. There was a 99.9% reduction in bacteria for both air-powder abrasion instruments. Air-powder abrasion is an effective technique for the decontamination of dental implants, and the Cavitron JET Plus and AIR-FLOW PERIO are equally successful at eliminating viable bacteria from implant surfaces.

  14. Hemodynamic comparison of stent configurations used for aortoiliac occlusive disease.

    PubMed

    Groot Jebbink, Erik; Mathai, Varghese; Boersen, Johannes T; Sun, Chao; Slump, Cornelis H; Goverde, Peter C J M; Versluis, Michel; Reijnen, Michel M P J

    2017-07-01

    Endovascular treatment of aortoiliac occlusive disease entails the use of multiple stents to reconstruct the aortic bifurcation. Different configurations have been applied and geometric variations exist, as quantified in previous work. Other studies concluded that specific stent geometry seems to affect patency. These variations may affect local flow patterns, resulting in different wall shear stress (WSS) and oscillating shear index (OSI). The aim of this study was to compare the effect of different stent configurations on flow perturbations (recirculation and fluid stasis), WSS, and OSI in an in vitro setup. Three different stent configurations were deployed in transparent silicone models: bare-metal kissing (BMK) stents, covered kissing (CK) stents, and the covered endovascular reconstruction of the aortic bifurcation (CERAB) configuration. Transparent covered stents were created with polyurethane to enable visualization. Models were placed in a circulation setup under physiologic flow conditions. Time-resolved laser particle image velocimetry techniques were used to quantify the flow, and WSS and OSI were calculated. The BMK configuration did not show flow disturbances at the inflow section, and WSS values were similar to the control. An area of persistent low flow was observed throughout the cardiac cycle in the area between the anatomic bifurcation and neobifurcation. The CK model showed recirculation zones near the inflow area of the stents with a resulting low average WSS value and high OSI. The proximal inflow of the CERAB configuration did not show flow disturbances, and WSS values were comparable to control. Near the inflow of the limbs, a minor zone of recirculation was observed without changes in WSS values. Flow, WSS, and OSI on the lateral wall of the proximal iliac artery were undisturbed in all models. The studied aortoiliac stent configurations have distinct locations where flow disturbances occur, and these are related to the radial mismatch. The CERAB configuration is the most unimpaired physiologic reconstruction, whereas BMK and CK stents have their typical zones of flow recirculation. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. The Embryonic Stem Cell Test as Tool to Assess Structure-Dependent Teratogenicity: The Case of Valproic Acid

    PubMed Central

    Riebeling, Christian; Pirow, Ralph; Becker, Klaus; Buesen, Roland; Eikel, Daniel; Kaltenhäuser, Johanna; Meyer, Frauke; Nau, Heinz; Slawik, Birgitta; Visan, Anke; Volland, Jutta; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-01-01

    Teratogenicity can be predicted in vitro using the embryonic stem cell test (EST). The EST, which is based on the morphometric measurement of cardiomyocyte differentiation and cytotoxicity parameters, represents a scientifically validated method for the detection and classification of chemicals according to their teratogenic potency. Furthermore, an abbreviated protocol applying flow cytometry of intracellular marker proteins to determine differentiation into the cardiomyocyte lineage is available. Although valproic acid (VPA) is in worldwide clinical use as antiepileptic drug, it exhibits two severe side effects, i.e., teratogenicity and hepatotoxicity. These limitations have led to extensive research into derivatives of VPA. Here we chose VPA as model compound to test the applicability domain and to further evaluate the reliability of the EST. To this end, we study six closely related congeners of VPA and demonstrate that both the standard and the molecular flow cytometry-based EST are well suited to indicate differences in the teratogenic potency among VPA analogs that differ only in chirality or side chain length. Our data show that identical results can be obtained by using the standard EST or a shortened protocol based on flow cytometry of intracellular marker proteins. Both in vitro protocols enable to reliably determine differentiation of murine stem cells toward the cardiomyocyte lineage and to assess its chemical-mediated inhibition. PMID:21227905

  16. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Computational modeling of the structure-function relationship in human placental terminal villi.

    PubMed

    Plitman Mayo, R; Olsthoorn, J; Charnock-Jones, D S; Burton, G J; Oyen, M L

    2016-12-08

    Placental oxygen transport takes place at the final branches of the villous tree and is dictated by the relative arrangement of the maternal and fetal circulations. Modeling techniques have failed to accurately assess the structure-function relationship in the terminal villi due to the geometrical complexity. Three-dimensional blood flow and oxygen transport was modeled in four terminal villi reconstructed from confocal image stacks. The blood flow was analyzed along the center lines of capillary segments and the effect of the variability in capillary diameter, tortuosity and branching was investigated. Additionally, a validation study was performed to corroborate the simulation results. The results show how capillary variations impact motion of the fetal blood, and how their bends and dilatations can decelerate the flow by up to 80%. Vortical flow is also demonstrated not to develop in the fetal capillaries. The different geometries are shown to dictate the transport of gases with differences of over 100% in the oxygen flux between samples. Capillary variations are key for efficient oxygen uptake by the fetus; they allow the blood to decelerate where the villous membrane is thinnest allowing for a better oxygenation, but also by reducing the vessel diameter they carry the oxygenated blood away fast. The methodology employed herein could become a platform to simulate complicated in-vivo and in-vitro scenarios of pregnancy complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  19. Development of a Perfusion Platform for Dynamic Cultivation of in vitro Skin Models.

    PubMed

    Strüver, Kay; Friess, Wolfgang; Hedtrich, Sarah

    2017-01-01

    Reconstructed skin models are suitable test systems for toxicity testing and for basic investigations on (patho-)physiological aspects of human skin. Reconstructed human skin, however, has clear limitations such as the lack of immune cells and a significantly weaker skin barrier function compared to native human skin. Potential reasons for the latter might be the lack of mechanical forces during skin model cultivation which is performed classically in static well-plate setups. Mechanical forces and shear stress have a major impact on tissue formation and, hence, tissue engineering. In the present work, a perfusion platform was developed allowing dynamic cultivation of in vitro skin models. The platform was designed to cultivate reconstructed skin at the air-liquid interface with a laminar and continuous medium flow below the dermis equivalent. Histological investigations confirmed the formation of a significantly thicker stratum corneum compared to the control cultivated under static conditions. Moreover, the skin differentiation markers involucrin and filaggrin as well as the tight junction proteins claudin 1 and occludin showed increased expression in the dynamically cultured skin models. Unexpectedly, despite improved differentiation, the skin barrier function of the dynamically cultivated skin models was not enhanced compared with the skin models cultivated under static conditions. © 2017 S. Karger AG, Basel.

  20. The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion and migration: in vitro and in vivo

    PubMed Central

    Li, Pengcheng; Zheng, Xun; Shou, Kangquan; Niu, Yahui; Jian, Chao; Zhao, Yong; Yi, Wanrong; Hu, Xiang; Yu, Aixi

    2016-01-01

    Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), the novel iron chelator, has been reported to inhibit the tumorigenesis and progression of various cancer cells, including neuroblastoma, neuroepithelioma and prostate cancer. However, whether Dp44mT has anticancer effects in osteosarcoma is still unknown. Here, we investigated the antitumor action of Dp44mT in osteosarcoma and its underlying mechanisms. A human osteosarcoma 143B cell line in vitro and 143B xenograft in nude mice in vivo were utilized, the anticancer effects of Dp44mT were examined through methods of MTT assay, transwell, wound healing assay, flow cytometry, western blot, immunohistochemistry and H&E staining. We showed that Dp44mT inhibits cell proliferation, invasion and migration in vitro. In addition, flow cytometry further illustrated that Dp44mT suppression of 143B cell proliferation, invasion and migration were partially due to induction of cell apoptosis, cell cycle arrest in S phase and ROS production. Also in vitro and in vivo, the expression levels of Bcl2, Bax, Caspase3, Caspase9, LC3-II, β-catenin and its downstream targets such as C-myc and Cyclin D1 demonstrated that cell apoptosis and autophagy, as well as Wnt/β-catenin pathway were involved in Dp44mT induced osteosarcoma suppression. The Dp44mT inhibition of osteosarcoma was further verified via animal models. The findings indicated that in vivo Dp44mT showed a significant reduction in the 143B xenograft tumor growth and metastasis. In conclusion, our data demonstrated that Dp44mT has effective anticancer capability in osteosarcoma and that may represent a promising treatment strategy for osteosarcoma. PMID:28078009

  1. Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram.

    PubMed

    Biben, Thierry; Farutin, Alexander; Misbah, Chaouqi

    2011-03-01

    The study of vesicles under flow, a model system for red blood cells (RBCs), is an essential step in understanding various intricate dynamics exhibited by RBCs in vivo and in vitro. Quantitative three-dimensional analyses of vesicles under flow are presented. The regions of parameters to produce tumbling (TB), tank-treating, vacillating-breathing (VB), and even kayaking (or spinning) modes are determined. New qualitative features are found: (i) a significant widening of the VB mode region in parameter space upon increasing shear rate γ and (ii) a robustness of normalized period of TB and VB with γ. Analytical support is also provided. We make a comparison with existing experimental results. In particular, we find that the phase diagram of the various dynamics depends on three dimensionless control parameters, while a recent experimental work reported that only two are sufficient.

  2. A Novel Two-Step Hierarchical Quantitative Structure–Activity Relationship Modeling Work Flow for Predicting Acute Toxicity of Chemicals in Rodents

    PubMed Central

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A.; Rusyn, Ivan; Tropsha, Alexander

    2009-01-01

    Background Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Objective A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. Methods and results A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values from chemical descriptors. All models were extensively validated using special protocols. Conclusions The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity. PMID:19672406

  3. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.

    PubMed

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A; Rusyn, Ivan; Tropsha, Alexander

    2009-08-01

    Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public-private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC(50)) and in vivo rodent median lethal dose (LD(50)) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure-activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD(50) values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC(50) and LD(50). However, a linear IC(50) versus LD(50) correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC(50) and LD(50) values: One group comprises compounds with linear IC(50) versus LD(50) relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD(50) values from chemical descriptors. All models were extensively validated using special protocols. The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity.

  4. Experimental and theoretical studies of implant assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Aviles, Misael O.

    One way to achieve drug targeting in the body is to incorporate magnetic nanoparticles into drug carriers and then retain them at the site using an externally applied magnetic field. This process is referred to as magnetic drug targeting (MDT). However, the main limitation of MDT is that an externally applied magnetic field alone may not be able to retain a sufficient number of magnetic drug carrier particles (MDCPs) to justify its use. Such a limitation might not exist when high gradient magnetic separation (HGMS) principles are applied to assist MDT by means of ferromagnetic implants. It was hypothesized that an Implant Assisted -- MDT (IA-MDT) system would increase the retention of the MDCPs at a target site where an implant had been previously located, since the magnetic forces are produced internally. With this in mind, the overall objective of this work was to demonstrate the feasibility of an IA-MDT system through mathematical modeling and in vitro experimentation. The mathematical models were developed and used to demonstrate the behavior and limitations of IA-MDT, and the in vitro experiments were designed and used to validate the models and to further elucidate the important parameters that affect the performance of the system. IA-MDT was studied with three plausible implants, ferromagnetic stents, seed particles, and wires. All implants were studied theoretically and experimentally using flow through systems with polymer particles containing magnetite nanoparticles as MDCPs. In the stent studies, a wire coil or mesh was simply placed in a flow field and the capture of the MDCPs was studied. In the other cases, a porous polymer matrix was used as a surrogate capillary tissue scaffold to study the capture of the MDCPs using wires or particle seeds as the implant, with the seeds either fixed within the polymer matrix or captured prior to capturing the MDCPs. An in vitro heart tissue perfusion model was also used to study the use of stents. In general, all the results demonstrated that IA-MDT is indeed feasible and that careful modification of the MDCP properties and implant properties are fundamental to the success of this technology.

  5. Biomimetics of fetal alveolar flow phenomena using microfluidics.

    PubMed

    Tenenbaum-Katan, Janna; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josué

    2015-01-01

    At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.

  6. Differentiation and Characterization of Myeloid Cells

    PubMed Central

    Gupta, Dipti; Shah, Hetavi Parag; Malu, Krishnakumar; Berliner, Nancy; Gaines, Peter

    2015-01-01

    Recent molecular studies of myeloid differentiation have utilized several in vitro models of myelopoiesis, generated from either ex vivo differentiated bone marrow progenitors or induced immortalized myeloid cell lines. Ex vivo differentiation begins with an enriched population of bone marrow-derived hematopoietic stem cells generated by lineage depletion and/or positive selection for CD34+ antigen (human) or Sca-1+ (mouse) cells, which are then expanded and subsequently induced in vitro in a process that recapitulates normal myeloid development. Myeloid cell lines include two human leukemic cell lines, NB-4 and HL-60, which have been demonstrated to undergo retinoic acid–induced myeloid development, however, both cell lines exhibit defects in the upregulation of late-expressed neutrophil-specific genes. Multiple murine factor–dependent cell models of myelopoiesis are also available that express the full range of neutrophil maturation markers, including: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation, EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid, and ER-Hoxb8 cells, which undergo myeloid maturation upon removal of estradial in the maintenance medium. In this unit, the induction of myeloid maturation in each of these model systems is described, including their differentiation to either neutrophils or macrophages, if applicable. Commonly used techniques to test for myeloid characteristics of developing cells are also described, including flow cytometry and real time RT-PCR. Together, these assays provide a solid foundation for in vitro investigations of myeloid development with either human or mouse models. PMID:24510620

  7. Polyethyleneimine brushes effectively inhibit encrustation on polyurethane ureteral stents both in dynamic bioreactor and in vivo.

    PubMed

    Gultekinoglu, Merve; Kurum, Barış; Karahan, Siyami; Kart, Didem; Sagiroglu, Meral; Ertaş, Nusret; Haluk Ozen, A; Ulubayram, Kezban

    2017-02-01

    Polyurethane (PU) ureteral stents have been widely used as biomedical devices to aid the flow of the urine. Due to the biofilm formation and encrustation complications it has been hindered their long term clinical usage. To overcome these complications, in this study, cationic polyethyleneimine (PEI) brushes grafted on PU stents and their performances were tested both in a dynamic biofilm reactor system (in vitro) and in a rat model (in vivo). Thus, we hypothesized that PEI brushes inhibit bacterial adhesion owing to the dynamic motion of brushes in liquid environment. In addition, cationic structure of PEI disrupts the membrane and so kills the bacteria on time of contact. Cationic PEI brushes decreased the biofilm formation up to 2 orders of magnitude and approximately 50% of encrustation amount in respect to unmodified PU, in vitro. In addition, according to Atomic Absorption Spectroscopy (AAS) results, approximately 90% of encrustation was inhibited on in vivo animal models. Decrease in encrustation was clearly observed on the stents obtained from rat model, by Scanning Electron Microscopy (SEM). Also, histological evaluations showed that; PEI brush grafting decreased host tissue inflammation in close relation to decrease in biofilm formation and encrustation. As a results; dual effect of anti-adhesive and contact-killing antibacterial strategy showed high efficiency on PEI brushes grafted PU stents both in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Establishment and Characterization of a New Muscle Cell Line of Zebrafish (Danio rerio) as an In Vitro Model for Gene Expression Studies.

    PubMed

    Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S

    2016-01-01

    A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.

  9. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.

    PubMed

    Olivier, V; Hivart, Ph; Descamps, M; Hardouin, P

    2007-09-01

    New biomaterials combined with osteogenic cells are now being developed as an alternative to autogeneous bone grafts when the skeletal defect reaches a critical size. Yet, the size issue appears to be a key obstacle in the development of bone tissue engineering. Bioreactors are needed to allow the in vitro expansion of cells inside large bulk materials under appropriate conditions. However, no bioreactor has yet been designed for large-scale 3D structures and custom-made scaffolds. In this study, we evaluate the efficiency of a new bioreactor for the in vitro development of large bone substitutes, ensuring the perfusion of large ceramic scaffolds by the nutritive medium. The survival and proliferation of cells inside the scaffolds after 7 and 28 days in this dynamic culture system and the impact of the direction of the flow circulation are evaluated. The follow-up of glucose consumption, DNA quantification and microscopic evaluation all confirmed cell survival and proliferation for a sample under dynamic culture conditions, whereas static culture leads to the death of cells inside the scaffolds. Two directions of flow perfusion were assayed; the convergent direction leads to enhanced results compared to divergent flow.

  10. Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.

    PubMed

    Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali

    2017-01-01

    This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.

  11. SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics.

    PubMed

    Gholami, Babak; Comerford, Andrew; Ellero, Marco

    2015-11-01

    A multiscale Lagrangian particle solver introduced in our previous work is extended to model physiologically realistic near-wall cell dynamics. Three-dimensional simulation of particle trajectories is combined with realistic receptor-ligand adhesion behaviour to cover full cell interactions in the vicinity of the endothelium. The selected stochastic adhesion model, which is based on a Monte Carlo acceptance-rejection method, fits in our Lagrangian framework and does not compromise performance. Additionally, appropriate inflow/outflow boundary conditions are implemented for our SPH solver to enable realistic pulsatile flow simulation. The model is tested against in-vitro data from a 3D geometry with a stenosis and sudden expansion. In both steady and pulsatile flow conditions, results show close agreement with the experimental ones. Furthermore we demonstrate, in agreement with experimental observations, that haemodynamics alone does not account for adhesion of white blood cells, in this case U937 monocytic human cells. Our findings suggest that the current framework is fully capable of modelling cell dynamics in large arteries in a realistic and efficient manner.

  12. Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

    PubMed

    Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2015-12-16

    Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.

  13. Tissue engineering of heart valves: in vitro experiences.

    PubMed

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced after pulsatile flow exposure.

  14. Utility of color Doppler indices of dominant follicular blood flow for prediction of clinical factors in in vitro fertilization-embryo transfer cycles.

    PubMed

    Ozaki, T; Hata, K; Xie, H; Takahashi, K; Miyazaki, K

    2002-12-01

    To investigate the relationship between color Doppler indices of dominant follicular blood flow and clinical factors in in vitro fertilization-embryo transfer cycles. This was a prospective study involving 26 patients completing a total of 33 in vitro fertilization cycles. Dominant follicular blood flow indices, peak systolic velocities, the resistance index and the pulsatility index were evaluated using transvaginal color Doppler. The indices were compared to the clinical outcomes of in vitro fertilization-embryo transfer. There was a significant correlation between dominant follicular peak systolic velocities and the number of oocytes retrieved, as well as the number of mature oocytes obtained. There was no significant correlation between dominant follicular resistance index or pulsatility index and the number of follicles > 10 mm in diameter, the number of oocytes retrieved or the number of mature oocytes. There were no significant differences between dominant follicular peak systolic velocities, resistance index or pulsatility index, and fertilization rate or the ratio of good quality embryos. However, significant differences were found between the number of oocytes retrieved, as well as the number of mature oocytes for those patients in which the peak systolic velocity was below 25 cm/s. Doppler assessment of dominant follicle blood flow alone is useful for predicting the number of retrievable oocytes. However, morphological quality of the embryo produced or the pregnancy rate cannot be predicted by this method.

  15. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter

    PubMed Central

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-01-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities. PMID:27009500

  16. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-03-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities.

  17. Cancer Cell Glycocalyx Mediates Mechanostransduction and Flow-Regulated Invasion

    PubMed Central

    Qazi, Henry; Palomino, Rocio; Shi, Zhong-Dong; Munn, Lance L.; Tarbell, John M.

    2014-01-01

    Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) were investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiologic levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP actvity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx – a potential target for therapeutics. PMID:24077103

  18. Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins.

    PubMed

    Nath, Karl A; Belcher, John D; Nath, Meryl C; Grande, Joseph P; Croatt, Anthony J; Ackerman, Allan W; Katusic, Zvonimir S; Vercellotti, Gregory M

    2018-05-01

    Destabilized heme proteins release heme, and free heme is toxic. Heme is now recognized as an agonist for the Toll-like receptor-4 (TLR4) receptor. This study examined whether the TLR4 receptor mediates the nephrotoxicity of heme, specifically, the effects of heme on renal blood flow and inflammatory responses. We blocked TLR4 signaling by the specific antagonist TAK-242. Intravenous administration of heme to mice promptly reduced renal blood flow, an effect attenuated by TAK-242. In vitro, TAK-242 reduced heme-elicited activation of NF-κB and its downstream gene monocyte chemoattractant protein-1(MCP-1); in contrast, TAK-242 failed to reduce heme-induced activation of the anti-inflammatory transcription factor Nrf2 and its downstream gene heme oxygenase-1 (HO-1). TAK-242 did not reduce heme-induced renal MCP-1 upregulation in vivo. TAK-242 did not reduce dysfunction and histological injury in the glycerol model of heme protein-induced acute kidney injury (AKI), findings corroborated by studies in TLR4 +/+ and TLR4 -/- mice. We conclude that 1) acute heme-mediated renal vasoconstriction occurs through TLR4 signaling; 2) proinflammatory effects of heme in renal epithelial cells involve TLR4 signaling, whereas the anti-inflammatory effects of heme do not; 3) TLR4 signaling does not mediate the proinflammatory effects of heme in the kidney; and 4) major mechanisms underlying glycerol-induced, heme protein-mediated AKI do not involve TLR4 signaling. These findings in the glycerol model are in stark contrast with findings in virtually all other AKI models studied to date and emphasize the importance of TLR4-independent pathways of heme protein-mediated injury in this model. Finally, these studies urge caution when using observations derived in vitro to predict what occurs in vivo.

  19. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    PubMed

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  20. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages

    NASA Astrophysics Data System (ADS)

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-08-01

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases. Electronic supplementary information (ESI) available: Figures. See DOI: 10.1039/c5nr02521d

  1. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    PubMed

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement between PIV and CFD suggests that CFD can reliably predict the details of the intra-aneurysmal flow dynamics observed in anatomically realistic in vitro models. Nevertheless, given the various modeling assumptions, this does not prove that they are mimicking the actual in vivo hemodynamics, and so validations against in vivo data are encouraged whenever possible.

  2. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    PubMed Central

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  3. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways.

    PubMed

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, D L; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-08-27

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm(2)) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified.

  4. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories.

    PubMed

    Martin, Bryn A; Labuda, Richard; Royston, Thomas J; Oshinski, John N; Iskandar, Bermans; Loth, Francis

    2010-11-01

    Full explanation for the pathogenesis of syringomyelia (SM), a neuropathology characterized by the formation of a cystic cavity (syrinx) in the spinal cord (SC), has not yet been provided. It has been hypothesized that abnormal cerebrospinal fluid (CSF) pressure, caused by subarachnoid space (SAS) flow blockage (stenosis), is an underlying cause of syrinx formation and subsequent pain in the patient. However, paucity in detailed in vivo pressure data has made theoretical explanations for the syrinx difficult to reconcile. In order to understand the complex pressure environment, four simplified in vitro models were constructed to have anatomical similarities with post-traumatic SM and Chiari malformation related SM. Experimental geometry and properties were based on in vivo data and incorporated pertinent elements such as a realistic CSF flow waveform, spinal stenosis, syrinx, flexible SC, and flexible spinal column. The presence of a spinal stenosis in the SAS caused peak-to-peak cerebrospinal fluid CSF pressure fluctuations to increase rostral to the stenosis. Pressure with both stenosis and syrinx present was complex. Overall, the interaction of the syrinx and stenosis resulted in a diastolic valve mechanism and rostral tensioning of the SC. In all experiments, the blockage was shown to increase and dissociate SAS pressure, while the axial pressure distribution in the syrinx remained uniform. These results highlight the importance of the properties of the SC and spinal SAS, such as compliance and permeability, and provide data for comparison with computational models. Further research examining the influence of stenosis size and location, and the importance of tissue properties, is warranted.

  5. [The Antitumor Effects of Fisetin on Ovarian Cancer in vitro and in vivo.

    PubMed

    Meng, Yi-Bo; Xiao, Chao; Chen, Xin-Lian; Bai, Peng; Yao, Yuan; Wang, He; Xiao, Xue

    2016-11-01

    We attempted to survey the inhibit effect of fisetin with human ovarian cancer cell line SKOV3 and the xenograft and the mechanism of the effect. The ovarian cancer cell line SKOV3 treated by fisetin were observed directly under the transmission electronmicroscope (TEM);MTT assay was used to determine cell viability.Flow cytometry was used to analyze the apoptosis in ovarian cancer cell line SKOV3.In addition,we established an ovarian cancer athymicnude rat model.We observed the neoplasia and progression after fisetin treatment.The proliferation and apoptosis of athymic nude rat model were evaluated by testing Bcl-2,Bax and poly-ADP-ribose polyerase (PARP) expression through Western blot. The chromatin were brought together and the apoptotic bodies were detected in SKOV3 cells under transmission electron microscope after the treatment by fisetin.MTT assay indicated that fisetin inhibited ovarian cancer cell proliferation in a dose-dependent manner.The flow cytometry data demonstrated that the apoptosis might induct in SKOV3 cells after treatment by fisetin.In athymic rude rat model,under the influence of fisetin,tumor volume and tumor mass were significantly decreased.Western blot demonstrated that treatment with higher concentration of fisetin resulted in a significant decrease of Bcl-2 and a significant increase of Bax.The apoptosis proteins PARP was cut apparently. The results provided the first insight into antitumor anti-proliferative and the induction of apoptosis efficacy of fisetin against ovarian cancer in vitro and in vivo .All data suggested a safe promising therapeutic potential of fisetin in ovarian cancer treatment.

