Sample records for vitro flow system

  1. In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.

    PubMed

    Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine

    2011-01-01

      Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro.   The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals).   In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively.   The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.

  2. In vitro flow measurements in ion sputtered hydrocephalus shunts

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.

    1989-01-01

    This paper describes an experimental procedure for accurate measurements of the pressure-drop/flow rate relationship in hydrocephalus shunts. Using a fish-hook arrangement, small flow rates in a perforated ion-sputtered Teflon microtubule were measured in vitro in a pressured system and were correlated with pressure in the system. Results indicate that appropriate drainage rates could be obtained in the physiological range for hydrocephalus shunts.

  3. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  4. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  5. Patient-specific in vitro models for hemodynamic analysis of congenital heart disease - Additive manufacturing approach.

    PubMed

    Medero, Rafael; García-Rodríguez, Sylvana; François, Christopher J; Roldán-Alzate, Alejandro

    2017-03-21

    Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of an in-vitro circulatory system with known resistance and capacitance

    NASA Technical Reports Server (NTRS)

    Offerdahl, C. D.; Schaub, J. D.; Koenig, S. C.; Swope, R. D.; Ewert, D. L.; Convertino, V. A. (Principal Investigator)

    1996-01-01

    An in-vitro (hydrodynamic) model of the circulatory system was developed. The model consisted of a pump, compliant tubing, and valves for resistance. The model is used to simulate aortic pressure and flow. These parameters were measured using a Konigsburg Pressure transducer and a Triton ART2 flow probe. In addition, venous pressure and flow were measured on the downstream side of the resistance. The system has a known compliance and resistance. Steady and pulsatile flow tests were conducted to determine the resistance of the model. A static compliance test was used to determine the compliance of the system. The aortic pressure and flow obtained from the hydrodynamic model will be used to test the accuracy of parameter estimation models such as the 2-element and 4-element Windkessel models and the 3-element Westkessel model. Verifying analytical models used in determining total peripheral resistance (TPR) and systemic arterial compliance (SAC) is important because it provides insight into hemodynamic parameters that indicate baroreceptor responsiveness to situations such as changes in gravitational acceleration.

  7. Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.

    PubMed

    Neville, Richard F; Gupta, Samit K; Kuraguntla, David J

    2017-06-01

    Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  8. In vitro flow cytometry-based screening platform for cellulase engineering

    PubMed Central

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  9. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    PubMed

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  10. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  11. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System.

    PubMed

    de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver

    2015-12-01

    The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.

  12. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  13. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System@@

    EPA Science Inventory

    In 2007, the National Research Council envisioned the need for inexpensive, rapid, cell-based toxicity testing methods relevant to human health. in vitro screening approaches have largely addressed these problems by using robotics and automation. However, the challenge is that ma...

  14. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...

  15. Prevalidation of in vitro continuous flow exposure systems as alternatives to in vivo inhalation safety evaluation experimentations: outcome from MAAPHRI-PCRD5 research program.

    PubMed

    Morin, Jean-Paul; Hasson, Virginie; Fall, Mamadou; Papaioanou, Eleni; Preterre, David; Gouriou, Frantz; Keravec, Veronika; Konstandopoulos, Athanasios; Dionnet, Frédéric

    2008-06-01

    Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.

  16. Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies

    PubMed Central

    Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung

    2016-01-01

    Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental conditions for long-term hepatocyte cell culture using the QV bioreactor. This system facilitated the use of low system volumes coupled with higher flow rates. This design supports cellular respiration by increasing oxygen concentrations in the vicinity of the cells and facilitates long-term kinetic studies of low clearance test compounds. These two goals were achieved while simultaneously keeping the shear stress experienced by the cells within acceptable limits. PMID:27747210

  17. The stentable in vitro artery: an instrumented platform for endovascular device development and optimization.

    PubMed

    Antoine, Elizabeth E; Cornat, François P; Barakat, Abdul I

    2016-12-01

    Although vascular disease is a leading cause of mortality, in vitro tools for controlled, quantitative studies of vascular biological processes in an environment that reflects physiological complexity remain limited. We developed a novel in vitro artery that exhibits a number of unique features distinguishing it from tissue-engineered or organ-on-a-chip constructs, most notably that it allows deployment of endovascular devices including stents, quantitative real-time tracking of cellular responses and detailed measurement of flow velocity and lumenal shear stress using particle image velocimetry. The wall of the stentable in vitro artery consists of an annular collagen hydrogel containing smooth muscle cells (SMCs) and whose lumenal surface is lined with a monolayer of endothelial cells (ECs). The system has in vivo dimensions and physiological flow conditions and allows automated high-resolution live imaging of both SMCs and ECs. To demonstrate proof-of-concept, we imaged and quantified EC wound healing, SMC motility and altered shear stresses on the endothelium after deployment of a coronary stent. The stentable in vitro artery provides a unique platform suited for a broad array of research applications. Wide-scale adoption of this system promises to enhance our understanding of important biological events affecting endovascular device performance and to reduce dependence on animal studies. © 2016 The Author(s).

  18. Return of neonatal CPAP resistance - the Medijet device family examined using in vitro flow simulations.

    PubMed

    Falk, Markus; Donaldsson, Snorri; Jonsson, Baldvin; Drevhammar, Thomas

    2017-11-01

    Medijet nasal continuous positive airway pressure (CPAP) generators are a family of devices developed from the Benveniste valve. Previous studies have shown that the in vitro performance of the Medijet disposable generator was similar to the Neopuff resistor system. We hypothesised that resistance would be the main mechanism of CPAP generation in the Medijet disposable generator. The in vitro performance of the Medijet reusable and disposable systems, the Neopuff resistor system and the Benveniste and Infant Flow nonresistor systems were investigated using static and dynamic bench tests. Large differences in performance were found between the different systems. The disposable Medijet demonstrated high resistance, low pressure stability and high imposed work of breathing. The results also showed that encapsulating the Benveniste valve changed it into a resistor system. The main mechanism of CPAP generation for the disposable Medijet generator was resistance. The Medijet device family showed increasing resistance with each design generation. The high resistance of the Medijet disposable generator could be of great value when examining the clinical importance of pressure stability. Our results suggest that this device should be used cautiously in patients where pressure-stable CPAP is believed to be clinically important. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  19. In Vitro Comparison of Aerosol Delivery Using Different Face Masks and Flow Rates With a High-Flow Humidity System.

    PubMed

    Lin, Hui-Ling; Harwood, Robert J; Fink, James B; Goodfellow, Lynda T; Ari, Arzu

    2015-09-01

    Aerosol drug delivery to infants and small children is influenced by many factors, such as types of interface, gas flows, and the designs of face masks. The purpose of this in vitro study was to evaluate aerosol delivery during administration of gas flows across the range used clinically with high-flow humidity systems using 2 aerosol masks. A spontaneous lung model was used to simulate an infant/young toddler up to 2 y of age and pediatric breathing patterns. Nebulized salbutamol by a vibrating mesh nebulizer positioned at the inlet of a high-flow humidification system at gas flows of 3, 6, and 12 L/min was delivered via pediatric face masks to a pediatric face mannequin attached to a filter. Aerosol particle size distribution exiting the vibrating mesh nebulizer and at the mask position distal to the heated humidifier with 3 flows was measured with a cascade impactor. Eluted drug from the filters and the impactor was analyzed with a spectrophotometer (n = 3). Statistical analysis was performed by analysis of variance with a significant level of P < .05. The inhaled mass was between 2.8% and 8.1% among all settings and was significantly lower at 12 L/min (P = .004) in the pediatric model. Drug delivery with pediatric breathing was greater than with infant breathing (P = .004). The particle size distribution of aerosol emitted from the nebulizer was larger than the heated humidified aerosol exiting the tubing (P = .002), with no difference between the 3 flows (P = .10). The flows of gas entering the mask and breathing patterns influence aerosol delivery, independent of the face mask used. Aerosol delivery through a high-flow humidification system via mask could be effective with both infant and pediatric breathing patterns. Copyright © 2015 by Daedalus Enterprises.

  20. Microbial ingrowth around single- and multi-component adhesives studied in vitro.

    PubMed

    Preussker, S; Klimm, W; Pöschmann, M; Koch, R

    2003-01-01

    The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel

  1. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  2. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.

    PubMed

    Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E

    1995-01-01

    A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.

  3. Pulsed photoacoustic flow imaging with a handheld system

    NASA Astrophysics Data System (ADS)

    van den Berg, Pim J.; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging-ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75 mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ˜7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  4. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  5. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  6. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  7. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  8. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    PubMed

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  9. In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping.

    PubMed

    Minich, L L; Tani, L Y; Hawkins, J A; Bartkowiak, R R; Royall, M L; Pantalos, G M

    2001-04-01

    OBJECTIVES: To evaluate the effect of aortic compliance on pediatric intra-aortic balloon pumping (IABP). DESIGN: In vitro study using a mechanical model of the pediatric left heart circulation. SETTING: Cardiovascular fluid dynamics research laboratory. SUBJECT: Pulsatile flow system simulating the pediatric left heart circulation and two different aortas with compliances comparable to those of the pediatric aorta (0.12 and 0.07 mL/mm Hg). INTERVENTIONS: Measurements were made at a baseline peak aortic flow of 4 L/min, at simulated shock (1.7 L/min), and with 1:1 IABP (rates, 130 and 150 bpm; balloon volumes, 2.5 and 5.0 mL). MEASUREMENTS AND MAIN RESULTS: Peak flow rates were measured in the ascending aorta, coronary arterial system, and brachiocephalic arterial systems. Aortic pressure was measured in the ascending aorta. For both aortas (0.12 and 0.07 mL/mm Hg), IABP resulted in diastolic augmentation (38 +/- 8 and 43 +/- 16 mm Hg) and afterload reduction (4 +/- 2 and 6 +/- 3 mm Hg). For both aortas, compared to shock, IABP resulted in significant increases in coronary arterial and brachiocephalic arterial flow and aortic pressure for both aortas. Aortic flow significantly increased only in the less-compliant aorta. CONCLUSIONS: In a laboratory model of pediatric left heart circulation, IABP results in diastolic augmentation, afterload reduction, and improved hemodynamics, even in aortas of greater compliance.

  10. Ultrasonic Blood Flow Measurement in Haemodialysis

    PubMed Central

    Sampson, D.; Papadimitriou, M.; Kulatilake, A. E.

    1970-01-01

    A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system. PMID:5416812

  11. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.

    PubMed

    Olivier, V; Hivart, Ph; Descamps, M; Hardouin, P

    2007-09-01

    New biomaterials combined with osteogenic cells are now being developed as an alternative to autogeneous bone grafts when the skeletal defect reaches a critical size. Yet, the size issue appears to be a key obstacle in the development of bone tissue engineering. Bioreactors are needed to allow the in vitro expansion of cells inside large bulk materials under appropriate conditions. However, no bioreactor has yet been designed for large-scale 3D structures and custom-made scaffolds. In this study, we evaluate the efficiency of a new bioreactor for the in vitro development of large bone substitutes, ensuring the perfusion of large ceramic scaffolds by the nutritive medium. The survival and proliferation of cells inside the scaffolds after 7 and 28 days in this dynamic culture system and the impact of the direction of the flow circulation are evaluated. The follow-up of glucose consumption, DNA quantification and microscopic evaluation all confirmed cell survival and proliferation for a sample under dynamic culture conditions, whereas static culture leads to the death of cells inside the scaffolds. Two directions of flow perfusion were assayed; the convergent direction leads to enhanced results compared to divergent flow.

  12. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  13. A multipumping flow system for in vitro screening of peroxynitrite scavengers.

    PubMed

    Ribeiro, Marta F T; Dias, Ana C B; Santos, João L M; Fernandes, Eduarda; Lima, José L F C; Zagatto, Elias A G

    2007-09-01

    Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations.

  14. Development of a flow feedback pulse duplicator system with rhesus monkey arterial input impedance characteristics

    NASA Technical Reports Server (NTRS)

    Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1999-01-01

    An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.

  15. Arduino control of a pulsatile flow rig.

    PubMed

    Drost, S; de Kruif, B J; Newport, D

    2018-01-01

    This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Flow induced protein nucleation: Insulin oligomerization under shear.

    NASA Astrophysics Data System (ADS)

    Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2007-11-01

    A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.

  17. Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior

    PubMed Central

    Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.

    2013-01-01

    We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612

  18. Flow measurement in an in-vitro model of a single human alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2006-03-01

    The alveolus is the smallest and most important unit in the acinar region of the human lung. It is responsible for gas exchange between the lungs and the blood. A complete knowledge of the airflow pattern in the acinar region is necessary to predict the transport and deposition of inhaled aerosol particles. Such knowledge will benefit the pharmaceutical community in its effort to deliver therapeutic aerosols for lung-specific as well as system-wide ailments. In addition, it can also help to assess the health effects of the toxic aerosols in the environment. We have constructed an in-vitro model of a single spherical alveolus on a circular tube. The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions are reproduced by matching Reynolds and Womersley numbers. Experimental methods such as particle imaging velocimetry and laser induced fluorescence are used to study the resulting flow patterns. In particular, recirculating flow within the alveolus, and the fluid exchange between the alveolar duct and the alveolus are important for better understanding the flow in the acinar region.

  19. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  20. Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger.

    PubMed

    Weber, Jost; Georgiev, Vasil; Pavlov, Atanas; Bley, Thomas

    2008-10-01

    Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns. Copyright 2008 International Society for Advancement of Cytometry.

  1. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization.

    PubMed

    Clark, Sherrie G; Haubert, Kathyrn; Beebe, David J; Ferguson, C Edward; Wheeler, Matthew B

    2005-11-01

    Efforts to improve the in vitro embryo production process in pigs have included modifying culture medium and number of spermatozoa inseminated in order to reduce the incidence of polyspermy. Polyspermy is a pathological condition which results in aberrant embryonic development. The microchannels are designed to more closely mimic the function of the oviduct and create a flow pattern of spermatozoa past the oocytes similar to the pattern in the oviduct. In vitro fertilization of porcine oocytes in the microchannels has produced a higher incidence of monospermic penetration (p<0.05) as compared to the oocytes fertilized in the traditional microdrop system with comparable penetration and male pronucleus formation rates. Additionally, cleavage rates of the embryos as well as development to the blastocyst stage are similar. Here we demonstrate that the biomimetic microchannel in vitro fertilization system can reduce polyspermy and, therefore, increase the number of potentially viable embryos without reducing the overall in vitro production efficiency.

  2. Videodensitometric Methods for Cardiac Output Measurements

    NASA Astrophysics Data System (ADS)

    Mischi, Massimo; Kalker, Ton; Korsten, Erik

    2003-12-01

    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  3. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  4. Development of a biphasic dissolution test for Deferasirox dispersible tablets and its application in establishing an in vitro-in vivo correlation.

    PubMed

    Al Durdunji, Amal; AlKhatib, Hatim S; Al-Ghazawi, Mutasim

    2016-05-01

    In a biphasic dissolution medium, the integration of the in vitro dissolution of a drug in an aqueous phase and its subsequent partitioning into an organic phase is hypothesized to simulate the in vivo drug absorption. Such a methodology is expected to improve the probability of achieving a successful in vitro-in vivo correlation. Dissolution of Dispersible tablets of Deferasirox, a biopharmaceutics classification system type II compound, was studied in a biphasic dissolution medium using a flow-through dissolution apparatus coupled to a paddle apparatus. The experimental parameters associated with dissolution were optimized to discriminate between Deferasirox dispersible tablets of different formulations. The dissolution profiles obtained from this system were subsequently used to construct a level A in vitro-in vivo correlation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.

    PubMed

    Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland

    2006-01-01

    One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.

  6. Evaluation of In Vitro and In Vivo Flow Rate Dependency of Budesonide/Formoterol Easyhaler®

    PubMed Central

    Malmberg, L. Pekka; Everard, Mark L.; Haikarainen, Jussi

    2014-01-01

    Abstract Background: The Easyhaler® (EH) device-metered dry powder inhaler containing budesonide and formoterol is being developed for asthma and chronic obstructive pulmonary disease (COPD). As a part of product optimization, a series of in vitro and in vivo studies on flow rate dependency were carried out. Methods: Inspiratory flow parameters via EH and Symbicort® Turbuhaler® (TH) inhalers were evaluated in 187 patients with asthma and COPD. The 10th, 50th, and 90th percentile flow rates achieved by patients were utilized to study in vitro flow rate dependency of budesonide/formoterol EH and Symbicort TH. In addition, an exploratory pharmacokinetic study on pulmonary deposition of active substances for budesonide/formoterol EH in healthy volunteers was performed. Results: Mean inspiratory flow rates through EH were 64 and 56 L/min in asthmatics and COPD patients, and through TH 79 and 72 L/min, respectively. Children with asthma had marginally lower PIF values than the adults. The inspiratory volumes were similar in all groups between the inhalers. Using weighted 10th, 50th, and 90th percentile flows the in vitro delivered doses (DDs) and fine particle doses (FPDs) for EH were rather independent of flow as 98% of the median flow DDs and 89%–93% of FPDs were delivered already at 10th percentile air flow. Using±15% limits, EH and TH had similar flow rate dependency profiles between 10th and 90th percentile flows. The pharmacokinetic study with budesonide/formoterol EH in healthy subjects (n=16) revealed a trend for a flow-dependent increase in lung deposition for both budesonide and formoterol. Conclusions: Comparable in vitro flow rate dependency between budesonide/formoterol EH and Symbicort TH was found using the range of clinically relevant flow rates. The results of the pharmacokinetic study were in accordance with the in vitro results showing only a trend of flow rate-dependant increase in lung deposition of active substances with EH. PMID:24978441

  7. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  8. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  9. Depth encoded three-beam swept source Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-03-01

    A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.

  10. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Soria, J.; Jermy, M. C.

    2013-05-01

    Compliant (flexible) structures play an important role in several biological flows including the lungs, heart and arteries. Coronary heart disease is caused by a constriction in the artery due to a build-up of atherosclerotic plaque. This plaque is also of major concern in the carotid artery which supplies blood to the brain. Blood flow within these arteries is strongly influenced by the movement of the wall. To study these problems experimentally in vitro, especially using flow visualisation techniques, can be expensive due to the high-intensity and high-repetition rate light sources required. In this work, time-resolved particle image velocimetry using a relatively low-cost light-emitting diode illumination system was applied to the study of a compliant flow phantom representing a stenosed (constricted) carotid artery experiencing a physiologically realistic flow wave. Dynamic similarity between in vivo and in vitro conditions was ensured in phantom construction by matching the distensibility and the elastic wave propagation wavelength and in the fluid system through matching Reynolds ( Re) and Womersley number ( α) with a maximum, minimum and mean Re of 939, 379 and 632, respectively, and a α of 4.54. The stenosis had a symmetric constriction of 50 % by diameter (75 % by area). Once the flow rate reached a critical value, Kelvin-Helmholtz instabilities were observed to occur in the shear layer between the main jet exiting the stenosis and a reverse flow region that occurred at a radial distance of 0.34 D from the axis of symmetry in the region on interest 0-2.5 D longitudinally downstream from the stenosis exit. The instability had an axis-symmetric nature, but as peak flow rate was approached this symmetry breaks down producing instability in the flow field. The characteristics of the vortex train were sensitive not only to the instantaneous flow rate, but also to whether the flow was accelerating or decelerating globally.

  11. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel.

    PubMed

    Yaginuma, T; Oliveira, M S N; Lima, R; Ishikawa, T; Yamaguchi, T

    2013-01-01

    It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical methodology to detect circulatory diseases.

  12. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel

    PubMed Central

    Yaginuma, T.; Oliveira, M. S. N.; Lima, R.; Ishikawa, T.; Yamaguchi, T.

    2013-01-01

    It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical methodology to detect circulatory diseases. PMID:24404073

  13. Design and evaluation of a miniature laser speckle imaging device to assess gingival health

    PubMed Central

    Regan, Caitlin; White, Sean M.; Yang, Bruce Y.; Takesh, Thair; Ho, Jessica; Wink, Cherie; Wilder-Smith, Petra; Choi, Bernard

    2016-01-01

    Abstract. Current methods used to assess gingivitis are qualitative and subjective. We hypothesized that gingival perfusion measurements could provide a quantitative metric of disease severity. We constructed a compact laser speckle imaging (LSI) system that could be mounted in custom-made oral molds. Rigid fixation of the LSI system in the oral cavity enabled measurement of blood flow in the gingiva. In vitro validation performed in controlled flow phantoms demonstrated that the compact LSI system had comparable accuracy and linearity compared to a conventional bench-top LSI setup. In vivo validation demonstrated that the compact LSI system was capable of measuring expected blood flow dynamics during a standard postocclusive reactive hyperemia and that the compact LSI system could be used to measure gingival blood flow repeatedly without significant variation in measured blood flow values (p<0.05). Finally, compact LSI system measurements were collected from the interdental papilla of nine subjects and compared to a clinical assessment of gingival bleeding on probing. A statistically significant correlation (ρ=0.53; p<0.005) was found between these variables, indicating that quantitative gingival perfusion measurements performed using our system may aid in the diagnosis and prognosis of periodontal disease. PMID:27787545

  14. Design and evaluation of a miniature laser speckle imaging device to assess gingival health

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin; White, Sean M.; Yang, Bruce Y.; Takesh, Thair; Ho, Jessica; Wink, Cherie; Wilder-Smith, Petra; Choi, Bernard

    2016-10-01

    Current methods used to assess gingivitis are qualitative and subjective. We hypothesized that gingival perfusion measurements could provide a quantitative metric of disease severity. We constructed a compact laser speckle imaging (LSI) system that could be mounted in custom-made oral molds. Rigid fixation of the LSI system in the oral cavity enabled measurement of blood flow in the gingiva. In vitro validation performed in controlled flow phantoms demonstrated that the compact LSI system had comparable accuracy and linearity compared to a conventional bench-top LSI setup. In vivo validation demonstrated that the compact LSI system was capable of measuring expected blood flow dynamics during a standard postocclusive reactive hyperemia and that the compact LSI system could be used to measure gingival blood flow repeatedly without significant variation in measured blood flow values (p<0.05). Finally, compact LSI system measurements were collected from the interdental papilla of nine subjects and compared to a clinical assessment of gingival bleeding on probing. A statistically significant correlation (ρ=0.53 p<0.005) was found between these variables, indicating that quantitative gingival perfusion measurements performed using our system may aid in the diagnosis and prognosis of periodontal disease.

  15. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study

    PubMed Central

    H Bhandi, Shilpa; T S, Subhash

    2013-01-01

    Introduction: Microleakage continues to be a main reason for failure of root canal treatment where the challenge has been to achieve an adequate seal between the internal structure and the main obturating material. The objective of this study is to compare the sealing ability of 3 newer obturating materials GuttaFlow, Resilon/Epiphany system (RES) and Thermafil, using silver nitrate dye and observing under stereomicroscope. Methodology: Thirty single rooted teeth were divided into following groups. Group I : GuttaFlow ;Group II : Resilon /Epiphany sealer Group III : Thermafil with AH-Plus sealer. Teeth were decoronated and instrumented with profile rotary system and obturated with specified materials. Apical seal was determined by dye penetration method using silver nitrate. Then the specimens were transversely sectioned at each mm till 3 mm from the apex. Dye leakage was determined using stereomicroscope. Statistical analysis of the results was performed using Kruskall-Wallis test. Results: The results showed that Group II i.e., Resilon with Epiphany sealer showed the least amount of microleakage when compared to Group I i.e., GuttaFlow and Group III i.e., Thermafil with AH-plus sealer. Conclusion: Based on the results of this study it can be concluded that RES had higher sealing ability followed by Thermafil and GuttaFlow in vitro but further studies have to be carried out to make a direct correlation between these results and invivo situation. How to cite this article: Bhandi S H, Subhash T S. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study. J Int Oral Health 2013; 5(1):54-65. PMID:24155579

  16. Physical effects at the cellular level under altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1992-01-01

    Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.

  17. In vitro blood-brain barrier models: current and perspective technologies.

    PubMed

    Naik, Pooja; Cucullo, Luca

    2012-04-01

    Even in the 21st century, studies aimed at characterizing the pathological paradigms associated with the development and progression of central nervous system diseases are primarily performed in laboratory animals. However, limited translational significance, high cost, and labor to develop the appropriate model (e.g., transgenic or inbred strains) have favored parallel in vitro approaches. In vitro models are of particular interest for cerebrovascular studies of the blood-brain barrier (BBB), which plays a critical role in maintaining the brain homeostasis and neuronal functions. Because the BBB dynamically responds to many events associated with rheological and systemic impairments (e.g., hypoperfusion), including the exposure of potentially harmful xenobiotics, the development of more sophisticated artificial systems capable of replicating the vascular properties of the brain microcapillaries are becoming a major focus in basic, translational, and pharmaceutical research. In vitro BBB models are valuable and easy to use supporting tools that can precede and complement animal and human studies. In this article, we provide a detailed review and analysis of currently available in vitro BBB models ranging from static culture systems to the most advanced flow-based and three-dimensional coculture apparatus. We also discuss recent and perspective developments in this ever expanding research field. Copyright © 2011 Wiley Periodicals, Inc.

  18. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    PubMed

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  19. Branched hybrid vessel: in vitro loaded hydrodynamic forces influence the tissue architecture.

    PubMed

    Kobashi, T; Matsuda, T

    2000-01-01

    This study was conducted to investigate how a continuous load of hydrodynamic stresses influences the tissue architecture of a branched hybrid vessel in vitro. Tubular hybrid medial tissue of small (3 mm) and large (6 mm) diameters, prepared by thermal gelation of a cold mixed solution of bovine smooth muscle cells (SMCs) and type I collagen in glass molds, was assembled into a branched hybrid medial tissue by end-to-side anastomosis. After a 2-week culture period, bovine endothelial cells (ECs) were seeded onto the luminal surface. The branched hybrid vessel was connected to a mock circulatory loop system and tested for two modes of flow: 1) low flow rate for 24 h, 2) high flow rate for 24 or 72 h. After exposure to a low flow rate for 24 h, cobblestone appearance of the ECs was dominant. After exposure to a high flow rate, EC alignment in the direction of flow was observed in the branch region, except at the region of predicted flow separation where ECs retained their polygonal configuration. Elongation of SMCs with no preferential orientation was observed in the case of vessels exposed to a high flow rate for 24 h, and circumferential orientation was prominent in those exposed to a high flow rate for 72 h. On the other hand, collagen fibrils exhibited no preferential orientation in either case. After injection of Evans blue-albumin conjugate into the circulating medium, the luminal surface of the hybrid vessel exposed to a high flow rate for 24 h was examined by confocal laser scanning microscopy. The fluorescence intensity was low at the high shear zone in the branch region, while at the flow separation region it was very high, indicating the increased albumin permeability at the latter region. These findings reflect region-specific tissue architecture in the branch region, in response to the local flow pattern, and may provide an in vitro atherosclerosis model as well as a fundamental basis for the development of functional branched hybrid grafts.

  20. II. Model building: an electrical theory of control of growth and development in animals, prompted by studies of exogenous magnetic field effects (paper I), and evidence of DNA current conduction, in vitro.

    PubMed

    Elson, Edward

    2009-01-01

    A theory of control of cellular proliferation and differentiation in the early development of metazoan systems, postulating a system of electrical controls "parallel" to the processes of molecular biochemistry, is presented. It is argued that the processes of molecular biochemistry alone cannot explain how a developing organism defies a stochastic universe. The demonstration of current flow (charge transfer) along the long axis of DNA through the base-pairs (the "pi-way) in vitro raises the question of whether nature may employ such current flows for biological purposes. Such currents might be too small to be accessible to direct measurement in vivo but conduction has been measured in vitro, and the methods might well be extended to living systems. This has not been done because there is no reasonable model which could stimulate experimentation. We suggest several related, but detachable or independent, models for the biological utility of charge transfer, whose scope admittedly outruns current concepts of thinking about organization, growth, and development in eukaryotic, metazoan systems. The ideas are related to explanations proposed to explain the effects demonstrated on tumors and normal tissues described in Article I (this issue). Microscopic and mesoscopic potential fields and currents are well known at sub-cellular, cellular, and organ systems levels. Not only are such phenomena associated with internal cellular membranes in bioenergetics and information flow, but remarkable long-range fields over tissue interfaces and organs appear to play a role in embryonic development (Nuccitelli, 1992 ). The origin of the fields remains unclear and is the subject of active investigation. We are proposing that similar processes could play a vital role at a "sub-microscopic level," at the level of the chromosomes themselves, and could play a role in organizing and directing fundamental processes of growth and development, in parallel with the more discernible fields and currents described.

  1. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    PubMed

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  2. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, rapid, cell based toxicity testing methods relevant to human health. Recent advances in robotics, automation, and miniaturization have been used to address these problems. However, one challenge is that ma...

  3. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System##

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, rapid, cell based toxicity testing methods relevant to human health. Recent advances in robotics, automation, and miniaturization have been used to address this challenge. However, one drawback to currentl...

  4. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study

    PubMed Central

    Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit

    2014-01-01

    Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105

  5. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms

    PubMed Central

    Ramoni, Marco F.

    2010-01-01

    The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms. PMID:19906839

  6. Evaluation of Flow Biosensor Technology in a Chronically-Instrumented Non-Human Primate Model

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Reister, C.; Schaub, J.; Muniz, G.; Ferguson, T.; Fanton, J. W.

    1995-01-01

    The Physiology Research Branch of Brooks AFB conducts both human and non-human primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to indentify the particular mechanisms that invoke these responses. Primary investigative research efforts in a non-human primate model require the calculation of total peripheral resistance (TPR), systemic arterial compliance (SAC), and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. We have evaluated commercially available electromagnetic (EMF) and transit-time flow measurement techniques. In vivo and in vitro experiments demonstrated that the average error of these techniques is less than 25 percent for EMF and less than 10 percent for transit-time.

  7. In-vitro model for evaluation of pulse oximetry

    NASA Astrophysics Data System (ADS)

    Vegfors, Magnus; Lindberg, Lars-Goeran; Lennmarken, Claes; Oberg, P. Ake

    1991-06-01

    An in vitro model with blood circulating in a silicon tubing system and including an artificial arterial bed is an important tool for evaluation of the pulse oximetry technique. The oxygen saturation was measured on an artificial finger using a pulse oximeter (SpO2) and on blood samples using a hemoximeter (SaO2). Measurements were performed at different blood flows and at different blood hematocrits. An increase in steady as well as in pulsatile blood flow was followed by an increase in pulse oximeter readings and a better agreement between SpO2 and SaO2 readings. After diluting the blood with normal saline (decreased hematocrit) the agreement was further improved. These results indicate that the pulse oximeter signal is related to blood hematocrit and the velocity of blood. The flow-related dependance of SpO2 was also evaluated in a human model. These results provided evidence that the pulse oximeter signal is dependent on vascular changes.

  8. Application of drag-reducing polymer solutions as test fluids for in vitro evaluation of potential blood damage in blood pumps.

    PubMed

    Daly, Amanda R; Sobajima, Hideo; Olia, Salim E; Takatani, Setsuo; Kameneva, Marina V

    2010-01-01

    In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood.

  9. Application of Drag-Reducing Polymer Solutions as Test Fluids for In Vitro Evaluation of Potential Blood Damage in Blood Pumps

    PubMed Central

    Daly, Amanda R.; Sobajima, Hideo; Olia, Salim E.; Takatani, Setsuo; Kameneva, Marina V.

    2011-01-01

    In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood. PMID:20019596

  10. Cold flow of estradiol transdermal systems: influence of drug loss on the in vitro flux and drug transfer across human epidermis.

    PubMed

    Krishnaiah, Yellela S R; Yang, Yang; Hunt, Robert L; Khan, Mansoor A

    2014-12-30

    The objective was to quantify drug loss due to cold flow (CF) in marketed estradiol transdermal drug delivery systems (TDDS), and study its influence on the in vitro flux and drug transfer across contacting skin. TDDS samples (products-A and B) were induced with CF at 25 and 32°C/60% RH by applying 1-kg force for 72h. CF was measured as percent dimensional change and amount of drug loss/migration in CF region. In vitro drug permeation studies were conducted across human epidermis from TDDS excluding CF region, and CF region alone against control (without CF). In both products, significantly higher percentage of CF (dimensional change and drug migration) was observed at 32°C compared to 25°C. In vitro flux from both products excluding CF region either at 25 or 32°C was the same, but significantly lower compared to control. Drug transferred from CF region of product-A after 8h was the same at 25 and 32°C, but significantly higher in product-B. Flux from both products together with CF region at 32°C was significantly lower than that observed at 25°C. Results showed that excessive CF at storage (25°C) and clinical usage (32°C) conditions may have implications on product performance and safety of estradiol TDDS. Published by Elsevier B.V.

  11. Heat exchangers for cardioplegia systems: in vitro study of four different concepts.

    PubMed

    Drummond, Mário; Novello, Waldyr Parorali; de Arruda, Antonio Celso Fonseca; Braile, Domingo Marcolino

    2003-05-01

    The aim of this work is the evaluation of four different heat exchangers used for myocardium during cardioplegic system in cardiac surgeries. Four types of shell and tube heat exchangers made of different exchange elements were constructed, as follows: stainless steel tubes, aluminium tubes, polypropylene hollow fiber, and bellows type. The evaluation was performed by in vitro tests of parameters such as heat transfer, pressure drop, and hemolysis tendency. The result has shown that all four systems tested were able to achieve the heat performance, and to offer low resistance to flow, and safety, as well as have low tendency to hemolysis. However, we can emphasize that the bellows type heat exchanger has a significant difference with regard to the other three types.

  12. In Vitro Toxicity Assessment Technique for Volatile Substances Using Flow-Through System

    EPA Science Inventory

    : The U.S. EPA is responsible for evaluating the effects of approximately 80,000 chemicals registered for use. The challenge is that limited toxicity data exists for many of these chemicals; traditional toxicity testing methods are slow, costly, involve animal studies, and canno...

  13. Determination of VIT 45 (IND#63,243 - American Regent) removal by closed loop in vitro hemodialysis system.

    PubMed

    Manley, H J; McClaran, M L

    2006-11-01

    Intravenous iron is typically administered during the hemodialysis (HD) procedure. The extent of VIT 45, a novel intravenous iron formulation, removal by high-flux (HF) or high-efficiency (HE) dialysis membranes at various ultrafiltration rates (UFR) is unknown. An in vitro HD system was constructed to determine the dialyzability of iron from a normal saline compartment (NSC) containing 1000 mg iron of VIT 45. The in vitro system utilized a 6-L closed-loop SBS system that was subject to 4 different HD conditions conducted over 4 hours: HE membrane + 0 ml/h UFR; HE membrane + 500 ml/h UFR; HF membrane + 0 ml/h UFR; HF membrane + 500 ml/h UFR. Blood flow and dialysate flow rates were 500 ml/min and 800 ml/min, respectively. The dialysate compartment was a 6-L closed-loop system. A volumetric HD machine controlled all blood, dialysate, and ultrafiltration rates. NSC and dialysate compartment samples were taken at various time points and iron elimination rate (khd) and HD clearance (Clhd) was determined. Iron removal from the NSC > 15% was considered clinically significant. The percent removal of iron from the NSC was < 0.5% at all time points in the study. Dialysate recovery of iron was negligible: 1.7-5.1 mg. VIT 45 removal elimination rates from NSC were less than -0.001 h(-1) (range -0.0002 +/- 0.0001 to -0.0001 +/- 0.0002 h (-1)) for all study conditions. Dialyzer type or UFR did not effect iron removal. HF or HE dialysis membranes do not remove clinically significant amounts of VIT 45 over a 4-hour in vitro HD session. This effect remained constant even controlling for UFR up to 500 ml/hour. VIT 45 is not dialyzed by HE or HF dialysis membranes irrespective of UFR.

  14. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials

    PubMed Central

    Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.

    2013-01-01

    To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796

  15. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    PubMed

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  16. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  17. Longitudinal evaluation of the efficacy of heat treatment procedures against Legionella spp. in hospital water systems by using a flow cytometric assay.

    PubMed

    Allegra, Severine; Grattard, Florence; Girardot, Françoise; Riffard, Serge; Pozzetto, Bruno; Berthelot, Philippe

    2011-02-01

    Legionella spp. are frequently isolated in hospital water systems. Heat shock (30 min at 70°C) is recommended by the World Health Organization to control its multiplication. The aim of the study was to evaluate retrospectively the efficacy of heat treatments by using a flow cytometry assay (FCA) able to identify viable but nonculturable (VBNC) cells. The study included Legionella strains (L. pneumophila [3 clusters] and L. anisa [1 cluster]) isolated from four hot water circuits of different hospital buildings in Saint-Etienne, France, during a 20-year prospective surveillance. The strains recovered from the different circuits were not epidemiologically related, but the strains isolated within a same circuit over time exhibited an identical genotypic profile. After an in vitro treatment of 30 min at 70°C, the mean percentage of viable cells and VBNC cells varied from 4.6% to 71.7%. The in vitro differences in heat sensitivity were in agreement with the observed efficacy of preventive and corrective heating measures used to control water contamination. These results suggest that Legionella strains can become heat resistant after heating treatments for a long time and that flow cytometry could be helpful to check the efficacy of heat treatments on Legionella spp. and to optimize the decontamination processes applied to water systems for the control of Legionella proliferation.

  18. In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals

    PubMed Central

    Tangwongsan, Chanchana; Chachati, Louay; Webster, John G; Farrell, Patrick V

    2006-01-01

    Background We need a sensor to measure the convective heat transfer coefficient during ablation of the heart or liver. Methods We built a minimally invasive instrument to measure the in vivo convective heat transfer coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin film resistive temperature detector (RTD) sensor. We used a circulation system to simulate different flow rates at 39°C for in vitro experiments using distilled water, tap water and saline. We heated the sensor approximately 5°C above the fluid temperature. We measured the power consumed by the sensor and the resistance of the sensor during the experiments and analyzed these data to determine the value of the convective heat transfer coefficient at various flow rates. Results From 0 to 5 L/min, experimental values of h in W/(m2·K) were for distilled water 5100 to 13000, for tap water 5500 to 12300, and for saline 5400 to 13600. Theoretical values were 1900 to 10700. Conclusion We believe this system is the smallest, most accurate method of minimally invasive measurement of in vivo h in animals and provides the least disturbance of flow. PMID:17067386

  19. Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods.

    PubMed

    Alatar, Abdulrahman A; Faisal, Mohammad; Abdel-Salam, Eslam M; Canto, Tomas; Saquib, Quaiser; Javed, Saad B; El-Sheikh, Mohamed A; Al-Khedhairy, Abdulaziz A

    2017-09-01

    In the present study, we develop an efficient and reproducible in vitro regeneration system for two cultivars viz. , Jamila and Tomaland of Solanum lycopersicum L., an economically important vegetable crop throughout the world. Sterilization of seeds with 2.5% (v/v) NaOCl was found to be most effective, about 97% of seeds germinated on cotton in magenta box moistened with sterile half strength (½)Murashige and Skoog (MS) medium. Regeneration efficiency of cotyledonary leaf (CL) and cotyledonary node (CN) explants derived from 08 days old aseptic seedling were assessed on MS medium supplemented with different concentrations of auxins and cytokinin. CL explants were found more responsive in comparison to CN in both the cultivars. Types of basal media were also assessed and found to have a significant effect on shoot regeneration. Highest regeneration frequency and maximum number of shoots were standardized from CL explants on MS medium supplied with 6-benzyl adenine (BA; 5.0 µM), indole-3-butyric acid (IBA; 2.5 µM) and Kinetin (Kin; 10.0 µM). In vitro regenerated microshoots were rooted on ½MS medium containing 0.5 µM indole-3-butyric acid (IBA). Regenerated plantlets with well-developed roots and shoot system were successfully acclimated to ex vitro condition. Genetic uniformity of tissue culture raised plantlets was first time evaluated using flow cytometry and single primer amplification reaction (SPAR) methods viz ., DAMD and ISSR. No significant changes in ploidy level and nuclear DNA content profile were observed between in vitro propagated plants and normal plants of both the cultivars. Similarly, the SPAR analysis also revealed monomorphic banding patterns in regenerated plantlets of S. lycopersicum verifying their genetic uniformity and clonal fidelity. This efficient regeneration system can be used as a fast and reproducible method for genetic transformation of this important vegetable crop.

  20. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.

    PubMed

    Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M

    2008-03-01

    The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.

  1. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    PubMed

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  2. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.

    PubMed

    Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D

    2015-05-15

    An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

  3. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    PubMed

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  4. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    PubMed

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  5. Effects of bulk and free surface shear flows on amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Posada, David; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2008-11-01

    Amyloid diseases such as Alzheimer's and Huntington's, among others, are characterized by the conversion of monomers to oligomers (precursors) and then to amyloid fibrils. Besides factors such as concentration, pH, and ionic strength, evidence exists that shearing flow strongly influences amyloid formation in vitro. Also, during fibrillation in the presence of either gas or solid surfaces, both the polarity and roughness of the surfaces play a significant role in the kinetics of the fibrillation process. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field, we can identify the flow and interfacial conditions that impact protein aggregation kinetics. The present flow system consists of an annular region, bounded by stationary inner and outer cylinders and driven by rotation of the floor, with either a hydrophobic (air) or hydrophilic (solid) interface. We show both the combined and separated effects of shear and interfacial hydrophobicity on the fibrillation process, and the use of interfacial shear viscosity as a parameter for quantifying the oligomerization process.

  6. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass.

    PubMed

    Jarvis, Maria; Arnold, Michael; Ott, Jenna; Pant, Kapil; Prabhakarpandian, Balabhaskar; Mitragotri, Samir

    2017-09-01

    In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle-based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co-culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface-functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co-culture devices to assess nanoparticle-cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.

  7. Targeted antitumoral dehydrocrotonin nanoparticles with L-ascorbic acid 6-stearate.

    PubMed

    Frungillo, Lucas; Martins, Dorival; Teixeira, Sérgio; Anazetti, Maristela Conti; Melo, Patrícia da Silva; Durán, Nelson

    2009-12-01

    Tumoral cells are known to have a higher ascorbic acid uptake than normal cells. Therefore, the aim of this study was to obtain polymeric nanoparticles containing the antitumoral compound trans-dehydrocrotonin (DHC) functionalized with L-ascorbic acid 6-stearate (AAS) to specifically target this system tumoral cells. Nanoparticle suspensions (NP-AAS-DHC) were prepared by the nanoprecipitation method. The systems were characterized for AAS presence by thin-layer chromatography and for drug loading (81-88%) by UV-Vis spectroscopy. To further characterize these systems, in vitro release kinetics, size distribution (100-140 nm) and Zeta potential by photon-correlation spectroscopic method were used. In vitro toxicity against HL60 cells was evaluated by tetrazolium reduction and Trypan blue exclusion assays. Cell death by apoptosis was quantified and characterized by flow cytometry and caspase activity. Zeta potential analyses showed that the system has a negatively charged outer surface and also indicate that AAS is incorporated on the external surface of the nanoparticles. In vitro release kinetics assay showed that DHC loaded in nanoparticles had sustained release behavior. In vitro toxicity assays showed that NP-AAS-DHC suspension was more effective as an antitumoral than free DHC or NP-DHC and increased apoptosis induction by receptor-mediated pathway. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Circadian changes in uterine artery and ovarian stromal blood flow after pituitary down-regulation.

    PubMed

    Chan, Carina C W; Ng, Ernest H Y; Tang, Oi-Shan; Ho, Pak-Chung

    2005-09-01

    To investigate changes in the uterine artery and ovarian stromal blood flow in relation to the time of the day after pituitary down-regulation during in vitro fertilization treatment. Thirteen women were recruited. The uterine artery blood flow was studied using pulsed color Doppler ultrasonography and the ovarian stromal blood flow was measured using three-dimensional power Doppler ultrasonography. Ultrasound scan examinations and blood pressure measurements were performed in the morning and evening. The diastolic and the mean arterial pressures were significantly higher in the evening. An increase in the uterine artery pulsatility index and resistance index in the evening was observed. The ovarian vascularization index, vascularization flow index, and right ovarian flow index were significantly lower in the evening. Despite the small sample size, we have demonstrated the presence of a diurnal change in uterine artery and ovarian stromal blood flow after pituitary down-regulation. Such changes may be related to the systemic change in the sympathetic system and hence vascular resistance. Future study regarding ovarian stromal blood flow should take into account the effect of the time of the day on the readings in order to avoid misleading interpretation of data.

  9. Novel multi-functional fluid flow device for studying cellular mechanotransduction

    PubMed Central

    Lyons, James S.; Iyer, Shama R.; Lovering, Richard M.; Ward, Christopher W.; Stains, Joseph P.

    2016-01-01

    Cells respond to their mechanical environment by initiating multiple mechanotransduction signaling pathways. Defects in mechanotransduction have been implicated in a number of pathologies; thus, there is need for convenient and efficient methods for studying the mechanisms underlying these processes. A widely used and accepted technique for mechanically stimulating cells in culture is the introduction of fluid flow on cell monolayers. Here, we describe a novel, multifunctional fluid flow device for exposing cells to fluid flow in culture. This device integrates with common lab equipment including routine cell culture plates and peristaltic pumps. Further, it allows the fluid flow treated cells to be examined with outcomes at the cell and molecular level. We validated the device using the biologic response of cultured UMR-106 osteoblast-like cells in comparison to a commercially available system of laminar sheer stress to track live cell calcium influx in response to fluid flow. In addition, we demonstrate the fluid flow-dependent activation of phospho-ERK in these cells, consistent with the findings in other fluid flow devices. This device provides a low cost, multi-functional alternative to currently available systems, while still providing the ability to generate physiologically relevant conditions for studying processes involved in mechanotransduction in vitro. PMID:27887728

  10. Designing a Microfluidic Device with Integrated Ratiometric Oxygen Sensors for the Long-Term Control and Monitoring of Chronic and Cyclic Hypoxia

    PubMed Central

    Grist, Samantha M.; Schmok, Jonathan C.; Liu, Meng-Chi (Andy); Chrostowski, Lukas; Cheung, Karen C.

    2015-01-01

    Control of oxygen over cell cultures in vitro is a topic of considerable interest, as chronic and cyclic hypoxia can alter cell behaviour. Both static and transient hypoxic levels have been found to affect tumour cell behaviour; it is potentially valuable to include these effects in early, in vitro stages of drug screening. A barrier to their inclusion is that rates of transient hypoxia can be a few cycles/hour, which is difficult to reproduce in traditional in vitro cell culture environments due to long diffusion distances from control gases to the cells. We use a gas-permeable three-layer microfluidic device to achieve spatial and temporal oxygen control with biologically-relevant switching times. We measure the oxygen profiles with integrated, ratiometric optical oxygen sensors, demonstrate sensor and system stability over multi-day experiments, and characterize a pre-bleaching process to improve sensor stability. We show, with both finite-element modelling and experimental data, excellent control over the oxygen levels by the device, independent of fluid flow rate and oxygenation for the operating flow regime. We measure equilibration times of approximately 10 min, generate complex, time-varying oxygen profiles, and study the effects of oxygenated media flow rates on the measured oxygen levels. This device could form a useful tool for future long-term studies of cell behaviour under hypoxia. PMID:26287202

  11. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    PubMed

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  12. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    PubMed

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  13. In vitro interactions between splenocytes and dansylamide dye-embedded nanoparticles detected by flow cytometry

    PubMed Central

    Nyland, Jennifer F.; Bai, Jennifer J. K.; Katz, Howard E.; Silbergeld, Ellen K.

