Sample records for vitro high throughput

  1. High Throughput Determination of Critical Human Dosing Parameters (SOT)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...

  2. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    EPA Science Inventory

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  3. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    PubMed Central

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  4. Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays

    EPA Science Inventory

    The use of high-throughput in vitro assays has been proposed to play a significant role in the future of toxicity testing. In this study, rat hepatic metabolic clearance and plasma protein binding were measured for 59 ToxCast phase I chemicals. Computational in vitro-to-in vivo e...

  5. Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

    EPA Science Inventory

    Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multip...

  6. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...

  7. High Throughput Transcriptomics: From screening to pathways

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  8. 20180312 - Applying a High-Throughput PBTK Model for IVIVE (SOT)

    EPA Science Inventory

    The ability to link in vitro and in vivo toxicity enables the use of high-throughput in vitro assays as an alternative to resource intensive animal studies. Toxicokinetics (TK) should help describe this link, but prior work found weak correlation when using a TK model for in vitr...

  9. Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    EPA Science Inventory

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...

  10. Applying a High-Throughput PBTK Model for IVIVE

    EPA Science Inventory

    The ability to link in vitro and in vivo toxicity enables the use of high-throughput in vitro assays as an alternative to resource intensive animal studies. Toxicokinetics (TK) should help describe this link, but prior work found weak correlation when using a TK model for in vitr...

  11. Integrated Model of Chemical Perturbations of a Biological PathwayUsing 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    EPA Science Inventory

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity pa...

  12. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  13. Evaluation of Sequencing Approaches for High-Throughput Transcriptomics - (BOSC)

    EPA Science Inventory

    Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. The generation of high-throughput global gene expression...

  14. Evaluating the Value of Augmenting In Vitro Hazard Assessment with Exposure and Pharmacokinetics Considerations for Chemical Prioritization

    EPA Science Inventory

    Over time, toxicity-testing paradigms have progressed from low-throughput in vivo animal studies for limited numbers of chemicals to high-throughput (HT) in vitro screening assays for thousands of chemicals. Such HT in vitro methods, along with HT in silico predictions of popula...

  15. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  16. Recent developments in software tools for high-throughput in vitro ADME support with high-resolution MS.

    PubMed

    Paiva, Anthony; Shou, Wilson Z

    2016-08-01

    The last several years have seen the rapid adoption of the high-resolution MS (HRMS) for bioanalytical support of high throughput in vitro ADME profiling. Many capable software tools have been developed and refined to process quantitative HRMS bioanalysis data for ADME samples with excellent performance. Additionally, new software applications specifically designed for quan/qual soft spot identification workflows using HRMS have greatly enhanced the quality and efficiency of the structure elucidation process for high throughput metabolite ID in early in vitro ADME profiling. Finally, novel approaches in data acquisition and compression, as well as tools for transferring, archiving and retrieving HRMS data, are being continuously refined to tackle the issue of large data file size typical for HRMS analyses.

  17. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways, OpenTox USA 2015 Poster

    EPA Science Inventory

    Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...

  18. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  19. HPLC-high-resolution mass spectrometry with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay.

    PubMed

    Ramanathan, Ragu; Ghosal, Anima; Ramanathan, Lakshmi; Comstock, Kate; Shen, Helen; Ramanathan, Dil

    2018-05-01

    Evaluation of HPLC-high-resolution mass spectrometry (HPLC-HRMS) full scan with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay. Microsomal incubates were analyzed using a high resolution and high mass accuracy Q-Exactive mass spectrometer to collect integrated qualitative and quantitative (qual/quant) data. Within assay, positive-to-negative polarity switching HPLC-HRMS method allowed quantification of eight and two probe compounds in the positive and negative ionization modes, respectively, while monitoring for LOR and its metabolites. LOR-inhibited CYP2C19 and showed higher activity for CYP2D6, CYP2E1 and CYP3A4. Overall, LC-HRMS-based nontargeted full scan quantitation allowed to improve the throughput of the in vitro cocktail drug-drug interaction assay.

  20. Complementing in vitro hazard assessment with exposure and pharmacokinetics considerations for chemical prioritization

    EPA Science Inventory

    Traditional toxicity testing involves a large investment in resources, often using low-throughput in vivo animal studies for limited numbers of chemicals. An alternative strategy is the emergence of high-throughput (HT) in vitro assays as a rapid, cost-efficient means to screen t...

  1. Toxicokinetic and Dosimetry Modeling Tools for Exposure ...

    EPA Pesticide Factsheets

    New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide mechanistic insights on chemical action. However, extrapolating from in vitro chemical concentrations to target tissue or blood concentrations in vivo is fraught with uncertainties, and modeling is dependent upon pharmacokinetic variables not measured in in vitro assays. To address this need, new tools have been created for characterizing, simulating, and evaluating chemical toxicokinetics. Physiologically-based pharmacokinetic (PBPK) models provide estimates of chemical exposures that produce potentially hazardous tissue concentrations, while tissue microdosimetry PK models relate whole-body chemical exposures to cell-scale concentrations. These tools rely on high-throughput in vitro measurements, and successful methods exist for pharmaceutical compounds that determine PK from limited in vitro measurements and chemical structure-derived property predictions. These high throughput (HT) methods provide a more rapid and less resource–intensive alternative to traditional PK model development. We have augmented these in vitro data with chemical structure-based descriptors and mechanistic tissue partitioning models to construct HTPBPK models for over three hundred environmental and pharmace

  2. High Throughput Determination of Critical Human Dosing ...

    EPA Pesticide Factsheets

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data into predicted human equivalent doses that can be linked with biologically relevant exposure scenarios. Thus, HTTK provides essential data for risk prioritization for thousands of chemicals that lack TK data. One critical HTTK parameter that can be measured in vitro is the unbound fraction of a chemical in plasma (Fub). However, for chemicals that bind strongly to plasma, Fub is below the limits of detection (LOD) for high throughput analytical chemistry, and therefore cannot be quantified. A novel method for quantifying Fub was implemented for 85 strategically selected chemicals: measurement of Fub was attempted at 10%, 30%, and 100% of physiological plasma concentrations using rapid equilibrium dialysis assays. Varying plasma concentrations instead of chemical concentrations makes high throughput analytical methodology more likely to be successful. Assays at 100% plasma concentration were unsuccessful for 34 chemicals. For 12 of these 34 chemicals, Fub could be quantified at 10% and/or 30% plasma concentrations; these results imply that the assay failure at 100% plasma concentration was caused by plasma protein binding for these chemicals. Assay failure for the remaining 22 chemicals may

  3. A High-throughput Assay for mRNA Silencing in Primary Cortical Neurons in vitro with Oligonucleotide Therapeutics.

    PubMed

    Alterman, Julia F; Coles, Andrew H; Hall, Lauren M; Aronin, Neil; Khvorova, Anastasia; Didiot, Marie-Cécile

    2017-08-20

    Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo . We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.

  4. Metabolomics Approach for Toxicity Screening of Volatile Substances

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However, the ch...

  5. Evaluation of sequencing approaches for high-throughput toxicogenomics (SOT)

    EPA Science Inventory

    Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. We present the evaluation of three toxicogenomics platfo...

  6. Accounting For Uncertainty in The Application Of High Throughput Datasets

    EPA Science Inventory

    The use of high throughput screening (HTS) datasets will need to adequately account for uncertainties in the data generation process and propagate these uncertainties through to ultimate use. Uncertainty arises at multiple levels in the construction of predictors using in vitro ...

  7. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  8. 20180312 - Uncertainty and Variability in High-Throughput Toxicokinetics for Risk Prioritization (SOT)

    EPA Science Inventory

    Streamlined approaches that use in vitro experimental data to predict chemical toxicokinetics (TK) are increasingly being used to perform risk-based prioritization based upon dosimetric adjustment of high-throughput screening (HTS) data across thousands of chemicals. However, ass...

  9. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  10. High-Throughput Exposure Potential Prioritization for ToxCast Chemicals

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when prioritizing research resources in order to identify risk to human populations and the environment. High-throughput assays to identify biological activity in vitro have allowed the ToxCastTM program to i...

  11. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when allocating resources to identify risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro have allowed the ToxCastTM program to identify...

  12. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  13. Incorporating Population Variability and Susceptible Subpopulations into Dosimetry for High-Throughput Toxicity Testing

    EPA Science Inventory

    Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assess...

  14. Comparison of Human Induced Pluripotent Stem Cell-Derived Neurons and Rat Primary CorticalNeurons as In Vitro Models of Neurite Outgrowth

    EPA Science Inventory

    High-throughput assays that can quantify chemical-induced changes at the cellular and molecular level have been recommended for use in chemical safety assessment. High-throughput, high content imaging assays for the key cellular events of neurodevelopment have been proposed to ra...

  15. Workshop Background and Summary of Webinars (IVIVE workshop)

    EPA Science Inventory

    Toxicokinetics (TK) provides a bridge between hazard and exposure by predicting tissue concentrations due to exposure. Higher throughput toxicokinetics (HTTK) appears to provide essential data to established context for in vitro bioactivity data obtained through high throughput ...

  16. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization (Annual Meeting of ISES)

    EPA Science Inventory

    The U.S. EPA must consider thousands of chemicals when allocating resources to assess risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro are being implemented in the ToxCastTM program to rapidly characteri...

  17. Integration of chemical-specific exposure and pharmacokinetic information with the chemical-agnostic AOP framework to support high throughput risk assessment

    EPA Science Inventory

    Application of the Adverse Outcome Pathway (AOP) framework and high throughput toxicity testing in chemical-specific risk assessment requires reconciliation of chemical concentrations sufficient to trigger a molecular initiating event measured in vitro and at the relevant target ...

  18. Application of Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for Interpretation of High-throughput Screening Assay for Thyroperoxidase Inhibition

    EPA Science Inventory

    In vitro based assays are used to identify potential endocrine disrupting chemicals. Thyroperoxidase (TPO), an enzyme essential for thyroid hormone (TH) synthesis, is a target site for disruption of the thyroid axis for which a high-throughput screening (HTPS) assay has recently ...

  19. Differentiating pathway-specific from nonspecific effects in high-throughput toxicity data: A foundation for prioritizing adverse outcome pathway development

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential ...

  20. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

    EPA Science Inventory

    In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...

  1. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    EPA Science Inventory

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  2. Neural Progenitor Cells as Models for High-Throughput Screens of Developmental Neurotoxicity: State of the Science

    EPA Science Inventory

    In vitro, high-throughput approaches have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramificat...

  3. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening*

    EPA Science Inventory

    AbstractHigh-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may ...

  4. Higher Throughput Toxicokinetics to Allow Extrapolation (EPA-Japan Bilateral EDSP meeting)

    EPA Science Inventory

    As part of "Ongoing EDSP Directions & Activities" I will present CSS research on high throughput toxicokinetics, including in vitro data and models to allow rapid determination of the real world doses that may cause endocrine disruption.

  5. Forecasting Exposure in Order to Use High Throughput Hazard Data in a Risk-based Context (WC9)

    EPA Science Inventory

    The ToxCast program and Tox21 consortium have evaluated over 8000 chemicals using in vitro high-throughput screening (HTS) to identify potential hazards. Complementary exposure science needed to assess risk, and the U.S. Environmental Protection Agency (EPA)’s ExpoCast initiative...

  6. Differentiating pathway-specific from non-specific effects in high-throughput toxicity data: A foundation for prioritizing adverse outcome pathway development

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with pote...

  7. High Throughput PBTK: Evaluating EPA’s Open-Source Data and Tools for Dosimetry and Exposure Reconstruction

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics (TK). While HTS generates in vitro bioactivity d...

  8. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  9. Prediction of in vivo hepatotoxicity effects using in vitro transcriptomics data (SOT)

    EPA Science Inventory

    High-throughput in vitro transcriptomics data support molecular understanding of chemical-induced toxicity. Here, we evaluated the utility of such data to predict liver toxicity. First, in vitro gene expression data for 93 genes was generated following exposure of metabolically c...

  10. A set of ligation-independent in vitro translation vectors for eukaryotic protein production.

    PubMed

    Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás

    2008-03-27

    The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Four newly designed in vitro translation vectors have been constructed which allow fast and parallel cloning and protein purification, thus representing useful molecular tools for high-throughput production of eukaryotic proteins.

  11. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆

    PubMed Central

    Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan

    2016-01-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875

  12. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-throughput In Vitro Data, High-throughput Exposure Modeling, and Physiologically-Based Pharmacokinetic/Pharmacodynamic Modeling

    EPA Science Inventory

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can...

  13. Application of Computational and High-Throughput in vitro ...

    EPA Pesticide Factsheets

    Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, are driving the development of new methods for assessing the risk of toxicity. These methods include the use of in vitro high-throughput screening assays and computational models. This talk will review a variety of high-throughput, non-animal methods being used at the U.S. EPA to screen chemicals for a variety of toxicity endpoints, with a focus on their potential to be endocrine disruptors as part of the Endocrine Disruptor Screening Program (EDSP). These methods all start with the use of in vitro assays, e.g. for activity against the estrogen and androgen receptors (ER and AR) and targets in the steroidogenesis and thyroid signaling pathways. Because all individual assays are subject to a variety of noise processes and technology-specific assay artefacts, we have developed methods to create consensus predictions from multiple assays against the same target. The goal of these models is to both robustly predict in vivo activity, and also to provide quantitative estimates of uncertainty. This talk will describe these models, and how they are validated against both in vitro and in vivo reference chemicals. The U.S. EPA has deemed the in vitro ER model results to be of high enough accuracy t

  14. Application of computational and high-throughput in vitro ...

    EPA Pesticide Factsheets

    Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, are driving the development of new methods for assessing the risk of toxicity. These methods include the use of in vitro high-throughput screening assays and computational models. This talk will review a variety of high-throughput, non-animal methods being used at the U.S. EPA to screen chemicals for their potential to be endocrine disruptors as part of the Endocrine Disruptor Screening Program (EDSP). These methods all start with the use of in vitro assays, e.g. for activity against the estrogen and androgen receptors (ER and AR) and targets in the steroidogenesis and thyroid signaling pathways. Because all individual assays are subject to a variety of noise processes and technology-specific assay artefacts, we have developed methods to create consensus predictions from multiple assays against the same target. The goal of these models is to both robustly predict in vivo activity, and also to provide quantitative estimates of uncertainty. This talk will describe these models, and how they are validated against both in vitro and in vivo reference chemicals. The U.S. EPA has deemed the in vitro ER model results to be of high enough accuracy to be used as a substitute for the current EDSP Ti

  15. Identification of candidate reference chemicals for in vitro steroidogenesis assays.

    PubMed

    Pinto, Caroline Lucia; Markey, Kristan; Dix, David; Browne, Patience

    2018-03-01

    The Endocrine Disruptor Screening Program (EDSP) is transitioning from traditional testing methods to integrating ToxCast/Tox21 in vitro high-throughput screening assays for identifying chemicals with endocrine bioactivity. The ToxCast high-throughput H295R steroidogenesis assay may potentially replace the low-throughput assays currently used in the EDSP Tier 1 battery to detect chemicals that alter the synthesis of androgens and estrogens. Herein, we describe an approach for identifying in vitro candidate reference chemicals that affect the production of androgens and estrogens in models of steroidogenesis. Candidate reference chemicals were identified from a review of H295R and gonad-derived in vitro assays used in methods validation and published in the scientific literature. A total of 29 chemicals affecting androgen and estrogen levels satisfied all criteria for positive reference chemicals, while an additional set of 21 and 15 chemicals partially fulfilled criteria for positive reference chemicals for androgens and estrogens, respectively. The identified chemicals included pesticides, pharmaceuticals, industrial and naturally-occurring chemicals with the capability to increase or decrease the levels of the sex hormones in vitro. Additionally, 14 and 15 compounds were identified as potential negative reference chemicals for effects on androgens and estrogens, respectively. These candidate reference chemicals will be informative for performance-based validation of in vitro steroidogenesis models. Copyright © 2017. Published by Elsevier Ltd.

  16. Opportunities and Challenges in Employing In Vitro-In Vivo Extrapolation (IVIVE) to the Tox21 Dataset

    EPA Science Inventory

    In vitro-in vivo extrapolation (IVIVE), or the process of using in vitro data to predict in vivo phenomena, provides key opportunities to bridge the disconnect between high-throughput screening data and real-world human exposures and potential health effects. Strategies utilizing...

  17. High-throughput in Vitro Data To Inform Prioritization of Ambient Water Monitoring and Testing for Endocrine Active Chemicals.

    PubMed

    Heiger-Bernays, Wendy J; Wegner, Susanna; Dix, David J

    2018-01-16

    The presence of industrial chemicals, consumer product chemicals, and pharmaceuticals is well documented in waters in the U.S. and globally. Most of these chemicals lack health-protective guidelines and many have been shown to have endocrine bioactivity. There is currently no systematic or national prioritization for monitoring waters for chemicals with endocrine disrupting activity. We propose ambient water bioactivity concentrations (AWBCs) generated from high throughput data as a health-based screen for endocrine bioactivity of chemicals in water. The U.S. EPA ToxCast program has screened over 1800 chemicals for estrogen receptor (ER) and androgen receptor (AR) pathway bioactivity. AWBCs are calculated for 110 ER and 212 AR bioactive chemicals using high throughput ToxCast data from in vitro screening assays and predictive pathway models, high-throughput toxicokinetic data, and data-driven assumptions about consumption of water. Chemical-specific AWBCs are compared with measured water concentrations in data sets from the greater Denver area, Minnesota lakes, and Oregon waters, demonstrating a framework for identifying endocrine bioactive chemicals. This approach can be used to screen potential cumulative endocrine activity in drinking water and to inform prioritization of future monitoring, chemical testing and pollution prevention efforts.

  18. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  19. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.

    PubMed

    Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan

    2016-04-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.

  20. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform

    PubMed Central

    Rizvi, Imran; Moon, Sangjun; Hasan, Tayyaba; Demirci, Utkan

    2013-01-01

    In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel™ spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fibroblasts micropatterned on Matrigel™. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening. PMID:21298805

  1. Development of a high-throughput in vitro assay using a novel Caco-2/rat hepatocyte system for the prediction of oral plasma area under the concentration versus time curve (AUC) in rats.

    PubMed

    Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E

    2006-01-01

    Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.

  2. A tiered approach for integrating exposure and dosimetry with in vitro dose-response data in the modern risk assessment paradigm

    EPA Science Inventory

    High-throughput (HT) risk screening approaches apply in vitro dose-response data to estimate potential health risks that arise from exposure to chemicals. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biolog...

  3. Human Exposure Estimates and Oral Equivalents of In Vitro Bioactivity for Prioritizing, Monitoring and Testing of Environmental Chemicals

    EPA Science Inventory

    High-throughput, lower-cost, in vitro toxicity testing is currently being evaluated for use in prioritization and eventually for predicting in vivo toxicity. Interpreting in vitro data in the context of in vivo human relevance remains a formidable challenge. A key component in us...

  4. Citrulline-modified phage display: a novel high-throughput discovery approach for the identification of citrulline-containing ligands.

    PubMed

    Somers, Klaartje; Stinissen, Piet; Somers, Veerle

    2011-06-01

    Phage display is a high-throughput technology used to identify ligands for a given target. A drawback of the approach is the absence of PTMs in phage-displayed peptides. The applicability of phage display could be broadened considerably by the implementation of PTMs in this system. The aim of this study was to investigate the possible application of citrullination, a PTM of an arginine into a citrulline amino acid, in filamentous (M13) and lytic (T7) phage display. After in vitro citrullination of T7 and M13 phages, citrullination was confirmed and the infectivity of both citrullinated and non-citrullinated phage was compared by titer determination. We demonstrated the successful in vitro citrullination of T7 and M13 phage-displayed peptides. This in vitro modification did not affect the viability or infectivity of the T7 virions, a necessary prerequisite for the implementation of this approach in T7 phage display. For M13 phage, however, the infecting phage titer decreased five-fold upon citrullination, limiting the use of this modification in M13 phage display. In conclusion, in vitro citrullination can be applied in T7 phage display giving rise to a high-throughput and sensitive approach to identify citrulline-containing ligands by the use of the strengths of phage display technology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Assessment of in vitro high throughput pharmacokinetic data to predict in vivo pharmacokinetic data of environmental chemicals

    EPA Science Inventory

    Assessing the health risks of the thousands of chemicals in use requires both toxicology and pharmacokinetic (PK) data that can be generated more quickly. For PK, in vitro clearance assays with hepatocytes and serum protein binding assays provide a means to generate high throughp...

  6. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  7. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.