  6. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system.

    PubMed

    Campo-Deaño, Laura; Dullens, Roel P A; Aarts, Dirk G A L; Pinho, Fernando T; Oliveira, Mónica S N

    2013-01-01

    The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.

  7. In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion-evidence of motion-induced flow.

    PubMed

    Kimura, Takaoki; Schulz, Matthias; Shimoji, Kazuaki; Miyajima, Masakazu; Arai, Hajime; Thomale, Ulrich-Wilhelm

    2016-10-01

    Anti-siphon devices and gravitational-assisted valves have been introduced to counteract the effects of overdrainage after implantation of a shunt system. The study examined the flow performance of two gravitational-assisted valves (shunt assistant - SA and programmable shunt assistant - proSA, Miethke & Co. KG, Potsdam, Germany) in an in vitro shunt laboratory with and without motion. An in vitro laboratory setup was used to model the cerebrospinal fluid (CSF) drainage conditions similar to a ventriculo-peritoneal shunt and to test the SA (resistance of +20 cmH2O in 90°) and proSA (adjustable resistance of 0 to +40 cmH2O in 90°). The differential pressure (DP) through the simulated shunt and tested valve was adjusted between 0 and 60 cmH2O by combinations of different inflow pressures (40, 30, 20, 10, and 0 cmH2O) and the hydrostatic negative outflow pressure (0, -20, and -40 cmH2O) in several differing device positions (0°, 30°, 60°, and 90°). In addition, the two devices were tested under vertical motion with movement frequencies of 2, 3, and 4 Hz. Both gravity-assisted units effectively counteract the hydrostatic effect in relation to the chosen differential pressure. The setting the proSA resulted in flow reductions in the 90° position according to the chosen resistance of the device. Angulation-related flow changes were similar in the two devices in 30-90° position, however, in the 0-30° position, a higher flow is seen in the proSA. Repeated vertical movement significantly increased flow through both devices. While with the proSA a 2-Hz motion was not able to induce additional flow (0.006 ± 0.05 ml/min), 3- and 4-Hz motion significantly induced higher flow values (3 Hz: +0.56 ± 0.12 ml/min, 4 Hz: +0.54 ± 0.04 ml/min). The flow through the SA was not induced by vertical movements at a low DP of 10 cmH2O at all frequencies, but at DPs of 30 cmH2O and higher, all frequencies significantly induced higher flow values (2 Hz: +0.36 ± 0.14 ml/min, 3 Hz: +0.32 ± 0.08 ml/min, 4 Hz: +0.28 ± 0.09 ml/min). In a static setup, both tested valves effectively counteracted the hydrostatic effect according to their adjusted or predefined resistance in vertical position. Motion-induced increased flow was demonstrated for both devices with different patterns of flow depending on applied DP and setting of the respective valve. The documented increased drainage should be considered when selecting appropriate valves and settings in very active patients.

  8. The hydrodynamic and ultrasound-induced forces on microbubbles under high Reynolds number flow representative of the human systemic circulation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2016-11-01

    Ultrasound contrast agents (UCAs) are micron-sized bubbles that are used in conjunction with ultrasound (US) in medical applications such as thrombolysis and targeted intravenous drug delivery. Previous work has shown that the Bjerknes force, due to the phase difference between the incoming US pressure wave and the bubble volume oscillations, can be used to manipulate the trajectories of microbubbles. Our work explores the behavior of microbubbles in medium sized blood vessels under both uniform and pulsatile flows at a range of physiologically relevant Reynolds and Womersley numbers. High speed images were taken of the microbubbles in an in-vitro flow loop that replicates physiological flow conditions. During the imaging, the microbubbles were insonified at different diagnostic ultrasound settings (varying center frequency, PRF, etc.). An in-house Lagrangian particle tracking code was then used to determine the trajectories of the microbubbles and, thus, a dynamic model for the microbubbles including the Bjerknes forces acting on them, as well as drag, lift, and added mass. Preliminary work has also explored the behavior of the microbubbles in a patient-specific model of a carotid artery bifurcation to demonstrate the feasibility of preferential steering of microbubbles towards the intracranial circulation with US.

  9. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.

    PubMed

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.

  10. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres

    PubMed Central

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f1), the similarity factor (f2), and the Rescigno index (ξ1 and ξ2) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations. PMID:21674019

  11. Performance analysis of a miniature turbine generator for intracorporeal energy harvesting.

    PubMed

    Pfenniger, Alois; Vogel, Rolf; Koch, Volker M; Jonsson, Magnus

    2014-05-01

    Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Preventing local regeneration of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 enhances angiogenesis

    PubMed Central

    Small, Gary R.; Hadoke, Patrick W. F.; Sharif, Isam; Dover, Anna R.; Armour, Danielle; Kenyon, Christopher J.; Gray, Gillian A.; Walker, Brian R.

    2005-01-01

    Angiogenesis restores blood flow to healing tissues, a process that is inhibited by high doses of glucocorticoids. However, the role of endogenous glucocorticoids and the potential for antiglucocorticoid therapy to enhance angiogenesis is unknown. Using in vitro and in vivo models of angiogenesis in mice, we examined effects of (i) endogenous glucocorticoids, (ii) blocking endogenous glucocorticoid action with the glucocorticoid receptor antagonist RU38486, and (iii) abolishing local regeneration of glucocorticoids by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1). Glucocorticoids, administered at physiological concentrations, inhibited angiogenesis in an in vitro aortic ring model and in vivo in polyurethane sponges implanted s.c. RU38486-enhanced angiogenesis in s.c. sponges, in healing surgical wounds, and in the myocardium of mice 7 days after myocardial infarction induced by coronary artery ligation. 11βHSD1 knockout mice showed enhanced angiogenesis in vitro and in vivo within sponges, wounds, and infarcted myocardium. Endogenous glucocorticoids, including those generated locally by 11βHSD1, exert tonic inhibition of angiogenesis. Inhibition of 11βHSD1 in liver and adipose has been advocated to reduce cardiovascular risk in the metabolic syndrome: these data suggest that 11βHSD1 inhibition offers a previously uncharacterized therapeutic approach to improve healing of ischemic or injured tissue. PMID:16093320

  13. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.

    PubMed

    Balogh, Peter; Bagchi, Prosenjit

    2017-12-19

    We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Partial renal coverage in endovascular aneurysm repair causes unfavorable renal flow patterns in an infrarenal aneurysm model.

    PubMed

    van de Velde, Lennart; Donselaar, Esmé J; Groot Jebbink, Erik; Boersen, Johannes T; Lajoinie, Guillaume P R; de Vries, Jean-Paul P M; Zeebregts, Clark J; Versluis, Michel; Reijnen, Michel M P J

    2018-05-01

    To achieve an optimal sealing zone during endovascular aneurysm repair, the intended positioning of the proximal end of the endograft fabric should be as close as possible to the most caudal edge of the renal arteries. Some endografts exhibit a small offset between the radiopaque markers and the proximal fabric edge. Unintended partial renal artery coverage may thus occur. This study investigated the consequences of partial coverage on renal flow patterns and wall shear stress (WSS). In vitro models of an abdominal aortic aneurysm were used to visualize pulsatile flow using two-dimensional particle image velocimetry under physiologic resting conditions. One model served as control and two models were stented with an Endurant endograft (Medtronic Inc, Minneapolis, Minn), one without and one with partial renal artery coverage with 1.3 mm of stent fabric extending beyond the marker (16% area coverage). The magnitude and oscillation of WSS, relative residence time, and backflow in the renal artery were analyzed. In both stented models, a region along the caudal renal artery wall presented with low and oscillating WSS, not present in the control model. A region with very low WSS (<0.1 Pa) was present in the model with partial coverage over a length of 7 mm compared with a length of 2 mm in the model without renal coverage. Average renal backflow area percentage in the renal artery incrementally increased from control (0.9%) to the stented model without (6.4%) and with renal coverage (18.8%). In this flow model, partial renal coverage after endovascular aneurysm repair causes low and marked oscillations in WSS, potentially promoting atherosclerosis and subsequent renal artery stenosis. Awareness of the device-dependent offset between the fabric edge and the radiopaque markers is therefore important in endovascular practice. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger.

    PubMed

    Weber, Jost; Georgiev, Vasil; Pavlov, Atanas; Bley, Thomas

    2008-10-01

    Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns. Copyright 2008 International Society for Advancement of Cytometry.

  16. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System@@

    EPA Science Inventory

    In 2007, the National Research Council envisioned the need for inexpensive, rapid, cell-based toxicity testing methods relevant to human health. in vitro screening approaches have largely addressed these problems by using robotics and automation. However, the challenge is that ma...

  17. LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  18. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  19. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...

  20. Hyperbaric oxygen increases tissue-plasminogen activator-induced thrombolysis in vitro, and reduces ischemic brain damage and edema in rats subjected to thromboembolic brain ischemia.

    PubMed

    Chazalviel, Laurent; Haelewyn, Benoit; Degoulet, Mickael; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) in vitro , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis in vitro and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis in vitro to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema in vivo . In line with the facilitating effect of NBO on cerebral blood flow, our findings suggest that 5-minute HBO could have provided neuroprotection by promoting thrombolysis. The lack of effect of HBO exposure of longer duration is discussed.

  1. Application of color Doppler flow mapping to calculate orifice area of St Jude mitral valve

    NASA Technical Reports Server (NTRS)

    Leung, D. Y.; Wong, J.; Rodriguez, L.; Pu, M.; Vandervoort, P. M.; Thomas, J. D.

    1998-01-01

    BACKGROUND: The effective orifice area (EOA) of a prosthetic valve is superior to transvalvular gradients as a measure of valve function, but measurement of mitral prosthesis EOA has not been reliable. METHODS AND RESULTS: In vitro flow across St Jude valves was calculated by hemispheric proximal isovelocity surface area (PISA) and segment-of-spheroid (SOS) methods. For steady and pulsatile conditions, PISA and SOS flows correlated with true flow, but SOS and not PISA underestimated flow. These principles were then used intraoperatively to calculate cardiac output and EOA of newly implanted St Jude mitral valves in 36 patients. Cardiac output by PISA agreed closely with thermodilution (r=0.91, Delta=-0.05+/-0.55 L/min), but SOS underestimated it (r=0.82, Delta=-1.33+/-0.73 L/min). Doppler EOAs correlated with Gorlin equation estimates (r=0.75 for PISA and r=0.68 for SOS, P<0.001) but were smaller than corresponding in vitro EOA estimates. CONCLUSIONS: Proximal flow convergence methods can calculate forward flow and estimate EOA of St Jude mitral valves, which may improve noninvasive assessment of prosthetic mitral valve obstruction.

  2. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery.

    PubMed

    Dluska, Ewa; Markowska-Radomska, Agnieszka; Metera, Agata; Tudek, Barbara; Kosicki, Konrad

    2017-09-01

    Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette-Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.

  3. Live imaging flow bioreactor for the simulation of articular cartilage regeneration after treatment with bioactive hydrogel.

    PubMed

    Bar, Assaf; Ruvinov, Emil; Cohen, Smadar

    2018-06-05

    Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity-bound transforming growth factor β1 (TGF-β1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow-flowing regime. Using a chemotaxis assay, it was shown that TGF-β1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein-expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real-time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial-based, tissue engineering strategies. © 2018 Wiley Periodicals, Inc.

  4. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  5. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.

    PubMed

    Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H

    2017-03-01

    Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.

  6. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    PubMed Central

    Baer, Géraldine M; Small, Ward; Wilson, Thomas S; Benett, William J; Matthews, Dennis L; Hartman, Jonathan; Maitland, Duncan J

    2007-01-01

    Background Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. Methods A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. Results At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W. Conclusion We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated. PMID:18042294

  7. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells

    PubMed Central

    Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico

    2012-01-01

    NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine. PMID:23018927

  8. Endothelial miR-17∼92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling.

    PubMed

    Landskroner-Eiger, Shira; Qiu, Cong; Perrotta, Paola; Siragusa, Mauro; Lee, Monica Y; Ulrich, Victoria; Luciano, Amelia K; Zhuang, Zhen W; Corti, Federico; Simons, Michael; Montgomery, Rusty L; Wu, Dianqing; Yu, Jun; Sessa, William C

    2015-10-13

    The contribution of endothelial-derived miR-17∼92 to ischemia-induced arteriogenesis has not been investigated in an in vivo model. In the present study, we demonstrate a critical role for the endothelial-derived miR-17∼92 cluster in shaping physiological and ischemia-triggered arteriogenesis. Endothelial-specific deletion of miR-17∼92 results in an increase in collateral density limbs and hearts and in ischemic limbs compared with control mice, and consequently improves blood flow recovery. Individual cluster components positively or negatively regulate endothelial cell (EC) functions in vitro, and, remarkably, ECs lacking the cluster spontaneously form cords in a manner rescued by miR-17a, -18a, and -19a. Using both in vitro and in vivo analyses, we identified FZD4 and LRP6 as targets of miR-19a/b. Both of these targets were up-regulated in 17∼92 KO ECs compared with control ECs, and both were shown to be targeted by miR-19 using luciferase assays. We demonstrate that miR-19a negatively regulates FZD4, its coreceptor LRP6, and WNT signaling, and that antagonism of miR-19a/b in aged mice improves blood flow recovery after ischemia and reduces repression of these targets. Collectively, these data provide insights into miRNA regulation of arterialization and highlight the importance of vascular WNT signaling in maintaining arterial blood flow.

  9. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study.

    PubMed

    Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W

    2016-03-01

    To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50-100-nm particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  10. In vitro flow assessment: from PC-MRI to computational fluid dynamics including fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent

    2016-04-01

    Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.

  11. Evaluating the Anticancer Properties of Liposomal Copper in a Nude Mouse Xenograft Model of Human Prostate Cancer: Formulation, In Vitro, In Vivo, Histology and Tissue Distribution Studies

    PubMed Central

    Wang, Yan; Zeng, San; Lin, Tien-Min; Krugner-Higby, Lisa; Lyman, Doug; Steffen, Dana; Xiong, May P.

    2014-01-01

    Purpose Although copper (Cu) complexes have been investigated as anticancer agents, there has been no description of Cu itself as a cancer killing agent. A stealth liposomal Cu formulation (LpCu) was studied in vitro and in vivo. Methods LpCu was evaluated in prostate cancer origin PC-3 cells by a metabolic cytotoxicity assay, by monitoring reactive oxygen species (ROS), and by flow cytometry. LpCu efficacy was evaluated in vivo using intratumoral and intravenous injections into mice bearing PC-3 xenograft tumors. Toxicology was assessed by performing hematological and blood biochemistry assays, and tissue histology and Cu distribution was investigated by elemental analysis. Results LpCu and free Cu salts displayed similar levels of cell metabolic toxicity and ROS. Flow cytometry indicated that the mechanisms of cell death were both apoptosis and necrosis. Animals injected i.t. with 3.5 mg/kg or i.v. with 3.5 and 7.0 mg/kg LpCu exhibited significant tumor growth inhibition. Kidney and eye were the main organs affected by Cu-mediated toxicities, but spleen and liver were the major organs of Cu deposition. Conclusions LpCu was effective at reducing tumor burden in the xenograft prostate cancer model. There was histological evidence of Cu toxicity in kidneys and eyes of animals treated at the maximum tolerated dose of LpCu 7.0 mg/kg. PMID:24848339

  12. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  14. Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1996-01-01

    It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.

  15. In vitro and in vivo characterization of a dual-function green fluorescent protein--HSV1-thymidine kinase reporter gene driven by the human elongation factor 1 alpha promoter.

    PubMed

    Luker, Gary D; Luker, Kathryn E; Sharma, Vijay; Pica, Christina M; Dahlheimer, Julie L; Ocheskey, Joe A; Fahrner, Timothy J; Milbrandt, Jeffrey; Piwnica-Worms, David

    2002-01-01

    Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP) and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK) as a reporter gene driven by the promoter for human elongation factor 1 alpha (EF-1 alpha-EGFP-TK). Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV). As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK) in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP) and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) approximately 8-[3H]penciclovir (8-[3H]PCV) < 2'-fluoro-2'-deoxy-5-iodouracil-beta-D-arabinofuranoside (2-[14C]FIAU). Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  16. In vitro evaluation of radio-labeled aerosol delivery via a variable-flow infant CPAP system.

    PubMed

    Farney, Kimberly D; Kuehne, Brandon T; Gibson, Laurie A; Nelin, Leif D; Shepherd, Edward G

    2014-03-01

    Nasal CPAP is widely used in neonatal ICUs. Aerosolized medications such as inhaled steroids and β agonists are commonly administered in-line through nasal CPAP, especially to infants with bronchopulmonary dysplasia. We hypothesized that aerosol delivery to the lungs via variable-flow nasal CPAP in an in vitro model would be unreliable, and that the delivery would depend on the position of the aerosol generator within the nasal CPAP circuit. We used a system that employed a test lung placed in a plastic jar and subjected to negative pressure. Simulated inspiration effort was measured with a heated-wire anemometer. We used technetium-99m-labeled diethylene triamine penta-acetic acid as our aerosol. The nebulizer was placed either close to the humidifier or close to the nasal prongs in the circuit, and patient effort was simulated with a minute ventilation of 0.4 L/min. Relative aerosol delivery to the infant test lung with the nebulizer close to the humidifier was extremely low (0.3 ± 0.4%), whereas placing the nebulizer close to the nasal prongs resulted in significantly (P < .001) improved delivery (21 ± 11%). Major areas of aerosol deposition with the nebulizer close to the humidifier versus close to the nasal prongs were: nebulizer (10 ± 4% vs 33 ± 13%, P < .001), exhalation limb (9 ± 17% vs 26 ± 30%, P = .23), and generator tubing (21 ± 11% vs 19 ± 20%, P = .86). Placing the nebulizer close to the humidifier resulted in 59 ± 8% of the aerosol being deposited in the inhalation tubing along the heater wire. Isotope delivery from an aerosol generator placed near the humidifier on variable-flow nasal CPAP was negligible in this in vitro setup; however, such delivery was significantly improved by locating the aerosol generator closer to the nasal CPAP interface.

  17. Design and Verification of a Shape Memory Polymer Peripheral Occlusion Device

    PubMed Central

    Landsman, Todd L.; Bush, Ruth L.; Glowczwski, Alan; Horn, John; Jessen, Staci L.; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R.; Hasan, Sayyeda M.; Nash, Daniel; Clubb, Fred J.; Maitland, Duncan J.

    2017-01-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. PMID:27419615

  18. Design and verification of a shape memory polymer peripheral occlusion device.

    PubMed

    Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J

    2016-10-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In Vitro MRV-based Hemodynamic Study of Complex Helical Flow in a Patient-specific Jugular Model

    NASA Astrophysics Data System (ADS)

    Kefayati, Sarah; Acevedo-Bolton, Gabriel; Haraldsson, Henrik; Saloner, David

    2014-11-01

    Neurointerventional Radiologists are frequently requested to evaluate the venous side of the intracranial circulation for a variety of conditions including: Chronic Cerebrospinal Venous Insufficiency thought to play a role in the development of multiple sclerosis; sigmoid sinus diverticulum which has been linked to the presence of pulsatile tinnitus; and jugular vein distension which is related to cardiac dysfunction. Most approaches to evaluating these conditions rely on structural assessment or two dimensional flow analyses. This study was designed to investigate the highly complex jugular flow conditions using magnetic resonance velocimetry (MRV). A jugular phantom was fabricated based on the geometry of the dominant jugular in a tinnitus patient. Volumetric three-component time-resolved velocity fields were obtained using 4D PC-MRI -with the protocol enabling turbulence acquisition- and the patient-specific pulsatile waveform. Flow was highly complex exhibiting regions of jet, high swirling strength, and strong helical pattern with the core originating from the focal point of the jugular bulb. Specifically, flow was analyzed for helicity and the level of turbulence kinetic energy elevated in the core of helix and distally, in the post-narrowing region.

  20. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  1. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees

    PubMed Central

    Yarce, Cristhian J.; Echeverri, Juan D.; Palacio, Mario A.; Rivera, Carlos A.; Salamanca, Constain H.

    2017-01-01

    This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate), besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid) (hydrophilic), sodium salt of poly(maleic acid-alt-octadecene) (amphiphilic), poly(maleic anhydride-alt-octadecene) (hydrophobic) and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC). Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE) using the semi-empirical models of Young–Dupré and  Owens-Wendt-Rabel-Käelbe (OWRK), respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism. PMID:28125020

  2. In Vitro and In Vivo Demonstration of Human-Ovarian-Cancer Necrosis through a Water-Soluble and Near-Infrared-Absorbing Chlorin.

    PubMed

    Marydasan, Betsy; Madhuri, Bollapalli; Cherukommu, Shirisha; Jose, Jedy; Viji, Mambattakkara; Karunakaran, Suneesh C; Chandrashekar, Tavarekere K; Rao, Kunchala Sridhar; Rao, Ch Mohan; Ramaiah, Danaboyina

    2018-06-14

    With the objective of developing efficient sensitizers for therapeutic applications, we synthesized a water-soluble 5,10,15,20-tetrakis(3,4-dihydroxyphenyl)chlorin (TDC) and investigated its in vitro and in vivo biological efficacy, comparing it with the commercially available sensitizers. TDC showed high water solubility (6-fold) when compared with that of Foscan and exhibited excellent triplet-excited-state (84%) and singlet-oxygen (80%) yields. In vitro photobiological investigations in human-ovarian-cancer cell lines SKOV-3 showed high photocytotoxicity, negligible dark toxicity, rapid cellular uptake, and specific localization of TDC in neoplastic cells as assessed by flow-cytometric cell-cycle and propidium iodide staining analysis. The photodynamic effects of TDC include confirmed reactive-oxygen-species-induced mitochondrial damage leading to necrosis in SKOV-3 cell lines. The in vivo photodynamic activity in nude-mouse models demonstrated abrogation of tumor growth without any detectable pathology in the skin, liver, spleen, or kidney, thereby demonstrating TDC application as an efficient and safe photosensitizer.

  3. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro.

    PubMed

    Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da

    2011-01-01

    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.

  4. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates

    PubMed Central

    Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-01-01

    Abstract Background: The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. Methods: The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. Results: It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. Conclusions: The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro–in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate. PMID:27082824

  5. Laparoscopy and tribology: the effect of laparoscopic gas on peritoneal fluid.

    PubMed

    Ott, D E

    2001-02-01

    To assess the changes in viscosity of peritoneal fluid during laparoscopic exposure to CO2 insufflation. Analysis and mathematic modeling of peritoneal fluid viscosity in vivo and in vitro as a result of exposure to unconditioned CO2 (Canadian Task Force classification II-2). Medical school university research laboratory and hospital. Peritoneal fluid from 45 women. Peritoneal fluid was obtained at laparoscopy before insufflation and tested for viscosity after exposure to currently used raw dry unconditioned CO2. Peritoneal fluid viscosity was tested by viscometric methods and mathematic modeling. Initial viscosity of peritoneal fluid before gas exposure was 1.425 centipoise (cP). Viscosity measurements were obtained at 20-second intervals for gas flows of 1 and 3 L/minute. Increases in viscosity occur rapidly, and by 200 seconds it was 59 cP and 98 cP for 1 and 3 L flow rates, respectively. Very dry CO2 for laparoscopy causes peritoneal fluid viscosity to increase dramatically. (J Am Assoc Gynecol Laparosc 8(1):117-123, 2001)

  6. in silico Vascular Modeling for Personalized Nanoparticle Delivery

    PubMed Central

    Hossain, Shaolie S.; Zhang, Yongjie; Liang, Xinghua; Hussain, Fazle; Ferrari, Mauro; Hughes, Thomas J. R.; Decuzzi, Paolo

    2013-01-01

    Aims To predict the deposition of nanoparticles in a patient-specific arterial tree as a function of the vascular architecture, flow conditions, receptor surface density, and nanoparticle properties. Materials & methods The patient-specific vascular geometry is reconstructed from CT Angiography images. The Isogeometric Analysis framework integrated with a special boundary condition for the firm wall adhesion of nanoparticles is implemented. A parallel plate flow chamber system is used to validate the computational model in vitro. Results Particle adhesion is dramatically affected by changes in patient-specific attributes, such as branching angle and receptor density. The adhesion pattern correlates well with the spatial and temporal distribution of the wall shear rates. For the case considered, the larger (2.0 μm) particles adhere ≈ 2 times more in the lower branches of the arterial tree, whereas the smaller (0.5 μm) particles deposit more in the upper branches. Conclusion Our computational framework in conjunction with patient specific attributes can be used to rationally select nanoparticle properties to personalize, thus optimize, therapeutic interventions. PMID:23199308

  7. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation

    PubMed Central

    Fedosov, D. A.; Caswell, B.; Suresh, S.; Karniadakis, G. E.