    2009-01-01

    Engineered nanoparticles (NPs) possess a range of biological activity. In vitro methods for assessing toxicity and efficacy would be enhanced by simultaneous quantitative information on the behavior of NPs in culture systems and signals of cell response. We have developed a method for visualizing NPs within cells using standard flow cytometric techniques and uniquely designed spherical siloxane NPs with an embedded (covalently bound) dansylamide dye. This method allowed NP visualization without obscuring detection of relevant biomarkers of cell subtype, activation state, and other events relevant to assessing bioactivity. We determined that NPs penetrated cells and induced a range of biological signals consistent with activation and costimulation. These results indicate that NPs may affect cell function at concentrations below those inducing cytotoxicity or apoptosis and demonstrate a novel method to image both localization of NPs and cell-level effects. PMID:19523425

  14. IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.

    PubMed

    Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier

    2017-04-05

    To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.

  15. Proportional assist ventilation system based on proportional solenoid valve control.

    PubMed

    Lua, A C; Shi, K C; Chua, L P

    2001-07-01

    A new proportional assist ventilation (PAV) method using a proportional solenoid valve (PSV) to control air supply to patients suffering from respiratory disabilities, was studied. The outlet flow and pressure from the proportional solenoid valve at various air supply pressures were tested and proven to be suitable for pressure and flow control in a PAV system. In vitro tests using a breathing simulator, which has been proven to possess the general characteristics of human respiratory system in spontaneous breathing tests, were conducted and the results demonstrated the viability of this PAV system in normalizing the breathing patterns of patients with abnormally high resistances and elastances as well as neuromuscular weaknesses. With a back-up safety mechanism incorporated in the control program, pressure "run-away" can be effectively prevented and safe operation of the system can be guaranteed.

  16. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  17. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen.

    PubMed

    Carro, M D; Ranilla, M J; Martín-García, A I; Molina-Alcaide, E

    2009-04-01

    Eight Rusitec and eight single-flow continuous-culture fermenters (SFCCF) were used to compare the ruminal fermentation of two diets composed of alfalfa hay and concentrate in proportions of 80 : 20 (F80) and 20 : 80 (F20). Results were validated with those obtained previously in sheep fed the same diets. Rusitec fermenters were fed once daily and SFCCF twice, but liquid dilution rates were similar in both types of fermenters. Mean values of pH over the 12 h postfeeding were higher (P < 0.001) in Rusitec than in SFCCF, with diet F80 showing higher values (P < 0.001) in both types of fermenters. Concentrations of total volatile fatty acids (VFA) were higher (P < 0.001) in SFCCF than in Rusitec, and in both systems were higher (P = 0.002) for diet F20 than for diet F80. There were significant differences between systems in the proportions of the main VFA, and a fermentation system × diet interaction (P < 0.001) was detected for all VFA with the exception of valerate. No differences (P = 0.145) between the two types of fermenters were detected in dry matter (DM) digestibility, but NDF, microbial N flow and its efficiency were higher (P = 0.001) in SFCCF compared to Rusitec. Whereas pH values and VFA concentrations remained fairly stable through the day in both in vitro systems, pH dropped and VFA increased shortly after feeding in sheep rumen reaching the minimum and maximal values, respectively, about 4 h after feeding. Both in vitro systems detected differences between diets similar to those found in sheep for liquid dilution rate, pH values, DM digestibility, microbial N flow and growth efficiency. In contrast, acetate/propionate ratios were lower for diet F20 than for F80 in sheep rumen (2.73 and 3.97) and SFCCF (3.07 and 4.80), but were higher for diet F20 compared to F80 (4.29 and 3.40) in Rusitec, with values considered to be unphysiological for high-concentrate diets. In vivo NDF digestibility was affected (P = 0.017) by diet, but no differences between diets (P > 0.05) were found in any in vitro system. A more precise control of pH in both types of fermenters and a reduction of concentrate retention time in Rusitec could probably improve the simulation of in vivo fermentation.

  18. In vitro experiments of cerebral blood flow during aspiration thrombectomy: potential effects on cerebral perfusion pressure and collateral flow.

    PubMed

    Lally, Frank; Soorani, Mitra; Woo, Timothy; Nayak, Sanjeev; Jadun, Changez; Yang, Ying; McCrudden, John; Naire, Shailesh; Grunwald, Iris; Roffe, Christine

    2016-09-01

    Mechanical thrombectomy with stent retriever devices is associated with significantly better outcomes than thrombolysis alone in the treatment of acute ischemic stroke. Thrombus aspiration achieves high patency rates, but clinical outcomes are variable. The aim of this study was to examine the effect of different suction conditions on perfusate flow during aspiration thrombectomy. A computational fluid dynamics model of an aspiration device within a patent and occluded blood vessel was used to simulate flow characteristics using fluid flow solver software. A physical particulate flow model of a patent vessel and a vessel occluded by thrombus was then used to visualize flow direction and measure flow rates with the aspiration catheter placed 1-10 mm proximal of the thrombus, and recorded on video. The mathematical model predicted that, in a patent vessel, perfusate is drawn from upstream of the catheter tip while, in an occluded system, perfusate is drawn from the vessel proximal to the device tip with no traction on the occlusion distal of the tip. The in vitro experiments confirmed the predictions of this model. In the occluded vessel aspiration had no effect on the thrombus unless the tip of the catheter was in direct contact with the thrombus. These experiments suggest that aspiration is only effective if the catheter tip is in direct contact with the thrombus. If the catheter tip is not in contact with the thrombus, aspirate is drawn from the vessels proximal of the occlusion. This could affect collateral flow in vivo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Rapid multi-wavelength optical assessment of circulating blood volume without a priori data

    NASA Astrophysics Data System (ADS)

    Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.

    2016-03-01

    The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.

  20. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi

    2014-01-01

    The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948

  1. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  2. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  3. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.

    PubMed

    Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim

    2011-08-11

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Automatic Emboli Detection System for the Artificial Heart

    NASA Astrophysics Data System (ADS)

    Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.

    In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.

  5. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  6. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: Significance of the skin reservoir and prediction of systemic absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yourick, Jeffrey J.; Jung, Connie T.; Bronaugh, Robert L.

    2008-08-15

    The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing {sup 3}H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose.more » In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h receptor fluid value. However, the receptor fluid value from the 72-h extended study may be used in a worst-case exposure estimate. In conclusion, in vivo skin absorption studies can be useful in determining whether to include material in the in vitro skin reservoir as absorbable material in estimates of systemic absorption.« less

  7. Automatic flow-through dynamic extraction: A fast tool to evaluate char-based remediation of multi-element contaminated mine soils.

    PubMed

    Rosende, María; Beesley, Luke; Moreno-Jimenez, Eduardo; Miró, Manuel

    2016-02-01

    An automatic in-vitro bioaccessibility test based upon dynamic microcolumn extraction in a programmable flow setup is herein proposed as a screening tool to evaluate bio-char based remediation of mine soils contaminated with trace elements as a compelling alternative to conventional phyto-availability tests. The feasibility of the proposed system was evaluated by extracting the readily bioaccessible pools of As, Pb and Zn in two contaminated mine soils before and after the addition of two biochars (9% (w:w)) of diverse source origin (pine and olive). Bioaccessible fractions under worst-case scenarios were measured using 0.001 mol L(-1) CaCl2 as extractant for mimicking plant uptake, and analysis of the extracts by inductively coupled optical emission spectrometry. The t-test of comparison of means revealed an efficient metal (mostly Pb and Zn) immobilization by the action of olive pruning-based biochar against the bare (control) soil at the 0.05 significance level. In-vitro flow-through bioaccessibility tests are compared for the first time with in-vivo phyto-toxicity assays in a microcosm soil study. By assessing seed germination and shoot elongation of Lolium perenne in contaminated soils with and without biochar amendments the dynamic flow-based bioaccessibility data proved to be in good agreement with the phyto-availability tests. Experimental results indicate that the dynamic extraction method is a viable and economical in-vitro tool in risk assessment explorations to evaluate the feasibility of a given biochar amendment for revegetation and remediation of metal contaminated soils in a mere 10 min against 4 days in case of phyto-toxicity assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Human astrocytes/astrocyte conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells

    PubMed Central

    Siddharthan, Venkatraman; V. Kim, Yuri; Liu, Suyi; Kim, Kwang Sik

    2009-01-01

    The blood-brain barrier (BBB) is a structural and functional barrier that regulates the passage of molecules into and out of the brain to maintain the neural microenvironment. We have previously developed the in vitro BBB model with human brain microvascular endothelial cells (HBMEC). However, in vivo HBMEC are shown to interact with astrocytes and also exposed to shear stress through blood flow. In an attempt to develop the BBB model to mimic the in vivo condition we constructed the flow-based in vitro BBB model using HBMEC and human fetal astrocytes (HFA). We also examined the effect of astrocyte conditioned medium (ACM) in lieu of HFA to study the role of secreted factor(s) on the BBB properties. The tightness of HBMEC monolayer was assessed by the permeability of dextran and propidium iodide as well as by measuring the transendothelial electrical resistance (TEER). We showed that the HBMEC permeability was reduced and TEER was increased by non-contact, co-cultivation with HFA and ACM. The exposure of HBMEC to shear stress also exhibited decreased permeability. Moreover, HFA/ACM and shear flow exhibited additive effect of decreasing the permeability of HBMEC monolayer. In addition, we showed that the HBMEC expression of ZO-1 (tight junction protein) was increased by co-cultivation with ACM and in response to shear stress. These findings suggest that the non-contact co-cultivation with HFA helps maintain the barrier properties of HBMEC by secreting factor(s) into the medium. Our in vitro flow model system with the cells of human origin should be useful for studying the interactions between endothelial cells, glial cells, and secreted factor(s) as well as the role of shear stress in the barrier property of HBMEC. PMID:17368578

  9. Implantable physiologic controller for left ventricular assist devices with telemetry capability.

    PubMed

    Asgari, Siavash S; Bonde, Pramod

    2014-01-01

    Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  10. Design of a prototype flow microreactor for synthetic biology in vitro.

    PubMed

    Boehm, Christian R; Freemont, Paul S; Ces, Oscar

    2013-09-07

    As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.

  11. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system.

    PubMed

    Campo-Deaño, Laura; Dullens, Roel P A; Aarts, Dirk G A L; Pinho, Fernando T; Oliveira, Mónica S N

    2013-01-01

    The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.

  12. Myasthenia gravis sera have no effect on cardiomyocytes in vitro.

    PubMed

    Helgeland, Geir; Luckman, Steven P; Romi, Fredrik R; Jonassen, Anne K; Gilhus, Nils Erik

    2008-09-15

    Myasthenia gravis (MG) is an autoimmune disorder primarily caused by circulating autoantibodies targeting the nicotinic acetylcholine receptor. Several studies have suggested a link between MG and heart disease. Girardi heart cells were treated with MG sera, measuring cytotoxic effects using flow cytometry, adenylate kinase (AK) release and evaluating morphology. MG sera did not induce morphological changes in the cells. AK release from cells treated with MG sera did not exceed controls and flow cytometric examination did not reveal any increase in dead or apoptotic cells. We conclude that MG sera have no cytotoxic effect in our heart cell culture system.

  13. Extracorporeal bypass model of blood circulation for the study of microvascular hemodynamics.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Lee, Sang Joon

    2012-05-01

    Many studies have been performed to better understand the hemodynamics in microvessels, such as arterioles and venules. However, due to the heterogeneous features of size, shape, blood-flow velocity, and pulsatility of microvessels, conducting a systematic study on these factors has been almost impossible. Although in vitro studies have been performed for this purpose, the usefulness of in vitro data is limited by the fact that the rheological properties of blood are changed as blood is exposed to in vitro environments. The purpose of the present study is to investigate the feasibility of a rat extracorporeal bypass model that combines in vivo and in vitro models. An arteriovenous shunt loop with a sub-bypass loop of fluorinated ethylene propylene (FEP) microtube was constructed between the jugular vein and femoral artery of a rat. Three pinch valves were installed in the main loop. Microscopic images of the blood flow in the FEP tube were sequentially captured with a high-speed camera, and the whole velocity field information was obtained using a micro-particle image velocimetry technique. Experimental results reveal that the velocity fields of the blood flow inside the microtube are well measured because the FEP tube is transparent and has nearly the same refractive index as water. The flow velocity and the pulsatility index of the blood flow in the microtube can be controlled by adjusting the three pinch valves installed upstream, midstream, and downstream of the bypass loop. This hybrid model that combines in vivo and in vitro models can be useful in studying microvascular hemodynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. [Analysis on microdialysis probe recovery of baicalin in vitro and in vivo based on LC-MS/MS].

    PubMed

    Chen, Teng-Fei; Liu, Jian-Xun; Zhang, Ying; Lin, Li; Song, Wen-Ting; Yao, Ming-Jiang

    2017-06-01

    To further study the brain behavior and the pharmacokinetics of baicalin in intercellular fluid of brain, and study the recovery rate and stability of brain and blood microdialysis probe of baicalin in vitro and in vivo. The concentration of baicalin in brain and blood microdialysates was determined by LC-MS/MS and the probe recovery for baicalin was calculated. The effects of different flow rates (0.50, 1.0, 1.5, 2.0,3.0 μL•min⁻¹) on recovery in vitro were determined by incremental method and decrement method. The effects of different drug concentrations (50.00, 200.0, 500.0, 1 000 μg•L⁻¹) and using times (0, 1, 2) on recovery in vitro were determined by incremental method. The probe recovery stability and effect of flow rate on recovery in vivo were determined by decrement method, and its results were compared with those in in vitro trial. The in vitro recovery of brain and blood probe of baicalin was decreased with the increase of flow rate under the same concentration; and at the same flow rate, different concentrations of baicalin had little influence on the recovery. The probe which had been used for 2 times showed no obvious change in probe recovery by syringe with 2% heparin sodium and ultrapure water successively. In vitro recovery rates obtained by incremental method and decrement method were approximately equal under the same condition, and the in vivo recovery determined by decrement method was similar with the in vitro results and they were showed a good stability within 10 h. The results showed that decrement method can be used for pharmacokinetic study of baicalin, and can be used to study probe recovery in vivo at the same time. Copyright© by the Chinese Pharmaceutical Association.

  15. In vivo and in vitro measurements of cerebral aneurysm hemodynamics

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Toloui, Mostafa; van de Moortele, Pierre-Francois; Jagadeesan, Bharathi; Coletti, Filippo

    2017-11-01

    The hemodynamics of cerebral aneurysms is thought to play a critical role in their formation, growth, and potential rupture. Our understanding in this area, however, comes mostly from in vitro experiments and numerical simulations, which have limited realism. In vivo measurements of the intracranial blood flow can be obtained by Magnetic Resonance Imaging (MRI), but they typically suffer from limited accuracy and inadequate resolution. Here we present a direct comparison between in vivo and in vitro measurements of the flow inside an internal carotid artery aneurysm. For both, we use 4D (i.e. volumetric and time-resolved) MRI velocimetry performed in a 7 Tesla magnet at sub-millimeter resolution. The in vitro measurements are carried out in a 3D printed aneurysm replica scaled up by a factor three, effectively increasing the spatial resolution. The patient-specific inflow waveform and the corresponding Reynolds and Womersley numbers are matched in a flow loop that mimics the impedance of the vascular bed. Direct comparison of the velocity fields allows assessing the robustness of the in vivo measurements, while highlighting the insight achievable in vitro. The data also represents a comprehensive test case for numerical simulations.

  16. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  17. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    PubMed

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  18. An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.

    PubMed

    Varadarajan, Balamurugan; Vogt, Andreas; Hartwich, Volker; Vasireddy, Rakesh; Consiglio, Jolanda; Hugi-Mayr, Beate; Eberle, Balthasar

    2017-01-01

    The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.

  19. In-vitro evidence for efficacy of antimicrobial mouthrinses

    PubMed Central

    Pan, Pauline C.; Harper, Scott; Ricci-Nittel, Danette; Lux, Renate; Shi, Wenyuan

    2010-01-01

    SUMMARY Objectives The objective of this study was to compare the antimicrobial activity of commercially available antiseptic mouthrinses against saliva-derived plaque biofilms in static and flow-through biofilm systems in vitro. Methods Nine mouthrinses were tested in a recirculating flow-through biofilm model (RFTB) with viability assessment by ATP bioluminescence. In addition, five mouthrinses were evaluated in a batch chamber slide biofilm (BCSB) model, using live- dead staining and confocal laser scanning microscopy. Results In the RFTB model, essential oil (EO) and chlorhexidine (CHX)-containing rinses showed equivalent antimicrobial activity and were more effective than a range of cetyl pyridinium chloride (CPC1) formulations. In the BCSB model, twice-daily mouthrinse exposure demonstrated that the EO rinse was significantly more effective than rinses containing amine and stannous fluorides, a combination of CPC/CHX and CPC2. EO showed biofilm kill comparable to the CHX rinse. Conclusions The present studies have shown that mouthrinses vary significantly in their capability to kill plaque biofilm bacteria in BCSB and RFTB models. The EO mouthrinse demonstrated superior antiplaque biofilm activity to AFSF, CPC/CHX, and CPC rinses and comparable activity to CHX. The methods tested may be of value for the in-vitro screening of antiseptic rinses with different modes of antimicrobial action. PMID:20621239

  20. In vitro evaluation of radio-labeled aerosol delivery via a variable-flow infant CPAP system.

    PubMed

    Farney, Kimberly D; Kuehne, Brandon T; Gibson, Laurie A; Nelin, Leif D; Shepherd, Edward G

    2014-03-01

    Nasal CPAP is widely used in neonatal ICUs. Aerosolized medications such as inhaled steroids and β agonists are commonly administered in-line through nasal CPAP, especially to infants with bronchopulmonary dysplasia. We hypothesized that aerosol delivery to the lungs via variable-flow nasal CPAP in an in vitro model would be unreliable, and that the delivery would depend on the position of the aerosol generator within the nasal CPAP circuit. We used a system that employed a test lung placed in a plastic jar and subjected to negative pressure. Simulated inspiration effort was measured with a heated-wire anemometer. We used technetium-99m-labeled diethylene triamine penta-acetic acid as our aerosol. The nebulizer was placed either close to the humidifier or close to the nasal prongs in the circuit, and patient effort was simulated with a minute ventilation of 0.4 L/min. Relative aerosol delivery to the infant test lung with the nebulizer close to the humidifier was extremely low (0.3 ± 0.4%), whereas placing the nebulizer close to the nasal prongs resulted in significantly (P < .001) improved delivery (21 ± 11%). Major areas of aerosol deposition with the nebulizer close to the humidifier versus close to the nasal prongs were: nebulizer (10 ± 4% vs 33 ± 13%, P < .001), exhalation limb (9 ± 17% vs 26 ± 30%, P = .23), and generator tubing (21 ± 11% vs 19 ± 20%, P = .86). Placing the nebulizer close to the humidifier resulted in 59 ± 8% of the aerosol being deposited in the inhalation tubing along the heater wire. Isotope delivery from an aerosol generator placed near the humidifier on variable-flow nasal CPAP was negligible in this in vitro setup; however, such delivery was significantly improved by locating the aerosol generator closer to the nasal CPAP interface.

  1. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets.

    PubMed

    Rotger, A; Ferret, A; Calsamiglia, S; Manteca, X

    2006-05-01

    To investigate the effects of synchronizing nonstructural carbohydrate (NSC) and protein degradation on intake and rumen microbial fermentation, four ruminally fistulated Holstein heifers (BW = 132.3 +/- 1.61 kg) fed high-concentrate diets were assigned to a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments studied in vivo and in vitro with a dual-flow continuous culture system. Two NSC sources (barley and corn) and 2 protein sources [soybean meal (SBM) and sunflower meal (SFM)] differing in their rate and extent of ruminal degradation were combined resulting in a synchronized rapid fermentation diet (barley-SFM), a synchronized slow fermentation diet (corn-SBM), and 2 unsynchronized diets with a rapidly and a slowly fermenting component (barley-SBM, and corn-SFM). In vitro, the fermentation profile was studied at a constant pH of 6.2, and at a variable pH with 12 h at pH 6.4 and 12 h at pH 5.8. Synchronization tended to result in greater true OM digestion (P = 0.072), VFA concentration (P = 0.067), and microbial N flow (P = 0.092) in vitro, but had no effects on in vivo fermentation pattern or on apparent total tract digestibility. The NSC source affected the efficiency of microbial protein synthesis in vitro, tending to be greater (P = 0.07) for barley-based diets, and in vivo, the NSC source tended to affect intake. Dry matter and OM intake tended to be greater (P > or = 0.06) for corn- than barley-based diets. Ammonia N concentration was lower in vitro (P = 0.006) and tended to be lower in vivo (P = 0.07) for corn- than barley-based diets. In vitro, pH could be reduced from 6.4 to 5.8 for 12 h/d without any effect on ruminal fermentation or microbial protein synthesis. In summary, ruminal synchronization seemed to have positive effects on in vitro fermentation, but in vivo recycling of endogenous N or intake differences could compensate for these effects.

  2. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability.

    PubMed

    Abo Enin, Hadel A; Abdel-Bar, Hend Mohamed

    2016-11-01

    This study aims to illustrate the applicability of solid supersaturated self-nanoemulsifying drug delivery system (sat-SNEDDS) for the improvement of rosuvastatin calcium (RC) oral bioavailability. Different sat-SNEDDS were prepared by incorporating different ratios of RC into SNEDDS using tween80/PEG400 (77.2%) as surfactant/cosurfactant mixture and garlic /olive oil (22.8%) as oil phase. The prepared systems were characterized viz; size, zeta potential, TEM and stability. Various hydrophilic and hydrophobic carriers were employed to solidify the optimized RC sat-SNEDDS. The influence of the carrier was investigated by SEM, XRPD, DSC, flow properties, in vitro precipitation, drug release and oral bioavailability study. The adsorption of the stable positively charged nanocarrier RC sat-SNEDDS onto solid carriers provided free flowing amorphous powder. The carrier could amend the morphological architecture and in vitro release of the RC solid sat-SNEDDS. Hydrophobic carriers as microcrystalline cellulose 102 (MCC) showed superior physical characters and higher dissolution rate over hydrophilic carriers as maltodextrin with respective T 100% 30 min and 45 min. The rapid spontaneous emulsification, the positively nanosized MCC-sat-SNEDDS improved oral bioavailability of RC by 2.1-fold over commercial tablets. Solid MCC-sat-SNEDDS combined dual benefits of sat-SNEDDS and solid dosage form was successfully optimized to improve RC oral bioavailability.

  3. Innovative parameters obtained for digital analysis of microscopic images to evaluate in vitro hemorheological action of anesthetics

    NASA Astrophysics Data System (ADS)

    Alet, Analía. I.; Basso, Sabrina; Delannoy, Marcela; Alet, Nicolás. A.; D'Arrigo, Mabel; Castellini, Horacio V.; Riquelme, Bibiana D.

    2015-06-01

    Drugs used during anesthesia could enhance microvascular flow disturbance, not only for their systemic cardiovascular actions but also by a direct effect on the microcirculation and in particular on hemorheology. This is particularly important in high-risk surgical patients such as those with vascular disease (diabetes, hypertension, etc.). Therefore, in this work we propose a set of innovative parameters obtained by digital analysis of microscopic images to study the in vitro hemorheological effect of propofol and vecuronium on red blood cell from type 2 diabetic patients compared to healthy donors. Obtained innovative parameters allow quantifying alterations in erythrocyte aggregation, which can increase the in vivo risk of microcapillary obstruction.

  4. Macromolecular assemblies in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.

    1990-01-01

    The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.

  5. Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization

    PubMed Central

    Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.

    2004-01-01

    An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663

  6. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  7. A novel flow-perfusion bioreactor supports 3D dynamic cell culture.

    PubMed

    Sailon, Alexander M; Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Allen, Robert J; Warren, Stephen M

    2009-01-01

    Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. By day 8, static scaffolds had a periphery cell density of 67% +/- 5.0%, while in the core it was 0.3% +/- 0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94% +/- 8.3% and core density of 76% +/- 3.1% at day 8. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  8. Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded w/o/w multiple emulsions intended for skin disorders.

    PubMed

    Gonçalez, Maíra Lima; Marcussi, Diana Gleide; Calixto, Giovana Maria Fioramonti; Corrêa, Marcos Antonio; Chorilli, Marlus

    2015-01-01

    Multiple emulsions (MEs) are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP). The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm) and zeta potential (ZP), performing macroscopic and microscopic analysis and analyzing their rheological behavior and in vitro bioadhesion. Furthermore, the in vitro safety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of -13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ''shear thinning" flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. The in vitro antioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders.

  9. High-flow oxygen therapy: pressure analysis in a pediatric airway model.

    PubMed

    Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel

    2012-05-01

    The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.

  10. Clot accumulation characteristics of plasminogen-bearing liposomes in a flow-system. Groningen Utrecht Institute for Drug Exploration.

    PubMed

    Heeremans, J L; Prevost, R; Feitsma, H; Kluft, C; Crommelin, D J

    1998-01-01

    In this study, the clot accumulation properties of liposome-coupled plasminogen were compared to those of free (non-liposomal) plasminogen in an in vitro, closed-loop, flow-system. After introduction of a clot into the closed system, double-radiolabelled plasminogen-liposomes were administered and the accumulation of radiolabel on the entire clot was measured. Liposomal plasminogen showed improved accumulation over free plasminogen, on both a fibrin clot and a whole blood clot. Moreover, once liposomal plasminogen was fibrin associated, it could not be washed away with buffer, in contrast to free plasminogen. Liposomal plasminogen was able to compete successfully with an excess of free plasminogen. The plateau levels for the accumulated amount of plasminogen depended on the incubated amount of plasminogen and were influenced by partial degradation of the clot. Furthermore, it was shown that a threshold liposomal plasminogen surface-density was needed for optimum clot accumulation.

  11. Infant CPAP for low-income countries: An experimental comparison of standard bubble CPAP and the Pumani system.

    PubMed

    Falk, Markus; Donaldsson, Snorri; Drevhammar, Thomas

    2018-01-01

    Access to inexpensive respiratory support to newborn infants improves survival in low-income countries. Standard bubble continuous positive airway pressure (CPAP) has been extensively used worldwide for more than 30 years. One project aimed at providing affordable CPAP is the Pumani system developed by Rice 360°. Compared to standard bubble CPAP the system has an unconventional design. The aim was to compare the Pumani system with two traditional bubble CPAP systems, focusing on in-vitro performance and safety. The Pumani system was compared to traditional bubble CPAP from Fisher & Paykel (Auckland, New Zealand) and Diamedica (Devon, United Kingdom). The systems were tested using static flow resistance and simulated breathing for a range of fresh gas flows and submersion levels. There were large differences between the Pumani CPAP and the conventional bubble CPAP systems. The Pumani system was not pressure stable, had high resistance and high imposed work of breathing. It was not possible to use submersion depth to adjust CPAP without accounting for fresh gas flow. The Pumani design is novel and not similar to any previously described CPAP system. The main mechanism for CPAP generation was resistance, not submersion depth. The system should therefore not be referred to as bubble CPAP. The clinical consequences of its pressure instability and high imposed work of breathing are not known and trials on outcome and safety are needed.

  12. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manwaring, John, E-mail: manwaring.jd@pg.com; Rothe, Helga; Obringer, Cindy

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passagemore » through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and HaCaT • Systemic metabolism was modeled using hepatocyte cultures. • Toxicokinetically relevant parameters were applied to estimate systemic exposure. • There was a good agreement between in vitro and in vivo data.« less

  13. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds.

    PubMed

    Breynaert, Annelies; Bosscher, Douwina; Kahnt, Ariane; Claeys, Magda; Cos, Paul; Pieters, Luc; Hermans, Nina

    2015-08-01

    The biological effects of polyphenols depend on their mechanism of action in the body. This is affected by bioconversion by colon microbiota and absorption of colonic metabolites. We developed and validated an in vitro continuous flow dialysis model with colon phase (GastroIntestinal dialysis model with colon phase) to study the gastrointestinal metabolism and absorption of phenolic food constituents. Chlorogenic acid was used as model compound. The physiological conditions during gastrointestinal digestion were mimicked. A continuous flow dialysis system simulated the one-way absorption by passive diffusion from lumen to mucosa. The colon phase was developed using pooled faecal suspensions. Several methodological aspects including implementation of an anaerobic environment, adapted Wilkins Chalgren broth medium, 1.10(8) CFU/mL bacteria suspension as inoculum, pH adaptation to 5.8 and implementation of the dialysis system were conducted. Validation of the GastroIntestinal dialysis model with colon phase system showed a good recovery and precision (CV < 16 %). Availability of chlorogenic acid in the small intestinal phase (37 ± 3 %) of the GastroIntestinal dialysis model with colon phase is comparable with in vivo studies on ileostomy patients. In the colon phase, the human faecal microbiota deconjugated chlorogenic acid to caffeic acid, 3,4-dihydroxyphenyl propionic acid, 4-hydroxybenzoic acid, 3- or 4-hydroxyphenyl acetic acid, 2-methoxy-4-methylphenol and 3-phenylpropionic acid. The GastroIntestinal dialysis model with colon phase is a new, reliable gastrointestinal simulation system. It permits a fast and easy way to predict the availability of complex secondary metabolites, and to detect metabolites in an early stage after digestion. Isolation and identification of these metabolites may be used as references for in vivo bioavailability experiments and for investigating their bioactivity in in vitro experiments. Georg Thieme Verlag KG Stuttgart · New York.

  14. Design and principle of operation of the HeartMate PHP (percutaneous heart pump).

    PubMed

    Van Mieghem, Nicolas M; Daemen, Joost; den Uil, Corstiaan; Dur, Onur; Joziasse, Linda; Maugenest, Anne-Marie; Fitzgerald, Keif; Parker, Chris; Muller, Paul; van Geuns, Robert-Jan

    2018-02-20

    The HeartMate PHP (percutaneous heart pump) is a second-generation transcatheter axial flow circulatory support system. The collapsible catheter pump is inserted through a 14 Fr sheath, deployed across the aortic valve expanding to 24 Fr and able to deliver up to 5 L/min blood flow at minimum haemolytic risk. As such, this device may be a valuable adjunct to percutaneous coronary intervention (PCI) of challenging lesions in high-risk patients or treatment of cardiogenic shock. This technical report discusses: (i) the HeartMate PHP concept, (ii) the implantation technique, (iii) the haemodynamic performance in an in vitro cardiovascular flow testing set-up, and (iv) preliminary clinical experience. An update on the device, produced by St. Jude Medical/Abbott Laboratories, can be found in the Appendix.

  15. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  16. In Vitro Evaluation of a Rheolytic Thrombectomy System for Clot Removal from Five Different Temporary Vena Cava Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buecker, Arno; Neuerburg, Joerg; Schmitz-Rode, Thomas

    1997-11-15

    Purpose: To evaluate the feasibility of thrombus removal from temporary vena cava filters using a rheolytic thrombectomy device and to assess the embolization rate of this procedure. Methods: Five temporary vena cava filters together with porcine thrombi were placed in a vena cava flow model (semitranslucent silicone tube of 23 mm diameter, pulsatile flow at a mean flow rate of 4 L/min). A rheolytic thrombectomy system (Hydrolyser) was used with a 9 Fr guiding catheter to remove the clots. The effluent was passed through filters of different size and the amount of embolized particles as well as the remaining thrombusmore » were measured. Results: Thrombus removal rates ranged from 85% to 100%. Embolization rates between 47% and 60% were calculated for the different filters. Conclusion: The Hydrolyser is able to remove sufficiently high amounts of thrombus from temporary vena cava filters. However, the amount of embolized particles makes it impossible to utilize this method without special precautions against embolization.« less

  17. Turbulent flow chromatography TFC-tandem mass spectrometry supporting in vitro/vivo studies of NCEs in high throughput fashion.

    PubMed

    Verdirame, Maria; Veneziano, Maria; Alfieri, Anna; Di Marco, Annalise; Monteagudo, Edith; Bonelli, Fabio

    2010-03-11

    Turbulent Flow Chromatography (TFC) is a powerful approach for on-line extraction in bioanalytical studies. It improves sensitivity and reduces sample preparation time, two factors that are of primary importance in drug discovery. In this paper the application of the ARIA system to the analytical support of in vivo pharmacokinetics (PK) and in vitro drug metabolism studies is described, with an emphasis in high throughput optimization. For PK studies, a comparison between acetonitrile plasma protein precipitation (APPP) and TFC was carried out. Our optimized TFC methodology gave better S/N ratios and lower limit of quantification (LOQ) than conventional procedures. A robust and high throughput analytical method to support hepatocyte metabolic stability screening of new chemical entities was developed by hyphenation of TFC with mass spectrometry. An in-loop dilution injection procedure was implemented to overcome one of the main issues when using TFC, that is the early elution of hydrophilic compounds that renders low recoveries. A comparison between off-line solid phase extraction (SPE) and TFC was also carried out, and recovery, sensitivity (LOQ), matrix effect and robustness were evaluated. The use of two parallel columns in the configuration of the system provided a further increase of the throughput. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system

    PubMed Central

    Campo-Deaño, Laura; Dullens, Roel P. A.; Aarts, Dirk G. A. L.; Pinho, Fernando T.; Oliveira, Mónica S. N.

    2013-01-01

    The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS. PMID:24404022

  19. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds

    NASA Technical Reports Server (NTRS)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  20. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    PubMed

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  1. The Clinical Research Tool: A High-Performance Microdialysis-Based System for Reliably Measuring Interstitial Fluid Glucose Concentration

    PubMed Central

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-01-01

    Background A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. Method In vitro characterization with buffered glucose solutions (cglucose = 0 - 26 × 10-3 mol liter-1) over 120 h yielded a mean absolute relative error (MARE) of 2.9 ± 0.9% and a recorded mean flow rate of 330 ± 48 nl/min with periodic flow rate variation amounting to 24 ± 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 ± 59 nl/min and a periodic variation of 22 ± 6% were recorded. Results Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 ± 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. Conclusion The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. PMID:20144284

  2. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system.

  3. Blood flow measurement using digital subtraction angiography for assessing hemodialysis access function

    NASA Astrophysics Data System (ADS)

    Koirala, Nischal; Setser, Randolph M.; Bullen, Jennifer; McLennan, Gordon

    2017-03-01

    Blood flow rate is a critical parameter for diagnosing dialysis access function during fistulography where a flow rate of 600 ml/min in arteriovenous graft or 400-500 ml/min in arteriovenous fistula is considered the clinical threshold for fully functioning access. In this study, a flow rate computational model for calculating intra-access flow to evaluate dialysis access patency was developed and validated in an in vitro set up using digital subtraction angiography. Flow rates were computed by tracking the bolus through two regions of interest using cross correlation (XCOR) and mean arrival time (MAT) algorithms, and correlated versus an in-line transonic flow meter measurement. The mean difference (mean +/- standard deviation) between XCOR and in-line flow measurements for in vitro setup at 3, 6, 7.5 and 10 frames/s was 118+/-63 37+/-59 31+/-31 and 46+/-57 ml/min respectively while for MAT method it was 86+/-56 57+/-72 35+/-85 and 19+/-129 ml/min respectively. The result of this investigation will be helpful for selecting candidate algorithms while blood flow computational tool is developed for clinical application.

  4. Ultrasound SIV measurement of helical valvular flow behind the great saphenous vein

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong; Kim, Jeong Ju; Lee, Sang Joon; Yeom, Eunseop; Experimental Fluid Mechanics Laboratory Team; LaboratoryMicrothermal; Microfluidic Measurements Collaboration

    2017-11-01

    Dysfunction of venous valve and induced secondary abnormal flow are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most previous studies on venous perivalvular flows were based on qualitative analyses. On the contrary, quantitative analysis on the perivalvular flows has not been fully understood yet. In this study, 3D valvular flows under in vitro and in vivo conditions were experimentally investigated using ultrasound speckle image velocimetry (SIV) for analyzing their flow characteristics. The results for in vitro model obtained by the SIV technique were compared with those derived by numerical simulation and color Doppler method to validate its measurement accuracy. Then blood flow in the human great saphenous vein was measured using the SIV with respect to the dimensionless index, helical intensity. The results obtained by the SIV method are well matched well with those obtained by the numerical simulation and color Doppler method. The hemodynamic characteristics of 3D valvular flows measured by the validated SIV method would be helpful in diagnosis of valve-related venous diseases. None.

  5. 50 years LASERS: in vitro diagnostics, clinical applications and perspectives.

    PubMed

    Spyropoulos, Basile

    2011-01-01

    1960 Theodore Maiman built the first Ruby-LASER, starting-point for half a century of R&D on Biomedical LASER continuous improvement. The purpose of this paper is to contribute a review of the often disregarded, however, extremely important Industrial Property documents of LASER-based in vitro Diagnostics devices. It is an attempt to sketch-out the patent-trail leading towards the modern Biomedical Laboratory and to offer an introduction to the employment of "exotic" systems, such as the Free Electron LASER (FEL), that are expected to focus on the fundamental processes of life, following chemical reactions and biological processes as they happen, on unprecedented time and size scales. There are various in vitro LASER applications, however, the most important ones include: Hybrid Coulter Principle-LASER Hematology Analyzers. Flow Cytometry systems. Fluorescent in situ Hybridization (FISH Techniques). Confocal LASER Scanning Microscopy and Cytometry. From the first fluorescence-based flow Cytometry device developed in 1968 by Wolfgang Göhde until nowadays, numerous improvements and new features related to these devices appeared. The relevant industrial property milestone-documents and their overall numeral trends are presented. In 1971, J. Madey invented and developed the Free Electron LASER (FEL), a vacuum-tube that uses a beam of relativistic electrons passing through a periodic, transverse magnetic field (wiggler) to produce coherent radiation, contained in an optical cavity defined by mirrors. A resonance condition that involves the energy of the electron beam, the strength of the magnetic field, and the periodicity of the magnet determines the wavelength of the radiation. The FEL Coherent Light Sources like the Linac Coherent Light Source (LCLS) at Stanford, CA, USA or the Xray Free Electron LASER (XFEL) at Hamburg, Germany, will work much like a high-speed (< 100 femtoseconds) camera, enabling scientists to take stop-motion pictures, on the nanoscale, of atoms and molecules in motion. The curve of FEL-related patents of the last 20 years is much smoother than the corresponding one for in vitro Diagnostics conventional LASERS. If the diodes brought a LASER into almost everyone's pocket, the above-mentioned super-imaging systems are huge facilities of enormous cost--the price to steal a look at the fundamental processes of life.

  6. In vitro study of stem cell communication via gap junctions for fibrocartilage regeneration at entheses.

    PubMed

    Nayak, Bibhukalyan Prasad; Goh, James Cho Hong; Toh, Siew Lok; Satpathy, Gyan Ranjan

    2010-03-01

    Entheses are fibrocartilaginous organs that bridge ligament with bone at their interface and add significant insertional strength. To replace a severely damaged ligament, a tissue-engineered graft preinstalled with interfacial fibrocartilage, which is being regenerated from stem cells, appears to be more promising than ligament-alone graft. Such a concept can be realized by a biomimetic approach of establishing a dynamic communication of stem cells with bone cells and/or ligament fibroblasts in vitro. The current study has two objectives. The first objective is to demonstrate functional coculture of bone marrow-derived stem cells (BMSCs) with mature bone cells/ligament fibroblasts as evidenced by gap-junctional communication in vitro. The second objective is to investigate the role of BMSCs in the regeneration of fibrocartilage within the coculture. Rabbit bone/ligament fibroblasts were dual-stained with DiI-Red and calcein (gap-junction permeable dye), and cocultured with unlabeled BMSCs at fixed ratio (1:10). The functional gap junction was demonstrated by the transfer of calcein from donor to recipient cells that was confirmed and quantified by flow cytometry. Type 2 collagen (cartilage extracellular matrix-specific protein) expressed by the mixed cell lines in the cocultures were estimated by real-time reverse transcription PCR and compared with that of the ligament-bone coculture (control). Significant transfer of calcein into BMSCs was observed and flow cytometry analyses showed a gradual increase in the percentage of BMSCs acquiring calcein with time. Cocultures that included BMSCs expressed significantly more type 2 collagen compared with the control. The current study, for the first time, reported the expression of gap-junctional communication of BMSCs with two adherent cell lines of musculoskeletal system in vitro and also confirmed that incorporation of stem cells augments fibrocartilage regeneration. The results open up a path to envisage a composite graft preinstalled with enthesial fibrocartilage using a stem cell-based coculture system.

  7. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA (multielectrode array) or nanowire electrode array to study electrophysiology in neuronal network. Also, "diode-like" microgrooves to control the number of neuronal processes is embedded in this platform. Chapter 6 concludes with a possible future direction of this work. Interfacing micro/nanotechnology with primary neuron culture would open many doors in fundamental neuroscience research and also biomedical innovation.

  8. [The role of the serotonin system in the stress response of various cells

    NASA Technical Reports Server (NTRS)

    Belzhelarskaia, S. N.; Satton, F. F.; Sutton, F. (Principal Investigator)

    2003-01-01

    The recombinant mouse brain serotonin receptor (5HT1c) was used to study the response of plant cells and oocytes to a stress signal activated by the serotonin-serotonin receptor interaction and associated Ca2+ flow. Based on plant expression vectors, recombinant constructs were obtained to direct production of 5HT1c fused with the green fluorescent protein in plant cells. The mRNAs for hybrid proteins were synthesized in an in vitro transcription system. The expression and function of the hybrid protein and the function of the associated ion channels were electrophysiologically studied in Xenopus laevis oocytes injected with the hybrid mRNA. The hybrid protein was functional and changed the operation of the Ca2+ channel in oocytes. To study the expression of the hybrid constructs in plant cells, the in vitro transcription product was inoculated in tobacco leaves, which then fluoresced.

  9. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles.

    PubMed

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-11-28

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.

  10. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles

    PubMed Central

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-01-01

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601

  11. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System.

    PubMed

    Zhang, Yuefeng; Yang, Bin; Liu, Yajie; Qin, Wenjie; Li, Chao; Wang, Lantian; Zheng, Wen; Wu, Yulian

    2016-05-01

    RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).

  12. In vitro osteogenesis of human stem cells by using a three-dimensional perfusion bioreactor culture system: a review.

    PubMed

    Ceccarelli, Gabriele; Bloise, Nora; Vercellino, Marco; Battaglia, Rosalia; Morgante, Lucia; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia

    2013-04-01

    Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.

  13. In vitro comparison of support capabilities of intra-aortic balloon pump and Impella 2.5 left percutaneous.

    PubMed

    Schampaert, Stéphanie; van't Veer, Marcel; van de Vosse, Frans N; Pijls, Nico H J; de Mol, Bas A; Rutten, Marcel C M

    2011-09-01

    The Impella 2.5 left percutaneous (LP), a relatively new transvalvular assist device, challenges the position of the intra-aortic balloon pump (IABP), which has a long record in supporting patients after myocardial infarction and cardiac surgery. However, while more costly and more demanding in management, the advantages of the Impella 2.5 LP are yet to be established. The aim of this study was to evaluate the benefits of the 40 cc IABP and the Impella 2.5 LP operating at 47,000 rpm in vitro, and compare their circulatory support capabilities in terms of cardiac output, coronary flow, cardiac stroke work, and arterial blood pressure. Clinical scenarios of cardiogenic preshock and cardiogenic shock (CS), with blood pressure depression, lowered cardiac output, and constant heart rate of 80 bpm, were modeled in a model-controlled mock circulation, featuring a systemic, pulmonary, and coronary vascular bed. The ventricles, represented by servomotor-operated piston pumps, included the Frank-Starling mechanism. The systemic circulation was modeled with a flexible tube having close-to-human aortic dimensions and compliance properties. Proximally, it featured a branch mimicking the brachiocephalic arteries and a physiological correct coronary flow model. The rest of the systemic and pulmonary impedance was modeled by four-element Windkessel models. In this system, the enhancement of coronary flow and blood pressure was tested with both support systems under healthy and pathological conditions. Hemodynamic differences between the IABP and the Impella 2.5 LP were small. In our laboratory model, both systems approximately yielded a 10% cardiac output increase and a 10% coronary flow increase. However, since the Impella 2.5 LP provided significantly better left ventricular unloading, the circulatory support capabilities were slightly in favor of the Impella 2.5 LP. On the other hand, pulsatility was enhanced with the IABP and lowered with the Impella 2.5 LP. The support capabilities of both the IABP and the Impella 2.5 LP strongly depended on the simulated hemodynamic conditions. Maximum hemodynamic benefits were achieved when mechanical circulatory support was applied on a simulated scenario of deep CS. © 2011, Copyright Eindhoven University of Technology (TU/e). Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    PubMed

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Physiology of spermatozoa at high dilution rates: the influence of seminal plasma.

    PubMed

    Maxwell, W M; Johnson, L A

    1999-12-01

    Extensive dilution of spermatozoa, as occurs during flow-cytometric sperm sorting, can reduce their motility and viability. These effects may be minimized by the use of appropriate dilution and collection media, containing balanced salts, energy sources, egg yolk and some protein. Dilution and flow-cytometric sorting of spermatozoa, which involves the removal of seminal plasma, also destabilizes sperm membranes leading to functional capacitation. This membrane destabilization renders the spermatozoa immediately capable of fertilization in vitro, or in vivo after deposition close to the site of fertilization, but shortens their lifespan, resulting in premature death if the cells are deposited in the female tract distant from the site of fertilization or are held in vitro at standard storage temperatures. This functional capacitation can be reversed in boar spermatozoa by inclusion of seminal plasma in the medium used to collect the cells from the cell sorter and, consequently, reduces their in vitro fertility. It has yet to be determined whether seminal plasma would have similar effects on flow cytometrically sorted spermatozoa of other species, and what its effects might be on the in vivo fertility of flow sorted boar.

  16. Fluid dynamics model of mitral valve flow: description with in vitro validation.

    PubMed

    Thomas, J D; Weyman, A E

    1989-01-01

    A lumped variable fluid dynamics model of mitral valve blood flow is described that is applicable to both Doppler echocardiography and invasive hemodynamic measurement. Given left atrial and ventricular compliance, initial pressures and mitral valve impedance, the model predicts the time course of mitral flow and atrial and ventricular pressure. The predictions of this mathematic formulation have been tested in an in vitro analog of the left heart in which mitral valve area and atrial and ventricular compliance can be accurately controlled. For the situation of constant chamber compliance, transmitral gradient is predicted to decay as a parabolic curve, and this has been confirmed in the in vitro model with r greater than 0.99 in all cases for a range of orifice area from 0.3 to 3.0 cm2, initial pressure gradient from 2.4 to 14.2 mm Hg and net chamber compliance from 16 to 29 cc/mm Hg. This mathematic formulation of transmitral flow should help to unify the Doppler echocardiographic and catheterization assessment of mitral stenosis and left ventricular diastolic dysfunction.

  17. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  18. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-08-01

    According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis-the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems-significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  19. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.

  20. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science. PMID:26966512

  1. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.

    PubMed

    Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas

    2018-05-01

    Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.

  2. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions.