    PubMed

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-09-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  8. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    PubMed

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  9. Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications

    PubMed Central

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152

  10. Computational toxicology and in silico modeling of embryogenesis

    EPA Science Inventory

    High-throughput screening (HTS) is providing a rich source of in vitro data for predictive toxicology. ToxCast™ HTS data presently covers 1060 broad-use chemicals and captures >650 in vitro features for diverse biochemical and receptor binding activities, multiplexed reporter gen...

  11. Complementing in vitro screening assays with in silico molecular chemistry tools to examine potential in vivo metabolite-mediated effects

    EPA Science Inventory

    High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive un...

  12. Evaluation of In Vitro Biotransformation Using HepaRG Cells to Improve High-Throughput Chemical Hazard Prediction: A Toxicogenomics Analysis (SOT)

    EPA Science Inventory

    The US EPA’s ToxCast program has generated a wealth of data in >600 in vitro assayson a library of 1060 environmentally relevant chemicals and failed pharmaceuticals to facilitate hazard identification. An inherent criticism of many in vitro-based strategies is the inability of a...

  13. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  14. High-Throughput Functional Validation of Progression Drivers in Lung Adenocarcinoma

    DTIC Science & Technology

    2013-09-01

    2) a novel molecular barcoding approach that facilitates cost- effective detection of driver events following in vitro and in vivo functional screens...aberration construction pipeline, which we named High-Throughput 3 Mutagenesis and Molecular Barcoding (HiTMMoB; Fig.1). We have therefore been able...lentiviral vector specially constructed for this project. This vector is compatible with our flexible molecular barcoding technology (Fig. 1), thus each

  15. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    PubMed

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  16. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure

    EPA Science Inventory

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors ...

  17. In Vitro Methods To Measure Toxicity Of Chemicals

    DTIC Science & Technology

    2004-12-01

    industrial compounds for toxicity will require high-throughput in vitro assays with which to select candidate compounds for more intensive animal...for estimating the starting dose for the rat oral acute toxicity test, thus reducing and refining the use of animals in the toxicological

  18. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    EPA Science Inventory

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  19. In Vitro Toxicity Screening Technique for Volatile Substances ...

    EPA Pesticide Factsheets

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the challenge is that many of these chemicals are volatile and not amenable to HTS robotic liquid handling applications. We assembled an in vitro cell culture apparatus capable of screening volatile chemicals for toxicity with potential for miniaturization for high throughput. BEAS-2B lung cells were grown in an enclosed culture apparatus under air-liquid interface (ALI) conditions, and exposed to an array of xenobiotics in 5% CO2. Use of ALI conditions allows direct contact of cells with a gas xenobiotic, as well as release of endogenous gaseous molecules without interference by medium on the apical surface. To identify potential xenobiotic-induced perturbations in cell homeostasis, we monitored for alterations of endogenously-produced gaseous molecules in air directly above the cells, termed “headspace”. Alterations in specific endogenously-produced gaseous molecules (e.g., signaling molecules nitric oxide (NO) and carbon monoxide (CO) in headspace is indicative of xenobiotic-induced perturbations of specific cellular processes. Additionally, endogenously produced volatile organic compounds (VOCs) may be monitored in a nonspecific, discovery manner to determine whether cell processes are

  20. Evaluation of Pharmacokinetic Assumptions Using a 443 Chemical Library (SOT)

    EPA Science Inventory

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds using in vivo data, we ...

  1. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  2. Kinetic assay for high-throughput screening of in vitro transthyretin amyloid fibrillogenesis inhibitors.

    PubMed

    Dolado, Ignacio; Nieto, Joan; Saraiva, Maria João M; Arsequell, Gemma; Valencia, Gregori; Planas, Antoni

    2005-01-01

    Stabilization of tetrameric transthyretin (TTR) by binding of small ligands is a current strategy aimed at inhibiting amyloid fibrillogenesis in transthyretin-associated pathologies, such as senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). A kinetic assay is developed for rapid evaluation of compounds as potential in vitro inhibitors in a high-throughput screening format. It is based on monitoring the time-dependent increase of absorbance due to turbidity occurring by acid-induced protein aggregation. The method uses the highly amyloidogenic Y78F mutant of human transthyretin (heterogously expressed in Escherichia coli cells). Initial rates of protein aggregation at different inhibitor concentrations follow a monoexponential dose-response curve from which inhibition parameters are calculated. For the assay development, thyroid hormones and nonsteroidal antiinflamatory drugs were chosen among other reference compounds. Some of them are already known to be in vitro inhibitors of TTR amyloidogenesis. Analysis time is optimized to last 1.5 h, and the method is implemented in microtiter plates for screening of libraries of potential fibrillogenesis inhibitors.

  3. Turbulent flow chromatography TFC-tandem mass spectrometry supporting in vitro/vivo studies of NCEs in high throughput fashion.

    PubMed

    Verdirame, Maria; Veneziano, Maria; Alfieri, Anna; Di Marco, Annalise; Monteagudo, Edith; Bonelli, Fabio

    2010-03-11

    Turbulent Flow Chromatography (TFC) is a powerful approach for on-line extraction in bioanalytical studies. It improves sensitivity and reduces sample preparation time, two factors that are of primary importance in drug discovery. In this paper the application of the ARIA system to the analytical support of in vivo pharmacokinetics (PK) and in vitro drug metabolism studies is described, with an emphasis in high throughput optimization. For PK studies, a comparison between acetonitrile plasma protein precipitation (APPP) and TFC was carried out. Our optimized TFC methodology gave better S/N ratios and lower limit of quantification (LOQ) than conventional procedures. A robust and high throughput analytical method to support hepatocyte metabolic stability screening of new chemical entities was developed by hyphenation of TFC with mass spectrometry. An in-loop dilution injection procedure was implemented to overcome one of the main issues when using TFC, that is the early elution of hydrophilic compounds that renders low recoveries. A comparison between off-line solid phase extraction (SPE) and TFC was also carried out, and recovery, sensitivity (LOQ), matrix effect and robustness were evaluated. The use of two parallel columns in the configuration of the system provided a further increase of the throughput. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Application of High-Throughput In Vitro Assays for Risk-Based ...

    EPA Pesticide Factsheets

    Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos

  5. 20150325 - Application of High-Throughput In Vitro Assays for ...

    EPA Pesticide Factsheets

    Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos

  6. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads.

    PubMed

    Sasagawa, Yohei; Danno, Hiroki; Takada, Hitomi; Ebisawa, Masashi; Tanaka, Kaori; Hayashi, Tetsutaro; Kurisaki, Akira; Nikaido, Itoshi

    2018-03-09

    High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30-50%, and detect more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads.

  7. Virtual Liver: Quantitative Dose-Response Using Systems Biology

    EPA Science Inventory

    The U.S. EPA’s ToxCast™ program uses hundreds of high-throughput, in vitro assays to screen chemicals in order to rapidly identify signatures of toxicity. These assays measure the in vitro concentrations at which cellular pathways are perturbed by chemicals. The U.S. EPA’s Virtu...

  8. In silico study of in vitro GPCR assays by QSAR modeling

    EPA Science Inventory

    The U.S. EPA is screening thousands of chemicals of environmental interest in hundreds of in vitro high-throughput screening (HTS) assays (the ToxCast program). One goal is to prioritize chemicals for more detailed analyses based on activity in molecular initiating events (MIE) o...

  9. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment

    EPA Science Inventory

    We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The q...

  10. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    EPA Science Inventory

    Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowled...

  11. Comparison of L1000 and Affymetrix Microarray for In Vitro Concentration-Response Gene Expression Profiling (SOT)

    EPA Science Inventory

    Advances in high-throughput screening technologies and in vitro systems have opened doors for cost-efficient evaluation of chemical effects on a diversity of biological endpoints. However, toxicogenomics platforms remain too costly to evaluate large libraries of chemicals in conc...

  12. PRELIMINARY ASSESSMENTS OF IN VITRO PHARMACOKINETIC DATA AND EXPOSURE INFORMATION FOR THE TOXCAST PHASE II CHEMICALS

    EPA Science Inventory

    Momentum has been growing in Toxicology to assess the utility of high-throughput screening (HTS) assays in the determination of chemical testing priorities. However, in vitro potencies determined in these assays do not consider in vivo bioavailability, clearance or exposure estim...

  13. Integrating Exposure, Pharmacokinetics, And Dosimetry With In Vitro Dose-Response Data To Evaluate Chemical Risk

    EPA Science Inventory

    High throughput in vitro toxicity testing of hundreds to thousands of chemicals across any number of biological endpoints allows for rapidly assessing human and ecosystem health impacts, thus reducing resources associated with traditional animal testing. In order to apply these i...

  14. Toxicokinetic and Dosimetry Modeling Tools for Exposure Reconstruction: US EPA's Rapid Exposure and Dosimetry (RED) Project

    EPA Science Inventory

    New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide ...

  15. Evaluation of Pharmacokinetic Assumptions Using a 443 Chemical Library (IVIVE)

    EPA Science Inventory

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds us...

  16. Gas Phase Probe Molecules for Assessing In vitro Metabolism to Infer an In vivo Response

    EPA Science Inventory

    Efficient and accurate in vitro high-throughput screening (HTS) methods use cellular and molecular based adverse outcome pathways (AOPs) as central elements for exposure assessment and chemical prioritization. However, not all AOPs are based on human or animal systems biology, bu...

  17. Predictive Endocrine Testing in the 21st Century Using In Vitro Assays of Estrogen Receptor Signaling Responses

    EPA Science Inventory

    Thousands of environmental chemicals are subject to regulatory review for their potential to be endocrine disruptors (ED). In vitro high-throughput screening (HTS) assays have emerged as a potential tool for prioritizing chemicals for ED-related whole-animal tests. In this study,...

  18. 20170308 - Higher Throughput Toxicokinetics to Allow ...

    EPA Pesticide Factsheets

    As part of "Ongoing EDSP Directions & Activities" I will present CSS research on high throughput toxicokinetics, including in vitro data and models to allow rapid determination of the real world doses that may cause endocrine disruption. This is a presentation as part of the U.S. Environmental Protection Agency – Japan Ministry of the Environment 12th Bilateral Meeting on Endocrine Disruption Test Methods Development.

  19. Fixing clearance as early as lead optimization using high throughput in vitro incubations in combination with exact mass detection and automatic structure elucidation of metabolites.

    PubMed

    Zimmerlin, Alfred; Kiffe, Michael

    2013-01-01

    New enabling MS technologies have made it possible to elucidate metabolic pathways present in ex vivo (blood, bile and/or urine) or in vitro (liver microsomes, hepatocytes and/or S9) samples. When investigating samples from high throughput assays the challenge that the user is facing now is to extract the appropriate information and compile it so that it is understandable to all. Medicinal chemist may then design the next generation of (better) drug candidates combining the needs for potency and metabolic stability and their synthetic creativity. This review focuses on the comparison of these enabling MS technologies and the IT tools developed for their interpretation.

  20. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  1. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models.

    PubMed

    Hop, Cornelis E C A; Cole, Mark J; Davidson, Ralph E; Duignan, David B; Federico, James; Janiszewski, John S; Jenkins, Kelly; Krueger, Suzanne; Lebowitz, Rebecca; Liston, Theodore E; Mitchell, Walter; Snyder, Mark; Steyn, Stefan J; Soglia, John R; Taylor, Christine; Troutman, Matt D; Umland, John; West, Michael; Whalen, Kevin M; Zelesky, Veronica; Zhao, Sabrina X

    2008-11-01

    Evaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data. All steps will be described in detail and the value of the data on drug discovery projects will be discussed as well. Finally, in vitro ADME screening can generate large quantities of data obtained under identical conditions to allow building of reliable in silico models.

  2. High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions.

    PubMed

    Sun, Huaju; Chang, Qing; Liu, Long; Chai, Kungang; Lin, Guangyan; Huo, Qingling; Zhao, Zhenxia; Zhao, Zhongxing

    2017-11-22

    Several novel peptides with high ACE-I inhibitory activity were successfully screened from sericin hydrolysate (SH) by coupling in silico and in vitro approaches for the first time. Most screening processes for ACE-I inhibitory peptides were achieved through high-throughput in silico simulation followed by in vitro verification. QSAR model based predicted results indicated that the ACE-I inhibitory activity of these SH peptides and six chosen peptides exhibited moderate high ACE-I inhibitory activities (log IC 50 values: 1.63-2.34). Moreover, two tripeptides among the chosen six peptides were selected for ACE-I inhibition mechanism analysis which based on Lineweaver-Burk plots indicated that they behave as competitive ACE-I inhibitors. The C-terminal residues of short-chain peptides that contain more H-bond acceptor groups could easily form hydrogen bonds with ACE-I and have higher ACE-I inhibitory activity. Overall, sericin protein as a strong ACE-I inhibition source could be deemed a promising agent for antihypertension applications.

  3. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.

    PubMed

    Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T

    2016-09-01

    Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Risk-Based High-Throughput Chemical Screening and Prioritization using Exposure Models and in Vitro Bioactivity Assays.

    PubMed

    Shin, Hyeong-Moo; Ernstoff, Alexi; Arnot, Jon A; Wetmore, Barbara A; Csiszar, Susan A; Fantke, Peter; Zhang, Xianming; McKone, Thomas E; Jolliet, Olivier; Bennett, Deborah H

    2015-06-02

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.

  5. Adverse outcome pathway (AOP) development II: Best practices

    EPA Science Inventory

    Organization of existing and emerging toxicological knowledge into adverse outcome pathway (AOP) descriptions can facilitate greater application of mechanistic data, including high throughput in vitro, high content omics and imaging, and biomarkers, in risk-based decision-making....

  6. Linking ToxCast Signatures with Functional Consequences: Proof-of-Concept Study using Known Inhibitors of Vascular Development

    EPA Science Inventory

    The USEPA’s ToxCast program is developing a novel approach to chemical toxicity testing using high-throughput screening (HTS) assays to rapidly test thousands of chemicals against hundreds of in vitro molecular targets. This approach is based on the premise that in vitro HTS bioa...

  7. Identifying Functionally Linked Gene Modules Within Biological Pathways Assessed by ToxCast In Vitro Assays

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro high-throughput screening assays to profile the bioactivity of environmental chemicals, with the ultimate goal of predicting in vivo toxicity. We hypothesize that in modeling toxicity it will be more constructive to understand the pert...

  8. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    EPA Science Inventory

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  9. Virtual Liver: Evaluating the Impact of Hepatic Microdosimetry for ToxCast Chemicals

    EPA Science Inventory

    The U.S. EPA’s ToxCastTM program uses hundreds of high-throughput, in vitro assays to screen chemicals for potential toxicity. The assays are used to probe in vitro concentrations at which target cellular pathways and processes are perturbed by these chemicals. The U.S. EPA’s Vir...

  10. On Selecting a Minimal Set of In Vitro Assays to Reliably Determine Estrogen Agonist Activity

    EPA Science Inventory

    The US EPA is charged with screening chemicals for their ability to be endocrine disruptors through interaction with the estrogen, androgen and thyroid axes. The agency is starting to explore the use of high-throughput in vitro assays to use in the Endocrine Disruptor Screening P...

  11. Production of Furin-cleaved Papillomavirus Pseudovirions and their use for in vitro neutralization assays of L1 or L2-specific antibodies

    PubMed Central

    Wang, Joshua W; Matsui, Ken; Pan, Yuanji; Kwak, Kihyuck; Peng, Shiwen; Kemp, Troy; Pinto, Ligia; Roden, Richard B.S

    2015-01-01

    Immunization with Human Papillomavirus (HPV) L1 virus-like particles or L2 capsid protein elicits neutralizing antibodies that mediate protection. A high throughput and sensitive in vitro neutralization assay is therefore valuable for prophylactic HPV vaccine studies. Over several hours during infection of the genital tract, virions take on a distinct intermediate conformation, including a required furin cleavage of L2 at its N-terminus. This intermediate is an important target for neutralization by L2-specific antibody, but it is very transiently exposed during in vitro infection of most cell lines resulting in insensitive measurement for L2, but not L1-specific neutralizing antibodies. To model this intermediate, we describe a protocol to generate furin-cleaved HPV pseudovirions (fc-PsV) which deliver an encapsidated reporter plasmid to facilitate infectivity measurements. We also describe a protocol for use of fc-PsV in a high throughput in vitro neutralization assay for the sensitive measurement of both L1 and L2-specific neutralizing antibodies. PMID:26237105

  12. An integrated in vitro and in vivo high throughput screen identifies treatment leads for ependymoma

    PubMed Central

    Atkinson, Jennifer M.; Shelat, Anang A.; Carcaboso, Angel Montero; Kranenburg, Tanya A.; Arnold, Alexander; Boulos, Nidal; Wright, Karen; Johnson, Robert A.; Poppleton, Helen; Mohankumar, Kumarasamypet M.; Feau, Clementine; Phoenix, Timothy; Gibson, Paul; Zhu, Liqin; Tong, Yiai; Eden, Chris; Ellison, David W.; Priebe, Waldemar; Koul, Dimpy; Yung, W. K. Alfred; Gajjar, Amar; Stewart, Clinton F.; Guy, R. Kip; Gilbertson, Richard J.

    2011-01-01

    Summary Using a mouse model of ependymoma—a chemoresistant brain tumor—we combined multi-cell high-throughput screening (HTS), kinome-wide binding assays, and in vivo efficacy studies, to identify potential treatments with predicted toxicity against neural stem cells (NSC). We identified kinases within the insulin signaling pathway and centrosome cycle as regulators of ependymoma cell proliferation, and their corresponding inhibitors as potential therapies. FDA approved drugs not currently used to treat ependymoma were also identified that posses selective toxicity against ependymoma cells relative to normal NSCs both in vitro and in vivo e.g., 5-fluoruracil. Our comprehensive approach advances understanding of the biology and treatment of ependymoma including the discovery of several treatment leads for immediate clinical translation. PMID:21907928

  13. The US EPA ToxCast Program: Moving from Data Generation ...

    EPA Pesticide Factsheets

    The U.S. EPA ToxCast program is entering its tenth year. Significant learning and progress have occurred towards collection, analysis, and interpretation of the data. The library of ~1,800 chemicals has been subject to ongoing characterization (e.g., identity, purity, stability) and is unique in its scope, structural diversity, and use scenarios making it ideally suited to investigate the underlying molecular mechanisms of toxicity. The ~700 high-throughput in vitro assay endpoints cover 327 genes and 293 pathways as well as other integrated cellular processes and responses. The integrated analysis of high-throughput screening data has shown that most environmental and industrial chemicals are very non-selective in the biological targets they perturb, while a small subset of chemicals are relatively selective for specific biological targets. The selectivity of a chemical informs interpretation of the screening results while also guiding future mode-of-action or adverse outcome pathway approaches. Coupling the high-throughput in vitro assays with medium-throughput pharmacokinetic assays and reverse dosimetry allows conversion of the potency estimates to an administered dose. Comparison of the administered dose to human exposure provides a risk-based context. The lessons learned from this effort will be presented and discussed towards application to chemical safety decision making and the future of the computational toxicology program at the U.S. EPA. SOT pr

  14. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    PubMed Central

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  15. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  16. Embryonic vascular disruption adverse outcomes: Linking high-throughput signaling signatures with functional consequences.

    PubMed

    Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W

    2017-04-13

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Embryonic vascular disruption adverse outcomes: Linking high throughput signaling signatures with functional consequences.

    PubMed

    Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W

    2017-06-01

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. High-speed Fourier ptychographic microscopy based on programmable annular illuminations.

    PubMed

    Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian

    2018-05-16

    High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.

  19. Developing Reverse Toxicokinetic Models to Correlate In Vitro and In Vivo Activity (ICCVAM Communities of Practice Webinar 2015)

    EPA Science Inventory

    Many commercial and environmental chemicals lack toxicity data necessary for users and risk assessors to make fully informed decisions about potential health effects. Generating these data using high throughput in vitro cell- or biochemical-based tests would be faster and less e...

  20. Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data

    PubMed Central

    Fujimori, Shigeo; Hirai, Naoya; Ohashi, Hiroyuki; Masuoka, Kazuyo; Nishikimi, Akihiko; Fukui, Yoshinori; Washio, Takanori; Oshikubo, Tomohiro; Yamashita, Tatsuhiro; Miyamoto-Sato, Etsuko

    2012-01-01

    Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks. PMID:23056904

  1. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    PubMed

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

  2. Fluorescence-based high-throughput screening of dicer cleavage activity.

    PubMed

    Podolska, Katerina; Sedlak, David; Bartunek, Petr; Svoboda, Petr

    2014-03-01

    Production of small RNAs by ribonuclease III Dicer is a key step in microRNA and RNA interference pathways, which employ Dicer-produced small RNAs as sequence-specific silencing guides. Further studies and manipulations of microRNA and RNA interference pathways would benefit from identification of small-molecule modulators. Here, we report a study of a fluorescence-based in vitro Dicer cleavage assay, which was adapted for high-throughput screening. The kinetic assay can be performed under single-turnover conditions (35 nM substrate and 70 nM Dicer) in a small volume (5 µL), which makes it suitable for high-throughput screening in a 1536-well format. As a proof of principle, a small library of bioactive compounds was analyzed, demonstrating potential of the assay.