    2011-01-01

    The pathogenicity of Plasmodium falciparum (Pf) malaria results from the stiffening of red blood cells (RBCs) and its ability to adhere to endothelial cells (cytoadherence). The dynamics of Pf-parasitized RBCs is studied by three-dimensional mesoscopic simulations of flow in cylindrical capillaries in order to predict the flow resistance enhancement at different parasitemia levels. In addition, the adhesive dynamics of Pf-RBCs is explored for various parameters revealing several types of cell dynamics such as firm adhesion, very slow slipping along the wall, and intermittent flipping. The parasite inside the RBC is modeled explicitly in order to capture phenomena such as “hindered tumbling” motion of the RBC and the sudden transition from firm RBC cytoadherence to flipping on the endothelial surface. These predictions are in quantitative agreement with recent experimental observations, and thus the three-dimensional modeling method presented here provides new capabilities for guiding and interpreting future in vitro and in vivo studies of malaria. PMID:21173269

  8. Evaluation of flow with dynamic x-ray imaging for aneurysms

    NASA Astrophysics Data System (ADS)

    Dohatcu, Andreea Cristina

    The main goal of this thesis is to evaluate blood flow inside cerebrovascular aneurysms using dynamic x-ray imaging. X-ray contrast substance (dye) was auto injected in elastomer aneurysm models placed in a flow loop (for in-vitro studies) to trace flow passing through aneurysms. More specifically, an improved Time-Density Curves (TDC) Roentgen-videodensitometric tracking technique, that included looking to designated regions (R) within an aneurysm rather than focusing on the entire aneurysm, was employed to get information about blood flow using cine-angiographic sequences. It is the first time R-TDC technique has been used. In complex real-time interventions on patients, 2D/3D angiographic analysis of contrast media flow is the only reliable and rapid source of information that we have in order to assess the seriousness of the disease, suggest the treatment, and verify the result of the treatment. The present study focused on finding a "correlation metric" to quantitatively describe the flow behavior within the aneurysms and examine the hemodynamic implications of several treatments using flow modulating devices applied to saccular and bifurcation geometries aneurysms. The main idea in treatment of an aneurysm is rapid reduction of the risk of rupture. This is usually done endovascularly now by totally occluding the aneurysm by packing it with mechanical or chemical agents. Our research, however, involves a new method of blocking the neck using various types of asymmetric vascular stents (AVS). We proposed and analyzed, using R-TDCs, the feasibility of a new modified endovascular method of treatment based on alteration of blood flow through the aneurysm by partial occlusion only. In-vitro studies using aneurysm phantoms with patient-specific aneurysm models were performed. Also, for the first time the new methods were used in in-vivo studies as well, on rabbit-model experimental data, in an attempt to correlate thrombogenic response of a living organism to flow characteristics as a result of interaction with an AVS. A comparison with optical-dye-dilution data and 3D Computational Fluid Dynamics virtual angiography (CFD) data in similar conditions was also performed. Task oriented optimization of x-ray system parameters with regard to the needs of obtaining TDCs so as to obtain more accurate information of contrast media flow into aneurysms from angiographic images, were done. This includes a comparison between a commercial x-ray Flat Panel Detector (FPD) and an in-house new x-ray micro detector prototype, the Micro-Angiographic Fluoroscope (MAF). X-ray dose levels given in clinical procedures similar in length and complexity to aneurysm treatments, were studied on a statistical representative batch. It was concluded that there is a need for reduction of radiation-induced skin injuries to patients following interventional procedures. Hence, we developed and assessed a method to evaluate the variation of image quality (which impacts the success of TDC analysis) and dose with the acquisition mode operation logic and the automatic-brightness-control (ABC); this method was applied to two clinical interventional fluoroscopic imaging systems: one with an Image Intensifier (II) and the other with a Flat Panel Detector (FPD). The resultant ABC tracking curves obtained for the various imaging modes available on a given system can then be used for proper selection of technique to achieve the needed contrast signal to noise ratio to acquire adequate data for TDC evaluation, while controlling the patient dose.

  9. Tissue vascularization through 3D printing: Will technology bring us flow?

    PubMed

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  10. Investigation of Flow Structures Downstream of SAPIEN 3, CoreValve, and PERIMOUNT Magna Using Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Barakat, Mohammed; Lengsfeld, Corinne; Dvir, Danny; Azadani, Ali

    2017-11-01

    Transcatheter aortic valves provide superior systolic hemodynamic performance in terms of valvular pressure gradient and effective orifice area compared with equivalent size surgical bioprostheses. However, in depth investigation of the flow field structures is of interest to examine the flow field characteristics and provide experimental evidence necessary for validation of computational models. The goal of this study was to compare flow field characteristics of the three most commonly used transcatheter and surgical valves using phase-locked particle image velocimetry (PIV). 26mm SAPIEN 3, 26mm CoreValve, and 25mm PERIMOUNT Magna were examined in a pulse duplicator with input parameters matching ISO-5840. A 2D PIV system was used to obtain the velocity fields. Flow velocity and shear stress were obtained during the entire cardiac cycle. In-vitro testing showed that mean gradient was lowest for SAPIEN 3, followed by CoreValve and PERIMOUNT Magna. In all the valves, the peak jet velocity and maximum viscous shear stress were 2 m/s and 2 MPa, respectively. In conclusion, PIV was used to investigate flow field downstream of the three bioprostheses. Viscous shear stress was low and consequently shear-induced thrombotic trauma or shear-induced damage to red blood cells is unlikely.

  11. Impact of Inflow Conditions on Coherent Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Yu, Paulo; Durgesh, Vibhav; Johari, Hamid

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.

  12. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms.

    PubMed

    Valen-Sendstad, Kristian; Mardal, Kent-André; Steinman, David A

    2013-01-18

    High-frequency flow fluctuations in intracranial aneurysms have previously been reported in vitro and in vivo. On the other hand, the vast majority of image-based computational fluid dynamics (CFD) studies of cerebral aneurysms report periodic, laminar flow. We have previously demonstrated that transitional flow, consistent with in vivo reports, can occur in a middle cerebral artery (MCA) bifurcation aneurysm when ultra-high-resolution direct numerical simulation methods are applied. The object of the present study was to investigate if such high-frequency flow fluctuations might be more widespread in adequately-resolved CFD models. A sample of N=12 anatomically realistic MCA aneurysms (five unruptured, seven ruptured), was digitally segmented from CT angiograms. Four were classified as sidewall aneurysms, the other eight as bifurcation aneurysms. Transient CFD simulations were carried out assuming a steady inflow velocity of 0.5m/s, corresponding to typical peak systolic conditions at the MCA. To allow for detection of clinically-reported high-frequency flow fluctuations and resulting flow structures, temporal and spatial resolutions of the CFD simulations were in the order of 0.1 ms and 0.1 mm, respectively. A transient flow response to the stationary inflow conditions was found in five of the 12 aneurysms, with energetic fluctuations up to 100 Hz, and in one case up to 900 Hz. Incidentally, all five were ruptured bifurcation aneurysms, whereas all four sidewall aneurysms, including one ruptured case, quickly reached a stable, steady state solution. Energetic, rapid fluctuations may be overlooked in CFD models of bifurcation aneurysms unless adequate temporal and spatial resolutions are used. Such fluctuations may be relevant to the mechanobiology of aneurysm rupture, and to a recently reported dichotomy between predictors of rupture likelihood for bifurcation vs. sidewall aneurysms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers.

    PubMed

    Morley, Sinéad T; Walsh, Michael T; Newport, David T

    2017-05-01

    The lymphatic system is an extensive vascular network that serves as the primary route for the metastatic spread of breast cancer cells (BCCs). The dynamics by which BCCs travel in the lymphatics to distant sites, and eventually establish metastatic tumors, remain poorly understood. Particle tracking techniques were employed to analyze the behavior of MCF-7 and MDA-MB-231 BCCs which were exposed to lymphatic flow conditions in a 100  μ m square microchannel. The behavior of the BCCs was compared to rigid particles of various diameters (η = d p /H= 0.05-0.32) that have been used to simulate cell flow in lymph. Parabolic velocity profiles were recorded for all particle sizes. All particles were found to lag the fluid velocity, the larger the particle the slower its velocity relative to the local flow (5%-15% velocity lag recorded). A distinct difference between the behavior of BCCs and particles was recorded. The BCCs travelled approximately 40% slower than the undisturbed flow, indicating that morphology and size affects their response to lymphatic flow conditions ( Re <  1). BCCs adhered together, forming aggregates whose behavior was irregular. At lymphatic flow rates, MCF-7s were distributed uniformly across the channel in comparison to the MDA-MB-231 cells which travelled in the central region (88% of cells found within 0.35 ≤ W ≤ 0.64), indicating that metastatic MDA-MB-231 cells are subjected to a lower range of shear stresses in vivo . This suggests that both size and deformability need to be considered when modelling BCC behavior in the lymphatics. This finding will inform the development of in vitro lymphatic flow and metastasis models.

  14. An artificial right ventricle for failing fontan: in vitro and computational study.

    PubMed

    Lacour-Gayet, François G; Lanning, Craig J; Stoica, Serban; Wang, Rui; Rech, Bryan A; Goldberg, Steven; Shandas, Robin

    2009-07-01

    The aim of this study is to develop a destination low-pressure artificial right ventricle (ARV) to correct the impaired hemodynamics in the failing Fontan circulation. An in vitro model circuit of the Fontan circulation was created to reproduce the hemodynamics of the failing Fontan and test ARV performance under various central venous pressures (CVP) and flows. A novel geometry of the extracardiac conduit was designed to adapt to the need of the pump. The ARV was a low-pressure axial flow pump designed to produce a low suction inflow pressure and moderate outflow increase. With the power off, the passive forward gradient across the propeller is 2 mm Hg at 4.5 L/min. The ARV would require 4 watts at a rotation of 5000 rpm. To examine the shear loading on the red blood cells, virtual particles were injected upstream of the ARV inducer and tracked by computerized modeling. The effect of the ARV on the failing Fontan was studied at various CVP pressures and flows, and under constant values of lung resistances and left atrial pressure set respectively to 2.5 Woods Units and 7 mm Hg. The CVP pressures decreased respectively from 25, 22.5, 20, 17.5, 15, and 10 mm Hg to a minimal value of 2 to 5 mm Hg with a pump speed varying from 1700 to 4500 rpm. The pulmonary artery pressures increased moderately between 12.5 and 25 mm Hg at 4500 rpm. Cardiac output at 4500 rpm was increased by an average gain of 2 L/min. The average blood damage index was 0.92%, far below the 5% value considered to cause hemolysis. The flow structure produced by the pump was suitable. The performance of this novel low-pressure ARV was satisfactory, showing good decrease of CVP pressures, a moderate increase of pulmonary artery pressures, adequate increase of cardiac output, and minimal hemolysis. The use of a mock Fontan model circuit facilitates device prototyping and design to a far greater extent than can be achieved using animal studies, and is an essential first step for rapid design iteration of a novel ARV device. The next steps are the manufacturing of this device, including an electromagnetic engine, a regulatory system, and further testing the device in a survival animal experiment.

  15. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics.

    PubMed

    Knoops, Paul G M; Biglino, Giovanni; Hughes, Alun D; Parker, Kim H; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-07-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics

    PubMed Central

    Knoops, Paul G.M.; Biglino, Giovanni; Hughes, Alun D.; Parker, Kim H.; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-01-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. PMID:27925228

  17. Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies.

    PubMed

    Ciechanowska, Anna; Ladyzynski, Piotr; Hoser, Grazyna; Sabalinska, Stanislawa; Kawiak, Jerzy; Foltynski, Piotr; Wojciechowski, Cezary; Chwojnowski, Andrzej

    2016-09-01

    Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm(2). The optimal density of cells to be seeded was 60,000 cells/cm(2). Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells' metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells' proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells' metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.

  18. Experimental Models of C. albicans-Streptococcal Co-infection.

    PubMed

    Sobue, Takanori; Diaz, Patricia; Xu, Hongbin; Bertolini, Martinna; Dongari-Bagtzoglou, Anna

    2016-01-01

    Interactions of C. albicans with co-colonizing bacteria at mucosal sites can be synergistic or antagonistic in disease development, depending on the bacterial species and mucosal site. Mitis group streptococci and C. albicans colonize the oral mucosa of the majority of healthy individuals. These streptococci have been termed "accessory pathogens," defined by their ability to initiate multispecies biofilm assembly and promote the virulence of the mixed bacterial biofilm community in which they participate. To demonstrate whether interactions with Mitis group streptococci limit or promote the potential of C. albicans to become an opportunistic pathogen, in vitro and in vivo co-infection models are needed. Here, we describe two C. albicans-streptococcal co-infection models: an organotypic oral mucosal tissue model that incorporates salivary flow and a mouse model of oral co-infection that requires reduced levels of immunosuppression compared to single fungal infection.

  19. Bile Flow Phantom Model and Animal Bile Duct Dilation Model for Evaluating Biliary Plastic Stents with Advanced Hydrophilic Coating

    PubMed Central

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Won Seop; Lee, Don Haeng; Ko, Kwang Hyun; Hong, Sung Pyo; Hahm, Ki Baik

    2016-01-01

    Background/Aims The efforts to improve biliary plastic stents (PSs) for decreasing biofilm formation and overcome short patency time have been continued. The aim of this study is to evaluate the effect of advanced hydrophilic coating for patency and biodurability of PS. Methods Using an in vitro bile flow phantom model, we compared patency between prototype PS with hydrophilic coating (PS+HC) and prototype PS without hydrophilic coating (PS−HC). We performed an analysis of the degree of luminal narrowing by microscopic examination. Using an in vivo swine bile duct dilation model made by endoscopic papillary closure and stent insertion, we evaluated biodurability of hydrophilic coating. Results In the phantom model, PS+HC showed less biofilm formation and luminal narrowing than PS−HC at 8 weeks (p<0.05). A total of 31 stents were inserted into the dilated bile duct of seven swine models, and 24 stents were successfully retrieved 8 weeks later. There was no statistical difference of stent patency between the polyethylene PS+HC and the polyurethane PS+HC. The biodurability of hydrophilic coating was sustained up to 8 weeks, when assessing the coating layer by scanning electron microscopy examination. Conclusions Advanced hydrophilic coating technology may extend the patency of PS compared to uncoated PS. PMID:27021507

  20. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung.

    PubMed

    Wu, Zhongjun J; Gellman, Barry; Zhang, Tao; Taskin, M Ertan; Dasse, Kurt A; Griffith, Bartley P

    2011-12-01

    The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5-20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection-diffusion-reaction process. The hollow fiber membranes were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5-2.5 L/min and 1000-3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL device is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in-vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100L at 1.0 L/min and 3000 rpm.

  1. Investigation of the anti-cataractogenic mechanisms of curcumin through in vivo and in vitro studies.

    PubMed

    Cao, Jing; Wang, Tao; Wang, Meng

    2018-02-17

    Cataract is the leading cause of blindness in elderly people worldwide, especially in developing countries. Studies to identify strategies that can prevent or retard cataract formation are urgently required. This study aimed to investigate the potential mechanism of the cytoprotective effects of curcumin in in vivo and in vitro experiments. Male Wistar rats were randomly divided into three groups: the control group, the model group (administered 20 μmol/kg sodium selenite), and the curcumin group (pretreated with 75 mg/kg body weight curcumin 24 h prior to the administration of sodium selenite). The expression levels of heat shock protein 70 (HSP70), the activities of 8-hydroxy-2-deoxyguanosine (8-OHdG), catalase (CAT), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed by using RT-PCR assay and ELISA. In addition, the cell viability, cell apoptosis, and cell cycle were assessed using a CCK-8 assay and flow cytometry in in vitro studies, followed by RT-PCR analysis to identify the mRNA expression levels of caspase 3, Bcl-2 associated X (Bax), B-cell lymphoma 2 (Bcl-2), cyclooxygenase (Cox-2), c-met, and Slug. Cataract was successfully established in rats of the model group and the curcumin group through intraperitoneal injection of sodium selenite. The expression levels of HSP70 and the activities of 8-OHdG and MDA in the curcumin group were decreased compared with those in the model group, whereas the activities of CAT, SOD, and GSH-Px were significantly higher than those in the model group (P < 0.05). In the in vitro studies, the cell viability and cell apoptosis significantly increased and decreased, respectively, in the curcumin group compared with the model group. Correspondingly, the mRNA expression of caspase-3, Bax, and Cox-2 was lower in the curcumin group than in the model group (P < 0.05). This study suggested that curcumin attenuated selenite-induced cataract through the reduction of the intracellular production of reactive oxygen species and the protection of cells from oxidative damage.

  2. Development and evaluation of intestinal targeted mucoadhesive microspheres of Bacillus coagulans.

    PubMed

    Alli, Sk Md Athar; Ali, Sk Md Ajhar; Samanta, Amalesh

    2011-11-01

    Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits. To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period. Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance. Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature. Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.

  3. In Vitro Evaluation of a Rheolytic Thrombectomy System for Clot Removal from Five Different Temporary Vena Cava Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buecker, Arno; Neuerburg, Joerg; Schmitz-Rode, Thomas

    1997-11-15

    Purpose: To evaluate the feasibility of thrombus removal from temporary vena cava filters using a rheolytic thrombectomy device and to assess the embolization rate of this procedure. Methods: Five temporary vena cava filters together with porcine thrombi were placed in a vena cava flow model (semitranslucent silicone tube of 23 mm diameter, pulsatile flow at a mean flow rate of 4 L/min). A rheolytic thrombectomy system (Hydrolyser) was used with a 9 Fr guiding catheter to remove the clots. The effluent was passed through filters of different size and the amount of embolized particles as well as the remaining thrombusmore » were measured. Results: Thrombus removal rates ranged from 85% to 100%. Embolization rates between 47% and 60% were calculated for the different filters. Conclusion: The Hydrolyser is able to remove sufficiently high amounts of thrombus from temporary vena cava filters. However, the amount of embolized particles makes it impossible to utilize this method without special precautions against embolization.« less

  4. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    PubMed

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  5. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  6. Microfluidic cardiac cell culture model (μCCCM).

    PubMed

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  7. Engineering of functional, perfusable 3D microvascular networks on a chip.

    PubMed

    Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li

    2013-04-21

    Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.

  8. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  9. Quantifying the Incoming Jet Past Heart Valve Prostheses Using Vortex Formation Dynamics

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga

    2005-11-01

    Heart valve (HV) replacement prostheses are associated with hemodynamic compromises compared to their native counterparts. Traditionally, HV performance and hemodynamics have been quantified using effective orifice size and pressure gradients. However, quality and direction of flow are also important aspects of HV function and relate to HV design, implantation technique, and orientation. The flow past any HV is governed by the generation of shear layers followed by the formation and shedding of organized flow structures in the form of vortex rings (VR). For the first time, vortex formation (VF) in the LV is quantified. Vortex energy measurements allow for calculation of the critical formation number (FN), which is the time at which the VR reaches its maximum strength. Inefficiencies in HV function result in critical FN decrease. This study uses the concept of FN to compare mitral HV prostheses in an in-vitro model (a silicone LV model housed in a piston-driven heart simulator) using Time-resolved Digital Particle Image Velocimetry. Two HVs were studied: a porcine HV and bileaflet MHV, which was tested in an anatomic and non-anatomic orientation. The results suggest that HV orientation and design affect the critical FN. We propose that the critical FN, which is contingent on the HV design, orientation, and physical flow characteristics, serve as a parameter to quantify the incoming jet and the efficiency of the HV.

  10. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  11. Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound.

    PubMed

    Gruber, Matthew J; Bader, Kenneth B; Holland, Christy K

    2014-02-01

    Ultrasound contrast agents (UCAs) can be employed to nucleate cavitation to achieve desired bioeffects, such as thrombolysis, in therapeutic ultrasound applications. Effective methods of enhancing thrombolysis with ultrasound have been examined at low frequencies (<1 MHz) and low amplitudes (<0.5 MPa). The objective of this study was to determine cavitation thresholds for two UCAs exposed to 120-kHz ultrasound. A commercial ultrasound contrast agent (Definity(®)) and echogenic liposomes were investigated to determine the acoustic pressure threshold for ultraharmonic (UH) and broadband (BB) generation using an in vitro flow model perfused with human plasma. Cavitation emissions were detected using two passive receivers over a narrow frequency bandwidth (540-900 kHz) and a broad frequency bandwidth (0.54-1.74 MHz). UH and BB cavitation thresholds occurred at the same acoustic pressure (0.3 ± 0.1 MPa, peak to peak) and were found to depend on the sensitivity of the cavitation detector but not on the nucleating contrast agent or ultrasound duty cycle.

  12. Numerical and In Vitro Experimental Investigation of the Hemolytic Performance at the Off-Design Point of an Axial Ventricular Assist Pump.

    PubMed

    Liu, Guang-Mao; Jin, Dong-Hai; Jiang, Xi-Hang; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Hu, Sheng-Shou; Gui, Xing-Min

    The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.

  13. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  14. Depth encoded three-beam swept source Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-03-01

    A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.

  15. Ultrasoft microgels displaying emergent platelet-like behaviours

    NASA Astrophysics Data System (ADS)

    Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.

    2014-12-01

    Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.

  16. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  17. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles.

    PubMed

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-11-28

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.

  18. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles

    PubMed Central

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-01-01

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601

  19. Turbulence intensity in a region of interest 2cm distal to the carotid bifurcation in a family of seven anthropomorphic flow phantoms

    NASA Astrophysics Data System (ADS)

    Powell, Janet L.; Poepping, Tamie L.

    2011-03-01

    An in vitro flow system has been used to assess the flow disturbances downstream of the stenosis in a family of seven carotid bifurcation phantoms modelling varying plaque build-up both axially symmetrically (concentrically) and asymmetrically (eccentrically). Radio frequency data were collected for 10 s at each of over 1000 sites within each model, and a sliding 1024-point FFT is applied to the data to extract the Doppler spectrum every 12 ms. From this, the ensemble average over 10 cardiac cycles of the spectral mean velocity, and the root mean square over these same 10 cardiac cycles - the turbulence intensity (TI), can be obtained as a function of an ensemble averaged cardiac cycle at each spatial point in all phantoms. TI was investigated by looking at the average over a 25 mm2 square region of interest in the ICA centered 2 cm distal to the apex of the bifurcation. TI in the region of interest increased with stenosis severity; at 23ms following peak systole, the time point when TI was maximal for the majority of models, this ranged from 2.4+/-0.1 cm/s in the non-diseased model to 6.6+/-0.3, 16.0+/-1.4 and 26.1+/-1.3 cm/s in the 30, 50 and 70% concentrically stenosed (by NASCET criteria) models, respectively. Similarly, TI was 8.3+/-0.7, 19.9+/-1.1, and 26.2+/-1.2 cm/s in the 30, 50 and 70% eccentrically stenosed models, respectively. Differences in TI between models, both in increasing stenosis severity and between eccentricities, were statistically different except between the 70% concentric and eccentric models.

  20. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    PubMed

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  1. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics.

    PubMed

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Brandl, Martin

    2016-05-30

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection there is a risk of premature drug loss due to drug transfer to plasma proteins and cell membranes. Here we report on the refinement of a recently introduced simple in vitro predictive tool by Hinna and colleagues in 2014, which brings small drug loaded (donor) liposomes in contact with large acceptor liposomes, the latter serving as a model mimicking biological sinks in the body. The donor- and acceptor-liposomes were subsequently separated using asymmetrical flow field-flow fractionation (AF4), during which the sample is exposed to a large volume of eluent which corresponds to a dilution factor of approximately 600. The model drug content in the donor- and acceptor fraction was quantified by on-line UV/VIS extinction measurements with correction for turbidity and by off-line HPLC measurements of collected fractions. The refined method allowed for (near) baseline separation of donor and acceptor vesicles as well as reliable quantification of the drug content not only of the donor- but now also of the acceptor-liposomes due to their improved size-homogeneity, colloidal stability and reduced turbidity. This improvement over the previously reported approach allowed for simultaneous quantification of both drug transfer and drug release to the aqueous phase. By sampling at specific incubation times, the release and transfer kinetics of the model compound p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine) was determined. p-THPP is structurally closely related to the photosensitizer temoporfin, which is in clinical use and under evaluation in liposomal formulations. The transfer of p-THPP to the acceptor vesicles followed 1st order kinetics with a half-life of approximately 300 min. As expected, equilibrium distribution between donor- and acceptor vesicles was proportional to the lipid mass ratio. An initial rapid transfer of p-THPP was found (∼ 5%) and investigated further by determining the extent of transfer between donor and acceptor during separation. The donor- and acceptor phase were found to be separated within few minutes and only minor (≤ 2%) transfer could be detected within the AF4 channel under the conditions applied for fractionation. These results demonstrates the potential of our AF4 based method as an in vitro tool to determine retention properties of lipophilic compounds within liposomal carriers in particular, but also within a variety of nano-particulate carriers provided that they exhibit a sufficient size difference compared to the applied colloidal acceptor phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system

    PubMed Central

    Campo-Deaño, Laura; Dullens, Roel P. A.; Aarts, Dirk G. A. L.; Pinho, Fernando T.; Oliveira, Mónica S. N.