    PubMed

    Moore, N; Doty, D; Zielstorff, M; Kariv, I; Moy, L Y; Gimbel, A; Chevillet, J R; Lowry, N; Santos, J; Mott, V; Kratchman, L; Lau, T; Addona, G; Chen, H; Borenstein, J T

    2018-05-25

    Recapitulation of the tumor microenvironment is critical for probing mechanisms involved in cancer, and for evaluating the tumor-killing potential of chemotherapeutic agents, targeted therapies and immunotherapies. Microfluidic devices have emerged as valuable tools for both mechanistic studies and for preclinical evaluation of therapeutic agents, due to their ability to precisely control drug concentrations and gradients of oxygen and other species in a scalable and potentially high throughput manner. Most existing in vitro microfluidic cancer models are comprised of cultured cancer cells embedded in a physiologically relevant matrix, collocated with vascular-like structures. However, the recent emergence of immune checkpoint inhibitors (ICI) as a powerful therapeutic modality against many cancers has created a need for preclinical in vitro models that accommodate interactions between tumors and immune cells, particularly for assessment of unprocessed tumor fragments harvested directly from patient biopsies. Here we report on a microfluidic model, termed EVIDENT (ex vivo immuno-oncology dynamic environment for tumor biopsies), that accommodates up to 12 separate tumor biopsy fragments interacting with flowing tumor-infiltrating lymphocytes (TILs) in a dynamic microenvironment. Flow control is achieved with a single pump in a simple and scalable configuration, and the entire system is constructed using low-sorption materials, addressing two principal concerns with existing microfluidic cancer models. The system sustains tumor fragments for multiple days, and permits real-time, high-resolution imaging of the interaction between autologous TILs and tumor fragments, enabling mapping of TIL-mediated tumor killing and testing of various ICI treatments versus tumor response. Custom image analytic algorithms based on machine learning reported here provide automated and quantitative assessment of experimental results. Initial studies indicate that the system is capable of quantifying temporal levels of TIL infiltration and tumor death, and that the EVIDENT model mimics the known in vivo tumor response to anti-PD-1 ICI treatment of flowing TILs relative to isotype control treatments for syngeneic mouse MC38 tumors.

  3. In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients.

    PubMed

    Pekkan, Kerem; Aka, Ibrahim Basar; Tutsak, Ece; Ermek, Erhan; Balim, Haldun; Lazoglu, Ismail; Turkoz, Riza

    2018-03-11

    Palliative repair of single ventricle defects involve a series of open-heart surgeries where a single-ventricle (Fontan) circulation is established. As the patient ages, this paradoxical circulation gradually fails, because of its high venous pressure levels. Reversal of the Fontan paradox requires an extra subpulmonic energy that can be provided through mechanical assist devices. The objective of this study was to evaluate the hemodynamic performance of a totally implantable integrated aortic-turbine venous-assist (iATVA) system, which does not need an external drive power and maintains low venous pressure chronically, for the Fontan circulation. Blade designs of the co-rotating turbine and pump impellers were developed and 3 prototypes were manufactured. After verifying the single-ventricle physiology at a pulsatile in vitro circuit, the hemodynamic performance of the iATVA system was measured for pediatric and adult physiology, varying the aortic steal percentage and circuit configurations. The iATVA system was also tested at clinical off-design scenarios. The prototype iATVA devices operate at approximately 800 revolutions per minute and extract up to 10% systemic blood from the aorta to use this hydrodynamic energy to drive a blood turbine, which in turn drives a mixed-flow venous pump passively. By transferring part of the available energy from the single-ventricle outlet to the venous side, the iATVA system is able to generate up to approximately 5 mm Hg venous recovery while supplying the entire caval flow. Our experiments show that a totally implantable iATVA system is feasible, which will eliminate the need for external power for Fontan mechanical venous assist and combat gradual postoperative venous remodeling and Fontan failure. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  5. Interlaboratory Evaluation of a Multiplexed High Information Content In Vitro Genotoxicity Assay

    PubMed Central

    Bryce, Steven M.; Bernacki, Derek T.; Bemis, Jeffrey C.; Spellman, Richard A.; Engel, Maria E.; Schuler, Maik; Lorge, Elisabeth; Heikkinen, Pekka T.; Hemmann, Ulrike; Thybaud, Véronique; Wilde, Sabrina; Queisser, Nina; Sutter, Andreas; Zeller, Andreas; Guérard, Melanie; Kirkland, David; Dertinger, Stephen D.

    2017-01-01

    We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow™ DNA Damage Kit— p53, γH2AX, Phospho-histone H3. For these experiments seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and non-genotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hrs. At 4 and 24 hrs cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all inter-laboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or non-genotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals’ predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. PMID:28370322

  6. Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro.

    PubMed

    Moghaddam, Sepideh Alavi; Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Hayati Roodbari, Nasim; Bana, Nikoo; Joghataei, Mohammad Taghi; Pooyan, Paria; Arjmand, Babak

    2017-12-01

    Spinal cord injuries and motor neuron-related disorders impact on life of many patients around the world. Since pharmacotherapy and surgical approaches were not efficient to regenerate these types of defects; stem cell therapy as a good strategy to restore the lost cells has become the focus of interest among the scientists. Umbilical cord blood CD133 + hematopoietic stem cells (UCB- CD133 + HSCs) with self- renewal property and neural lineage differentiation capacity are ethically approved cell candidate for use in regenerative medicine. In this regard the aim of this study was to quantitatively evaluate the capability of these cells to differentiate into motor neuron-like cells (MNL), in vitro. CD133 + HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using qRT- PCR, flow cytometry and immunocytochemistry. By the end of the two-week differentiation protocol, CD133 + cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1(62.15%), AChE (41.83%), SMI-32 (21.55%) and Nestin (17.46%) was detected using flow cytometry and immunocytochemistry. The analysis of the expression of PAX6, ISL-1, ACHE, CHAT and SMI-32 revealed that MNLs present these neural markers at levels comparable with undifferentiated cells. In Conclusion Human UCB- CD133 + HSCs are remarkably potent cell candidates to transdifferentiate into motor neuron-like cells, in vitro. Copyright © 2017. Published by Elsevier B.V.

  7. Development, Characterization, and In Vitro Biological Performance of Fluconazole-Loaded Microemulsions for the Topical Treatment of Cutaneous Leishmaniasis

    PubMed Central

    Graminha, Márcia; Cerecetto, Hugo; González, Mercedes

    2015-01-01

    Cutaneous leishmaniasis (CL) is a resistant form of leishmaniasis that is caused by a parasite belonging to the genus Leishmania. FLU-loaded microemulsions (MEs) were developed by phase diagram for topical administration of fluconazole (FLU) as prominent alternative to combat CL. Three MEs called F1, F2, and F3 (F1—60% 50 M phosphate buffer at pH 7.4 (PB) as aqueous phase, 10% cholesterol (CHO) as oil phase, and 30% soy phosphatidylcholine/oil polyoxyl-60 hydrogenated castor oil/sodium oleate (3/8/6) (S) as surfactant; F2—50% PB, 10% CHO, and 40% S; F3—40% PB, 10% CHO, and 50 % S) were characterized by droplet size analysis, zeta potential analysis, X-ray diffraction, continuous flow, texture profile analysis, and in vitro bioadhesion. MEs presented pseudoplastic flow and thixotropy was dependent on surfactant concentration. Droplet size was not affected by FLU. FLU-loaded MEs improved the FLU safety profile that was evaluated using red cell haemolysis and in vitro cytotoxicity assays with J-774 mouse macrophages. FLU-unloaded MEs did not exhibit leishmanicidal activity that was performed using MTT colourimetric assays; however, FLU-loaded MEs exhibited activity. Therefore, these MEs have potential to modulate FLU action, being a promising platform for drug delivery systems to treat CL. PMID:25650054

  8. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.

    PubMed

    Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko

    2013-06-01

    The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Evaluation of air-liquid interface exposure systems for in vitro ...

    EPA Pesticide Factsheets

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared five ALI systems for their ability to deliver both particulate matter (PM) and gases to cells cultured on porous membrane inserts. The ALI systems use different mechanisms to deliver pollutants to the inserts: diffusion, sedimentation, electrostatic precipitation (ESP), and thermophoresis (THP). We used fluorescent polystyrene latex spheres (PSLs) as a surrogate for PM to assess the efficacy of particle deposition in each system. PM loading in each insert was determined by dissolving the PSLs in ethyl acetate and measuring the fluorescence. Results show that using ESP as an external force enhances deposition of 50-nm PSLs by 5.5-fold and 11-fold for 1-µm PSLs when compared to diffusion alone. Similarly, THP enhances deposition of 50-nm and 1-µm PSLs by 4.5-fold and 2.7-fold, respectively. The interaction of ozone with an indigo dye on the surface of the insert showed that diffusion alone permitted gas-cell interaction. For each system there were various design and operational factors, such as the flow rate, surface materials and flow path geometry that adversely affected performance. Increased flow rates correlated with increased efficacy of the systems to deliver the gas to the inserts.

  10. Macro- and microscale fluid flow systems for endothelial cell biology.

    PubMed

    Young, Edmond W K; Simmons, Craig A

    2010-01-21

    Recent advances in microfluidics have brought forth new tools for studying flow-induced effects on mammalian cells, with important applications in cardiovascular, bone and cancer biology. The plethora of microscale systems developed to date demonstrate the flexibility of microfluidic designs, and showcase advantages of the microscale that are simply not available at the macroscale. However, the majority of these systems will likely not achieve widespread use in the biological laboratory due to their complexity and lack of user-friendliness. To gain widespread acceptance in the biological research community, microfluidics engineers must understand the needs of cell biologists, while biologists must be made aware of available technology. This review provides a critical evaluation of cell culture flow (CCF) systems used to study the effects of mechanical forces on endothelial cells (ECs) in vitro. To help understand the need for various designs of CCF systems, we first briefly summarize main properties of ECs and their native environments. Basic principles of various macro- and microscale systems are described and evaluated. New opportunities are uncovered for developing technologies that have potential to both improve efficiency of experimentation as well as answer important biological questions that otherwise cannot be tackled with existing systems. Finally, we discuss some of the unresolved issues related to microfluidic cell culture, suggest possible avenues of investigation that could resolve these issues, and provide an outlook for the future of microfluidics in biological research.

  11. Hybrid System for Ex Vivo Hemorheological and Hemodynamic Analysis: A Feasibility Study

    PubMed Central

    Yeom, Eunseop; Jun Kang, Yang; Joon Lee, Sang

    2015-01-01

    Precise measurement of biophysical properties is important to understand the relation between these properties and the outbreak of cardiovascular diseases (CVDs). However, a systematic measurement for these biophysical parameters under in vivo conditions is nearly impossible because of complex vessel shape and limited practicality. In vitro measurements can provide more biophysical information, but in vitro exposure changes hemorheological properties. In this study, a hybrid system composed of an ultrasound system and microfluidic device is proposed for monitoring hemorheological and hemodynamic properties under more reasonable experimental conditions. Biophysical properties including RBC aggregation, viscosity, velocity, and pressure of blood flows are simultaneously measured under various conditions to demonstrate the feasibility and performance of this measurement system. The proposed technique is applied to a rat extracorporeal loop which connects the aorta and jugular vein directly. As a result, the proposed system is found to measure biophysical parameters reasonably without blood collection from the rat and provided more detailed information. This hybrid system, combining ultrasound imaging and microfluidic techniques to ex vivo animal models, would be useful for monitoring the variations of biophysical properties induced by chemical agents. It can be used to understand the relation between biophysical parameters and CVDs. PMID:26090816

  12. Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.

    PubMed

    Chan, Bernard P; Reichert, William M; Truskey, George A

    2004-08-01

    The current study examines whether the adhesion promoting arginine-glycine-aspartate-streptavidin mutant (RGD-SA) also affects two important endothelial cell (EC) functions in vitro: vasoregulation and leukocyte adhesion. EC adherent to surfaces via fibronectin (Fn) or Fn plus RGD-SA were subjected to laminar shear flow and media samples were collected over a period of 4h to measure the concentration of nitric oxide (NO), prostacyclin (PGI(2)), and endothelin-1 (ET-1). Western blot analysis was used to quantify the levels of endothelial-derived nitric oxide synthase (eNOS) and cyclooxygenase II (COX II). In a separate set of experiments, fluorescent polymorphonuclear leukocyte (PMN) adhesion to EC was quantified for EC with and without exposure to flow preconditioning. When cell adhesion was supplemented with the SA-biotin system, flow-induced production of NO and PGI(2) increased significantly relative to cells adherent on Fn alone. Previous exposure of EC to shear flow also significantly decreased PMN attachment to SA-biotin supplemented EC, but only after 2h of exposure to shear flow. The observed decrease in PMN-EC adhesion was negated by NG-nitro-L-arginine methyl ester (L-NAME), an antagonist of NO synthesis, but not by indomethacin, an inhibitor to PGI(2) synthesis, indicating the induced effect of PMN-EC interaction is primarily NO-dependent. Results from this study suggest that the use of SA-biotin to supplement EC adhesion encourages vasodilation and PMN adhesion in vitro under physiological shear-stress conditions. We postulate that the presence of SA-biotin more efficiently transmits the shear-stress signal and amplifies the downstream events including the NO and PGI(2) release and leukocyte-EC inhibition. These results may have ramifications for reducing thrombus-induced vascular graft failure.

  13. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers.

    PubMed

    Primavera, Rosita; Palumbo, Paola; Celia, Christian; Cinque, Benedetta; Carata, Elisabetta; Carafa, Maria; Paolino, Donatella; Cifone, Maria Grazia; Di Marzio, Luisa

    2018-06-01

    PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Structural Characterization and In Vitro Antioxidant Activity of Kojic Dipalmitate Loaded W/O/W Multiple Emulsions Intended for Skin Disorders

    PubMed Central

    Marcussi, Diana Gleide; Calixto, Giovana Maria Fioramonti; Corrêa, Marcos Antonio

    2015-01-01

    Multiple emulsions (MEs) are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP). The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm) and zeta potential (ZP), performing macroscopic and microscopic analysis and analyzing their rheological behavior and in vitro bioadhesion. Furthermore, the in vitro safety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of −13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ‘‘shear thinning” flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. The in vitro antioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders. PMID:25785265

  15. Distinct Properties of Human M-CSF and GM-CSF Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement.

    PubMed

    Lescoat, Alain; Ballerie, Alice; Augagneur, Yu; Morzadec, Claudie; Vernhet, Laurent; Fardel, Olivier; Jégo, Patrick; Jouneau, Stéphane; Lecureur, Valérie

    2018-03-17

    Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.

  16. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  17. Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity

    PubMed Central

    Spósito, Pollyanna Álvaro; Mazzeti, Ana Lia; de Oliveira Faria, Caroline; Urbina, Julio A; Pound-Lana, Gwenaelle; Bahia, Maria Terezinha; Mosqueira, Vanessa Furtado

    2017-01-01

    Self-emulsifying drug delivery systems (SEDDSs) are lipid-based anhydrous formulations composed of an isotropic mixture of oil, surfactant, and cosurfactants usually presented in gelatin capsules. Ravuconazole (Biopharmaceutics Classification System [BCS] Class II) is a poorly water-soluble drug, and a SEDDS type IIIA was designed to deliver it in a predissolved state, improving dissolution in gastrointestinal fluids. After emulsification, the droplets had mean hydrodynamic diameters <250 nm, zeta potential values in the range of −45 mV to −57 mV, and showed no signs of ravuconazole precipitation. Asymmetric flow field-flow fractionation with dynamic and multiangle laser light scattering was used to characterize these formulations in terms of size distribution and homogeneity. The fractograms obtained at 37°C showed a polydisperse profile for all blank and ravuconazole–SEDDS formulations but no large aggregates. SEDDS increased ravuconazole in vitro dissolution extent and rate (20%) compared to free drug (3%) in 6 h. The in vivo toxicity of blank SEDDS comprising Labrasol® surfactant in different concentrations and preliminary safety tests in repeated-dose oral administration (20 days) showed a dose-dependent Labrasol toxicity in healthy mice. Ravuconazole–SEDDS at low surfactant content (10%, v/v) in Trypanosoma cruzi-infected mice was safe during the 20-day treatment. The anti-T. cruzi activity of free ravuconazole, ravuconazole–SEDDS and each excipient were evaluated in vitro at equivalent ravuconazole concentrations needed to inhibit 50% or 90% (IC50 and IC90), respectively of the intracellular amastigote form of the parasite in a cardiomyocyte cell line. The results showed a clear improvement of the ravuconazole anti-T. cruzi activity when associated with SEDDS. Based on our results, the repurposing of ravuconazole in SEDDS dosage form is a strategy that deserves further in vivo investigation in preclinical studies for the treatment of human T. cruzi infections. PMID:28553114

  18. Development of a prototype magnetically suspended rotor ventricular assist device.

    PubMed

    Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C

    1996-01-01

    A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.

  19. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  20. Visualization and Measurement of Flow in a Model Rotating-Wall Bioreactor

    NASA Astrophysics Data System (ADS)

    Brown, Jason B.; Neitzel, G. Paul

    1997-11-01

    Fluid shear has been observed to have an effect on the in vitro growth of mammalian cells and is expected to play a role in the in vitro development of aggregates of cells into tissue. The interactions between culture media and cell constructs within a circular Couette flow bioreactor with independently rotating cylinders are investigated in model studies using flow visualization. Particle-Image Velocimetry (PIV) is used to quantify the velocity field in a plane perpendicular to the vessel axis which contains a cell construct model. This velocity field is then used to compute the instantaneous shear field. Experiments show the path of the model cell construct is dependent on the rotation rates of the cylinders.

  1. In vitro Method to Observe E-selectin-mediated Interactions Between Prostate Circulating Tumor Cells Derived From Patients and Human Endothelial Cells

    PubMed Central

    Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.

    2014-01-01

    Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373

  2. A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.

    PubMed

    Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung

    2014-07-01

    An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.

  3. A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping

    PubMed Central

    Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung

    2014-01-01

    An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101

  4. Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.

    PubMed

    Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali

    2017-01-01

    This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.

  5. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices.

    PubMed

    Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U

    2010-06-21

    Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.

  6. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  7. Tissue engineering of heart valves: in vitro experiences.

    PubMed

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced after pulsatile flow exposure.

  8. Utility of color Doppler indices of dominant follicular blood flow for prediction of clinical factors in in vitro fertilization-embryo transfer cycles.

    PubMed

    Ozaki, T; Hata, K; Xie, H; Takahashi, K; Miyazaki, K

    2002-12-01

    To investigate the relationship between color Doppler indices of dominant follicular blood flow and clinical factors in in vitro fertilization-embryo transfer cycles. This was a prospective study involving 26 patients completing a total of 33 in vitro fertilization cycles. Dominant follicular blood flow indices, peak systolic velocities, the resistance index and the pulsatility index were evaluated using transvaginal color Doppler. The indices were compared to the clinical outcomes of in vitro fertilization-embryo transfer. There was a significant correlation between dominant follicular peak systolic velocities and the number of oocytes retrieved, as well as the number of mature oocytes obtained. There was no significant correlation between dominant follicular resistance index or pulsatility index and the number of follicles > 10 mm in diameter, the number of oocytes retrieved or the number of mature oocytes. There were no significant differences between dominant follicular peak systolic velocities, resistance index or pulsatility index, and fertilization rate or the ratio of good quality embryos. However, significant differences were found between the number of oocytes retrieved, as well as the number of mature oocytes for those patients in which the peak systolic velocity was below 25 cm/s. Doppler assessment of dominant follicle blood flow alone is useful for predicting the number of retrievable oocytes. However, morphological quality of the embryo produced or the pregnancy rate cannot be predicted by this method.

  9. Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications

    PubMed Central

    2013-01-01

    Background In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. Results The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. Conclusion A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency of capturing MNPs especially when the external magnetic field is turned off thus facilitating and prolonging the effect. In this way higher drug levels in the target area might be attained resulting in lower inconveniences for the patient. PMID:24112871

  10. Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications.

    PubMed

    Angrisani, Nina; Foth, Franziska; Kietzmann, Manfred; Schumacher, Stephan; Angrisani, Gian Luigi; Christel, Anne; Behrens, Peter; Reifenrath, Janin

    2013-10-10

    In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency of capturing MNPs especially when the external magnetic field is turned off thus facilitating and prolonging the effect. In this way higher drug levels in the target area might be attained resulting in lower inconveniences for the patient.

  11. Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitro.

    PubMed

    Niehaus, Wilmari L; Howlin, Robert P; Johnston, David A; Bull, Daniel J; Jones, Gareth L; Calton, Elizabeth; Mavrogordato, Mark N; Clarke, Stuart C; Thurner, Philipp J; Faust, Saul N; Stoodley, Paul

    2016-09-01

    Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.

  12. A recombined fusion protein PTD-Grb2-SH2 inhibits the proliferation of breast cancer cells in vitro.

    PubMed

    Yin, Jikai; Cai, Zhongliang; Zhang, Li; Zhang, Jian; He, Xianli; Du, Xilin; Wang, Qing; Lu, Jianguo

    2013-03-01

    The growth factor receptor bound protein 2 (Grb2) is one of the affirmative targets for cancer therapy, especially for breast cancer. In this study, we hypothesized the Src-homology 2 (SH2) domain in Grb2 may serve as a competitive protein-binding agent to interfere with the proliferation of breast cancer cells in vitro. We designed, constructed, expressed and purified a novel fusion protein containing the protein transduction domain (PTD) and Grb2-SH2 domain (we named it after PTD-Grb2-SH2). An immunofluorescence assay was used to investigate the location of PTD-Grb2-SH2 in cells. MTT assay and EdU experiments were applied to detect the proliferation of breast cancer cells. The ultra-structure was observed using transmission electron microscopy. Flow cytometry was used to determine the cytotoxicity of PTD-Grb2-SH2 on cell proliferation. We successfully obtained the PTD-Grb2-SH2 fusion protein in soluble form using a prokaryotic expression system. The new fusion protein successfully passed through both the cellular and nuclear membranes of breast cancer cells. The MTT assay showed that PTD-Grb2-SH2 exhibited significant toxicity to breast cancer cells in a dose- and time-dependent manner in vitro. EdU identified the decreased proliferation rates in treated MDA-MB-231 and SK-BR-3 cells. Observation by transmission electron microscopy and flow cytometry further confirmed the cytotoxicity as apoptosis. Our results show that the HIV1-TAT domain is a useful tool for transporting a low molecular weight protein across the cell membrane in vitro. The PTD-Grb2-SH2 may be a novel agent for breast cancer therapy.

  13. Development of a microfluidic perfusion 3D cell culture system

    NASA Astrophysics Data System (ADS)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  14. Microfabrication of human organs-on-chips.

    PubMed

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  15. The effect of in vitro exposure to tributyltin on the immune competence of Chinook salmon (Oncorhynchus tshawytscha) leukocytes.

    PubMed

    Misumi, Ichiro; Yada, Takashi; Leong, Jo-Ann C; Schreck, Carl B

    2009-02-01

    We evaluated the direct effects of in vitro exposures to tributyltin (TBT), a widely used biocide, on the cell-mediated immune system of Chinook salmon (Oncorhynchus tshawytscha). Splenic and pronephric leukocytes isolated from juvenile Chinook salmon were exposed to TBT (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/l) in cell cultures for 24 h. Effects of TBT on cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry. Splenic and pronephric leukocytes in the presence of TBT experienced a concentration-dependent decrease in viability in cell cultures. Apoptosis was detected as one of the mechanisms of cell death after TBT exposure. In addition, pronephric lymphocytes exhibited a greater sensitivity to TBT exposure than pronephric granulocytes. The functional ability of splenic B-cells to undergo blastogenesis upon lipopolysaccharide stimulation was also significantly inhibited in the presence of 0.05, 0.07, or 0.10 mg/l of TBT in the cell cultures. Flow cytometric assay using a fluorescent conjugated monoclonal antibody against salmon surface immunoglobulin was employed for the conclusive identification of B-cells in the Chinook salmon leukocytes. Our findings suggest that adverse effects of TBT on the function or development of fish immune systems could lead to an increase in disease susceptibility and its subsequent ecological implications.

  16. Rapidly absorbed orodispersible tablet containing molecularly dispersed felodipine for management of hypertensive crisis: development, optimization and in vitro/in vivo studies.

    PubMed

    Basalious, Emad B; El-Sebaie, Wessam; El-Gazayerly, Omaima

    2013-01-01

    A liquisolid orodispersible tablet of felodipine, a BCS Class II drug, was developed to improve drug dissolution and absorption through the buccal mucosa for management of hypertensive crisis. A 24 full-factorial design was applied to optimize felodipine liquisolid systems (FLSs) having acceptable flow properties and possessing enhanced drug dissolution rates. Four formulation variables; The liquid type, X1 (PG or PEG), drug concentration, X2 (10% and 20%), type of coat, X3 (Aerosil® and Aeroperl®) and excipients ratio, X4 (10 and 20) were included in the design. The systems were assessed for dissolution and flow properties. Following optimization, the formulation components (X1, X2, X3 and X4) were PEG, 10%, Aerosil® and 20, respectively. The optimized FLS was compressed into felodipine liquisolid orodispersible tablet using Prosolv® as carrier material (FLODT-2). The in vitro and in vivo disintegration times of FLODT-2 were 9 and 7 s, respectively. The in vivo pharmacokinetic study using human volunteers showed a significant increase in dissolution and absorption rates of the formulation of FLODT-2 compared to soft gelatin capsules filled with felodipine solution in PEG under the same conditions. Our results proposed that the optimized FLODT formulation could be promising to manage hypertensive crisis.

  17. A compact centrifugal pump for cardiopulmonary bypass.

    PubMed

    Sasaki, T; Jikuya, T; Aizawa, T; Shiono, M; Sakuma, I; Takatani, S; Glueck, J; Noon, G P; Nosé, Y; DeBakey, M E

    1992-12-01

    A majority of the cardiopulmonary bypass (CPB) systems still utilize bulky roller pumps. A direct-drive small centrifugal pump intended for second-generation CPB pump has been developed. The pump has a 50 mm diameter impeller and provides a 6 L/min flow at 3,000 rpm against 300 mm Hg. A flexible drive shaft allows us to separate the pump head from the console resulting in easier manipulation. An in vitro study showed that the pump generated less hemolysis (index of hemolysis = 0.0011, comparable to the value for Bio-medicus BP-80). To improve blood flow around the shaft-seal region and to reduce thrombus formation around the shaft, six holes were drilled through the impeller. In biventricular bypass experiments using calves, our pump demonstrated excellent antithrombogenicity and durability for 48 h. And the compact and atraumatic centrifugal pump system showed excellent performance and easy manipulation under actual CPB conditions in animal.

  18. Quantification of gastric emptying and duodenogastric reflux stroke volumes using three-dimensional guided digital color Doppler imaging.

    PubMed

    Hausken, T; Li, X N; Goldman, B; Leotta, D; Ødegaard, S; Martin, R W

    2001-07-01

    To develop a non-invasive method for evaluating gastric emptying and duodenogastric reflux stroke volumes using three-dimensional (3D) guided digital color Doppler imaging. The technique involved color Doppler digital images of transpyloric flow in which the 3D position and orientation of the images were known by using a magnetic location system. In vitro, the system was found to slightly underestimate the reference flow (by average 8.8%). In vivo (five volunteers), stroke volume of gastric emptying episodes lasted on average only 0.69 s with a volume on average of 4.3 ml (range 1.1-7.4 ml), and duodenogastric reflux episodes on average 1.4 s with a volume of 8.3 ml (range 1.3-14.1 ml). With the appropriate instrument settings, orientation determined color Doppler can be used for stroke volume quantification of gastric emptying and duodenogastric reflux episodes.

  19. Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram.

    PubMed

    Biben, Thierry; Farutin, Alexander; Misbah, Chaouqi

    2011-03-01

    The study of vesicles under flow, a model system for red blood cells (RBCs), is an essential step in understanding various intricate dynamics exhibited by RBCs in vivo and in vitro. Quantitative three-dimensional analyses of vesicles under flow are presented. The regions of parameters to produce tumbling (TB), tank-treating, vacillating-breathing (VB), and even kayaking (or spinning) modes are determined. New qualitative features are found: (i) a significant widening of the VB mode region in parameter space upon increasing shear rate γ and (ii) a robustness of normalized period of TB and VB with γ. Analytical support is also provided. We make a comparison with existing experimental results. In particular, we find that the phase diagram of the various dynamics depends on three dimensionless control parameters, while a recent experimental work reported that only two are sufficient.

  20. Biomimetics of fetal alveolar flow phenomena using microfluidics.

    PubMed

    Tenenbaum-Katan, Janna; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josué

    2015-01-01

    At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.

  1. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  2. In vitro chlorhexidine release from alginate based microbeads for periodontal therapy

    PubMed Central

    Reske, Thomas; Böhmer, Femke; Hornung, Anne; Grabow, Niels; Lang, Hermann

    2017-01-01

    Periodontitis is one of the most common infectious diseases globally that, if untreated, leads to destruction of the tooth supporting tissues and finally results in tooth loss. Evidence shows that standard procedures as mechanical root cleaning could be supported by further treatment options such as locally applied substances. Due to gingival crevicular fluid flow, substances are commonly washed out off the periodontal pockets. The evaluation of administration techniques and the development of local drug releasing devices is thus an important aspect in periodontal research. This study describes the development and examination of a new alginate based, biodegradable and easily applicable drug delivery system for chlorhexidine (CHX). Different micro beads were produced and loaded with CHX and the release profiles were investigated by high performance liquid chromatography (HPLC). The in vitro-demonstrated release of CHX from alginate based beads shows comparable releasing characteristics as clinically approved systems. Yet many characteristics of this new delivery system show to be favourable for periodontal therapy. Easy application by injection, low production costs and multifunctional adaptions to patient related specifics may improve the usage in routine care. PMID:28973028

  3. Experimental and theoretical studies of implant assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Aviles, Misael O.

    One way to achieve drug targeting in the body is to incorporate magnetic nanoparticles into drug carriers and then retain them at the site using an externally applied magnetic field. This process is referred to as magnetic drug targeting (MDT). However, the main limitation of MDT is that an externally applied magnetic field alone may not be able to retain a sufficient number of magnetic drug carrier particles (MDCPs) to justify its use. Such a limitation might not exist when high gradient magnetic separation (HGMS) principles are applied to assist MDT by means of ferromagnetic implants. It was hypothesized that an Implant Assisted -- MDT (IA-MDT) system would increase the retention of the MDCPs at a target site where an implant had been previously located, since the magnetic forces are produced internally. With this in mind, the overall objective of this work was to demonstrate the feasibility of an IA-MDT system through mathematical modeling and in vitro experimentation. The mathematical models were developed and used to demonstrate the behavior and limitations of IA-MDT, and the in vitro experiments were designed and used to validate the models and to further elucidate the important parameters that affect the performance of the system. IA-MDT was studied with three plausible implants, ferromagnetic stents, seed particles, and wires. All implants were studied theoretically and experimentally using flow through systems with polymer particles containing magnetite nanoparticles as MDCPs. In the stent studies, a wire coil or mesh was simply placed in a flow field and the capture of the MDCPs was studied. In the other cases, a porous polymer matrix was used as a surrogate capillary tissue scaffold to study the capture of the MDCPs using wires or particle seeds as the implant, with the seeds either fixed within the polymer matrix or captured prior to capturing the MDCPs. An in vitro heart tissue perfusion model was also used to study the use of stents. In general, all the results demonstrated that IA-MDT is indeed feasible and that careful modification of the MDCP properties and implant properties are fundamental to the success of this technology.

  4. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  5. Surface engineering of gold nanoparticles for in vitro siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhao, Enyu; Zhao, Zhixia; Wang, Jiancheng; Yang, Chunhui; Chen, Chengjun; Gao, Lingyan; Feng, Qiang; Hou, Wenjie; Gao, Mingyuan; Zhang, Qiang

    2012-07-01

    Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 +/- 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent Lipofectamine 2000.

  6. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro

    PubMed Central

    Kornuta, Jeffrey A.; Nipper, Matthew E.; Dixon, J. Brandon

    2012-01-01

    The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these short-comings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely-timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells. PMID:23178036

  7. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro.

    PubMed

    Kornuta, Jeffrey A; Nipper, Matthew E; Dixon, J Brandon

    2013-01-04

    The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these shortcomings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion-evidence of motion-induced flow.

    PubMed

    Kimura, Takaoki; Schulz, Matthias; Shimoji, Kazuaki; Miyajima, Masakazu; Arai, Hajime; Thomale, Ulrich-Wilhelm

    2016-10-01

    Anti-siphon devices and gravitational-assisted valves have been introduced to counteract the effects of overdrainage after implantation of a shunt system. The study examined the flow performance of two gravitational-assisted valves (shunt assistant - SA and programmable shunt assistant - proSA, Miethke & Co. KG, Potsdam, Germany) in an in vitro shunt laboratory with and without motion. An in vitro laboratory setup was used to model the cerebrospinal fluid (CSF) drainage conditions similar to a ventriculo-peritoneal shunt and to test the SA (resistance of +20 cmH2O in 90°) and proSA (adjustable resistance of 0 to +40 cmH2O in 90°). The differential pressure (DP) through the simulated shunt and tested valve was adjusted between 0 and 60 cmH2O by combinations of different inflow pressures (40, 30, 20, 10, and 0 cmH2O) and the hydrostatic negative outflow pressure (0, -20, and -40 cmH2O) in several differing device positions (0°, 30°, 60°, and 90°). In addition, the two devices were tested under vertical motion with movement frequencies of 2, 3, and 4 Hz. Both gravity-assisted units effectively counteract the hydrostatic effect in relation to the chosen differential pressure. The setting the proSA resulted in flow reductions in the 90° position according to the chosen resistance of the device. Angulation-related flow changes were similar in the two devices in 30-90° position, however, in the 0-30° position, a higher flow is seen in the proSA. Repeated vertical movement significantly increased flow through both devices. While with the proSA a 2-Hz motion was not able to induce additional flow (0.006 ± 0.05 ml/min), 3- and 4-Hz motion significantly induced higher flow values (3 Hz: +0.56 ± 0.12 ml/min, 4 Hz: +0.54 ± 0.04 ml/min). The flow through the SA was not induced by vertical movements at a low DP of 10 cmH2O at all frequencies, but at DPs of 30 cmH2O and higher, all frequencies significantly induced higher flow values (2 Hz: +0.36 ± 0.14 ml/min, 3 Hz: +0.32 ± 0.08 ml/min, 4 Hz: +0.28 ± 0.09 ml/min). In a static setup, both tested valves effectively counteracted the hydrostatic effect according to their adjusted or predefined resistance in vertical position. Motion-induced increased flow was demonstrated for both devices with different patterns of flow depending on applied DP and setting of the respective valve. The documented increased drainage should be considered when selecting appropriate valves and settings in very active patients.

  9. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  10. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    PubMed

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2018-02-01

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  11. Effects of Nebulizer Position, Gas Flow, and CPAP on Aerosol Bronchodilator Delivery: An In Vitro Study.

    PubMed

    Ball, Lorenzo; Sutherasan, Yuda; Caratto, Valentina; Sanguineti, Elisa; Marsili, Maria; Raimondo, Pasquale; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2016-03-01

    The aim of this study was to investigate the effects of different delivery circuit configurations, nebulizer positions, CPAP levels, and gas flow on the amount of aerosol bronchodilator delivered during simulated spontaneous breathing in an in vitro model. A pneumatic lung simulator was connected to 5 different circuits for aerosol delivery, 2 delivering CPAP through a high-flow generator tested at 30, 60, and 90 L/min supplementary flow and 5, 10, and 15 cm H2O CPAP and 3 with no CPAP: a T-piece configuration with one extremity closed with a cap, a T-piece configuration without cap and nebulizer positioned proximally, and a T-piece configuration without cap and nebulizer positioned distally. Albuterol was collected with a filter, and the percentage amount delivered was measured by infrared spectrophotometry. Configurations with continuous high-flow CPAP delivered higher percentage amounts of albuterol compared with the configurations without CPAP (9.1 ± 6.0% vs 6.2 ± 2.8%, P = .03). Among configurations without CPAP, the best performance was obtained with a T-piece with one extremity closed with a cap. In CPAP configurations, the highest delivery (13.8 ± 4.4%) was obtained with the nebulizer placed proximal to the lung simulator, independent of flow. CPAP at 15 cm H2O resulted in the highest albuterol delivery (P = .02). Based on our in vitro study, without CPAP, a T-piece with a cap at one extremity maximizes albuterol delivery. During high-flow CPAP, the nebulizer should always be placed proximal to the patient, after the T-piece, using the highest CPAP clinically indicated. Copyright © 2016 by Daedalus Enterprises.

  12. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    NASA Astrophysics Data System (ADS)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein-protein interactions on drug metabolism.

  13. LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  14. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  15. Hyperbaric oxygen increases tissue-plasminogen activator-induced thrombolysis in vitro, and reduces ischemic brain damage and edema in rats subjected to thromboembolic brain ischemia.

    PubMed

    Chazalviel, Laurent; Haelewyn, Benoit; Degoulet, Mickael; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) in vitro , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis in vitro and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis in vitro to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema in vivo . In line with the facilitating effect of NBO on cerebral blood flow, our findings suggest that 5-minute HBO could have provided neuroprotection by promoting thrombolysis. The lack of effect of HBO exposure of longer duration is discussed.

  16. Application of color Doppler flow mapping to calculate orifice area of St Jude mitral valve

    NASA Technical Reports Server (NTRS)

    Leung, D. Y.; Wong, J.; Rodriguez, L.; Pu, M.; Vandervoort, P. M.; Thomas, J. D.

    1998-01-01

    BACKGROUND: The effective orifice area (EOA) of a prosthetic valve is superior to transvalvular gradients as a measure of valve function, but measurement of mitral prosthesis EOA has not been reliable. METHODS AND RESULTS: In vitro flow across St Jude valves was calculated by hemispheric proximal isovelocity surface area (PISA) and segment-of-spheroid (SOS) methods. For steady and pulsatile conditions, PISA and SOS flows correlated with true flow, but SOS and not PISA underestimated flow. These principles were then used intraoperatively to calculate cardiac output and EOA of newly implanted St Jude mitral valves in 36 patients. Cardiac output by PISA agreed closely with thermodilution (r=0.91, Delta=-0.05+/-0.55 L/min), but SOS underestimated it (r=0.82, Delta=-1.33+/-0.73 L/min). Doppler EOAs correlated with Gorlin equation estimates (r=0.75 for PISA and r=0.68 for SOS, P<0.001) but were smaller than corresponding in vitro EOA estimates. CONCLUSIONS: Proximal flow convergence methods can calculate forward flow and estimate EOA of St Jude mitral valves, which may improve noninvasive assessment of prosthetic mitral valve obstruction.

  17. System Design and Development of a Robotic Device for Automated Venipuncture and Diagnostic Blood Cell Analysis.

    PubMed

    Balter, Max L; Chen, Alvin I; Fromholtz, Alex; Gorshkov, Alex; Maguire, Tim J; Yarmush, Martin L

    2016-10-01

    Diagnostic blood testing is the most prevalent medical procedure performed in the world and forms the cornerstone of modern health care delivery. Yet blood tests are still predominantly carried out in centralized labs using large-volume samples acquired by manual venipuncture, and no end-to-end solution from blood draw to sample analysis exists today. Our group is developing a platform device that merges robotic phlebotomy with automated diagnostics to rapidly deliver patient information at the site of the blood draw. The system couples an image-guided venipuncture robot, designed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In this paper, we first present the system design and architecture of the integrated device. We then perform a series of in vitro experiments to evaluate the cannulation accuracy of the system on blood vessel phantoms. Next, we assess the effects of vessel diameter, needle gauge, flow rate, and viscosity on the rate of sample collection. Finally, we demonstrate proof-of-concept of a white cell assay on the blood analyzer using in vitro human samples spiked with fluorescently labeled microbeads.

  18. Single-element ultrasound transducer for combined vessel localization and ablation.

    PubMed

    Chen, Wen-Shiang; Shen, Che-Chou; Wang, Jen-Chieh; Ko, Chung-Ting; Liu, Hao-Li; Ho, Ming-Chih; Chen, Chiung-Nien; Yeh, Chih-Kuang

    2011-04-01

    This report describes a system that utilizes a single high-intensity focused ultrasound (HIFU) transducer for both the localization and ablation of arteries with internal diameters of 0.5 and 1.3 mm. In vitro and in vivo tests were performed to demonstrate both the imaging and ablation functionalities of this system. For imaging mode, pulsed acoustic waves (3 cycles for in vitro and 10 cycles for in vivo tests, 2 MPa peak pressure) were emitted from the 2-MHz HIFU transducer, and the backscattered ultrasonic signal was collected by the same transducer to calculate Doppler shifts in the target region. The maximum signal amplitude of the Doppler shift was used to determine the location of the target vessel. The operation mode was then switched to the therapeutic mode and vessel occlusion was successfully produced by high-intensity continuous HIFU waves (12 MPa) for 60 s. The system was then switched back to imaging mode for residual flow to determine the need for a second ablation treatment. The new system might be used to target and occlude unwanted vessels such as vasculature around tumors, and to help with tumor destruction. © 2011 IEEE

  19. Right Ventricular Failure Post LVAD Implantation Corrected with Biventricular Support: An In Vitro Model.

    PubMed

    Shehab, Sajad; Allida, Sabine M; Davidson, Patricia M; Newton, Phillip J; Robson, Desiree; Jansz, Paul C; Hayward, Christopher S

    Right ventricular failure after left ventricular assist device (LVAD) implantation is associated with high mortality. Management remains limited to pharmacologic therapy and temporary mechanical support. Delayed right ventricular assist device (RVAD) support after LVAD implantation is associated with poorer outcomes. With the advent of miniaturized, durable, continuous flow ventricular assist device systems, chronic RVAD and biventricular assist device (BiVAD) support has been used with some success. The purpose of this study was to assess combined BiVAD and LVAD with delayed RVAD support within a four-elemental mock circulatory loop (MCL) simulating the human cardiovascular system. Our hypothesis was that delayed continuous flow RVAD (RVAD) would produce similar hemodynamic and flow parameters to those of initial BiVAD support. Using the MCL, baseline biventricular heart failure with elevated right and left filling pressures with low cardiac output was simulated. The addition of LVAD within a biventricular configuration improved cardiac output somewhat, but was associated with persistent right heart failure with elevated right-sided filling pressures. The addition of an RVAD significantly improved LVAD outputs and returned filling pressures to normal throughout the circulation. In conclusion, RVAD support successfully restored hemodynamics and flow parameters of biventricular failure supported with isolated LVAD with persistent elevated right atrial pressure.

  20. In vitro evaluation of forward and reverse volumetric flow across a regurgitant aortic valve using Doppler power-weighted mean velocities.

    PubMed

    Minich, L L; Tani, L Y; Pantalos, G M

    1997-01-01

    To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.

  1. Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots.

    PubMed

    Sersa, I; Vidmar, J; Grobelnik, B; Mikac, U; Tratar, G; Blinc, A

    2007-06-07

    Axially directed blood plasma flow can significantly accelerate thrombolysis of non-occlusive blood clots. Viscous forces caused by shearing of blood play an essential role in this process, in addition to biochemical fibrinolytic reactions. An analytical mathematical model based on the hypothesis that clot dissolution dynamics is proportional to the power of the flowing blood plasma dissipated along the clot is presented. The model assumes cylindrical non-occlusive blood clots with the flow channel in the centre, in which the flow is assumed to be laminar and flow rate constant at all times during dissolution. Effects of sudden constriction on the flow and its impact on the dissolution rate are also considered. The model was verified experimentally by dynamic magnetic resonance (MR) microscopy of artificial blood clots dissolving in an in vitro circulation system, containing plasma with a magnetic resonance imaging contrast agent and recombinant tissue-type plasminogen activator (rt-PA). Sequences of dynamically acquired 3D low resolution MR images of entire clots and 2D high resolution MR images of clots in the axial cross-section were used to evaluate the dissolution model by fitting it to the experimental data. The experimental data fitted well to the model and confirmed our hypothesis.

  2. Accuracy of 4D Flow measurement of cerebrospinal fluid dynamics in the cervical spine: An in vitro verification against numerical simulation

    PubMed Central

    Pahlavian, Soroush Heidari; Bunck, Alexander C.; Thyagaraj, Suraj; Giese, Daniel; Loth, Francis; Hedderich, Dennis M.; Kröger, Jan Robert; Martin, Bryn A.

    2016-01-01

    Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities. PMID:27043214

  3. Engineering-Aligned 3D Neural Circuit in Microfluidic Device.

    PubMed

    Bang, Seokyoung; Na, Sangcheol; Jang, Jae Myung; Kim, Jinhyun; Jeon, Noo Li

    2016-01-07

    The brain is one of the most important and complex organs in the human body. Although various neural network models have been proposed for in vitro 3D neuronal networks, it has been difficult to mimic functional and structural complexity of the in vitro neural circuit. Here, a microfluidic model of a simplified 3D neural circuit is reported. First, the microfluidic device is filled with Matrigel and continuous flow is delivered across the device during gelation. The fluidic flow aligns the extracellular matrix (ECM) components along the flow direction. Following the alignment of ECM fibers, neurites of primary rat cortical neurons are grown into the Matrigel at the average speed of 250 μm d(-1) and form axon bundles approximately 1500 μm in length at 6 days in vitro (DIV). Additionally, neural networks are developed from presynaptic to postsynaptic neurons at 14 DIV. The establishment of aligned 3D neural circuits is confirmed with the immunostaining of PSD-95 and synaptophysin and the observation of calcium signal transmission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL).

    PubMed

    Cao, Yachao; Hui, Xiaoying; Zhu, Hanjiang; Elmahdy, Akram; Maibach, Howard

    2018-07-01

    This study compared the efficiency for in vitro human skin decontamination using DDGel and RSDL. Experiments were performed using in vitro human skin models, in which skin was mounted onto Flow-Through diffusion cells. The mass of 14 -C CEES removed from skin surface after decontamination was quantitated by measuring radioactivity with a liquid scintillation spectrometer. Both decontaminants removed more than 82% of CEES from skin. DDGel skin decontamination significantly reduced toxicant amount when compared to RSDL. Mean CEES remaining in stratum corneum (SC), viable epidermis, dermis, and systemic absorption of DDGel and RSDL were, 0.12 and 0.55% (P < 0.01), 0.31 and 0.95% (p < 0.01), 1.08 and 2.92% (p < 0.05), 3.13 and 6.34% (p < 0.05), respectively. DDGel showed higher decontamination efficiency (twice decontamination efficacy factor, DEF) than RSDL and efficiently removed chemicals from the skin surface, importantly back-extracted from the SC, and significantly reduced both chemical penetration into skin and systemic absorption. Thus, DDGel can offer a potential as a next generation skin decontamination platform technology for military and civilian applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation.

    PubMed

    Li, Ranran; Zijlstra, Jan G; Kamps, Jan A A M; van Meurs, Matijs; Molema, Grietje

    2014-10-01

    Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during hemorrhagic shock and resuscitation in vivo. We examined the kinetic responses of different endothelial genes in human umbilical vein endothelial cells preconditioned to 20 dyne/cm unidirectional laminar shear stress for 48 h to flow cessation and abrupt reflow, respectively, as well as the effect of flow cessation and reflow on tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory activation. Endothelial CD31 and VE-cadherin were not affected by the changes in flow in the absence or presence of TNF-α. The messenger RNA levels of proinflammatory molecules E-selectin, VCAM-1 (vascular cell adhesion molecule 1), and IL-8 (interleukin 8) were significantly induced by flow cessation respectively acute reflow, whereas ICAM-1 (intercellular adhesion molecule 1) was downregulated on flow cessation and induced by subsequent acute reflow. Flow cessation also affected the Ang/Tie2 (Angiopoietin/Tie2 receptor tyrosine kinase) system by downregulating Tie2 and inducing its endothelial ligand Ang2, an effect that was further extended on acute reflow. Furthermore, the induction of proinflammatory adhesion molecules by TNF-α under flow cessation was significantly enhanced on subsequent acute reflow. This study demonstrated that flow alterations per se during shock and resuscitation contribute to endothelial activation and that these alterations interact with proinflammatory factors coexisting in vivo such as TNF-α. The abrupt reflow-related enhancement of cytokine-induced endothelial proinflammatory activation supports the concept that sudden regain of flow during resuscitation has an aggravating effect on endothelial activation, which may play a significant role in vascular dysfunction and consequent organ injury. This study implies that the improvement of resuscitation strategies and the pharmacological interference with proinflammatory signaling cascades at the right time of resuscitation of shock patients may be beneficial to regain and/or maintain organ function in patients after circulatory shock.