  3. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DOE PAGES

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; ...

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  4. Pathway Profiling and Tissue Modeling Using ToxCast HTS Data

    EPA Science Inventory

    High-throughput screening (HTS) and high-content screening (HCS) assays are providing data-rich studies to probe and profile the direct cellular effects of thousands of chemical compounds in commerce or potentially entering the environment. In vitro profiling may compare unknown ...

  5. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    PubMed Central

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  6. Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine.

    PubMed

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-12-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnologybased materials and living cells in both in vitro and in vivo settings.

  7. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    PubMed Central

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  8. QSAR Classification of ToxCast and Tox21 Chemicals on the Basis of Estrogen Receptor Assays (FutureToxII)

    EPA Science Inventory

    The ToxCast and Tox21 programs have tested ~8,200 chemicals in a broad screening panel of in vitro high-throughput screening (HTS) assays for estrogen receptor (ER) agonist and antagonist activity. The present work uses this large in vitro data set to develop in silico QSAR model...

  9. Deriving Signatures of In Vivo Toxicity Using Both Efficacy and Potency Information from In Vitro Assays: Evaluating Model Performance as a Function of Increasing Variability in Experimental Data

    EPA Science Inventory

    The US EPA ToxCast program aims to develop methods for mechanistically-based chemical prioritization using a suite of high throughput, in vitro assays that probe relevant biological pathways, and coupling them with statistical and machine learning methods that produce predictive ...

  10. Evaluating chemical safety: ToxCast, Tipping Points and Virtual Tissues (Tamburro Symposium)

    EPA Science Inventory

    This presentation provides an overview of high-throughput toxicology at the NCCT using high-content imaging and computational models for analyzing chemical safety. In In particular, this work outlines the derivation of toxicological "tipping points" from in vitro concentration- a...

  11. ToxRefDB: Classifying ToxCast™ Phase I Chemicals Utilizing Structured Toxicity Information

    EPA Science Inventory

    There is an essential need for highly detailed chemicals classifications within the ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, relevant endpoints and toxicities m...

  12. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  13. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    PubMed

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.

  14. In Vitro Testing of Engineered Nanomaterials in the EPA’s ToxCast Program (WC9)

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  15. Pathway Profiling and Tissue Modeling of Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  16. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  17. Virtual Tissues in Toxicology

    EPA Science Inventory

    New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects acr...

  18. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    PubMed

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  19. Protein and Antibody Engineering by Phage Display

    PubMed Central

    Frei, J.C.; Lai, J.R.

    2017-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328

  20. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  1. High-Throughput Toxicity Testing: New Strategies for ...

    EPA Pesticide Factsheets

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it

  2. Incorporating High-Throughput Exposure Predictions with ...

    EPA Pesticide Factsheets

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast™ efforts expand (i.e., Phase II) beyond food-use pesticides towards a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. EPA ExpoCast™ program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, three or 13 chemicals possessed AERs <1 or <100, respectively. Diverse bioactivities y across a range of assays and concentrations was also noted across the wider chemical space su

  3. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    PubMed Central

    Wetmore, Barbara A.; Wambaugh, John F.; Allen, Brittany; Ferguson, Stephen S.; Sochaski, Mark A.; Setzer, R. Woodrow; Houck, Keith A.; Strope, Cory L.; Cantwell, Katherine; Judson, Richard S.; LeCluyse, Edward; Clewell, Harvey J.; Thomas, Russell S.; Andersen, Melvin E.

    2015-01-01

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization. PMID:26251325

  4. High-throughput docking for the identification of new influenza A virus polymerase inhibitors targeting the PA-PB1 protein-protein interaction.

    PubMed

    Tintori, Cristina; Laurenzana, Ilaria; Fallacara, Anna Lucia; Kessler, Ulrich; Pilger, Beatrice; Stergiou, Lilli; Botta, Maurizio

    2014-01-01

    A high-throughput molecular docking approach was successfully applied for the selection of potential inhibitors of the Influenza RNA-polymerase which act by targeting the PA-PB1 protein-protein interaction. Commercially available compounds were purchased and biologically evaluated in vitro using an ELISA-based assay. As a result, some compounds possessing a 3-cyano-4,6-diphenyl-pyridine nucleus emerged as effective inhibitors with the best ones showing IC50 values in the micromolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Using ToxCast data to reconstruct dynamic cell state trajectories and estimate toxicological points of departure

    EPA Science Inventory

    AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging...

  6. In vitro data and in silico models for computational toxicology (Teratology Society ILSI HESI workshop)

    EPA Science Inventory

    The challenge of assessing the potential developmental health risks for the tens of thousands of environmental chemicals is beyond the capacity for resource-intensive animal protocols. Large data streams coming from high-throughput (HTS) and high-content (HCS) profiling of biolog...

  7. Comparison of PC12 and Cerebellar Granule Cell Cultures for Evaluating Neurite Outgrowth Using High Content Screening

    EPA Science Inventory

    Development of high-throughput assays for chemical screening and hazard identification is a pressing priority worldwide. One approach uses in vitro, cell-based assays which recapitulate biological events observed in vivo. Neurite outgrowth is one such critical cellular process un...

  8. COMPARISON OF NEUROSCREEN-1 AND CEREBELLAR GRANULE CELL CULTURES FOR EVALUATING NEURITE OUTGROWTH USING THE ARRAYSCAN HIGH CONTENT ANALYSIS SYSTEM

    EPA Science Inventory

    A major challenge facing the Environmental Protection Agency is the development of high-throughput screening assays amendable to resource-efficient developmental neurotoxicity for chemical screening and toxicity prioritization. One approach uses in vitro, cell-based assays which...

  9. The ToxCast Pathway Database for Identifying Toxicity Signatures and Potential Modes of Action from Chemical Screening Data

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), through its ToxCast program, is developing predictive toxicity approaches that will use in vitro high-throughput screening (HTS), high-content screening (HCS) and toxicogenomic data to predict in vivo toxicity phenotypes. There are ...

  10. Modeling Steroidogenesis Disruption Using High-Throughput In Vitro Screening Data (SOT)

    EPA Science Inventory

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on ...

  11. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  13. Evaluation of Pharmacokinetic Assumptions Using a 443 ...

    EPA Pesticide Factsheets

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds using in vivo data, we are now able to rapidly parameterize generic PBPK models using in vitro data to allow IVIVE for chemicals tested for bioactivity via high-throughput screening. However, these new models are expected to have limited accuracy due to their simplicity and generalization of assumptions. We evaluated the assumptions and performance of a generic PBPK model (R package “httk”) parameterized by a library of in vitro PK data for 443 chemicals. We evaluate and calibrate Schmitt’s method by comparing the predicted volume of distribution (Vd) and tissue partition coefficients to in vivo measurements. The partition coefficients are initially over predicted, likely due to overestimation of partitioning into phospholipids in tissues and the lack of lipid partitioning in the in vitro measurements of the fraction unbound in plasma. Correcting for phospholipids and plasma binding improved the predictive ability (R2 to 0.52 for partition coefficients and 0.32 for Vd). We lacked enough data to evaluate the accuracy of changing the model structure to include tissue blood volumes and/or separate compartments for richly/poorly perfused tissues, therefore we evaluated the impact of these changes on model

  14. Engineering a High-Throughput 3-D In Vitro Glioblastoma Model

    PubMed Central

    Fan, Yantao; Avci, Naze G.; Nguyen, Duong T.; Dragomir, Andrei; Xu, Feng; Akay, Metin

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults because of its highly invasive behavior. The existing treatment for GBM, which involves a combination of resection, chemotherapy, and radiotherapy, has a very limited success rate with a median survival rate of <1 year. This is mainly because of the failure of early detection and effective treatment. We designed a novel 3-D GBM cell culture model based on microwells that could mimic in vitro environment and help to bypass the lack of suitable animal models for preclinical toxicity tests. Microwells were fabricated from simple and inexpensive polyethylene glycol material for the control of in vitro 3-D culture. We applied the 3-D micropatterning system to GBM (U-87) cells using the photolithography technique to control the cell spheroids’ shape, size, and thickness. Our preliminary results suggested that uniform GBM spheroids can be formed in 3-D, and the size of these GBM spheroids depends on the size of microwells. The viability of the spheroids generated in this manner was quantitatively evaluated using live/dead assay and shown to improve over 21 days. We believe that in vitro 3-D cell culture model could help to reduce the time of the preclinical brain tumor growth studies. The proposed novel platform could be useful and cost-effective for high-throughput screening of cancer drugs and assessment of treatment responses. PMID:27170911

  15. Marine neurotoxins: state of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood.

    PubMed

    Nicolas, Jonathan; Hendriksen, Peter J M; Gerssen, Arjen; Bovee, Toine F H; Rietjens, Ivonne M C M

    2014-01-01

    Marine biotoxins can accumulate in fish and shellfish, representing a possible threat for consumers. Many marine biotoxins affect neuronal function essentially through their interaction with ion channels or receptors, leading to different symptoms including paralysis and even death. The detection of marine biotoxins in seafood products is therefore a priority. Official methods for control are often still using in vivo assays, such as the mouse bioassay. This test is considered unethical and the development of alternative assays is urgently required. Chemical analyses as well as in vitro assays have been developed to detect marine biotoxins in seafood. However, most of the current in vitro alternatives to animal testing present disadvantages: low throughput and lack of sensitivity resulting in a high number of false-negative results. Thus, there is an urgent need for the development of new in vitro tests that would allow the detection of marine biotoxins in seafood products at a low cost, with high throughput combined with high sensitivity, reproducibility, and predictivity. Mode of action based in vitro bioassays may provide tools that fulfil these requirements. This review covers the current state of the art of such mode of action based alternative assays to detect neurotoxic marine biotoxins in seafood. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation

    PubMed Central

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G.; Garraway, Levi A.; Struhl, Kevin

    2015-01-01

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment. PMID:25902495

  17. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation.

    PubMed

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G; Garraway, Levi A; Struhl, Kevin

    2015-05-05

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment.

  18. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    PubMed

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  19. Fostering efficacy and toxicity evaluation of traditional Chinese medicine and natural products: Chick embryo as a high throughput model bridging in vitro and in vivo studies.

    PubMed

    Wu, Tong; Yu, Gui-Yuan; Xiao, Jia; Yan, Chang; Kurihara, Hiroshi; Li, Yi-Fang; So, Kwok-Fai; He, Rong-Rong

    2018-04-19

    Efficacy and safety assessments are essential thresholds for drug candidates from preclinical to clinical research. Conventional mammalian in vivo models cannot offer rapid pharmacological and toxicological screening, whereas cell-based or cell-free in vitro systems often lead to inaccurate results because of the lack of physiological environment. Within the avian species, gallus gallus is the first bird to have its genome sequencing. Meantime, chick embryo is an easily operating, relatively transparent and extensively accessible model, whose physiological and pathological alterations can be visualized by egg candler, staining and image technologies. These features facilitate chick embryo as a high-throughput screening platform bridging in vivo and in vitro gaps in the pharmaceutical research. Due to the complicated ingredients and multiple-targets natures of traditional Chinese medicine (TCM), testing the efficacy and safety of TCM by in vitro methods are laborious and inaccurate, while testing in mammalian models consume massive cost and time. As such, the productive living organism chick embryo serves as an ideal biological system for pharmacodynamics studies of TCM. Herein, we comprehensively update recent progresses on the specialty of chick embryo in evaluation of efficacy and toxicity of drugs, with special concerns of TCM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. High Throughput Pharmacokinetics for Environmental Chemicals (FutureToxII)

    EPA Science Inventory

    Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant bio...

  1. Perspectives on pathway perturbation: Focused research to enhance 3R objectives

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies are emerging as 21st century tools for hazard identification. Computational methods that strategically examine cross-species conservation of protein sequence/structural information for chemical molecular targets ...

  2. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions.

    PubMed

    De Diego, Nuria; Fürst, Tomáš; Humplík, Jan F; Ugena, Lydia; Podlešáková, Kateřina; Spíchal, Lukáš

    2017-01-01

    High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using Arabidops is as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput Arabidopsis in vitro bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of Arabidopsis rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.

  3. Predicting organ toxicity using in vitro bioactivity data and chemical structure

    EPA Science Inventory

    Animal testing alone cannot practically evaluate the health hazard posed by tens of thousands of environmental chemicals. Computational approaches together with high-throughput experimental data may provide more efficient means to predict chemical toxicity. Here, we use a superv...

  4. Toxicogenomic identification of biomarkers of acute respiratory exposure sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  5. Toxicogenomic identification of biomarkers of acute respiratory expsoure to sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  6. *Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    EPA Science Inventory

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens fol...

  7. Elucidation of Adverse Bioactivity Profiles as Predictors of Toxicity Potential

    EPA Science Inventory

    Toxicity testing in vitro remains a formidable challenge due to lack of understanding of key molecular targets and pathways underlying many pathological events. The combination of genome sequencing and widespread application of high-throughput screening tools have provided the me...

  8. A vision for modernizing environmental risk assessment

    EPA Science Inventory

    In 2007, the US National Research Council (NRC) published a Vision and Strategy for [human health] Toxicity Testing in the 21st century. Central to the vision was increased reliance on high throughput in vitro testing and predictive approaches based on mechanistic understanding o...

  9. Development and Validation of a Computational Model for Androgen Receptor Activity

    EPA Science Inventory

    Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can mo...

  10. Customizing the Connectivity Map Approach for Functional Evaluation in Toxicogenomics Studies (SOT)

    EPA Science Inventory

    Evaluating effects on the transcriptome can provide insight on putative chemical-specific mechanisms of action (MOAs). With whole genome transcriptomics technologies becoming more amenable to high-throughput screening, libraries of chemicals can be evaluated in vitro to produce l...

  11. Naval Medical Research and Development News. Volume 8, Issue 1, January 2016

    DTIC Science & Technology

    2016-01-01

    you are active or reserve, civilian, contractor , or volunteer - your reach spans the globe and you are an important part of fulfilling that trust...human health risk assessment rely on determination of biologically-effective concentrations in suites of in vitro high throughput screening ( HTS ...Dashboard (http:// actor.epa.gov/dashboard/) provides access to the results of more than 800 HTS in vitro assay endpoints for over 1800 chemicals

  12. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  13. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.

    PubMed

    Lai, David Y

    2012-01-01

    A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.

  14. High-Throughput Protein Expression Using a Combination of Ligation-Independent Cloning (LIC) and Infrared Fluorescent Protein (IFP) Detection

    PubMed Central

    Dortay, Hakan; Akula, Usha Madhuri; Westphal, Christin; Sittig, Marie; Mueller-Roeber, Bernd

    2011-01-01

    Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. PMID:21541323

  15. Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells

    PubMed Central

    Li, Nianzhen; Tourovskaia, Anna; Folch, Albert

    2013-01-01

    The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology—consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium—has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Micro fabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types. PMID:15139302

  16. High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase.

    PubMed

    Kim, Sung Bae; Ozawa, Takeaki; Watanabe, Shigeaki; Umezawa, Yoshio

    2004-08-10

    Nucleocytoplasmic trafficking of functional proteins plays a key role in regulating gene expressions in response to extracellular signals. We developed a genetically encoded bioluminescent indicator for monitoring the nuclear trafficking of target proteins in vitro and in vivo. The principle is based on reconstitution of split fragments of Renilla reniformis (Rluc) by protein splicing with a DnaE intein (a catalytic subunit of DNA polymerase III). A target cytosolic protein fused to the N-terminal half of Rluc is expressed in mammalian cells. If the protein translocates into the nucleus, the Rluc moiety meets the C-terminal half of Rluc, and full-length Rluc is reconstituted by protein splicing. We demonstrated quantitative cell-based in vitro sensing of ligand-induced translocation of androgen receptor, which allowed high-throughput screening of exo- and endogenous agonists and antagonists. Furthermore, the indicator enabled noninvasive in vivo imaging of the androgen receptor translocation in the brains of living mice with a charge-coupled device imaging system. These rapid and quantitative analyses in vitro and in vivo provide a wide variety of applications for screening pharmacological or toxicological compounds and testing them in living animals.

  17. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).

    PubMed

    Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T

    2017-04-15

    RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Testing quantitative adverse outcome pathway predictions using aromatase inhibitors in female fathead minnows

    EPA Science Inventory

    To become more efficient and cost effective regulatory toxicology is increasingly averting from whole animal testing toward collecting data at lower levels of biological organization, through such means as in vitro high throughput screening (HTS) assays. When anchored to relevant...

  19. Multiscale Systems Modeling of Male Reproductive Tract Defects: from Genes to Populations (SOT)

    EPA Science Inventory

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB...

  20. ADAPTING THE MEDAKA EMBRYO ASSAY TO A HIGH-THROUGHPUT APPROACH FOR DEVELOPMENTAL TOXICITY TESTING.

    EPA Science Inventory

    Chemical exposure during embryonic development may cause persistent effects, yet developmental toxicity data exist for very few chemicals. Current testing procedures are time consuming and costly, underlining the need for rapid and low cost screening strategies. While in vitro ...

  1. A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening and Publication Standards

    PubMed Central

    Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.

    2013-01-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach. PMID:23229562

  2. Protein and Antibody Engineering by Phage Display.

    PubMed

    Frei, J C; Lai, J R

    2016-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. © 2016 Elsevier Inc. All rights reserved.

  3. Intersection of toxicogenomics and high throughput screening in the Tox21 program: an NIEHS perspective.

    PubMed

    Merrick, B Alex; Paules, Richard S; Tice, Raymond R

    Humans are exposed to thousands of chemicals with inadequate toxicological data. Advances in computational toxicology, robotic high throughput screening (HTS), and genome-wide expression have been integrated into the Tox21 program to better predict the toxicological effects of chemicals. Tox21 is a collaboration among US government agencies initiated in 2008 that aims to shift chemical hazard assessment from traditional animal toxicology to target-specific, mechanism-based, biological observations using in vitro assays and lower organism models. HTS uses biocomputational methods for probing thousands of chemicals in in vitro assays for gene-pathway response patterns predictive of adverse human health outcomes. In 1999, NIEHS began exploring the application of toxicogenomics to toxicology and recent advances in NextGen sequencing should greatly enhance the biological content obtained from HTS platforms. We foresee an intersection of new technologies in toxicogenomics and HTS as an innovative development in Tox21. Tox21 goals, priorities, progress, and challenges will be reviewed.

  4. Semiautomated cell-free conversion of prion protein: applications for high-throughput screening of potential antiprion drugs.

    PubMed

    Breydo, Leonid; Bocharova, Olga V; Baskakov, Ilia V

    2005-04-01

    Transmissible spongiform encephalitis (TSE) is a lethal illness with no known treatment. Conversion of the cellular prion protein (PrP(C)) into the infectious isoform (PrP(Sc)) is believed to be the central event in the development of this disease. Recombinant PrP (rPrP) protein folded into the amyloid conformation was shown to cause the transmissible form of prion disease in transgenic mice and can be used as a surrogate model for PrP(Sc). Here, we introduced a semiautomated assay of in vitro conversion of rPrP protein to the amyloid conformation. We have examined the effect of known inhibitors of prion propagation on this conversion and found good correlation between their activity in this assay and that in other in vitro assays. We thus propose that the conversion of rPrP to the amyloid isoform can serve as a high-throughput screen for possible inhibitors of PrP(Sc) formation and potential anti-TSE drugs.

  5. The Application of a Highly Purified Rat Leydig Cell Assay as a Complement to the H295R Steroidogenesis Assay for the Evaluation of Toxicant Induced Alterations in Testosterone Production

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals have been associated with compromised testosterone production leading to abnormal male reproductive development and altered spermatogenesis. In vitro high throughput screening (HTS) assays are needed to evaluate risk to testosterone prod...

  6. High Throughput Screening for Anti–Trypanosoma cruzi Drug Discovery

    PubMed Central

    Alonso-Padilla, Julio; Rodríguez, Ana

    2014-01-01

    The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti–T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti–T. cruzi drug entities in the near future, are reviewed here. PMID:25474364

  7. IspE Inhibitors Identified by a Combination of In Silico and In Vitro High-Throughput Screening

    PubMed Central

    Tidten-Luksch, Naomi; Grimaldi, Raffaella; Torrie, Leah S.; Frearson, Julie A.; Hunter, William N.; Brenk, Ruth

    2012-01-01

    CDP-ME kinase (IspE) contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP) pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens. PMID:22563402

  8. High throughput screening for anti-Trypanosoma cruzi drug discovery.

    PubMed

    Alonso-Padilla, Julio; Rodríguez, Ana

    2014-12-01

    The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti-T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti-T. cruzi drug entities in the near future, are reviewed here.