    2013-01-01

    The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS. PMID:24404022

  3. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.

    PubMed

    McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B

    2015-01-01

    Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.

  4. In vitro human skin penetration of geraniol and citronellol.

    PubMed

    Gilpin, Sarah; Hui, Xiaoying; Maibach, Howard

    2010-01-01

    Geraniol and citronellol are commonly used fragrance components in consumer products. Both are listed as alleged fragrance allergens that should be declared in the European Union when used in cosmetics and consumer products. Such allergenic potential is determined largely by effects on the skin once these materials penetrate and elicit an immune response. Few data demonstrate their penetration abilities or their effects on percutaneous absorption. We wanted to determine the effects of these materials on skin absorption. Skin penetration characterization via flow-through diffusion study serves as a reasonable model for determining dermal dosing for fragrance materials. Such characterization can be used for more accurate safety exposure calculations and regulatory determinations. Extensive comparisons to in vivo data in humans or closely related animals will be required before accepting flow-through diffusion methods as in vivo alternatives by industry and regulatory bodies. To evaluate the penetration abilities of geraniol and citronellol when they are used in a typical vehicle in consumer products. In vitro skin penetration of radiolabeled geraniol and citronellol was studied under occlusion in human cadaver skin, using flow-through diffusion cells for scintillation counting to determine the percentage of dose absorbed. For comparison, two doses of each material were used: 2% and 5% in 3:1 diethyl phthalate/ethanol. After 24 hours, geraniol and citronellol had relatively low skin absorption rates; 3.8% +/- 2.1% of 2% citronellol, 4.7% +/- 1.9% of 5% citronellol, 3.5% +/- 1.9% of 2% geraniol, and 7.3% +/- 1.1% of 5% geraniol were recovered from skin and receptor fluid compartments. These materials showed good mass-balance recovery. The majority of the dose was recovered in the skin washes (a minimum of 64.7% +/- 4.6% recovered for 2% citronellol and a maximum of 79.3% +/- 3.9% recovered for 5% geraniol). Receptor fluid collection points over time showed a linear increase in the amounts of citronellol and geraniol that penetrated the skin, although overall absorption values were quite small. In vitro results indicate that geraniol and citronellol have low potentials for skin penetration, which has implications for their ability to induce allergenicity and for more predictive toxicologic profiling of these materials. In vivo studies should be done to correlate the in vitro results.

  5. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.

    PubMed

    May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J

    2017-12-01

    Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.

  6. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI.

    PubMed

    Yildiz, Selda; Thyagaraj, Suraj; Jin, Ning; Zhong, Xiaodong; Heidari Pahlavian, Soroush; Martin, Bryn A; Loth, Francis; Oshinski, John; Sabra, Karim G

    2017-08-01

    To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Electrospun polyurethane as an alternative ventricular catheter and in vitro model of shunt obstruction

    PubMed Central

    Suresh, Supraja

    2015-01-01

    Intracranial pressure and volume vary considerably between hydrocephalic patients, and with age, health and haemodynamic status; if left untreated, intracranial pressure rises and the ventricular system expands to accommodate the excess cerebrospinal fluid, with significant morbidity and mortality. Cerebrospinal fluid shunts in use today have a high incidence of failure with shunt obstruction being the most serious. Conventional proximal shunt catheters are made from poly(dimethyl)siloxane, the walls of which are perforated with holes for the cerebrospinal fluid to pass through. The limited range of catheters, in terms of material selection and flow distribution, is responsible in large part for their poor performance. In this study, we present an alternative design of proximal catheter made of electrospun polyether urethane, and evaluate its performance in the presence of glial cells, which are responsible for shunt blockage. The viability and growth of cells on catheter materials such as poly(dimethyl)siloxane and polyurethane in the form of cast films, microfibrous mats and porous sponges were studied in the presence of proteins present in cerebrospinal fluid after 48 h and 96 h in culture. The numbers of viable cells on each substrate were comparable to untreated poly(dimethyl)siloxane, both in the presence and absence of serum proteins found in cerebrospinal fluid. A cell culture model of shunt obstruction was developed in which cells on electrospun polyether urethane catheters were subjected to flow during culture in vitro, and the degree of obstruction quantified in terms of hydraulic permeability after static and perfusion culture. The results indicate that a catheter made of electrospun polyether urethane would be able to maintain cerebrospinal fluid flow even with the presence of cells for the time period chosen for this study. These findings have implications for the design and deployment of microporous shunt catheter systems for the treatment of hydrocephalus. PMID:25245779

  8. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    PubMed

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven micro-drip infusion sets under wide-open flow conditions revealed that infusion rate (drug and/or volume delivery) can vary widely depending on extrinsic factors including catheter size, fluid column height, and carrier flow. The variable resistance implies nonlaminar flow in the micro-drip model that cannot be easily predicted mathematically. These findings support the use of mechanical pumps instead of gravity-driven micro-drips to enhance the precision and safety of IV infusions, especially for vasoactive drugs.

  9. Comparison of 2-dimensional, 3-dimensional, and vascular ultrasonographic parameters for endometrial receptivity between 2 consecutive stimulated in vitro fertilization cycles.

    PubMed

    Ng, Ernest Hung Yu; Chan, Carina Chi Wai; Tang, Oi Shan; Ho, Pak Chung

    2007-07-01

    We compared the ultrasonographic parameters for endometrial receptivity between 2 consecutive in vitro fertilization (IVF) cycles in the same patients. Patients who had undergone 2 in vitro fertilization cycles between November 2002 and December 2004 were recruited. A 3-dimensional ultrasonographic examination with power Doppler imaging was performed on the day of oocyte retrieval to determine the endometrial thickness, endometrial pattern, pulsatility and resistive indices of uterine vessels, endometrial volume, vascularization index, flow index, and vascularization flow index of endometrial and subendometrial regions. Of 662 patients, 95 (14.4%) underwent 2 consecutive cycles using the same stimulation regimen during the study period. There were no significant differences in these ultrasonographic parameters between the first and second cycles. The intraclass correlation coefficient (ICC) for endometrial volume was significantly higher than that of other ultrasonographic parameters. The ICC for the endometrial thickness, uterine pulsatility index, and endometrial 3-dimensional power Doppler flow indices were similar. Ultrasonographic parameters for endometrial receptivity were comparable in the 2 consecutive stimulated cycles. The endometrial volume had the highest ICC among these ultrasonographic parameters and was most reproducible between 2 cycles.

  10. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study

    PubMed Central

    Mabray, Marc C.; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D.; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W.

    2015-01-01

    Purpose To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Materials and Methods Uncoated iron oxide particles 50–100 nm and 1–5 μm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-μm carboxylic acid–coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Results Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50–100-nm particles in water with a large magnet), 97% (50–100-nm particles in water with a small magnet), 99% (1–5-μm particles in water with a large magnet), 99% (1–5-μm particles in water with a small magnet), 95% (50–100-nm particles in serum with a small magnet), 92% (1–5-μm particles in serum with a small magnet), and 75% (1-μm coated beads in serum with a small magnet) lower compared with matched control runs. Conclusions This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. PMID:26706187

  11. Fluid dynamic study in a femoral artery branch casting of man with upstream main lumen curvature for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Back, M. R.

    1985-01-01

    An in-vitro, steady flow investigation was conducted in a hollow, transparent vascular replica of the profunda femoris branch of man for a range of physiological flow conditions. The replica casting tested was obtained from a human cadaver and indicated some plague formation along the main lumen and branch. The flow visualization observations and measured pressure distributions indicated the highly three-dimensional flow characteristics with arterial curvature and branching, and the important role of centrifugal effects in fluid transport mechanisms.

  12. Ultrasonic Blood Flow Measurement in Haemodialysis

    PubMed Central

    Sampson, D.; Papadimitriou, M.; Kulatilake, A. E.

    1970-01-01

    A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system. PMID:5416812

  13. Three-dimensional flow structures past a bio-prosthetic valve in an in-vitro model of the aortic root.

    PubMed

    Hasler, David; Obrist, Dominik

    2018-01-01

    The flow field past a prosthetic aortic valve comprises many details that indicate whether the prosthesis is functioning well or not. It is, however, not yet fully understood how an optimal flow scenario would look, i.e. which subtleties of the fluid dynamics in place are essential regarding the durability and compatibility of a prosthetic valve. In this study, we measured and analyzed the 3D flow field in the vicinity of a bio-prosthetic heart valve in function of the aortic root size. The measurements were conducted within aortic root phantoms of different size, mounted in a custom-built hydraulic setup, which mimicked physiological flow conditions in the aorta. Tomographic particle image velocimetry was used to measure the 3D instantaneous velocity field at various instances. Several 3D fields (e.g. instantaneous and mean velocity, 3D shear rate) were analyzed and compared focusing on the impact of the aortic root size, but also in order to gain general insight in the 3D flow structure past the bio-prosthetic valve. We found that the diameter of the aortic jet relative to the diameter of the ascending aorta is the most important parameter in determining the characteristics of the flow. A large aortic cross-section, relative to the cross-section of the aortic jet, was associated with higher levels of turbulence intensity and higher retrograde flow in the ascending aorta.

  14. Development of Ciprofloxacin-loaded contact lenses using fluorous chemistry

    PubMed Central

    Zhu, Zhiling; Li, Siheng; McDermott, Alison M.

    2017-01-01

    In this work, we developed a simple method to load drugs into commercially available contact lenses utilizing fluorous chemistry. We demonstrated this method using model compounds including fluorous-tagged fluorescein and antibiotic ciprofloxacin. We showed that fluorous interactions facilitated the loading of model molecules into fluorocarbon-containing contact lenses, and that the release profiles exhibited sustained release. Contact lenses loaded with fluorous-tagged ciprofloxacin exhibited antimicrobial activity against Pseudomonas aeruginosa in vitro, while no cytotoxicity towards human corneal epithelial cells was observed. To mimic the tear turnover, we designed a porcine eye infection model under flow conditions. Significantly, the modified lenses also exhibited antimicrobial efficacy against Pseudomonas aeruginosa in the ex vivo infection model. Overall, utilizing fluorous chemistry, we can construct a drug delivery system that exhibits high drug loading capacity, sustained drug release, and robust biological activity. PMID:28188995

  15. The stentable in vitro artery: an instrumented platform for endovascular device development and optimization.

    PubMed

    Antoine, Elizabeth E; Cornat, François P; Barakat, Abdul I

    2016-12-01

    Although vascular disease is a leading cause of mortality, in vitro tools for controlled, quantitative studies of vascular biological processes in an environment that reflects physiological complexity remain limited. We developed a novel in vitro artery that exhibits a number of unique features distinguishing it from tissue-engineered or organ-on-a-chip constructs, most notably that it allows deployment of endovascular devices including stents, quantitative real-time tracking of cellular responses and detailed measurement of flow velocity and lumenal shear stress using particle image velocimetry. The wall of the stentable in vitro artery consists of an annular collagen hydrogel containing smooth muscle cells (SMCs) and whose lumenal surface is lined with a monolayer of endothelial cells (ECs). The system has in vivo dimensions and physiological flow conditions and allows automated high-resolution live imaging of both SMCs and ECs. To demonstrate proof-of-concept, we imaged and quantified EC wound healing, SMC motility and altered shear stresses on the endothelium after deployment of a coronary stent. The stentable in vitro artery provides a unique platform suited for a broad array of research applications. Wide-scale adoption of this system promises to enhance our understanding of important biological events affecting endovascular device performance and to reduce dependence on animal studies. © 2016 The Author(s).

  16. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yijing; Tang, Huijuan; Guo, Yan

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOCmore » cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.« less

  17. THE ROLE OF ELECTRICAL SIGNALS IN MURINE CORNEAL WOUND RE-EPITHELIALISATION

    PubMed Central

    Kucerova, R.; Walczysko, P.; Reid, B.; Ou, J.; Leiper, L. J.; Rajnicek, A. M.; McCaig, C. D.; Zhao, M.; Collinson, J. M.

    2011-01-01

    Ion flow from intact tissue into epithelial wound sites results in lateral electric currents that may represent a major driver of wound healing cell migration. Use of applied electric fields to promote wound healing is the basis of Medicare-approved electric stimulation therapy. This study investigated the roles for electric fields in wound re-epithelialisation, using the Pax6+/− mouse model of the human ocular surface abnormality aniridic keratopathy (in which wound healing and corneal epithelial cell migration are disrupted). Both wild-type and Pax6+/− corneal epithelial cells showed increased migration speeds in response to applied electric fields in vitro. However, only Pax6+/+ cells demonstrated directional galvanotaxis towards the cathode, with activation of pSrc signalling, polarised to the leading edges of cells. In vivo, the epithelial wound site normally represents a cathode, but 43% of Pax6+/− corneas exhibited reversed endogenous wound-induced currents (the wound was an anode). These corneas healed at the same rate as wild-type. Surprisingly, epithelial migration did not correlate with direction or magnitude of endogenous currents for wild-type or mutant corneas. Furthermore, during healing in vivo, no polarisation of pSrc was observed. We found little evidence that Src-dependent mechanisms of cell migration, observed in response to applied EFs in vitro, normally exist in vivo. It is concluded that endogenous electric fields do not drive long-term directionality of sustained healing migration in this mouse corneal epithelial model. Ion flow from wounds may nevertheless represent an important component of wound signalling initiation. PMID:20945376

  18. Influence of neighboring adherent cells on laminar flow induced shear stress in vitro—A systematic study

    PubMed Central

    Djukelic, Mario; Westerhausen, Christoph

    2017-01-01

    Cells experience forces if subjected to laminar flow. These forces, mostly of shear force character, are strongly dependent not only on the applied flow field itself but also on hydrodynamic effects originating from neighboring cells. This particularly becomes important for the interpretation of data from in vitro experiments in flow chambers without confluent cell layers. By employing numerical Finite Element Method simulations of such assemblies of deformable objects under shear flow, we investigate the occurring stress within elastic adherent cells and the influence of neighboring cells on these quantities. For this, we simulate single and multiple adherent cells of different shapes fixed on a solid substrate under laminar flow parallel to the substrate for different velocities. We determine the local stress within the cells close to the cell-substrate-interface and the overall stress of the cells by surface integration over the cell surface. Comparing each measurand in the case of a multiple cell situation with the corresponding one of single cells under identical conditions, we introduce a dimensionless influence factor. The systematic variation of the distance and angle between cells, where the latter is with respect to the flow direction, flow velocity, Young's modulus, cell shape, and cell number, enables us to describe the actual influence on a cell. Overall, we here demonstrate that the cell density is a crucial parameter for all studies on flow induced experiments on adherent cells in vitro. PMID:28798851

  19. Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.

    PubMed

    Montenegro, L; Carbone, C; Giannone, I; Puglisi, G

    2007-05-01

    The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.

  20. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  1. In vitro experimental investigation of voice production

    PubMed Central

    Horáčcek, Jaromír; Brücker, Christoph; Becker, Stefan

    2012-01-01

    The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied. PMID:23181007

  2. Control volume based hydrocephalus research; a phantom study

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  3. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.

    PubMed

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-03-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH) 2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but showed too high degradation for non-covered implants. It is concluded that this system is in between static incubation and animal experiments concerning the predictivity of the degradation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Intraperitoneal temperature and desiccation during endoscopic surgery. Intraoperative humidification and cooling of the peritoneal cavity can reduce adhesions.

    PubMed

    Corona, Roberta; Verguts, Jasper; Koninckx, Robert; Mailova, Karina; Binda, Maria Mercedes; Koninckx, Philippe R

    2011-10-01

    This study was conducted to document quantitatively the intraperitoneal temperature and desiccation during laparoscopic surgery. The temperature, relative humidity, and flow rate were measured in vitro and during laparoscopic surgery, at the entrance and at the exit of the abdomen. This permitted us to calculate desiccation for various flow rates using either dry CO(2) or CO(2) humidified with 100% relative humidity at any preset temperature between 25 and 37°C. The study showed that desiccation, both in vitro and in vivo, varies as expected with the flow rates and relative humidity while intraperitoneal temperature varies mainly with desiccation. Temperature regulation of bowels is specific and drops to the intraperitoneal temperature without affecting core body temperature. With a modified humidifier, desiccation could be eliminated while maintaining the intraperitoneal temperature between 31 to 32°C. Copyright © 2011 Mosby, Inc. All rights reserved.

  5. Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler

    PubMed Central

    Golshahi, Laleh; Behara, Srinivas R.B.; Tian, Geng; Farkas, Dale R.; Hindle, Michael

    2015-01-01

    Abstract Purpose: Delivering aerosols to the lungs through the nasal route has a number of advantages, but its use has been limited by high depositional loss in the extrathoracic airways. The objective of this study was to evaluate the nose-to-lung (N2L) delivery of excipient enhanced growth (EEG) formulation aerosols generated with a new inline dry powder inhaler (DPI). The device was also adapted to enable aerosol delivery to a patient simultaneously receiving respiratory support from high flow nasal cannula (HFNC) therapy. Methods: The inhaler delivered the antibiotic ciprofloxacin, which was formulated as submicrometer combination particles containing a hygroscopic excipient prepared by spray-drying. Nose-to-lung delivery was assessed using in vitro and computational fluid dynamics (CFD) methods in an airway model that continued through the upper tracheobronchial region. Results: The best performing device contained a 2.3 mm flow control orifice and a 3D rod array with a 3-4-3 rod pattern. Based on in vitro experiments, the emitted dose from the streamlined nasal cannula had a fine particle fraction <5 μm of 95.9% and mass median aerodynamic diameter of 1.4 μm, which was considered ideal for nose-to-lung EEG delivery. With the 2.3-343 device, condensational growth in the airways increased the aerosol size to 2.5–2.7 μm and extrathoracic deposition was <10%. CFD results closely matched the in vitro experiments and predicted that nasal deposition was <2%. Conclusions: The developed DPI produced high efficiency aerosolization with significant size increase of the aerosol within the airways that can be used to enable nose-to-lung delivery and aerosol administration during HFNC therapy. PMID:25192072

  6. Differentiation "in vitro" of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation.

    PubMed

    Moscoso, I; Centeno, A; López, E; Rodriguez-Barbosa, J I; Santamarina, I; Filgueira, P; Sánchez, M J; Domínguez-Perles, R; Peñuelas-Rivas, G; Domenech, N

    2005-01-01

    Cell transplantation to regenerate injured tissues is a promising new treatment for patients suffering several diseases. Bone marrow contains a population of progenitor cells known as mesenchymal stem cells (MSCs), which have the capability to colonize different tissues, replicate, and differentiate into multilineage cells. Our goal was the isolation, characterization, and immortalization of porcine MSCs (pMSCs) to study their potential differentiation "in vitro" into cardiomyocytes. pMSCs were obtained from the aspirated bone marrow of Large-White pigs. After 4 weeks in culture, adherent cells were phenotypically characterized by flow cytometry and immunochemistry by using monoclonal antibodies. Primary pMSCs were transfected with the plasmid pRNS-1 to obtain continuous growing cloned cell lines. Fresh pMSCs and immortalized cells were treated with 5-azacytidine to differentiate them into cardiomyocytes. Flow cytometry analysis of isolated pMSCs demonstrated the following phenotype, CD90(pos), CD29(pos), CD44(pos), SLA-I(pos), CD106(pos), CD46(pos) and CD45(neg), CD14(neg), CD31(neg), and CD11b(neg), similar to that described for human MSC. We derived several stable immortalized MSC cell lines. One of these, called pBMC-2, was chosen for further characterization. After "in vitro" stimulation of both primary or immortalized cells with 5-azacytidine, we obtained different percentages (30%-50%) of cells with cardiomyocyte characteristics, namely, positive for alpha-Actin and T-Troponin. Thus, primary or immortalized pMSCs derived from bone marrow and cultured were able to differentiate "ex vivo" into cardiac-like muscle cells. These elements may be potentials tools to improve cardiac function in a swine myocardial infarct model.

  7. A new Doppler-echo method to quantify regurgitant volume.

    PubMed

    Wang, S S; Rubenstein, J J; Goldman, M; Sidd, J J

    1992-01-01

    An in vitro technique using color flow imaging and continuous wave Doppler was developed to measure the initial regurgitant flow jet diameter and velocity integral to yield the parameters for a volume calculation. Jets were produced by volume-controlled injection through tubes of various diameters (1.3, 1.9, 2.8, and 3.5 mm) to deliver volumes from 1 to 7 ml over 100 to 300 msec at pressures from 40 to 200 mm Hg. One hundred forty-five samples were obtained. Flow jet diameter consistently overestimated tube diameter by 2 mm when injected volume was 1.5 to 7 ml and by 1.5 mm when injected volume was less than 1.5 ml. This offset was stable with various transducers (2.5, 3.5, 5.0 MHz) at normal gain setting (just under noise). Therefore, corrected flow jet diameter (FJD) = FJD - 2 mm, and Doppler volume = corrected flow jet area x velocity integral. A range of injectates from 1.1 to 7 ml generated Doppler volume of 1.0 to 8.2 ml. The relation between Doppler volume (DV) and injected volume (IV) was DV = 1.079 IV - 0.22, r2 = 0.945, p less than 0.01. This relation was not altered by tube diameter. Thus a method combining color flow imaging and continuous wave Doppler provides a reliable and accurate measure of in vitro flow volume.

  8. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.

    PubMed

    Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué

    2017-10-01

    Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.

  9. Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model

    NASA Astrophysics Data System (ADS)

    Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal

    2018-03-01

    The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.

  10. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  11. Volumetric PIV in Patient-Specific Cerebral Aneurysm

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa; Dickerhoff, Ben; Saloner, David; Rayz, Vitaliy; Vlachos, Pavlos

    2016-11-01

    Cerebral aneurysms impose a unique challenge in which neurosurgeons must assess and decide between the risk of rupture and risk of treatment for each patient. Risk of rupture is often difficult to determine and most commonly assessed using geometric data including the size and shape of the aneurysm and parent vessel. Hemodynamics is thought to play a major role in the growth and rupture of a cerebral aneurysm, but its specific influence is largely unknown due to the inability of in vivo modalities to characterize detailed flow fields and limited in vitro studies. In this work, we use a patient-specific basilar tip aneurysm model and volumetric particle image velocimetry (PIV). In vivo, 4-D PC-MRI measurements were obtained for this aneurysm and the extracted pulsatile waveform was used for the in vitro study. Clinically relevant metrics including wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), 3-D pressure contours, and pressure wave speed were subsequently computed. This is the first study to investigate in vitro 3-D pressure fields within a cerebral aneurysm. The results of this study demonstrate how these metrics influence the biomechanics of the aneurysm and ultimately their affect on the risk of rupture.

  12. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  13. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.

    PubMed

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-01-15

    Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use. This study addresses the impact of anticoagulant on altering the extent of the previously observed protein corona-induced adhesion reduction of vascular-targeted drug carriers in human blood flows. Specifically, serum blood flow (no anticoagulant) magnifies the negative effect of the plasma protein corona on drug carrier adhesion relative to citrated or heparinized blood flows. Overall, the results from this work suggest that serum better predicts targeted drug carrier adhesion efficiency in vivo compared to anticoagulant containing plasma. Furthermore, this study offers critical insight into the importance of how the choice of anticoagulant can greatly affect drug delivery-related processes in vitro. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers.

    PubMed

    Primavera, Rosita; Palumbo, Paola; Celia, Christian; Cinque, Benedetta; Carata, Elisabetta; Carafa, Maria; Paolino, Donatella; Cifone, Maria Grazia; Di Marzio, Luisa

    2018-06-01

    PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Growing Three-Dimensional Corneal Tissue in a Bioreactor

    NASA Technical Reports Server (NTRS)

    Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.

    2003-01-01

    Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.