  6. Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models.

    PubMed

    Estermann, Stephan; Yuttitham, Kanokwan; Chen, Julie A; Lee, On-Tat; Stamper, Robert L

    2013-03-01

    To determine the flow characteristics of the 3 different models of the Ex-PRESS miniature glaucoma device in a controlled laboratory study. The 3 different Ex-PRESS models (P-50, R-50, and P-200; Optonol Ltd; now Alcon Lab) were tested using a gravity-driven flow test. Three samples of each of the 3 Ex-PRESS models were subjected to a constant gravitational force of fluid at 5 different pressure levels (5 to 25 mm Hg). Four measurements per sample were taken at each pressure level. The main outcome measure was flow rate (Q) (µL/min). Resistance (R) was calculated by dividing pressure (P) by the measured flow (Q). The flow rate was primarily pressure dependent. The P-200 model (internal diameter 200 µm) showed a statistically significant higher flow rate and lower resistance compared with both the P-50 and R-50 models (internal diameter 50 µm) (P<0.0001). The P-50 and R-50 models demonstrated similar flow rates (P=0.08) despite their difference in tube length (2.64 vs. 2.94 mm). The 3 models of the Ex-PRESS mini shunt behaved in vitro as simple flow resistors by creating a relatively constant resistance to flow. Tube diameter was the only parameter with significant impact on flow and resistance. All models demonstrated flow rates per unit of pressure much higher than the outflow facility of a healthy human eye.

  7. Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator.

    PubMed

    Yu, Zechen; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E; Jiang, Huanhuan

    2017-08-01

    To better characterize biological responses to atmospheric organic aerosols, the efficient delivery of aerosol to in vitro lung cells is necessary. In this study, chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device, the particle dose was predicted for various sampling parameters such as particle size, ESP deposition voltage, and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example, RNA in the ALI BEAS-2B cells in vitro was stable at 0.15L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e., viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15L/minute, and no cellular RNA decay occurred. Copyright © 2017. Published by Elsevier Ltd.

  8. In vitro and in vivo characterization of a dual-function green fluorescent protein--HSV1-thymidine kinase reporter gene driven by the human elongation factor 1 alpha promoter.

    PubMed

    Luker, Gary D; Luker, Kathryn E; Sharma, Vijay; Pica, Christina M; Dahlheimer, Julie L; Ocheskey, Joe A; Fahrner, Timothy J; Milbrandt, Jeffrey; Piwnica-Worms, David

    2002-01-01

    Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP) and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK) as a reporter gene driven by the promoter for human elongation factor 1 alpha (EF-1 alpha-EGFP-TK). Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV). As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK) in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP) and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) approximately 8-[3H]penciclovir (8-[3H]PCV) < 2'-fluoro-2'-deoxy-5-iodouracil-beta-D-arabinofuranoside (2-[14C]FIAU). Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  9. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    PubMed

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  10. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  11. Four-dimensional Doppler ultrasound measurements in carotid bifurcation models: effect of concentric versus eccentric stenosis

    NASA Astrophysics Data System (ADS)

    Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.

    2001-05-01

    A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.

  12. Fractality of pulsatile flow in speckle images

    NASA Astrophysics Data System (ADS)

    Nemati, M.; Kenjeres, S.; Urbach, H. P.; Bhattacharya, N.

    2016-05-01

    The scattering of coherent light from a system with underlying flow can be used to yield essential information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in the properties of the speckle images. This can be studied using the standard laser speckle contrast and also the fractality of images. In this paper, we report the results of experiments performed to study pulsatile flow with speckle images, under different experimental configurations to verify the robustness of the techniques for applications. In order to study flow under various levels of complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations. The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the in vivo case. The speckle images were analyzed using the techniques of fractal dimension and speckle contrast analysis. The results of these techniques for the various experimental scenarios were compared. The fractal dimension is a more sensitive measure to capture the complexity of the signal though it was observed that it is also extremely sensitive to the properties of the scattering medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.

  13. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  14. Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases.

    PubMed

    Son, Donghee; Lee, Jongha; Lee, Dong Jun; Ghaffari, Roozbeh; Yun, Sumin; Kim, Seok Joo; Lee, Ji Eun; Cho, Hye Rim; Yoon, Soonho; Yang, Shixuan; Lee, Seunghyun; Qiao, Shutao; Ling, Daishun; Shin, Sanghun; Song, Jun-Kyul; Kim, Jaemin; Kim, Taeho; Lee, Hakyong; Kim, Jonghoon; Soh, Min; Lee, Nohyun; Hwang, Cheol Seong; Nam, Sangwook; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong

    2015-06-23

    Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.

  15. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro.

    PubMed

    Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da

    2011-01-01

    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.

  16. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  17. Numerical and In Vitro Experimental Investigation of the Hemolytic Performance at the Off-Design Point of an Axial Ventricular Assist Pump.

    PubMed

    Liu, Guang-Mao; Jin, Dong-Hai; Jiang, Xi-Hang; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Hu, Sheng-Shou; Gui, Xing-Min

    The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.

  18. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  19. Validation of a single-platform method for hematopoietic CD34+ stem cells enumeration according to accreditation procedure.

    PubMed

    Massin, Frédéric; Huili, Cai; Decot, Véronique; Stoltz, Jean-François; Bensoussan, Danièle; Latger-Cannard, Véronique

    2015-01-01

    Stem cells for autologous and allogenic transplantation are obtained from several sources including bone marrow, peripheral blood or cord blood. Accurate enumeration of viable CD34+ hematopoietic stem cells (HSC) is routinely used in clinical settings, especially to monitor progenitor cell mobilization and apheresis. The number of viable CD34+ HSC has also been shown to be the most critical factor in haematopoietic engraftment. The International Society for Cellular Therapy actually recommends the use of single-platform flow cytometry system using 7-AAD as a viability dye. In a way to move routine analysis from a BD FACSCaliburTM instrument to a BD FACSCantoTM II, according to ISO 15189 standard guidelines, we define laboratory performance data of the BDTM Stem Cell Enumeration (SCE) kit on a CE-IVD system including a BD FACSCanto II flow cytometer and the BD FACSCantoTM Clinical Software. InterQCTM software, a real time internet laboratory QC management system developed by VitroTM and distributed by Becton DickinsonTM, was also tested to monitor daily QC data, to define the internal laboratory statistics and to compare them to external laboratories. Precision was evaluated with BDTM Stem Cell Control (high and low) results and the InterQC software, an internet laboratory QC management system by Vitro. This last one drew Levey-Jennings curves and generated numeral statistical parameters allowing detection of potential changes in the system performances as well as interlaboratory comparisons. Repeatability, linearity and lower limits of detection were obtained with routine samples from different origins. Agreement evaluation between BD FACSCanto II system versus BD FACSCalibur system was tested on fresh peripheral blood, freeze-thawed apheresis, fresh bone marrow and fresh cord blood samples. Instrument's measure and staining repeatability clearly evidenced acceptable variability on the different samples tested. Intra- and inter-laboratory CV in CD34+ cell absolute count are consistent and reproducible. Linearity analysis, established between 2 and 329 cells/μl showed a linear relation between expected counts and measured counts (R2=0.97). Linear regression and Bland-Altman representations showed an excellent correlation on samples from different sources between the two systems and allowed the transfer of routine analysis from BD FACSCalibur to BD FACSCanto II. The BD SCE kit provides an accurate measure of the CD34 HSC, and can be used in daily routine to optimize the enumeration of hematopoietic CD34+ stem cells by flow cytometry. Moreover, the InterQC system seems to be a very useful tool for laboratory daily quality monitoring and thus for accreditation.

  20. NIR and MR imaging supported hydrogel based delivery system for anti-TNF alpha probiotic therapy of IBD

    NASA Astrophysics Data System (ADS)

    Janjic, Jelena M.; Berlec, Ales; Bagia, Christina; Liu, Lu S.; Jeric, Irenej; Gach, Michael; Janjic, Bratislav M.; Strukelj, Borut

    2016-03-01

    Current treatment of inflammatory bowel disease (IBD) is largely symptomatic and consists of anti-inflammatory agents, immune-suppressives or antibiotics, whereby local luminal action is preferred to minimize systemic side-effects. Recently, anti-TNFα therapy has shown considerable success and is now being routinely used. Here we present a novel approach of using perfluorocarbon (PFC) nanoemulsion containing hydrogels (nanoemulgels) as imaging supported delivery systems for anti-TNF alpha probiotic delivery in IBD. To further facilitate image-guided therapy a food-grade lactic acid bacterium Lactococcus lactis capable of TNFα-binding was engineered to incorporate infrared fluorescent protein (IRFP). This modified bacteria was then incorporated into novel PFC nanoemulgels. The nanoemulgels presented here are designed to deliver locally anti-TNFα probiotic in the lower colon and rectum and provide dual imaging signature of gel delivery (MRI) across the rectum and lower colon and bacteria release (NIR). NIR imaging data in vitro demonstrates high IRFP expressing and TNFα-binding bacteria loading in the hydrogel and complete release in 3 hours. Stability tests indicate that gels remain stable for at least 14 days showing no significant change in droplet size, zeta potential and pH. Flow cytometry analyses demonstrate the NIRF expressing bacteria L. lactis binds TNFα in vitro upon release from the gels. Magnetic resonance and near-infrared imaging in vitro demonstrates homogeneity of hydrogels and the imaging capacity of the overall formulation.

  1. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  2. Investigation of Flow Structures Downstream of SAPIEN 3, CoreValve, and PERIMOUNT Magna Using Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Barakat, Mohammed; Lengsfeld, Corinne; Dvir, Danny; Azadani, Ali

    2017-11-01

    Transcatheter aortic valves provide superior systolic hemodynamic performance in terms of valvular pressure gradient and effective orifice area compared with equivalent size surgical bioprostheses. However, in depth investigation of the flow field structures is of interest to examine the flow field characteristics and provide experimental evidence necessary for validation of computational models. The goal of this study was to compare flow field characteristics of the three most commonly used transcatheter and surgical valves using phase-locked particle image velocimetry (PIV). 26mm SAPIEN 3, 26mm CoreValve, and 25mm PERIMOUNT Magna were examined in a pulse duplicator with input parameters matching ISO-5840. A 2D PIV system was used to obtain the velocity fields. Flow velocity and shear stress were obtained during the entire cardiac cycle. In-vitro testing showed that mean gradient was lowest for SAPIEN 3, followed by CoreValve and PERIMOUNT Magna. In all the valves, the peak jet velocity and maximum viscous shear stress were 2 m/s and 2 MPa, respectively. In conclusion, PIV was used to investigate flow field downstream of the three bioprostheses. Viscous shear stress was low and consequently shear-induced thrombotic trauma or shear-induced damage to red blood cells is unlikely.

  3. Impact of Inflow Conditions on Coherent Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Yu, Paulo; Durgesh, Vibhav; Johari, Hamid

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.

  4. Evaluation of flow with dynamic x-ray imaging for aneurysms

    NASA Astrophysics Data System (ADS)

    Dohatcu, Andreea Cristina

    The main goal of this thesis is to evaluate blood flow inside cerebrovascular aneurysms using dynamic x-ray imaging. X-ray contrast substance (dye) was auto injected in elastomer aneurysm models placed in a flow loop (for in-vitro studies) to trace flow passing through aneurysms. More specifically, an improved Time-Density Curves (TDC) Roentgen-videodensitometric tracking technique, that included looking to designated regions (R) within an aneurysm rather than focusing on the entire aneurysm, was employed to get information about blood flow using cine-angiographic sequences. It is the first time R-TDC technique has been used. In complex real-time interventions on patients, 2D/3D angiographic analysis of contrast media flow is the only reliable and rapid source of information that we have in order to assess the seriousness of the disease, suggest the treatment, and verify the result of the treatment. The present study focused on finding a "correlation metric" to quantitatively describe the flow behavior within the aneurysms and examine the hemodynamic implications of several treatments using flow modulating devices applied to saccular and bifurcation geometries aneurysms. The main idea in treatment of an aneurysm is rapid reduction of the risk of rupture. This is usually done endovascularly now by totally occluding the aneurysm by packing it with mechanical or chemical agents. Our research, however, involves a new method of blocking the neck using various types of asymmetric vascular stents (AVS). We proposed and analyzed, using R-TDCs, the feasibility of a new modified endovascular method of treatment based on alteration of blood flow through the aneurysm by partial occlusion only. In-vitro studies using aneurysm phantoms with patient-specific aneurysm models were performed. Also, for the first time the new methods were used in in-vivo studies as well, on rabbit-model experimental data, in an attempt to correlate thrombogenic response of a living organism to flow characteristics as a result of interaction with an AVS. A comparison with optical-dye-dilution data and 3D Computational Fluid Dynamics virtual angiography (CFD) data in similar conditions was also performed. Task oriented optimization of x-ray system parameters with regard to the needs of obtaining TDCs so as to obtain more accurate information of contrast media flow into aneurysms from angiographic images, were done. This includes a comparison between a commercial x-ray Flat Panel Detector (FPD) and an in-house new x-ray micro detector prototype, the Micro-Angiographic Fluoroscope (MAF). X-ray dose levels given in clinical procedures similar in length and complexity to aneurysm treatments, were studied on a statistical representative batch. It was concluded that there is a need for reduction of radiation-induced skin injuries to patients following interventional procedures. Hence, we developed and assessed a method to evaluate the variation of image quality (which impacts the success of TDC analysis) and dose with the acquisition mode operation logic and the automatic-brightness-control (ABC); this method was applied to two clinical interventional fluoroscopic imaging systems: one with an Image Intensifier (II) and the other with a Flat Panel Detector (FPD). The resultant ABC tracking curves obtained for the various imaging modes available on a given system can then be used for proper selection of technique to achieve the needed contrast signal to noise ratio to acquire adequate data for TDC evaluation, while controlling the patient dose.

  5. In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) copolymer

    PubMed Central

    Gong, Chang Yang; Shi, Shuai; Dong, Peng Wei; Zheng, Xiu Ling; Fu, Shao Zhi; Guo, Gang; Yang, Jing Liang; Wei, Yu Quan; Qian, Zhi Yong

    2009-01-01

    Background Most conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems are designed to deliver drugs at predetermined rates for predefined periods at the target organ and overcome the shortcomings of conventional drug formulations therefore could diminish the side effects and improve the life quality of the patients. Thus, a suitable controlled drug delivery system is extremely important for chemotherapy. Results A novel biodegradable thermosensitive composite hydrogel, based on poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) and Pluronic F127 copolymer, was successfully prepared in this work, which underwent thermosensitive sol-gel-sol transition. And it was flowing sol at ambient temperature but became non-flowing gel at body temperature. By varying the composition, sol-gel-sol transition and in vitro drug release behavior of the composite hydrogel could be adjusted. Cytotoxicity of the composite hydrogel was conducted by cell viability assay using human HEK293 cells. The 293 cell viability of composite hydrogel copolymers were yet higher than 71.4%, even when the input copolymers were 500 μg per well. Vitamin B12 (VB12), honokiol (HK), and bovine serum albumin (BSA) were used as model drugs to investigate the in vitro release behavior of hydrophilic small molecular drug, hydrophobic small molecular drug, and protein drug from the composite hydrogel respectively. All the above-mentioned drugs in this work could be released slowly from composite hydrogel in an extended period. Chemical composition of composite hydrogel, initial drug loading, and hydrogel concentration substantially affected the drug release behavior. The higher Pluronic F127 content, lower initial drug loading amount, or lower hydrogel concentration resulted in higher cumulative release rate. Conclusion The results showed that composite hydrogel prepared in this paper were biocompatible with low cell cytotoxicity, and the drugs in this work could be released slowly from composite hydrogel in an extended period, which suggested that the composite hydrogel might have great potential applications in biomedical fields. PMID:19210779

  6. Do soft drinks affect metal ions release from orthodontic appliances?

    PubMed

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.

    PubMed

    Krishna, Katla Sai; Li, Yuehao; Li, Shuning; Kumar, Challa S S R

    2013-11-01

    The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Interaction between drug delivery vehicles and cells under the effect of shear stress.

    PubMed

    Godoy-Gallardo, M; Ek, P K; Jansman, M M T; Wohl, B M; Hosta-Rigau, L

    2015-09-01

    Over the last decades, researchers have developed an ever greater and more ingenious variety of drug delivery vehicles (DDVs). This has made it possible to encapsulate a wide selection of therapeutic agents, ranging from proteins, enzymes, and peptides to hydrophilic and hydrophobic small drugs while, at the same time, allowing for drug release to be triggered through a diverse range of physical and chemical cues. While these advances are impressive, the field has been lacking behind in translating these systems into the clinic, mainly due to low predictability of in vitro and rodent in vivo models. An important factor within the complex and dynamic human in vivo environment is the shear flow observed within our circulatory system and many other tissues. Within this review, recent advances to leverage microfluidic devices to better mimic these conditions through novel in vitro assays are summarized. By grouping the discussion in three prominent classes of DDVs (lipidic and polymeric particles as well as inorganic nanoparticles), we hope to guide researchers within drug delivery into this exciting field and advance a further implementation of these assay systems within the development of DDVs.

  9. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    PubMed

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis. © 2014 UICC.

  10. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system

    NASA Astrophysics Data System (ADS)

    Yan, Hai-Bo; Zhang, Yu-Qing; Ma, Yong-Lei; Zhou, Li-Xia

    2009-11-01

    Silk fibroin derived from Bombyx mori is a biomacromolecular protein with outstanding biocompatibility. When it was dissolved in highly concentrated CaCl2 solution and then the mixture of the protein and salt was subjected to desalting treatments for long time in flowing water, the resulting liquid silk was water-soluble polypeptides with different molecular masses, ranging from 8 to 70 kDa. When the liquid silk was introduced rapidly into acetone, silk protein nanoparticles with a range of 40-120 nm in diameter could be obtained. The crystalline silk nanoparticles could be conjugated covalently with insulin alone with cross-linking reagent glutaraldehyde. In vitro properties of the insulin-silk fibroin nanoparticles (Ins-SFN) bioconjugates were determined by Enzyme-Linked Immunosorbent Assay (ELISA). The optimal conditions for the biosynthesis of Ins-SFN bioconjugates were investigated. The Ins-SFN constructs obtained by 8 h of covalent cross-linking with 0.7% cross-linking reagent and the proportion of insulin and SFN being 30 IU: 15 mg showed much higher recoveries (90-115%). When insulin was coupled covalently with silk nanoparticles, the resistance of the modified insulin to trypsin digestion and in vitro stability in human serum were greatly enhanced as compared with insulin alone. The results in human serum indicated that the half-life in vitro of the biosynthesized Ins-SFN derivatives was about 2.5 times more than that of native insulin. Therefore, the silk protein nanoparticles have the potential values for being studied and developed as a new bioconjugate for enzyme/polypeptide drug delivery system.

  11. Comparison of 2-dimensional, 3-dimensional, and vascular ultrasonographic parameters for endometrial receptivity between 2 consecutive stimulated in vitro fertilization cycles.

    PubMed

    Ng, Ernest Hung Yu; Chan, Carina Chi Wai; Tang, Oi Shan; Ho, Pak Chung

    2007-07-01

    We compared the ultrasonographic parameters for endometrial receptivity between 2 consecutive in vitro fertilization (IVF) cycles in the same patients. Patients who had undergone 2 in vitro fertilization cycles between November 2002 and December 2004 were recruited. A 3-dimensional ultrasonographic examination with power Doppler imaging was performed on the day of oocyte retrieval to determine the endometrial thickness, endometrial pattern, pulsatility and resistive indices of uterine vessels, endometrial volume, vascularization index, flow index, and vascularization flow index of endometrial and subendometrial regions. Of 662 patients, 95 (14.4%) underwent 2 consecutive cycles using the same stimulation regimen during the study period. There were no significant differences in these ultrasonographic parameters between the first and second cycles. The intraclass correlation coefficient (ICC) for endometrial volume was significantly higher than that of other ultrasonographic parameters. The ICC for the endometrial thickness, uterine pulsatility index, and endometrial 3-dimensional power Doppler flow indices were similar. Ultrasonographic parameters for endometrial receptivity were comparable in the 2 consecutive stimulated cycles. The endometrial volume had the highest ICC among these ultrasonographic parameters and was most reproducible between 2 cycles.

  12. A Micro-Thermal Sensor for Focal Therapy Applications

    NASA Astrophysics Data System (ADS)

    Natesan, Harishankar; Hodges, Wyatt; Choi, Jeunghwan; Lubner, Sean; Dames, Chris; Bischof, John

    2016-02-01

    There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported “3ω” technique can achieve this in vitro under idealized conditions in 0.5 to 2 mm thick tissues relevant to cryoablation of the pulmonary vein (PV). To begin with “3ω” sensors were microfabricated onto flat glass as an idealization of a focal probe surface. The sensor was then used to make new measurements of ‘k’ (W/m.K) of porcine PV, esophagus, and phrenic nerve, all needed for PV cryoabalation treatment planning. Further, by modifying the sensor use from traditional to dynamic mode new measurements related to tissue vs. fluid (i.e. water) contact, fluid flow conditions, tissue thickness, and phase change were made. In summary, the in vitro idealized system data presented is promising and warrants future work to integrate and test supported “3ω” sensors on in vivo deployed focal therapy probe surfaces (i.e. balloons or catheters).

  13. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.

    PubMed

    Engelhardt, Lucas; Röhm, Martina; Mavoungou, Chrystelle; Schindowski, Katharina; Schafmeister, Annette; Simon, Ulrich

    2016-06-01

    Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.

  14. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris.

    PubMed

    Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P

    2005-12-15

    An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.

  15. Ultrasoft microgels displaying emergent platelet-like behaviours

    NASA Astrophysics Data System (ADS)

    Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.

    2014-12-01

    Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.

  16. Fluid dynamic study in a femoral artery branch casting of man with upstream main lumen curvature for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Back, M. R.

    1985-01-01

    An in-vitro, steady flow investigation was conducted in a hollow, transparent vascular replica of the profunda femoris branch of man for a range of physiological flow conditions. The replica casting tested was obtained from a human cadaver and indicated some plague formation along the main lumen and branch. The flow visualization observations and measured pressure distributions indicated the highly three-dimensional flow characteristics with arterial curvature and branching, and the important role of centrifugal effects in fluid transport mechanisms.

  17. Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.

    PubMed

    Tandon, Nina; Taubman, Alanna; Cimetta, Elisa; Saccenti, Laetitia; Vunjak-Novakovic, Gordana

    2013-01-01

    Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Although bioreactors have facilitated the engineering of cardiac patches of clinically relevant size in vitro, a major drawback remains the transportation of the engineered tissues from a production facility to a medical operation facility while maintaining tissue viability and preventing contamination. Furthermore, after implantation, most of the cells are endangered by hypoxic conditions that exist before vascular flow is established. We developed a portable device that provides the perfusion and electrical stimulation necessary to engineer cardiac tissue in vitro, and to transport it to the site where it will be implantated. The micropump-powered perfusion apparatus may additionally function as an extracorporeal active pumping system providing nutrients and oxygen supply to the graft post-implantation. Such a system, through perfusion of oxygenated media and bioactive molecules (e.g. growth factors), could transiently support the tissue construct until it connects to the host vasculature and heart muscle, after which it could be taken away or let biodegrade.

  18. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation.

    PubMed

    El-Hadidy, Gladious Naguib; Ibrahim, Howida Kamal; Mohamed, Magdi Ibrahim; El-Milligi, Mohamed Farid

    2012-01-01

    This work was undertaken to investigate microemulsion (ME) as a topical delivery system for the poorly water-soluble voriconazole. Different ME components were selected for the preparation of plain ME systems with suitable rheological properties for topical use. Two permeation enhancers were incorporated, namely sodium deoxycholate or oleic acid. Drug-loaded MEs were evaluated for their physical appearance, pH, rheological properties and in vitro permeation studies using guinea pig skin. MEs based on polyoxyethylene(10)oleyl ether (Brij 97) as the surfactant showed pseudoplastic flow with thixotropic behavior and were loaded with voriconazole. Jojoba oil-based MEs successfully prolonged voriconazole release up to 4 h. No significant changes in physical or rheological properties were recorded on storage for 12 months at ambient conditions. The presence of permeation enhancers favored transdermal rather than dermal delivery. Sodium deoxycholate was more effective than oleic acid for enhancing the voriconazole permeation. Voriconazole-loaded MEs, with and without enhancers, showed significantly better antifungal activity against Candida albicans than voriconazole supersaturated solution. In conclusion, the studied ME formulae could be promising vehicles for topical delivery of voriconazole.

  19. Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Spence, C. J. T.; Buchmann, N. A.; Jermy, M. C.

    2012-03-01

    Nasal high flow (NHF) cannulae are used to deliver heated and humidified air to patients at steady flows ranging from 5 to 50 l/min. In this study, the flow velocities in the nasal cavity across the complete respiratory cycle during natural breathing and with NHF has been mapped in vitro using time-resolved stereoscopic particle image velocimetry (SPIV). An anatomically accurate silicone resin model of a complete human nasal cavity was constructed using CT scan data and rapid prototyping. Physiological breathing waveforms were reproduced in vitro using Reynolds and Womersley number matching and a piston pump driven by a ball screw and stepper motor. The flow pattern in the nasal cavity with NHF was found to differ significantly from natural breathing. Velocities of 2.4 and 3.3 ms-1 occurred in the nasal valve during natural breathing at peak expiration and inspiration, respectively; however, on expiration, the maximum velocity of 3.8 ms-1 occurred in the nasopharynx. At a cannula flow rate of 30 l/min, maximal velocities of 13.6 and 16.5 ms-1 at peak expiration and inspiration, respectively, were both located in the cannula jet within the nasal valve. Results are presented that suggest the quasi-steady flow assumption is invalid in the nasal cavity during natural breathing; however, it was valid with NHF. Cannula flow has been found to continuously flush the nasopharyngeal dead space, which may enhance carbon dioxide removal and increase oxygen fraction.

  20. Influence of neighboring adherent cells on laminar flow induced shear stress in vitro—A systematic study

    PubMed Central

    Djukelic, Mario; Westerhausen, Christoph

    2017-01-01

    Cells experience forces if subjected to laminar flow. These forces, mostly of shear force character, are strongly dependent not only on the applied flow field itself but also on hydrodynamic effects originating from neighboring cells. This particularly becomes important for the interpretation of data from in vitro experiments in flow chambers without confluent cell layers. By employing numerical Finite Element Method simulations of such assemblies of deformable objects under shear flow, we investigate the occurring stress within elastic adherent cells and the influence of neighboring cells on these quantities. For this, we simulate single and multiple adherent cells of different shapes fixed on a solid substrate under laminar flow parallel to the substrate for different velocities. We determine the local stress within the cells close to the cell-substrate-interface and the overall stress of the cells by surface integration over the cell surface. Comparing each measurand in the case of a multiple cell situation with the corresponding one of single cells under identical conditions, we introduce a dimensionless influence factor. The systematic variation of the distance and angle between cells, where the latter is with respect to the flow direction, flow velocity, Young's modulus, cell shape, and cell number, enables us to describe the actual influence on a cell. Overall, we here demonstrate that the cell density is a crucial parameter for all studies on flow induced experiments on adherent cells in vitro. PMID:28798851

  1. Overcoming spatio-temporal limitations using dynamically scaled in vitro PC-MRI - A flow field comparison to true-scale computer simulations of idealized, stented and patient-specific left main bifurcations.

    PubMed

    Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Gilbert, Kathleen; Cowan, Brett

    2016-08-01

    The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ 2 <;5.8×10 -4 ). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r 2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.

  2. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.

    PubMed

    May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J

    2017-12-01

    Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.

  3. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.

    PubMed

    Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J

    2015-09-01

    Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system. Copyright © 2015. Published by Elsevier Inc.

  4. Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.

    PubMed

    Montenegro, L; Carbone, C; Giannone, I; Puglisi, G

    2007-05-01

    The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.

  5. In vitro leukocyte response of three-spined sticklebacks (Gasterosteus aculeatus) to helminth parasite antigens.

    PubMed

    Franke, Frederik; Rahn, Anna K; Dittmar, Janine; Erin, Noémie; Rieger, Jennifer K; Haase, David; Samonte-Padilla, Irene E; Lange, Joseph; Jakobsen, Per J; Hermida, Miguel; Fernández, Carlos; Kurtz, Joachim; Bakker, Theo C M; Reusch, Thorsten B H; Kalbe, Martin; Scharsack, Jörn P

    2014-01-01

    Helminth parasites of teleost fish have evolved strategies to evade and manipulate the immune responses of their hosts. Responsiveness of fish host immunity to helminth antigens may therefore vary depending on the degree of host-parasite counter-adaptation. Generalist parasites, infective for a number of host species, might be unable to adapt optimally to the immune system of a certain host species, while specialist parasites might display high levels of adaptation to a particular host species. The degree of adaptations may further differ between sympatric and allopatric host-parasite combinations. Here, we test these hypotheses by in vitro exposure of head kidney leukocytes from three-spined sticklebacks (Gasterosteus aculeatus) to antigens from parasites with a broad fish host range (Diplostomum pseudospathaceum, Triaenophorus nodulosus), a specific fish parasite of cyprinids (Ligula intestinalis) and parasites highly specific only to a single fish species as second intermediate host (Schistocephalus pungitii, which does not infect G. aculeatus, and Schistocephalus solidus, infecting G. aculeatus). In vitro responses of stickleback leukocytes to S. solidus antigens from six European populations, with S. solidus prevalence from <1% to 66% were tested in a fully crossed experimental design. Leukocyte cultures were analysed by means of flow cytometry and a chemiluminescence assay to quantify respiratory burst activity. We detected decreasing magnitudes of in vitro responses to antigens from generalist to specialist parasites and among specialists, from parasites that do not infect G. aculeatus to a G. aculeatus-infecting species. Generalist parasites seem to maintain their ability to infect different host species at the costs of relatively higher immunogenicity compared to specialist parasites. In a comparison of sympatric and allopatric combinations of stickleback leukocytes and antigens from S. solidus, magnitudes of in vitro responses were dependent on the prevalence of the parasite in the population of origin, rather than on sympatry. Antigens from Norwegian (prevalence 30-50%) and Spanish (40-66%) S. solidus induced generally higher in vitro responses compared to S. solidus from two German (<1%) populations. Likewise, leukocytes from stickleback populations with a high S. solidus prevalence showed higher in vitro responses to S. solidus antigens compared to populations with low S. solidus prevalence. This suggests a rather low degree of local adaptation in S. solidus populations, which might be due to high gene flow among populations because of their extremely mobile final hosts, fish-eating birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Validation of the Dynamic Direct Exposure Method for Toxicity Testing of Diesel Exhaust In Vitro

    PubMed Central

    Hayes, Amanda; Bakand, Shahnaz

    2013-01-01

    Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5 μm which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30–60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878

  7. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale. PMID:21483662

  8. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices.

    PubMed

    Arjunon, Sivakkumar; Ardana, Pablo Hidalgo; Saikrishnan, Neelakantan; Madhani, Shalv; Foster, Brent; Glezer, Ari; Yoganathan, Ajit P

    2015-04-01

    Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the system contains proximity sensors to accurately capture leaflet motion during the entire cardiac cycle. The PIV results showed skewing of the leakage jet, caused by the asymmetric closing of the two leaflets. All these results are critical to characterizing the blood damage and fluid dynamics characteristics of the SJM Regents® MHV, proving the utility of this tester as a precise system for assessing the hemodynamics and thrombogenicity for various PHVs.

  9. Fluid Dynamic Analysis of Hand-Pump Infuser and UROMAT Endoscopic Automatic System for Irrigation Through a Flexible Ureteroscope.

    PubMed

    Lama, Daniel J; Owyong, Michael; Parkhomenko, Egor; Patel, Roshan M; Landman, Jaime; Clayman, Ralph V

    2018-05-01

    To evaluate the flow characteristics produced by a manual and automated-pump irrigation system connected to a flexible ureteroscope. An in vitro analysis of a manual hand-pump infuser (HP) and the UROMAT Endoscopic Automatic System for Irrigation ® (E.A.S.I.) pump was performed. Standard irrigation tubing was used to connect a three-way valve to a flexible ureteroscope, the irrigation system, and a digital manometer. Flow rate and irrigation pressure measurements were recorded over a 15-minute period using pressure settings of 150 and 200 mm Hg for both irrigation pump systems. Once the HP was inflated to the initial pressure, it was not reinflated over the course of the trial. Data were collected with the working channel unoccupied and with placement of a 200 μm (0.6F) holmium laser fiber, 1.7F nitinol stone retrieval basket, or 2.67F guidewire. The difference in pressure measured at the site of inflow of irrigation to the ureteroscope was significantly greater using the HP compared to the E.A.S.I. pump at pressure settings of 150 mm Hg with and without the use of ureteroscopic instrumentation (p < 0.001), and at 200 mm Hg with instrumentation in the working channel (p < 0.01). There was no significant difference in the flow rate of irrigation through the open-channel ureteroscope over the course of 5 minutes between the two pump systems. The flow rates of irrigation produced by the HP and the E.A.S.I. pump are similar at pressures of 150 and 200 mm Hg irrespective of the occupancy of a ureteroscope's working channel during the first 5-minutes of irrigation. Irrigation pressure at the entry site of the ureteroscope is subject to significant variability with use of the HP compared to the E.A.S.I. pump irrigation system.

  10. Electrospun polyurethane as an alternative ventricular catheter and in vitro model of shunt obstruction

    PubMed Central

    Suresh, Supraja

    2015-01-01

    Intracranial pressure and volume vary considerably between hydrocephalic patients, and with age, health and haemodynamic status; if left untreated, intracranial pressure rises and the ventricular system expands to accommodate the excess cerebrospinal fluid, with significant morbidity and mortality. Cerebrospinal fluid shunts in use today have a high incidence of failure with shunt obstruction being the most serious. Conventional proximal shunt catheters are made from poly(dimethyl)siloxane, the walls of which are perforated with holes for the cerebrospinal fluid to pass through. The limited range of catheters, in terms of material selection and flow distribution, is responsible in large part for their poor performance. In this study, we present an alternative design of proximal catheter made of electrospun polyether urethane, and evaluate its performance in the presence of glial cells, which are responsible for shunt blockage. The viability and growth of cells on catheter materials such as poly(dimethyl)siloxane and polyurethane in the form of cast films, microfibrous mats and porous sponges were studied in the presence of proteins present in cerebrospinal fluid after 48 h and 96 h in culture. The numbers of viable cells on each substrate were comparable to untreated poly(dimethyl)siloxane, both in the presence and absence of serum proteins found in cerebrospinal fluid. A cell culture model of shunt obstruction was developed in which cells on electrospun polyether urethane catheters were subjected to flow during culture in vitro, and the degree of obstruction quantified in terms of hydraulic permeability after static and perfusion culture. The results indicate that a catheter made of electrospun polyether urethane would be able to maintain cerebrospinal fluid flow even with the presence of cells for the time period chosen for this study. These findings have implications for the design and deployment of microporous shunt catheter systems for the treatment of hydrocephalus. PMID:25245779

  11. Development of a binary carrier system consisting polyethylene glycol 4000 - ethyl cellulose for ibuprofen solid dispersion

    PubMed Central

    Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya

    2017-01-01

    Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827

  12. Active humidification with Boussignac CPAP: in vitro study of a new method.

    PubMed

    Alonso-Iñigo, José M; Almela, Amadeo; Albert, Alejandro; Carratalá, José M; Fas, María J

    2013-04-01

    To carry out an in vitro study of Boussignac CPAP valve performance with a new humidification method, using a heated humidifier. Two heated humidifiers were evaluated: Fisher & Paykel MR850, and Covidien Kendall Aerodyne 2000. Baseline measurements were taken in all experimental conditions without humidification. The Boussignac valve was adapted to the input of the humidification chamber. The system was connected to a test lung to assess the degree of pressurization. Hygrometric and pressure measurements were performed with the following gas flows: 10, 20, 30 and 40 L/min. The mean values of pressure generated by the Boussignac valve were 1.99 ± 0.02, 6.97 ± 0.05, 16.61 ± 0.08 and 21.24 ± 0.08 cm H2O, 10, 20, 30 and 40 L/min, respectively, no differences being detected between study groups. Overall absolute humidity was significantly greater with a heated humidifier than without humidification (range 40.01 ± 0.57-25.46 ± 0.49 compared to 0.16 ± 0.13 mgH2O/L, P < .001). Absolute humidity was significantly higher in Kendall Aerodyne 2000 compared to MR850, regardless of the selected temperature and flow (P < .001). This new method of Boussignac CPAP humidification yielded humidity values above 25 mg H2O/L regardless of the heated humidifier and flow used. Pressurization values remained constant in each experimental situation and were not influenced by adding humidification. These data open up the possibility of using Boussignac CPAP on different types of patients, with different interfaces and for long periods of time.

  13. Production and delivery of polarized Xenon-129 for in vivo MRS/MRI.

    NASA Astrophysics Data System (ADS)

    Rosen, Matthew S.; Chupp, Timothy E.; Coulter, Kevin P.; Welsh, Robert C.; Swanson, Scott

    1998-05-01

    Laser polarized ^129Xe can be used as an entirely new magnetic tracer, and is a powerful enhancement to currently existing MRI techniques. Inert laser polarized ^129Xe is inhaled and transported via blood flow where it is detected using MR spectroscopy and imaging techniques. The time-dependent distribution patterns of ^129Xe signal intensity directly reflect local blood volume, blood flow rates, and the efficiency of perfusion and diffusive transport in tissues. We have developed a uniquely constructed laser polarized ^129Xe production and delivery system that is used in both our in vitro and in vivo imaging experiments with rats. This reliable, effective, and relatively simple production method for large volumes of laser polarized ^129Xe is the key to all other areas of research involving use of laser polarized gases.

  14. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    PubMed Central

    Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas

    2013-01-01

    Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner′s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation. PMID:23609803

  15. Validation of noninvasive MOEMS-assisted measurement system based on CCD sensor for radial pulse analysis.

    PubMed

    Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas

    2013-04-22

    Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner's subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  16. Prototype of an in vitro model of the microcirculation.

    PubMed

    Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W

    2003-03-01

    We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.

  17. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    PubMed Central

    Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe

    2006-01-01

    Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051

  18. Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation

    NASA Astrophysics Data System (ADS)

    Alzebdeh, Dalia Abdelrahim

    In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-culture spheroids reproduced the metabolic oscillations observed. This result together with culture observations suggests that MSCs can provide both physiological support and some direct shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with uniformly distributed, shear protected cells were achieved.

  19. Intraperitoneal temperature and desiccation during endoscopic surgery. Intraoperative humidification and cooling of the peritoneal cavity can reduce adhesions.

    PubMed

    Corona, Roberta; Verguts, Jasper; Koninckx, Robert; Mailova, Karina; Binda, Maria Mercedes; Koninckx, Philippe R

    2011-10-01

    This study was conducted to document quantitatively the intraperitoneal temperature and desiccation during laparoscopic surgery. The temperature, relative humidity, and flow rate were measured in vitro and during laparoscopic surgery, at the entrance and at the exit of the abdomen. This permitted us to calculate desiccation for various flow rates using either dry CO(2) or CO(2) humidified with 100% relative humidity at any preset temperature between 25 and 37°C. The study showed that desiccation, both in vitro and in vivo, varies as expected with the flow rates and relative humidity while intraperitoneal temperature varies mainly with desiccation. Temperature regulation of bowels is specific and drops to the intraperitoneal temperature without affecting core body temperature. With a modified humidifier, desiccation could be eliminated while maintaining the intraperitoneal temperature between 31 to 32°C. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    PubMed Central

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  1. [Molecular mechanisms and relationship of M2-polarized macrophages with early response in multiple myeloma].

    PubMed

    Chen, X Y; Sun, R X; Zhang, W Y; Liu, T; Zheng, Y H; Wu, Y

    2017-06-14

    Objective: To investigate the relationship between M2-polarized macrophages and early response in multiple myeloma and its molecular mechanism. Methods: Two hundred and forty bone marrow biopsy tissue were collected and M2-polarized macrophages were stained by anti-CD163 monoclonal antibody. In vitro M2-polarized macrophages were derived from human peripheral blood mononuclear cell or THP-1 cells and identified by flow cytometry. Two myeloma cell lines RPMI 8226 and U266 were co-cultured with M2 macrophages using a transwell system. We measured myeloma cells proliferation through CCK-8 method and the pro-inflammatory cytokines expression (TNF-α and IL-6) by ELISA. Real time PCR was applied to measure chemokines (CCL2 and CCL3) , chemokine receptors (CCR2, CCR5) , VEGF and their receptors. In addition, flow cytometry was used to analyze the apoptosis of myeloma cells induced by dexamethasone. Results: ①Patients with high percentage of M2 macrophage involvement in bone marrow showed poorer response (23.9% versus 73.0%, χ (2)=60.31, P <0.001). ② In vitro the proliferation of RPMI 8226 cells ( P =0.005 at 24 h, P =0.020 at 36 h) or U266 myeloma cells ( P = 0.030 at 24h, P =0.020 at 36h) co-cultured with M2-polarized macrophages was higher than control group. ③In vitro the apoptotic rate of RPMI 8226 cells (29.0% versus 71.0%, t =4.97, P =0.008) or U266 myeloma cells (24.9% versus 67.7%, t =6.99, P =0.002) co-cultured with M2-polarized macrophages was lower than control group. ④ In vitro M2-polarized macrophages promoted myeloma cells secreting higher level of IL-6, TNF-α and higher expression of CCL2, CCL3, CCR2, CCR5, VEGFA, VEGFR-1,-2 compared with the non-macrophage co-culture system. Conclusion: M2-polarized macrophages promote myeloma cells proliferation and inhibit apoptosis through a very complex mechanism involving pro-inflammatory cytokines IL-6 and TNF-α, chemokines and related receptors such as CCL2, CCL3, CCR2, CCR3, and VEGF as well as related VEGFR.

  2. A new Doppler-echo method to quantify regurgitant volume.

    PubMed

    Wang, S S; Rubenstein, J J; Goldman, M; Sidd, J J

    1992-01-01

    An in vitro technique using color flow imaging and continuous wave Doppler was developed to measure the initial regurgitant flow jet diameter and velocity integral to yield the parameters for a volume calculation. Jets were produced by volume-controlled injection through tubes of various diameters (1.3, 1.9, 2.8, and 3.5 mm) to deliver volumes from 1 to 7 ml over 100 to 300 msec at pressures from 40 to 200 mm Hg. One hundred forty-five samples were obtained. Flow jet diameter consistently overestimated tube diameter by 2 mm when injected volume was 1.5 to 7 ml and by 1.5 mm when injected volume was less than 1.5 ml. This offset was stable with various transducers (2.5, 3.5, 5.0 MHz) at normal gain setting (just under noise). Therefore, corrected flow jet diameter (FJD) = FJD - 2 mm, and Doppler volume = corrected flow jet area x velocity integral. A range of injectates from 1.1 to 7 ml generated Doppler volume of 1.0 to 8.2 ml. The relation between Doppler volume (DV) and injected volume (IV) was DV = 1.079 IV - 0.22, r2 = 0.945, p less than 0.01. This relation was not altered by tube diameter. Thus a method combining color flow imaging and continuous wave Doppler provides a reliable and accurate measure of in vitro flow volume.

  3. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.

    PubMed

    Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué

    2017-10-01

    Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.

  4. Photodynamic effect of photosensitizer-loaded hollow silica nanoparticles for hepatobiliary malignancies: an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying

    2014-03-01

    Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.

  5. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.

    PubMed

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-01-15

    Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use. This study addresses the impact of anticoagulant on altering the extent of the previously observed protein corona-induced adhesion reduction of vascular-targeted drug carriers in human blood flows. Specifically, serum blood flow (no anticoagulant) magnifies the negative effect of the plasma protein corona on drug carrier adhesion relative to citrated or heparinized blood flows. Overall, the results from this work suggest that serum better predicts targeted drug carrier adhesion efficiency in vivo compared to anticoagulant containing plasma. Furthermore, this study offers critical insight into the importance of how the choice of anticoagulant can greatly affect drug delivery-related processes in vitro. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-yun; Chen, Xi-guang

    2008-12-01

    In this study, chitosan/cellulose acetate microspheres (CCAM) were prepared by W/O/W emulsification and solvent evaporation as a drug delivery system. The microspheres were spherical, free-flowing and non-aggregated. The CCAM had good flow and suspension ability. The loading efficiency of different model drugs increased with the increasing hydrophobicity of the drug. The loading efficiency of 6-mercaptopurine (6-MP) was more than 30% whereas that of ranitidine hydrochloride (RT) or acetaminophen (ACP) was only 10%. The pH values of solution affected the swelling ability of CCAM and the relative humidity had little effect on the characteristics of CCAM when it was not more than 75%. The CCAM system had a good effect on the controlled release of different model drugs. However, the release rate became slower with the increase of the hydrophobicity of drugs. The release rate of CCAM loaded with hydrophilic RT was almost 60% during 48 h and the release rate of CCAM loaded with hydrophobic drug of 6-MP was not more than 30%. In the meantime, the CCAM system was degradable in vitro and the degradation rate was faster in lysozyme solution than that in the medium of PBS. So the CCAM system was a degradable promising drug delivery system especially for hydrophobic drugs.

  7. Accuracy of Phase-Contrast Velocity Mapping Proximal and Distal to Stent Artifact During Cardiac Magnetic Resonance Imaging.

    PubMed

    Avitabile, Catherine M; Harris, Matthew A; Doddasomayajula, Ravi S; Chopski, Steven G; Gillespie, Matthew J; Dori, Yoav; Glatz, Andrew C; Fogel, Mark A; Whitehead, Kevin K

    2018-06-15

    Little data are available on the accuracy of phase-contrast magnetic resonance imaging (PC-MRI) velocity mapping in the vicinity of intravascular metal stents other than nitinol stents. Therefore, we sought to determine this accuracy using in vitro experiments. An in vitro flow phantom was used with 3 stent types: (1) 316L stainless steel, (2) nitinol self-expanding, and (3) platinum-iridium. Steady and pulsatile flow was delivered with a magnetic resonance imaging-compatible pump (CardioFlow 5000, Shelley Medical, London, Ontario, Canada). Flows were measured using a transit time flow meter (ME13PXN, Transonic, Inc, Ithaca, New York). Mean flows ranged from 0.5 to 7 L/min. For each condition, 5 PC-MRI acquisitions were made: within the stent, immediately adjacent to both edges of the stent artifact, and 1 cm upstream and downstream of the artifact. Mean PC-MRI flows were calculated by segmenting the tube lumen using clinical software (ARGUS, Siemens, Inc, Erlangen, Germany). PC-MRI and flow meter flows were compared by location and stent type using linear regression, Bland-Altman, and intraclass correlation (ICC). PC-MRI flows within the stent artifact were inaccurate for all stents studied, generally underestimating flow meter-measured flow. Agreement between PC-MRI and flow meter-measured flows was excellent for all stent types, both immediately adjacent to and 1 cm away from the edge of the stent artifact. Agreement was highest for the platinum-iridium stent (R = 0.999, ICC = 0.999) and lowest for the nitinol stent (R = 0.993, ICC = 0.987). In conclusion, PC-MRI flows are highly accurate just upstream and downstream of a variety of clinically used stents, supporting its use to directly measure flows in stented vessels. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Evaluation of biofilm formation using milk in a flow cell model and microarray characterization of Staphylococcus aureus strains from bovine mastitis.