  9. Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format.

    PubMed

    Hashimoto, Junko; Watanabe, Taku; Seki, Tatsuya; Karasawa, Satoshi; Izumikawa, Miho; Seki, Tomoe; Iemura, Shun-Ichiro; Natsume, Tohru; Nomura, Nobuo; Goshima, Naoki; Miyawaki, Atsushi; Takagi, Motoki; Shin-Ya, Kazuo

    2009-09-01

    Protein-protein interactions (PPIs) play key roles in all cellular processes and hence are useful as potential targets for new drug development. To facilitate the screening of PPI inhibitors as anticancer drugs, the authors have developed a high-throughput screening (HTS) system using an in vitro protein fragment complementation assay (PCA) with monomeric Kusabira-Green fluorescent protein (mKG). The in vitro PCA system was established by the topological formation of a functional complex between 2 split inactive mKG fragments fused to target proteins, which fluoresces when 2 target proteins interact to allow complementation of the mKG fragments. Using this assay system, the authors screened inhibitors for TCF7/beta-catenin, PAC1/PAC2, and PAC3 homodimer PPIs from 123,599 samples in their natural product library. Compound TB1 was identified as a specific inhibitor for PPI of PAC3 homodimer. TB1 strongly inhibited the PPI of PAC3 homodimer with an IC(50) value of 0.020 microM and did not inhibit PPI between TCF7/beta-catenin and PAC1/PAC2 even at a concentration of 250 microM. The authors thus demonstrated that this in vitro PCA system applicable to HTS in a 1536-well format is capable of screening for PPI inhibitors from a huge natural product library.

  10. Integrating Biological and Chemical Data for Hepatotoxicity Prediction (SOT)

    EPA Science Inventory

    The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. A set of 677 chemicals were represented by 711 bioactivity descriptors (from ToxCast assays),...

  11. Reverse Toxicokinetics: From In Vitro Concentration to In Vivo Dose

    EPA Science Inventory

    This talk provided an update to an international audience about the state of the science to relate results from high-throughput bioactivity screening efforts out to an external exposure that would be required to achieve blood concentrations at which these bioactivities may be obs...

  12. 77 FR 68773 - FIFRA Scientific Advisory Panel; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... for physical chemical properties that cannot be easily tested in in vitro systems or stable enough for.... Quantitative structural-activity relationship (QSAR) models and estrogen receptor (ER) expert systems development. High-throughput data generation and analysis (expertise focused on how this methodology can be...

  13. SeqAPASS: Sequence alignment to predict across-species susceptibility

    EPA Science Inventory

    Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, s...

  14. The Salmonella Mutagenicity Assay: The Stethoscope of Genetic Toxicology for the 21 st Century

    EPA Science Inventory

    OBJECTIVES: According to the 2007 National Research Council report Toxicology for the Twenty-first Century, modem methods ("omics," in vitro assays, high-throughput testing, computational methods, etc.) will lead to the emergence of a new approach to toxicology. The Salmonella ma...

  15. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  16. 20170824 - A New Tox21 Strategic Plan and the Integration of EPA Science (WC10)

    EPA Science Inventory

    The predominant focus of Tox21 collaboration has been on developing and applying high-throughput in vitro screening to hazard identification and dose-response. To remain relevant, the interagency collaboration must broaden its focus to developing new predictive toxicology testing...

  17. An HTRF® Assay for the Protein Kinase ATM.

    PubMed

    Adams, Phillip; Clark, Jonathan; Hawdon, Simon; Hill, Jennifer; Plater, Andrew

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase that plays a key role in the regulation of DNA damage pathways and checkpoint arrest. In recent years, there has been growing interest in ATM as a therapeutic target due to its association with cancer cell survival following genotoxic stress such as radio- and chemotherapy. Large-scale targeted drug screening campaigns have been hampered, however, by technical issues associated with the production of sufficient quantities of purified ATM and the availability of a suitable high-throughput assay. Using a purified, functionally active recombinant ATM and one of its physiological substrates, p53, we have developed an in vitro FRET-based activity assay that is suitable for high-throughput drug screening.

  18. Novel selection methods for DNA-encoded chemical libraries

    PubMed Central

    Chan, Alix I.; McGregor, Lynn M.; Liu, David R.

    2015-01-01

    Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries. PMID:25723146

  19. 20180312 - Evaluating the applicability of read-across tools and high throughput screening data for food relevant chemicals (SOT)

    EPA Science Inventory

    Alternative toxicity assessment methods to characterize the hazards of chemical substances have been proposed to reduce animal testing and screen thousands of chemicals in an efficient manner. Resources to accomplish these goals include utilizing large in vitro chemical screening...

  20. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data

    EPA Science Inventory

    EPA's ToxCast™ project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database wou...

  1. Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T‑47D Human Ductal Carcinoma Cells

    EPA Science Inventory

    High-throughput screening (HTS) assays capable of profiling thousands of environmentally relevant chemicals for in vitro biological activity provide useful information on the potential for disrupting endocrine pathways. Disruption of the estrogen signaling pathway has been implic...

  2. Predictive Toxicology and Computer Simulation of Male Reproductive Development (Duke U KURe and PMRC research day)

    EPA Science Inventory

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB...

  3. The Use of Purified Rat Leydig Cells Complements the H295R Screen to Detect Chemical Induced Alterations in Testosterone Production

    EPA Science Inventory

    Exposure to endocrine disrupting contaminants can compromise testosterone production and lead to abnormal male reproductive development and altered spermatogenesis. In vitro high throughput screening (HTS) assays are needed to evaluate risk to testosterone production, yet the mai...

  4. CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL TOXICITY USING LITERATURE MINING-BASED WEIGHTING OF TOXCAST ASSAYS

    EPA Science Inventory

    Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals...

  5. Using in Vitro High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals

    EPA Science Inventory

    Over the past 20 years, an increased focus on detecting environmental chemicals posing a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. EPA Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP, whic...

  6. Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells

    EPA Science Inventory

    The large number of diverse chemicals in production or in the environment has motivated medium to high throughput in vitro or small animal approaches to efficiently profile chemical-biological interactions and to utilize this information to assess risks of chemical exposures on h...

  7. The Use of Purified Rat Leydig Cells Complements the H295R Screen to Detect Chemical-Induced Alterations in Testosterone Production

    EPA Science Inventory

    Exposure to endocrine disrupting contaminants can compromise testosterone production and lead to abnormal male reproductive development and altered spermatogenesis. In vitro high throughput screening (HTS) assays are needed to evaluate risk to testosterone production, yet the mai...

  8. Identification and Prioritization of Chemical Mixtures from Environmental Residue Data

    EPA Science Inventory

    High throughput toxicity testing has greatly improved the speed at which single chemicals can be screened using in vitro methods. However, people are not exposed to a single chemical at a time, rather to a mixture of chemicals. Even with the increased speed of these methods, te...

  9. NCCT ToxCast Program for Nanomaterial Prioritization: High-Throughput Screening, Consideration of Exposure, and Bioactivity Profiling/Modeling

    EPA Science Inventory

    Find relationships between bioactivities and NM characteristics or testing conditions. Recommend a dose metric for NMs in vitro studies. Establish associations to in vivo toxicity or pathways identified from testing of conventional chemicals with ToxCast HTS methods. May be abl...

  10. A Call for Nominations of Quantitative High-Throughput Screening Assays from Relevant Human Toxicity Pathways

    EPA Science Inventory

    The National Research Council of the United States National Academies of Science has recently released a document outlining a long-range vision and strategy for transforming toxicity testing from largely whole animal-based testing to one based on in vitro assays. “Toxicity Testin...

  11. Using Gene Expression Biomarkers to Identify Chemicals that Induce Key Events in Cancer and Endocrine Disruption AOPs: Androgen Receptor as an Example

    EPA Science Inventory

    High-throughput transcriptomic (HTTr) technologies are increasingly being used to screen environmental chemicals in vitro to provide mechanistic context for regulatory testing. The development of gene expression biomarkers that accurately predict molecular and toxicological effec...

  12. Markush enumeration to manage, mesh and manipulate substances of unknown or variable composition (ACS Fall meeting 5 of 12)

    EPA Science Inventory

    The National Center for Computational Toxicology (NCCT) at the US Environmental Protection Agency has measured, assembled and delivered an enormous quantity and diversity of data for the environmental sciences. This includes high-throughput in vitro screening data, legacy in vivo...

  13. Mixture toxicology in the 21st century: Pathway-based concepts and tools

    EPA Science Inventory

    The past decade has witnessed notable evolution of approaches focused on predicting chemical hazards and risks in the absence of empirical data from resource-intensive in vivo toxicity tests. In silico models, in vitro high-throughput toxicity assays, and short-term in vivo tests...

  14. Extrapolating toxicity data across species using U.S. EPA SeqAPASS tool

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  15. EVALUATING TOOLS AND MODELS USED FOR QUANTITATIVE EXTRAPOLATION OF IN VITRO TO IN VIVO DATA FOR NEUROTOXICANTS

    EPA Science Inventory

    Comparisons of high throughput screening data to human exposures assume that media concentrations are equivalent to steady-state blood concentrations. This assumes the partitioning of the chemical between media and cells is equivalent to the partitioning of the chemical between b...

  16. Public Access to Environmental Chemistry Data via the CompTox Chemistry Dashboard (ACS Fall Meeting 6 of 12)

    EPA Science Inventory

    The National Center for Computational Toxicology (NCCT) has assembled and delivered an enormous quantity and diversity of data for the environmental sciences through the CompTox Chemistry Dashboard. These data include high-throughput in vitro screening data, in vivo and functiona...

  17. Biological profiling and dose-response modeling tools, characterizing uncertainty

    EPA Science Inventory

    Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number...

  18. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Model Applications to Screen Environmental Hazards.

    EPA Science Inventory

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...

  19. A Comparison of Machine Learning Algorithms for Chemical Toxicity Classification Using a Simulated Multi-Scale Data Model

    EPA Science Inventory

    Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in hig...

  20. Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay.

    PubMed

    Shaneyfelt, Mark E; Burke, Anna D; Graff, Joel W; Jutila, Mark A; Hardy, Michele E

    2006-09-01

    There is widespread interest in the use of innate immune modulators as a defense strategy against infectious pathogens. Using rotavirus as a model system, we developed a cell-based, moderate-throughput screening (MTS) assay to identify compounds that reduce rotavirus infectivity in vitro, toward a long-term goal of discovering immunomodulatory agents that enhance innate responses to viral infection. A natural product library consisting of 280 compounds was screened in the assay and 15 compounds that significantly reduced infectivity without cytotoxicity were identified. Time course analysis of four compounds with previously characterized effects on inflammatory gene expression inhibited replication with pre-treatment times as minimal as 2 hours. Two of these four compounds, alpha-mangostin and 18-beta-glycyrrhetinic acid, activated NFkappaB and induced IL-8 secretion. The assay is adaptable to other virus systems, and amenable to full automation and adaptation to a high-throughput format. Identification of several compounds with known effects on inflammatory and antiviral gene expression that confer resistance to rotavirus infection in vitro suggests the assay is an appropriate platform for discovery of compounds with potential to amplify innate antiviral responses.

  1. Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High Throughput Screening

    PubMed Central

    NEL, ANDRE; XIA, TIAN; MENG, HUAN; WANG, XIANG; LIN, SIJIE; JI, ZHAOXIA; ZHANG, HAIYUAN

    2014-01-01

    Conspectus The production of engineered nanomaterials (ENMs) is a scientific breakthrough in material design and the development of new consumer products. While the successful implementation of nanotechnology is important for the growth of the global economy, we also need to consider the possible environmental health and safety (EHS) impact as a result of the novel physicochemical properties that could generate hazardous biological outcomes. In order to assess ENM hazard, reliable and reproducible screening approaches are needed to test the basic materials as well as nano-enabled products. A platform is required to investigate the potentially endless number of bio-physicochemical interactions at the nano/bio interface, in response to which we have developed a predictive toxicological approach. We define a predictive toxicological approach as the use of mechanisms-based high throughput screening in vitro to make predictions about the physicochemical properties of ENMs that may lead to the generation of pathology or disease outcomes in vivo. The in vivo results are used to validate and improve the in vitro high throughput screening (HTS) and to establish structure-activity relationships (SARs) that allow hazard ranking and modeling by an appropriate combination of in vitro and in vivo testing. This notion is in agreement with the landmark 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy” (http://www.nap.edu/catalog.php?record_id=11970), which advocates increased efficiency of toxicity testing by transitioning from qualitative, descriptive animal testing to quantitative, mechanistic and pathway-based toxicity testing in human cells or cell lines using high throughput approaches. Accordingly, we have implemented HTS approaches to screen compositional and combinatorial ENM libraries to develop hazard ranking and structure-activity relationships that can be used for predicting in vivo injury outcomes. This predictive approach allows the bulk of the screening analysis and high volume data generation to be carried out in vitro, following which limited, but critical, validation studies are carried out in animals or whole organisms. Risk reduction in the exposed human or environmental populations can then focus on limiting or avoiding exposures that trigger these toxicological responses as well as implementing safer design of potentially hazardous ENMs. In this communication, we review the tools required for establishing predictive toxicology paradigms to assess inhalation and environmental toxicological scenarios through the use of compositional and combinatorial ENM libraries, mechanism-based HTS assays, hazard ranking and development of nano-SARs. We will discuss the major injury paradigms that have emerged based on specific ENM properties, as well as describing the safer design of ZnO nanoparticles based on characterization of dissolution chemistry as a major predictor of toxicity. PMID:22676423

  2. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding

    PubMed Central

    Lu, Rong; Neff, Norma F.; Quake, Stephen R.; Weissman, Irving L.

    2011-01-01

    Disentangling cellular heterogeneity is a challenge in many fields, particularly in the stem cell and cancer biology fields. Here, we demonstrate how to combine viral genetic barcoding with high-throughput sequencing to track single cells in a heterogeneous population. We use this technique to track the in vivo differentiation of unitary hematopoietic stem cells (HSCs). The results are consistent with single cell transplantation studies, but require two orders of magnitude fewer mice. In addition to its high throughput, the high sensitivity of the technique allows for a direct examination of the clonality of sparse cell populations such as HSCs. We show how these capabilities offer a clonal perspective of the HSC differentiation process. In particular, our data suggests that HSCs do not equally contribute to blood cells after irradiation-mediated transplantation, and that two distinct HSC differentiation patterns co-exist in the same recipient mouse post irradiation. This technique can be applied to any viral accessible cell type for both in vitro and in vivo processes. PMID:21964413

  3. US EPA - ToxCast and the Tox21 program: perspectives

    EPA Science Inventory

    ToxCast is a large-scale project being conducted by the U.S. EPA to screen ~2000 chemicals against a large battery of in vitro high-throughput screening (HTS) assays. ToxCast is complemented by the Tox21 project being jointly carried out by the U.S. NIH Chemical Genomics Center (...

  4. (ENVIRONMENTAL SCIENCE and TECHNOLOGY) An Intuitive Approach for Predicting Human Risk with the Tox21 10k Library

    EPA Science Inventory

    In vitro to in vivo extrapolation (IVIVE) analyses translating high-throughput screening (HTS) data to human relevance have been limited. This is the first time IVIVE approaches and exposure comparisons have explored the entire Tox21 federal collaboration’s 10,000 chemi...

  5. Survey of ecotoxicologically-relevant reproductive endpoint coverage within the ECOTOX database across ToxCast ER agonists (ASCCT)

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening thousands of chemicals for their potential to affect the endocrine systems of humans and wildlife. In vitro high throughput screening (HTS) assays have been proposed as a way to prioritize...

  6. Optimization of DNA barcode method to assess altered chemical toxicity due to CYP-mediated metabolism

    EPA Science Inventory

    A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. This hinders the use and relevance of cell culture in high throughput chemical toxicity screening. To address this challenge, we engineered HEK293T cells to overexpress...

  7. Evaluation of Microelectrode Array Data using Bayesian Modeling as an Approach to Screening and Prioritization for Neurotoxicity Testing*

    EPA Science Inventory

    The need to assess large numbers of chemicals for their potential toxicities has resulted in increased emphasis on medium- and high-throughput in vitro screening approaches. For such approaches to be useful, efficient and reliable data analysis and hit detection methods are also ...

  8. Analysis of Chemical Bioactivity through In Vitro Profiling using ToxCast and Tox21 High-Throughput Screening (China tox. conf. TATT)

    EPA Science Inventory

    Safety assessment of drugs and environmental chemicals relies extensively on animal testing. However, the quantity of chemicals needing assessment and challenges of species extrapolation drive the development of alternative approaches. The EPA’s ToxCast and the multiagency Tox21 ...

  9. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    EPA Science Inventory

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  10. Using the ToxMiner Database for Identifying Disease-Gene Associations in the ToxCast Dataset

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro, high-throughput screening (HTS) to profile and model the bioactivity of environmental chemicals. The main goal of the ToxCast program is to generate predictive signatures of toxicity that ultimately provide rapid and cost-effective me...

  11. Application of the ToxMiner Database: Network Analysis Linking the ToxCast Chemicals to Known Disease-Gene Associations

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  12. A Novel Two-Step Hierarchial Quantitative Structure-Activity Relationship Modeling Workflow for Predicting Acute Toxicity of Chemicals in Rodents

    EPA Science Inventory

    Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Methods and results: A database co...

  13. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    EPA Science Inventory

    The prioritization of chemicals for toxicity testing is a primary goal of the U.S. EPA’s ToxCast™ program. Phase I of ToxCast utilized a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxici...

  14. Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program

    EPA Science Inventory

    A predictive model of reproductive toxicity, as observed in rat multigeneration reproductive (MGR) studies, was previously developed using high throughput screening (HTS) data from 36 in vitro assays mapped to 8 genes or gene-sets from Phase I of USEPA ToxCast research program, t...

  15. An Integrated In Vitro and Computational Approach to Define the Exposure-Dose-Toxicity Relationships In High-Throughput Screens

    EPA Science Inventory

    Research efforts by the US Environmental Protection Agency have set out to develop alternative testing programs to prioritize limited testing resources toward chemicals that likely represent the greatest hazard to human health and the environment. Efforts such as EPA’s ToxCast r...

  16. RAN Translation as a Therapeutic in ALS

    DTIC Science & Technology

    2017-05-01

    allow for HTS via CRISPR or drug screens to complement the in vitro screens using high-throughput microscopy or FACS. Figure 5: Mammalian G4C2...poly-GP in yeast (Figure 6A). [filler about RPS25 here?] This effect was further investigated in mammalian Hap1 cell lines with a CRISPR -mediated

  17. Use of in Vitro HTS-Derived Concentration-Response Data as Biological Descriptors Improves the Accuracy of QSAR Models of in Vivo Toxicity

    EPA Science Inventory

    Background: Quantitative high-throughput screening (qHTS) assays are increasingly being employed to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in co...

  18. Chemical Safety for Sustainability (CSS): Human in vivobiomonitoring data for complementing results from in vitro toxicology -A Commentary

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has instituted the Chemical Safety for Sustainability (CSS) research program for assessing the health and environmental impact of manufactured chemicals. This is a broad program wherein one of the tasks is to develop high throughput...

  19. Unique Nanoparticle Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Testing and Ranking

    EPA Science Inventory

    Nanomaterials are a diverse collection of novel materials that exhibit at least one dimension less than 100 nm and display unique chemical and physical properties due to their nanoscale size. An emphasis has been put on developing high throughput screening (HTS) assays to charac...

  20. Using In Vitro High-Throughput Screening Data for Predicting Benzo[k]Fluoranthene Human Health Hazards

    EPA Science Inventory

    Today there are more than 80,000 chemicals in commerce and the environment. The potential human health risks are unknown for the vast majority of these chemicals as they lack human health risk assessments, toxicity reference values and risk screening values. We aim to use computa...

  1. Application of computational and high-throughput in vitro screening for prioritization (ECHA workshop)

    EPA Science Inventory

    Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, a...

  2. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  3. Extrapolation of mammalian-based ToxCast assay results to non-mammalian species to evaluate endocrine disruption

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  4. Cross-species extrapolation of mammalian-based ToxCast Data using Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  5. Using exposure prediction tools to link exposure and dosimetry for risk-based decisions: A case study with phthalates

    EPA Science Inventory

    A few different exposure prediction tools were evaluated for use in the new in vitro-based safety assessment paradigm using di-2-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DnBP) as case compounds. Daily intake of each phthalate was estimated using both high-throughput (HT...