  16. Low pressure ultraviolet studies for inactivation of Giardia muris cysts.

    PubMed

    Hayes, S L; Rice, E W; Ware, M W; Schaefer, F W

    2003-01-01

    The research was initiated to confirm earlier ultraviolet (u.v.) light inactivation studies performed on Giardia cysts using excystation as the viability indicator. Following this, a comparison of in vitro excystation and animal infectivity was performed for assessing cyst viability after exposure to low-pressure u.v. irradiation. Cysts of Giardia muris were inactivated using a low-pressure u.v. light source. Giardia muris was employed as a surrogate for the human pathogen Giardia lamblia. Cyst viability was determined by both in vitro excystation and animal infectivity. Cyst doses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excystation as the viability indicator, fluences as high as approximately 200 mJ cm(-2) did not prevent some cysts from excysting, thus verifying earlier work. Using animal infectivity, u.v. fluences of 1.4, 1.9 and 2.3 mJ cm(-2) yielded log10 reductions ranging from 0.3 to >or= 4.4. Results indicate that in vitro excystation is not a reliable indicator of G. muris cyst viability after u.v. disinfection. Very low doses of u.v. light rendered G. muris cysts non-infective in the mouse model employed. Data presented represent the only complete u.v. inactivation curve for G. muris. This research provides evidence that u.v. can be an effective barrier against Giardia spp. in the treatment of drinking water supplies.

  17. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro.

    PubMed

    Sun, Liping; Li, Dong; Song, Kun; Wei, Jianlu; Yao, Shu; Li, Zhao; Su, Xuantao; Ju, Xiuli; Chao, Lan; Deng, Xiaohui; Kong, Beihua; Li, Li

    2017-05-31

    Human umbilical cord mesenchymal stem cells (huMSCs) can treat primary ovarian insufficiency (POI) related to ovarian granulosa cell (OGC) apoptosis caused by cisplatin chemotherapy. Exosomes are a class of membranous vesicles with diameters of 30-200 nm that are constitutively released by eukaryotic cells. Exosomes mediate local cell-to-cell communication by transferring microRNAs and proteins. In the present study, we demonstrated the effects of exosomes derived from huMSCs (huMSC-EXOs) on a cisplatin-induced OGC model in vitro and discussed the preliminary mechanisms involved in these effects. We successfully extracted huMSC-EXOs from huMSC culture supernatant and observed the effective uptake of exosomes by cells with fluorescent staining. Using flow cytometry (with annexin-V/PI labelling), we found that huMSC-EXOs increased the number of living cells. Western blotting showed that the expression of Bcl-2 and caspase-3 were upregulated, whilst the expression of Bax, cleaved caspase-3 and cleaved PARP were downregulated to protect OGCs. These results suggest that huMSC-EXOs can be used to prevent and treat chemotherapy-induced OGC apoptosis in vitro. Therefore, this work provides insight and further evidence of stem cell function and indicates that huMSC-EXOs protect OGCs from cisplatin-induced injury in vitro.

  18. Accuracy of Phase-Contrast Velocity Mapping Proximal and Distal to Stent Artifact During Cardiac Magnetic Resonance Imaging.

    PubMed

    Avitabile, Catherine M; Harris, Matthew A; Doddasomayajula, Ravi S; Chopski, Steven G; Gillespie, Matthew J; Dori, Yoav; Glatz, Andrew C; Fogel, Mark A; Whitehead, Kevin K

    2018-06-15

    Little data are available on the accuracy of phase-contrast magnetic resonance imaging (PC-MRI) velocity mapping in the vicinity of intravascular metal stents other than nitinol stents. Therefore, we sought to determine this accuracy using in vitro experiments. An in vitro flow phantom was used with 3 stent types: (1) 316L stainless steel, (2) nitinol self-expanding, and (3) platinum-iridium. Steady and pulsatile flow was delivered with a magnetic resonance imaging-compatible pump (CardioFlow 5000, Shelley Medical, London, Ontario, Canada). Flows were measured using a transit time flow meter (ME13PXN, Transonic, Inc, Ithaca, New York). Mean flows ranged from 0.5 to 7 L/min. For each condition, 5 PC-MRI acquisitions were made: within the stent, immediately adjacent to both edges of the stent artifact, and 1 cm upstream and downstream of the artifact. Mean PC-MRI flows were calculated by segmenting the tube lumen using clinical software (ARGUS, Siemens, Inc, Erlangen, Germany). PC-MRI and flow meter flows were compared by location and stent type using linear regression, Bland-Altman, and intraclass correlation (ICC). PC-MRI flows within the stent artifact were inaccurate for all stents studied, generally underestimating flow meter-measured flow. Agreement between PC-MRI and flow meter-measured flows was excellent for all stent types, both immediately adjacent to and 1 cm away from the edge of the stent artifact. Agreement was highest for the platinum-iridium stent (R = 0.999, ICC = 0.999) and lowest for the nitinol stent (R = 0.993, ICC = 0.987). In conclusion, PC-MRI flows are highly accurate just upstream and downstream of a variety of clinically used stents, supporting its use to directly measure flows in stented vessels. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat.

    PubMed

    Fujita, M; Hong, K; Ito, Y; Fujii, R; Kariya, K; Nishimuro, S

    1995-10-01

    Nattokinase is a new fibrinolytic enzyme which cleaves directly cross-linked fibrin in vitro. In this study, we investigated the thrombolytic effect of nattokinase on a thrombus in the common carotid artery of rat in which the endothelial cells of the vessel wall were injured by acetic acid. When a section of occluded vessel was stained for CD61 antigen by immunofluorescence utilizing a monoclonal antibody, the antigen was localized around the surface of the occluded blood vessels. This result suggests that the occlusive thrombosis was caused by platelet aggregation. In addition, thrombolysis with urokinase (UK; 50000 IU/kg, i.v.) or tissue plasminogen activator (tPA; 13300 IU/kg, i.v.) in our model was observed to restore the blood flow over a 60 min monitoring period. The results indicate that our chemically induced model is useful for screening and evaluating a thrombolytic agent. We evaluated the thrombolytic activity of nattokinase using this model and compared it with fibrino(geno)lytic enzyme, plasmin or elastase. On a molar basis, the recovery of the arterial blood flow with nattokinase, plasmin and elastase were 62.0 +/- 5.3%, 15.8 +/- 0.7% and 0%, respectively. The results indicate that the thrombolytic activity of nattokinase is stronger than that of plasmin or elastase in vivo.

  20. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth.

    PubMed

    Martin, Michelle D; Fingleton, Barbara; Lynch, Conor C; Wells, Sam; McIntyre, J Oliver; Piston, David W; Matrisian, Lynn M

    2008-01-01

    The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.

  1. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children.

    PubMed

    Grimaldi, Roberta; Cela, Drinalda; Swann, Jonathan R; Vulevic, Jelena; Gibson, Glenn R; Tzortzis, George; Costabile, Adele

    2017-02-01

    Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1 H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. © FEMS 2016.

  2. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

    PubMed Central

    Cela, Drinalda; Swann, Jonathan R.; Vulevic, Jelena; Gibson, Glenn R.; Tzortzis, George; Costabile, Adele

    2016-01-01

    Abstract Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. PMID:27856622

  3. Performance of dry powder inhalers with single dosed capsules in preschool children and adults using improved upper airway models.

    PubMed

    Lindert, Sandra; Below, Antje; Breitkreutz, Joerg

    2014-02-06

    The pulmonary administration of pharmaceutical aerosols to patients is affected by age-dependent variations in the anatomy of the upper airways and the inhalation pattern. Considering this aspect, different upper airway models, representing the geometries of adults and preschool children, and a conventional induction port according to the European Pharmacopeia were used for in vitro testing of dry powder inhalers with single dosed capsules (Cyclohaler®, Handihaler® and Spinhaler®). Deposition measurements were performed using steady flow rates of 30 and 60 L/min for the Handihaler®/Spinhaler® and 30, 60 and 75 L/min for the Cyclohaler®. The inhalation volume was set at 1 L. For the Cyclohaler®, the in vitro testing was supplemented by a pediatric inhalation profile. Slight differences of pulmonary deposition between the idealized adult (11%-15%) and pediatric (9%-11%) upper airway model were observed for the Cyclohaler®. The applied pediatric inhalation profile resulted in a reduction of pulmonary deposition by 5% compared to steady conditions and indicated the influence of the inhalation pattern on the amount of pulmonary deposited particles. The comparison of two pediatric upper airway models showed no differences. The performance of the Handihaler® was similar to the Cyclohaler®. The Spinhaler® showed an insufficient performance and limited reproducibility in our investigations.

  4. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    NASA Astrophysics Data System (ADS)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  5. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.

    PubMed

    Longest, P Worth; Vinchurkar, Samir

    2007-04-01

    A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.

  6. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes.

    PubMed

    Yu, Kai; Andruschak, Paula; Yeh, Han Hung; Grecov, Dana; Kizhakkedathu, Jayachandran N

    2018-06-01

    The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. In vitro reconstruction of hybrid vascular tissue. Hierarchic and oriented cell layers.

    PubMed

    Kanda, K; Matsuda, T; Oka, T

    1993-01-01

    Hybrid vascular tissue was hierarchically reconstructed in vitro. A hybrid medial layer composed of type I collagen gel, in which SMCs derived from a mongrel dog were embedded, was formed on the inner surface of a compliant porous polyurethane graft (internal diameter = 3 mm). Endothelial cells (ECs) from the same animal were seeded and cultured on the hybrid media to build an intimal layer. Subsequently, hierarchically structured grafts constructed in this manner were subjected to pulsatile flow (flow rate: 8.5 ml/min; frequency: 60 rpm; amplitude: 5% of graft outer diameter) of culture medium (Medium 199 supplemented with 20% fetal calf serum). After stress loading for as long as 10 days, tissues were morphologically investigated with a light microscope and a scanning electron microscope. Inner surfaces of the hybrid tissues were covered with EC monolayers that aligned along the direction of the flow (i.e., longitudinally). However, SMCs beneath the intima aligned in the circumferential direction. These cellular orientations resembled those in native muscular arteries. The pulsatile stress loaded hybrid tissue mimicked native muscular arteries with respect to hierarchic structure and cellular orientation. In vitro mechanical stress loading on a hybrid graft might provide a high degree of integrity in terms of tissue structure that promises high tolerance toward hydrodynamic stress and regulation of vasomotor tone upon implantation.

  8. Optical diagnostics of osteoblast cells and osteogenic drug screening

    NASA Astrophysics Data System (ADS)

    Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.

    2016-02-01

    Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.

  9. [Isolation and identification of human periodontal ligament stem cells in vitro].

    PubMed

    Shen, Tao; Chang, Hui-jun; Jian, Cong-xiang; Yang, Yan-chun; Zhou, Ji-xiang

    2011-02-01

    To isolate and identify human periodontal ligament stem cells (PDLSC) by improved methods and assess the characteristics of PDLSC ex vivo. The periodontal ligament cells were obtained from the healthy impacted third molars and teeth extracted for orthodontic purposes and used to isolate PDLSC by limiting dilution assay. PDLSC were cultured and expanded in alpha-MEM supplemented with 10% FBS. Colony-forming assay, immunohistochemistry, flow cytometry, osteogenic and adipogenic induction were used to identify PDLSC. The obtained cells had high colony-forming efficiency and were positive staining for vimentin and negative for pancytokeratin. Flow cytometry revealed that the isolated cells were positive for STRO-1 and CD146 antibodies and most were in the G0/G1 phase of cell cycle. Under specific conditions, they could differentiate to the osteoblast and adipocyte lineages in vitro. Limiting dilution assay is an effective method to isolate PDLSC and the single-cell-derived colonies demonstrate the properties of stem cells in vitro.

  10. Physical effects at the cellular level under altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1992-01-01

    Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.

  11. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters

    PubMed Central

    Feng, Qiang; Zhang, Lu; Liu, Chao; Li, Xuanyu; Hu, Guoqing; Sun, Jiashu; Jiang, Xingyu

    2015-01-01

    Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the flow rates inside the two-stage microfluidic chip. To elucidate the mechanism of size-controllable generation of hybrid NPs, we observe the flow field in the microchannel with confocal microscope and perform the simulation by a numerical model. Both the experimental and numerical results indicate an enhanced mixing effect at high flow rate, thus resulting in the assembly of small and mono-disperse hybrid NPs. In vitro experiments show that the large hybrid NPs are more likely to be aggregated in serum and exhibit a lower cellular uptake efficacy than the small ones. This microfluidic chip shows great promise as a robust platform for optimization of nano drug delivery system. PMID:26180574

  12. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    NASA Astrophysics Data System (ADS)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  13. Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  14. Control volume based hydrocephalus research

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  15. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.

    PubMed

    de Vries, Martinus P; Hamburg, Marc C; Schutte, Harm K; Verkerke, Gijsbertus J; Veldman, Arthur E P

    2003-04-01

    Surgical removal of the larynx results in radically reduced production of voice and speech. To improve voice quality a voice-producing element (VPE) is developed, based on the lip principle, called after the lips of a musician while playing a brass instrument. To optimize the VPE, a numerical model is developed. In this model, the finite element method is used to describe the mechanical behavior of the VPE. The flow is described by two-dimensional incompressible Navier-Stokes equations. The interaction between VPE and airflow is modeled by placing the grid of the VPE model in the grid of the aerodynamical model, and requiring continuity of forces and velocities. By applying and increasing pressure to the numerical model, pulses comparable to glottal volume velocity waveforms are obtained. By variation of geometric parameters their influence can be determined. To validate this numerical model, an in vitro test with a prototype of the VPE is performed. Experimental and numerical results show an acceptable agreement.

  16. Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Smith, Jordan N.

    2009-11-15

    A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial base-line determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript described an alternative strategy where reactivation of the phosphorylatedmore » enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (i.e. after reactivation) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity and at low potentials. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements.« less

  17. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay.

    PubMed

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Bauer-Brandl, Annette; Brandl, Martin

    2016-06-28

    Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated with liposome bilayers even upon extensive dilution. Upon i.v. injection, in contrast, rapid drug loss often occurs due to drug transfer from the liposomal carriers to endogenous lipophilic sinks such as lipoproteins, plasma proteins or membranes of red blood cells and endothelial cells. Here we report on the application of a recently introduced in vitro predictive drug transfer assay based on incubation of the liposomal drug carrier with large multilamellar liposomes, the latter serving as a biomimetic model sink, using flow field-flow fractionation as a tool to separate the two types of liposomes. By quantifying the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, both the kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine). p-THPP is structurally similar to temoporfin, a photosensitizer which is under clinical evaluation in a liposomal formulation. Mechanistic insights were gained by varying the donor-to-acceptor lipid mass ratio, size and lamellarity of the liposomes. Drug transfer kinetics from one liposome to another was found rate determining as compared to redistribution from the outermost to the inner concentric bilayers, such that the overall process could be adequately described by a single 1st order kinetic model. By varying the donor-to-acceptor lipid mass ratio in the range 1:1 to 1:10, a correlation was established between donor-to-acceptor-lipid mass ratio and transfer kinetics, which is regarded essential for scaling to physiological lipid mass ratios. By applying the assay to a series of structurally related model compounds of different bilayer affinity, transfer and release kinetics were established over the whole expected range of liposome bilayer associated drugs in terms of water solubility and lipophilicity. A very rapid transfer and considerable release from liposomes to the water phase was observed for the more water-soluble compounds Sudan II (clogP 5.45) and Sudan III (clogP 6.83). For the more lipophilic compounds, the rate of transfer from the donor liposomes followed the rank order Sudan IV (fastest)>Oil Red O>Sudan Black>p-THPP (slowest). For an equimolar donor-to-acceptor lipid mass ratio, half-lifes of transfer in the range of 12min (Sudan IV) up to 1.5h (p-THPP) were determined. In essence, the results presented here allow for both, mechanistic insights and predictions of drug loss from liposomal carriers upon exposure to biological sinks, which appear more realistic than the commonly employed in vitro release tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hypoxia-induced autophagy is inhibited by PADI4 knockdown, which promotes apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis

    PubMed Central

    Fan, Tingting; Zhang, Changsong; Zong, Ming; Fan, Lieying

    2018-01-01

    Impaired apoptosis of rheumatoid arthritis (RA)-fibroblast-like synoviocytes (FLS) is pivotal in the process of RA. Peptidyl arginine deiminase type IV (PADI4) is associated with autoantibody regulation via histone citrullination in RA. The present study aimed to investigate the role of PADI4 in the apoptosis of RA-FLS. FLS were isolated from patients with RA and a rat model. The effects of PADI4 on RA-FLS were investigated in vitro and in vivo. Hypoxia-induced autophagy was induced by 1% O2 and was detected by immunohistochemical and immunofluorescence analysis; in addition, apoptosis was detected by flow cytometry. RA-FLS obtained from RA rat model exhibited significant proliferation under severe hypoxia conditions. Hypoxia also significantly induced autophagy and elevated the expression of PADI4. Subsequently, short hairpin RNA-mediated PADI4 knockdown was demonstrated to significantly inhibit hypoxia-induced autophagy and promote apoptosis in RA-FLS. The results of these in vitro and in vivo studies suggested that PADI4 may be closely associated with hypoxia-induced autophagy, and the inhibition of hypoxia-induced autophagy by PADI4 knockdown may contribute to an increase in the apoptosis of RA-FLS. PMID:29393388

  19. A first vascularized skin equivalent as an alternative to animal experimentation.

    PubMed

    Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.

  20. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function.

    PubMed

    Li, Xiaocong; Jiang, Chunyu; Zhao, Jungong

    2016-08-01

    Wound healing is deeply dependent on neovascularization to restore blood flow. The neovascularization of endothelial progenitor cells (EPCs) through paracrine secretion has been reported in various tissue repair models. Exosomes, key components of cell paracrine mechanism, have been rarely reported in wound healing. Exosomes were isolated from the media of EPCs obtained from human umbilical cord blood. Diabetic rats wound model was established and treated with exosomes. The in vitro effects of exosomes on the proliferation, migration and angiogenic tubule formation of endothelial cells were investigated. We revealed that human umbilical cord blood EPCs derived exosomes transplantation could accelerate cutaneous wound healing in diabetic rats. We also showed that exosomes enhanced the proliferation, migration and tube formation of vascular endothelial cells in vitro. Furthermore, we found that endothelial cells stimulated with these exosomes would increase expression of angiogenesis-related molecules, including FGF-1, VEGFA, VEGFR-2, ANG-1, E-selectin, CXCL-16, eNOS and IL-8. Taken together, our findings indicated that EPCs-derived exosomes facilitate wound healing by positively modulating vascular endothelial cells function. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    PubMed

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold.

    PubMed

    Zhao, Feihu; Vaughan, Ted J; Mcnamara, Laoise M

    2015-04-01

    Recent studies have shown that mechanical stimulation, by means of flow perfusion and mechanical compression (or stretching), enhances osteogenic differentiation of mesenchymal stem cells and bone cells within biomaterial scaffolds in vitro. However, the precise mechanisms by which such stimulation enhances bone regeneration is not yet fully understood. Previous computational studies have sought to characterise the mechanical stimulation on cells within biomaterial scaffolds using either computational fluid dynamics or finite element (FE) approaches. However, the physical environment within a scaffold under perfusion is extremely complex and requires a multiscale and multiphysics approach to study the mechanical stimulation of cells. In this study, we seek to determine the mechanical stimulation of osteoblasts seeded in a biomaterial scaffold under flow perfusion and mechanical compression using multiscale modelling by two-way fluid-structure interaction and FE approaches. The mechanical stimulation, in terms of wall shear stress (WSS) and strain in osteoblasts, is quantified at different locations within the scaffold for cells of different attachment morphologies (attached, bridged). The results show that 75.4 % of scaffold surface has a WSS of 0.1-10 mPa, which indicates the likelihood of bone cell differentiation at these locations. For attached and bridged osteoblasts, the maximum strains are 397 and 177,200 με, respectively. Additionally, the results from mechanical compression show that attached cells are more stimulated (maximum strain = 22,600 με) than bridged cells (maximum strain = 10.000 με)Such information is important for understanding the biological response of osteoblasts under in vitro stimulation. Finally, a combination of perfusion and compression of a tissue engineering scaffold is suggested for osteogenic differentiation.

  3. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery.

    PubMed

    Beekers, Ines; van Rooij, Tom; Verweij, Martin D; Versluis, Michel; de Jong, Nico; Trietsch, Sebastiaan J; Kooiman, Klazina

    2018-04-01

    Ultrasound in the presence of gas-filled microbubbles can be used to enhance local uptake of drugs and genes. To study the drug delivery potential and its underlying physical and biological mechanisms, an in vitro vessel model should ideally include 3-D cell culture, perfusion flow, and membrane-free soft boundaries. Here, we propose an organ-on-a-chip microfluidic platform to study ultrasound-mediated drug delivery: the OrganoPlate. The acoustic propagation into the OrganoPlate was determined to assess the feasibility of controlled microbubble actuation, which is required to study the microbubble-cell interaction for drug delivery. The pressure field in the OrganoPlate was characterized non-invasively by studying experimentally the well-known response of microbubbles and by simulating the acoustic wave propagation in the system. Microbubble dynamics in the OrganoPlate were recorded with the Brandaris 128 ultrahigh-speed camera (17 million frames/s) and a control experiment was performed in an OptiCell, an in vitro monolayer cell culture chamber that is conventionally used to study ultrasound-mediated drug delivery. When insonified at frequencies between 1 and 2 MHz, microbubbles in the OrganoPlate experienced larger oscillation amplitudes resulting from higher local pressures. Microbubbles responded similarly in both systems when insonified at frequencies between 2 and 4 MHz. Numerical simulations performed with a 3-D finite-element model of ultrasound propagation into the OrganoPlate and the OptiCell showed the same frequency-dependent behavior. The predictable and homogeneous pressure field in the OrganoPlate demonstrates its potential to develop an in vitro 3-D cell culture model, well suited to study ultrasound-mediated drug delivery.

  5. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    PubMed

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  6. In vivo imaging of endothelial cell adhesion molecule expression after radiosurgery in an animal model of arteriovenous malformation.

    PubMed

    Raoufi-Rad, Newsha; McRobb, Lucinda S; Lee, Vivienne S; Bervini, David; Grace, Michael; Ukath, Jaysree; Mchattan, Joshua; Sreenivasan, Varun K A; Duong, T T Hong; Zhao, Zhenjun; Stoodley, Marcus A

    2017-01-01

    Focussed radiosurgery may provide a means of inducing molecular changes on the luminal surface of diseased endothelium to allow targeted delivery of novel therapeutic compounds. We investigated the potential of ionizing radiation to induce surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells (EC) in vitro and in vivo, to assess their suitability as vascular targets in irradiated arteriovenous malformations (AVMs). Cultured brain microvascular EC were irradiated by linear accelerator at single doses of 0, 5, 15 or 25 Gy and expression of ICAM-1 and VCAM-1 measured by qRT-PCR, Western, ELISA and immunocytochemistry. In vivo, near-infrared (NIR) fluorescence optical imaging using Xenolight 750-conjugated ICAM-1 or VCAM-1 antibodies examined luminal biodistribution over 84 days in a rat AVM model after Gamma Knife surgery at a single 15 Gy dose. ICAM-1 and VCAM-1 were minimally expressed on untreated EC in vitro. Doses of 15 and 25 Gy stimulated expression equally; 5 Gy was not different from the unirradiated. In vivo, normal vessels did not bind or retain the fluorescent probes, however binding was significant in AVM vessels. No additive increases in probe binding were found in response to radiosurgery at a dose of 15 Gy. In summary, radiation induces adhesion molecule expression in vitro but elevated baseline levels in AVM vessels precludes further induction in vivo. These molecules may be suitable targets in irradiated vessels without hemodynamic derangement, but not AVMs. These findings demonstrate the importance of using flow-modulated, pre-clinical animal models for validating candidate proteins for vascular targeting in irradiated AVMs.