    PubMed

    Snel, G G M; Malvisi, M; Pilla, R; Piccinini, R

    2014-12-05

    It was hypothesized that biofilm could play an important role in the establishment of chronic Staphylococcus aureus bovine mastitis. The in vitro evaluation of biofilm formation can be performed either in closed/static or in flow-based systems. Efforts have been made to characterize the biofilm-forming ability of S. aureus mastitis isolates, however most authors used static systems and matrices other than UHT milk. It is not clear whether such results could be extrapolated to the mammary gland environment. Therefore, the present study aimed to investigate the biofilm-forming ability of S. aureus strains from subclinical bovine mastitis using the static method and a flow-based one. One hundred and twelve strains were tested by the classic tissue culture plate assay (TCP) and 30 out of them were also tested by a dynamic semi-quantitative assay using commercial UHT milk as culture medium (Milk Flow Culture, MFC) or Tryptic Soy Broth as control medium (TS Flow Culture, TSFC). Only 6 (20%) strains formed biofilm in milk under flow conditions, while 36.6% were considered biofilm-producers in TCP, and 93.3% produced biofilm in TSFC. No agreement was found between TCP, MFC and TSFC results. The association between strain genetic profile, determined by microarray, and biofilm-forming ability in milk was evaluated. Biofilm formation in MFC was significantly associated with the presence of those genes commonly found in bovine-associated strains, assigned to clonal complexes typically detected in mastitis. Based on our results, biofilm-forming potential of bovine strains should be critically analysed and tested applying conditions similar to mammary environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel

    NASA Astrophysics Data System (ADS)

    Guckenberger, Achim; Kihm, Alexander; John, Thomas; Wagner, Christian; Gekle, Stephan

    Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in-vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm/s) and high velocities (>3 mm/s) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.

  10. Control volume based hydrocephalus research; a phantom study

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  11. Intra-aneurysmal flow disruption after implantation of the Medina® Embolization Device depends on aneurysm neck coverage.

    PubMed

    Frölich, Andreas Maximilian; Nawka, Marie Teresa; Ernst, Marielle; Frischmuth, Isabell; Fiehler, Jens; Buhk, Jan-Hendrik

    2018-01-01

    Flow disruption achieved by braided intrasaccular implants is a novel treatment strategy for cerebrovascular aneurysms. We hypothesized that the degree of intra-aneurysmal flow disruption can be quantified in vitro and is influenced by device position across the aneurysm neck. We tested this hypothesis using the Medina® Embolization Device (MED). Ten different patient-specific elastic vascular models were manufactured. Models were connected to a pulsatile flow circuit, filled with a blood-mimicking fluid and treated by two operators using a single MED. Intra-aneurysmal flow velocity was measured using conventional and high-frequency digital subtraction angiography (HF-DSA) before and after each deployment. Aneurysm neck coverage by the implanted devices was assessed with flat detector computed tomography on a three-point Likert scale. A total of 80 individual MED deployments were performed by the two operators. The mean intra-aneurysmal flow velocity reduction after MED implantation was 33.6% (27.5-39.7%). No significant differences in neck coverage (p = 0.99) or flow disruption (p = 0.84) were observed between operators. The degree of flow disruption significantly correlated with neck coverage (ρ = 0.42, 95% CI: 0.21-0.59, p = 0.002) as well as with neck area (ρ = -0,35, 95% CI: -0.54 --0.13, p = 0.024). On multiple regression analysis, both neck coverage and total neck area were independent predictors of flow disruption. The degree of intra-aneurysmal flow disruption after MED implantation can be quantified in vitro and varies considerably between different aneurysms and different device configurations. Optimal device coverage across the aneurysm neck improves flow disruption and may thus contribute to aneurysm occlusion.

  12. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties.

    PubMed

    Mayol, Laura; Quaglia, Fabiana; Borzacchiello, Assunta; Ambrosio, Luigi; La Rotonda, Maria I

    2008-09-01

    The influence of hyaluronic acid (HA) on the gelation properties of poloxamers blends has been studied with the aim of engineering thermosensitive and mucoadhesive polymeric platforms for drug delivery. The gelation temperature (T(gel)), viscoelastic properties and mucoadhesive force of the systems were investigated and optimised by means of rheological analyses. Poloxamers micellar diameter was evaluated by photon correlation spectroscopy (PCS). Moreover in order to explore the feasibility of these platforms for drug delivery, the optimised systems were loaded with acyclovir and its release properties studied in vitro. By formulating poloxamers/HA platforms, at specific concentrations, it was possible to obtain a thermoreversible gel with a T(gel) close to body temperature. The addition of HA did not hamper the self assembling process of poloxamers just delaying the gelation temperature of few Celsius degrees. Furthermore, HA presence led to a strong increase of the poloxamer rheological properties thus indicating possible HA interactions with micelles through secondary bonds, such as hydrogen ones, which reinforce the gel structure. These interactions could also explain PCS results which show, in systems containing HA, aggregates with hydrodynamic diameters much higher than those of poloxamer micelles. Mucoadhesion experiments showed a rheological synergism between poloxamers/HA gels and mucin dispersion which led to a change of the flow behaviour from a quite Newtonian one of the separate solutions to a pseudoplastic one of their mixture. In vitro release experiments indicated that the optimised platform was able to prolong and control acyclovir release for more than 6h.

  13. Effect of antiaggregants on the in vitro viability, cell count and stability of abalone (Haliotis iris) haemocytes.

    PubMed

    Grandiosa, Roffi; Bouwman, Mai-Louise; Young, Tim; Mérien, Fabrice; Alfaro, Andrea C

    2018-07-01

    The ability to successfully prepare and preserve haemocyte cells for microscopy and flow cytometry is critical for the investigation of animal immune systems. In this study, we observed the total cell count, in vitro viability and stability of New Zealand black-footed abalone (Haliotis iris) haemocytes with different antiaggregants and handling protocols. Haemocyte stability was evaluated by direct observation of haemocytes under the microscope and calculating the aggregation index. Haemocyte counts and viability were measured via flow cytometry and tested for the effect of different antiaggregants (Alsever's solution at three concentrations, and specialised blood collection tubes containing lithium heparin and K 2 EDTA) at different temperatures and storage times. Results showed that Alsever's solution is an effective antiaggregant at haemolymph:antiaggregant dilution ratios of 1:1, 1:2 and 1:3. Lithium heparin was ineffective as an antiaggregant, whereas K 2 EDTA was similarly as effective as Alsever's solution. The influence of different mixing techniques (vortex, pipetting and flipping) were subsequently tested using the K 2 EDTA Microtainer ® tubes, revealing that proper mixing should be performed immediately. High cell viability can be achieved by mixing samples by either 10 s of vortexing (1000 rpm), 10 times pipetting or 20 times flipping. The in vitro storage of abalone haemocytes in AS and K 2 EDTA as antiaggregants at ambient room temperature was highly effective for up to 24 h (75-85% viability; 0.05-0.15 aggregation index) and is recommended for haemocyte studies in H. iris. Utilization of K 2 EDTA Microtainer ® tubes were advantageous since they are more cost effective compared to Alsever's solution, and samples can be prepared more efficiently. Copyright © 2018. Published by Elsevier Ltd.

  14. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    PubMed Central

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  15. Activation of GPR55 increases neural stem cell proliferation and promotes early adult hippocampal neurogenesis.

    PubMed

    Hill, Jeremy D; Zuluaga-Ramirez, Viviana; Gajghate, Sachin; Winfield, Malika; Persidsky, Yuri

    2018-06-11

    The cannabinoid system exerts functional regulation of neural stem cell (NSC) proliferation and adult neurogenesis, yet not all effects of cannabinoid-like compounds seen can be attributed to the cannabinoid 1 receptor (CB 1 R) or cannabinoid 2 receptor (CB 2 R). The recently de-orphaned GPR55 has been shown to be activated by numerous cannabinoid ligands suggesting that GPR55 is a third cannabinoid receptor. Here we examined the role of GPR55 activation in NSC proliferation and early adult neurogenesis. The effects of GPR55 agonists (LPI, O-1602, ML184) on human NSC proliferation in vitro were assessed by flow cytometry. hNSC differentiation was determined by flow cytometry, qPCR, and immunohistochemistry. Immature neuron formation in the hippocampus of C57BL/6 and GPR55 -/- mice was evaluated by immunohistochemistry. Activation of GPR55 significantly increased proliferation rates of hNSCs in vitro. These effects were attenuated by ML193, a selective GPR55 antagonist. ML184 significantly promoted neuronal differentiation in vitro while ML193 reduced differentiation rates as compared to vehicle treatment. Continuous administration into the hippocampus of O-1602 via cannula connected to osmotic pump resulted in increased Ki67+ cells within the dentate gyrus. O-1602 increased immature neuron generation as assessed by DCX+ and BrdU+ cells as compared to vehicle treated animals. GPR55 -/- animals displayed reduced rates of proliferation and neurogenesis within the hippocampus while O-1602 had no effect as compared to vehicle controls. Together, these findings suggest GPR55 activation as a novel target and strategy to regulate NSC proliferation and adult neurogenesis. This article is protected by copyright. All rights reserved.

  16. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015 the American Physiological Society.

  17. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  18. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices.

    PubMed

    Gargotti, M; Lopez-Gonzalez, U; Byrne, H J; Casey, A

    2018-02-01

    In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.

  19. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics.

    PubMed

    Knoops, Paul G M; Biglino, Giovanni; Hughes, Alun D; Parker, Kim H; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-07-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics

    PubMed Central

    Knoops, Paul G.M.; Biglino, Giovanni; Hughes, Alun D.; Parker, Kim H.; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-01-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. PMID:27925228

  1. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds.

    PubMed

    Sellgren, Katelyn L; Ma, Teng

    2015-08-01

    Perfusion bioreactor plays important role in supporting 3D bone construct development. Scaffolds of chitosan composites have been studied to support bone tissue regeneration from osteogenic progenitor cells including human mesenchymal stem cells (hMSC). In this study, porous scaffolds of hydroxyapatite (H), chitosan (C), and gelatin (G) were fabricated by phase-separation and press-fitted in the perfusion bioreactor system where media flow is configured either parallel or transverse with respect to the scaffolds to investigate the impact of flow configuration on hMSC proliferation and osteogenic differentiation. The in vitro results showed that the interstitial flow in the transverse flow (TF) constructs reduced cell growth during the first week of culture but improved spatial cell distribution and early onset of osteogenic differentiation measured by alkaline phosphatase and expression of osteogenic genes. After 14 days of bioreactor culture, the TF constructs have comparable cell number but higher expression of bone markers genes and proteins compared to the parallel flow constructs. To evaluate ectopic bone formation, the HCG constructs seeded with hMSCs pre-cultured under two flow configurations for 7 days were implanted in CD-1 nude mice. While Masson's Trichrom staining revealed bone formation in both constructs, the TF constructs have improved spatial cell and osteoid distribution throughout the 2.0 mm constructs. The results highlight the divergent effects of media flow over the course of construct development and suggest that the flow configuration is an important parameter regulating the cellular events leading to bone construct formation in the HCG scaffolds. © 2014 Wiley Periodicals, Inc.

  2. Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model

    NASA Astrophysics Data System (ADS)

    Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal

    2018-03-01

    The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.

  3. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    NASA Astrophysics Data System (ADS)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  4. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  5. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.

    PubMed

    Zhang, Juntao; Taskin, M Ertan; Koert, Andrew; Zhang, Tao; Gellman, Barry; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-10-01

    For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use.

  6. Design and in vitro and in vivo characterization of mucoadhesive matrix pellets of metformin hydrochloride for oral controlled release: a technical note.

    PubMed

    Ige, Pradum Pundlikrao; Gattani, Surendra Ganeshlal

    2012-03-01

    The aim of the current work was to design and develop matrix pellets of hydroxy propyl methyl cellulose K200M and microcrystalline cellulose in an admixture for a mucoadhesive gastroretentive drug delivery system. Pellets containing metformin hydrochloride (500 mg) were prepared by the pelletization technique using an extruder-spheronizer. Pellets were characterized by differential scanning calorimetry (DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM), circularity, roundness, percent drug content, percent production yield, in vitro swelling, ex vivo mucoadhesion, in vitro drug release and in vivo x-ray imaging studies. Optimized pellets were sufficiently porous spheroids, free flowing, had smooth surfaces, had yields up to 75.45 ± 0.52% and had drug content up to 96.45 ± 0.19%. The average particle size of formulations MF2 and MF6 were 1.13 ± 0.41 mm and 1.22 ± 0.18 mm, respectively. Formulation MF6 exhibited strong adhesion, about 94.67%, to goat mucosal tissue, and the desired in vitro swelling, with a sustained drug release profile for 12 h and with retention in the upper small intestine of rabbits for 10 h. We conclude that hydroxy propyl methyl cellulose K200M and microcrystalline cellulose at a 2.80:1.00 w/w ratio could be an effective carrier for multiple unit controlled delivery of metformin hydrochloride.

  7. In vitro reconstruction of hybrid vascular tissue. Hierarchic and oriented cell layers.

    PubMed

    Kanda, K; Matsuda, T; Oka, T

    1993-01-01

    Hybrid vascular tissue was hierarchically reconstructed in vitro. A hybrid medial layer composed of type I collagen gel, in which SMCs derived from a mongrel dog were embedded, was formed on the inner surface of a compliant porous polyurethane graft (internal diameter = 3 mm). Endothelial cells (ECs) from the same animal were seeded and cultured on the hybrid media to build an intimal layer. Subsequently, hierarchically structured grafts constructed in this manner were subjected to pulsatile flow (flow rate: 8.5 ml/min; frequency: 60 rpm; amplitude: 5% of graft outer diameter) of culture medium (Medium 199 supplemented with 20% fetal calf serum). After stress loading for as long as 10 days, tissues were morphologically investigated with a light microscope and a scanning electron microscope. Inner surfaces of the hybrid tissues were covered with EC monolayers that aligned along the direction of the flow (i.e., longitudinally). However, SMCs beneath the intima aligned in the circumferential direction. These cellular orientations resembled those in native muscular arteries. The pulsatile stress loaded hybrid tissue mimicked native muscular arteries with respect to hierarchic structure and cellular orientation. In vitro mechanical stress loading on a hybrid graft might provide a high degree of integrity in terms of tissue structure that promises high tolerance toward hydrodynamic stress and regulation of vasomotor tone upon implantation.

  8. [Isolation and identification of human periodontal ligament stem cells in vitro].

    PubMed

    Shen, Tao; Chang, Hui-jun; Jian, Cong-xiang; Yang, Yan-chun; Zhou, Ji-xiang

    2011-02-01

    To isolate and identify human periodontal ligament stem cells (PDLSC) by improved methods and assess the characteristics of PDLSC ex vivo. The periodontal ligament cells were obtained from the healthy impacted third molars and teeth extracted for orthodontic purposes and used to isolate PDLSC by limiting dilution assay. PDLSC were cultured and expanded in alpha-MEM supplemented with 10% FBS. Colony-forming assay, immunohistochemistry, flow cytometry, osteogenic and adipogenic induction were used to identify PDLSC. The obtained cells had high colony-forming efficiency and were positive staining for vimentin and negative for pancytokeratin. Flow cytometry revealed that the isolated cells were positive for STRO-1 and CD146 antibodies and most were in the G0/G1 phase of cell cycle. Under specific conditions, they could differentiate to the osteoblast and adipocyte lineages in vitro. Limiting dilution assay is an effective method to isolate PDLSC and the single-cell-derived colonies demonstrate the properties of stem cells in vitro.

  9. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable for the generation of human 3D neural in vitro models, which can be used to feed high-throughput screening platforms, contributing to expand the available in vitro tools for drug screening and toxicological studies.

  10. Unsteady flow through in-vitro models of the glottis

    NASA Astrophysics Data System (ADS)

    Hofmans, G. C. J.; Groot, G.; Ranucci, M.; Graziani, G.; Hirschberg, A.

    2003-03-01

    The unsteady two-dimensional flow through fixed rigid in vitro models of the glottis is studied in some detail to validate a more accurate model based on the prediction of boundary-layer separation. The study is restricted to the flow phenomena occurring within the glottis and does not include effects of vocal-fold movement on the flow. Pressure measurements have been carried out for a transient flow through a rigid scale model of the glottis. The rigid model with a fixed geometry driven by an unsteady pressure is used in order to achieve a high accuracy in the specification of the geometry of the glottis. The experimental study is focused on flow phenomena as they might occur in the glottis, such as the asymmetry of the flow due to the Coanda effect and the transition to turbulent flow. It was found that both effects need a relatively long time to establish themselves and are therefore unlikely to occur during the production of normal voiced speech when the glottis closes completely during part of the oscillation cycle. It is shown that when the flow is still laminar and symmetric the prediction of the boundary-layer model and the measurement of the pressure drop from the throat of the glottis to the exit of the glottis agree within 40%. Results of the boundary-layer model are compared with a two-dimensional vortex-blob method for viscous flow. The difference between the results of the simpiflied boundary-layer model and the experimental results is explained by an additional pressure difference between the separation point and the far field within the jet downstream of the separation point. The influence of the movement of the vocal folds on our conclusions is still unclear.

  11. Capstone Depleted Uranium Aerosols: Generation and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  12. Immunologic and clinical responses to "Monday morning miseries" antigens.

    PubMed

    Cernelc, S; Stropnik, Z

    1987-01-01

    Authors analysed 96 workers exposed to air conditioning system (Group A), and 71 workers (Group B) breathing normal ambient air. 38 workers in group A had a positive clinical history of "Monday morning miseries". Eight cases with the diagnosis hypersensitivity pneumonitis, acute and chronic form was based on environmental history, clinical investigations, physical examination, Chest-X-ray examination, immunological test "in vivo" and "in vitro" with common allergens and antigen "Monday morning miseries", ELISA, spirometry and PEFR (Peak Expiratory Flow-Rate) measurements. Exposure to contaminated air may be responsible for morbidity and reduced performance of workers.

  13. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli.

    PubMed

    Bennewitz, Margaret F; Jimenez, Maritza A; Vats, Ravi; Tutuncuoglu, Egemen; Jonassaint, Jude; Kato, Gregory J; Gladwin, Mark T; Sundd, Prithu

    2017-01-12

    In patients with sickle cell disease (SCD), the polymerization of intraerythrocytic hemoglobin S promotes downstream vaso-occlusive events in the microvasculature. While vaso-occlusion is known to occur in the lung, often in the context of systemic vaso-occlusive crisis and the acute chest syndrome, the pathophysiological mechanisms that incite lung injury are unknown. We used intravital microscopy of the lung in transgenic humanized SCD mice to monitor acute vaso-occlusive events following an acute dose of systemic lipopolysaccharide sufficient to trigger events in SCD but not control mice. We observed cellular microembolism of precapillary pulmonary arteriolar bottlenecks by neutrophil-platelet aggregates. Blood from SCD patients was next studied under flow in an in vitro microfluidic system. Similar to the pulmonary circulation, circulating platelets nucleated around arrested neutrophils, translating to a greater number and duration of neutrophil-platelet interactions compared with normal human blood. Inhibition of platelet P-selectin with function-blocking antibody attenuated the neutrophil-platelet interactions in SCD patient blood in vitro and resolved pulmonary arteriole microembolism in SCD mice in vivo. These results establish the relevance of neutrophil-platelet aggregate formation in lung arterioles in promoting lung vaso-occlusion in SCD and highlight the therapeutic potential of targeting platelet adhesion molecules to prevent acute chest syndrome.

  14. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin.

    PubMed

    Wu, Bo; Yu, Ping; Cui, Can; Wu, Ming; Zhang, Yang; Liu, Lei; Wang, Cai-Xia; Zhuo, Ren-Xi; Huang, Shi-Wen

    2015-04-01

    The development and evaluation of folate-targeted and reduction-triggered biodegradable nanoparticles are introduced to the research on targeted delivery of doxorubicin (DOX). This type of folate-targeted lipid-polymer hybrid nanoparticles (FLPNPs) is comprised of a poly(D,L-lactide-co-glycolide) (PLGA) core, a soybean lecithin monolayer, a monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16) reduction-sensitive shell, and a folic acid-targeted ligand. FLPNPs exhibited high size stability but fast disassembly in a simulated cancer cell reductive environment. The experiments on the release process in vitro revealed that as a reduction-sensitive drug delivery system, FLPNPs released DOX faster in the presence of 10 mM dithiothreitol (DTT). Results from flow cytometry, confocal image and in vitro cytotoxicity assays revealed that FLPNPs further enhanced cell uptake and generated higher cytotoxicity against human epidermoid carcinoma in the oral cavity than non-targeted redox-sensitive and targeted redox-insensitive controls. Furthermore, in vivo animal experiments demonstrated that systemic administration of DOX-loaded FLPNPs remarkably reduced tumor growth. Experiments on biodistribution of DOX-loaded FLPNPs showed that an increasing amount of DOX accumulated in the tumor. Therefore, FLPNPs formulations have proved to be a stable, controllable and targeted anticancer drug delivery system.

  15. Investigation of pulsatile flowfield in healthy thoracic aorta models.

    PubMed

    Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen

    2010-02-01

    Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the anterior wall of the brachiocephalic artery, similar implication reported in a number of previous studies.

  16. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  17. Measurement of flow and dispersion in an in-vitro model of a single human alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2006-11-01

    The acinar region of the lung consists of alveoli and respiratory bronchioles. Alveoli are the smallest units which participate in gas exchange with the blood. Alveoli can also be exploited as a delivery site for inhaled therapeutic aerosols. While gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (of the order of 500 microns), the transport and deposition of inhaled aerosol particles is influenced by convective airflow patterns. The current work focuses on measuring the airflow patterns in the acinar region using an in-vitro model of a single alveolus located on a bronchiole. The model consists of a single transparent 5/6^th hemispherical oscillating alveolus attached to a rigid circular tube. The alveolus, fabricated from an elastic latex film, is capable of expanding and contracting in phase with the oscillatory flow through the rigid tube. Realistic breathing conditions were achieved by matching Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns. Data will be presented to show the effect of oscillatory flow in the bronchiole and alveolar wall motion on the flow and dispersion within the alveolus. In particular, measurement of the recirculating flow within the alveolus, and the fluid exchange between the bronchiole and the alveolus provide insights for the transport, mixing and deposition of inhaled aerosols.

  18. A flow cytometry-based strategy to identify and express IgM from VH1-69+ clonal peripheral B cells.

    PubMed

    Charles, Edgar D; Orloff, Michael I M; Dustin, Lynn B

    2011-01-05

    Pathologic rheumatoid factor (RF) levels are hallmarks of several human diseases. Production of monoclonal RF in vitro is essential for studies of the antigenic specificities of RF, as well as for a dissection of the mechanisms of aberrant RF+ B cell activation. We have expanded upon previous methods to develop a flow cytometry-based method to efficiently clone monoclonal antibodies (mAbs) from humans with expansions of RF-like, immunoglobulin heavy chain variable region (IgVH) 1-69 gene segment-containing B cells. The cloned variable regions are expressed as IgM and produced during culture at concentrations between 5 and 20 μg/ml. Using this system, we show that clonal Igs from patients with HCV-related mixed cryoglobulinemia, when expressed as IgM, have RF activity. We anticipate that this system will be useful for the cloning and expression of mAbs partially encoded by VH1-69 and for determination of the reactivity patterns of polyspecific, low-affinity IgMs of human pathogenic importance. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.

    PubMed

    Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M

    2012-01-01

    Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.

  20. Dynamic analysis on cavitation and embolization in vascular plants under tension

    NASA Astrophysics Data System (ADS)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin; Lee, Sang Joon

    2014-11-01

    Plants can transport sap water from the soil to the tip of their leaves using the tensile forces created by leaf transpiration without any mechanical pumps. However, the high tension adversely induces a thermodynamically metastable state in sap water with negative pressure and gas bubbles are prone to be formed in xylem vessels. Cavitation easily breaks down continuous water columns and grows into embolization, which limits water transport through xylem vessels. Meanwhile, the repair process of embolization is closely related to water management and regulation of sap flow in plants. In this study, the cavitation and embolization phenomena of liquid water in vascular plants and a physical model system are experimentally and theoretically investigated in detail under in vivo and in vitro conditions. This study will not only shed light on the understanding of these multiphase flows under tension but also provide a clue to solve cavitation problems in micro-scale conduits and microfluidic network systems. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  1. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo.

    PubMed

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon G J; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris; Dieben, Michel A E; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard R; Jongbloed, Monique R M; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P H; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey L; Burton, Francis L; Mummery, Christine L

    2018-02-02

    There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models. © 2017 The Authors.

  2. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.

    PubMed

    Alonzo, Luis F; Moya, Monica L; Shirure, Venktesh S; George, Steven C

    2015-09-07

    Tissue engineering can potentially recreate in vivo cellular microenvironments in vitro for an array of applications such as biological inquiry and drug discovery. However, the majority of current in vitro systems still neglect many biological, chemical, and mechanical cues that are known to impact cellular functions such as proliferation, migration, and differentiation. To address this gap, we have developed a novel microfluidic device that precisely controls the spatial and temporal interactions between adjacent three-dimensional cellular environments. The device consists of four interconnected microtissue compartments (~0.1 mm(3)) arranged in a square. The top and bottom pairs of compartments can be sequentially loaded with discrete cellularized hydrogels creating the opportunity to investigate homotypic (left to right or x-direction) and heterotypic (top to bottom or y-direction) cell-cell communication. A controlled hydrostatic pressure difference across the tissue compartments in both x and y direction induces interstitial flow and modulates communication via soluble factors. To validate the biological significance of this novel platform, we examined the role of stromal cells in the process of vasculogenesis. Our device confirms previous observations that soluble mediators derived from normal human lung fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial colony forming cell-derived endothelial cells (ECFC-ECs). We conclude that this platform could be used to study important physiological and pathological processes that rely on homotypic and heterotypic cell-cell communication.

  3. [Role of pathological delayed-type hypersensitivity in chronic fatigue syndrome: importance of the evaluation of lymphocyte activation by flow cytometry and the measurement of urinary neopterin].

    PubMed

    Brunet, J L; Fatoohi, F; Liaudet, A Perret; Cozon, G J N

    2002-02-01

    Chronic fatigue syndrome or benign myalgic encephalomyelitis has been extensively described and investigated. Although numerous immunological abnormalities have been linked with the syndrome, none have been found to be specific. This article describes the detection of delayed-type hypersensitive responses to certain common environmental antigens in almost fifty per cent of patients with this syndrome. Such hypersensitivity can be detected by the intradermal administration of antigens derived from commensal organisms like the yeast Candida albicans, and then monitoring for a systemic reaction over the following six to forty eight hours. This approach can be consolidated by performing lymphocyte activation tests in parallel and measuring in vitro T-cell activation by Candida albicans antigens by three-colour flow cytometry based on CD3, CD4 and either CD69 or CD25. Another useful parameter is the kinetics of neopterin excretion in the urine over the course of the skin test. The results showed that the intensity of the DTH response correlated with the number of T-cells activated in vitro. Various factors have been implicated in the fatigue of many patients, notably lack of sleep. However, it remains difficult to establish causality in either one direction or the other. This work is in the spirit of a multifactorial approach to the group of conditions referred to as "chronic fatigue syndrome".

  4. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 2 - Ocular DynaMiTES for drug absorption studies of the anterior eye.

    PubMed

    Beiβner, Nicole; Mattern, Kai; Dietzel, Andreas; Reichl, Stephan

    2018-05-01

    In the present study, a formerly designed Dynamic Micro Tissue Engineering System (DynaMiTES) was applied with our prevalidated human hemicornea (HC) construct to obtain a test platform for improved absorption studies of the anterior eye (Ocular DynaMiTES). First, the cultivation procedure of the classic HC was slightly adapted to the novel DynaMiTES design. The obtained inverted HC was then compared to classic HC regarding cell morphology using light and scanning electron microscopy, cell viability using MTT dye reaction and epithelial barrier properties observing transepithelial electrical resistance and apparent permeation coefficient of sodium fluorescein. These tested cell criteria were similar. In addition, the effects of four different flow rates on the same cell characteristics were investigated using the DynaMiTES. Because no harmful potential of flow was found, dynamic absorption studies of sodium fluorescein with and without 0.005%, 0.01% and 0.02% benzalkonium chloride were performed compared to the common static test procedure. In this proof-of-concept study, the dynamic test conditions showed different results than the static test conditions with a better prediction of in vivo data. Thus, we propose that our DynaMiTES platform provides great opportunities for the improvement of common in vitro drug testing procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors.

    PubMed

    Byrgazov, Konstantin; Lucini, Chantal Blanche; Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A; Hoermann, Gregor; Valent, Peter; Lion, Thomas

    2016-11-22

    Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance.

  6. Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Smith, Jordan N.

    2009-11-15

    A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial base-line determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript described an alternative strategy where reactivation of the phosphorylatedmore » enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (i.e. after reactivation) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity and at low potentials. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements.« less

  7. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    PubMed

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  8. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters

    PubMed Central

    Feng, Qiang; Zhang, Lu; Liu, Chao; Li, Xuanyu; Hu, Guoqing; Sun, Jiashu; Jiang, Xingyu

    2015-01-01

    Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the flow rates inside the two-stage microfluidic chip. To elucidate the mechanism of size-controllable generation of hybrid NPs, we observe the flow field in the microchannel with confocal microscope and perform the simulation by a numerical model. Both the experimental and numerical results indicate an enhanced mixing effect at high flow rate, thus resulting in the assembly of small and mono-disperse hybrid NPs. In vitro experiments show that the large hybrid NPs are more likely to be aggregated in serum and exhibit a lower cellular uptake efficacy than the small ones. This microfluidic chip shows great promise as a robust platform for optimization of nano drug delivery system. PMID:26180574

  9. Effects of Chaos in Peristaltic Flows: Towards Biological Applications

    NASA Astrophysics Data System (ADS)

    Wakeley, Paul W.; Blake, John R.; Smith, David J.; Gaffney, Eamonn A.

    2006-11-01

    One in seven couples in the Western World will have problems conceiving naturally and with the cost of state provided fertility treatment in the United Kingdom being over USD 3Million per annum and a round of treatment paid for privately costing around USD 6000, the desire to understand the mechanisms of infertility is leading to a renewed interest in collaborations between mathematicians and reproductive biologists. Hydrosalpinx is a condition in which the oviduct becomes blocked, fluid filled and dilated. Many women with this condition are infertile and the primary method of treatment is in vitro fertilisation, however, it is found that despite the embryo being implanted into the uterus, the hydrosalpinx adversely affects the implantation rate. We shall consider a mathematical model for peristaltic flow with an emphasis towards modelling the fluid flow in the oviducts and the uterus of humans. We shall consider the effects of chaotic behavior on the system and demonstrate that under certain initial conditions trapping regions can be formed and discuss our results with a view towards understanding the effects of hydrosalpinx.

  10. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    NASA Astrophysics Data System (ADS)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  11. Investigation of a continuous heating/cooling technique for cardiac output measurement.

    PubMed

    Ehlers, K C; Mylrea, K C; Calkins, J M

    1987-01-01

    Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.

  12. Color and Vector Flow Imaging in Parallel Ultrasound With Sub-Nyquist Sampling.

    PubMed

    Madiena, Craig; Faurie, Julia; Poree, Jonathan; Garcia, Damien; Garcia, Damien; Madiena, Craig; Faurie, Julia; Poree, Jonathan

    2018-05-01

    RF acquisition with a high-performance multichannel ultrasound system generates massive data sets in short periods of time, especially in "ultrafast" ultrasound when digital receive beamforming is required. Sampling at a rate four times the carrier frequency is the standard procedure since this rule complies with the Nyquist-Shannon sampling theorem and simplifies quadrature sampling. Bandpass sampling (or undersampling) outputs a bandpass signal at a rate lower than the maximal frequency without harmful aliasing. Advantages over Nyquist sampling are reduced storage volumes and data workflow, and simplified digital signal processing tasks. We used RF undersampling in color flow imaging (CFI) and vector flow imaging (VFI) to decrease data volume significantly (factor of 3 to 13 in our configurations). CFI and VFI with Nyquist and sub-Nyquist samplings were compared in vitro and in vivo. The estimate errors due to undersampling were small or marginal, which illustrates that Doppler and vector Doppler images can be correctly computed with a drastically reduced amount of RF samples. Undersampling can be a method of choice in CFI and VFI to avoid information overload and reduce data transfer and storage.

  13. Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Cho, Y. I.; Crawford, D. W.; Cuffel, R. F.

    1984-01-01

    An in-vitro flow study was conducted in a mildly atherosclerotic main coronary artery casting of man using sugar-water solutions simulating blood viscosity. Steady flow results indicated substantial increases in pressure drop, and thus flow resistance at the same Reynolds number, above those for Poiseuille flow by 30 to 100 percent in the physiological Reynolds number range from about 100 to 400. Time-averaged pulsatile flow data showed additional 5 percent increases in flow resistance above the steady flow results. Both pulsatile and steady flow data from the casting were found to be nearly equal to those from a straight, axisymmetric model of the casting up to a Reynolds number of about 200, above which the flow resistance of the casting became gradually larger than the corresponding values from the axisymmetric model.

  14. Steerable catheter microcoils for interventional MRI reducing resistive heating.

    PubMed

    Bernhardt, Anthony; Wilson, Mark W; Settecase, Fabio; Evans, Leland; Malba, Vincent; Martin, Alastair J; Saeed, Maythem; Roberts, Timothy P L; Arenson, Ronald L; Hetts, Steven W

    2011-03-01

    The aims of this study were to assess resistive heating of microwires used for remote catheter steering in interventional magnetic resonance imaging and to investigate the use of alumina to facilitate heat transfer to saline flowing in the catheter lumen. A microcoil was fabricated using a laser lathe onto polyimide-tipped or alumina-tipped endovascular catheters. In vitro testing was performed on a 1.5-T magnetic resonance system using a vessel phantom, body radiofrequency coil, and steady-state pulse sequence. Resistive heating was measured with water flowing over a polyimide-tip catheter or saline flowing through the lumen of an alumina-tip catheter. Preliminary in vivo testing in porcine common carotid arteries was conducted with normal blood flow or after arterial ligation when current was applied to an alumina-tip catheter for up to 5 minutes. After application of up to 1 W of direct current power, clinically significant temperature increases were noted with the polyimide-tip catheter: 23°C/W at zero flow, 13°C/W at 0.28 cm(3)/s, and 7.9°C/W at 1 cm(3)/s. Using the alumina-tip catheter, the effluent temperature rise using the lowest flow rate (0.12 cm(3)/s) was 2.3°C/W. In vivo testing demonstrated no thermal injury to vessel walls at normal and zero arterial flow. Resistive heating in current carrying wire pairs can be dissipated by saline coolant flowing within the lumen of a catheter tip composed of material that facilitates heat transfer. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  15. In Vitro Evaluation of an Alternative Neonatal Extracorporeal Life Support Circuit on Hemodynamic Performance and Bubble Trap.

    PubMed

    Spencer, Shannon B; Wang, Shigang; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate an alternative neonatal extracorporeal life support (ECLS) circuit with a RotaFlow centrifugal pump and Better-Bladder (BB) for hemodynamic performance and gaseous microemboli (GME) capture in a simulated neonatal ECLS system. The circuit consisted of a Maquet RotaFlow centrifugal pump, a Quadrox-iD Pediatric diffusion membrane oxygenator, 8 Fr arterial cannula, and 10 Fr venous cannula. A "Y" connector was inserted into the venous line to allow for comparison between BB and no BB. The circuit and pseudopatient were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 35%). All hemodynamic trials were conducted at flow rates ranging from 100 to 600 mL/min at 36°C. Real-time pressure and flow data were recorded using a data acquisition system. For GME testing, 0.5 cc of air was injected via syringe into the venous line. GME were detected and characterized with or without the BB using the Emboli Detection and Classification Quantifier (EDAC) System. Trials were conducted at flow rates ranging from 200 to 500 mL/min. The hemodynamic energy data showed that up to 75.2% of the total hemodynamic energy was lost from the circuit. The greatest pressure drops occurred across the arterial cannula and increased with increasing flow rate from 10.1 mm Hg at 100 mL/min to 114.3 mm Hg at 600 mL/min. The EDAC results showed that the BB trapped a significant amount of the GME in the circuit. When the bladder was removed, GME passed through the pump head and the oxygenator to the arterial line. This study showed that a RotaFlow centrifugal pump combined with a BB can help to significantly decrease the number of GME in a neonatal ECLS circuit. Even with this optimized alternative circuit, a large percentage of the total hemodynamic energy was lost. The arterial cannula was the main source of resistance in the circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.

    PubMed

    Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders

    2018-05-01

    Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.

  17. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.

    PubMed

    Alibolandi, Mona; Taghdisi, Seyed Mohammad; Ramezani, Pouria; Hosseini Shamili, Fazileh; Farzad, Sara Amel; Abnous, Khalil; Ramezani, Mohammad

    2017-03-15

    In the current study camptothecin-loaded pegylated PAMAM dendrimer were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against colorectal cancer cells which over expresses nucleolin receptors. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using transmission electron microscope (TEM) and DLS. The drug-loading content and encapsulation efficiency were obtained 8.1% and 93.67% respectively. The in vitro release of camptothecin from the formulation was provided the sustained release of encapsulated camptothecin during 4days. Comparative in vitro cytotoxicity experiments demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher antiproliferation activity, towards nucleolin-positive HT29 and C26 colorectal cancer cells than nucleolin-negative CHO cell line. Fluorscence microscopy and flow cytometry also confirmed the enhanced cellular uptake of AS1411 targeted pegylated-dendrimer. In vivo study in C26 tumor-bearing BALB/C mice revealed that the AS1411-functionalized camptothecin loaded pegylated dendrimers improved antitumor activity and survival rate of the encapsulated camptothecin. Conjugation of AS1411 aptamer to the camptothecin loaded-pegylated dendrimer surface provides site-specific delivery of camptothecin, inhibit C26 tumor growth in vivo and significantly decrease systemic toxicity. These results suggested that the new nucleolin-targeted pegylated PAMAM dendrimer as a delivery system for camptothecin have the potential for the treatment of nucleolin-overexpressed colorectal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: In Vitro Investigation.

    PubMed

    Liao, Zhi-Sheng; Huang, Shan-You; Huang, Jyun-Jie; Chen, Jem-Kun; Lee, Ai-Wei; Lai, Juin-Yih; Lee, Duu-Jong; Cheng, Chih-Chia

    2018-04-26

    Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.4, 37 °C). When the pH of the culture media was reduced to 6.0 to mimic the acidic tumor microenvironment, the drug-loaded micelles triggered rapid release of DOX within the cells, which induced potent antiproliferative and cytotoxic effects in vitro. Importantly, fluorescent imaging and flow cytometric analyses confirmed the DOX-loaded micelles were efficiently delivered into the cytoplasm of the cells via endocytosis and then subsequently gradually translocated into the nucleus. Therefore, these multifunctional micelles could serve as delivery vehicles for precise, effective, controlled drug release to prevent accumulation and activation of tumor-promoting tumor-associated macrophages in cancer tissues. Thus, this unique system may offer a potential route toward the practical realization of next-generation pH-responsive therapeutic delivery systems.

  19. Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data.

    PubMed

    Lorenz, Ramona; Bock, Jelena; Snyder, Jeff; Korvink, Jan G; Jung, Bernd A; Markl, Michael

    2014-07-01

    The measurement of velocities based on phase contrast MRI can be subject to different phase offset errors which can affect the accuracy of velocity data. The purpose of this study was to determine the impact of these inaccuracies and to evaluate different correction strategies on three-dimensional visualization. Phase contrast MRI was performed on a 3 T system (Siemens Trio) for in vitro (curved/straight tube models; venc: 0.3 m/s) and in vivo (aorta/intracranial vasculature; venc: 1.5/0.4 m/s) data. For comparison of the impact of different magnetic field gradient designs, in vitro data was additionally acquired on a wide bore 1.5 T system (Siemens Espree). Different correction methods were applied to correct for eddy currents, Maxwell terms, and gradient field inhomogeneities. The application of phase offset correction methods lead to an improvement of three-dimensional particle trace visualization and count. The most pronounced differences were found for in vivo/in vitro data (68%/82% more particle traces) acquired with a low venc (0.3 m/s/0.4 m/s, respectively). In vivo data acquired with high venc (1.5 m/s) showed noticeable but only minor improvement. This study suggests that the correction of phase offset errors can be important for a more reliable visualization of particle traces but is strongly dependent on the velocity sensitivity, object geometry, and gradient coil design. Copyright © 2013 Wiley Periodicals, Inc.

  20. Influence of Eddy Current, Maxwell and Gradient Field Corrections on 3D Flow Visualization of 3D CINE PC-MRI Data

    PubMed Central

    Lorenz, R.; Bock, J.; Snyder, J.; Korvink, J.G.; Jung, B.A.; Markl, M.

    2013-01-01

    Purpose The measurement of velocities based on PC-MRI can be subject to different phase offset errors which can affect the accuracy of velocity data. The purpose of this study was to determine the impact of these inaccuracies and to evaluate different correction strategies on 3D visualization. Methods PC-MRI was performed on a 3 T system (Siemens Trio) for in vitro (curved/straight tube models; venc: 0.3 m/s) and in vivo (aorta/intracranial vasculature; venc: 1.5/0.4 m/s) data. For comparison of the impact of different magnetic field gradient designs, in vitro data was additionally acquired on a wide bore 1.5 T system (Siemens Espree). Different correction methods were applied to correct for eddy currents, Maxwell terms and gradient field inhomogeneities. Results The application of phase offset correction methods lead to an improvement of 3D particle trace visualization and count. The most pronounced differences were found for in vivo/in vitro data (68%/82% more particle traces) acquired with a low venc (0.3 m/s/0.4 m/s, respectively). In vivo data acquired with high venc (1.5 m/s) showed noticeable but only minor improvement. Conclusion This study suggests that the correction of phase offset errors can be important for a more reliable visualization of particle traces but is strongly dependent on the velocity sensitivity, object geometry, and gradient coil design. PMID:24006013

  1. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model.

    PubMed

    Wong, Linda; Hill, Beth L; Hunsberger, Benjamin C; Bagwell, C Bruce; Curtis, Adam D; Davis, Bruce H

    2015-01-01

    Leuko64™ (Trillium Diagnostics) is a flow cytometric assay that measures neutrophil CD64 expression and serves as an in vitro indicator of infection/sepsis or the presence of a systemic acute inflammatory response. Leuko64 assay currently utilizes QuantiCALC, a semiautomated software that employs cluster algorithms to define cell populations. The software reduces subjective gating decisions, resulting in interanalyst variability of <5%. We evaluated a completely automated approach to measuring neutrophil CD64 expression using GemStone™ (Verity Software House) and probability state modeling (PSM). Four hundred and fifty-seven human blood samples were processed using the Leuko64 assay. Samples were analyzed on four different flow cytometer models: BD FACSCanto II, BD FACScan, BC Gallios/Navios, and BC FC500. A probability state model was designed to identify calibration beads and three leukocyte subpopulations based on differences in intensity levels of several parameters. PSM automatically calculates CD64 index values for each cell population using equations programmed into the model. GemStone software uses PSM that requires no operator intervention, thus totally automating data analysis and internal quality control flagging. Expert analysis with the predicate method (QuantiCALC) was performed. Interanalyst precision was evaluated for both methods of data analysis. PSM with GemStone correlates well with the expert manual analysis, r(2) = 0.99675 for the neutrophil CD64 index values with no intermethod bias detected. The average interanalyst imprecision for the QuantiCALC method was 1.06% (range 0.00-7.94%), which was reduced to 0.00% with the GemStone PSM. The operator-to-operator agreement in GemStone was a perfect correlation, r(2) = 1.000. Automated quantification of CD64 index values produced results that strongly correlate with expert analysis using a standard gate-based data analysis method. PSM successfully evaluated flow cytometric data generated by multiple instruments across multiple lots of the Leuko64 kit in all 457 cases. The probability-based method provides greater objectivity, higher data analysis speed, and allows for greater precision for in vitro diagnostic flow cytometric assays. © 2015 International Clinical Cytometry Society.

  2. In vitro Flow Adhesion Assay for Analyzing Shear-resistant Adhesion of Metastatic Cancer Cells to Endothelial Cells.

    PubMed

    Kang, Shin-Ae; Bajana, Sandra; Tanaka, Takemi

    2016-02-20

    Hematogenous metastasis is a primary cause of mortality from metastatic cancer. The shear-resistant adhesion of circulating tumor cells to the vascular endothelial cell surface under blood flow is an essential step in cell extravasation and further tissue invasion. This is similar to a process exploited by leukocytes for adhesion to inflamed blood vessels (leukocyte mimicry). The shear resistant adhesion is mediated by high affinity interactions between endothelial adhesion molecules and their counter receptor ligand expressed on circulating cells. Thus, weak interaction results in a rapid detachment of circulating cells from endothelium. Despite the critical role of vascular adhesion of cancer cells in hematogenous metastasis, our knowledge regarding this process has been limited due to the difficulty of mimicking dynamic flow conditions in vitro . In order to gain better insight into the shear-resistant adhesion of cancer cells to the endothelium, we developed a protocol for measuring the shear resistant adhesion of circulating tumor cells to endothelial cells under physiologic flow conditions by adapting a well established flow adhesion assay for inflammatory cells. This technique is useful to evaluate 1) the shear resistant adhesion competency of cancer cells and 2) the endothelial adhesion molecules necessary to support cancer cell adhesion (Kang et al. , 2015).

  3. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    PubMed

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  4. Microfluidic Examination of the "Hard" Biomolecular Corona Formed on Engineered Particles in Different Biological Milieu.

    PubMed

    Weiss, Alessia C G; Kempe, Kristian; Förster, Stephan; Caruso, Frank

    2018-04-18

    The formation of a biomolecular corona around engineered particles determines, in large part, their biological behavior in vitro and in vivo. To gain a fundamental understanding of how particle design and the biological milieu influence the formation of the "hard" biomolecular corona, we conduct a series of in vitro studies using microfluidics. This setup allows the generation of a dynamic incubation environment with precise control over the applied flow rate, stream orientation, and channel dimensions, thus allowing accurate control of the fluid flow and the shear applied to the proteins and particles. We used mesoporous silica particles, poly(2-methacryloyloxyethylphosphorylcholine) (PMPC)-coated silica hybrid particles, and PMPC replica particles (obtained by removal of the silica particle templates), representing high-, intermediate-, and low-fouling particle systems, respectively. The protein source used in the experiments was either human serum or human full blood. The effects of flow, particle surface properties, incubation medium, and incubation time on the formation of the biomolecular corona formation are examined. Our data show that protein adhesion on particles is enhanced after incubation in human blood compared to human serum and that dynamic incubation leads to a more complex corona. By varying the incubation time from 2 s to 15 min, we demonstrate that the "hard" biomolecular corona is kinetically subdivided into two phases comprising a tightly bound layer of proteins interacting directly with the particle surface and a loosely associated protein layer. Understanding the influence of particle design parameters and biological factors on the corona composition, as well as its dynamic assembly, may facilitate more accurate prediction of corona formation and therefore assist in the design of advanced drug delivery vehicles.