  6. Informatics approach using metabolic reactivity classifiers to link in vitro to in vivo data in application to the ToxCast Phase I dataset

    EPA Science Inventory

    Strategic combinations and tiered application of alternative testing methods to replace or minimize the use of animal models is attracting much attention. With the advancement of high throughput screening (HTS) assays and legacy databases providing in vivo testing results, suffic...

  7. Evolving the EPA Endocrine Disruptor Screening Program: The case for and against using high-throughput screening assays in EDSP Tier 1

    EPA Science Inventory

    Testing has begun as part of the EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 battery of 11 in vitro and in vivo tests. A recognized issue with the EDSP is that the current Tier 1 screening battery is highly resource intensive in terms of cost, time and animal usage fo...

  8. ADMET in silico modelling: towards prediction paradise?

    PubMed

    van de Waterbeemd, Han; Gifford, Eric

    2003-03-01

    Following studies in the late 1990s that indicated that poor pharmacokinetics and toxicity were important causes of costly late-stage failures in drug development, it has become widely appreciated that these areas should be considered as early as possible in the drug discovery process. However, in recent years, combinatorial chemistry and high-throughput screening have significantly increased the number of compounds for which early data on absorption, distribution, metabolism, excretion (ADME) and toxicity (T) are needed, which has in turn driven the development of a variety of medium and high-throughput in vitro ADMET screens. Here, we describe how in silico approaches will further increase our ability to predict and model the most relevant pharmacokinetic, metabolic and toxicity endpoints, thereby accelerating the drug discovery process.

  9. Novel selection methods for DNA-encoded chemical libraries.

    PubMed

    Chan, Alix I; McGregor, Lynn M; Liu, David R

    2015-06-01

    Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli.

    PubMed

    Khan, Arshad; Sarkar, Dhiman

    2008-04-01

    This study aimed at developing a whole cell based high throughput screening protocol to identify inhibitors against both active and dormant tubercle bacilli. A respiratory type of nitrate reductase (NarGHJI), which was induced during dormancy, could reflect the viability of dormant bacilli of Mycobacterium bovis BCG in microplate adopted model of in vitro dormancy. Correlation between reduction in viability and nitrate reductase activity was seen clearly when dormant stage inhibitor metronidazole and itaconic anhydride were applied in this in vitro microplate model. Active replicating stage could also be monitored in the same assay by measuring the A(620) of the culture. MIC values of 0.08, 0.075, 0.3 and 3.0 microg/ml, determined through monitoring A(620) in this assay for rifampin, isoniazid, streptomycin and ethambutol respectively, were well in agreement with previously reported by BACTEC and Bio-Siv assays. S/N ratio and Z' factor for the assay were 8.5 and 0.81 respectively which indicated the robustness of the protocol. Altogether the assay provides an easy, inexpensive, rapid, robust and high content screening tool to search novel antitubercular molecules against both active and dormant bacilli.

  11. Tissue vascularization through 3D printing: Will technology bring us flow?

    PubMed

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  12. High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells.

    PubMed

    D'Antonio, Matteo; Woodruff, Grace; Nathanson, Jason L; D'Antonio-Chronowska, Agnieszka; Arias, Angelo; Matsui, Hiroko; Williams, Roy; Herrera, Cheryl; Reyna, Sol M; Yeo, Gene W; Goldstein, Lawrence S B; Panopoulos, Athanasia D; Frazer, Kelly A

    2017-04-11

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) offers the possibility of studying the molecular mechanisms underlying human diseases in cell types difficult to extract from living patients, such as neurons and cardiomyocytes. To date, studies have been published that use small panels of iPSC-derived cell lines to study monogenic diseases. However, to study complex diseases, where the genetic variation underlying the disorder is unknown, a sizable number of patient-specific iPSC lines and controls need to be generated. Currently the methods for deriving and characterizing iPSCs are time consuming, expensive, and, in some cases, descriptive but not quantitative. Here we set out to develop a set of simple methods that reduce cost and increase throughput in the characterization of iPSC lines. Specifically, we outline methods for high-throughput quantification of surface markers, gene expression analysis of in vitro differentiation potential, and evaluation of karyotype with markedly reduced cost. Published by Elsevier Inc.

  13. High-throughput cell analysis and sorting technologies for clinical diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Leary, James F.; Reece, Lisa M.; Szaniszlo, Peter; Prow, Tarl W.; Wang, Nan

    2001-05-01

    A number of theoretical and practical limits of high-speed flow cytometry/cell sorting are important for clinical diagnostics and therapeutics. Three applications include: (1) stem cell isolation with tumor purging for minimal residual disease monitoring and treatment, (2) identification and isolation of human fetal cells from maternal blood for prenatal diagnostics and in-vitro therapeutics, and (3) high-speed library screening for recombinant vaccine production against unknown pathogens.

  14. Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.

    2013-03-01

    Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.

  15. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findingsmore » is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.« less

  16. Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis.

    PubMed

    Lakshmi, Bhavana Sethu; Wang, Ruobing; Madhubala, Rentala

    2014-06-24

    Leishmaniasis is a neglected tropical disease caused by Leishmania species. It is a major health concern affecting 88 countries and threatening 350 million people globally. Unfortunately, there are no vaccines and there are limitations associated with the current therapeutic regimens for leishmaniasis. The emerging cases of drug-resistance further aggravate the situation, demanding rapid drug and vaccine development. The genome sequence of Leishmania, provides access to novel genes that hold potential as chemotherapeutic targets or vaccine candidates. In this study, we selected 19 antigenic genes from about 8000 common Leishmania genes based on the Leishmania major and Leishmania infantum genome information available in the pathogen databases. Potential vaccine candidates thus identified were screened using an in vitro high throughput immunological platform developed in the laboratory. Four candidate genes coding for tuzin, flagellar glycoprotein-like protein (FGP), phospholipase A1-like protein (PLA1) and potassium voltage-gated channel protein (K VOLT) showed a predominant protective Th1 response over disease exacerbating Th2. We report the immunogenic properties and protective efficacy of one of the four antigens, tuzin, as a DNA vaccine against Leishmania donovani challenge. Our results show that administration of tuzin DNA protected BALB/c mice against L. donovani challenge and that protective immunity was associated with higher levels of IFN-γ and IL-12 production in comparison to IL-4 and IL-10. Our study presents a simple approach to rapidly identify potential vaccine candidates using the exhaustive information stored in the genome and an in vitro high-throughput immunological platform. Copyright © 2014. Published by Elsevier Ltd.

  17. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes.

    PubMed

    Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz

    2018-01-18

    In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

  18. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches

    PubMed Central

    Ekland, Eric H.; Schneider, Jessica; Fidock, David A.

    2011-01-01

    Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for “delayed death” compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC50 in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.—Ekland, E. H., Schneider, J., Fidock, D. A. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. PMID:21746861

  19. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance.

    PubMed

    Kirsch-Volders, Micheline; Plas, Gina; Elhajouji, Azeddine; Lukamowicz, Magdalena; Gonzalez, Laetitia; Vande Loock, Kim; Decordier, Ilse

    2011-08-01

    Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.

  20. Application of High-Throughput In Vitro Assays for Risk-Based Chemical Safety Decisions of Environmental and Industrial Chemicals (SOT presentation)

    EPA Science Inventory

    Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the...

  1. DEVELOPMENT OF AN IN VITRO RADIOACTIVE IODIDE UPTAKE ASSAY (RAIU) WITH HUMAN NIS-EXPRESSING HEK293T-EPA CELL LINE

    EPA Science Inventory

    Many high-throughput screening (HTPS) assays are available in the US EPA ToxCast program for estrogen and androgen pathways; only a limited number of assays exist for thyroid pathways. One potential target of thyroid-disrupting chemicals is the active uptake of iodide into the t...

  2. Application of the ToxMiner Database: Network Analysis of Linkage between ToxCast Phase I Chemicals and Thyroid Related Disease Outcomes

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  3. Comparison and Analysis of Toxcast Data with In Vivo Data for Food-Relevant Compounds Using The Risk21 Approach

    EPA Science Inventory

    The ToxCast program has generated a great wealth of in vitro high throughput screening (HTS) data on a large number of compounds, providing a unique resource of information on the bioactivity of these compounds. However, analysis of these data are ongoing, and interpretation and ...

  4. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  5. Analysis of ToxCast data for food-relevant compounds by comparison with in vivo data using the RISK21 approach

    EPA Science Inventory

    The ToxCast program has generated a wealth of in vitro high throughput screening data, and best approaches for the interpretation and use of these data remain undetermined. We present case studies comparing the ToxCast and in vivo toxicity data for two food contact substances us...

  6. Toxcast and the Use of Human Relevant In Vitro Exposures: Incorporating High-Throughput Exposure and Toxicity Testing Data for 21st Century Risk Assessments (British Toxicological Society Annual Congress)

    EPA Science Inventory

    The path for incorporating new approach methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. These challenges include sufficient coverage of toxicological mechanisms to meaningfully interpret negative test results, dev...

  7. Application of Computational and High-Throughput in vitro screening for prioritization (Beijing, China, RCES, CAS talk)

    EPA Science Inventory

    Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, a...

  8. Adverse Outcome Pathways and Systems Biology as Conceptual Approaches to Support Development of 21st Century Test Methods and Extrapolation Tools

    EPA Science Inventory

    The proposed paradigm for “Toxicity Testing in the 21st Century” supports the development of mechanistically-based, high-throughput in vitro assays as a potential cost effective and scientifically-sound alternative to some whole animal hazard testing. To accomplish this long-term...

  9. Staged anticonvulsant screening for chronic epilepsy.

    PubMed

    Berdichevsky, Yevgeny; Saponjian, Yero; Park, Kyung-Il; Roach, Bonnie; Pouliot, Wendy; Lu, Kimberly; Swiercz, Waldemar; Dudek, F Edward; Staley, Kevin J

    2016-12-01

    Current anticonvulsant screening programs are based on seizures evoked in normal animals. One-third of epileptic patients do not respond to the anticonvulsants discovered with these models. We evaluated a tiered program based on chronic epilepsy and spontaneous seizures, with compounds advancing from high-throughput in vitro models to low-throughput in vivo models. Epileptogenesis in organotypic hippocampal slice cultures was quantified by lactate production and lactate dehydrogenase release into culture media as rapid assays for seizure-like activity and cell death, respectively. Compounds that reduced these biochemical measures were retested with in vitro electrophysiological confirmation (i.e., second stage). The third stage involved crossover testing in the kainate model of chronic epilepsy, with blinded analysis of spontaneous seizures after continuous electrographic recordings. We screened 407 compound-concentration combinations. The cyclooxygenase inhibitor, celecoxib, had no effect on seizures evoked in normal brain tissue but demonstrated robust antiseizure activity in all tested models of chronic epilepsy. The use of organotypic hippocampal cultures, where epileptogenesis occurs on a compressed time scale, and where seizure-like activity and seizure-induced cell death can be easily quantified with biomarker assays, allowed us to circumvent the throughput limitations of in vivo chronic epilepsy models. Ability to rapidly screen compounds in a chronic model of epilepsy allowed us to find an anticonvulsant that would be missed by screening in acute models.

  10. Defined, serum/feeder-free conditions for expansion and drug screening of primary B-acute lymphoblastic leukemia.

    PubMed

    Jiang, Zhiwu; Wu, Di; Ye, Wei; Weng, Jianyu; Lai, Peilong; Shi, Pengcheng; Guo, Xutao; Huang, Guohua; Deng, Qiuhua; Tang, Yanlai; Zhao, Hongyu; Cui, Shuzhong; Lin, Simiao; Wang, Suna; Li, Baiheng; Wu, Qiting; Li, Yangqiu; Liu, Pentao; Pei, Duanqing; Du, Xin; Yao, Yao; Li, Peng

    2017-12-05

    Functional screening for compounds represents a major hurdle in the development of rational therapeutics for B-acute lymphoblastic leukemia (B-ALL). In addition, using cell lines as valid models for evaluating responses to novel drug therapies raises serious concerns, as cell lines are prone to genotypic/phenotypic drift and loss of heterogeneity in vitro . Here, we reported that OP9 cells, not OP9-derived adipocytes (OP9TA), support the growth of primary B-ALL cells in vitro . To identify the factors from OP9 cells that support the growth of primary B-ALL cells, we performed RNA-Seq to analyze the gene expression profiles of OP9 and OP9TA cells. We thus developed a defined, serum/feeder-free condition (FI76V) that can support the expansion of a range of clinically distinct primary B-ALL cells that still maintain their leukemia-initiating ability. We demonstrated the suitability of high-throughput drug screening based on our B-ALL cultured conditions. Upon screening 378 kinase inhibitors, we identified a cluster of 17 kinase inhibitors that can efficiently kill B-ALL cells in vitro . Importantly, we demonstrated the synergistic cytotoxicity of dinaciclib/BTG226 to B-ALL cells. Taken together, we developed a defined condition for the ex vivo expansion of primary B-ALL cells that is suitable for high-throughput screening of novel compounds.

  11. A novel high-throughput (HTP) cloning strategy for site-directed designed chimeragenesis and mutation using the Gateway cloning system

    PubMed Central

    Suzuki, Yasuhiro; Kagawa, Naoko; Fujino, Toru; Sumiya, Tsuyoshi; Andoh, Taichi; Ishikawa, Kumiko; Kimura, Rie; Kemmochi, Kiyokazu; Ohta, Tsutomu; Tanaka, Shigeo

    2005-01-01

    There is an increasing demand for easy, high-throughput (HTP) methods for protein engineering to support advances in the development of structural biology, bioinformatics and drug design. Here, we describe an N- and C-terminal cloning method utilizing Gateway cloning technology that we have adopted for chimeric and mutant genes production as well as domain shuffling. This method involves only three steps: PCR, in vitro recombination and transformation. All three processes consist of simple handling, mixing and incubation steps. We have characterized this novel HTP method on 96 targets with >90% success. Here, we also discuss an N- and C-terminal cloning method for domain shuffling and a combination of mutation and chimeragenesis with two types of plasmid vectors. PMID:16009811

  12. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics

    PubMed Central

    MacMillan, Denise K; Ford, Jermaine; Fennell, Timothy R; Black, Sherry R; Snyder, Rodney W; Sipes, Nisha S; Westerhout, Joost; Setzer, R Woodrow; Pearce, Robert G; Simmons, Jane Ellen; Thomas, Russell S

    2018-01-01

    Abstract Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks. PMID:29385628

  13. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3'SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6'SL and 3'FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3'SL and 6'SL resulting in significantly higher butyrate production compared to 3'FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives.

  14. Evaluation of two high through-put (HTP) androgen receptor based assays: Utility of data for prioritization for further testing versus prediction of adverse effects.

    EPA Science Inventory

    The androgen signaling pathway plays a critical role in sexual differentiation during development in mammals and is one of the better understood pathways in human development. Thus it was chosen as a model pathway to evaluate the potential of HTP in vitro assays as risk assessmen...

  15. Virtual Liver: Estimating Proliferation and Apoptosis of Hepatocytes Exposed to Environmental Chemicals Using ToxCastTM Data

    EPA Science Inventory

    The U.S. EPA’s ToxCastTM program has screened over a thousand chemicals for potential toxicity using hundreds of high-throughput, in vitro assays. The U.S. EPA’s Virtual Liver (v-Liver™) is a cellular systems model of hepatic tissues that enables the estimation of in vivo effects...

  16. A Functional High-Throughput Assay of Myelination in Vitro

    DTIC Science & Technology

    2013-07-01

    feasibility of developing microengineered human neural tissues that can be assessed non-invasively. A population of neurons has been derived from human...physiological responses in microengineered tissue constructs has been demonstrated. This works represents a unique combination of enabling...and recording from microengineered tissues. All progress and results discussed in this report are in regard to the revised Statement of Work

  17. Extending the Derek-Meteor Workflow to Predict Chemical-Toxicity Space Impacted by Metabolism: Application to ToxCast and Tox21 Chemical Inventories

    EPA Science Inventory

    A central aim of EPA’s ToxCast project is to use in vitro high-throughput screening (HTS) profiles to build predictive models of in vivo toxicity. Where assays lack metabolic capability, such efforts may need to anticipate the role of metabolic activation (or deactivation). A wo...

  18. Using the ToxMiner Database for a Network Analysis of Linkage between ToxCast Phase I Chemicals and Thyroid Related Disease Outcomes

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro, high-throughput screening (HTS) to profile and model the bioactivity of environmental chemicals. The main goal of the ToxCast program is to generate predictive signatures of toxicity that ultimately provide rapid and cost-effective me...

  19. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The presented study combines top-down and bottom-approaches by integrating the catalyst patterning and carbon nanotube growth directly on structures. Large array of iron-rich catalyst are patterned on an substrate for subsequent carbon nanotubes synthesis. The dependence of probe geometry and substrate wetting is assessed by modeling and experimental studies. Finally preliminary results on synthesis of carbon nanotube by catalyst assisted chemical vapor deposition suggest increasing the catalyst yield is critical. Such work will enable high throughput nanomanufacturing of carbon nanotube based devices.

  20. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.

    PubMed

    Paper, Janet M; Scott-Craig, John S; Adhikari, Neil D; Cuomo, Christina A; Walton, Jonathan D

    2007-09-01

    High-throughput MS/MS was used to identify proteins secreted by Fusarium graminearum (Gibberella zeae) during growth on 13 media in vitro and in planta during infection of wheat heads. In vitro secreted proteins were collected from the culture filtrates, and in planta proteins were collected by vacuum infiltration. A total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical confidence. Forty-nine of the in planta proteins were not found in any of the in vitro conditions. The majority (91-100%) of the in vitro proteins had predicted signal peptides, but only 56% of the in planta proteins. At least 13 of the nonsecreted proteins found only in planta were single-copy housekeeping enzymes, including enolase, triose phosphate isomerase, phosphoglucomutase, calmodulin, aconitase, and malate dehydrogenase. The presence of these proteins in the in planta but not in vitro secretome might indicate that significant fungal lysis occurs during pathogenesis. On the other hand, several of the proteins lacking signal peptides that were found in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, and therefore could be important in the interaction between F. graminearum and its host plants.

  1. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators.

    PubMed

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2016-01-01

    The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.

  2. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells.

    PubMed

    Hartwell, Kimberly A; Miller, Peter G; Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2013-12-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.

  3. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

    PubMed Central

    Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2014-01-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone-marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on-target, via inhibition of HMGCoA reductase. These results illustrate the power of merging physiologically-relevant models with high-throughput screening. PMID:24161946

  4. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

    PubMed Central

    Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S

    2015-01-01

    Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223

  5. Identification of Isoxsuprine Hydrochloride as a Neuroprotectant in Ischemic Stroke through Cell-Based High-Throughput Screening

    PubMed Central

    Hill, Jeff W.; Thompson, Jeffrey F.; Carter, Mark B.; Edwards, Bruce S.; Sklar, Larry A.; Rosenberg, Gary A.

    2014-01-01

    Stroke is a leading cause of death and disability and treatment options are limited. A promising approach to accelerate the development of new therapeutics is the use of high-throughput screening of chemical libraries. Using a cell-based high-throughput oxygen-glucose deprivation (OGD) model, we evaluated 1,200 small molecules for repurposed application in stroke therapy. Isoxsuprine hydrochloride was identified as a potent neuroprotective compound in primary neurons exposed to OGD. Isoxsuprine, a β2-adrenergic agonist and NR2B subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonist, demonstrated no loss of efficacy when administered up to an hour after reoxygenation in an in vitro stroke model. In an animal model of transient focal ischemia, isoxsuprine significantly reduced infarct volume compared to vehicle (137±18 mm3 versus 279±25 mm3, p<0.001). Isoxsuprine, a peripheral vasodilator, was FDA approved for the treatment of cerebrovascular insufficiency and peripheral vascular disease. Our demonstration of the significant and novel neuroprotective action of isoxsuprine hydrochloride in an in vivo stroke model and its history of human use suggest that isoxsuprine may be an ideal candidate for further investigation as a potential stroke therapeutic. PMID:24804769

  6. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity

    PubMed Central

    Regis, David P.; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L.; Stefaniak, Maureen E.; Campo, Joseph J.; Carucci, Daniel J.; Roth, David A.; He, Huaping; Felgner, Philip L.; Doolan, Denise L.

    2009-01-01

    We have evaluated a technology called Transcriptionally Active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data. PMID:18164079

  7. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity.

    PubMed

    Regis, David P; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L; Stefaniak, Maureen E; Campo, Joseph J; Carucci, Daniel J; Roth, David A; He, Huaping; Felgner, Philip L; Doolan, Denise L

    2008-03-01

    We have evaluated a technology called transcriptionally active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data.