  7. Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    PubMed Central

    Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes. PMID:22479332

  8. Rapid activation of endothelial cells enables P. falciparum adhesion to platelet decorated von Willebrand factor strings

    PubMed Central

    Bridges, Daniel J.; Bunn, James; van Mourik, Jan A.; Grau, Georges; Preston, Roger J.S.; Molyneux, Malcolm; Combes, Valery; O'Donnell, James S.; de Laat, Bas; Craig, Alister

    2009-01-01

    During Plasmodium falciparum malaria infections, von Willebrand factor (VWF) levels are elevated, post-mortem studies show platelets co-localised with sequestered infected erythrocytes (IE) at brain microvascular sites, while in vitro studies have demonstrated platelet-mediated IE adhesion to TNF-activated brain endothelium via a bridging mechanism. This current study demonstrates how all these observations could be linked through a completely novel mechanism whereby IE adhere via platelet decorated ultra-large VWF strings on activated endothelium. Using an in vitro laminar flow model, we have demonstrated tethering and firm adhesion of IE to the endothelium specifically at sites of platelet accumulation. We also show that an IE pro-adhesive state, capable of supporting high levels of binding within minutes of induction can be removed through the action of the VWF protease ADAMTS-13. We propose that this new mechanism contributes to sequestration both independently of and in concert with current adhesion mechanisms. PMID:19897581

  9. Antithrombotic effect and mechanism of Rubus spp. Blackberry.

    PubMed

    Xie, Pingyao; Zhang, Yong; Wang, Xuebiao; Wei, Jinfeng; Kang, Wenyi

    2017-05-24

    The compounds of Rubus spp. Blackberry (RSB) were isolated and identified by a bioassay-guided method, and their antithrombotic effects and mechanism were investigated with the acute blood stasis rat model. The RSB extract was evaluated by activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), and fibrinogen (FIB) assays in vitro. Results indicated that RSB extract exhibited anticoagulant activity. In addition to compounds 1 and 6, the other compounds also exhibited anticoagulant activity in vitro. Therefore, the in vivo antithrombosis effects of RSB extract were investigated by measuring whole blood viscosity (WBV), plasma viscosity (PV), APTT, PT, TT, and FIB. Meanwhile, the levels of thromboxane B2 (TXB 2 ), 6-keto prostaglandin F1α (6-keto-PGF1α), endothelial nitric oxide synthase (eNOS) and ET-1 (endothelin-1) were measured. Results suggested that RSB extract had inhibitory effects on thrombus formation, and its antithrombotic effects were associated with the regulation of vascular endothelium active substance, activation of blood flow and an anticoagulation effect.

  10. In vitro osteogenesis of human stem cells by using a three-dimensional perfusion bioreactor culture system: a review.

    PubMed

    Ceccarelli, Gabriele; Bloise, Nora; Vercellino, Marco; Battaglia, Rosalia; Morgante, Lucia; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia

    2013-04-01

    Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.

  11. Investigating the in-vitro and in-vivo flavour release from 21 fresh-cut apples.

    PubMed

    Ting, Valentina J L; Romano, Andrea; Soukoulis, Christos; Silcock, Patrick; Bremer, Phil J; Cappellin, Luca; Biasioli, Franco

    2016-12-01

    In-vitro and in-vivo flavour release from 21 different apple cultivars was studied using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) with a focus on the relationship between texture and volatile organic compound (VOC) emission. Generally, firm-juicy cultivars had a shorter time to first swallow (Tswal) and a higher number of swallows (Nswal), while softer-mealy cultivars had a longer Tswal and a lower Nswal. Firm-juicy cultivars containing high VOC concentrations had a short time to maximum intensity (Tmax) owing to a shorter Tswal and a higher Nswal as juice was released during mastication. Swallowing increased VOC flow through the nasal cavity. These results differ from previous flavour release studies with gel/gel-like model systems as juiciness/release of fluids is not a factor in such matrices. The current study, therefore, highlights the benefits of using in-vivo analysis to gain a better understanding of flavour release in real food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    PubMed

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Numerical investigation of the effects of channel geometry on platelet activation and blood damage.

    PubMed

    Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P

    2011-02-01

    Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.

  14. [In vitro interaction of human pancreatic cancer cells and rat dorsal root ganglia: a co-culture model].

    PubMed

    Liu, Zhi-sheng; Wang, Ye; Li, Qiang; Zhang, Sheng-lin; Shi, Yu-rong

    2012-04-01

    To establish an in vitro model of perineural invasion (PNI) with co-culture of human pancreatic cancer cells and rat root ganglion, to observe the neurite outgrowth and pancreatic cancer cell proliferation and migration, and to explore the molecular basis of perineural invasion (PNI) of pancreatic cancer. Human pancreatic cancer cell line (MIA PaCa-2) and rat dorsal root ganglion (DRG) were co-cultured in Matrigel matrix to generate the PNI model. The neurite outgrowth, pancreatic cancer cell colony formation, neurite-colony contact and retrograde migration were observed under an inverted microscope. The data were analyzed with the Image-Pro Plus 5.0 system. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody. In order to determine the absorbance (A) of the pancreatic cancer cells, MTT assay was used. The apoptotic index (AI) was evaluated by flow cytometry. Neurite outgrowth was stimulated in the presence of pancreatic cancer cells. After 72 hours of the co-culture, MIA PaCa colonies co-cultured with DRG exhibited a significantly larger colony area (242.83 ± 4.92) than that of the control (182.50 ± 5.39, P < 0.001). In the MIA PaCa-2/DRG co-culture system, the neurites exhibited a trend of growing towards the pancreatic cancer cell colony. However, the pancreatic cancer cells showed a trend of retrogradely migrating to the DRG along the neurite outgrowth, when MIA PaCa-2 colonies touched the DRG. The positive rate of Ki-67 nuclear antigen was significantly higher than in the co-culture group. The PI value was higher in the experimental group (12.80%) than that in the control group (6.81%, P < 0.01). The MTT assay showed that proliferation of the pancreatic cancer cells was more active than that in the control group. Flow cytometry analysis showed that the apoptosis rate of the pancreatic cancer cell was 2.46%, significantly lower than that of the control group (4.89%, P < 0.001). An in vitro co-culture model of rat dorsal root ganglion and human pancreatic cancer cell line is successfully established in this study. This MIA PaCa-2/DRG co-culture system demonstrates that the neural-pancreatic carcinoma cell interaction is a mutually beneficial process for the growth of neurites and pancreatic carcinoma cells. The pancreatic cancer cells show a trend of migrating to the DRG along the neurite outgrowth.

  15. In vitro Flow Adhesion Assay for Analyzing Shear-resistant Adhesion of Metastatic Cancer Cells to Endothelial Cells.

    PubMed

    Kang, Shin-Ae; Bajana, Sandra; Tanaka, Takemi

    2016-02-20

    Hematogenous metastasis is a primary cause of mortality from metastatic cancer. The shear-resistant adhesion of circulating tumor cells to the vascular endothelial cell surface under blood flow is an essential step in cell extravasation and further tissue invasion. This is similar to a process exploited by leukocytes for adhesion to inflamed blood vessels (leukocyte mimicry). The shear resistant adhesion is mediated by high affinity interactions between endothelial adhesion molecules and their counter receptor ligand expressed on circulating cells. Thus, weak interaction results in a rapid detachment of circulating cells from endothelium. Despite the critical role of vascular adhesion of cancer cells in hematogenous metastasis, our knowledge regarding this process has been limited due to the difficulty of mimicking dynamic flow conditions in vitro . In order to gain better insight into the shear-resistant adhesion of cancer cells to the endothelium, we developed a protocol for measuring the shear resistant adhesion of circulating tumor cells to endothelial cells under physiologic flow conditions by adapting a well established flow adhesion assay for inflammatory cells. This technique is useful to evaluate 1) the shear resistant adhesion competency of cancer cells and 2) the endothelial adhesion molecules necessary to support cancer cell adhesion (Kang et al. , 2015).

  16. A multipumping flow system for in vitro screening of peroxynitrite scavengers.

    PubMed

    Ribeiro, Marta F T; Dias, Ana C B; Santos, João L M; Fernandes, Eduarda; Lima, José L F C; Zagatto, Elias A G

    2007-09-01

    Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations.

  17. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. In Vitro and In Vivo Activity of IMGN853, an Antibody-Drug Conjugate Targeting Folate Receptor Alpha Linked to DM4, in Biologically Aggressive Endometrial Cancers.

    PubMed

    Altwerger, Gary; Bonazzoli, Elena; Bellone, Stefania; Egawa-Takata, Tomomi; Menderes, Gulden; Pettinella, Francesca; Bianchi, Anna; Riccio, Francesco; Feinberg, Jacqueline; Zammataro, Luca; Han, Chanhee; Yadav, Ghanshyam; Dugan, Katherine; Morneault, Ashley; Ponte, Jose F; Buza, Natalia; Hui, Pei; Wong, Serena; Litkouhi, Babak; Ratner, Elena; Silasi, Dan-Arin; Huang, Gloria S; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2018-05-01

    Grade 3 endometrioid and uterine serous carcinomas (USC) account for the vast majority of endometrial cancer deaths. The purpose of this study was to determine folic acid receptor alpha (FRα) expression in these biologically aggressive (type II) endometrial cancers and evaluate FRα as a targetable receptor for IMGN853 (mirvetuximab soravtansine). The expression of FRα was evaluated by immunohistochemistry (IHC) and flow cytometry in 90 endometrioid and USC samples. The in vitro cytotoxic activity and bystander effect were studied in primary uterine cancer cell lines expressing differential levels of FRα. In vivo antitumor efficacy of IMGN853 was evaluated in xenograft/patient-derived xenograft (PDX) models. Semiquantitative IHC analysis indicated that 41% of the USC patients overexpress FRα. Further, overexpression of FRα (i.e., 2+) was detected via flow cytometry in 22% (2/9) of primary endometrioid and in 27% (3/11) of primary USC cell lines. Increased cytotoxicity was seen with IMGN853 treatment compared with control in 2+ expressing uterine tumor cell lines. In contrast, tumor cell lines with low FRα showed no difference when exposed to IMGN853 versus control. IMGN853 induced bystander killing of FRα = 0 tumor cells. In an endometrioid xenograft model (END(K)265), harboring 2+ FRα, IMGN853 treatment showed complete resolution of tumors ( P < 0.001). Treatment with IMGN853 in the USC PDX model (BIO(K)1), expressing 2+ FRα, induced twofold increase in median survival ( P < 0.001). IMGN853 shows impressive antitumor activity in biologically aggressive FRα 2+ uterine cancers. These preclinical data suggest that patients with chemotherapy resistant/recurrent endometrial cancer overexpressing FRα may benefit from this treatment. Mol Cancer Ther; 17(5); 1003-11. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress.

    PubMed

    Benard, Nicolas; Coisne, Damien; Donal, Erwan; Perrault, Robert

    2003-07-01

    The stimulation of endothelial cells by arterial wall shear stress (WSS) plays a central role in restenosis. The fluid-structure interaction between stent wire and blood flow alters the WSS, particularly between stent struts. We have designed an in vitro model of struts of an intra-vascular prosthesis to study blood flow through a 'stented' section. The experimental artery consisted of a transparent square section test vein, which reproduced the strut design (100x magnifying power). A programmable pump was used to maintain a steady blood flow. Particle image velocimetry method was used to measure the flow between and over the stent branches, and to quantify WSS. Several prosthesis patterns that were representative of the total stent strut geometry were studied in a greater detail. We obtained WSS values of between -1.5 and 1.5Pa in a weak SS area which provided a source of endothelial stimulation propitious to restenosis. We also compared two similar patterns located in two different flow areas (one at the entry of the stent and one further downstream). We only detected a slight difference between the weakest SS levels at these two sites. As the endothelial proliferation is greatly influenced by the SS, knowledge of the SS modification induced by the stent implantation could be of importance for intra-vascular prostheses design optimisation and thus can help to reduce the restenosis incidence rate.

  20. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    PubMed

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  1. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  2. Prototype of an in vitro model of the microcirculation.

    PubMed

    Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W

    2003-03-01

    We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.

  3. Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.

    PubMed

    Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E

    2018-03-01

    Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Diffuse fluorescence fiber probe for in vivo detection of circulating cells

    NASA Astrophysics Data System (ADS)

    Pera, Vivian; Tan, Xuefei; Runnels, Judith; Sardesai, Neha; Lin, Charles P.; Niedre, Mark

    2017-03-01

    There has been significant recent interest in the development of technologies for enumeration of rare circulating cells directly in the bloodstream in many areas of research, for example, in small animal models of circulating tumor cell dissemination during cancer metastasis. We describe a fiber-based optical probe that allows fluorescence detection of labeled circulating cells in vivo in a diffuse reflectance configuration. We validated this probe in a tissue-mimicking flow phantom model in vitro and in nude mice injected with fluorescently labeled multiple myeloma cells in vivo. Compared to our previous work, this design yields an improvement in detection signal-to-noise ratio of 10 dB, virtually eliminates problematic motion artifacts due to mouse breathing, and potentially allows operation in larger animals and limbs.

  5. Right Ventricular Failure Post LVAD Implantation Corrected with Biventricular Support: An In Vitro Model.

    PubMed

    Shehab, Sajad; Allida, Sabine M; Davidson, Patricia M; Newton, Phillip J; Robson, Desiree; Jansz, Paul C; Hayward, Christopher S

    Right ventricular failure after left ventricular assist device (LVAD) implantation is associated with high mortality. Management remains limited to pharmacologic therapy and temporary mechanical support. Delayed right ventricular assist device (RVAD) support after LVAD implantation is associated with poorer outcomes. With the advent of miniaturized, durable, continuous flow ventricular assist device systems, chronic RVAD and biventricular assist device (BiVAD) support has been used with some success. The purpose of this study was to assess combined BiVAD and LVAD with delayed RVAD support within a four-elemental mock circulatory loop (MCL) simulating the human cardiovascular system. Our hypothesis was that delayed continuous flow RVAD (RVAD) would produce similar hemodynamic and flow parameters to those of initial BiVAD support. Using the MCL, baseline biventricular heart failure with elevated right and left filling pressures with low cardiac output was simulated. The addition of LVAD within a biventricular configuration improved cardiac output somewhat, but was associated with persistent right heart failure with elevated right-sided filling pressures. The addition of an RVAD significantly improved LVAD outputs and returned filling pressures to normal throughout the circulation. In conclusion, RVAD support successfully restored hemodynamics and flow parameters of biventricular failure supported with isolated LVAD with persistent elevated right atrial pressure.

  6. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device

    NASA Astrophysics Data System (ADS)

    Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung

    2016-02-01

    Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.

  8. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields

    PubMed Central

    Gomes, Bruno Alvares de Azevedo; Camargo, Gabriel Cordeiro; dos Santos, Jorge Roberto Lopes; Azevedo, Luis Fernando Alzuguir; Nieckele, Ângela Ourivio; Siqueira-Filho, Aristarco Gonçalves; de Oliveira, Glaucia Maria Moraes

    2017-01-01

    Background Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. Objective To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. Methods A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. Results The effective orifice at the -4º and -2º angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3º and +5º angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. Conclusion The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling. PMID:28793046

  9. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  10. In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL).

    PubMed

    Cao, Yachao; Hui, Xiaoying; Zhu, Hanjiang; Elmahdy, Akram; Maibach, Howard

    2018-07-01

    This study compared the efficiency for in vitro human skin decontamination using DDGel and RSDL. Experiments were performed using in vitro human skin models, in which skin was mounted onto Flow-Through diffusion cells. The mass of 14 -C CEES removed from skin surface after decontamination was quantitated by measuring radioactivity with a liquid scintillation spectrometer. Both decontaminants removed more than 82% of CEES from skin. DDGel skin decontamination significantly reduced toxicant amount when compared to RSDL. Mean CEES remaining in stratum corneum (SC), viable epidermis, dermis, and systemic absorption of DDGel and RSDL were, 0.12 and 0.55% (P < 0.01), 0.31 and 0.95% (p < 0.01), 1.08 and 2.92% (p < 0.05), 3.13 and 6.34% (p < 0.05), respectively. DDGel showed higher decontamination efficiency (twice decontamination efficacy factor, DEF) than RSDL and efficiently removed chemicals from the skin surface, importantly back-extracted from the SC, and significantly reduced both chemical penetration into skin and systemic absorption. Thus, DDGel can offer a potential as a next generation skin decontamination platform technology for military and civilian applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research

    PubMed Central

    Kol, A.; Walker, N. J.; Nordstrom, M.; Borjesson, D. L.

    2016-01-01

    Detrimental Th17 driven inflammatory and autoimmune disease such as Crohn’s disease, graft versus host disease and multiple sclerosis remain a significant cause of morbidity and mortality worldwide. Multipotent stromal/stem cell (MSC) inhibit Th17 polarization and activation in vitro and in rodent models. As such, MSC based therapeutic approaches are being investigated as novel therapeutic approaches to treat Th17 driven diseases in humans. The significance of naturally occurring diseases in dogs is increasingly recognized as a realistic platform to conduct pre-clinical testing of novel therapeutics. Full characterization of Th17 cells in dogs has not been completed. We have developed and validated a flow-cytometric method to detect Th17 cells in canine blood. We further demonstrate that Th17 and other IL17 producing cells are present in tissues of dogs with naturally occurring chronic inflammatory diseases. Finally, we have determined the kinetics of a canine specific Th17 polarization in vitro and demonstrate that canine MSC inhibit Th17 polarization in vitro, in a PGE2 independent mechanism. Our findings provide fundamental research tools and suggest that naturally occurring diseases in dogs, such as inflammatory bowel disease, may be harnessed to translate novel MSC based therapeutic strategies that target the Th17 pathway. PMID:26872054

  12. A New Hemodynamic Ex Vivo Model for Medical Devices Assessment.

    PubMed

    Maurel, Blandine; Sarraf, Christophe; Bakir, Farid; Chai, Feng; Maton, Mickael; Sobocinski, Jonathan; Hertault, Adrien; Blanchemain, Nicolas; Haulon, Stephan; Lermusiaux, Patrick

    2015-11-01

    In-stent restenosis (ISR) remains a major public health concern associated with an increased morbidity, mortality, and health-related costs. Drug-eluting stents (DES) have reduced ISR, but generate healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Assessments of new DES are based on animal models or in vitro release systems, which have several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, replicating ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The main pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure, and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. A first feasibility experience was performed over a 24-day period. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium changed every 3 days, and with a circulating systolic and diastolic flux during the entire experimentation. There was no infection and no leak. At the end of the experimentation, a morphometric analysis was performed confirming the viability of the arteries. We designed and patented an original hemodynamic ex vivo model to further study new DES, as well as a wide range of vascular diseases and medical devices. This bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new functionalized DES, with experimental means not available in vivo. Another major benefit will be the reduction of animal experimentation and the opportunity to test new DES or other vascular therapeutics in human tissues (human infrapopliteal or coronary arteries collected during human donation). Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation

    NASA Astrophysics Data System (ADS)

    Alzebdeh, Dalia Abdelrahim

    In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-culture spheroids reproduced the metabolic oscillations observed. This result together with culture observations suggests that MSCs can provide both physiological support and some direct shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with uniformly distributed, shear protected cells were achieved.

  14. Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-yun; Chen, Xi-guang

    2008-12-01

    In this study, chitosan/cellulose acetate microspheres (CCAM) were prepared by W/O/W emulsification and solvent evaporation as a drug delivery system. The microspheres were spherical, free-flowing and non-aggregated. The CCAM had good flow and suspension ability. The loading efficiency of different model drugs increased with the increasing hydrophobicity of the drug. The loading efficiency of 6-mercaptopurine (6-MP) was more than 30% whereas that of ranitidine hydrochloride (RT) or acetaminophen (ACP) was only 10%. The pH values of solution affected the swelling ability of CCAM and the relative humidity had little effect on the characteristics of CCAM when it was not more than 75%. The CCAM system had a good effect on the controlled release of different model drugs. However, the release rate became slower with the increase of the hydrophobicity of drugs. The release rate of CCAM loaded with hydrophilic RT was almost 60% during 48 h and the release rate of CCAM loaded with hydrophobic drug of 6-MP was not more than 30%. In the meantime, the CCAM system was degradable in vitro and the degradation rate was faster in lysozyme solution than that in the medium of PBS. So the CCAM system was a degradable promising drug delivery system especially for hydrophobic drugs.

  15. Candida Biofilms and the Host: Models and New Concepts for Eradication

    PubMed Central

    Tournu, Hélène; Van Dijck, Patrick

    2012-01-01

    Biofilms define mono- or multispecies communities embedded in a self-produced protective matrix, which is strongly attached to surfaces. They often are considered a general threat not only in industry but also in medicine. They constitute a permanent source of contamination, and they can disturb the proper usage of the material onto which they develop. This paper relates to some of the most recent approaches that have been elaborated to eradicate Candida biofilms, based on the vast effort put in ever-improving models of biofilm formation in vitro and in vivo, including novel flow systems, high-throughput techniques and mucosal models. Mixed biofilms, sustaining antagonist or beneficial cooperation between species, and their interplay with the host immune system are also prevalent topics. Alternative strategies against biofilms include the lock therapy and immunotherapy approaches, and material coating and improvements. The host-biofilm interactions are also discussed, together with their potential applications in Candida biofilm elimination. PMID:22164167

  16. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    PubMed

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  17. A Cost-Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models.

    PubMed

    Loy, Caroline; Pezzoli, Daniele; Candiani, Gabriele; Mantovani, Diego

    2018-01-01

    The development of tubular engineered tissues is a challenging research area aiming to provide tissue substitutes but also in vitro models to test drugs, medical devices, and even to study physiological and pathological processes. In this work, the design, fabrication, and validation of an original cost-effective tubular multilayered-tissue culture system (TMCS) are reported. By exploiting cellularized collagen gel as scaffold, a simple moulding technique and an endothelialization step on a rotating system, TMCS allowed to easily prepare in 48 h, trilayered arterial wall models with finely organized cellular composition and to mature them for 2 weeks without any need of manipulation. Multilayered constructs incorporating different combinations of vascular cells are compared in terms of cell organization and viscoelastic mechanical properties demonstrating that cells always progressively aligned parallel to the longitudinal direction. Also, fibroblast compacted less the collagen matrix and appeared crucial in term of maturation/deposition of elastic extracellular matrix. Preliminary studies under shear stress stimulation upon connection with a flow bioreactor are successfully conducted without damaging the endothelial monolayer. Altogether, the TMCS herein developed, thanks to its versatility and multiple functionalities, holds great promise for vascular tissue engineering applications, but also for other tubular tissues such as trachea or oesophagus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.

    PubMed

    Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H

    2008-05-01

    To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.

  19. Effect of a triclosan/PVM/MA copolymer/fluoride dentifrice on volatile sulfur compounds in vitro.

    PubMed

    Pilch, S; Williams, M I; Cummins, D

    2005-01-01

    The objective of the investigation was to document the in vitro efficacy of a triclosan/PVM/MA copolymer/fluoride (TCF) dentifrice against the formation of volatile sulfur compounds (VSC) as well as the growth of H2S-producing bacteria. Clinical studies using organoleptic judges, gas chromatography, or a portable sulfide monitor have generally been employed in the assessment of treatments for the control of oral malodor. However, these studies are not appropriate for screening purposes because of the expense and time required. An in vitro method was developed for the purpose of screening new compounds, agents or formulations for their ability to control VSC formation and for determining bio-equivalence of efficacy when implementing changes in existing formulations. The method combines basic microbiological methods, dynamic flow cell techniques and head space analysis. The in vitro VSC method was validated by comparing the efficacy of two dentifrices containing TCF with a control fluoride dentifrice as the TCF products have been clinically proven to control oral malodor. In the validation studies, the TCF-containing dentifrices were significantly better (P < 0.05) than the control dentifrice in inhibiting VSC formation and reducing H(2)S-producing bacteria. For example, when compared with baseline, the TCF dentifrices reduced VSC formation between 42 and 49% compared with the control dentifrice which reduced VSC formation 3%. There was no significant difference (P > 0.05) between the two TCF dentifrice formulations. Using an in vitro breath VSC model, it has been demonstrated that two variants of a dentifrice containing triclosan, PVM/MA copolymer and fluoride have efficacy that is significantly better than a control fluoridated dentifrice and that there is no significant difference between the triclosan/PVM/MA copolymer/fluoride dentifrice variants.

  20. [Establishment of the retrovirus-mediated murine model with MLL-AF9 leukemia].

    PubMed

    Xu, Si-Miao; Yang, Yang; Zhou, Mi; Zhao, Xue-Jiao; Qin, Yu; Zhang, Pei-Ling; Yuan, Rui-Feng; Zhou, Jian-Feng; Fang, Yong

    2013-10-01

    This study was purposed to establish a retrovirus-mediated murine model with MLL-AF9 leukemia, so as to provide a basis for further investigation of the pathogenesis and therapeutic strategy of MLL associated leukemia. Murine (CD45.2) primary hematopoietic precursor positively selected for expression of the progenitor marker c-Kit by means of MACS were transduced with a retrovirus carrying MLL-AF9 fusion gene. After cultured in vitro, the transduced cells were injected intravenously through the tail vein into the lethally irradiated mice (CD45.1). PCR, flow cytometry and morphological observation were employed to evaluate the murine leukemia model system. The results showed that MLL-AF9 fusion gene was expressed in the infected cells, and the cells had a dramatically enhanced potential to generate myeloid colonies with primitive and immature morphology. Flow cytometric analysis revealed that the immortalized cells highly expressed myeloid lineage surface markers Gr-1 and Mac-1. Moreover, the expression levels of Hoxa9 and Meis1 mRNA were significantly higher in the MLL-AF9 cells than that in control. The mice transplanted with MLL-AF9 cells displayed typical signs of leukemia within 6-12 weeks. Extensive infiltration leukemic cells was observed in the Wright-Giemsa stained peripheral blood smear and bone marrow, and also in the histology of liver and spleen. Flow cytometric analysis of the bone marrow and spleen cells demonstrated that the CD45.2 populations expressed highly myeloid markers Gr-1 and Mac-1. The leukemic mice died within 12 weeks. It is concluded that the retrovirus-mediated murine model with MLL-AF9 leukemia is successfully established, which can be applied in the subsequent researches.