  5. A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra-aortic balloon pump.

    PubMed

    Kolyva, Christina; Biglino, Giovanni; Pepper, John R; Khir, Ashraf W

    2012-03-01

    A mock circulatory system (MCS) was designed to replicate a physiological environment for in vitro testing and was assessed with the intra-aortic balloon pump (IABP). The MCS was comprised of an artificial left ventricle (LV), connected to a 14-branch polyurethane-compound aortic model. Physiological distribution of terminal resistance and compliance according to published data was implemented with capillary tubes of different sizes and syringes of varying air volume, respectively, fitted at the outlets of the branches. The ends of the aortic branches were connected to a common tube representing the venous system and an overhead reservoir provided atrial pressure. An IABP operating a 40-cc balloon was set to counterpulsate with the LV. Total arterial compliance of the system was 0.94 mL/mm Hg and total arterial resistance was 20.3 ± 3.3 mm Hg/L/min. At control, physiological flow distribution was achieved and both mean and phasic aortic pressure and flow were physiological. With the IABP, aortic pressure exhibited the major features of counterpulsation: diastolic augmentation during inflation, inflection point at onset of deflation, and end-diastolic reduction at the end of deflation. The contribution of balloon inflation and deflation was also evident on the aortic flow pattern. This MCS was verified to be suitable for IABP testing and with further adaptations it could be used for studying other hemodynamic problems and ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Intraocular pressure control of a novel glaucoma drainage device - in vitro and in vivo studies

    PubMed Central

    Cui, Li-Jun; Li, Di-Chen; Liu, Jian; Zhang, Lei; Xing, Yao

    2017-01-01

    AIM To evaluate the intraocular pressure (IOP) control of an artificial trabeculum drainage system (ATDS), a newly designed glaucoma drainage device, and postoperative complications in normal rabbit eyes. METHODS Pressure drops in air and fluid of 30 ATDS were measured after being connected to a closed manometric system. Twenty of them were then chosen and implanted randomly into the eyes of 20 rabbits. Postoperative slit-lamp, gonioscopic examination and IOP measurements were recorded periodically. Ultrasound biomicroscopy and B-scan ultrasonography were also used to observe the complications. Eyes were enucleated on day 60. RESULTS Pressure drops of 4.6-9.4 mm Hg were obtained at physiological aqueous flow rates in the tests in vitro. The average postoperative IOP of the experimental eyes (11.6-12.8 mm Hg) was lower than the controls significantly (P<0.05) at each time point. Complications of hemorrhage (n=1), cellulosic exudation (two cases) and local iris congestion (two cases) were observed. The lumina of the devices were devoid of obstructions in all specimens examined and a thin fibrous capsule was found around the endplate. CONCLUSION ATDS reduce IOP effectively. However, further studies on the structure are needed to reduce complications. PMID:28944192

  8. A first vascularized skin equivalent as an alternative to animal experimentation.

    PubMed

    Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.

  9. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system.

    PubMed

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Thrombi made of lamb's blood were placed into a pulsatile flow system perfused with Hartmann's solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted.

  10. Role of Gut Inflammation in Altering the Monocyte Compartment and Its Osteoclastogenic Potential in HLA-B27-Transgenic Rats.

    PubMed

    Ansalone, Cecilia; Utriainen, Lotta; Milling, Simon; Goodyear, Carl S

    2017-09-01

    To investigate the relationship between intestinal inflammation and the central and peripheral innate immune system in the pathogenesis of HLA-B27-associated spondyloarthritis using an HLA-B27-transgenic (B27-Tg) rat model. The myeloid compartment of the blood and bone marrow (BM) of B27-Tg rats, as well as HLA-B7-Tg and non-Tg rats as controls, was evaluated by flow cytometry. Plasma from rats was assessed by enzyme-linked immunosorbent assay for levels of CCL2 and interleukin-1α (IL-1α). Rats were treated with antibiotics for 4 weeks, and the myeloid compartment of the blood and BM was evaluated by flow cytometry. The osteoclastogenic potential of BM-derived cells from antibiotic-treated rats, in the presence or absence of tumor necrosis factor (TNF), was evaluated in vitro. B27-Tg rats had substantially higher numbers of circulating Lin-CD172a+CD43 low monocytes as compared to control animals, and this was significantly correlated with higher levels of plasma CCL2. Antibiotic treatment of B27-Tg rats markedly reduced the severity of ileitis, plasma levels of CCL2 and IL-1α, and number of BM and blood Lin-CD172a+CD43 low monocytes, a cell subset shown in the present study to have the greatest in vitro osteoclastogenic potential. Antibiotic treatment also prevented the TNF-dependent enhancement of osteoclastogenesis in B27-Tg rats. Microbiota-dependent intestinal inflammation in B27-Tg rats directly drives the systemic inflammatory and bone-erosive potential of the monocyte compartment. © 2017, American College of Rheumatology.

  11. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...

  12. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...

  13. Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

    PubMed

    Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2015-12-16

    Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.

  14. Investigating the in-vitro and in-vivo flavour release from 21 fresh-cut apples.

    PubMed

    Ting, Valentina J L; Romano, Andrea; Soukoulis, Christos; Silcock, Patrick; Bremer, Phil J; Cappellin, Luca; Biasioli, Franco

    2016-12-01

    In-vitro and in-vivo flavour release from 21 different apple cultivars was studied using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) with a focus on the relationship between texture and volatile organic compound (VOC) emission. Generally, firm-juicy cultivars had a shorter time to first swallow (Tswal) and a higher number of swallows (Nswal), while softer-mealy cultivars had a longer Tswal and a lower Nswal. Firm-juicy cultivars containing high VOC concentrations had a short time to maximum intensity (Tmax) owing to a shorter Tswal and a higher Nswal as juice was released during mastication. Swallowing increased VOC flow through the nasal cavity. These results differ from previous flavour release studies with gel/gel-like model systems as juiciness/release of fluids is not a factor in such matrices. The current study, therefore, highlights the benefits of using in-vivo analysis to gain a better understanding of flavour release in real food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    PubMed

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    PubMed

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation.

    PubMed

    Sonnaert, M; Papantoniou, I; Bloemen, V; Kerckhofs, G; Luyten, F P; Schrooten, J

    2017-02-01

    Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery.

    PubMed

    Beekers, Ines; van Rooij, Tom; Verweij, Martin D; Versluis, Michel; de Jong, Nico; Trietsch, Sebastiaan J; Kooiman, Klazina

    2018-04-01

    Ultrasound in the presence of gas-filled microbubbles can be used to enhance local uptake of drugs and genes. To study the drug delivery potential and its underlying physical and biological mechanisms, an in vitro vessel model should ideally include 3-D cell culture, perfusion flow, and membrane-free soft boundaries. Here, we propose an organ-on-a-chip microfluidic platform to study ultrasound-mediated drug delivery: the OrganoPlate. The acoustic propagation into the OrganoPlate was determined to assess the feasibility of controlled microbubble actuation, which is required to study the microbubble-cell interaction for drug delivery. The pressure field in the OrganoPlate was characterized non-invasively by studying experimentally the well-known response of microbubbles and by simulating the acoustic wave propagation in the system. Microbubble dynamics in the OrganoPlate were recorded with the Brandaris 128 ultrahigh-speed camera (17 million frames/s) and a control experiment was performed in an OptiCell, an in vitro monolayer cell culture chamber that is conventionally used to study ultrasound-mediated drug delivery. When insonified at frequencies between 1 and 2 MHz, microbubbles in the OrganoPlate experienced larger oscillation amplitudes resulting from higher local pressures. Microbubbles responded similarly in both systems when insonified at frequencies between 2 and 4 MHz. Numerical simulations performed with a 3-D finite-element model of ultrasound propagation into the OrganoPlate and the OptiCell showed the same frequency-dependent behavior. The predictable and homogeneous pressure field in the OrganoPlate demonstrates its potential to develop an in vitro 3-D cell culture model, well suited to study ultrasound-mediated drug delivery.

  19. Intraorifice sealing ability of different materials in endodontically treated teeth: An in vitro study.

    PubMed

    Parekh, Bandish; Irani, Rukshin S; Sathe, Sucheta; Hegde, Vivek

    2014-05-01

    Microbial contamination of the pulp space is one of the major factors associated with endodontic failure. Thus, in addition to a three dimentional apical filling a coronal seal for root canal fillings has been recommended. The present study was conducted to evaluate and compare the intra-orifice sealing ability of three experimental materials after obturation of the root canal system. Fourty single rooted mandibular premolars were decoronated, cleaned, shaped and obturated. Gutta-percha was removed to the depth of 3.5 mm from the orifice with a heated plugger. Ten specimens each were sealed with Light Cure Glass Ionomer Cement (LCGIC), Flowable Composite (Tetric N-Flow), and Light Cure Glass Ionomer Cement with Flowable Composite in Sandwich Technique along with a positive control respectively and roots submerged in Rhodamine-B dye in vacuum for one week. Specimens were longitudinally sectioned and leakage measured using a 10X stereomicroscope and graded for depth of leakage. According to the results of the present study LC GIC + Tetric N Flow demonstrated significantly better seal (P < 0.01) than LC GIC. However there was no statistically significant difference in leakage (P > 0.01) between Tetric N-Flow and LCGIC+Tetric N-Flow groups. In the current study LCGIC+Tetric N-Flow was found to be superior over other experimental materials as intra-orifice barriers.

  20. Single camera volumetric velocimetry in aortic sinus with a percutaneous valve

    NASA Astrophysics Data System (ADS)

    Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit

    2016-11-01

    Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.

  1. Alteration of intraaneurysmal hemodynamics by placement of a self-expandable stent. Laboratory investigation.

    PubMed

    Tateshima, Satoshi; Tanishita, Kazuo; Hakata, Yasuhiro; Tanoue, Shin-ya; Viñuela, Fernando

    2009-07-01

    Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery-ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by approximately 23-40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43-64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22-51%. The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.

  2. In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

    PubMed Central

    Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.

    2013-01-01

    Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209

  3. In vitro and clinical characterization of the valved holding chamber AeroChamber Plus® Flow-Vu® for administrating tiotropium Respimat® in 1-5-year-old children with persistent asthmatic symptoms.

    PubMed

    Wachtel, Herbert; Nagel, Mark; Engel, Michael; El Azzi, Georges; Sharma, Ashish; Suggett, Jason

    2018-04-01

    When characterizing inhalation products, a comprehensive assessment including in vitro, pharmacokinetic (PK), and clinical data is required. We conducted a characterization of tiotropium Respimat ® when administered with AeroChamber Plus ® Flow-Vu ® anti-static valved holding chamber (test VHC) with face mask in 1-5-year-olds with persistent asthmatic symptoms. In vitro tiotropium dose and particle size distribution delivered into a cascade impactor were evaluated under fixed paediatric and adult flow rates between actuation and samplings. The tiotropium mass likely to reach children's lungs was assessed by tidal breathing simulations and an ADAM-III Child Model. PK exposure to tiotropium in preschool children with persistent asthmatic symptoms (using test VHC) was compared with pooled data from nine Phase 2/3 trials in older children, adolescents, and adults with symptomatic persistent asthma not using test VHC. At fixed inspiratory flow rates, emitted mass and fine particle dose decreased under lower flow conditions; dose reduction was observed when Respimat ® was administered by test VHC at paediatric flow rates. In <5-year-old children, such a dose reduction is appropriate. In terms of dose per kg/body weight, in vitro-delivered dosing in children was comparable with adults. Transmission and aerosol holding properties of Respimat ® when administered with test VHC were fully sufficient for aerosol delivery to patients. At zero delay, particles <5 μm (most relevant fraction) exhibited a transfer efficacy of ≥60%. The half-time was>10 s, allowing multiple breaths. Standardized tidal inhalation resulted in an emitted mass from the test VHC of approximately one-third of labelled dose, independent of coordination and face mask use, indicating predictable tiotropium administration by test VHC with Respimat ® . Tiotropium exposure in 1-5-year-old patients using the test VHC, when adjusted by height or body surface, was comparable with that in older age groups without VHCs; no overexposure was observed. Adverse events were less frequent with tiotropium (2.5 μg, n = 20 [55.6%]; 5 μg, n = 18 [58.1%]) than placebo (n = 25 [73.5%]). Our findings provide good initial evidence to suggest that tiotropium Respimat ® may be administered with AeroChamber Plus ® Flow-Vu ® VHC in 1-5-year-old patients with persistent asthmatic symptoms. To confirm the clinical efficacy and safety in these patients, additional trials are required. The trial was registered under NCT01634113 at http://www.clinicaltrials.gov. Copyright © 2018. Published by Elsevier Ltd.

  4. Vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries in vitro and increased optic disc blood flow in vivo.

    PubMed

    Chuman, Hideki; Sugimoto, Takako; Nao-I, Nobuhisa

    2017-12-01

    This study aimed to clarify the vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries (PCAs) and to investigate changes in optic disc blood flow after an infusion of L-arginine in vivo. Vascular ring segments were mounted on a double myograph system. After obtaining maximal contraction following administration of high-K solution, L-arginine was administrated. Six volunteers received an intravenous drip infusion of 100 ml of L-arginine or saline. Changes in optic disc blood flow were measured by laser speckle flowgraphy. L-arginine relaxed high-K solution-induced contracted rabbit PCAs. Carboxy-PTIO (nitric oxide scavenger) and L-NAME (nitric oxide synthase inhibitor) inhibited L-arginine-induced relaxation in rabbit PCAs. After removal of the endothelium of the rabbit PCAs, L-arginine still relaxed rabbit PCAs. L-arginine relaxed human PCAs, despite the lack of nitric oxide production. In the L-arginine infusion group, the mean blur rate was significantly greater than that of the control group in vivo. L-arginine has both nitric oxide-dependent and independent vasodilatory effect on high K- induced contractions in isolated rabbit and human PCAs. L-arginine increased optic disc blood flow in vivo.

  5. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. The hydrodynamic and ultrasound-induced forces on microbubbles under high Reynolds number flow representative of the human systemic circulation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2016-11-01

    Ultrasound contrast agents (UCAs) are micron-sized bubbles that are used in conjunction with ultrasound (US) in medical applications such as thrombolysis and targeted intravenous drug delivery. Previous work has shown that the Bjerknes force, due to the phase difference between the incoming US pressure wave and the bubble volume oscillations, can be used to manipulate the trajectories of microbubbles. Our work explores the behavior of microbubbles in medium sized blood vessels under both uniform and pulsatile flows at a range of physiologically relevant Reynolds and Womersley numbers. High speed images were taken of the microbubbles in an in-vitro flow loop that replicates physiological flow conditions. During the imaging, the microbubbles were insonified at different diagnostic ultrasound settings (varying center frequency, PRF, etc.). An in-house Lagrangian particle tracking code was then used to determine the trajectories of the microbubbles and, thus, a dynamic model for the microbubbles including the Bjerknes forces acting on them, as well as drag, lift, and added mass. Preliminary work has also explored the behavior of the microbubbles in a patient-specific model of a carotid artery bifurcation to demonstrate the feasibility of preferential steering of microbubbles towards the intracranial circulation with US.

  7. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries.

    PubMed

    Rajesh, K S; Zareena; Hegde, Shashikanth; Arun Kumar, M S

    2015-01-01

    This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group.

  8. Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow

    PubMed Central

    Kusunose, Jiro; Zhang, Hua; Gagnon, M. Karen J.; Pan, Tingrui; Simon, Scott I.; Ferrara, Katherine W.

    2012-01-01

    The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum–sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (KD ~ 300 µM) and VCAM-1-targeting (KD ~ 30 µM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm2), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium. PMID:22855121

  9. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries

    PubMed Central

    Rajesh, K. S.; Zareena; Hegde, Shashikanth; Arun Kumar, M. S.

    2015-01-01

    Aim: This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. Materials and Methods: The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. Results: There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Conclusion: Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group. PMID:26681848

  10. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.

    PubMed

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.

  11. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.

    PubMed

    Brown, Jacquelyn A; Pensabene, Virginia; Markov, Dmitry A; Allwardt, Vanessa; Neely, M Diana; Shi, Mingjian; Britt, Clayton M; Hoilett, Orlando S; Yang, Qing; Brewer, Bryson M; Samson, Philip C; McCawley, Lisa J; May, James M; Webb, Donna J; Li, Deyu; Bowman, Aaron B; Reiserer, Ronald S; Wikswo, John P

    2015-09-01

    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

  12. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres

    PubMed Central

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f1), the similarity factor (f2), and the Rescigno index (ξ1 and ξ2) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations. PMID:21674019

  13. Formulation development and release studies of indomethacin suppositories.

    PubMed

    Sah, M L; Saini, T R

    2008-01-01

    Indomethacin suppositories were prepared by using water-soluble and oil soluble suppository bases, and evaluated for in vitro release by USP I and modified continuous flow through bead bed apparatus. Effect of the Tween 80 (1% and 5%) was further studied on in vitro release of the medicament. Release rate was good in water-soluble suppositories bases in comparison to oil soluble suppositories bases. Release was found to be greater in modified continuous flow through bead bed apparatus. When surfactant was used in low concentration then release rate was much greater, as compared to high concentration. When stability studies were performed on the prepared indomethacin suppositories it was found that suppositories made by water-soluble base had no significant changes while suppositories prepared by oil soluble bases, had some signs of instability.

  14. In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects

    PubMed Central

    Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen

    2010-01-01

    Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147

  15. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  16. Drainage characteristics of the 3F MicroStent using a novel film occlusion anchoring mechanism.

    PubMed

    Lange, Dirk; Hoag, Nathan A; Poh, Beow Kiong; Chew, Ben H

    2011-06-01

    To determine whether the overall ureteral flow through an obstructed ureter using the 3F MicroStent™ that uses a novel film occlusion anchoring mechanism is comparable to the flow using a conventional 3F and 4.7F Double-J stent. An in vitro silicone ureter model and an ex vivo porcine urinary model (kidney and ureter) were used to measure the overall flow through obstructed and unobstructed ureters with either a 3F Double-J stent (Cook), 3F MicroStent (PercSys), or 4.7F Double-J stent (Cook). Mean flow rates were compared with descriptive statistics. Mean flow rates through the obstructed silicone ureter (12-mm stone) for the 3F MicroStent, 3F Double-J stent, and 4.7F Double-J stent were 326.7±13.3  mL/min, 283.3±19.2  mL/min, and 356.7±14.1  mL/min, respectively. In the obstructed ex vivo porcine ureter model, the flow as a percentage of free flow was 60%, 53%, and 50 %, respectively. In both ureteral models, flow rates of the 3F MicroStent and 4.7F Double-J stents were not statistically different. The 3F MicroStent demonstrated drainage equivalent to a 4.7F Double-J stent, in both in vitro silicone and ex vivo porcine obstructed urinary models. We have demonstrated the crucial first step that this 3F stent, using a novel film occlusion anchoring mechanism, has equivalent, if not slightly improved, drainage rates when compared with its larger counterpart.

  17. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    PubMed

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of tartar control dentifrices in in vitro models of dentin sensitivity.

    PubMed

    Mason, S; Levan, A; Crawford, R; Fisher, S; Gaffar, A

    1991-01-01

    The effects of anticalculus dentifrices were compared with other commercially available dentifrices in in vitro models of dentin sensitivity. Changes in the hydraulic conductance of dentin discs were measured with and without a smear layer before and after treatment and also after a post-treatment acid etch. The capacity of dentifrices to occlude open dentinal tubules in vitro was also assessed by scanning electron microscopy (SEM). There was good correlation (R = 0.98) between our test and values reported in the literature. Tartar control dentifrices gave reductions in fluid flow rates through the dentin discs comparable to those obtained with Promise, Sensodyne, Thermodent and Denquel. Additionally, tartar control dentifrices did not remove microcrystalline debris (smear layers) from the surfaces of dentin in vitro. These results were confirmed by SEM. Thus, according to the hydrodynamic theory of dentin sensitivity, these in vitro results suggest that pyrophosphate-containing dentifrices should reduce dentinal sensitivity.

  19. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    DTIC Science & Technology

    2012-07-01

    changes of ASC surface markers due to repetitive in vitro sub-culturing. ASCs were harvested, washed in PBS to remove cell culture medium, and resuspended...Our in vitro and in vivo studies suggest that ASC and BM-MSC are not identical, though they have similar surface markers . We found that topically...ofpolybrene. Transduced cells were selected by treating 10 J.!g/rnl ofblasticidin. GFP expressing cells were further selected by flow cytometry using

  20. Peptide-based Fluorescent Sensors of Protein Kinase Activity: Design and Applications

    PubMed Central

    Sharma, Vyas; Wang, Qunzhao; Lawrence, David S.

    2009-01-01

    Protein kinases control the flow of information through cell-signaling pathways. A detailed analysis of their behavior enhances our ability to understand normal cellular states and to devise therapeutic interventions for diseases. The design and application of “Environmentally-Sensitive”, “Deep-Quench” and “Self-Reporting” sensor systems for studying protein kinase activity are described. These sensors allow real-time activity measurements in a continuous manner for a wide variety of kinases. As these sensors can be adapted from an in vitro screen to imaging kinase activity in living cells, they support both preliminary and later stages of drug discovery. PMID:17881302

  1. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated Captopril, a nitric oxide donor

    PubMed Central

    Jia, Lee; Wong, Hong

    2001-01-01

    The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (Papp; cm sec−1) of CapNO across the endothelial monolayers was 6.0×10−5, higher than that of Cap (3.13×10−5), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The Papp of CapNO and Cap across Caco-2 cells were 3.15×10−5 and 1.53×10−5, respectively. The low Papp of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H2-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects. PMID:11739246

  2. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated captopril, a nitric oxide donor.

    PubMed

    Jia, L; Wong, H

    2001-12-01

    1. The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. 2. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (P(app); cm sec(-1)) of CapNO across the endothelial monolayers was 6.0 x 10(-5), higher than that of Cap (3.13 x 10(-5)), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The P(app) of CapNO and Cap across Caco-2 cells were 3.15 x 10(-5) and 1.53 x 10(-5), respectively. The low P(app) of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. 3. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. 4. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H(2)-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. 5. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects.

  3. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.

    PubMed

    Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H

    2008-05-01

    To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.

  4. Hemodynamic effects of long-term morphological changes in the human carotid sinus.

    PubMed

    Seong, Jaehoon; Jeong, Woowon; Smith, Nataliya; Towner, Rheal A

    2015-04-13

    Previous investigations of morphology for human carotid artery bifurcation from infancy to young adulthood found substantial growth of the internal carotid artery with advancing age, and the development of the carotid sinus at the root of the internal carotid artery during teenage years. Although the reasons for the appearance of the carotid sinus are not clearly understood yet, it has been hypothesized that the dilation of the carotid sinus serves to support pressure sensing, and slows the blood flow to reduce pulsatility to protect the brain. In order to understand this interesting evolvement at the carotid bifurcation in the aspects of fluid mechanics, we performed in vitro phase-contrast MR flow experiments using compliant silicone replicas of age-dependent carotid artery bifurcations. The silicone models in childhood, adolescence, and adulthood were fabricated using a rapid prototyping technique, and incorporated with a bench-top flow mock circulation loop using a computer-controlled piston pump. The results of the in vitro flow study showed highly complex flow characteristics at the bifurcation in all age-dependent models. However, the highest magnitude of kinetic energy was found at the internal carotid artery in the child model. The high kinetic energy in the internal carotid artery during childhood might be one of the local hemodynamic forces that initiate morphological long-term development of the carotid sinus in the human carotid bifurcation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Deplano, Valérie; Guivier-Curien, Carine; Bertrand, Eric

    2016-11-01

    The present work presents an experimental in vitro three-dimensional analysis of the flow dynamics in an abdominal aortic aneurysm (AAA) through stereoscopic particle image velocimetry (SPIV) measurements. The experimental set-up mimics the pathophysiological context involving a shear thinning blood analogue fluid, compliant AAA and aorto-iliac bifurcation walls and controlled inlet and outlet flow rate and pressure waveforms as well as working fluid temperature. SPIV was carefully calibrated and conducted to assess the three velocity components in the AAA volume. For the first time in the literature, the 3D vortex ring genesis, propagation, and vanishing in the AAA bulge are experimentally described and quantified. In comparison with classical 2-component PIV measurements (2C PIV), the third component of the velocity vector was shown to be of importance in such a geometry, especially, during the deceleration phase of the flow rate. The 3D velocity magnitude reached up more than 20 % of the 2D one showing that 2C PIV are definitively not accurate enough to provide a complete description of flow behaviour in an AAA. In addition to potential clinical implications of a full 3D vortex ring description in AAA evolution, the 3D in vitro experimental quantification of the flow dynamics carried out in the present study offers an interesting tool for the validation of fluid-structure interaction numerical studies dealing with AAA.

  6. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report.

    PubMed

    Acevedo-Bolton, Gabriel; Jou, Liang-Der; Dispensa, Bradley P; Lawton, Michael T; Higashida, Randall T; Martin, Alastair J; Young, William L; Saloner, David

    2006-08-01

    The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. We followed a group of patients with giant intracranial aneurysms who have no clear surgical options. One patient demonstrated dramatic aneurysm growth and was selected for further analysis. The aneurysm geometry and input and output flow conditions were measured with contrast-enhanced magnetic resonance angiography and phase-contrast magnetic resonance imaging. The data was imported into a computational fluid dynamics program and the velocity fields and wall shear stress distributions were calculated for the presenting physiological condition and for cases in which the opposing vertebral arteries were either occluded or opened. These models were validated with in vitro flow experiments using a geometrically exact silicone flow phantom. Simulation indicated that altering the flow ratio in the two vertebrals would deflect the main blood jet into the aneurysm belly, and that this would likely reduce the extent of the region of low wall shear stress in the growth zone. Computational fluid dynamics flow simulations in a complex patient-specific aneurysm geometry were validated by in vivo and in vitro phase-contrast magnetic resonance imaging, and were shown to be useful in modeling the likely hemodynamic impact of interventional treatment of the aneurysm.

  7. [Effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong and penetration mechanism of skin blood flow].

    PubMed

    Zhu, Xiao-Fang; Luo, Jing; Guan, Yong-Mei; Yu, Ya-Ting; Jin, Chen; Zhu, Wei-Feng; Liu, Hong-Ning

    2017-02-01

    The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong, and to investigate the possible penetration mechanism of their essential oil from the perspective of skin blood perfusion changes. Transdermal tests were performed in vitro with excised mice skin by improved Franz diffusion cells. The cumulative penetration amounts of ferulic acid in Chuanxiong were determined by HPLC to investigate the effects of Frankincense and Myrrh essential oil on transdermal permeation properties of Chuanxiong. Simultaneously, the skin blood flows were determined by laser flow doppler. The results showed that the cumulative penetration amount of ferulic acid in Chuanxiong was (8.13±0.76) μg•cm⁻² in 24 h, and was (48.91±4.87), (57.80±2.86), (63.34±4.56), (54.17±4.40), (62.52±7.79) μg•cm⁻² respectively in Azone group, Frankincense essential oil group, Myrrh essential oil, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group. The enhancement ratios of each essential oil groups were 7.68, 8.26, 7.26, 8.28, which were slightly greater than 6.55 in Azone group. In addition, as compared with the conditions before treatment, there were significant differences and obvious increasing trend in blood flow of rats in Frankincense essential oil group, Myrrh essential oil group, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group when were dosed at 10, 20, 30, 10 min respectively, indicating that the skin blood flows were increased under the effects of Frankincense and Myrrh essential oil to a certain extent. Thus, Frankincense and Myrrh essential oil had certain effect on promoting permeability of Chuanxiong both before and after drug combination, and may promote the elimination of drugs from epidermis to dermal capillaries through increase of skin blood flow, thus enhancing the transdermal permeation amounts of drugs. Copyright© by the Chinese Pharmaceutical Association.

  8. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  9. A laboratory model of the aortic root flow including the coronary arteries

    NASA Astrophysics Data System (ADS)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with no coronary flow.

  10. Correlation Between Contrast Time-Density Time on Digital Subtraction Angiography and Flow: An in Vitro Study.

    PubMed

    Brunozzi, Denise; Shakur, Sophia F; Ismail, Rahim; Linninger, Andreas; Hsu, Chih-Yang; Charbel, Fady T; Alaraj, Ali

    2018-02-01

    Digital subtraction angiography (DSA) provides an excellent anatomic characterization of cerebral vasculature, but hemodynamic assessment is often qualitative and subjective. Various clinical algorithms have been produced to semiquantify flow from the data obtained from DSA, but few have tested them against reliable flow values. An arched flow model was created and injected with contrast material. Seventeen injections were acquired in anterior-posterior and lateral DSA projections, and 4 injections were acquired in oblique projection. Image intensity change over the angiogram cycle of each DSA run was analyzed through a custom MATLAB code. Time-density plots obtained were divided into 3 components (time-density times, TDTs): TDT 10%-100% (time needed for contrast material to change image intensity from 10% to 100%), TDT 100%-10% (time needed for contrast material to change image intensity from 100% to 10%), and TDT 25%-25% (time needed for contrast material to change from 25% image intensity to 25%). Time-density index (TDI) was defined as model cross-sectional area to TDT ratio, and it was measured against different flow rates. TDI 10%-100% , TDI 100%-10% , and TDI 25%-25% all correlated significantly with flow (P < 0.001). TDI 10%-100% , TDI 100%-10% , and TDI 25%-25% showed, respectively, a correlation coefficient of 0.91, 0.91, and 0.97 in the anterior-posterior DSA projections (P < 0.001). In the lateral DSA projection, TDI 100%-10% showed a weaker correlation (r = 0.57; P = 0.03). Also in the oblique DSA projection, TDIs correlated significantly with flow. TDI on DSA correlates significantly with flow. Although in vitro studies might overlook conditions that occur in patients, this method appears to correlate with the flow and could offer a semiquantitative method to evaluate the cerebral blood flow. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Low frequency mechanical actuation accelerates reperfusion in-vitro

    PubMed Central

    2013-01-01

    Background Rapid restoration of vessel patency after acute myocardial infarction is key to reducing myocardial muscle death and increases survival rates. Standard therapies include thrombolysis and direct PTCA. Alternative or adjunctive emergency therapies that could be initiated by minimally trained personnel in the field are of potential clinical benefit. This paper evaluates a method of accelerating reperfusion through application of low frequency mechanical stimulus to the blood carrying vessels. Materials and method We consider a stenosed, heparinized flow system with aortic-like pressure variations subject to direct vessel vibration at the occlusion site or vessel deformation proximal and distal to the occlusion site, versus a reference system lacking any form of mechanical stimulus on the vessels. Results The experimental results show limited effectiveness of the direct mechanical vibration method and a drastic increase in the patency rate when vessel deformation is induced. For vessel deformation at occlusion site 95% of clots perfused within 11 minutes of application of mechanical stimulus, for vessel deformation 60 centimeters from the occlusion site 95% percent of clots perfused within 16 minutes of stimulus application, while only 2.3% of clots perfused within 20 minutes in the reference system. Conclusion The presented in-vitro results suggest that low frequency mechanical actuation applied during the pre-hospitalization phase in patients with acute myocardial infarction have potential of being a simple and efficient adjunct therapy. PMID:24257116

  12. An improved process for development and testing of vena caval filters: the percutaneous steel Greenfield filter.

    PubMed

    Greenfield, L J; Proctor, M C; Roberts, K R

    1997-01-01

    The purpose of this study was to develop a reduced profile stainless steel Greenfield filter with an over-the-wire delivery system and to compare its performance with the existing Food and Drug Administration-approved Greenfield filters. In addition, we wanted to standardize a system for evaluating filter prototypes. Percutaneous stainless steel filters with various hook configurations were evaluated for efficacy and safety in four in vitro modules designed to reproduce potential liabilities experimentally. Animal studies to assess thrombus capture and resolution, filter stability, migration, and hemodynamics were completed in 4 dogs and 38 sheep. Mathematical modeling suggested that hook angle was the most relevant factor in improving resistance to migration. Prototypes that varied with respect to hook length and angle were evaluated in both the in vitro testing unit and in sheep. The stainless steel filter with two downward directed hooks provided clot capture comparable with the current Greenfield filter, maintenance of flow, and resistance to fatigue and corrosion while providing significant resistance to migration and penetration (p < 0.05). The percutaneous stainless steel Greenfield filter with the alternating hook design provides a reduced profile device that can be placed over a wire to improve positioning. The use of a standardized testing system reduced both the time and cost of bringing this new device to the market.

  13. A Cost-Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models.

    PubMed

    Loy, Caroline; Pezzoli, Daniele; Candiani, Gabriele; Mantovani, Diego

    2018-01-01

    The development of tubular engineered tissues is a challenging research area aiming to provide tissue substitutes but also in vitro models to test drugs, medical devices, and even to study physiological and pathological processes. In this work, the design, fabrication, and validation of an original cost-effective tubular multilayered-tissue culture system (TMCS) are reported. By exploiting cellularized collagen gel as scaffold, a simple moulding technique and an endothelialization step on a rotating system, TMCS allowed to easily prepare in 48 h, trilayered arterial wall models with finely organized cellular composition and to mature them for 2 weeks without any need of manipulation. Multilayered constructs incorporating different combinations of vascular cells are compared in terms of cell organization and viscoelastic mechanical properties demonstrating that cells always progressively aligned parallel to the longitudinal direction. Also, fibroblast compacted less the collagen matrix and appeared crucial in term of maturation/deposition of elastic extracellular matrix. Preliminary studies under shear stress stimulation upon connection with a flow bioreactor are successfully conducted without damaging the endothelial monolayer. Altogether, the TMCS herein developed, thanks to its versatility and multiple functionalities, holds great promise for vascular tissue engineering applications, but also for other tubular tissues such as trachea or oesophagus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rational design of functional and tunable oscillating enzymatic networks

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  15. Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein

    PubMed Central

    Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.

    2016-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  16. The combined effect of thermal and chemotherapy on HeLa cells using magnetically actuated smart textured fibrous system.

    PubMed

    Tiwari, Pranav; Agarwal, Sakshi; Srivastava, Sachchidanand; Jain, Shilpee

    2018-01-01

    Thermal therapy combined with chemotherapy is one of the advanced and efficient methods to eradicate cancer. In this work, we fabricated magnetically actuated smart textured (MAST) fibrous systems and studied their candidacy for cancer treatment. The polycaprolactone-Fe 3 O 4 based MAST fibers were fabricated using electrospinning technique. These MAST fibrous systems contained carbogenic quantum dots as a tracking agent and doxorubicin hydrochloride anticancer drug. Additionally, as fabricated MAST fibrous systems were able to deliver anticancer drug and heat energy simultaneously to kill HeLa cells in a 10 min period in vitro. After treatment, the metabolic activity and morphology of HeLa cells were analyzed. In addition, the mechanism of cell death was studied using flow cytometry. Interestingly, the navigation of these systems in the fluid can be controlled with the application of gradient magnetic field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 40-51, 2018. © 2016 Wiley Periodicals, Inc.

  17. Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy

    PubMed Central

    Nadort, Annemarie; Woolthuis, Rutger G.; van Leeuwen, Ton G.; Faber, Dirk J.

    2013-01-01

    We present integrated Laser Speckle Contrast Imaging (LSCI) and Sidestream Dark Field (SDF) flowmetry to provide real-time, non-invasive and quantitative measurements of speckle decorrelation times related to microcirculatory flow. Using a multi exposure acquisition scheme, precise speckle decorrelation times were obtained. Applying SDF-LSCI in vitro and in vivo allows direct comparison between speckle contrast decorrelation and flow velocities, while imaging the phantom and microcirculation architecture. This resulted in a novel analysis approach that distinguishes decorrelation due to flow from other additive decorrelation sources. PMID:24298399

  18. Impact of feed counterion addition and cyclone type on aerodynamic behavior of alginic-atenolol microparticles produced by spray drying.

    PubMed

    Ceschan, Nazareth Eliana; Bucalá, Verónica; Ramírez-Rigo, María Verónica; Smyth, Hugh David Charles

    2016-12-01

    The inhalatory route has emerged as an interesting non-invasive alternative for drug delivery. This allows both pulmonary (local) and systemic treatments (via alveolar absorption). Further advantages in terms of stability, dose and patient preference have often lead researchers to focus on dry powder inhaler delivery systems. Atenolol is an antihypertensive drug with low oral bioavailability and gastrointestinal side effects. Because atenolol possesses adequate permeation across human epithelial membranes, it has been proposed as a good candidate for inhalatory administration. In a previous work, atenolol was combined with alginic acid (AA) and microparticles were developed using spray-drying (SD) technology. Different AA/atenolol ratios, total feed solid content and operative variables were previously explored. In order to improve particle quality for inhalatory administration and the SD yield, in this work the AA acid groups not neutralized by atenolol were kept either free or neutralized to pH∼7 and two different SD cyclones were used. Particle morphology, flow properties, moisture uptake and in vitro aerosolization behavior at different pressure drops were studied. When the AA acid groups were neutralized, particle size decreased as a consequence of the lower feed viscosity. The SD yield and in vitro particle deposition significantly increased when a high performance cyclone was employed, and even when lactose carrier particles were not used. Although the in vitro particle deposition decreased when the storage relative humidity increased, the developed SD powders showed adequate characteristics to be administered by inhalatory route up to storage relative humidities of about 60%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Diagnostic methods for insect sting allergy.

    PubMed

    Hamilton, Robert G

    2004-08-01

    This review overviews advances from mid-2002 to the present in the validation and performance methods used in the diagnosis of Hymenoptera venom-induced immediate-type hypersensitivity. The general diagnostic algorithm for insect sting allergy is initially discussed with an examination of the AAAAI's 2003 revised practice parameter guidelines. Changes as a result of a greater recognition of skin test negative systemic reactors include repeat analysis of all testing and acceptance of serology as a complementary diagnostic test to the skin test. Original data examining concordance of venom-specific IgE results produced by the second-generation Pharmacia CAP System with the Johns Hopkins University radioallergosorbent test are presented. Diagnostic performance of honeybee venom-specific IgE assays used in clinical laboratories in North America is discussed using data from the Diagnostic Allergy Proficiency Survey conducted by the College of American Pathologists. Validity of venom-specific IgE antibody in postmortem blood specimens is demonstrated. The utility of alternative in-vivo (provocation) and in-vitro (basophil-based) diagnostic testing methods is critiqued. This overview supports the following conclusions. Improved practice parameter guidelines include serology and skin test as complementary in supporting a positive clinical history during the diagnostic process. Data are provided which support the analytical performance of commercially available venom-specific IgE antibody serology-based assays. Intentional sting challenge in-vivo provocation, in-vitro basophil flow cytometry (CD63, CD203c) based assays, and in-vitro basophil histamine and sulfidoleukotriene release assays have their utility in the study of difficult diagnostic cases, but their use will remain as supplementary, secondary diagnostic tests.

  20. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients.

    PubMed

    Carrion, F; Nova, E; Ruiz, C; Diaz, F; Inostroza, C; Rojo, D; Mönckeberg, G; Figueroa, F E

    2010-03-01

    Mesenchymal stem cells (MSCs) exert suppressive effects in several disease models including lupus prone mice. However, autologous MSC therapy has not been tested in human systemic lupus erythematosus (SLE). We evaluate the safety and efficacy of bone marrow (BM)-derived MSCs in two SLE patients; the suppressor effect of these cells in-vitro and the change in CD4+CD25+FoxP3+ T regulatory (Treg) cells in response to treatment. Two females (JQ and SA) of 19 and 25 years of age, fulfilling the 1997 American College of Rheumatology (ACR) criteria for SLE were infused with autologous BM-derived MSCs. Disease activity indexes and immunological parameters were assessed at baseline, 1, 2, 7 and 14 weeks. Peripheral blood lymphocyte (PBL) subsets and Treg cells were quantitated by flow cytometry, and MSCs tested for in-vitro suppression of activation and proliferation of normal PBLs. No adverse effects or change in disease activity indexes were noted during 14 weeks of follow-up, although circulating Treg cells increased markedly. Patient MSCs effectively suppressed in-vitro PBL function. However, JQ developed overt renal disease 4 months after infusion. MSC infusion was without adverse effects, but did not modify initial disease activity in spite of increasing CD4+CD25+FoxP3+ cell counts. One patient subsequently had a renal flare. We speculate that the suppressive effects of MSC-induced Treg cells might be dependent on a more inflammatory milieu, becoming clinically evident in patients with higher degrees of disease activity.

  1. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation.

    PubMed

    Migheli, Rossana; Puggioni, Giulia; Dedola, Sonia; Rocchitta, Gaia; Calia, Giammario; Bazzu, Gianfranco; Esposito, Giovanni; Lowry, John P; O'Neill, Robert D; Desole, M S; Miele, Egidio; Serra, Pier A

    2008-09-15

    A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.

  2. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Blue Laser Light Increases Perfusion of a Skin Flap Via Release of Nitric Oxide from Hemoglobin

    PubMed Central

    Mittermayr, Rainer; Osipov, Anatoly; Piskernik, Christina; Haindl, Susanne; Dungel, Peter; Weber, Carina; Vladimirov, Yuri A; Redl, Heinz; Kozlov, Andrey V

    2007-01-01

    It has recently been shown that nitrosyl complexes of hemoglobin (NO-Hb) are sensitive to low-level blue laser irradiation, suggesting that laser irradiation can facilitate the release of biologically active nitric oxide (NO), which can affect tissue perfusion. The aim of this study was to evaluate the therapeutic value of blue laser irradiation for local tissue perfusion after surgical intervention. Blood was withdrawn from a rat, exposed to NO and infused back to the same rat or used for in vitro experiments. In vitro, an increase of NO-Hb levels (electron paramagnetic resonance spectroscopy) up to 15 μM in rat blood did not result in the release of detectable amounts of NO (NO selective electrode). Blue laser irradiation of NO-Hb in blood caused decomposition of NO-Hb complexes and release of free NO. Systemic infusion of NO-Hb in rats affected neither systemic circulation (mean arterial pressure) nor local tissue perfusion (Doppler blood flow imaging system). In contrast, a clear enhancement of local tissue perfusion was observed in epigastric flap when elevated NO-Hb levels in blood were combined with local He-Cd laser irradiation focused on the left epigastric artery. The enhancement of regional tissue perfusion was not accompanied by any detectable changes in systemic circulation. This study demonstrates that blue laser irradiation improves local tissue perfusion in a controlled manner stimulating NO release from NO-Hb complexes. PMID:17515954

  4. Biochemical and hormonal evaluation of pineal glands exposed in vitro to magnetic fields. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Leung, F.C.; Miller, D.L.

    It has been reported that exposure to extremely low frequency (ELF) magnetic fields can significantly alter pineal melatonin metabolism in vivo. However, whether such changes are due to direct or indirect effects of field exposure has not been clearly demonstrated. The objective of this research project was to examine the effects of magnetic fields on melatonin metabolism in pineal glands in vitro. Chicken pineal glands were cultured in a modified incubator encircled by a magnetic field exposure system. The incubator, that was remote from but attached to a standard laboratory incubator, contained a regulated light source for modulation of themore » light/dark cycle (12:12 L/D). Pineal glands from 4--6 week old chickens were maintained under 95% O{sub 2}, 5% CO{sub 2} in a static culture system. Because of problems due to contamination and loss of viability of such a system, a perfusion system was developed for EMF studies. Both single and multiple chicken pineal glands were used in the perfusion studies and were kept viable in the perfusion chamber by a continuous flow of medium at 39 C for up to 8 days. Perfusate samples were collected into a fraction collector and were subsequently kept frozen at {minus} 20 C until assays were performed. Melatonin secreted by the cultured pineal glands and released into the medium was measured by a melatonin double antibody radioimmunoassay (RIA) using {sup 125}I-melatonin as the label.« less

  5. A microfluidic device for evaluating the dynamics of the metabolism-dependent antioxidant activity of nutrients.

    PubMed

    Lee, Jungwoo; Choi, Jong-ryul; Ha, Sang Keun; Choi, Inwook; Lee, Seung Hwan; Kim, Donghyun; Choi, Nakwon; Sung, Jong Hwan

    2014-08-21

    Various food components are known for their health-promoting effects. However, their biochemical effects are generally evaluated in vitro, and their actual in vivo effect can vary significantly, depending on their metabolic profiles. To evaluate the effect of the liver metabolism on the antioxidant activity, we have developed a two-compartment microfluidic system that integrates the dynamics of liver metabolism and the subsequent antioxidant activity of food components. In the first compartment of the device, human liver enzyme fractions were immobilized inside a poly(ethylene glycol) diacrylate (PEGDA) hydrogel to mimic the liver metabolism. The radical scavenging activity was evaluated by the change of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance in the second compartment. Reaction engineering and fluid mechanics principles were used to develop a simplified analytical model and a more complex finite element model, which were used to design the chip and determine the optimal flow conditions. For real-time measurements of the reaction on a chip, we developed a custom-made photospectrometer system with an LED light source. The developed microfluidic system showed a linear and dose-dependent antioxidant activity in response to increasing concentration of flavonoid. We also compared the antioxidant activity of flavonoid after various liver metabolic reactions. This microfluidic system can serve as a novel in vitro platform for predicting the antioxidant activity of various food components in a more physiologically realistic manner, as well as for studying the mechanism of action of such food components.

  6. Tailoring microfluidic systems for organ-like cell culture applications using multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Hagmeyer, Britta; Schütte, Julia; Böttger, Jan; Gebhardt, Rolf; Stelzle, Martin

    2013-03-01

    Replacing animal testing with in vitro cocultures of human cells is a long-term goal in pre-clinical drug tests used to gain reliable insight into drug-induced cell toxicity. However, current state-of-the-art 2D or 3D cell cultures aiming at mimicking human organs in vitro still lack organ-like morphology and perfusion and thus organ-like functions. To this end, microfluidic systems enable construction of cell culture devices which can be designed to more closely resemble the smallest functional unit of organs. Multiphysics simulations represent a powerful tool to study the various relevant physical phenomena and their impact on functionality inside microfluidic structures. This is particularly useful as it allows for assessment of system functions already during the design stage prior to actual chip fabrication. In the HepaChip®, dielectrophoretic forces are used to assemble human hepatocytes and human endothelial cells in liver sinusoid-like structures. Numerical simulations of flow distribution, shear stress, electrical fields and heat dissipation inside the cell assembly chambers as well as surface wetting and surface tension effects during filling of the microchannel network supported the design of this human-liver-on-chip microfluidic system for cell culture applications. Based on the device design resulting thereof, a prototype chip was injection-moulded in COP (cyclic olefin polymer). Functional hepatocyte and endothelial cell cocultures were established inside the HepaChip® showing excellent metabolic and secretory performance.

  7. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  8. Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors

    PubMed Central

    Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A.; Hoermann, Gregor; Valent, Peter; Lion, Thomas

    2016-01-01

    Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance. PMID:27801667

  9. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Diagnosis of stinging insect allergy: utility of cellular in-vitro tests.

    PubMed

    Scherer, Kathrin; Bircher, Andreas J; Heijnen, Ingmar Afm

    2009-08-01

    Diagnosis of stinging insect allergy is based on a detailed history, venom skin tests, and detection of venom-specific IgE. As an additional diagnostic tool, basophil responsiveness to venom allergens has been shown to be helpful in selected patients. This review summarizes the current diagnostic procedures for stinging insect allergy and discusses the latest developments in cellular in-vitro tests. Cellular assays have been evaluated in patients with Hymenoptera venom allergy. The diagnostic performance of the cellular mediator release test is similar to that of the flow cytometric basophil activation test (BAT), but the BAT has been the most intensively studied. BAT offers the possibility to assess basophil reactivity to allergens in their natural environment and to simultaneously analyze surface marker expression and intracellular signaling. It has been demonstrated that BAT represents a valuable additional diagnostic tool in selected patients when used in combination with other well established tests. A major limitation is the current lack of unified, standardized protocols. Flow cytometry offers huge possibilities to enhance knowledge of basophil functions. The BAT may be used as an additional test to confirm the diagnosis of stinging insect allergy in selected patients, provided that it is performed by an experienced laboratory using a validated assay. Test results have to be interpreted by clinicians familiar with the methodological aspects. The utility of the BAT to confirm allergy diagnosis and to predict the risk of subsequent systemic reactions may be improved by combined analysis of multiple surface markers and intracellular signaling pathways.