  8. Development of a high-throughput brain slice method for studying drug distribution in the central nervous system.

    PubMed

    Fridén, Markus; Ducrozet, Frederic; Middleton, Brian; Antonsson, Madeleine; Bredberg, Ulf; Hammarlund-Udenaes, Margareta

    2009-06-01

    New, more efficient methods of estimating unbound drug concentrations in the central nervous system (CNS) combine the amount of drug in whole brain tissue samples measured by conventional methods with in vitro estimates of the unbound brain volume of distribution (V(u,brain)). Although the brain slice method is the most reliable in vitro method for measuring V(u,brain), it has not previously been adapted for the needs of drug discovery research. The aim of this study was to increase the throughput and optimize the experimental conditions of this method. Equilibrium of drug between the buffer and the brain slice within the 4 to 5 h of incubation is a fundamental requirement. However, it is difficult to meet this requirement for many of the extensively binding, lipophilic compounds in drug discovery programs. In this study, the dimensions of the incubation vessel and mode of stirring influenced the equilibration time, as did the amount of brain tissue per unit of buffer volume. The use of cassette experiments for investigating V(u,brain) in a linear drug concentration range increased the throughput of the method. The V(u,brain) for the model compounds ranged from 4 to 3000 ml . g brain(-1), and the sources of variability are discussed. The optimized setup of the brain slice method allows precise, robust estimation of V(u,brain) for drugs with diverse properties, including highly lipophilic compounds. This is a critical step forward for the implementation of relevant measurements of CNS exposure in the drug discovery setting.

  9. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus

    USDA-ARS?s Scientific Manuscript database

    A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (#328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5’ and 3’ terminal regions of the genome were determined by rapid amplifi...

  10. Using In Vitro High-Throughput Screening Data for Predicting Benzo[k]Fluoranthene Human Health Hazards.

    PubMed

    Burgoon, Lyle D; Druwe, Ingrid L; Painter, Kyle; Yost, Erin E

    2017-02-01

    Today there are more than 80,000 chemicals in commerce and the environment. The potential human health risks are unknown for the vast majority of these chemicals as they lack human health risk assessments, toxicity reference values, and risk screening values. We aim to use computational toxicology and quantitative high-throughput screening (qHTS) technologies to fill these data gaps, and begin to prioritize these chemicals for additional assessment. In this pilot, we demonstrate how we were able to identify that benzo[k]fluoranthene may induce DNA damage and steatosis using qHTS data and two separate adverse outcome pathways (AOPs). We also demonstrate how bootstrap natural spline-based meta-regression can be used to integrate data across multiple assay replicates to generate a concentration-response curve. We used this analysis to calculate an in vitro point of departure of 0.751 μM and risk-specific in vitro concentrations of 0.29 μM and 0.28 μM for 1:1,000 and 1:10,000 risk, respectively, for DNA damage. Based on the available evidence, and considering that only a single HSD17B4 assay is available, we have low overall confidence in the steatosis hazard identification. This case study suggests that coupling qHTS assays with AOPs and ontologies will facilitate hazard identification. Combining this with quantitative evidence integration methods, such as bootstrap meta-regression, may allow risk assessors to identify points of departure and risk-specific internal/in vitro concentrations. These results are sufficient to prioritize the chemicals; however, in the longer term we will need to estimate external doses for risk screening purposes, such as through margin of exposure methods. © 2016 Society for Risk Analysis.

  11. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.

    PubMed

    Leary, Elizabeth; Rhee, Claire; Wilks, Benjamin T; Morgan, Jeffrey R

    2018-06-01

    Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.

  12. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing1

    PubMed Central

    Judson, Richard; Kavlock, Robert; Martin, Matt; Reif, David; Houck, Keith; Knudsen, Thomas; Richard, Ann; Tice, Raymond R.; Whelan, Maurice; Xia, Menghang; Huang, Ruili; Austin, Christopher; Daston, George; Hartung, Thomas; Fowle, John R.; Wooge, William; Tong, Weida; Dix, David

    2014-01-01

    Summary In vitro, high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals, but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. Here we discuss streamlining the validation process, specifically for prioritization applications in which HTS assays are used to identify a high-concern subset of a collection of chemicals. The high-concern chemicals could then be tested sooner rather than later in standard guideline bioassays. The streamlined validation process would continue to ensure the reliability and relevance of assays for this application. We discuss the following practical guidelines: (1) follow current validation practice to the extent possible and practical; (2) make increased use of reference compounds to better demonstrate assay reliability and relevance; (3) deemphasize the need for cross-laboratory testing, and; (4) implement a web-based, transparent and expedited peer review process. PMID:23338806

  13. Translating Computational Toxicology Data Through ...

    EPA Pesticide Factsheets

    US EPA has been using in vitro testing methods in an effort to accelerate the pace of chemical evaluations and address the significant lack of health and environmental data on the thousands of chemicals found in commonly used products. Since 2005, EPA’s researchers have generated hazard data using in vitro methods for thousands chemicals, designed innovative chemical exposure prediction models, and created a repository of thousands of high quality chemical structure data. Recently, EPA's ToxCast research effort, released high-throughput screening data on thousands of chemicals. These chemicals were screened for potential health effects in over 700 high-throughput screening assay endpoints. As part of EPA’s commitment to transparency, all data is accessible through the Chemical Safety for Sustainability Dashboard (iCSS). Policy makers and stakeholders can analyze and use this data to help inform decisions they make about chemicals. Use of these new datasets in risk decisions will require changing a regulatory paradigm that has been used for decades. EPA recognized early in the ToxCast effort that a communications and outreach strategy was needed to parallel the research and aid with the development and use of these new data sources. The goal is to use communications and outreach to increase awareness, interest and usage of analyzing and using these new chemical evaluation methods. To accomplish this, EPA employs numerous communication and outreach including t

  14. A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis.

    PubMed

    Kumar, Anuradha; Casey, Allen; Odingo, Joshua; Kesicki, Edward A; Abrahams, Garth; Vieth, Michal; Masquelin, Thierry; Mizrahi, Valerie; Hipskind, Philip A; Sherman, David R; Parish, Tanya

    2013-01-01

    The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.

  15. A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening.

    PubMed

    De Bank, Paul A; Kendall, David A; Alexander, Stephen P H

    2005-04-15

    Signalling via the endocannabinoids anandamide and 2-arachidonylglycerol appears to be terminated largely through the action of the enzyme fatty acid amide hydrolase (FAAH). In this report, we describe a simple spectrophotometric assay to detect FAAH activity in vitro using the ability of the enzyme to hydrolyze oleamide and measuring the resultant production of ammonia with a NADH/NAD+-coupled enzyme reaction. This dual-enzyme assay was used to determine Km and Vmax values of 104 microM and 5.7 nmol/min/mgprotein, respectively, for rat liver FAAH-catalyzed oleamide hydrolysis. Inhibitor potency was determined with the resultant rank order of methyl arachidonyl fluorophosphonate>phenylmethylsulphonyl fluoride>anandamide. This assay system was also adapted for use in microtiter plates and its ability to detect a known inhibitor of FAAH demonstrated, highlighting its potential for use in high-throughput screening.

  16. Emerging approaches in predictive toxicology.

    PubMed

    Zhang, Luoping; McHale, Cliona M; Greene, Nigel; Snyder, Ronald D; Rich, Ivan N; Aardema, Marilyn J; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan

    2014-12-01

    Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. © 2014 Wiley Periodicals, Inc.

  17. Development of a High-Throughput Magnetic Separation Device for Malaria-infected Erythrocytes

    PubMed Central

    Martin, A. Blue; Wu, Wei-Tao; Kameneva, Marina V.; Antaki, James F.

    2017-01-01

    This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in-vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min−1. This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria. PMID:28924724

  18. Quantitative High-throughput Luciferase Screening in Identifying CAR Modulators

    PubMed Central

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2017-01-01

    Summary The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621

  19. A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis

    PubMed Central

    Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.

    2013-01-01

    There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures. PMID:24141454

  20. Emerging Approaches in Predictive Toxicology

    PubMed Central

    Zhang, Luoping; McHale, Cliona M.; Greene, Nigel; Snyder, Ronald D.; Rich, Ivan N.; Aardema, Marilyn J.; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan

    2016-01-01

    Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. PMID:25044351

  1. Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes.

    PubMed

    Blue Martin, A; Wu, Wei-Tao; Kameneva, Marina V; Antaki, James F

    2017-12-01

    This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min -1 . This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria.

  2. A Functional High-Throughput Assay of Myelination in Vitro

    DTIC Science & Technology

    2014-07-01

    iPS cells derived from human astrocytes. These cell lines will serve as an excellent source of human cells from which our model systems may be...image the 3D rat dorsal root ganglion ( DRG ) cultures with sufficiently low background as to detect electrically-evoked depolarization events, as...stimulation and recording system specifically for this purpose. Further, we found that the limitations inherent in optimizing speed and FOV may

  3. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    PubMed

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  4. Inter-Individual Variability in High-Throughput Risk ...

    EPA Pesticide Factsheets

    We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion

  5. CoMiniGut—a small volume in vitro colon model for the screening of gut microbial fermentation processes

    PubMed Central

    Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3′SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6′SL and 3′FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3′SL and 6′SL resulting in significantly higher butyrate production compared to 3′FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives. PMID:29372119

  6. Database-Centric Method for Automated High-Throughput Deconvolution and Analysis of Kinetic Antibody Screening Data.

    PubMed

    Nobrega, R Paul; Brown, Michael; Williams, Cody; Sumner, Chris; Estep, Patricia; Caffry, Isabelle; Yu, Yao; Lynaugh, Heather; Burnina, Irina; Lilov, Asparouh; Desroches, Jordan; Bukowski, John; Sun, Tingwan; Belk, Jonathan P; Johnson, Kirt; Xu, Yingda

    2017-10-01

    The state-of-the-art industrial drug discovery approach is the empirical interrogation of a library of drug candidates against a target molecule. The advantage of high-throughput kinetic measurements over equilibrium assessments is the ability to measure each of the kinetic components of binding affinity. Although high-throughput capabilities have improved with advances in instrument hardware, three bottlenecks in data processing remain: (1) intrinsic molecular properties that lead to poor biophysical quality in vitro are not accounted for in commercially available analysis models, (2) processing data through a user interface is time-consuming and not amenable to parallelized data collection, and (3) a commercial solution that includes historical kinetic data in the analysis of kinetic competition data does not exist. Herein, we describe a generally applicable method for the automated analysis, storage, and retrieval of kinetic binding data. This analysis can deconvolve poor quality data on-the-fly and store and organize historical data in a queryable format for use in future analyses. Such database-centric strategies afford greater insight into the molecular mechanisms of kinetic competition, allowing for the rapid identification of allosteric effectors and the presentation of kinetic competition data in absolute terms of percent bound to antigen on the biosensor.

  7. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.

    PubMed

    Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford

    2016-12-01

    Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.

    PubMed

    Ramade, Alexandre; Legant, Wesley R; Picart, Catherine; Chen, Christopher S; Boudou, Thomas

    2014-01-01

    Engineered tissues can be used to understand fundamental features of biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged tissue in vivo. However, a key limitation is an inability to test the wide range of parameters that might impact the engineered tissue in a high-throughput manner and in an environment that mimics the three-dimensional (3D) native architecture. We developed a microfabricated platform to generate arrays of microtissues embedded within 3D micropatterned matrices. Microcantilevers simultaneously constrain microtissue formation and report forces generated by the microtissues in real time, opening the possibility to use high-throughput, low-volume screening for studies on engineered tissues. Thanks to the micrometer scale of the microtissues, this platform is also suitable for high-throughput monitoring of drug-induced effect on architecture and contractility in engineered tissues. Moreover, independent variations of the mechanical stiffness of the cantilevers and collagen matrix allow the measurement and manipulation of the mechanics of the microtissues. Thus, our approach will likely provide valuable opportunities to elucidate how biomechanical, electrical, biochemical, and genetic/epigenetic cues modulate the formation and maturation of 3D engineered tissues. In this chapter, we describe the microfabrication, preparation, and experimental use of such microfabricated tissue gauges. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mapping DNA polymerase errors by single-molecule sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David F.; Lu, Jenny; Chang, Seungwoo

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  10. Mapping DNA polymerase errors by single-molecule sequencing

    DOE PAGES

    Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...

    2016-05-16

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  11. A Sensitive in Vitro High-Throughput Screen To Identify Pan-filoviral Replication Inhibitors Targeting the VP35–NP Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gai; Nash, Peter J.; Johnson, Britney

    The 2014 Ebola outbreak in West Africa, the largest outbreak on record, highlighted the need for novel approaches to therapeutics targeting Ebola virus (EBOV). Within the EBOV replication complex, the interaction between polymerase cofactor, viral protein 35 (VP35), and nucleoprotein (NP) is critical for viral RNA synthesis. We recently identified a peptide at the N-terminus of VP35 (termed NPBP) that is sufficient for interaction with NP and suppresses EBOV replication, suggesting that the NPBP binding pocket can serve as a potential drug target. Here we describe the development and validation of a sensitive high-throughput screen (HTS) using a fluorescence polarizationmore » assay. Initial hits from this HTS include the FDA-approved compound tolcapone, whose potency against EBOV infection was validated in a nonfluorescent secondary assay. High conservation of the NP–VP35 interface among filoviruses suggests that this assay has the capacity to identify pan-filoviral inhibitors for development as antivirals.« less

  12. A framework for in vitro systems toxicology assessment of e-liquids

    PubMed Central

    Iskandar, Anita R.; Gonzalez-Suarez, Ignacio; Majeed, Shoaib; Marescotti, Diego; Sewer, Alain; Xiang, Yang; Leroy, Patrice; Guedj, Emmanuel; Mathis, Carole; Schaller, Jean-Pierre; Vanscheeuwijck, Patrick; Frentzel, Stefan; Martin, Florian; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2016-01-01

    Abstract Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air–liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols. PMID:27117495

  13. A framework for in vitro systems toxicology assessment of e-liquids.

    PubMed

    Iskandar, Anita R; Gonzalez-Suarez, Ignacio; Majeed, Shoaib; Marescotti, Diego; Sewer, Alain; Xiang, Yang; Leroy, Patrice; Guedj, Emmanuel; Mathis, Carole; Schaller, Jean-Pierre; Vanscheeuwijck, Patrick; Frentzel, Stefan; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2016-07-01

    Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.

  14. Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor

    PubMed Central

    Judson, Richard S.; Magpantay, Felicia Maria; Chickarmane, Vijay; Haskell, Cymra; Tania, Nessy; Taylor, Jean; Xia, Menghang; Huang, Ruili; Rotroff, Daniel M.; Filer, Dayne L.; Houck, Keith A.; Martin, Matthew T.; Sipes, Nisha; Richard, Ann M.; Mansouri, Kamel; Setzer, R. Woodrow; Knudsen, Thomas B.; Crofton, Kevin M.; Thomas, Russell S.

    2015-01-01

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. PMID:26272952

  15. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization.

    PubMed

    Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin

    2014-05-16

    Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.

  16. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists.

    PubMed

    Szabó, György; Kiss, Róbert; Páyer-Lengyel, Dóra; Vukics, Krisztina; Szikra, Judit; Baki, Andrea; Molnár, László; Fischer, János; Keseru, György M

    2009-07-01

    Hit-to-lead optimization of a novel series of N-alkyl-N-[2-oxo-2-(4-aryl-4H-pyrrolo[1,2-a]quinoxaline-5-yl)-ethyl]-carboxylic acid amides, derived from a high throughput screening (HTS) hit, are described. Subsequent optimization led to identification of in vitro potent cannabinoid 1 receptor (CB1R) antagonists representing a new class of compounds in this area.

  17. Novel Approaches to Preventing Urinary Tract Infection in Women

    DTIC Science & Technology

    1999-09-01

    throughput analysis of differential gene expression of in vitro urothelium exposed to uropathogenic Escherichia colj pDC-1. Program and abstracts of...chip" analysis of in vitro urothelium exposed to uropathogenic Escherichia coli pDC-1. Presented at the annual meeting of the American Academy of

  18. A High Throughput Model of Post-Traumatic Osteoarthritis using Engineered Cartilage Tissue Analogs

    PubMed Central

    Mohanraj, Bhavana; Meloni, Gregory R.; Mauck, Robert L.; Dodge, George R.

    2014-01-01

    (1) Objective A number of in vitro models of post-traumatic osteoarthritis (PTOA) have been developed to study the effect of mechanical overload on the processes that regulate cartilage degeneration. While such frameworks are critical for the identification therapeutic targets, existing technologies are limited in their throughput capacity. Here, we validate a test platform for high-throughput mechanical injury incorporating engineered cartilage. (2) Method We utilized a high throughput mechanical testing platform to apply injurious compression to engineered cartilage and determined their strain and strain rate dependent responses to injury. Next, we validated this response by applying the same injury conditions to cartilage explants. Finally, we conducted a pilot screen of putative PTOA therapeutic compounds. (3) Results Engineered cartilage response to injury was strain dependent, with a 2-fold increase in GAG loss at 75% compared to 50% strain. Extensive cell death was observed adjacent to fissures, with membrane rupture corroborated by marked increases in LDH release. Testing of established PTOA therapeutics showed that pan-caspase inhibitor (ZVF) was effective at reducing cell death, while the amphiphilic polymer (P188) and the free-radical scavenger (NAC) reduced GAG loss as compared to injury alone. (4) Conclusions The injury response in this engineered cartilage model replicated key features of the response from cartilage explants, validating this system for application of physiologically relevant injurious compression. This study establishes a novel tool for the discovery of mechanisms governing cartilage injury, as well as a screening platform for the identification of new molecules for the treatment of PTOA. PMID:24999113

  19. Bioanalytical method for in vitro metabolism study of repaglinide using 96-blade thin-film solid-phase microextraction and LC-MS/MS.

    PubMed

    Simões, Rodrigo Almeida; Bonato, Pierina Sueli; Mirnaghi, Fatemeh S; Bojko, Barbara; Pawliszyn, Janusz

    2015-01-01

    A high-throughput bioanalytical method using 96-blade thin film microextraction (TFME) and LC-MS/MS for the analysis of repaglinide (RPG) and two of its main metabolites was developed and used for an in vitro metabolism study. The target analytes were extracted from human microsomal medium by a 96-blade-TFME system employing the low-cost prototype 'SPME multi-sampler' using C18 coating. Method validation showed recoveries around 90% for all analytes and was linear over the concentration range of 2-1000 ng ml(-1) for RPG and of 2-500 ng ml(-1) for each RPG metabolite. The method was applied to an in vitro metabolism study of RPG employing human liver microsomes and proved to be very useful for this purpose.

  20. Engineering an in vitro air-blood barrier by 3D bioprinting

    PubMed Central

    Horváth, Lenke; Umehara, Yuki; Jud, Corinne; Blank, Fabian; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing. PMID:25609567

  1. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  2. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

    PubMed

    Astashkina, Anna; Grainger, David W

    2014-04-01

    Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A Comprehensive Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using High-Throughput Sequencing of Transposon Libraries

    PubMed Central

    Aschard, Hugues; Cattoir, Vincent; Yoder-Himes, Deborah; Lory, Stephen; Pier, Gerald B.

    2013-01-01

    High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200–1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host. PMID:24039572

  4. Simple fluorescence-based high throughput cell viability assay for filamentous fungi.

    PubMed

    Chadha, S; Kale, S P

    2015-09-01

    Filamentous fungi are important model organisms to understand the eukaryotic process and have been frequently exploited in research and industry. These fungi are also causative agents of serious diseases in plants and humans. Disease management strategies include in vitro susceptibility testing of the fungal pathogens to environmental conditions and antifungal agents. Conventional methods used for antifungal susceptibilities are cumbersome, time-consuming and are not suitable for a large-scale analysis. Here, we report a rapid, high throughput microplate-based fluorescence method for investigating the toxicity of antifungal and stress (osmotic, salt and oxidative) agents on Magnaporthe oryzae and compared it with agar dilution method. This bioassay is optimized for the resazurin reduction to fluorescent resorufin by the fungal hyphae. Resazurin bioassay showed inhibitory rates and IC50 values comparable to the agar dilution method and to previously reported IC50 or MICs for M. oryzae and other fungi. The present method can screen range of test agents from different chemical classes with different modes of action for antifungal activities in a simple, sensitive, time and cost effective manner. A simple fluorescence-based high throughput method is developed to test the effects of stress and antifungal agents on viability of filamentous fungus Magnaporthe oryzae. This resazurin fluorescence assay can detect inhibitory effects comparable to those obtained using the growth inhibition assay with added advantages of simplicity, time and cost effectiveness. This high throughput viability assay has a great potential in large-scale screening of the chemical libraries of antifungal agents, for evaluating the effects of environmental conditions and hyphal kinetic studies in mutant and natural populations of filamentous fungi. © 2015 The Society for Applied Microbiology.