  1. Composite time-lapse computed tomography and micro finite element simulations: A new imaging approach for characterizing cement flows and mechanical benefits of vertebroplasty.

    PubMed

    Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko

    2016-02-01

    Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    PubMed

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach.

  3. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach. PMID:26417581

  4. Formulation development and release studies of indomethacin suppositories.

    PubMed

    Sah, M L; Saini, T R

    2008-01-01

    Indomethacin suppositories were prepared by using water-soluble and oil soluble suppository bases, and evaluated for in vitro release by USP I and modified continuous flow through bead bed apparatus. Effect of the Tween 80 (1% and 5%) was further studied on in vitro release of the medicament. Release rate was good in water-soluble suppositories bases in comparison to oil soluble suppositories bases. Release was found to be greater in modified continuous flow through bead bed apparatus. When surfactant was used in low concentration then release rate was much greater, as compared to high concentration. When stability studies were performed on the prepared indomethacin suppositories it was found that suppositories made by water-soluble base had no significant changes while suppositories prepared by oil soluble bases, had some signs of instability.

  5. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    PubMed

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  6. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, Philippe; Peiffer, Jean-Luc; Chamousset, Delphine

    2006-04-01

    Langerhans cells (LC) are key mediators of contact allergenicity in the skin. However, no in vitro methods exist which are based on the activation process of LC to predict the sensitization potential of chemicals. In this study, we have evaluated the performances of MUTZ-3, a cytokine-dependent human monocytic cell line, in its response to sensitizers. First, we compared undifferentiated MUTZ-3 cells with several standard human cells such as THP-1, KG-1, HL-60, K-562, and U-937 in their response to the strong sensitizer DNCB and the irritant SDS by monitoring the expression levels of HLA-DR, CD54, and CD86 by flow cytometry. Onlymore » MUTZ-3 and THP-1 cells show a strong and specific response to sensitizer, while other cell lines showed very variable responses. Then, we tested MUTZ-3 cells against a wider panel of sensitizers and irritants on a broader spectrum of cell surface markers (HLA-DR, CD40, CD54, CD80, CD86, B7-H1, B7-H2, B7-DC). Of these markers, CD86 proved to be the most reliable since it detected all sensitizers, including benzocaine, a classical false negative in local lymph node assay (LLNA) but not irritants. We confirmed the MUTZ-3 response to DNCB by real-time PCR analysis. Taken together, our data suggest that undifferentiated MUTZ-3 cells may represent a valuable in vitro model for the screening of potential sensitizers.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing; Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu; Zhang, Jun-ying

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosismore » were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.« less

  8. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma

    PubMed Central

    Jia, Lihua; Wang, Juan; Wu, Tong; Wu, Jinan; Ling, Junqi; Cheng, Bin

    2017-01-01

    Chloroquine, which is a widely used antimalarial drug, has been reported to exert anticancer activity in some tumor types; however, its potential effects on oral squamous cell carcinoma (OSCC) remain unclear. The present study aimed to explore the effects and possible underlying mechanisms of chloroquine against OSCC. MTT and clonogenic assays were conducted to evaluate the effects of chloroquine on the human OSCC cell lines SCC25 and CAL27. Cell cycle progression and apoptosis were detected using flow cytometry. Autophagy was monitored using microtubule-associated protein 1A/1B-light chain 3 as an autophagosomal marker. In order to determine the in vivo antitumor effects of chloroquine on OSCC, a CAL27 xenograft model was used. The results demonstrated that chloroquine markedly inhibited the proliferation and the colony-forming ability of both OSCC cell lines in a dose- and time-dependent manner in vitro. Chloroquine also disrupted the cell cycle, resulting in the cell cycle arrest of CAL27 and SCC25 cells at G0/G1 phase, via downregulation of cyclin D1. In addition, chloroquine inhibited autophagy, and induced autophagosome and autolysosome accumulation in the cytoplasm, thus interfering with degradation; however, OSCC apoptosis was barely affected by chloroquine. The results of the in vivo study demonstrated that chloroquine effectively inhibited OSCC tumor growth in the CAL27 xenograft model. In conclusion, the present study reported the in vitro and in vivo antitumor effects of chloroquine on OSCC, and the results indicated that chloroquine may be considered a potent therapeutic agent against human OSCC. PMID:28849182

  9. Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing.

    PubMed

    Bárcia, Rita N; Santos, Jorge M; Teixeira, Mariana; Filipe, Mariana; Pereira, Ana Rita S; Ministro, Augusto; Água-Doce, Ana; Carvalheiro, Manuela; Gaspar, Maria Manuela; Miranda, Joana P; Graça, Luis; Simões, Sandra; Santos, Susana Constantino Rosa; Cruz, Pedro; Cruz, Helder

    2017-03-01

    The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX ® . Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  11. A numerical method to enhance the performance of a cam-type electric motor-driven left ventricular assist device.

    PubMed

    Huang, Huan; Yang, Ming; Lu, Cunyue; Xu, Liang; Zhuang, Xiaoqi; Meng, Fan

    2013-10-01

    Pulsatile left ventricular assist devices (LVADs) driven by electric motors have been widely accepted as a treatment of heart failure. Performance enhancement with computer assistance for this kind of LVAD has seldom been reported. In this article, a numerical method is proposed to assist the design of a cam-type pump. The method requires an integrated model of an LVAD system, consisting of a motor, a transmission mechanism, and a cardiovascular circulation. Performance indices, that is, outlet pressure, outlet flow, and pump efficiency, were used to select the best cam profile from six candidates. A prototype pump connected to a mock circulatory loop (MCL) was used to calibrate the friction coefficient of the cam groove and preliminarily evaluate modeling accuracy. In vitro experiments show that the mean outlet pressure and flow can be predicted with high accuracy by the model, and gross geometries of the measurements can also be reproduced. Simulation results demonstrate that as the total peripheral resistance (TPR) is fixed at 1.1 mm Hg.s/mL, the two-cycle 2/3-rise profile is the best. Compared with other profiles, the maximum increases of pressure and flow indices are 75 and 76%, respectively, and the maximum efficiency increase is over 51%. For different TPRs (0.5∼1.5 mm Hg.s/mL) and operation intervals (0.1∼0.4 s) in counterpulsation, the conclusion is also acceptable. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  12. Visualization of removal of trapped air from the apical region of the straight root canal models generating 2-phase intermittent counter flow during ultrasonically activated irrigation.

    PubMed

    Peeters, Harry Huiz; Iskandar, Bernard; Suardita, Ketut; Suharto, Djoko

    2014-06-01

    The purpose of this in vitro study was to obtain a better understanding of the mechanism of irrigant traveling apically and generating 2-phase intermittent counter flow in straight root canal models during activation of the irrigant by ultrasonic means in an endodontic procedure. A high-speed imaging system, with high temporal and spatial resolution (FastCam SA5; Photron, Tokyo, Japan) at a frame rate of 100,000 frames per second using a macro lens (60 mm, f/2.8; Nikon, Tokyo, Japan), was used to visualize, in glass models of root canals, an ultrasonically induced acoustic pressure wave in an EDTA solution environment. A 25-mm stainless steel noncutting file #20 driven by an ultrasonic device (P5 Newtron; Satelec Acteon, Mérignac, France) at power settings of 5 and 7 produced disturbances at the solution-air interface. We found that apically directed travel of the irrigant was caused by disruption of the surface tension at the solution-air interface. This disruption caused by ultrasonic activation energy displaced air in the form of bubbles from the apical region toward the solution. The apical movement of the solution may be attributed to ultrasonically induced wave generation at the solution-air interface, resulting in the removal of trapped air from the root canal and allowing the solution to travel apically in the opposite directions (via a 2-phase intermittent counter flow). Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    DTIC Science & Technology

    2012-07-01

    changes of ASC surface markers due to repetitive in vitro sub-culturing. ASCs were harvested, washed in PBS to remove cell culture medium, and resuspended...Our in vitro and in vivo studies suggest that ASC and BM-MSC are not identical, though they have similar surface markers . We found that topically...ofpolybrene. Transduced cells were selected by treating 10 J.!g/rnl ofblasticidin. GFP expressing cells were further selected by flow cytometry using

  14. A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs

    PubMed Central

    Mitra, Moutushy; Mohanty, Chandana; Harilal, Anju; Maheswari, Uma K.; Sahoo, Sanjeeb Kumar

    2012-01-01

    Purpose Novel strategies are being applied for creating better in vitro models that simulate in vivo conditions for testing the efficacy of anticancer drugs. In the present study we developed surface-engineered, large and porous, biodegradable, polymeric microparticles as a scaffold for three dimensional (3-D) growth of a Y79 retinoblastoma (RB) cell line. We evaluated the effect of three anticancer drugs in naïve and nanoparticle-loaded forms on a 3-D versus a two-dimensional (2-D) model. We also studied the influence of microparticles on extracellular matrix (ECM) synthesis and whole genome miRNA-gene expression profiling to identify 3D-responsive genes that are implicated in oncogenesis in RB cells. Methods Poly(D,L)-lactide-co-glycolide (PLGA) microparticles were prepared by the solvent evaporation method. RB cell line Y79 was grown alone or with PLGA–gelatin microparticles. Antiproliferative activity, drug diffusion, and cellular uptake were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole (MTT) assay, fluorescent microscope, and flow cytometry. Extra cellular matrix (ECM) synthesis was observed by collagenase assay and whole genome miRNA-microarray profiling by using an Agilent chip. Results With optimized composition of microparticles and cell culture conditions, an eightfold increase from the seeding density was achieved in 5 days of culture. The antiproliferative effect of the drugs in the 3-D model was significantly lower than in the 2-D suspension, which was evident from the 4.5 to 21.8 fold differences in their IC50 values. Using doxorubicin, the flow cytometry data demonstrated a 4.4 fold lower drug accumulation in the cells grown in the 3-D model at 4 h. The collagen content of the cells grown in the 3-D model was 2.3 fold greater than that of the cells grown in the 2-D model, suggesting greater synthesis of the extracellular matrix in the 3-D model as the extracellular matrix acted as a barrier to drug diffusion. The microarray and miRNA analysis showed changes in several genes and miRNA expression in cells grown in the 3-D model, which could also influence the environment and drug effects. Conclusions Our 3-D retinoblastoma model could be used in developing effective drugs based on a better understanding of the role of chemical, biologic, and physical parameters in the process of drug diffusion through the tumor mass, drug retention, and therapeutic outcome. PMID:22690114

  15. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  16. Human Lung Small Airway-on-a-Chip Protocol.

    PubMed

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  17. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Postarrest stalling rather than crawling favors CD8+ over CD4+ T‐cell migration across the blood–brain barrier under flow in vitro

    PubMed Central

    Rudolph, Henriette; Klopstein, Armelle; Gruber, Isabelle; Blatti, Claudia; Lyck, Ruth

    2016-01-01

    Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells. PMID:27338806

  19. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study

    PubMed Central

    H Bhandi, Shilpa; T S, Subhash

    2013-01-01

    Introduction: Microleakage continues to be a main reason for failure of root canal treatment where the challenge has been to achieve an adequate seal between the internal structure and the main obturating material. The objective of this study is to compare the sealing ability of 3 newer obturating materials GuttaFlow, Resilon/Epiphany system (RES) and Thermafil, using silver nitrate dye and observing under stereomicroscope. Methodology: Thirty single rooted teeth were divided into following groups. Group I : GuttaFlow ;Group II : Resilon /Epiphany sealer Group III : Thermafil with AH-Plus sealer. Teeth were decoronated and instrumented with profile rotary system and obturated with specified materials. Apical seal was determined by dye penetration method using silver nitrate. Then the specimens were transversely sectioned at each mm till 3 mm from the apex. Dye leakage was determined using stereomicroscope. Statistical analysis of the results was performed using Kruskall-Wallis test. Results: The results showed that Group II i.e., Resilon with Epiphany sealer showed the least amount of microleakage when compared to Group I i.e., GuttaFlow and Group III i.e., Thermafil with AH-plus sealer. Conclusion: Based on the results of this study it can be concluded that RES had higher sealing ability followed by Thermafil and GuttaFlow in vitro but further studies have to be carried out to make a direct correlation between these results and invivo situation. How to cite this article: Bhandi S H, Subhash T S. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study. J Int Oral Health 2013; 5(1):54-65. PMID:24155579

  20. Automatic flow-through dynamic extraction: A fast tool to evaluate char-based remediation of multi-element contaminated mine soils.

    PubMed

    Rosende, María; Beesley, Luke; Moreno-Jimenez, Eduardo; Miró, Manuel

    2016-02-01

    An automatic in-vitro bioaccessibility test based upon dynamic microcolumn extraction in a programmable flow setup is herein proposed as a screening tool to evaluate bio-char based remediation of mine soils contaminated with trace elements as a compelling alternative to conventional phyto-availability tests. The feasibility of the proposed system was evaluated by extracting the readily bioaccessible pools of As, Pb and Zn in two contaminated mine soils before and after the addition of two biochars (9% (w:w)) of diverse source origin (pine and olive). Bioaccessible fractions under worst-case scenarios were measured using 0.001 mol L(-1) CaCl2 as extractant for mimicking plant uptake, and analysis of the extracts by inductively coupled optical emission spectrometry. The t-test of comparison of means revealed an efficient metal (mostly Pb and Zn) immobilization by the action of olive pruning-based biochar against the bare (control) soil at the 0.05 significance level. In-vitro flow-through bioaccessibility tests are compared for the first time with in-vivo phyto-toxicity assays in a microcosm soil study. By assessing seed germination and shoot elongation of Lolium perenne in contaminated soils with and without biochar amendments the dynamic flow-based bioaccessibility data proved to be in good agreement with the phyto-availability tests. Experimental results indicate that the dynamic extraction method is a viable and economical in-vitro tool in risk assessment explorations to evaluate the feasibility of a given biochar amendment for revegetation and remediation of metal contaminated soils in a mere 10 min against 4 days in case of phyto-toxicity assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated Captopril, a nitric oxide donor

    PubMed Central

    Jia, Lee; Wong, Hong

    2001-01-01

    The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (Papp; cm sec−1) of CapNO across the endothelial monolayers was 6.0×10−5, higher than that of Cap (3.13×10−5), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The Papp of CapNO and Cap across Caco-2 cells were 3.15×10−5 and 1.53×10−5, respectively. The low Papp of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H2-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects. PMID:11739246

  2. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated captopril, a nitric oxide donor.

    PubMed

    Jia, L; Wong, H

    2001-12-01

    1. The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. 2. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (P(app); cm sec(-1)) of CapNO across the endothelial monolayers was 6.0 x 10(-5), higher than that of Cap (3.13 x 10(-5)), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The P(app) of CapNO and Cap across Caco-2 cells were 3.15 x 10(-5) and 1.53 x 10(-5), respectively. The low P(app) of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. 3. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. 4. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H(2)-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. 5. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects.

  3. Consideration of the respiratory cycle asymmetry in the numerical modeling of the submicron particles deposition in the human nasal cavity

    NASA Astrophysics Data System (ADS)

    Ganimedov, V. L.; Muchnaya, M. I.

    2017-10-01

    A detailed study of the behavior of the U-shaped curve was conducted, which described deposition efficiency of inhaled particles in human nasal cavity. The particles in the range from 1 nm to 20 µm are considered. Calculations of air flow and particles deposition were carried out for symmetrical (idealized) and asymmetrical (real) breathing cycles at the same volume of inhaled air, which corresponded to calm breathing. The calculations were performed on the base of the mathematical model of the nasal cavity of healthy person using software package ANSYS (FLUENT 12). The comparison of the results was made between these calculations, and also with the results obtained at quasi-stationary statement of the problem for several values of flow rate. The comparison of the results of quasi-stationary calculations with available calculated and experimental data (in vivo i in vitro) was fulfilled previously. Good agreement of the results was obtained. It is shown that the real distribution of deposition efficiency as a function of the particle size can be obtained via a certain combination of the results of quasi-stationary calculations, without the use of laborious and time-consuming non-stationary calculation.

  4. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi

    2014-01-01

    The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948

  5. 3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Deplano, Valérie; Guivier-Curien, Carine; Bertrand, Eric

    2016-11-01

    The present work presents an experimental in vitro three-dimensional analysis of the flow dynamics in an abdominal aortic aneurysm (AAA) through stereoscopic particle image velocimetry (SPIV) measurements. The experimental set-up mimics the pathophysiological context involving a shear thinning blood analogue fluid, compliant AAA and aorto-iliac bifurcation walls and controlled inlet and outlet flow rate and pressure waveforms as well as working fluid temperature. SPIV was carefully calibrated and conducted to assess the three velocity components in the AAA volume. For the first time in the literature, the 3D vortex ring genesis, propagation, and vanishing in the AAA bulge are experimentally described and quantified. In comparison with classical 2-component PIV measurements (2C PIV), the third component of the velocity vector was shown to be of importance in such a geometry, especially, during the deceleration phase of the flow rate. The 3D velocity magnitude reached up more than 20 % of the 2D one showing that 2C PIV are definitively not accurate enough to provide a complete description of flow behaviour in an AAA. In addition to potential clinical implications of a full 3D vortex ring description in AAA evolution, the 3D in vitro experimental quantification of the flow dynamics carried out in the present study offers an interesting tool for the validation of fluid-structure interaction numerical studies dealing with AAA.

  6. [Effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong and penetration mechanism of skin blood flow].

    PubMed

    Zhu, Xiao-Fang; Luo, Jing; Guan, Yong-Mei; Yu, Ya-Ting; Jin, Chen; Zhu, Wei-Feng; Liu, Hong-Ning

    2017-02-01

    The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong, and to investigate the possible penetration mechanism of their essential oil from the perspective of skin blood perfusion changes. Transdermal tests were performed in vitro with excised mice skin by improved Franz diffusion cells. The cumulative penetration amounts of ferulic acid in Chuanxiong were determined by HPLC to investigate the effects of Frankincense and Myrrh essential oil on transdermal permeation properties of Chuanxiong. Simultaneously, the skin blood flows were determined by laser flow doppler. The results showed that the cumulative penetration amount of ferulic acid in Chuanxiong was (8.13±0.76) μg•cm⁻² in 24 h, and was (48.91±4.87), (57.80±2.86), (63.34±4.56), (54.17±4.40), (62.52±7.79) μg•cm⁻² respectively in Azone group, Frankincense essential oil group, Myrrh essential oil, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group. The enhancement ratios of each essential oil groups were 7.68, 8.26, 7.26, 8.28, which were slightly greater than 6.55 in Azone group. In addition, as compared with the conditions before treatment, there were significant differences and obvious increasing trend in blood flow of rats in Frankincense essential oil group, Myrrh essential oil group, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group when were dosed at 10, 20, 30, 10 min respectively, indicating that the skin blood flows were increased under the effects of Frankincense and Myrrh essential oil to a certain extent. Thus, Frankincense and Myrrh essential oil had certain effect on promoting permeability of Chuanxiong both before and after drug combination, and may promote the elimination of drugs from epidermis to dermal capillaries through increase of skin blood flow, thus enhancing the transdermal permeation amounts of drugs. Copyright© by the Chinese Pharmaceutical Association.

  7. Fibronectin connecting segment-1 peptide inhibits pathogenic leukocyte trafficking and inflammatory demyelination in experimental models of chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Dong, Chaoling; Greathouse, Kelsey M; Beacham, Rebecca L; Palladino, Steven P; Helton, E Scott; Ubogu, Eroboghene E

    2017-06-01

    The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α 4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25μM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of inflammatory demyelination. Microvessels demonstrating FNCS1 expression and CD49d+ leukocytes were seen within the endoneurium of patient nerve biopsies. Taken together, these results imply a role for FNCS1 in pathogenic leukocyte trafficking in CIDP, providing a potential target for therapeutic modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Analysis of the Magnetic Field Influence on the Rheological Properties of Healthy Persons Blood

    PubMed Central

    Nawrocka-Bogusz, Honorata

    2013-01-01

    The influence of magnetic field on whole blood rheological properties remains a weakly known phenomenon. An in vitro analysis of the magnetic field influence on the rheological properties of healthy persons blood is presented in this work. The study was performed on blood samples taken from 25 healthy nonsmoking persons and included comparative analysis of the results of both the standard rotary method (flow curve measurement) and the oscillatory method known also as the mechanical dynamic analysis, performed before and after exposition of blood samples to magnetic field. The principle of the oscillatory technique lies in determining the amplitude and phase of the oscillations of the studied sample subjected to action of a harmonic force of controlled amplitude and frequency. The flow curve measurement involved determining the shear rate dependence of blood viscosity. The viscoelastic properties of the blood samples were analyzed in terms of complex blood viscosity. All the measurements have been performed by means of the Contraves LS40 rheometer. The data obtained from the flow curve measurements complemented by hematocrit and plasma viscosity measurements have been analyzed using the rheological model of Quemada. No significant changes of the studied rheological parameters have been found. PMID:24078918

  9. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  10. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.

    PubMed

    Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza

    2007-07-01

    This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.

  11. Digestion of starch in a dynamic small intestinal model.

    PubMed

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  12. Hypoxia‑induced autophagy is inhibited by PADI4 knockdown, which promotes apoptosis of fibroblast‑like synoviocytes in rheumatoid arthritis.

    PubMed

    Fan, Tingting; Zhang, Changsong; Zong, Ming; Fan, Lieying

    2018-04-01

    Impaired apoptosis of rheumatoid arthritis (RA)‑fibroblast‑like synoviocytes (FLS) is pivotal in the process of RA. Peptidyl arginine deiminase type IV (PADI4) is associated with autoantibody regulation via histone citrullination in RA. The present study aimed to investigate the role of PADI4 in the apoptosis of RA‑FLS. FLS were isolated from patients with RA and a rat model. The effects of PADI4 on RA‑FLS were investigated in vitro and in vivo. Hypoxia‑induced autophagy was induced by 1% O2 and was detected by immunohistochemical and immunofluorescence analysis; in addition, apoptosis was detected by flow cytometry. RA‑FLS obtained from RA rat model exhibited significant proliferation under severe hypoxia conditions. Hypoxia also significantly induced autophagy and elevated the expression of PADI4. Subsequently, short hairpin RNA‑mediated PADI4 knockdown was demonstrated to significantly inhibit hypoxia‑induced autophagy and promote apoptosis in RA‑FLS. The results of these in vitro and in vivo studies suggested that PADI4 may be closely associated with hypoxia‑induced autophagy, and the inhibition of hypoxia‑induced autophagy by PADI4 knockdown may contribute to an increase in the apoptosis of RA‑FLS.

  13. Investigation of Patient-Specific Cerebral Aneurysm using Volumetric PIV, CFD, and In Vitro PC-MRI

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa; Dickerhoff, Ben; Saloner, David; Rayz, Vitaliy; Vlachos, Pavlos

    2017-11-01

    4D PC-MRI is a modality capable of providing time-resolved velocity fields in cerebral aneurysms in vivo. The MRI-measured velocities and subsequent hemodynamic parameters such as wall shear stress, and oscillatory shear index, can help neurosurgeons decide a course of treatment for a patient, e.g. whether to treat or monitor the aneurysm. However, low spatiotemporal resolution, limited velocity dynamic range, and inherent noise of PC-MRI velocity fields can have a notable effect on subsequent calculations, and should be investigated. In this work, we compare velocity fields obtained with 4D PC-MRI, computational fluid dynamics (CFD) and volumetric particle image velocimetry (PIV), using a patient-specific model of a basilar tip aneurysm. The same in vitro model is used for all three modalities and flow input parameters are controlled. In vivo, PC-MRI data was also acquired for this patient and used for comparison. Specifically, we investigate differences in the resulting velocity fields and biases in subsequent calculations. Further, we explore the effect these errors may have on assessment of the aneurysm progression and seek to develop corrective algorithms and other methodologies that can be used to improve the accuracy of hemodynamic analysis in clinical setting.

  14. Toxicokinetic and Dosimetry Modeling Tools for Exposure ...

    EPA Pesticide Factsheets

    New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide mechanistic insights on chemical action. However, extrapolating from in vitro chemical concentrations to target tissue or blood concentrations in vivo is fraught with uncertainties, and modeling is dependent upon pharmacokinetic variables not measured in in vitro assays. To address this need, new tools have been created for characterizing, simulating, and evaluating chemical toxicokinetics. Physiologically-based pharmacokinetic (PBPK) models provide estimates of chemical exposures that produce potentially hazardous tissue concentrations, while tissue microdosimetry PK models relate whole-body chemical exposures to cell-scale concentrations. These tools rely on high-throughput in vitro measurements, and successful methods exist for pharmaceutical compounds that determine PK from limited in vitro measurements and chemical structure-derived property predictions. These high throughput (HT) methods provide a more rapid and less resource–intensive alternative to traditional PK model development. We have augmented these in vitro data with chemical structure-based descriptors and mechanistic tissue partitioning models to construct HTPBPK models for over three hundred environmental and pharmace

  15. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy.