  11. Postarrest stalling rather than crawling favors CD8+ over CD4+ T‐cell migration across the blood–brain barrier under flow in vitro

    PubMed Central

    Rudolph, Henriette; Klopstein, Armelle; Gruber, Isabelle; Blatti, Claudia; Lyck, Ruth

    2016-01-01

    Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells. PMID:27338806

  12. Histone deacetylase inhibitors suppress ABO transcription in vitro, leading to reduced expression of the antigens.

    PubMed

    Takahashi, Yoichiro; Kubo, Rieko; Sano, Rie; Nakajima, Tamiko; Takahashi, Keiko; Kobayashi, Momoko; Handa, Hiroshi; Tsukada, Junichi; Kominato, Yoshihiko

    2017-03-01

    The ABO system is of fundamental importance in the fields of transfusion and transplantation and has apparent associations with certain diseases, including cardiovascular disorders. ABO expression is reduced in the late phase of erythroid differentiation in vitro, whereas histone deacetylase inhibitors (HDACIs) are known to promote cell differentiation. Therefore, whether or not HDACIs could reduce the amount of ABO transcripts and A or B antigens is an intriguing issue. Quantitative polymerase chain reactions were carried out for the ABO transcripts in erythroid-lineage K562 and epithelial-lineage KATOIII cells after incubation with HDACIs, such as sodium butyrate, panobinostat, vorinostat, and sodium valproate. Flow cytometric analysis was conducted to evaluate the amounts of antigen in KATOIII cells treated with panobinostat. Quantitative chromatin immunoprecipitation (ChIP) assays and luciferase assays were performed on both cell types to examine the mechanisms of ABO suppression. HDACIs reduced the ABO transcripts in both K562 and KATOIII cells, with panobinostat exerting the most significant effect. Flow cytometric analysis demonstrated a decrease in B-antigen expression on panobinostat-treated KATOIII cells. ChIP assays indicated that panobinostat altered the modification of histones in the transcriptional regulatory regions of ABO, and luciferase assays demonstrated reduced activity of these elements. ABO transcription seems to be regulated by an epigenetic mechanism. Panobinostat appears to suppress ABO transcription, reducing the amount of antigens on the surface of cultured cells. © 2016 AABB.

  13. A NOVEL WEARABLE PUMP-LUNG DEVICE: IN-VITRO AND ACUTE IN-VIVO STUDY

    PubMed Central

    Zhang, Tao; Wei, Xufeng; Bianchi, Giacomo; Wong, Philip M.; Biancucci, Brian; Griffith, Bartley P.; Wu, Zhongjun J.

    2011-01-01

    Background To provide long-term ambulatory cardiopulmonary and respiratory support for adult patients, a novel wearable artificial pump-lung device has been developed. The design features, in-vitro and acute in-vivo performance of this device are reported in this paper. Methods This device features a uniquely designed hollow fiber membrane bundle integrated with a magnetically levitated impeller together to form one ultra-compact pump-lung device, which can be placed like current paracorporeal ventricular assist devices to allow ambulatory support. The device is 117 mm in length and 89 mm in diameter and has a priming volume of 115 ml. In-vitro hydrodynamic, gas transfer and biocompatibility experiments were carried out in mock flow loops using ovine blood. Acute in-vivo characterization was conducted in ovine by surgically implanting the device between right atrium and pulmonary artery. Results The in-vitro results showed that the device with a membrane surface area of 0.8 m2 was capable of pumping blood from 1 to 4 L/min against a wide range of pressures and transferring oxygen at a rate of up to 180 ml/min at a blood flow of 3.5 L/min. Standard hemolysis tests demonstrated low hemolysis at the targeted operating condition. The acute in-vivo results also confirmed that the device can provide sufficient oxygen transfer with excellent biocompatibility. Conclusions Base on the in-vitro and acute in-vivo study, this highly integrated wearable pump-lung device can provide efficient respiratory support with good biocompatibility and it is ready for long-term evaluation. PMID:22014451

  14. Laser Speckle Imaging of Blood Flow Beneath Static Scattering Media

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin Anderson

    Laser speckle imaging (LSI) is a wide-field optical imaging technique that provides information about the movement of scattering particles in biological samples. LSI is used to create maps of relative blood flow and perfusion in samples such as the skin, brain, teeth, gingiva, and other biological tissues. The presence of static, or non-moving, optical scatterers affects the ability of LSI to provide true quantitative and spatially resolved measurements of blood flow. With in vitro experiments using tissue-simulating phantoms, we determined that temporal analysis of raw speckle image sequences improved the quantitative accuracy of LSI to measure flow beneath a static scattering layer. We then applied the temporal algorithm to assess the potential of LSI to monitor oral health. We designed and tested two generations of miniature LSI devices to measure flow in the pulpal chamber of teeth and in the gingiva. Our preliminary clinical pilot data indicated that speckle contrast may correlate with gingival health. To improve visualization of subsurface blood vessels, we developed a technique called photothermal LSI. We applied a short pulse of laser energy to selectively perturb the motion of red blood cells, increasing the signal from vasculature relative to the surroundings. To study the spectral and depth dependence of laser speckle contrast, we developed a Monte Carlo model of light and momentum transport to simulate speckle contrast. With an increase in the thickness of the overlying static-scattering layer, we observed a quadratic decrease in the quantity of dynamically scattered light collected by the detector. We next applied the model to study multi-exposure speckle imaging (MESI), a method that purportedly improves quantitative accuracy of subsurface blood flow measurements. We unexpectedly determined that MESI faced similar depth limitations as conventional LSI, findings that were supported by in vitro experimental data. Finally, we used the model to study the effects of epidermal melanin absorption on LSI, and demonstrated that speckle contrast is less sensitive to varying melanin content than reflectance. We then proposed a two-wavelength measurement protocol that may enable melanin-independent LSI measurements of blood flow in patients with varying skin types. In conclusion, through in vitro and in silico experiments, we were able to further the understanding of the depth dependent origins of laser speckle contrast as well as the inherent limitations of this technology.

  15. Mechanobiologic Research in a Microgravity Environment Bioreactor

    NASA Astrophysics Data System (ADS)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    A current problem in tissue culturing technology is the unavailability of an effective Bioreactor for the in vitro cultivation of cells and explants. It has, in fact, proved extremely difficult to promote the high-density three-dimensional in vitro growth of human tissues that have been removed from the body and deprived of their normal in vivo vascular sources of nutrients and gas exchange. A variety of tissue explants can be maintained for a short period of time on a supportive collagen matrix surrounded by culture medium. But this system provides only limited mass transfer of nutrients and wastes through the tissue, and gravity-induced sedimentation prevents complete three- dimensional cell-cell and cell-matrix interactions. Several devices presently on the market have been used with only limited success since each has limitations, which restrict usefulness and versatility. Further, no Bioreactor or culture vessel is known that will allow for unimpeded growth of three dimensional cellular aggregates or tissue. Extensive research on the effect of mechanical stimuli on cell metabolism suggests that tissues may respond to mechanical stimulation via loading-induced flow of the interstitial fluids. During the culture, cells are subject to a flow of culture medium. Flow properties such as flow field, flow regime (e.g. turbulent or laminar), flow pattern (e.g. circular), entity and distribution of the shear stress acting on the cells greatly influence fundamental aspects of cell function, such as regulation and gene expression. This has been demonstrated for endothelial cells and significant research efforts are underway to elucidate these mechanisms in various other biological systems. Local fluid dynamics is also responsible of the mass transfer of nutrients and catabolites as well as oxygenation through the tissue. Most of the attempts to culture tissue-engineered constructs in vitro have utilized either stationary cultures or systems generating relatively small mechanical forces. For example, cartilage constructs have been cultured in spinner flasks under mixed or unmixed conditions, in simulated and in real microgravity. In these mixing studies, however, it is difficult to definitively quantify the effects of mixing-induced mechanical forces from those of convection-enhanced transport of nutrients to and of catabolites away from the cells. At the state of the art, the presence of a more controlled mechanical environment may be the condition required in order to study the biochemical and mechanical response of these biological systems. Such a controlled environment could lead to an advanced fluid dynamic design of the culture chamber that could both enhance the local mass transfer phenomena and match the needs of specific macroscopic mechanical effects in tissue development. The bioreactor is an excellent example of how the skills and resources of two distinctly different fields can complement each other. Microgravity can be used to enhance the formation of tissue like aggregates in specially designed bioreactors. Theoretical and experimental projects are under way to improve cell culture techniques using microgravity conditions experienced during space flights. Bioreactors usable under space flight conditions impose constructional principles which are different from those intended solely for ground applications. The Columbus Laboratory as part of the International Space Station (ISS) will be an evolving facility in low Earth orbit. Its mission is to support scientific, technological, and commercial activities in space. A goal of this research is to design a unique bioreactor for use sequentially from ground research to space research. One of the particularities of the simulated microgravity obtained through time averaging of the weight vector is that by varying the rotational velocity the same results can be obtained with a different value of g. One of the first applications of this technique in space biology was in fact the Rotating Wall Vessel developed by NASA, and originally designed to protect cell culture from the high shear forces generated during the launch and the landing of the Space Shuttle. A Bioreactor that is used both for ground and flight experiments provides the additional benefit of isolating dependent variable of gravity. This continuity will provide a means to compare results to a control experiment.

  16. Macrolide Antibiotics Improve Phagocytic Capacity and Reduce Inflammation In Sulfur Mustard-Exposed Monocytes

    DTIC Science & Technology

    2008-12-01

    phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and

  17. Activity of Imipenem against Klebsiella pneumoniae Biofilms In Vitro and In Vivo

    PubMed Central

    Chen, Ping; Seth, Akhil K.; Abercrombie, Johnathan J.; Mustoe, Thomas A.

    2014-01-01

    Encapsulated Klebsiella pneumoniae has emerged as one of the most clinically relevant and more frequently encountered opportunistic pathogens in combat wounds as the result of nosocomial infection. In this report, we show that imipenem displayed potent activity against established K. pneumoniae biofilms under both static and flow conditions in vitro. Using a rabbit ear model, we also demonstrated that imipenem was highly effective against preformed K. pneumoniae biofilms in wounds. PMID:24247132

  18. [Effects of kidney-tonifying Chinese herbal drugs on human osteoblast Ca2+ intake and mineralization in vitro].

    PubMed

    Li, Juan; Wu, Wei-kang; Sun, Wei; Yu, Ke-qiang

    2004-12-01

    To study the effects of kidney-tonifying Chinese herbal drugs on Ca2+ intake and mineralization of human osteoblasts in vitro. Human osteoblasts were isolated from the iliac trabecular bone followed by purification and culture at 37 degrees Celsius with 5% CO2. The cells were identified by cell morphology, calcium nodule formation and alkaline phosphatase (ALP) activity assay. The third passage of the cultured osteoblasts were treated with 10% scrum from rat fed with the decoction of the kidney-tonifying Chinese herbal drugs of different concentrations for 30 min, 3 d and 28 d, respectively. The cells treated with 10% rat serum without the drugs served as the control. Flow cytometry was used to observe the changes in cell proliferation and intracellular Ca2+ concentration, and von Kossa staining employed for quantification of the mineral nodules. The osteoblasts obtained were positive for ALP staining and could form calcium nodules in vitro. Flow cytometry showed that the drugs at different concentrations all increased Ca2+ influx, as compared with the control cells. The drugs also increased the relative proliferation index of the osteoblasts, and high concentration of the drugs resulted in greater number of the mineral nodules in the osteoblasts (P<0.05). The kidney-tonifying Chinese herbal drugs may increase Ca2+ influx and stimulate proliferation and differentiation of adult osteoblasts in vitro.

  19. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    PubMed

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.

  20. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system

    PubMed Central

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    Background and Purpose: There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Methods: Thrombi made of lamb’s blood were placed into a pulsatile flow system perfused with Hartmann’s solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Results: Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). Conclusions: In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted. PMID:23173104

  1. A new alternative method for testing skin irritation using a human skin model: a pilot study.

    PubMed

    Miles, A; Berthet, A; Hopf, N B; Gilliet, M; Raffoul, W; Vernez, D; Spring, P

    2014-03-01

    Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Influence of Positioning of the Nellix Endovascular Aneurysm Sealing System on Suprarenal and Renal Flow: An In Vitro Study.

    PubMed

    Boersen, Johannes T; Groot Jebbink, Erik; Van de Velde, Lennart; Versluis, Michel; Lajoinie, Guillaume; Slump, Cornelius H; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-10-01

    To examine the influence of device positioning and infrarenal neck diameter on flow patterns in the Nellix endovascular aneurysm sealing (EVAS) system. The transition of the aortic flow lumen into two 10-mm-diameter stents after EVAS creates a mismatched area. Flow recirculation may affect local wall shear stress (WSS) profiles and residence time associated with atherosclerosis and thrombosis. To examine these issues, 7 abdominal aortic aneurysm flow phantoms were created, including 3 unstented controls and 3 stented models with infrarenal neck diameters of 24, 28, and 32 mm. Stents were positioned within the instructions for use (IFU). Another 28-mm model was created to evaluate lower positioning of the stents outside the IFU (28-mm LP). Flow was visualized using optical particle imaging velocimetry (PIV) and quantified by time-averaged WSS (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) in the aorta at the anteroposterior (AP) midplane, lateral midplane, and renal artery AP midplane levels. Flow in the aorta AP midplane was similar in all models. Vortices were observed in the stented models in the lateral midplane near the anterior and posterior walls. In the 32-mm IFU and 28-mm LP models, a steady state of vortices appeared, with varying location during a cycle. In all models, a low TAWSS (<10 -2 Pa) was observed at the anterior wall of the aorta with peak OSI of 0.5 and peak RRT of 10 4 Pa -1 . This region was more proximally located in the stented models. The 24- and 28-mm IFU models showed flow with a higher velocity at the renal artery inflow compared to controls. TAWSS in the renal artery was lower near the orifice in all models, with the largest area in the 24-mm IFU model. OSI and RRT in the renal artery were near zero for all models. EVAS enhances vorticity proximal to the seal zone, especially with lower positioning of the device and in larger neck diameters. Endobags just below the renal artery affect the flow profile in a minor area of this artery in 24- and 28-mm necks, while lower stent positioning does not influence the renal artery flow profile.

  3. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. [The study on the proliferation and the apoptosis factors in vitro of Kölliker organ supporting cells in the cochlea of newborn rat].

    PubMed

    He, Yuanyuan; Yang, Jun

    2015-01-01

    To study the apoptosis/proliferation of Kölliker organ supporting cells and to understand the prompting apoptosis factors in vivo in the supporting cells in the Kölliker organ by changing the environment of the cultured supporting cells in the Kliker organ in vitro, via the separation, culture and purification of the supporting cells in the K6lliker organ. A combinatorial approach of enzymatic digestion and mechanical separation was employed to isolate and culture in vitro pure Kölliker organ supporting cells. The purity was tested by flow cytometry assay. And K6lliker organ supporting cells were harvested to detect the rate and cycle of apoptosis by flow cytometry after Annexin V/PI staining, to test the cell growth curve by MTT assay, and to observe the differential expressions of the Bcl-2, Caspase-3, Caspase-8 and Caspase-9 through the Realtime PCR and Western blot. The calcium, potassium and glutamate concentrations in the culture medium of these cells in vitro were changed to detect the survival rate of cells by MTT assay. The purity of K6lliker organ supporting cells by flow cytometry assay was 96. 56%. And these cells showed no significant difference in apoptosis, but an evident linear growth. The results of Realtime PCR and Western blot showed that the expression of Bcl-2, Caspase-3, Caspase-8 and Caspase-9 mRNA and protein in all different time points kept stable. Furthermore, the elevation of extracellular Ca2+ might contribute to decrease the cell viability of supporting cells. And K+ participated regulation of cell viability in a concentration-depending way. However, glutamate appeared to be a protective factor in high concentration. There is no significant apoptosis in vitro of the supporting cells in the Kölliker organ of rats, showing a linear growth. The Ca2+ in high concentration might contribute to the apoptosis factor of these cells. However, the K+ and glutamate appear to be protective factors in high concentration.

  5. Microfluidics for investigating vaso-occlusions in sickle cell disease.

    PubMed

    Horton, Renita E

    2017-07-01

    SCD stems from amutation in the beta globin gene. Upon deoxygenation, hemoglobin polymerizes and triggers RBC remodeling. This phenomenon is central to SCD pathogenesis as individuals suffering from the disease are plagued by painful vaso-occlusive crises episodes. These episodes are the result of a combination of processes including inflammation, thrombosis, and blood cell adhesion to the vascular wall which leads to blockages within the vasculature termed vaso-occlusions. Vaso-occlusive episodes deprive tissues of oxygen and are a major contributor to SCD-related complications; unfortunately, the complex mechanisms that contribute to vaso-occlusions are not well understood. Vaso-occlusions can occur in post-capillary venules; hence, the microvasculature is a prime target for SCD therapies. Traditional in vitro systems poorly recapitulate architectural and dynamic flow properties of in vivo systems. However, microfluidic devices can capture features of the native vasculature such as cellular composition, flow, geometry, and ECM presentation. This review, although not comprehensive, highlights microfluidic approaches that aim to improve our current understanding of the pathophysiological mechanisms surrounding SCD. Microfluidic platforms can aid in identifying factors that may contribute to disease severity and can serve as suitable test beds for novel treatment strategies which may improve patient outcomes. © 2017 John Wiley & Sons Ltd.

  6. [Study on Rapid Micropropagation in Vitro Technique of Guangfeng Medicinal Yam (Dioscorea opposita) Plantlets].

    PubMed

    Yin, Ming-Hua; Xu, Zhi-Jian; Zhang, Sheng-qin; Lv, Si-Jie; Zeng, Yan-hong; Fu, You-zhang; Hong, Sen-rong

    2015-11-01

    In order to provide methodology reference for virus-free and germplasm conservation of Guangfeng medicinal yam (Dioscorea opposita) plantlets, rapid micropropagation in vitro technique of Guangfeng medicinal yam plantlets was studied. Using the method of plant tissue culture, single factor test and flow-cytometry, the basic procedure of Guangfeng medicinal yam tissue culture was established and the DNA content of Guangfeng medicinal yam plantlets and its potted seedlings was detected. The best disinfection procedure of stems with a bud of Guangfeng medicinal yam was washed with sterile water for three times after sterilized with 70% alcohol for 20 - 30 s and then washed with sterile water for three times again after sterilized with 0.1% mercuric chloride for 10 - 12 min; The best explants of stems with a bud of Guangfeng medicinal yam was slightly woody and more mature stems witha bud; The best proliferation culture medium of stems with a bud of Guangfeng medicinal yam was MS + 6-BA 2.0 mg/L + NAA 0.1 mg/L; The best rooting culture medium of stems with a bud of Guangfeng medicinal yam was MS + NAA 0.5 mg/L; The best culture method of Guangfeng medicinal yam plantlets was liquid culture; The best transplanting matrix of Guangfeng medicinal yam plantlets was the mixture of paddy clay and fine sand (1: 2) or the mixture of perlite and vermiculite (1: 2); The DNA content between Guangfeng medicinal yam plantlets and its potted seedlings had no significant difference. A fast and efficient micropropagation in vitro technological system of stems with a bud of Guangfeng medicinal yam is established, and the flow cytometry detect results also show the genetic stability of Guangfeng medicinal yam plantlets, whose results provide the technical and theoretical basis for the large-scale production of Guangfeng medicinal yam plantlets.

  7. Human Innate Immune Responses to Hexamethylene Diisocyanate (HDI) and HDI-Albumin Conjugates

    PubMed Central

    Wisnewski, Adam V.; Liu, Qing; Liu, Jian; Redlich, Carrie A.

    2011-01-01

    Background Isocyanates, a leading cause of occupational asthma, are known to induce adaptive immune responses; however, innate immune responses, which generally precede and regulate adaptive immunity, remain largely uncharacterized. Objective Identify and characterize cellular, molecular and systemic innate immune responses induced by hexamethylene diisocyanate (HDI). Methods Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with HDI-albumin conjugates or control antigen, and changes in phenotype, gene, and protein expression were characterized by flow cytometry, microarray, Western blot and ELISA. Cell uptake of isocyanate was visualized microscopically using HDI-albumin conjugates prepared with fluorescently-labeled albumin. In vivo, human HDI exposure was performed via specific inhalation challenge, and subsequent changes in PBMCs and serum proteins were measured by flow cytometry and ELISA. Genotypes were determined by PCR. Results Human monocytes take-up HDI-albumin conjugates and undergo marked changes in morphology and gene/protein expression in vitro. The most significant (p 0.007 – 0.05) changes in mircoarray gene expression were noted in lysosomal genes, especially peptidases and proton pumps involved in antigen processing. Chemokines that regulate monocyte/macrophage trafficking (MIF, MCP-1), and pattern recognition receptors that bind chitin (chitinases) and oxidized low-density lipoprotein (CD68) were also increased following isocyanate-albumin exposure. In vivo, HDI exposed subjects exhibited an acute increase in the percentage of PBMCs with the same HDI-albumin responsive phenotype characterized in vitro (HLA-DR+/CD11c+ with altered light scatter properties). An exposure-dependent decrease (46±11%; p<0.015) in serum concentrations of chitinase-3-like-1 was also observed, in individuals that lack the major (type 1) human chitinase (due to genetic polymorphism), but not in individuals possessing at least one functional chitinase-1 allele. Conclusions Previously unrecognized innate immune responses to HDI and HDI-albumin conjugates could influence the clinical spectrum of exposure reactions. PMID:18498542

  8. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials.

    PubMed

    Grimberg, Brian T; Jaworska, Maria M; Hough, Lindsay B; Zimmerman, Peter A; Phillips, James G

    2009-09-15

    A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.

  9. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    PubMed

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

  10. Noise levels of neonatal high-flow nasal cannula devices--an in-vitro study.

    PubMed

    König, Kai; Stock, Ellen L; Jarvis, Melanie

    2013-01-01

    Excessive ambient noise levels have been identified as a potential risk factor for adverse outcome in very preterm infants. Noise level measurements for continuous positive airway pressure (CPAP) devices demonstrated that these constantly exceed current recommendations. The use of high-flow nasal cannula (HFNC) as an alternative non-invasive ventilation modality has become more popular in recent years in neonatal care. To study noise levels of two HFNC devices commonly used in newborns. As a comparison, noise levels of a continuous flow CPAP device were also studied. In-vitro study. The noise levels of two contemporary HFNC devices (Fisher & Paykel NHF™ and Vapotherm Precision Flow®) and one CPAP device (Dräger Babylog® 8000 plus) were measured in the oral cavity of a newborn manikin in an incubator in a quiet environment. HFNC flows of 4-8 l/min and CPAP pressures of 4-8 cm H2O were applied. The CPAP flow was set at 8 l/min as per unit practice. Vapotherm HFNC generated the highest noise levels, measuring 81.2-91.4 dB(A) with increasing flow. Fisher & Paykel HFNC noise levels were between 78.8 and 81.2 dB(A). The CPAP device generated the lowest noise levels between 73.9 and 77.4 dB(A). Both HFNC devices generated higher noise levels than the CPAP device. All noise levels were far above current recommendations of the American Academy of Pediatrics. In light of the long duration of non-invasive respiratory support of very preterm infants, less noisy devices are required to prevent the potentially adverse effects of continuing excessive noise exposure in the neonatal intensive care unit. Copyright © 2013 S. Karger AG, Basel.

  11. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  12. Dual systemic tumor targeting with ligand-directed phage and Grp78 promoter induces tumor regression.

    PubMed

    Kia, Azadeh; Przystal, Justyna M; Nianiaris, Nastasia; Mazarakis, Nicholas D; Mintz, Paul J; Hajitou, Amin

    2012-12-01

    The tumor-specific Grp78 promoter is overexpressed in aggressive tumors. Cancer patients would benefit greatly from application of this promoter in gene therapy and molecular imaging; however, clinical benefit is limited by lack of strategies to target the systemic delivery of Grp78-driven transgenes to tumors. This study aims to assess the systemic efficacy of Grp78-guided expression of therapeutic and imaging transgenes relative to the standard cytomegalovirus (CMV) promoter. Combination of ligand and Grp78 transcriptional targeting into a single vector would facilitate systemic applications of the Grp78 promoter. We generated a dual tumor-targeted phage containing the arginine-glycine-aspartic acid tumor homing ligand and Grp78 promoter. Next, we combined flow cytometry, Western blot analysis, bioluminescence imaging of luciferase, and HSVtk/ganciclovir gene therapy and compared efficacy to conventional phage carrying the CMV promoter in vitro and in vivo in subcutaneous models of rat and human glioblastoma. We show that double-targeted phage provides persistent transgene expression in vitro and in tumors in vivo after systemic administration compared with conventional phage. Next, we showed significant tumor killing in vivo using the HSVtk/ganciclovir gene therapy and found a systemic antitumor effect of Grp78-driven HSVtk against therapy-resistant tumors. Finally, we uncovered a novel mechanism of Grp78 promoter activation whereby HSVtk/ganciclovir therapy upregulates Grp78 and transgene expression via the conserved unfolded protein response signaling cascade. These data validate the potential of Grp78 promoter in systemic cancer gene therapy and report the efficacy of a dual tumor targeting phage that may prove useful for translation into gene therapy and molecular imaging applications.

  13. Structure, Folding Dynamics, and Amyloidogenesis of D76N β2-Microglobulin

    PubMed Central

    Mangione, P. Patrizia; Esposito, Gennaro; Relini, Annalisa; Raimondi, Sara; Porcari, Riccardo; Giorgetti, Sofia; Corazza, Alessandra; Fogolari, Federico; Penco, Amanda; Goto, Yuji; Lee, Young-Ho; Yagi, Hisashi; Cecconi, Ciro; Naqvi, Mohsin M.; Gillmore, Julian D.; Hawkins, Philip N.; Chiti, Fabrizio; Rolandi, Ranieri; Taylor, Graham W.; Pepys, Mark B.; Stoppini, Monica; Bellotti, Vittorio

    2013-01-01

    Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human β2-microglobulin (β2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N β2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type β2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition. PMID:24014031

  14. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  15. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes.

    PubMed

    Evani, Shankar J; Dallo, Shatha F; Murthy, Ashlesh K; Ramasubramanian, Anand K

    2013-09-01

    Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae -infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae -infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm 2 for 1 h on C. pneumoniae -infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.

  16. in silico Vascular Modeling for Personalized Nanoparticle Delivery

    PubMed Central

    Hossain, Shaolie S.; Zhang, Yongjie; Liang, Xinghua; Hussain, Fazle; Ferrari, Mauro; Hughes, Thomas J. R.; Decuzzi, Paolo

    2013-01-01

    Aims To predict the deposition of nanoparticles in a patient-specific arterial tree as a function of the vascular architecture, flow conditions, receptor surface density, and nanoparticle properties. Materials & methods The patient-specific vascular geometry is reconstructed from CT Angiography images. The Isogeometric Analysis framework integrated with a special boundary condition for the firm wall adhesion of nanoparticles is implemented. A parallel plate flow chamber system is used to validate the computational model in vitro. Results Particle adhesion is dramatically affected by changes in patient-specific attributes, such as branching angle and receptor density. The adhesion pattern correlates well with the spatial and temporal distribution of the wall shear rates. For the case considered, the larger (2.0 μm) particles adhere ≈ 2 times more in the lower branches of the arterial tree, whereas the smaller (0.5 μm) particles deposit more in the upper branches. Conclusion Our computational framework in conjunction with patient specific attributes can be used to rationally select nanoparticle properties to personalize, thus optimize, therapeutic interventions. PMID:23199308

  17. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    NASA Astrophysics Data System (ADS)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  18. Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model.

    PubMed

    Lynch, R J M; ten Cate, J M

    2006-01-01

    The aim was to investigate the anti-caries properties of calcium glycerophosphate (CaGP) using an in vitro bacterial flow cell model. Four flow cells, inoculated from a chemostat containing a seven-organism bacterial consortium, were pulsed with sucrose twice daily, to provide an acidic challenge and pH-cycling conditions. Blocks of enamel and dentine were mounted in each flow cell. In a study on the effect of CaGP concentration, CaGP was pulsed into three of the flow cells, at the same time as the sucrose, to give concentrations of 0.10, 0.25 and 0.50%. Water was pulsed into the fourth flow cell with the sucrose. Microradiography revealed a significant dose response of decreasing demineralization as CaGP concentration increased. Reductions at 0.25 and 0.5% were significant when compared to the control. A second study investigated the effect of timing of CaGP pulsing, relative to sucrose, on enamel and dentine demineralization. CaGP (flow cell concentration 0.2%), was pulsed 1 h before, during or 1 h after the sucrose pulse; a water control was employed. In enamel, pulsing CaGP before the sucrose reduced demineralization significantly compared to concurrent pulsing, which in turn gave a significant reduction compared to pulsing after sucrose, which did not reduce demineralization significantly compared to the water control. In dentine, CaGP reduced demineralization significantly only when pulsed before the sucrose. The findings suggest that in vivo, the anti-caries potential of CaGP may be greater if it is applied before a cariogenic challenge. Copyright (c) 2006 S. Karger AG, Basel.

  19. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers.

    PubMed

    da Rosa Maggi Sant'Helena, Bruna; Guarido, Karla L; de Souza, Priscila; Crestani, Sandra; da Silva-Santos, J Eduardo

    2015-10-15

    We evaluated the effects of K+ channel blockers in the vascular reactivity of in vitro perfused kidneys, as well as on the influence of vasoactive agents in the renal blood flow of rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both norepinephrine and phenylephrine had the ability to increase the vascular perfusion pressure reduced in kidneys of rats subjected to CLP at 18 h and 36 h before the experiments. The non-selective K+ channel blocker tetraethylammonium, but not the Kir6.1 blocker glibenclamide, normalized the effects of phenylephrine in kidneys from the CLP 18 h group. Systemic administration of tetraethylammonium, glibenclamide, or the KCa1.1 blocker iberiotoxin, did not change the renal blood flow in control or septic rats. Norepinephrine or phenylephrine also had no influence on the renal blood flow of septic animals, but its injection in rats from the CLP 18 h group previously treated with either glibenclamide or iberiotoxin resulted in an exacerbated reduction in the renal blood flow. These results suggest an abnormal functionality of K+ channels in the renal vascular bed in sepsis, and that the blockage of different subtypes of K+ channels may be deleterious for blood perfusion in kidneys, mainly when associated with vasoactive drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers.

    PubMed

    Morley, Sinéad T; Walsh, Michael T; Newport, David T

    2017-05-01

    The lymphatic system is an extensive vascular network that serves as the primary route for the metastatic spread of breast cancer cells (BCCs). The dynamics by which BCCs travel in the lymphatics to distant sites, and eventually establish metastatic tumors, remain poorly understood. Particle tracking techniques were employed to analyze the behavior of MCF-7 and MDA-MB-231 BCCs which were exposed to lymphatic flow conditions in a 100  μ m square microchannel. The behavior of the BCCs was compared to rigid particles of various diameters (η = d p /H= 0.05-0.32) that have been used to simulate cell flow in lymph. Parabolic velocity profiles were recorded for all particle sizes. All particles were found to lag the fluid velocity, the larger the particle the slower its velocity relative to the local flow (5%-15% velocity lag recorded). A distinct difference between the behavior of BCCs and particles was recorded. The BCCs travelled approximately 40% slower than the undisturbed flow, indicating that morphology and size affects their response to lymphatic flow conditions ( Re <  1). BCCs adhered together, forming aggregates whose behavior was irregular. At lymphatic flow rates, MCF-7s were distributed uniformly across the channel in comparison to the MDA-MB-231 cells which travelled in the central region (88% of cells found within 0.35 ≤ W ≤ 0.64), indicating that metastatic MDA-MB-231 cells are subjected to a lower range of shear stresses in vivo . This suggests that both size and deformability need to be considered when modelling BCC behavior in the lymphatics. This finding will inform the development of in vitro lymphatic flow and metastasis models.

  1. Selective Infection of Antigen-Specific B Lymphocytes by Salmonella Mediates Bacterial Survival and Systemic Spreading of Infection

    PubMed Central

    de Wit, Jelle; Martinoli, Chiara; Zagato, Elena; Janssen, Hans; Jorritsma, Tineke; Bar-Ephraïm, Yotam E.; Rescigno, Maria; Neefjes, Jacques; van Ham, S. Marieke

    2012-01-01

    Background The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer’s Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. Methodology/Principal Findings Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. Conclusions/Significance This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection. PMID:23209805

  2. Formulation and in vitro examination of furosemide containing suppositories and preliminary experiences of their clinical use.

    PubMed

    Regdon, G; Fazekas, T; Regdon, G; Selmeczi, B

    1996-02-01

    Rectal suppositories containing furosemide (4-chloro-N-furfuryl-5-sulfamoylanthranilic acid) and furosemide sodium were formulated with various suppository bases. The in vitro drug release of Massa Estarinum 299 proved to be the best from the vehicle having various physical-chemical properties. The diuretic effect of the two suppositories was compared in a prospective, crossover clinical trial including 8 patients. Both preparations have induced an increase of urine flow, which was comparable to the diuretic effect of the tablet.

  3. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    PubMed

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  4. [In vitro interaction of human pancreatic cancer cells and rat dorsal root ganglia: a co-culture model].

    PubMed

    Liu, Zhi-sheng; Wang, Ye; Li, Qiang; Zhang, Sheng-lin; Shi, Yu-rong

    2012-04-01

    To establish an in vitro model of perineural invasion (PNI) with co-culture of human pancreatic cancer cells and rat root ganglion, to observe the neurite outgrowth and pancreatic cancer cell proliferation and migration, and to explore the molecular basis of perineural invasion (PNI) of pancreatic cancer. Human pancreatic cancer cell line (MIA PaCa-2) and rat dorsal root ganglion (DRG) were co-cultured in Matrigel matrix to generate the PNI model. The neurite outgrowth, pancreatic cancer cell colony formation, neurite-colony contact and retrograde migration were observed under an inverted microscope. The data were analyzed with the Image-Pro Plus 5.0 system. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody. In order to determine the absorbance (A) of the pancreatic cancer cells, MTT assay was used. The apoptotic index (AI) was evaluated by flow cytometry. Neurite outgrowth was stimulated in the presence of pancreatic cancer cells. After 72 hours of the co-culture, MIA PaCa colonies co-cultured with DRG exhibited a significantly larger colony area (242.83 ± 4.92) than that of the control (182.50 ± 5.39, P < 0.001). In the MIA PaCa-2/DRG co-culture system, the neurites exhibited a trend of growing towards the pancreatic cancer cell colony. However, the pancreatic cancer cells showed a trend of retrogradely migrating to the DRG along the neurite outgrowth, when MIA PaCa-2 colonies touched the DRG. The positive rate of Ki-67 nuclear antigen was significantly higher than in the co-culture group. The PI value was higher in the experimental group (12.80%) than that in the control group (6.81%, P < 0.01). The MTT assay showed that proliferation of the pancreatic cancer cells was more active than that in the control group. Flow cytometry analysis showed that the apoptosis rate of the pancreatic cancer cell was 2.46%, significantly lower than that of the control group (4.89%, P < 0.001). An in vitro co-culture model of rat dorsal root ganglion and human pancreatic cancer cell line is successfully established in this study. This MIA PaCa-2/DRG co-culture system demonstrates that the neural-pancreatic carcinoma cell interaction is a mutually beneficial process for the growth of neurites and pancreatic carcinoma cells. The pancreatic cancer cells show a trend of migrating to the DRG along the neurite outgrowth.

  5. Advances in Microfluidic Platforms for Analyzing and Regulating Human Pluripotent Stem Cells

    PubMed Central

    Qian, Tongcheng; Shusta, Eric V.; Palecek, Sean P.

    2015-01-01

    Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications. PMID:26313850

  6. Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Crawford, D. W.

    1983-01-01

    In-vitro, steady flow in a casting of the profunda femoris branch of the femoral artery of man was studied by measuring pressure differences in the main lumen and also in the branch over a large Reynolds number range from 200 to 1600. Effects of viscous and inviscid flows in this femoral artery branch were demonstrated quantitatively. The critical ratio of the flow rate in the branch to the upstream main lumen in this casting was found to be 0.4, above which the inviscid flow analysis indicated a pressure rise and below which it yielded a pressure drop in the main lumen across the branch junction. Pressure rises were experimentally found to occur both in the main lumen and in the branch for certain ranges of the aforementioned ratio.

  7. Performance assessment of an opto-fluidic phantom mimicking porcine liver parenchyma

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; King, Travis J.; Long, Ruiqi; McShane, Michael J.; Nance Ericson, M.; Wilson, Mark A.; Coté, Gerard L.

    2012-07-01

    An implantable, optical oxygenation and perfusion sensor to monitor liver transplants during the two-week period following the transplant procedure is currently being developed. In order to minimize the number of animal experiments required for this research, a phantom that mimics the optical, anatomical, and physiologic flow properties of liver parenchyma is being developed as well. In this work, the suitability of this phantom for liver parenchyma perfusion research was evaluated by direct comparison of phantom perfusion data with data collected from in vivo porcine studies, both using the same prototype perfusion sensor. In vitro perfusion and occlusion experiments were performed on a single-layer and on a three-layer phantom perfused with a dye solution possessing the absorption properties of oxygenated hemoglobin. While both phantoms exhibited response patterns similar to the liver parenchyma, the signal measured from the multilayer phantom was three times higher than the single layer phantom and approximately 21 percent more sensitive to in vitro changes in perfusion. Although the multilayer phantom replicated the in vivo flow patterns more closely, the data suggests that both phantoms can be used in vitro to facilitate sensor design.

  8. In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua.

    PubMed

    Gu, X F; Yang, A F; Meng, H; Zhang, J R

    2005-12-01

    Tetraploid plants of Zizyphus jujuba Mill. cv. Zhanhua were obtained with in vitro colchicine treatment. Shoot tips from in vitro-grown plants were treated with five different concentrations of colchicine (0.01, 0.03, 0.05, 0.1, 0.3%) in liquid MS medium (Murashige and Skoog 1962), and shaken (100 rpm) at 25 degrees C in darkness for 24, 48, 72 or 96 h, respectively. Tetraploids were obtained at a frequency of over 3% by using 0.05% colchicine (48 h, 72 h) and 0.1% colchicine (24 h, 48 h) treatment as determined by flow cytometry. Cytological and morphological evidence confirmed the results of flow cytometric analysis. The chromosome number of diploid plants was 24 and that of tetraploid plants was 48. The stomata sizes of tetraploid plants were significantly larger than those of diploid plants, while the frequency of stomata were reduced significantly. Similarly, the chloroplast number of guard cells of tetraploid plants increased significantly. The selected tetraploid plants were grafted onto mature trees of Z. jujuba Mill. cv. Zhanhua in the field, resulted in thicker stems, rounder and succulent leaves, larger flowers and a delay in florescence time (3-4 days later) than diploid plants.

  9. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  10. In vitro evaluation of heat and moisture exchangers designed for spontaneously breathing tracheostomized patients.

    PubMed

    Brusasco, Claudia; Corradi, Francesco; Vargas, Maria; Bona, Margherita; Bruno, Federica; Marsili, Maria; Simonassi, Francesca; Santori, Gregorio; Severgnini, Paolo; Kacmarek, Robert M; Pelosi, Paolo

    2013-11-01

    Heat and moisture exchangers (HMEs) are commonly used in chronically tracheostomized spontaneously breathing patients, to condition inhaled air, maintain lower airway function, and minimize the viscosity of secretions. Supplemental oxygen (O2) can be added to most HMEs designed for spontaneously breathing tracheostomized patients. We tested the efficiency of 7 HMEs designed for spontaneously breathing tracheostomized patients, in a normothermic model, at different minute ventilations (VE) and supplemental O2 flows. HME efficiency was evaluated using an in vitro lung model at 2 VE (5 and 15 L/min) and 4 supplemental O2 flows (0, 3, 6, and 12 L/min). Wet and dry temperatures of the inspiratory flow were measured, and absolute humidity was calculated. In addition, HME efficiency at 0, 12, and 24 h use was evaluated, as well as resistance to flow at 0 and 24 h. The progressive increase in O2 flow from 0 to 12 L/min was associated with a reduction in temperature and absolute humidity. Under the same conditions, this effect was greater at lower VE. The HME with the best performance provided an absolute humidity of 26 mg H2O/L and a temperature of 27.8 °C. No significant changes in efficiency or resistance were detected during the 24 h evaluation. The efficiency of HMEs in terms of temperature and absolute humidity is significantly affected by O2 supplementation and V(E).

  11. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.

    PubMed

    Paula, E M; Monteiro, H F; Silva, L G; Benedeti, P D B; Daniel, J L P; Shenkoru, T; Broderick, G A; Faciola, A P

    2017-07-01

    Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH 4 ) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH 4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH 3 -N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM diet had a greater gas pool size than both CM diets. The SBM diet increased in vitro OM digestibility; however, it also tended to increase CH 4 production (mM and g/kg of DM) compared with both CM diets. Based on the results of this study, CM with RUP varying from 38 to 50% of crude protein does not affect ruminal fermentation, nutrient digestion, and microbial growth when CM is included at up to 34% of the diet. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  12. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP)

    PubMed Central

    Knudsen, Gabriel A.; Hughes, Michael F.; Sanders, J. Michael; Hall, Samantha M.; Birnbaum, Linda S.

    2016-01-01

    2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [14C]-EH-TBB or [14C]-BEH-TEBP was applied to human or rat skin at 100 nmol/cm2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove “unabsorbed” [14C]-radioactivity after continuous exposure (24h). “Absorbed” was quantified using dermally retained [14C]-radioactivity; “penetrated” was calculated based on [14C]-radioactivity in media (in vitro) or excreta+tissues (in vivo). Human skin absorbed EH-TBB (24±1%) while 0.2±0.1% penetrated skin. Rat skin absorbed more (51±10%) and was more permeable (2±0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11±7 and 102±24 pmol-eq/cm2/h for human and rat skin, respectively. In vivo, 27±5% was absorbed and 13% reached systemic circulation after 24 h (maximum flux was 464±65 pmol-eq/cm2/h). BEH-TEBP in vitro penetrance was minimal (<0.01%) for rat or human skin. BEH-TEBP absorption was 12±11% for human skin and 41±3% for rat skin. In vivo, total absorption was 27±9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3±0.2 and 1±0.3 pmol-eq/cm2/h for human and rat skin; in vivo maximum flux for rat skin was 16±7 pmol-eq/cm2/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [14C]-radioactivity in the perfusion media could not be characterized. Less than 1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. PMID:27732871

  13. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong

    2014-12-01

    To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.

  14. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    DTIC Science & Technology

    2015-06-01

    K.C. and Hu, B.H. 2006. The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1): 1-19. Hillerdal, M. 1987. Cochlear blood flow ...Larsen, H.C., Angelborg, C. and Slepecky, N. 1984. Determination of the regional cochlear blood flow in the rat cochlea using non-radioactive...24-Hour JP-8 Exposure using a Cochlear Cell Model and Cellular Pathway Modulation

  16. Automatic tracking of labeled red blood cells in microchannels.

    PubMed

    Pinho, Diana; Lima, Rui; Pereira, Ana I; Gayubo, Fernando

    2013-09-01

    The current study proposes an automatic method for the segmentation and tracking of red blood cells flowing through a 100- μm glass capillary. The original images were obtained by means of a confocal system and then processed in MATLAB using the Image Processing Toolbox. The measurements obtained with the proposed automatic method were compared with the results determined by a manual tracking method. The comparison was performed by using both linear regressions and Bland-Altman analysis. The results have shown a good agreement between the two methods. Therefore, the proposed automatic method is a powerful way to provide rapid and accurate measurements for in vitro blood experiments in microchannels. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Label-free counting of circulating cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhou, Quanyu; Yang, Ping; Wang, Qiyan; Pang, Kai; Zhou, Hui; He, Hao; Wei, Xunbin

    2018-02-01

    Melanoma, developing from melanocytes, is the most serious type of skin cancer. Circulating melanoma cells, the prognosis marker for metastasis, are present in the circulation at the early stage. Thus, quantitative detection of rare circulating melanoma cells is essential for monitoring tumor metastasis and prognosis evaluation. Compared with in vitro assays, in vivo flow cytometry is able to identify circulating tumor cells without drawing blood. Here, we built in vivo photoacoustic flow cytometry based on the high absorption coefficient of melanoma cells, which is applied to labelfree counting of circulating melanoma cells in tumor-bearing mice.

  18. Advances in cardiovascular fluid mechanics: bench to bedside.

    PubMed

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  19. Microfluidic Enhancement of Intramedullary Pressure Increases Interstitial Fluid Flow and Inhibits Bone Loss in Hindlimb Suspended Mice

    PubMed Central

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-01-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research. PMID:20200992

  20. N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo.

    PubMed

    Creager, M A; Roddy, M A; Boles, K; Stamler, J S

    1997-02-01

    Nitric oxide forms complexes with an array of biomolecular carriers that retain biological activity. This reactivity of nitric oxide in physiological systems has led to some dispute as to whether endothelium-derived relaxing factors nitric oxide or a closely related adduct thereof, such as a nitrosothiol. In vitro bioassays used to address this question are limited by the exclusion of biological thiols that are requisite for nitrosothiol formation. Thus, the purpose of this study was to obtain insight into the identity of endothelium-derived relaxing factor in vivo. We reasoned that if endothelium-derived relaxing factor in nitric oxide, infusion of physiological concentrations of thiol would potentiate its bioactivity by analogy with effects seen in vitro, whereas nitrosothiol would be resistant to such modulation. We used venous-occlusion plethysmography to study forearm blood flow in normal subjects. Methacholine (0.3 to 10 micrograms/min) and nitroglycerin (1 to 30 micrograms/min) were infused via the brachial artery to elicit endothelium-dependent and endothelium-independent vasodilation, respectively. Dose-response determinations were made for each drug before and after an intra-arterial infusion of the reduced thiol, N-acetylcysteine, at rates estimated to achieve a physiological concentration of 1 mmol/L. Methacholine increased forearm blood flow in a dose-dependent manner. Infusion of N-acetylcysteine did not change the sensitivity (ED50, 1.7 versus 1.7 micrograms/min, P = NS) or maximal response to methacholine. In contrast, thiol increased the sensitivity to nitroglycerin (ED50, 4.7 versus 2.8 micrograms/min, P < .01). Thus, conflicting with reports in vitro, thiol does not modulate endothelium-derived relaxing factor responses in vivo. These data indicate that sulfhydryl groups are not a limiting factor for endothelium-derived relaxing factor responses in forearm resistance vessels in normal humans and are in keeping with reports that nitrosothiol contributes to endothelium-derived relaxing factor bioactivity in plasma and vascular smooth muscle. Potentiation of the effects of nitroglycerin by N-acetylcysteine can be attributed to its enhanced biotransformation to an endothelium-derived relaxing factor equivalent, such as nitrosothiol. These observations support the notion of an equilibrium between nitric oxide and nitrosothiol in biological systems that may be influenced by redox state.