  5. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles

    PubMed Central

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in greater DXR concentrations. We observed partial follicle survival of 35% ± 3% (n = 80) in 0.01nM treatment and 48% ± 2% (n = 92) in 0.005nM, which we identified as the IC50 for secondary follicles. In summary, we established a 3D in vitro ovarian follicle culture system that could be used in an HTP approach to measure toxic effects on ovarian follicles. PMID:26451950

  6. Exploration of Panviral Proteome: High-Throughput Cloning and Functional Implications in Virus-host Interactions

    PubMed Central

    Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M.; LaBaer, Joshua

    2014-01-01

    Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies. PMID:24955142

  7. Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions.

    PubMed

    Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M; LaBaer, Joshua

    2014-01-01

    Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.

  8. Discovery of 1,5-Disubstituted Pyridones: A New Class of Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor

    PubMed Central

    2010-01-01

    A series of 1,5-disubstituted pyridones was identified as positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 2 (mGluR2) via high throughput screening (HTS). Subsequent SAR exploration led to the identification of several compounds with improved in vitro activity. Lead compound 8 was further profiled and found to attenuate the increase in PCP induced locomotor activity in mice. PMID:22778815

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  10. Towards Personalized Medicine Mediated by in Vitro Virus-Based Interactome Approaches

    PubMed Central

    Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko

    2014-01-01

    We have developed a simple in vitro virus (IVV) selection system based on cell-free co-translation, using a highly stable and efficient mRNA display method. The IVV system is applicable to the high-throughput and comprehensive analysis of proteins and protein–ligand interactions. Huge amounts of genomic sequence data have been generated over the last decade. The accumulated genetic alterations and the interactome networks identified within cells represent a universal feature of a disease, and knowledge of these aspects can help to determine the optimal therapy for the disease. The concept of the “integrome” has been developed as a means of integrating large amounts of data. We have developed an interactome analysis method aimed at providing individually-targeted health care. We also consider future prospects for this system. PMID:24756093

  11. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology

    PubMed Central

    Chappell, James; Jensen, Kirsten; Freemont, Paul S.

    2013-01-01

    A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936

  12. Use of high-throughput and in vivo data to support read ...

    EPA Pesticide Factsheets

    Disrupting normal function of mitochondria can culminate in a variety of organ-level toxicities. A number of mechanisms - such as uncoupling of oxidative phosphorylation and inhibition of the electron transport chain - have been implicated in mitochondrial toxicity. The presence of mitochondrial toxicity has led to a number of drugs being withdrawn from the market highlighting the need to identify potential mitochondrial toxicants within the environment. High-throughput screening (HTS) assays provide a means of rapidly gathering toxicity data for a large number of chemicals; however, information as to the associated in vivo effect is typically unknown. The Adverse Outcome Pathway (AOP) concept provides a valuable scaffold onto which mechanistic data from different levels of biological organisation can be arranged.Information pertaining to mitochondrial toxicity from the U.S. EPA’s ToxCast program were integrated with rodent in vivo data from U.S. EPA’s ToxRefDB to connect the high throughput ToxCast assay results with potential adverse outcome data. Previously developed structural alerts were utilized to profile the chemicals with both in vitro mitochondrial toxicity and in vivo rodent data. Structural similarity guided by the toxicity profile as measured in the ToxCast assay battery was then used to group those chemicals which either were not tested in a mitochondrial toxicity assay or were not considered a “hit” and read-across was performed. Subsequen

  13. Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy.

    PubMed

    Suzuki, Kazushi; Onishi, Takahito; Nakada, Chieko; Takei, Shunsuke; Daniels, Matthew J; Nakano, Masahiro; Matsuda, Tomoki; Nagai, Takeharu

    2018-05-18

    Cardiomyocytes derived from human-induced pluripotent stem cells are a powerful platform for high-throughput drug screening in vitro. However, current modalities for drug testing, such as electrophysiology and fluorescence imaging have inherent drawbacks. To circumvent these problems, we report the development of a bioluminescent Ca 2+ indicator GmNL(Ca 2+ ), and its application in a customized microscope for high-throughput drug screening. GmNL(Ca 2+ ) gives a 140% signal change with Ca 2+ , and can image drug-induced changes of Ca 2+ dynamics in cultured cells. Since bioluminescence requires application of a chemical substrate, which is consumed over ~ 30 min we made a dedicated microscope with automated drug dispensing inside a light-tight box, to control drug addition. To overcome thermal instability of the luminescent substrate, or small molecule, dual climate control enables distinct temperature settings in the drug reservoir and the biological sample. By combining GmNL(Ca 2+ ) with this adaptation, we could image spontaneous Ca 2+ transients in cultured cardiomyocytes and phenotype their response to well-known drugs without accessing the sample directly. In addition, the bioluminescent strategy demonstrates minimal perturbation of contractile parameters and long-term observation attributable to lack of phototoxicity and photobleaching. Overall, bioluminescence may enable more accurate drug screening in a high-throughput manner.

  14. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation

    PubMed Central

    Bernstock, Joshua D; Lee, Yang-ja; Peruzzotti-Jametti, Luca; Southall, Noel; Johnson, Kory R; Maric, Dragan; Volpe, Giulio; Kouznetsova, Jennifer; Zheng, Wei; Pluchino, Stefano

    2015-01-01

    The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology. PMID:26661196

  15. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

    PubMed Central

    Pandey, Udai Bhan

    2011-01-01

    The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126

  16. Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling

    PubMed Central

    Jakobsen, Rune B.; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S.; Brinchmann, Jan E.

    2014-01-01

    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols. PMID:24816923

  17. Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor.

    PubMed

    Judson, Richard S; Magpantay, Felicia Maria; Chickarmane, Vijay; Haskell, Cymra; Tania, Nessy; Taylor, Jean; Xia, Menghang; Huang, Ruili; Rotroff, Daniel M; Filer, Dayne L; Houck, Keith A; Martin, Matthew T; Sipes, Nisha; Richard, Ann M; Mansouri, Kamel; Setzer, R Woodrow; Knudsen, Thomas B; Crofton, Kevin M; Thomas, Russell S

    2015-11-01

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform ("assay interference"). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  18. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  19. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  20. Empirical analysis of RNA robustness and evolution using high-throughput sequencing of ribozyme reactions.

    PubMed

    Hayden, Eric J

    2016-08-15

    RNA molecules provide a realistic but tractable model of a genotype to phenotype relationship. This relationship has been extensively investigated computationally using secondary structure prediction algorithms. Enzymatic RNA molecules, or ribozymes, offer access to genotypic and phenotypic information in the laboratory. Advancements in high-throughput sequencing technologies have enabled the analysis of sequences in the lab that now rivals what can be accomplished computationally. This has motivated a resurgence of in vitro selection experiments and opened new doors for the analysis of the distribution of RNA functions in genotype space. A body of computational experiments has investigated the persistence of specific RNA structures despite changes in the primary sequence, and how this mutational robustness can promote adaptations. This article summarizes recent approaches that were designed to investigate the role of mutational robustness during the evolution of RNA molecules in the laboratory, and presents theoretical motivations, experimental methods and approaches to data analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques.

    PubMed

    Khan, Ferdous; Tare, Rahul S; Kanczler, Janos M; Oreffo, Richard O C; Bradley, Mark

    2010-03-01

    A combination of high-throughput material formulation and microarray techniques were synergistically applied for the efficient analysis of the biological functionality of 135 binary polymer blends. This allowed the identification of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and in vivo applications. The blended polymeric materials were developed from commercially available, inexpensive and well characterised biodegradable polymers, which on their own lacked both the structural requirements of a scaffold material and, critically, the ability to facilitate cell growth. Blends identified here proved excellent templates for cell attachment, and in addition, a number of blends displayed remarkable bone-like architecture and facilitated bone regeneration by providing 3D biomimetic scaffolds for skeletal cell growth and osteogenic differentiation. This study demonstrates a unique strategy to generate and identify innovative materials with widespread application in cell biology as well as offering a new reparative platform strategy applicable to skeletal tissues. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Ultra-high-throughput screening method for the directed evolution of glucose oxidase.

    PubMed

    Ostafe, Raluca; Prodanovic, Radivoje; Nazor, Jovana; Fischer, Rainer

    2014-03-20

    Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Making Waves: New Developments in Toxicology With the Zebrafish.

    PubMed

    Horzmann, Katharine A; Freeman, Jennifer L

    2018-05-01

    The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.

  4. A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish

    PubMed Central

    Xie, Shao-Lin; Bian, Wan-Ping; Wang, Chao; Junaid, Muhammad; Zou, Ji-Xing; Pei, De-Sheng

    2016-01-01

    Contemporary improvements in the type II clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system offer a convenient way for genome editing in zebrafish. However, the low efficiencies of genome editing and germline transmission require a time-intensive and laborious screening work. Here, we reported a method based on in vitro oocyte storage by injecting oocytes in advance and incubating them in oocyte storage medium to significantly improve the efficiencies of genome editing and germline transmission by in vitro fertilization (IVF) in zebrafish. Compared to conventional methods, the prior micro-injection of zebrafish oocytes improved the efficiency of genome editing, especially for the sgRNAs with low targeting efficiency. Due to high throughputs, simplicity and flexible design, this novel strategy will provide an efficient alternative to increase the speed of generating heritable mutants in zebrafish by using CRISPR/Cas9 system. PMID:27680290

  5. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations.

    PubMed

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Bakala-N'Goma, Jean-Claude; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Carrière, Frédéric; Müllertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2012-09-01

    The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  6. High-Throughput Screening Platform for the Discovery of New Immunomodulator Molecules from Natural Product Extract Libraries.

    PubMed

    Pérez Del Palacio, José; Díaz, Caridad; de la Cruz, Mercedes; Annang, Frederick; Martín, Jesús; Pérez-Victoria, Ignacio; González-Menéndez, Víctor; de Pedro, Nuria; Tormo, José R; Algieri, Francesca; Rodriguez-Nogales, Alba; Rodríguez-Cabezas, M Elena; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; Gálvez, Julio

    2016-07-01

    It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators. © 2016 Society for Laboratory Automation and Screening.

  7. Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates.

    PubMed

    Mandagere, Arun K; Thompson, Thomas N; Hwang, Kin-Kai

    2002-01-17

    This paper describes a graphical model for simplifying in vitro absorption, metabolism, distribution, and elimination (ADME) data analysis through the estimation of oral bioavailability (%F) of drugs in humans and other species. This model integrates existing in vitro ADME data, such as Caco-2 permeability (P(app)) and metabolic stability (percent remaining - %R) in liver S9 or microsomes, to estimate %F into groups of low, medium, or high regions. To test the predictive accuracy of our model, we examined 21 drugs and drug candidates with a wide range of oral bioavailability values, which represent approximately 10 different therapeutic areas in humans, rats, dogs, and guinea pigs. In vitro data from model compounds were used to define the boundaries of the low, medium, and high regions of the %F estimation plot. On the basis of the in vitro data, warfarin (93%), indomethacin (98%), timolol (50%), and carbamazepine (70%) were assigned to the high %F region; propranolol (26%) and metoprolol (38%) to medium %F region; and verapamil (22%) and mannitol (18%) to the low %F region. Similarly, the %F of 11 drug candidates from Elastase Inhibitor, NK1/NK2 antagonist, and anti-viral projects in rats, guinea pigs, and dogs were correctly estimated. This model estimates the oral bioavailability ranges of neutral, polar, esters, acidic, and basic drugs in all species. For a large number of drug candidates, this graphical model provides a tool to estimate human oral bioavailability from in vitro ADME data. When combined with the high throughput in vitro ADME screening process, it has the potential to significantly accelerate the processes of lead identification and optimization.

  8. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  9. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters

    PubMed Central

    Feng, Qiang; Zhang, Lu; Liu, Chao; Li, Xuanyu; Hu, Guoqing; Sun, Jiashu; Jiang, Xingyu

    2015-01-01

    Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the flow rates inside the two-stage microfluidic chip. To elucidate the mechanism of size-controllable generation of hybrid NPs, we observe the flow field in the microchannel with confocal microscope and perform the simulation by a numerical model. Both the experimental and numerical results indicate an enhanced mixing effect at high flow rate, thus resulting in the assembly of small and mono-disperse hybrid NPs. In vitro experiments show that the large hybrid NPs are more likely to be aggregated in serum and exhibit a lower cellular uptake efficacy than the small ones. This microfluidic chip shows great promise as a robust platform for optimization of nano drug delivery system. PMID:26180574

  10. High-throughput screening of a diversity collection using biodefense category A and B priority pathogens.

    PubMed

    Barrow, Esther W; Clinkenbeard, Patricia A; Duncan-Decocq, Rebecca A; Perteet, Rachel F; Hill, Kimberly D; Bourne, Philip C; Valderas, Michelle W; Bourne, Christina R; Clarkson, Nicole L; Clinkenbeard, Kenneth D; Barrow, William W

    2012-08-01

    One of the objectives of the National Institutes of Allergy and Infectious Diseases (NIAID) Biodefense Program is to identify or develop broad-spectrum antimicrobials for use against bioterrorism pathogens and emerging infectious agents. As a part of that program, our institution has screened the 10 000-compound MyriaScreen Diversity Collection of high-purity druglike compounds against three NIAID category A and one category B priority pathogens in an effort to identify potential compound classes for further drug development. The effective use of a Clinical and Laboratory Standards Institute-based high-throughput screening (HTS) 96-well-based format allowed for the identification of 49 compounds that had in vitro activity against all four pathogens with minimum inhibitory concentration values of ≤16 µg/mL. Adaptation of the HTS process was necessary to conduct the work in higher-level containment, in this case, biosafety level 3. Examination of chemical scaffolds shared by some of the 49 compounds and assessment of available chemical databases indicates that several may represent broad-spectrum antimicrobials whose activity is based on novel mechanisms of action.

  11. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    PubMed

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  12. Identification of Novel Myelin-Associated CD4+ T cell Autoantigens Targeted in MS Using a High-Throughput Gene Synthesis Technology

    DTIC Science & Technology

    2013-10-01

    epitopes from Epstein - Barr virus (EBV), Cytomegalovirus, influenza and tetanus toxoid linked to the LC3 tag were constructed and in vitro transcribed...of these proteins in the CNS, their ability to elicit MS-like disease in the mouse experimental autoimmune encephalitis model, and the presence of T...Goverman, J. 2009. Autoimmune T cell responses in the central nervous system . Nat. Rev. Immunol. 9: 393-407. 3. Jahn, O., S. Tenzer, and H. B

  13. Virtual medicinal chemistry: in silico pre-docking functional group transformation for discovery of novel inhibitors of botulinum toxin serotype A light chain.

    PubMed

    O'Malley, Sean; Sareth, Sina; Jiao, Guan-Sheng; Kim, Seongjin; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; Margosiak, Stephen A; Johnson, Alan T

    2013-05-01

    A novel method for applying high-throughput docking to challenging metalloenzyme targets is described. The method utilizes information-based virtual transformation of library carboxylates to hydroxamic acids prior to docking, followed by compound acquisition, one-pot (two steps) chemical synthesis and in vitro screening. In two experiments targeting the botulinum neurotoxin serotype A metalloprotease light chain, hit rates of 32% and 18% were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Discovery and characterization of NVP-QAV680, a potent and selective CRTh2 receptor antagonist suitable for clinical testing in allergic diseases.

    PubMed

    Sandham, David A; Arnold, Nicola; Aschauer, Heinrich; Bala, Kamlesh; Barker, Lucy; Brown, Lyndon; Brown, Zarin; Budd, David; Cox, Brian; Docx, Cerys; Dubois, Gerald; Duggan, Nicholas; England, Karen; Everatt, Brian; Furegati, Marcus; Hall, Edward; Kalthoff, Frank; King, Anna; Leblanc, Catherine J; Manini, Jodie; Meingassner, Josef; Profit, Rachael; Schmidt, Alfred; Simmons, Jennifer; Sohal, Bindi; Stringer, Rowan; Thomas, Matthew; Turner, Katharine L; Walker, Christoph; Watson, Simon J; Westwick, John; Willis, Jennifer; Williams, Gareth; Wilson, Caroline

    2013-11-01

    Optimization of a 7-azaindole-3-acetic acid CRTh2 receptor antagonist chemotype derived from high throughput screening furnished a highly selective compound NVP-QAV680 with low nM functional potency for inhibition of CRTh2 driven human eosinophil and Th2 lymphocyte activation in vitro. The molecule exhibited good oral bioavailability in the rat, combined with efficacy in rodent CRTh2-dependent mechanistic and allergic disease models and was suitable for clinical development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    PubMed Central

    Parfett, Craig L.; Desaulniers, Daniel

    2017-01-01

    An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints. PMID:28587163

  16. Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems.

    PubMed

    Ankley, Gerald T; LaLone, Carlie A; Gray, L Earl; Villeneuve, Daniel L; Hornung, Michael W

    2016-11-01

    The US Environmental Protection Agency has responsibility for assessing endocrine activity of more than 10 000 chemicals, a task that cannot reasonably be achieved solely through use of available mammalian and nonmammalian in vivo screening assays. Hence, it has been proposed that chemicals be prioritized for in vivo testing using data from in vitro high-throughput assays for specific endocrine system targets. Recent efforts focused on potential estrogenic chemicals-specifically those that activate estrogen receptor-alpha (ERα)-have broadly demonstrated feasibility of the approach. However, a major uncertainty is whether prioritization based on mammalian (primarily human) high-throughput assays accurately reflects potential chemical-ERα interactions in nonmammalian species. The authors conducted a comprehensive analysis of cross-species comparability of chemical-ERα interactions based on information concerning structural attributes of estrogen receptors, in vitro binding and transactivation data for ERα, and the effects of a range of chemicals on estrogen-signaling pathways in vivo. Overall, this integrated analysis suggests that chemicals with moderate to high estrogenic potency in mammalian systems also should be priority chemicals in nonmammalian vertebrates. However, the degree to which the prioritization approach might be applicable to invertebrates is uncertain because of a lack of knowledge of the biological role(s) of possible ERα orthologs found in phyla such as annelids. Further, comparative analysis of in vitro data for fish and reptiles suggests that mammalian-based assays may not effectively capture ERα interactions for low-affinity chemicals in all vertebrate classes. Environ Toxicol Chem 2016;35:2806-2816. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  17. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  18. Technological Innovations for High-Throughput Approaches to In Vitro Allergy Diagnosis.

    PubMed

    Chapman, Martin D; Wuenschmann, Sabina; King, Eva; Pomés, Anna

    2015-07-01

    Allergy diagnostics is being transformed by the advent of in vitro IgE testing using purified allergen molecules, combined with multiplex technology and biosensors, to deliver discriminating, sensitive, and high-throughput molecular diagnostics at the point of care. Essential elements of IgE molecular diagnostics are purified natural or recombinant allergens with defined purity and IgE reactivity, planar or bead-based multiplex systems to enable IgE to multiple allergens to be measured simultaneously, and, most recently, nanotechnology-based biosensors that facilitate rapid reaction rates and delivery of test results via mobile devices. Molecular diagnostics relies on measurement of IgE to purified allergens, the "active ingredients" of allergenic extracts. Typically, this involves measuring IgE to multiple allergens which is facilitated by multiplex technology and biosensors. The technology differentiates between clinically significant cross-reactive allergens (which could not be deduced by conventional IgE assays using allergenic extracts) and provides better diagnostic outcomes. Purified allergens are manufactured under good laboratory practice and validated using protein chemistry, mass spectrometry, and IgE antibody binding. Recently, multiple allergens (from dog) were expressed as a single molecule with high diagnostic efficacy. Challenges faced by molecular allergy diagnostic companies include generation of large panels of purified allergens with known diagnostic efficacy, access to flexible and robust array or sensor technology, and, importantly, access to well-defined serum panels form allergic patients for product development and validation. Innovations in IgE molecular diagnostics are rapidly being brought to market and will strengthen allergy testing at the point of care.