    PubMed

    Duanmu, J; Cheng, J; Xu, J; Booth, C J; Hu, Z

    2011-04-26

    The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.

  16. Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo.

    PubMed

    Li, Chi-Chuan; Yu, Fu-Shun; Fan, Ming-Jen; Chen, Ya-Yin; Lien, Jin-Cherng; Chou, Yu-Cheng; Lu, Hsu-Feng; Tang, Nou-Ying; Peng, Shu-Fen; Huang, Wen-Wen; Chung, Jing-Gung

    2017-03-01

    Cantharidin (CTD), a potential anticancer agent of Traditional Chinese Medicine has cytotxic effects in different human cancer cell lines. The cytotoxic effects of CTD on A431 human skin cancer (epidermoid carcinoma) cells in vitro and in A431 cell xenograft mouse model were examined. In vitro, A431 human skin cell were treated with CTD for 24 and 48 h. Cell phase distribution, ROS production, Ca 2+ release, Caspase activity and the level of apoptosis associated proteins were measured. In vivo, A431 cell xenograft mouse model were examined. CTD-induced cell morphological changes and decreased percentage of viable A431 cells via G0/G1 phase arrest and induced apoptosis. CTD-induced G0/G1 phase arrest through the reduction of protein levels of cyclin E, CDK6, and cyclin D in A431 cells. CTD-induced cell apoptosis of A431 cells also was confirm by DNA gel electrophoresis showed CTD-induced DNA fragmentation. CTD reduced the mitochondrial membrane potential and stimulated release of cytochrome c, AIF and Endo G in A431 cells. Flow cytometry demonstrated that CTD increased activity of caspase-8, -9 and -3. However, when cells were pretreated with specific caspase inhibitors activity was reduced and cell viability increased. CTD increased protein levels of death receptors such as DR4, DR5, TRAIL and levels of the active form of caspase-8, -9 and -3 in A431 cells. AIF and Endo G proteins levels were also enhanced by CTD. In vivo studies showed that CTD significantly inhibited A431 cell xenograft tumors in mice. Taken together, these in vitro and in vivo results provide insight into the mechanisms of CTD on cell growth and tumor production. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 723-738, 2017. © 2016 Wiley Periodicals, Inc.

  17. A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo.

    PubMed

    Nuñez-Figueredo, Yanier; Ramírez-Sánchez, Jeney; Hansel, Gisele; Simões Pires, Elisa Nicoloso; Merino, Nelson; Valdes, Odalys; Delgado-Hernández, René; Parra, Alicia Lagarto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Salbego, Christianne; Costa, Silvia L; Souza, Diogo O; Pardo-Andreu, Gilberto L

    2014-10-01

    We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 μM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat acute ischemic stroke. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  19. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro

    PubMed Central

    Yosef, Nejla; Ubogu, Eroboghene E.

    2012-01-01

    The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879

  20. Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy

    PubMed Central

    Nadort, Annemarie; Woolthuis, Rutger G.; van Leeuwen, Ton G.; Faber, Dirk J.

    2013-01-01

    We present integrated Laser Speckle Contrast Imaging (LSCI) and Sidestream Dark Field (SDF) flowmetry to provide real-time, non-invasive and quantitative measurements of speckle decorrelation times related to microcirculatory flow. Using a multi exposure acquisition scheme, precise speckle decorrelation times were obtained. Applying SDF-LSCI in vitro and in vivo allows direct comparison between speckle contrast decorrelation and flow velocities, while imaging the phantom and microcirculation architecture. This resulted in a novel analysis approach that distinguishes decorrelation due to flow from other additive decorrelation sources. PMID:24298399

  1. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes.

    PubMed

    Evani, Shankar J; Dallo, Shatha F; Murthy, Ashlesh K; Ramasubramanian, Anand K

    2013-09-01

    Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae -infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae -infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm 2 for 1 h on C. pneumoniae -infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.

  2. A rapid, reliable method of evaluating growth and viability of intraerythrocytic protozoan hemoparasites using fluorescence flow cytometry.

    PubMed

    Davis, W C; Wyatt, C R; Hamilton, M J; Goff, W L

    1992-01-01

    Fluorescence flow cytometry was employed to assess the potential of a vital dye, hydroethidine, for use in the detection and monitoring of the viability of hemoparasites in infected erythrocytes, using Babesia bovis as a model parasite. The studies demonstrated that hydroethidine is taken up by B. bovis and metabolically converted to the DNA binding fluorochrome, ethidium. Following uptake of the dye, erythrocytes containing viable parasites were readily distinguished and quantitated. Timed studies with the parasiticidal drug, Ganaseg, showed that it is possible to use the fluorochrome assay to monitor the effects of the drug on the rate of replication and viability of B. bovis in culture. The assay provides a rapid method for evaluation of the in vitro effect of drugs on hemoparasites and for analysis of the effect of various components of the immune response, such as lymphokines, monocyte products, antibodies, and effector cells (T, NK, LAK, ADCC) on the growth and viability of intraerythrocytic parasites.

  3. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform.

    PubMed

    Katt, Moriah E; Placone, Amanda L; Wong, Andrew D; Xu, Zinnia S; Searson, Peter C

    2016-01-01

    In vitro tumor models have provided important tools for cancer research and serve as low-cost screening platforms for drug therapies; however, cancer recurrence remains largely unchecked due to metastasis, which is the cause of the majority of cancer-related deaths. The need for an improved understanding of the progression and treatment of cancer has pushed for increased accuracy and physiological relevance of in vitro tumor models. As a result, in vitro tumor models have concurrently increased in complexity and their output parameters further diversified, since these models have progressed beyond simple proliferation, invasion, and cytotoxicity screens and have begun recapitulating critical steps in the metastatic cascade, such as intravasation, extravasation, angiogenesis, matrix remodeling, and tumor cell dormancy. Advances in tumor cell biology, 3D cell culture, tissue engineering, biomaterials, microfabrication, and microfluidics have enabled rapid development of new in vitro tumor models that often incorporate multiple cell types, extracellular matrix materials, and spatial and temporal introduction of soluble factors. Other innovations include the incorporation of perfusable microvessels to simulate the tumor vasculature and model intravasation and extravasation. The drive toward precision medicine has increased interest in adapting in vitro tumor models for patient-specific therapies, clinical management, and assessment of metastatic potential. Here, we review the wide range of current in vitro tumor models and summarize their advantages, disadvantages, and suitability in modeling specific aspects of the metastatic cascade and drug treatment.

  5. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform

    PubMed Central

    Katt, Moriah E.; Placone, Amanda L.; Wong, Andrew D.; Xu, Zinnia S.; Searson, Peter C.

    2016-01-01

    In vitro tumor models have provided important tools for cancer research and serve as low-cost screening platforms for drug therapies; however, cancer recurrence remains largely unchecked due to metastasis, which is the cause of the majority of cancer-related deaths. The need for an improved understanding of the progression and treatment of cancer has pushed for increased accuracy and physiological relevance of in vitro tumor models. As a result, in vitro tumor models have concurrently increased in complexity and their output parameters further diversified, since these models have progressed beyond simple proliferation, invasion, and cytotoxicity screens and have begun recapitulating critical steps in the metastatic cascade, such as intravasation, extravasation, angiogenesis, matrix remodeling, and tumor cell dormancy. Advances in tumor cell biology, 3D cell culture, tissue engineering, biomaterials, microfabrication, and microfluidics have enabled rapid development of new in vitro tumor models that often incorporate multiple cell types, extracellular matrix materials, and spatial and temporal introduction of soluble factors. Other innovations include the incorporation of perfusable microvessels to simulate the tumor vasculature and model intravasation and extravasation. The drive toward precision medicine has increased interest in adapting in vitro tumor models for patient-specific therapies, clinical management, and assessment of metastatic potential. Here, we review the wide range of current in vitro tumor models and summarize their advantages, disadvantages, and suitability in modeling specific aspects of the metastatic cascade and drug treatment. PMID:26904541

  6. Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm.

    PubMed

    Aoki, Tomohiro; Yamamoto, Kimiko; Fukuda, Miyuki; Shimogonya, Yuji; Fukuda, Shunichi; Narumiya, Shuh

    2016-05-09

    Enlargement of a pre-existing intracranial aneurysm is a well-established risk factor of rupture. Excessive low wall shear stress concomitant with turbulent flow in the dome of an aneurysm may contribute to progression and rupture. However, how stress conditions regulate enlargement of a pre-existing aneurysm remains to be elucidated. Wall shear stress was calculated with 3D-computational fluid dynamics simulation using three cases of unruptured intracranial aneurysm. The resulting value, 0.017 Pa at the dome, was much lower than that in the parent artery. We loaded wall shear stress corresponding to the value and also turbulent flow to the primary culture of endothelial cells. We then obtained gene expression profiles by RNA sequence analysis. RNA sequence analysis detected hundreds of differentially expressed genes among groups. Gene ontology and pathway analysis identified signaling related with cell division/proliferation as overrepresented in the low wall shear stress-loaded group, which was further augmented by the addition of turbulent flow. Moreover, expression of some chemoattractants for inflammatory cells, including MCP-1, was upregulated under low wall shear stress with concomitant turbulent flow. We further examined the temporal sequence of expressions of factors identified in an in vitro study using a rat model. No proliferative cells were detected, but MCP-1 expression was induced and sustained in the endothelial cell layer. Low wall shear stress concomitant with turbulent flow contributes to sustained expression of MCP-1 in endothelial cells and presumably plays a role in facilitating macrophage infiltration and exacerbating inflammation, which leads to enlargement or rupture.

  7. Cancer-adipose tissue interaction and fluid flow synergistically modulate cell kinetics, HER2 expression, and trastuzumab efficacy in gastric cancer.

    PubMed

    Akutagawa, Takashi; Aoki, Shigehisa; Yamamoto-Rikitake, Mihoko; Iwakiri, Ryuichi; Fujimoto, Kazuma; Toda, Shuji

    2018-04-25

    Early local tumor invasion in gastric cancer results in likely encounters between cancer cells and submucosal and subserosal adipose tissue, but these interactions remain to be clarified. Microenvironmental mechanical forces, such as fluid flow, are known to modulate normal cell kinetics, but the effects of fluid flow on gastric cancer cells are poorly understood. We analyzed the cell kinetics and chemosensitivity in gastric cancer using a simple in vitro model that simultaneously replicated the cancer-adipocyte interaction and physical microenvironment. Gastric cancer cells (MKN7 and MKN74) were seeded on rat adipose tissue fragment-embedded discs or collagen discs alone. To generate fluid flow, samples were placed on a rotatory shaker in a CO 2 incubator. Proliferation, apoptosis, invasion, and motility-related molecules were analyzed by morphometry and immunostaining. Proteins were evaluated by western blot analysis. Chemosensitivity was investigated by trastuzumab treatment. Adipose tissue and fluid flow had a positive synergistic effect on the proliferative potential and invasive capacity of gastric cancer cells, and adipose tissue inhibited apoptosis in these cells. Adipose tissue upregulated ERK1/2 signaling in gastric cancer cells, but downregulated p38 signaling. Notably, adipose tissue and fluid flow promoted membranous and cytoplasmic HER2 expression and modulated chemosensitivity to trastuzumab in gastric cancer cells. We have demonstrated that cancer-adipocyte interaction and physical microenvironment mutually modulate gastric cancer cell kinetics. Further elucidation of the microenvironmental regulation in gastric cancer will be very important for the development of strategies involving molecular targeted therapy.

  8. A NOVEL WEARABLE PUMP-LUNG DEVICE: IN-VITRO AND ACUTE IN-VIVO STUDY

    PubMed Central

    Zhang, Tao; Wei, Xufeng; Bianchi, Giacomo; Wong, Philip M.; Biancucci, Brian; Griffith, Bartley P.; Wu, Zhongjun J.

    2011-01-01

    Background To provide long-term ambulatory cardiopulmonary and respiratory support for adult patients, a novel wearable artificial pump-lung device has been developed. The design features, in-vitro and acute in-vivo performance of this device are reported in this paper. Methods This device features a uniquely designed hollow fiber membrane bundle integrated with a magnetically levitated impeller together to form one ultra-compact pump-lung device, which can be placed like current paracorporeal ventricular assist devices to allow ambulatory support. The device is 117 mm in length and 89 mm in diameter and has a priming volume of 115 ml. In-vitro hydrodynamic, gas transfer and biocompatibility experiments were carried out in mock flow loops using ovine blood. Acute in-vivo characterization was conducted in ovine by surgically implanting the device between right atrium and pulmonary artery. Results The in-vitro results showed that the device with a membrane surface area of 0.8 m2 was capable of pumping blood from 1 to 4 L/min against a wide range of pressures and transferring oxygen at a rate of up to 180 ml/min at a blood flow of 3.5 L/min. Standard hemolysis tests demonstrated low hemolysis at the targeted operating condition. The acute in-vivo results also confirmed that the device can provide sufficient oxygen transfer with excellent biocompatibility. Conclusions Base on the in-vitro and acute in-vivo study, this highly integrated wearable pump-lung device can provide efficient respiratory support with good biocompatibility and it is ready for long-term evaluation. PMID:22014451

  9. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers.

    PubMed

    da Rosa Maggi Sant'Helena, Bruna; Guarido, Karla L; de Souza, Priscila; Crestani, Sandra; da Silva-Santos, J Eduardo

    2015-10-15

    We evaluated the effects of K+ channel blockers in the vascular reactivity of in vitro perfused kidneys, as well as on the influence of vasoactive agents in the renal blood flow of rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both norepinephrine and phenylephrine had the ability to increase the vascular perfusion pressure reduced in kidneys of rats subjected to CLP at 18 h and 36 h before the experiments. The non-selective K+ channel blocker tetraethylammonium, but not the Kir6.1 blocker glibenclamide, normalized the effects of phenylephrine in kidneys from the CLP 18 h group. Systemic administration of tetraethylammonium, glibenclamide, or the KCa1.1 blocker iberiotoxin, did not change the renal blood flow in control or septic rats. Norepinephrine or phenylephrine also had no influence on the renal blood flow of septic animals, but its injection in rats from the CLP 18 h group previously treated with either glibenclamide or iberiotoxin resulted in an exacerbated reduction in the renal blood flow. These results suggest an abnormal functionality of K+ channels in the renal vascular bed in sepsis, and that the blockage of different subtypes of K+ channels may be deleterious for blood perfusion in kidneys, mainly when associated with vasoactive drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Macrolide Antibiotics Improve Phagocytic Capacity and Reduce Inflammation In Sulfur Mustard-Exposed Monocytes

    DTIC Science & Technology

    2008-12-01

    phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and

  11. [Effects of kidney-tonifying Chinese herbal drugs on human osteoblast Ca2+ intake and mineralization in vitro].

    PubMed

    Li, Juan; Wu, Wei-kang; Sun, Wei; Yu, Ke-qiang

    2004-12-01

    To study the effects of kidney-tonifying Chinese herbal drugs on Ca2+ intake and mineralization of human osteoblasts in vitro. Human osteoblasts were isolated from the iliac trabecular bone followed by purification and culture at 37 degrees Celsius with 5% CO2. The cells were identified by cell morphology, calcium nodule formation and alkaline phosphatase (ALP) activity assay. The third passage of the cultured osteoblasts were treated with 10% scrum from rat fed with the decoction of the kidney-tonifying Chinese herbal drugs of different concentrations for 30 min, 3 d and 28 d, respectively. The cells treated with 10% rat serum without the drugs served as the control. Flow cytometry was used to observe the changes in cell proliferation and intracellular Ca2+ concentration, and von Kossa staining employed for quantification of the mineral nodules. The osteoblasts obtained were positive for ALP staining and could form calcium nodules in vitro. Flow cytometry showed that the drugs at different concentrations all increased Ca2+ influx, as compared with the control cells. The drugs also increased the relative proliferation index of the osteoblasts, and high concentration of the drugs resulted in greater number of the mineral nodules in the osteoblasts (P<0.05). The kidney-tonifying Chinese herbal drugs may increase Ca2+ influx and stimulate proliferation and differentiation of adult osteoblasts in vitro.

  12. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    PubMed

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.

  13. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.

    PubMed

    Thamsen, Bente; Mevert, Ricardo; Lommel, Michael; Preikschat, Philip; Gaebler, Julia; Krabatsch, Thomas; Kertzscher, Ulrich; Hennig, Ewald; Affeld, Klaus

    2016-06-15

    In current rotary blood pumps, complications related to blood trauma due to shear stresses are still frequently observed clinically. Reducing the rotor tip speed might decrease blood trauma. Therefore, the aim of this project was to design a two-stage rotary blood pump leading to lower shear stresses. Using the principles of centrifugal pumps, two diagonal rotor stages were designed with an outer diameter of 22 mm. The first stage begins with a flow straightener and terminates with a diffusor, while a volute casing behind the second stage is utilized to guide fluid to the outlet. Both stages are combined into one rotating part which is pivoted by cup-socket ruby bearings. Details of the flow field were analyzed employing computational fluid dynamics (CFD). A functional model of the pump was fabricated and the pressure-flow dependency was experimentally assessed. Measured pressure-flow performance of the developed pump indicated its ability to generate adequate pressure heads and flows with characteristic curves similar to centrifugal pumps. According to the CFD results, a pressure of 70 mmHg was produced at a flow rate of 5 L/min and a rotational speed of 3200 rpm. Circumferential velocities could be reduced to 3.7 m/s as compared to 6.2 m/s in a clinically used axial rotary blood pump. Flow fields were smooth with well-distributed pressure fields and comparatively few recirculation or vortices. Substantially smaller volumes were exposed to high shear stresses >150 Pa. Hence, blood trauma might be reduced with this design. Based on these encouraging results, future in vitro investigations to investigate actual blood damage are intended.

  14. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.

    PubMed

    Zhou, Xin; Patel, Darshan; Sen, Sabyasachi; Shanmugam, Victoria; Sidawy, Anton; Mishra, Lopa; Nguyen, Bao-Ngoc

    2017-04-01

    Chronic nonhealing wounds are a major health problem for patients in the United States and worldwide. Diabetes and ischemia are two major risk factors behind impaired healing of chronic lower extremity wounds. Poly-ADP-ribose polymerase (PARP) is found to be overactivated with both ischemic and diabetic conditions. This study seeks a better understanding of the role of PARP in ischemic and diabetic wound healing, with a specific focus on angiogenesis and vasculogenesis. Ischemic and diabetic wounds were created in FVB/NJ mice and an in vitro scratch wound model. PARP inhibitor PJ34 was delivered to the animals at 10 mg/kg/d through implanted osmotic pumps or added to the culture medium, respectively. Animal wound healing was assessed by daily digital photographs. Animal wound tissues, peripheral blood, and bone marrow cells were collected at different time points for further analysis with Western blot and flow cytometry. Scratch wound migration and invasion angiogenesis assays were performed using human umbilical vein endothelial cells (HUVECs). Measurements were reported as mean ± standard deviation. Continuous measurements were compared by t-test. P < .05 was considered statistically significant. A significant increase in PARP activity was observed under ischemic and diabetic conditions that correlated with delayed wound healing and slower HUVEC migration. The beneficial effect of PARP inhibition with PJ34 on ischemic and diabetic wound healing was observed in both animal and in vitro models. In the animal model, the percentage of wound healing was significantly enhanced from 43% ± 6% to 71% ± 9% (P < .05) by day 7 with the addition of PJ34. PARP inhibition promoted angiogenesis at the ischemic and diabetic wound beds as evidenced by significantly higher levels of endothelial cell markers (vascular endothelial growth factor receptor 2 [VEGFR2] and endothelial nitric oxide synthase) in mice treated with PJ34 compared with controls. Flow cytometry analysis of peripheral blood mononuclear cells showed that PARP inhibition increased mobilization of endothelial progenitor cells (VEGFR2 + /CD133 + and VEGFR2 + /CD34 + ) into the systemic circulation. Furthermore, under in vitro hyperglycemia and hypoxia conditions, PARP inhibition enhanced HUVEC migration and invasion in Boyden chamber assays by 80% and 180% (P < .05), respectively. Delayed healing in ischemic and diabetic wounds is caused by PARP hyperactivity, and PARP inhibition significantly enhanced ischemic and diabetic wound healing by promoting angiogenesis. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets.

    PubMed

    Rotger, A; Ferret, A; Calsamiglia, S; Manteca, X

    2006-05-01

    To investigate the effects of synchronizing nonstructural carbohydrate (NSC) and protein degradation on intake and rumen microbial fermentation, four ruminally fistulated Holstein heifers (BW = 132.3 +/- 1.61 kg) fed high-concentrate diets were assigned to a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments studied in vivo and in vitro with a dual-flow continuous culture system. Two NSC sources (barley and corn) and 2 protein sources [soybean meal (SBM) and sunflower meal (SFM)] differing in their rate and extent of ruminal degradation were combined resulting in a synchronized rapid fermentation diet (barley-SFM), a synchronized slow fermentation diet (corn-SBM), and 2 unsynchronized diets with a rapidly and a slowly fermenting component (barley-SBM, and corn-SFM). In vitro, the fermentation profile was studied at a constant pH of 6.2, and at a variable pH with 12 h at pH 6.4 and 12 h at pH 5.8. Synchronization tended to result in greater true OM digestion (P = 0.072), VFA concentration (P = 0.067), and microbial N flow (P = 0.092) in vitro, but had no effects on in vivo fermentation pattern or on apparent total tract digestibility. The NSC source affected the efficiency of microbial protein synthesis in vitro, tending to be greater (P = 0.07) for barley-based diets, and in vivo, the NSC source tended to affect intake. Dry matter and OM intake tended to be greater (P > or = 0.06) for corn- than barley-based diets. Ammonia N concentration was lower in vitro (P = 0.006) and tended to be lower in vivo (P = 0.07) for corn- than barley-based diets. In vitro, pH could be reduced from 6.4 to 5.8 for 12 h/d without any effect on ruminal fermentation or microbial protein synthesis. In summary, ruminal synchronization seemed to have positive effects on in vitro fermentation, but in vivo recycling of endogenous N or intake differences could compensate for these effects.

  16. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.

    PubMed

    Fennell, T R; Brown, C D

    2001-06-15

    Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.

  17. Microbial ingrowth around single- and multi-component adhesives studied in vitro.

    PubMed

    Preussker, S; Klimm, W; Pöschmann, M; Koch, R

    2003-01-01

    The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel

  18. [The study on the proliferation and the apoptosis factors in vitro of Kölliker organ supporting cells in the cochlea of newborn rat].

    PubMed

    He, Yuanyuan; Yang, Jun

    2015-01-01

    To study the apoptosis/proliferation of Kölliker organ supporting cells and to understand the prompting apoptosis factors in vivo in the supporting cells in the Kölliker organ by changing the environment of the cultured supporting cells in the Kliker organ in vitro, via the separation, culture and purification of the supporting cells in the K6lliker organ. A combinatorial approach of enzymatic digestion and mechanical separation was employed to isolate and culture in vitro pure Kölliker organ supporting cells. The purity was tested by flow cytometry assay. And K6lliker organ supporting cells were harvested to detect the rate and cycle of apoptosis by flow cytometry after Annexin V/PI staining, to test the cell growth curve by MTT assay, and to observe the differential expressions of the Bcl-2, Caspase-3, Caspase-8 and Caspase-9 through the Realtime PCR and Western blot. The calcium, potassium and glutamate concentrations in the culture medium of these cells in vitro were changed to detect the survival rate of cells by MTT assay. The purity of K6lliker organ supporting cells by flow cytometry assay was 96. 56%. And these cells showed no significant difference in apoptosis, but an evident linear growth. The results of Realtime PCR and Western blot showed that the expression of Bcl-2, Caspase-3, Caspase-8 and Caspase-9 mRNA and protein in all different time points kept stable. Furthermore, the elevation of extracellular Ca2+ might contribute to decrease the cell viability of supporting cells. And K+ participated regulation of cell viability in a concentration-depending way. However, glutamate appeared to be a protective factor in high concentration. There is no significant apoptosis in vitro of the supporting cells in the Kölliker organ of rats, showing a linear growth. The Ca2+ in high concentration might contribute to the apoptosis factor of these cells. However, the K+ and glutamate appear to be protective factors in high concentration.

  19. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials.

    PubMed

    Grimberg, Brian T; Jaworska, Maria M; Hough, Lindsay B; Zimmerman, Peter A; Phillips, James G

    2009-09-15

    A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.

  20. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    PubMed

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

Top