  1. Generation of Human Adult Mesenchymal Stromal/Stem Cells Expressing Defined Xenogenic Vascular Endothelial Growth Factor Levels by Optimized Transduction and Flow Cytometry Purification

    PubMed Central

    Helmrich, Uta; Marsano, Anna; Melly, Ludovic; Wolff, Thomas; Christ, Liliane; Heberer, Michael; Scherberich, Arnaud; Martin, Ivan

    2012-01-01

    Adult mesenchymal stromal/stem cells (MSCs) are a valuable source of multipotent progenitors for tissue engineering and regenerative medicine, but may require to be genetically modified to widen their efficacy in therapeutic applications. For example, overexpression of the angiogenic factor vascular endothelial growth factor (VEGF) at controlled levels is an attractive strategy to overcome the crucial bottleneck of graft vascularization and to avoid aberrant vascular growth. Since the regenerative potential of MSCs is rapidly lost during in vitro expansion, we sought to develop an optimized technique to achieve high-efficiency retroviral vector transduction of MSCs derived from both adipose tissue (adipose stromal cells, ASCs) or bone marrow (BMSCs) and rapidly select cells expressing desired levels of VEGF with minimal in vitro expansion. The proliferative peak of freshly isolated human ASCs and BMSCs was reached 4 and 6 days after plating, respectively. By performing retroviral vector transduction at this time point, >90% efficiency was routinely achieved before the first passage. MSCs were transduced with vectors expressing rat VEGF164 quantitatively linked to a syngenic cell surface marker (truncated rat CD8). Retroviral transduction and VEGF expression did not affect MSC phenotype nor impair their in vitro proliferation and differentiation potential. Transgene expression was also maintained during in vitro differentiation. Furthermore, three subpopulations of transduced BMSCs homogeneously producing specific low, medium, and high VEGF doses could be prospectively isolated by flow cytometry based on the intensity of their CD8 expression already at the first passage. In conclusion, this optimized platform allowed the generation of populations of genetically modified MSCs, expressing specific levels of a therapeutic transgene, already at the first passage, thereby minimizing in vitro expansion and loss of regenerative potential. PMID:22070632

  2. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis.

    PubMed

    Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.

  3. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis

    PubMed Central

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862

  4. In vitro conservation and sustained production of breadfruit ( Artocarpus altilis, Moraceae): modern technologies for a traditional tropical crop

    NASA Astrophysics Data System (ADS)

    Murch, Susan J.; Ragone, Diane; Shi, Wendy Lei; Alan, Ali R.; Saxena, Praveen K.

    2008-02-01

    Breadfruit ( Artocarpus altilis, Moraceae) is a traditionally cultivated, high-energy, high-yield crop, but widespread use of the plant for food is limited by poor quality and poor storage properties of the fruit. A unique field genebank of breadfruit species and cultivars exists at the National Tropical Botanical Garden in the Hawaiian Islands and is an important global resource for conservation and sustainable use of breadfruit. However, this plant collection could be damaged by a random natural disaster such as a hurricane. We have developed a highly efficient in vitro plant propagation system to maintain, conserve, mass propagate, and distribute elite varieties of this important tree species. Mature axillary shoot buds were collected from three different cultivars of breadfruit and proliferated using a cytokinin-supplemented medium. The multiple shoots were maintained as stock cultures and repeatedly used to develop whole plants after root differentiation on a basal or an auxin-containing medium. The plantlets were successfully grown under greenhouse conditions and were reused to initiate additional shoot cultures for sustained production of plants. Flow cytometry was used to determine the nuclear deoxyribonucleic acid content and the ploidy status of the in vitro grown population. The efficacy of the micropropagation protocols developed in this study represents a significant advancement in the conservation and sustained mass propagation of breadfruit germplasm in a controlled environment free from contamination.

  5. In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol.

    PubMed

    Jinno, Jun-ichi; Kamada, Naoki; Miyake, Masateru; Yamada, Keigo; Mukai, Tadashi; Odomi, Masaaki; Toguchi, Hajime; Liversidge, Gary G; Higaki, Kazutaka; Kimura, Toshikiro

    2008-08-25

    The purpose of the present study was to investigate oral bioavailability of an immediate release tablet containing wet-milled crystals of a poorly water-soluble drug, cilostazol, and to establish in vitro-in vivo correlation. Sub-micron sized cilostazol (median diameter: 0.26 microm) was successfully prepared using a beads-mill in water in the presence of a hydrophilic polymer and an anionic surfactant. The milled suspension was solidified with a sugar alcohol as a water-soluble carrier by spray-drying method. The co-precipitate was compressed into an immediate release tablet with common excipients. Oral bioavailability of the wet-milled cilostazol tablet in male beagle dogs was 13-fold higher than the hammer-milled commercial tablet in fasted condition. Food did not increase the oral bioavailability of the wet-milled tablet, while 4-fold increase was found for the commercial tablet. Irrespective to the bioavailability enhancement, in vitro dissolution rate of the wet-milled tablet was even slower than the commercial tablet by the compendial method (USP Apparatus 2). On the other hand, a good correlation was found between the dissolution profiles obtained by a flow-through cell method (USP Apparatus 4, closed-loop system without outlet filter) using a large volume of water and sodium lauryl sulfate (SLS) solution at the concentration lower than the critical micellar concentration (cmc) as dissolution media corresponding to the fasted and fed conditions, respectively.

  6. Biochemical and electrophysiological differentiation profile of a human neuroblastoma (IMR-32) cell line.

    PubMed

    Rao, Raj R; Kisaalita, William S

    2002-09-01

    A human neuroblastoma cell line (IMR-32), when differentiated, mimics large projections of the human cerebral cortex and under certain tissue culture conditions, forms intracellular fibrillary material, commonly observed in brains of patients affected with Alzheimer's disease. Our purpose is to use differentiated IMR-32 cells as an in vitro system for magnetic field exposure studies. We have previously studied in vitro differentiation of murine neuroblastoma (N1E-115) cells with respect to resting membrane potential development. The purpose of this study was to extend our investigation to IMR-32 cells. Electrophysiological (resting membrane potential, V(m)) and biochemical (neuron-specific enolase activity [NSE]) measurements were taken every 2 d for a period of 16 d. A voltage-sensitive oxonol dye together with flow cytometry was used to measure relative changes in V(m). To rule out any effect due to mechanical cell detachment, V(m) was indirectly measured by using a slow potentiometric dye (tetramethylrhodamine methyl ester) together with confocal digital imaging microscopy. Neuron-specific enolase activity was measured by following the production of phosphoenolpyruvate from 2-phospho-d-glycerate at 240 nm. Our results indicate that in IMR-32, in vitro differentiation as characterized by an increase in NSE activity is not accompanied by resting membrane potential development. This finding suggests that pathways for morphological-biochemical and electrophysiological differentiations in IMR-32 cells are independent of one another.

  7. Polyethyleneimine brushes effectively inhibit encrustation on polyurethane ureteral stents both in dynamic bioreactor and in vivo.

    PubMed

    Gultekinoglu, Merve; Kurum, Barış; Karahan, Siyami; Kart, Didem; Sagiroglu, Meral; Ertaş, Nusret; Haluk Ozen, A; Ulubayram, Kezban

    2017-02-01

    Polyurethane (PU) ureteral stents have been widely used as biomedical devices to aid the flow of the urine. Due to the biofilm formation and encrustation complications it has been hindered their long term clinical usage. To overcome these complications, in this study, cationic polyethyleneimine (PEI) brushes grafted on PU stents and their performances were tested both in a dynamic biofilm reactor system (in vitro) and in a rat model (in vivo). Thus, we hypothesized that PEI brushes inhibit bacterial adhesion owing to the dynamic motion of brushes in liquid environment. In addition, cationic structure of PEI disrupts the membrane and so kills the bacteria on time of contact. Cationic PEI brushes decreased the biofilm formation up to 2 orders of magnitude and approximately 50% of encrustation amount in respect to unmodified PU, in vitro. In addition, according to Atomic Absorption Spectroscopy (AAS) results, approximately 90% of encrustation was inhibited on in vivo animal models. Decrease in encrustation was clearly observed on the stents obtained from rat model, by Scanning Electron Microscopy (SEM). Also, histological evaluations showed that; PEI brush grafting decreased host tissue inflammation in close relation to decrease in biofilm formation and encrustation. As a results; dual effect of anti-adhesive and contact-killing antibacterial strategy showed high efficiency on PEI brushes grafted PU stents both in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Flow-through dynamic microextraction system for automatic in vitro assessment of chyme bioaccessibility in food commodities.

    PubMed

    Souza, Lais A; Rosende, María; Korn, Maria Graças A; Miró, Manuel

    2018-10-05

    An automatic flow-through dynamic extraction method is proposed for the first time for in vitro exploration, with high temporal resolution, of the transit of the chyme from the gastric to the duodenal compartment using the Versantvoort's fed-state physiologically relevant extraction test. The flow manifold was coupled on-line to an inductively coupled plasma optical emission spectrometer (ICP OES) for real-time elucidation of the bioaccessible elemental fraction of micronutrients (viz., Cu, Fe and Mn) in food commodities across the gastrointestinal tract. The simulated intestinal and bile biofluid (added to the gastric phase) was successively pumped at 1.0 mL min -1 through a large-bore column (maintained at 37.0 ± 2.0 °C) initially loaded with a weighed amount of linseed (250 mg) using a PVDF filter membrane (5.0 μm pore size) for retaining of the solid sample and in-line filtration of the extracts. The lack of bias (trueness) of the on-line gastrointestinal extraction method coupled to ICP OES was confirmed using mass balance validation following microwave assisted digestion of the residual (non-bioaccessible) elemental fraction. Mass balance validation yielded absolute recoveries spanning from 79 to 121% for the overall analytes and samples. On-line dynamic extraction was critically appraised against batch counterparts for both gastric and gastrointestinal compartments. Due to the lack of consensus in the literature regarding the agitation method for batch oral bioaccessibility testing, several extraction approaches (viz., magnetic stirring, end-over-end rotation and orbital shaking) were evaluated. Improved gastric extractability of Fe along with bioaccessible data comparable to the dynamic counterpart based on the continuous displacement of the extraction equilibrium was obtained with batchwise magnetic stirring, which is deemed most appropriate for ascertaining worst-case/maximum bioaccessibility scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Quantification of thrombus formation in malapposed coronary stents deployed in vitro through imaging analysis.

    PubMed

    Brown, Jonathan; O'Brien, Caroline C; Lopes, Augusto C; Kolandaivelu, Kumaran; Edelman, Elazer R

    2018-04-11

    Stent thrombosis is a major complication of coronary stent and scaffold intervention. While often unanticipated and lethal, its incidence is low making mechanistic examination difficult through clinical investigation alone. Thus, throughout the technological advancement of these devices, experimental models have been indispensable in furthering our understanding of device safety and efficacy. As we refine model systems to gain deeper insight into adverse events, it is equally important that we continue to refine our measurement methods. We used digital signal processing in an established flow loop model to investigate local flow effects due to geometric stent features and ultimately its relationship to thrombus formation. A new metric of clot distribution on each microCT slice termed normalized clot ratio was defined to quantify this distribution. Three under expanded coronary bare-metal stents were run in a flow loop model to induce clotting. Samples were then scanned in a MicroCT machine and digital signal processing methods applied to analyze geometric stent conformation and spatial clot formation. Results indicated that geometric stent features play a significant role in clotting patterns, specifically at a frequency of 0.6225 Hz corresponding to a geometric distance of 1.606 mm. The magnitude-squared coherence between geometric features and clot distribution was greater than 0.4 in all samples. In stents with poor wall apposition, ranging from 0.27 mm to 0.64 mm maximum malapposition (model of real-world heterogeneity), clots were found to have formed in between stent struts rather than directly adjacent to struts. This early work shows how the combination of tools in the areas of image processing and signal analysis can advance the resolution at which we are able to define thrombotic mechanisms in in vitro models, and ultimately, gain further insight into clinical performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Traditional Foley drainage systems--do they drain the bladder?

    PubMed

    Garcia, Maurice M; Gulati, Shelly; Liepmann, Dorian; Stackhouse, G Bennett; Greene, Kirsten; Stoller, Marshall L

    2007-01-01

    Foley catheters are assumed to drain the bladder to completion. Drainage characteristics of Foley catheter systems are poorly understood. To investigate unrecognized retained urine with Foley catheter drainage systems, bladder volumes of hospitalized patients were measured with bladder scan ultrasound volumetrics. Additionally, an in vitro bench top mock bladder and urinary catheter system was developed to understand the etiology of such residual volumes. A novel drainage tube design that optimizes indwelling catheter drainage was also designed. Bedside bladder ultrasound volumetric studies were performed on patients hospitalized in ward and intensive care unit. If residual urine was identified the drainage tubing was manipulated to facilitate drainage. An ex vivo bladder-urinary catheter model was designed to measure flow rates and pressures within the drainage tubing of a traditional and a novel drainage tube system. A total of 75 patients in the intensive care unit underwent bladder ultrasound volumetrics. Mean residual volume was 96 ml (range 4 to 290). In 75 patients on the hospital ward mean residual volume was 136 ml (range 22 to 647). In the experimental model we found that for every 1 cm in curl height, obstruction pressure increased by 1 cm H2O within the artificial bladder. In contrast, the novel spiral-shaped drainage tube demonstrated rapid (0.5 cc per second), continuous and complete (100%) reservoir drainage in all trials. Traditional Foley catheter drainage systems evacuate the bladder suboptimally. Outflow obstruction is caused by air-locks that develop within curled redundant drainage tubing segments. The novel drainage tubing design eliminates gravity dependent curls and associated air-locks, optimizes flow, and minimizes residual bladder urine.

  11. Promoting effect of borneol on the permeability of puerarin eye drops and timolol maleate eye drops through the cornea in vitro.

    PubMed

    Wu, Chun-jie; Huang, Qin-wan; Qi, Hong-yi; Guo, Ping; Hou, Shi-xiang

    2006-09-01

    Studies on the influence of borneol on the penetration of puerarin eye drops and timolol maleate eye drops through the cornea, and evaluation of the ocular irritability were conducted to provide a theoretical basis for the application of borneol in enhancing corneal permeability. The cornea penetrative experiment in vitro was conducted to observe the quantitative change of puerarin and timolol maleate penetrated through the cornea after administering different dosages of borneol. The corneal hydration level and blinking frequency were recorded as irritability indexes in vitro and in vivo. The steady-flow J of high, middle and low dosage groups of puerarin eye drops with borneol were increased by 49%, 32%, 5% respectively, and permeability parameter Kp increased by 49%, 32%, 5% respectively, as compared to that of the control group. The steady-flow J of high dosage group of timolol maleate eye drops with borneol was increased by 5%; middle and low dosage groups with borneol were decreased by 6%, 3% respectively. The permeability parameter Kp of high dosage group increased by 5%, while middle and low dosage groups with borneol were decreased by 6%, 3% respectively, as compared to that of the control group. Evaluation showed no ocular irritability caused by borneol. The results of this study suggest that the promoting effect of borneol on the permeability of drugs through the cornea in vitro is selective, which indicates that borneol has the potential to be used as an ophthalmic penetration enhancer.

  12. Does Undersizing of Transcatheter Aortic Valve Bioprostheses during Valve-in-Valve Implantation Avoid Coronary Obstruction? An In Vitro Study.

    PubMed

    Stock, Sina; Scharfschwerdt, Michael; Meyer-Saraei, Roza; Richardt, Doreen; Charitos, Efstratios I; Sievers, Hans-Hinrich; Hanke, Thorsten

    2017-04-01

    Background  The transcatheter aortic valve-in-valve implantation (TAViVI) is an evolving treatment strategy for degenerated surgical aortic valve bioprostheses (SAVBs) in patients with high operative risk. Although hemodynamics is excellent, there is some concern regarding coronary obstruction, especially in SAVB with externally mounted leaflet tissue, such as the Trifecta (St. Jude Medical Inc., St. Paul, Minnesota, United States). We investigated coronary flow and hydrodynamics before and after TAViVI in a SAVB with externally mounted leaflet tissue (St. Jude Medical, Trifecta) with an undersized transcatheter aortic valve bioprosthesis (Edwards Sapien XT; Edwards Lifesciences LLC, Irvine, California, United States) in an in vitro study. Materials and Methods  An aortic root model was constructed incorporating geometric dimensions known as risk factors for coronary obstruction. Investigating the validity of this model, we primarily performed recommended TAViVI with the Sapien XT (size 26 mm) in a Trifecta (size 25 mm) in a mock circulation. Thereafter, hydrodynamic performance and coronary flow (left/right coronary diastolic flow [lCF/rCF]) after TAViVI with an undersized Sapien XT (size 23 mm) in a Trifecta (size 25 mm) were investigated at two different coronary ostia heights (COHs, 8 and 10 mm). Results  Validation of the model led to significant coronary obstruction ( p  < 0.001). Undersized TAViVI showed no significant reduction with respect to coronary flow (lCF: COH 8 mm, 0.90-0.87 mL/stroke; COH 10 mm, 0.89-0.82 mL/stroke and rCF: COH 8 mm, 0.64-0.60 mL/stroke; COH 10 mm, 0.62-0.58 mL/stroke). Mean transvalvular gradients (4-5 mm Hg, p  < 0.001) increased significantly after TAViVI. Conclusions  In our in vitro model, undersized TAViVI with the balloon-expandable Sapien XT into a modern generation SAVB (Trifecta) successfully avoided coronary flow obstruction. Georg Thieme Verlag KG Stuttgart · New York.

  13. In Vitro Engineering of Vascularized Tissue Surrogates

    PubMed Central

    Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo

    2013-01-01

    In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835

  14. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells.

    PubMed

    Jiang, Xiao-Yu; Sarsons, Christopher D; Gomez-Garcia, M Juliana; Cramb, David T; Rinker, Kristina D; Childs, Sarah J

    2017-04-01

    Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Adenovirus-specific T-cell Subsets in Human Peripheral Blood and After IFN-γ Immunomagnetic Selection.

    PubMed

    Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle

    2016-01-01

    Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system.

  16. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    PubMed

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Human skin in vitro permeation of bentazon and isoproturon formulations with or without protective clothing suit.

    PubMed

    Berthet, Aurélie; Hopf, Nancy B; Miles, Alexandra; Spring, Philipp; Charrière, Nicole; Garrigou, Alain; Baldi, Isabelle; Vernez, David

    2014-01-01

    Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.

  18. Tailoring stimuli-responsive delivery system driven by metal–ligand coordination bonding

    PubMed Central

    Liang, Hongshan; Zhou, Bin; He, Yun; Pei, Yaqiong; Li, Bin; Li, Jing

    2017-01-01

    In this study, a novel coordination bonding system based on metal–tannic acid (TA) architecture on zein/carboxymethyl chitosan (CMCS) nanoparticles (NPs) was investigated for the pH-responsive drug delivery. CMCS has been reported to coat on zein NPs as delivery vehicles for drugs or nutrients in previous studies. The cleavage of either the “metal–TA” or “NH2–metal” coordination bonds resulted in significant release of guest molecules with high stimulus sensitivity, especially in mild acidic conditions. The prepared metal–TA-coated zein/CMCS NPs (zein/CMCS-TA/metal NPs) could maintain particle size in cell culture medium at 37°C, demonstrating good stability compared with zein/CMCS NPs. In vitro release behavior of doxorubicin hydrochloride (DOX)-loaded metal–TA film-coated zein/CMCS NPs (DOX-zein/CMCS-TA/metal NPs) showed fine pH responsiveness tailored by the ratio of zein to CMCS as well as the metal species and feeding concentrations. The blank zein/CMCS-TA/metal NPs (NPs-TA/metal) were of low cytotoxicity, while a high cytotoxic activity of DOX-zein/CMCS-TA/metal NPs (DOX-NPs-TA/metal) against HepG2 cells was demonstrated by in vitro cell assay. Confocal laser scanning microscopy (CLSM) and flow cytometry were combined to study the uptake efficiency of DOX-NPs or DOX-NPs-TA/metal. This system showed significant potential as a highly versatile and potent platform for drug delivery. PMID:28490873

  19. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  20. Magnesium degradation observed in situ under flow by synchrotron radiation based microtomography

    NASA Astrophysics Data System (ADS)

    Feyerabend, Frank; Dose, Thomas; Xu, Yuling; Beckmann, Felix; Stekker, Michael; Willumeit-Römer, Regine; Schreyer, Andreas; Wilde, Fabian; Hammel, Jörg U.

    2016-10-01

    The use of degradable magnesium based implants is becoming clinically relevant, e.g. for the use as bone screws. Still there is a lack of analyzing techniques to characterize the in vitro degradation behavior of implant prototypes. The aim of this study was to design an in situ environment to continuously monitor the degradation processes under physiological conditions by time-lapse SRμCT. The use of physiological conditions was chosen to get a better approach to the in vivo situation, as it could be shown by many studies, that these conditions change on the one hand the degradation rate and on the other hand also the formed degradation products. The resulting in situ environment contains a closed bioreactor system to control and monitor the relevant parameters (37°C, 5 % O2, 20 % CO2) and to grant sterility of the setup. A flow cell was designed and manufactured from polyether etherketone (PEEK), which was chosen because of the good mechanical properties, high thermal and chemical resistance and radiographic translucency. Sterilization of the system including the sample was reached by a transient flush with 70 % ethanol and subsequent replacement by physiological medium (Modified Eagle Medium alpha). As proof of principle it could be shown that the system remained sterile during a beamtime of several days and that the continuous SRμCT imaging was feasible.

  1. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.

    PubMed

    Gao, Hang; Bijnens, Nathalie; Coisne, Damien; Lugiez, Mathieu; Rutten, Marcel; D'hooge, Jan

    2015-01-01

    Despite the availability of multiple ultrasound approaches to left ventricular (LV) flow characterization in two dimensions, this technique remains in its childhood and further developments seem warranted. This article describes a new methodology for tracking the 2-D LV flow field based on ultrasound data. Hereto, a standard speckle tracking algorithm was modified by using a dynamic kernel embedding Navier-Stokes-based regularization in an iterative manner. The performance of the proposed approach was first quantified in synthetic ultrasound data based on a computational fluid dynamics model of LV flow. Next, an experimental flow phantom setup mimicking the normal human heart was used for experimental validation by employing simultaneous optical particle image velocimetry as a standard reference technique. Finally, the applicability of the approach was tested in a clinical setting. On the basis of the simulated data, pointwise evaluation of the estimated velocity vectors correlated well (mean r = 0.84) with the computational fluid dynamics measurement. During the filling period of the left ventricle, the properties of the main vortex obtained from the proposed method were also measured, and their correlations with the reference measurement were also calculated (radius, r = 0.96; circulation, r = 0.85; weighted center, r = 0.81). In vitro results at 60 bpm during one cardiac cycle confirmed that the algorithm properly measures typical characteristics of the vortex (radius, r = 0.60; circulation, r = 0.81; weighted center, r = 0.92). Preliminary qualitative results on clinical data revealed physiologic flow fields. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Can regurgitant flow damage the left atrial endothelium in patients with prosthetic mechanical heart valves?

    PubMed

    Milo, Simcha; Zarandi, Mehrdad; Gutfinger, Chaim; Gharib, Morteza

    2005-05-01

    Previous in-vitro studies of mechanical heart valves (MHVs) in the closed position demonstrated the formation of regurgitant flows, with bubbles and jets forming vortices during each systole. The study aim was to determine whether the regurgitant flow observed in patients with MHVs can damage the left atrial endothelium, due to shear stresses exerted on the endothelial layers. This objective has been accomplished by appropriate in-vitro simulation experiments. In these experiments, leakage flow through several commercial MHVs was investigated. The geometry of the set-up closely resembled that of the left atrial anatomy. Water was forced through the slit of a closed MHV and directed toward the hemispherical cup coated with fluorescent paint. The flow field between the valve and the cup was photographed using high-speed videography, from which local velocities were measured, using digital particle imaging velocimetry. Qualitative damage to the surface of the cup was assessed from the amount of fluorescent paint removed from the cup. The experimental results and calculations indicated that flows through the gaps of the closed valves were sufficient to generate strong vortices, with velocities near the atrial wall in the range of 0.5 to 4.0 m/s, depending on the valve. This led to high shear stresses on the left atrial wall, which far exceeded physiologically acceptable levels. The calculated shear stresses exceeded by orders of magnitude the maximum physiologically tolerated stresses. This suggests that shear stresses associated with regurgitant jets in MHVs may damage the endothelial cells, leading to the activation of the inflammatory reaction, enhanced procoagulation, platelet activation and aggregation, and mechanical cell denudation.

  3. Erosion protection by calcium lactate/sodium fluoride rinses under different salivary flows in vitro.

    PubMed

    Borges, Alessandra B; Scaramucci, Taís; Lippert, Frank; Zero, Domenick T; Hara, Anderson T

    2014-01-01

    This study investigated the effect of a calcium lactate prerinse on sodium fluoride protection in an in vitro erosion-remineralization model simulating two different salivary flow rates. Enamel and dentin specimens were randomly assigned to 6 groups (n = 8), according to the combination between rinse treatments - deionized water (DIW), 12 mM NaF (NaF) or 150 mM calcium lactate followed by NaF (CaL + NaF) - and unstimulated salivary flow rates - 0.5 or 0.05 ml/min - simulating normal and low salivary flow rates, respectively. The specimens were placed into custom-made devices, creating a sealed chamber on the specimen surface connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min, followed by artificial saliva (0.5 or 0.05 ml/min) for 60 min. This cycle was repeated 4×/day for 3 days. Rinse treatments were performed daily 30 min after the 1st and 4th erosive challenges, for 1 min each time. Surface loss was determined by optical profilometry. KOH-soluble fluoride and structurally bound fluoride were determined in specimens at the end of the experiment. Data were analyzed by 2-way ANOVA and Tukey tests (α = 0.05). NaF and CaL + NaF exhibited significantly lower enamel and dentin loss than DIW, with no difference between them for normal flow conditions. The low salivary flow rate increased enamel and dentin loss, except for CaL + NaF, which presented overall higher KOH-soluble and structurally bound fluoride levels. The results suggest that the NaF rinse was able to reduce erosion progression. Although the CaL prerinse considerably increased F availability, it enhanced NaF protection against dentin erosion only under hyposalivatory conditions.

  4. The OregonHeart Total Artificial Heart: Design and Performance on a Mock Circulatory Loop.

    PubMed

    Glynn, Jeremy; Song, Howard; Hull, Bryan; Withers, Stanley; Gelow, Jill; Mudd, James; Starr, Albert; Wampler, Richard

    2017-10-01

    Widespread use of heart transplantation is limited by the scarcity of donor organs. Total artificial heart (TAH) development has been pursued to address this shortage, especially to treat patients who require biventricular support. We have developed a novel TAH that utilizes a continuously spinning rotor that shuttles between two positions to provide pulsatile, alternating blood flow to the systemic and pulmonary circulations without artificial valves. Flow rates and pressures generated by the TAH are controlled by adjusting rotor speed, cycle frequency, and the proportion of each cycle spent pumping to either circulation. To validate the design, a TAH prototype was placed in a mock circulatory loop that simulates vascular resistance, pressure, and compliance in normal and pathophysiologic conditions. At a systemic blood pressure of 120/80 mm Hg, nominal TAH output was 7.4 L/min with instantaneous flows reaching 17 L/min. Pulmonary artery, and left and right atrial pressures were all maintained within normal ranges. To simulate implant into a patient with severe pulmonary hypertension, the pulmonary vascular resistance of the mock loop was increased to 7.5 Wood units. By increasing pump speed to the pulmonary circulation, cardiac output could be maintained at 7.4 L/min as mean pulmonary artery pressure increased to 56 mm Hg while systemic blood pressures remained normal. This in vitro testing of a novel, shuttling TAH demonstrated that cardiac output could be maintained across a range of pathophysiologic conditions including pulmonary hypertension. These experiments serve as a proof-of-concept for the design, which has proceeded to in vivo testing. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Applying Dataflow Architecture and Visualization Tools to In Vitro Pharmacology Data Automation.

    PubMed

    Pechter, David; Xu, Serena; Kurtz, Marc; Williams, Steven; Sonatore, Lisa; Villafania, Artjohn; Agrawal, Sony

    2016-12-01

    The pace and complexity of modern drug discovery places ever-increasing demands on scientists for data analysis and interpretation. Data flow programming and modern visualization tools address these demands directly. Three different requirements-one for allosteric modulator analysis, one for a specialized clotting analysis, and one for enzyme global progress curve analysis-are reviewed, and their execution in a combined data flow/visualization environment is outlined. © 2016 Society for Laboratory Automation and Screening.

  6. Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles.

    PubMed

    Wang, Mingqi; Zhang, Jixi; Yuan, Ziming; Yang, Wenzhi; Wu, Qiang; Gu, Hongchen

    2012-08-01

    Thrombolytics inevitably led to the risk of hemorrhagic complications due to their non-specific plasminogen activation in treatment of thrombosis. The aim of this study was to determine whether a kind of superparamagnetic mesoporous silica nanoparticle with expanded pore size could achieve effectively targeted thrombolysis. The magnetic mesoporous silica nanoparticles (M-MSNs) with the pore size of 6 nm were prepared by method of the surfactant templating on nano magnetic particles. We investigated the feasibility and efficacy of target thrombolysis with the resultant spheres through fibrin agarose plate assay (FAPA) and a dynamic flow system in vitro. It displayed a 30-fold enhancement of urokinase (UK) loading capacity over the particles without mesoporous layer or the magnetic spheres with mesopores of 3.7 nm. A sustained release behavior was observed due to its larger pore size, higher surface area and narrow mesopore channals contrast to non-mesoporous and small mesopore of 3.7 nm controls. Meanwhile, fibrin agarose plate assay revealed that UK/M-MSNs exhibited a more rapid growth rate of thrombolysis even lasting for 3 days. Additionally, flow model test in vitro suggested this kind of nanoparticle complex enhanced the thrombolysis efficacy by 3.5 fold over the same amount of native UK in 30 min. When compared to non-mesoporous and small mesopore controls, it also represented an extremely higher lysis efficiency (ANOVA, P < 0.01) and a shorter reperfusion time (ANOVA, P < 0.001). Such a magnetic mesoporous silica nanoparticle carrier was expected to be further studied for targeted thrombolytic therapy.

  7. An artificial neural network-based noninvasive detector for suction and left atrium pressure in the control of rotary blood pumps: an in vitro study.

    PubMed

    Stöcklmayer, C; Dorffner, G; Schmidt, C; Schima, H

    1995-07-01

    Rotary blood pumps are used in clinical applications to assist circulation via pumping blood from the left atrium to the aorta. Negative inflow pressures at high flow rates can cause suction of the cannula in the left atrium with deleterious effects on the atrial wall, the blood, and the lung. Therefore, stable and reliable detection of suction and the prediction of the left atrium pressure (LAP) would be of major interest for the control of these pumps. This work reports about an in vitro study of such a detector based on artificial neural networks (ANN). In the first project phase, an ANN was used to estimate the LAP based on pump speed, pump flow, and aortic pressure, obtained from a mock circulation. The inputs for the ANN were 11 characteristic values computed from these three parameters. In the second phase, another ANN was trained to classify various system states, such as suction, danger of suction (a state close to actual suction), and no suction. The first ANN was able to estimate the LAP with an accuracy of +/- 1.8 mm Hg. The discrimination of suction versus the other two states could be performed with a sensitivity and specificity of about 95% while the more interesting task of distinguishing danger of suction from no suction reached a sensitivity and specificity of about 65% (leaving 25% of each class unclassified and 10% of each class incorrectly classified).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. An in vitro study of magnetic particle targeting in small blood vessels

    NASA Astrophysics Data System (ADS)

    Udrea, Laura Elena; Strachan, Norval J. C.; Bădescu, Vasile; Rotariu, Ovidiu

    2006-10-01

    The magnetic guidance and capture of particles inside the human body, via the circulatory system, is a novel method for the targeted delivery of drugs. This experimental study confirms in vitro that a dipolar capturing device, based on high-energy magnets with an active space of 8.7 cm × 10 cm × 10 cm, retains colloidal magnetic particles (MPs) (<30 nm) injected in the capillary tubes, where flow velocities are comparable to that encountered in the capillary beds of tumours (<0.5 cm s-1). The build-up of the deposition of the MPs was investigated using video imaging techniques that enabled continuous monitoring of the blocking of the vessel whilst simultaneously recording the colloid's flow rate. The parameters of practical importance (length of MP deposit, time of capillary blocking) were estimated and were found to be dependent on the initial fluid velocity, the MP concentration and the distance between the capillary tube and the polar magnetic pieces. Although the tube used in this experiment is larger (diameter = 0.75 mm, length = 100 mm) than that of real capillaries (diameter = 0.01 mm, length ~1.5 mm), the flow velocities chosen were similar to those encountered in the capillary beds of tumours and the length/diameter ratio was approximately equal (133 for the present set-up, 100-150 for real capillaries). In these circumstances and using the same magnetic field conditions (intensity, gradient) and MPs, there is close similarity with magnetic capture in a microscopic capillary system. Moreover, the macroscopic system permits analysis of the distribution of MPs in the active magnetic space, and consequently the maximum targetable volume. This study revealed that the capture of particles within the active space was strongly influenced by the gradient of the magnetic field and the flow velocity. Thus, when the magnetic field gradient had medium values (0.1-0.3 T cm-1) and the fluid velocity was small (0.15 cm s-1), the particles were captured in small, compact and stable deposits (L < 4 cm) and the time necessary for blocking of the capillary was <150 s. Doubling the value for the flow velocity did not influence significantly either the length of MP deposits nor the blocking time. However, lower gradients (<0.1 T cm-1) and larger velocities (0.3-0.9 cm s-1) result in the formation of larger deposits (4 cm < L < 10 cm) that are unstable at the beginning of the capture process. These large deposits do become stable given sufficient time for the deposition process to take place in conjunction with a decrease in the flow rate. As a consequence, the time necessary for blocking of the capillary increased up to 450 s. Decreasing the MP concentration from 0.02 g cm-3 to 0.005 g cm-3 decreased the deposit lengths by approximately 20% and doubled the values of the blocking time. The maximum targetable volume obtained by the present method is ~350 cm3, which corresponds to medium-sized tumours. The capillary vessels were blocked only for the situation that occurs for microcirculation within a tumour. This reduces the concentration of MPs trapped within the normal tissues, which occurs when using particles of micrometre size. This work showed the potential of using colloidal MPs and dipolar magnetic devices for treatment of human patients, when the affected sites are positioned at medium distances from the surface of the body (e.g. head, neck, breast, hands and legs).

  9. Economic Effectiveness of Healthy Potato Planting Material Production with the Use of Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Mishchenko, I. A.; Galushko, V. P.; Taran, O. P.

    2008-06-01

    Research of potato crop productivity under simulated microgravity allows to identify the plants which can become potentially productive under such stress conditions and that might allow to identify the technological parameters of potato production in other space expeditions. One of the traditional practices of planting material treatment against the viruses are the species in vitro. The study of infectious process flow is conducted in the vitro potato in the conditions of clinorotation. The introduction into culture of the meristems from clinostated plants allowed to obtain the regenerants free from the PVX infection. The employment of simulated microgravity for plant remediation reduced the expenditures on the production of in vitro culture 4,5 times, as compared to termoteraphy.

  10. Accuracy of a New Patch Pump Based on a Microelectromechanical System (MEMS) Compared to Other Commercially Available Insulin Pumps

    PubMed Central

    Borot, Sophie; Franc, Sylvia; Cristante, Justine; Penfornis, Alfred; Benhamou, Pierre-Yves; Guerci, Bruno; Hanaire, Hélène; Renard, Eric; Reznik, Yves; Simon, Chantal

    2014-01-01

    The JewelPUMP™ (JP) is a new patch pump based on a microelectromechanical system that operates without any plunger. The study aimed to evaluate the infusion accuracy of the JP in vitro and in vivo. For the in vitro studies, commercially available pumps meeting the ISO standard were compared to the JP: the MiniMed® Paradigm® 712 (MP), Accu-Chek® Combo (AC), OmniPod® (OP), Animas® Vibe™ (AN). Pump accuracy was measured over 24 hours using a continuous microweighing method, at 0.1 and 1 IU/h basal rates. The occlusion alarm threshold was measured after a catheter occlusion. The JP, filled with physiological serum, was then tested in 13 patients with type 1 diabetes simultaneously with their own pump for 2 days. The weight difference was used to calculate the infused insulin volume. The JP showed reduced absolute median error rate in vitro over a 15-minute observation window compared to other pumps (1 IU/h): ±1.02% (JP) vs ±1.60% (AN), ±1.66% (AC), ±2.22% (MP), and ±4.63% (OP), P < .0001. But there was no difference over 24 hours. At 0.5 IU/h, the JP was able to detect an occlusion earlier than other pumps: 21 (19; 25) minutes vs 90 (85; 95), 58 (42; 74), and 143 (132; 218) minutes (AN, AC, MP), P < .05 vs AN and MP. In patients, the 24-hour flow error was not significantly different between the JP and usual pumps (–2.2 ± 5.6% vs –0.37 ± 4.0%, P = .25). The JP was found to be easier to wear than conventional pumps. The JP is more precise over a short time period, more sensitive to catheter occlusion, well accepted by patients, and consequently, of potential interest for a closed-loop insulin delivery system. PMID:25079676

  11. Physiologically-relevant measurements of flow through coils and stents: towards improved modeling of endovascular treatment of intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Barbour, Michael; Levitt, Michael; Geindreau, Christian; Rolland Du Roscoat, Sabine; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto

    2016-11-01

    The hemodynamic environment in cerebral aneurysms undergoing flow-diverting stent (FDS) or coil embolization treatment plays a critical role in long-term outcomes. Standard modeling approaches to endovascular coils and FDS simplify the complex geometry into a homogenous porous volume or surface through the addition of a Darcy-Brinkman pressure loss term in the momentum equation. The inertial and viscous loss coefficients are typically derived from published in vitro studies of pressure loss across FDS and coils placed in a straight tube, where the only fluid path is across the treatment - an unrealistic representation of treatment apposition in vivo. The pressure drop across FDS and coils in side branch aneurysms located on curved parent vessels is measured. Using PIV, the velocity at the aneurysm neck plane is reconstructed and used to determine loss coefficients for better models of endovascular coils or FDS that account for physiological placement and vessel curvature. These improved models are incorporated into CFD simulations and validated against in vitro model PIV velocity, as well as compared to microCT-based coil/stent-resolving CFD simulations of patient-specific treated aneurysm flow.

  12. Comparison of six different methods to calculate cell densities.

    PubMed

    Camacho-Fernández, Carolina; Hervás, David; Rivas-Sendra, Alba; Marín, Mª Pilar; Seguí-Simarro, Jose M

    2018-01-01

    For in vitro culture of plant and animal cells, one of the critical steps is to adjust the initial cell density. A typical example of this is isolated microspore culture, where specific cell densities have been determined for different species. Out of these ranges, microspore growth is not induced, or is severely reduced. A similar situation occurs in many other plant and animal cell culture systems. Traditionally, researchers have used counting chambers (hemacytometers) to calculate cell densities, but little is still known about their technical advantages. In addition, much less information is available about other, alternative methods. In this work, using isolated eggplant microspore cultures and fluorescent beads (fluorospheres) as experimental systems, we performed a comprehensive comparison of six methods to calculate cell densities: (1) a Neubauer improved hemacytometer, (2) an automated cell counter, (3) a manual-counting method, and three flow cytometry methods based on (4) autofluorescence, (5) propidium iodide staining, and (6) side scattered light (SSC). Our results show that from a technical perspective, hemacytometers are the most reasonable option for cell counting, which may explain their widely spread use. Automated cell counters represent a good compromise between precision and affordability, although with limited accuracy. Finally, the methods based on flow cytometry were, by far, the best in terms of reproducibility and agreement between them, but they showed deficient accuracy and precision. Together, our results show a thorough technical evaluation of each counting method, provide unambiguous arguments to decide which one is the most convenient for the particular case of each laboratory, and in general, shed light into the best way to determine cell densities for in vitro cell cultures. They may have an impact in such a practice not only in the context of microspore culture, but also in any other plant cell culture procedure, or in any process involving particle counting.

  13. Computational models of aortic coarctation in hypoplastic left heart syndrome: considerations on validation of a detailed 3D model.

    PubMed

    Biglino, Giovanni; Corsini, Chiara; Schievano, Silvia; Dubini, Gabriele; Giardini, Alessandro; Hsia, Tain-Yen; Pennati, Giancarlo; Taylor, Andrew M

    2014-05-01

    Reliability of computational models for cardiovascular investigations strongly depends on their validation against physical data. This study aims to experimentally validate a computational model of complex congenital heart disease (i.e., surgically palliated hypoplastic left heart syndrome with aortic coarctation) thus demonstrating that hemodynamic information can be reliably extrapolated from the model for clinically meaningful investigations. A patient-specific aortic arch model was tested in a mock circulatory system and the same flow conditions were re-created in silico, by setting an appropriate lumped parameter network (LPN) attached to the same three-dimensional (3D) aortic model (i.e., multi-scale approach). The model included a modified Blalock-Taussig shunt and coarctation of the aorta. Different flow regimes were tested as well as the impact of uncertainty in viscosity. Computational flow and pressure results were in good agreement with the experimental signals, both qualitatively, in terms of the shape of the waveforms, and quantitatively (mean aortic pressure 62.3 vs. 65.1 mmHg, 4.8% difference; mean aortic flow 28.0 vs. 28.4% inlet flow, 1.4% difference; coarctation pressure drop 30.0 vs. 33.5 mmHg, 10.4% difference), proving the reliability of the numerical approach. It was observed that substantial changes in fluid viscosity or using a turbulent model in the numerical simulations did not significantly affect flows and pressures of the investigated physiology. Results highlighted how the non-linear fluid dynamic phenomena occurring in vitro must be properly described to ensure satisfactory agreement. This study presents methodological considerations for using experimental data to preliminarily set up a computational model, and then simulate a complex congenital physiology using a multi-scale approach.

  14. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.

    PubMed

    Huang, Ke; Boerhan, Rena; Liu, Changming; Jiang, Guoqiang

    2017-12-04

    Nanoparticles (NPs) are widely studied as tumor targeted vehicles. The penetration of NPs into the tumor is considered as a major barrier for delivery of NPs into tumor cell and a big challenge to translate NPs from lab to the clinic. The objective of this study is to know how the surface charge of NPs, the protein corona surrounding the NPs, and the fluid flow around the tumor surface affect the penetration and accumulation of NPs into the tumor, through in vitro penetration study based on a spheroid-on-chip system. Surface decorated polystyrene (PS) NPs (100 nm) carrying positive and negative surface charge were loaded to the multicellular spheroids under static and flow conditions, in the presence or absence of serum proteins. NP penetration was investigated by confocal laser microscopy scanning followed with quantitative image analysis. The results reveal that negatively charged NPs are attached more on the spheroid surface and easier to penetrate into the spheroids. Protein corona, which is formed surrounding the NPs in the presence of serum protein, changes the surface properties of the NPs, weakens the NP-cell affinity, and, therefore, results in lower NP concentration on the spheroid surface but might facilitate deeper penetration. The exterior fluid flow enhances the interstitial flow into the spheroid, which benefits the penetration but also strips the NPs (especially the NPs with protein corona) on the spheroid surface, which decreases the penetration flux significantly. The maximal penetration was obtained by applying negatively charged NPs without protein corona under the flow condition. We hope the present study will help to understand the spatiotemporal performance of drug delivery NPs and inform the rational design of NPs with highly defined drug accumulation localized at a target site.

  15. Ventricular Assist Device implant (AB 5000) prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    PubMed Central

    Shellock, Frank G; Valencerina, Samuel

    2008-01-01

    Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula) using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C). Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula). Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached) to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room) from the 3-Tesla MR system to ensure proper function of the VAD. PMID:18495028

  16. In vitro performance and principles of anti-siphoning devices.

    PubMed

    Freimann, Florian Baptist; Kimura, Takaoki; Stockhammer, Florian; Schulz, Matthias; Rohde, Veit; Thomale, Ulrich-Wilhelm

    2014-11-01

    Anti-siphon devices (ASDs) of various working principles were developed to overcome overdrainage-related complications associated with ventriculoperitoneal shunting. We aimed to provide comparative data on the pressure and flow characteristics of six different types of ASDs (gravity-assisted, membrane-controlled, and flow-regulated) in order to achieve a better understanding of these devices and their potential clinical application. We analyzed three gravity-dependent ASDs (ShuntAssistant [SA], Miethke; Gravity Compensating Accessory [GCA], Integra; SiphonX [SX], Sophysa), two membrane-controlled ASDs (Anti-Siphon Device [IASD], Integra; Delta Chamber [DC], Medtronic), and one flow-regulated ASD (SiphonGuard [SG], Codman). Defined pressure conditions within a simulated shunt system were generated (differential pressure 10-80 cmH2O), and the specific flow and pressure characteristics were measured. In addition, the gravity-dependent ASDs were measured in defined spatial positions (0-90°). The flow characteristics of the three gravity-assisted ASDs were largely dependent upon differential pressure and on their spatial position. All three devices were able to reduce the siphoning effect, but each to a different extent (flow at inflow pressure: 10 cmH2O, siphoning -20 cmH2O at 0°/90°: SA, 7.1 ± 1.2*/2.3 ±  0.5* ml/min; GCA, 10.5 ± 0.8/3.4 ± 0.4* ml/min; SX, 9.5 ± 1.2*/4.7 ± 1.9* ml/min, compared to control, 11.1 ± 0.4 ml/min [*p < 0.05]). The flow characteristics of the remaining ASDs were primarily dependent upon the inflow pressure effect (flow at 10 cmH2O, siphoning 0 cmH2O/ siphoning -20cmH2O: DC, 2.6 ± 0.1/ 4 ± 0.3* ml/min; IASD, 2.5 ± 0.2/ 0.8 ± 0.4* ml/min; SG, 0.8 ± 0.2*/ 0.2 ± 0.1* ml/min [*p < 0.05 vs. control, respectively]). The tested ASDs were able to control the siphoning effect within a simulated shunt system to differing degrees. Future comparative trials are needed to determine the type of device that is superior for clinical application.

  17. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    PubMed

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-01-13

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  18. Performance analysis of a miniature turbine generator for intracorporeal energy harvesting.

    PubMed

    Pfenniger, Alois; Vogel, Rolf; Koch, Volker M; Jonsson, Magnus

    2014-05-01

    Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Body-on-a-chip systems for animal-free toxicity testing.

    PubMed

    Mahler, Gretchen J; Esch, Mandy B; Stokol, Tracy; Hickman, James J; Shuler, Michael L

    2016-10-01

    Body-on-a-chip systems replicate the size relationships of organs, blood distribution and blood flow, in accordance with human physiology. When operated with tissues derived from human cell sources, these systems are capable of simulating human metabolism, including the conversion of a prodrug to its effective metabolite, as well as its subsequent therapeutic actions and toxic side-effects. The system also permits the measurement of human tissue electrical and mechanical reactions, which provide a measure of functional response. Since these devices can be operated with human tissue samples or with in vitro tissues derived from induced pluripotent stem cells (iPS), they can play a significant role in determining the success of new pharmaceuticals, without resorting to the use of animals. By providing a platform for testing in the context of human metabolism, as opposed to animal models, the systems have the potential to eliminate the use of animals in preclinical trials. This article will review progress made and work achieved as a direct result of the 2015 Lush Science Prize in support of animal-free testing. 2016 FRAME.

  20. Applicable research in practice: understanding the hydrophilic and flow property measurements of impression materials.

    PubMed

    Perry, Ronald D; Goldberg, Jeffrey A; Benchimol, Jacques; Orfanidis, John

    2006-10-01

    The flow properties and hydrophilicity of an impression material are key factors that affect its performance. This article details in vitro studies comparing these properties in 1 polyether and several vinyl polysiloxane light-body impression materials. The first series of studies examined the materials' flow properties used in a "shark fin" measurement procedure to determine which exhibited superior flow characteristics. The second series of studies reviewed the hydrophilic properties of the materials. Video analysis was used to record contact angle measurements at the early- and late-stage working times. Results showed 1 polyether material to be more hydrophilic. Applying this knowledge to practice, the authors present a clinical case in which a polyether's superior flow and quality of detail were used to make impressions for a patient receiving 8 single-unit zirconia crowns.

Top