  19. High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva

    PubMed Central

    Cappato, Serena; Tonachini, Laura; Giacopelli, Francesca; Tirone, Mario; Galietta, Luis J. V.; Sormani, Martina; Giovenzana, Anna; Spinelli, Antonello E.; Canciani, Barbara; Brunelli, Silvia; Ravazzolo, Roberto

    2016-01-01

    ABSTRACT The ACVR1 gene encodes a type I receptor of bone morphogenetic proteins (BMPs). Activating mutations in ACVR1 are responsible for fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by congenital toe malformation and progressive heterotopic endochondral ossification leading to severe and cumulative disability. Until now, no therapy has been available to prevent soft-tissue swelling (flare-ups) that trigger the ossification process. With the aim of finding a new therapeutic strategy for FOP, we developed a high-throughput screening (HTS) assay to identify inhibitors of ACVR1 gene expression among drugs already approved for the therapy of other diseases. The screening, based on an ACVR1 promoter assay, was followed by an in vitro and in vivo test to validate and characterize candidate molecules. Among compounds that modulate the ACVR1 promoter activity, we selected the one showing the highest inhibitory effect, dipyridamole, a drug that is currently used as a platelet anti-aggregant. The inhibitory effect was detectable on ACVR1 gene expression, on the whole Smad-dependent BMP signaling pathway, and on chondrogenic and osteogenic differentiation processes by in vitro cellular assays. Moreover, dipyridamole reduced the process of heterotopic bone formation in vivo. Our drug repositioning strategy has led to the identification of dipyridamole as a possible therapeutic tool for the treatment of FOP. Furthermore, our study has also defined a pipeline of assays that will be useful for the evaluation of other pharmacological inhibitors of heterotopic ossification. PMID:27125279

  20. Evaluation of sequencing approaches for high-throughput ...

    EPA Pesticide Factsheets

    Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. We present the evaluation of three toxicogenomics platforms for potential application to high-throughput screening: 1. TempO-Seq utilizing custom designed paired probes per gene; 2. Targeted sequencing (TSQ) utilizing Illumina’s TruSeq RNA Access Library Prep Kit containing tiled exon-specific probe sets; 3. Low coverage whole transcriptome sequencing (LSQ) using Illumina’s TruSeq Stranded mRNA Kit. Each platform was required to cover the ~20,000 genes of the full transcriptome, operate directly with cell lysates, and be automatable with 384-well plates. Technical reproducibility was assessed using MAQC control RNA samples A and B, while functional utility for chemical screening was evaluated using six treatments at a single concentration after 6 hr in MCF7 breast cancer cells: 10 µM chlorpromazine, 10 µM ciclopriox, 10 µM genistein, 100 nM sirolimus, 1 µM tanespimycin, and 1 µM trichostatin A. All RNA samples and chemical treatments were run with 5 technical replicates. The three platforms achieved different read depths, with the TempO-Seq having ~34M mapped reads per sample, while TSQ and LSQ averaged 20M and 11M aligned reads per sample, respectively. Inter-replicate correlation averaged ≥0.95 for raw log2 expression values i

  1. Biomaterial based cardiac tissue engineering and its applications

    PubMed Central

    Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939

  2. High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity

    PubMed Central

    Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E.

    2016-01-01

    Traditional measures of intracellular antimicrobial activity and eukaryotic cell cytotoxicity rely on endpoint assays. Such endpoint assays require several additional experimental steps prior to readout, such as cell lysis, colony forming unit determination, or reagent addition. When performing thousands of assays, for example, during high-throughput screening, the downstream effort required for these types of assays is considerable. Therefore, to facilitate high-throughput antimicrobial discovery, we developed a real-time assay to simultaneously identify inhibitors of intracellular bacterial growth and assess eukaryotic cell cytotoxicity. Specifically, real-time intracellular bacterial growth detection was enabled by marking bacterial screening strains with either a bacterial lux operon (1st generation assay) or fluorescent protein reporters (2nd generation, orthogonal assay). A non-toxic, cell membrane-impermeant, nucleic acid-binding dye was also added during initial infection of macrophages. These dyes are excluded from viable cells. However, non-viable host cells lose membrane integrity permitting entry and fluorescent labeling of nuclear DNA (deoxyribonucleic acid). Notably, DNA binding is associated with a large increase in fluorescent quantum yield that provides a solution-based readout of host cell death. We have used this combined assay to perform a high-throughput screen in microplate format, and to assess intracellular growth and cytotoxicity by microscopy. Notably, antimicrobials may demonstrate synergy in which the combined effect of two or more antimicrobials when applied together is greater than when applied separately. Testing for in vitro synergy against intracellular pathogens is normally a prodigious task as combinatorial permutations of antibiotics at different concentrations must be assessed. However, we found that our real-time assay combined with automated, digital dispensing technology permitted facile synergy testing. Using these approaches, we were able to systematically survey action of a large number of antimicrobials alone and in combination against the intracellular pathogen, Legionella pneumophila. PMID:27911388

  3. WE-EF-BRA-05: Experimental Design for High-Throughput In-Vitro RBE Measurements Using Protons, Helium and Carbon Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, F; Titt, U; Patel, D

    2015-06-15

    Purpose: To design and validate experimental setups for investigation of dose and LET effects in cell kill for protons, helium and carbon ions, in high throughput and high accuracy cell experiments. Methods: Using the Geant4 Monte Carlo toolkit, we designed 3 custom range compensators to simultaneously expose cancer cells to different doses and LETs from selected portions of pristine ion beams from the entrance to points just beyond the Bragg peak. To minimize the spread of LET, we utilized mono-energetic uniformly scanned beams at the HIT facility with support from the DKFZ. Using different entrance doses and LETs, a matrixmore » of cell survival data was acquired leading to a specific RBE matrix. We utilized the standard clonogenic assay for H460 and H1437 lung-cancer cell lines grown in 96-well plates. Using these plates, the data could be acquired in a small number of exposures. The ion specific compensators were located in a horizontal beam, designed to hold two 96-wells plates (12 columns by 8 rows) at an angle of 30o with respect to the beam direction. Results: Using about 20 hours of beam time, a total of about 11,000 wells containing cancer cells could be irradiated. The H460 and H1437 cell lines exhibited a significant dependence on LET when they were exposed to comparable doses. The results were similar for each of the investigated ion species, and indicate the need to incorporate RBE into the ion therapy planning process. Conclusion: The experimental design developed is a viable approach to rapidly acquire large amounts of accurate in-vitro RBE data. We plan to further improve the design to achieve higher accuracy and throughput, thereby facilitating the irradiation of multiple cell types. The results are indicative of the possibility to develop a new degree of freedom (variable RBE) for future clinical ion therapy optimization. Work supported by the Sister Institute Network Fund (SINF), University of Texas MD Anderson Cancer Center.« less

  4. Identification of a Broad-Spectrum Antiviral Small Molecule against Severe Acute Respiratory Syndrome Coronavirus and Ebola, Hendra, and Nipah Viruses by Using a Novel High-Throughput Screening Assay

    PubMed Central

    Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug. PMID:24501399

  5. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

    PubMed

    Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S

    2014-04-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.

  6. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements

    PubMed Central

    Davidi, Dan; Noor, Elad; Liebermeister, Wolfram; Bar-Even, Arren; Flamholz, Avi; Tummler, Katja; Barenholz, Uri; Goldenfeld, Miki; Shlomi, Tomer; Milo, Ron

    2016-01-01

    Turnover numbers, also known as kcat values, are fundamental properties of enzymes. However, kcat data are scarce and measured in vitro, thus may not faithfully represent the in vivo situation. A basic question that awaits elucidation is: how representative are kcat values for the maximal catalytic rates of enzymes in vivo? Here, we harness omics data to calculate kmaxvivo, the observed maximal catalytic rate of an enzyme inside cells. Comparison with kcat values from Escherichia coli, yields a correlation of r2= 0.62 in log scale (p < 10−10), with a root mean square difference of 0.54 (3.5-fold in linear scale), indicating that in vivo and in vitro maximal rates generally concur. By accounting for the degree of saturation of enzymes and the backward flux dictated by thermodynamics, we further refine the correspondence between kmaxvivo and kcat values. The approach we present here characterizes the quantitative relationship between enzymatic catalysis in vitro and in vivo and offers a high-throughput method for extracting enzyme kinetic constants from omics data. PMID:26951675

  7. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    PubMed Central

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T.; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals. PMID:25999858

  8. In vitro methods for hazard assessment of industrial chemicals - opportunities and challenges.

    PubMed

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the 'method of choice' for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  9. Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system

    PubMed Central

    Nie, Jianhui; Wu, Xiaohong; Ma, Jian; Cao, Shouchun; Huang, Weijin; Liu, Qiang; Li, Xuguang; Li, Yuhua; Wang, Youchun

    2017-01-01

    Pseudoviruses are useful virological tools because of their safety and versatility; however the low titer of these viruses substantially limits their wider applications. We developed a highly efficient pseudovirus production system capable of yielding 100 times more rabies pseudovirus than the traditional method. Employing the high-titer pseudoviruses, we have developed robust in vitro and in vivo neutralization assays for the evaluation of rabies vaccine, which traditionally relies on live-virus based assays. Compared with current rapid fluorescent focus inhibition test (RFFIT), our in vitro pseudovirus-based neutralization assay (PBNA) is much less labor-intensive while demonstrating better reproducibility. Moreover, the in vivo PBNA assay was also found to be superior to the live virus based assay. Following intravenous administration, the pseudovirus effectively infected the mice, with dynamic viral distributions being sequentially observed in spleen, liver and brain. Furthermore, data from in vivo PBNA showed great agreement with those generated from the live virus model but with the experimental time significantly reduced from 2 weeks to 3 days. Taken together, the effective pseudovirus production system facilitated the development of novel PBNA assays which could replace live virus-based traditional assays due to its safety, rapidity, reproducibility and high throughput capacity. PMID:28218278

  10. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    PubMed

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring.

  11. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient

    PubMed Central

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring. PMID:26291626

  12. Construction of human antibody gene libraries and selection of antibodies by phage display.

    PubMed

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael

    2014-01-01

    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  13. Aminopyrazinamides: novel and specific GyrB inhibitors that kill replicating and nonreplicating Mycobacterium tuberculosis.

    PubMed

    Shirude, Pravin S; Madhavapeddi, Prashanti; Tucker, Julie A; Murugan, Kannan; Patil, Vikas; Basavarajappa, Halesha; Raichurkar, Anandkumar V; Humnabadkar, Vaishali; Hussein, Syeed; Sharma, Sreevalli; Ramya, V K; Narayan, Chandan B; Balganesh, Tanjore S; Sambandamurthy, Vasan K

    2013-03-15

    Aminopyrazinamides originated from a high throughput screen targeting the Mycobacterium smegmatis (Msm) GyrB ATPase. This series displays chemical tractability, robust structure-activity relationship, and potent antitubercular activity. The crystal structure of Msm GyrB in complex with one of the aminopyrazinamides revealed promising attributes of specificity against other broad spectrum pathogens and selectivity against eukaryotic kinases due to novel interactions at hydrophobic pocket, unlike other known GyrB inhibitors. The aminopyrazinamides display excellent mycobacterial kill under in vitro, intracellular, and hypoxic conditions.

  14. Systematic approaches to toxicology in the zebrafish.

    PubMed

    Peterson, Randall T; Macrae, Calum A

    2012-01-01

    As the current paradigms of drug discovery evolve, it has become clear that a more comprehensive understanding of the interactions between small molecules and organismal biology will be vital. The zebrafish is emerging as a complement to existing in vitro technologies and established preclinical in vivo models that can be scaled for high-throughput. In this review, we highlight the current status of zebrafish toxicology studies, identify potential future niches for the model in the drug development pipeline, and define the hurdles that must be overcome as zebrafish technologies are refined for systematic toxicology.

  15. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine | Office of Cancer Genomics

    Cancer.gov

    Precision medicine is an approach that takes into account the influence of individuals' genes, environment, and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform that integrates whole-exome sequencing with a living biobank that enables high-throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an Institutional Review Board-approved clinical trial.

  16. Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation

    PubMed Central

    Koenig, Jeffrey A.; Dao, Thuy L.; Kan, Robert K.; Shih, Tsung-Ming

    2016-01-01

    The current research progression efforts for investigating novel treatments for exposure to organophosphorus (OP) compounds that inhibit acetylcholinesterase (AChE), including pesticides and chemical warfare nerve agents (CWNAs), rely solely on in vitro cell assays and in vivo rodent models. The zebrafish (Danio rerio) is a popular, well-established vertebrate model in biomedical research that offers high-throughput capabilities and genetic manipulation not readily available with rodents. A number of research studies have investigated the effects of subacute developmental exposure to OP pesticides in zebrafish, observing detrimental effects on gross morphology, neuronal development, and behavior. Few studies, however, have utilized this model to evaluate treatments, such as oxime reactivators, anticholinergics, or anticonvulsants, following acute exposure. Preliminary work has investigated the effects of CWNA exposure. The results clearly demonstrated relative toxicity and oxime efficacy similar to that reported for the rodent model. This review surveys the current literature utilizing zebrafish as a model for OP exposure and highlights its potential use as a high-throughput system for evaluating AChE reactivator antidotal treatments to acute pesticide and CWNA exposure. PMID:27123828

  17. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-05-06

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.

  18. Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes.

    PubMed

    Braeken, Dries; Huys, Roeland; Loo, Josine; Bartic, Carmen; Borghs, Gustaaf; Callewaert, Geert; Eberle, Wolfgang

    2010-12-15

    The investigation of single-neuron parameters is of great interest because many aspects in the behavior and communication of neuronal networks still remain unidentified. However, the present available techniques for single-cell measurements are slow and do not allow for a high-throughput approach. We present here a CMOS compatible microelectrode array with 84 electrodes (with diameters ranging from 1.2 to 4.2 μm) that are smaller than the size of cell, thereby supporting single-cell addressability. We show controllable electroporation of a single cell by an underlying electrode while monitoring changes in the intracellular membrane potential. Further, by applying a localized electrical field between two electrodes close to a neuron while recording changes in the intracellular calcium concentration, we demonstrate activation of a single cell (∼270%, DF/F(0)), followed by a network response of the neighboring cells. The technology can be easily scaled up to larger electrode arrays (theoretically up to 137,000 electrodes/mm(2)) with active CMOS electronics integration able to perform high-throughput measurements on single cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials.

    PubMed

    Lee, Joung-Hyun; Gu, Yexin; Wang, Hongjun; Lee, Woo Y

    2012-02-01

    We report the use of a microfluidic 3D bone tissue model, as a high-throughput means of evaluating the efficacy of biomaterials aimed at accelerating orthopaedic implant-related wound-healing while preventing bacterial infection. As an example of such biomaterials, inkjet-printed micropatterns were prepared to contain antibiotic and biphasic calcium phosphate (BCP) nanoparticles dispersed in a poly(D,L-lactic-co-glycolic) acid matrix. The micropatterns were integrated with a microfluidic device consisting of eight culture chambers. The micropatterns immediately and completely killed Staphylococcus epidermidis upon inoculation, and enhanced the calcified extracellular matrix production of osteoblasts. Without antibiotic elution, bacteria rapidly proliferated to result in an acidic microenvironment which was detrimental to osteoblasts. These results were used to demonstrate the tissue model's potential in: (i) significantly reducing the number of biomaterial samples and culture experiments required to assess in vitro efficacy for wound-healing and infection prevention and (ii) in situ monitoring of dynamic interactions of biomaterials with bacteria as wells as with tissue cells simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.

    PubMed

    Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi

    2011-02-07

    Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.

  1. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine

    PubMed Central

    Pauli, Chantal; Hopkins, Benjamin D.; Prandi, Davide; Shaw, Reid; Fedrizzi, Tarcisio; Sboner, Andrea; Sailer, Verena; Augello, Michael; Puca, Loredana; Rosati, Rachele; McNary, Terra J.; Churakova, Yelena; Cheung, Cynthia; Triscott, Joanna; Pisapia, David; Rao, Rema; Mosquera, Juan Miguel; Robinson, Brian; Faltas, Bishoy M.; Emerling, Brooke E.; Gadi, Vijayakrishna K.; Bernard, Brady; Elemento, Olivier; Beltran, Himisha; Dimichelis, Francesca; Kemp, Christopher J.; Grandori, Carla; Cantley, Lewis C.; Rubin, Mark A.

    2017-01-01

    Precision Medicine is an approach that takes into account the influence of individuals' genes, environment and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform, which integrates whole exome sequencing (WES) with a living biobank that enables high throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures, and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an IRB approved clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority of patients with advanced disease, we used high throughput drug screening effective strategies. Analysis of tumor derived cells from four cases, two uterine malignancies and two colon cancers, identified effective drugs and drug combinations that were subsequently validated using 3D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic approaches that can be assessed in clinical trials and provides personalized therapeutic options for individual patients where standard clinical options have been exhausted. PMID:28331002

  2. Rational Design of a New Class of Toll-Like Receptor 4 (TLR4) Tryptamine Related Agonists by Means of the Structure- and Ligand-Based Virtual Screening for Vaccine Adjuvant Discovery.

    PubMed

    Honegr, Jan; Dolezal, Rafael; Malinak, David; Benkova, Marketa; Soukup, Ondrej; Almeida, Joyce S F D de; Franca, Tanos C C; Kuca, Kamil; Prymula, Roman

    2018-01-04

    In order to identify novel lead structures for human toll-like receptor 4 ( h TLR4) modulation virtual high throughput screening by a peta-flops-scale supercomputer has been performed. Based on the in silico studies, a series of 12 compounds related to tryptamine was rationally designed to retain suitable molecular geometry for interaction with the h TLR4 binding site as well as to satisfy general principles of drug-likeness. The proposed compounds were synthesized, and tested by in vitro and ex vivo experiments, which revealed that several of them are capable to stimulate h TLR4 in vitro up to 25% activity of Monophosphoryl lipid A. The specific affinity of the in vitro most potent substance was confirmed by surface plasmon resonance direct-binding experiments. Moreover, two compounds from the series show also significant ability to elicit production of interleukin 6.

  3. Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    PubMed Central

    Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.

    2011-01-01

    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential contributions of developmental pathways among species. Follow-up analysis with antiangiogenic thalidomide analogs and additional in vitro vascular targets showed in vitro activity consistent with the most active environmental chemicals tested here. Conclusions: We predicted that blood vessel development is a target for environmental chemicals acting as putative vascular disruptor compounds (pVDCs) and identified potential species differences in sensitive vascular developmental pathways. PMID:21788198

  4. Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids.

    PubMed

    Cavnar, Stephen P; Salomonsson, Emma; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi

    2014-04-01

    Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated high-fidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type-dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging.

  5. Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs).

    PubMed

    Hupert, Mateusz L; Jackson, Joshua M; Wang, Hong; Witek, Małgorzata A; Kamande, Joyce; Milowsky, Matthew I; Whang, Young E; Soper, Steven A

    2014-10-01

    Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.

  6. Development of a central nervous system axonal myelination assay for high throughput screening.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-04-22

    Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.

  7. Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study

    PubMed Central

    Abdo, Nour; Xia, Menghang; Brown, Chad C.; Kosyk, Oksana; Huang, Ruili; Sakamuru, Srilatha; Zhou, Yi-Hui; Jack, John R.; Gallins, Paul; Xia, Kai; Li, Yun; Chiu, Weihsueh A.; Motsinger-Reif, Alison A.; Austin, Christopher P.; Tice, Raymond R.

    2015-01-01

    Background: Understanding of human variation in toxicity to environmental chemicals remains limited, so human health risk assessments still largely rely on a generic 10-fold factor (10½ each for toxicokinetics and toxicodynamics) to account for sensitive individuals or subpopulations. Objectives: We tested a hypothesis that population-wide in vitro cytotoxicity screening can rapidly inform both the magnitude of and molecular causes for interindividual toxicodynamic variability. Methods: We used 1,086 lymphoblastoid cell lines from the 1000 Genomes Project, representing nine populations from five continents, to assess variation in cytotoxic response to 179 chemicals. Analysis included assessments of population variation and heritability, and genome-wide association mapping, with attention to phenotypic relevance to human exposures. Results: For about half the tested compounds, cytotoxic response in the 1% most “sensitive” individual occurred at concentrations within a factor of 10½ (i.e., approximately 3) of that in the median individual; however, for some compounds, this factor was > 10. Genetic mapping suggested important roles for variation in membrane and transmembrane genes, with a number of chemicals showing association with SNP rs13120371 in the solute carrier SLC7A11, previously implicated in chemoresistance. Conclusions: This experimental approach fills critical gaps unaddressed by recent large-scale toxicity testing programs, providing quantitative, experimentally based estimates of human toxicodynamic variability, and also testable hypotheses about mechanisms contributing to interindividual variation. Citation: Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, Zhou YH, Jack JR, Gallins P, Xia K, Li Y, Chiu WA, Motsinger-Reif AA, Austin CP, Tice RR, Rusyn I, Wright FA. 2015. Population-based in vitro hazard and concentration–response assessment of chemicals: the 1000 Genomes high-throughput screening study. Environ Health Perspect 123:458–466; http://dx.doi.org/10.1289/ehp.1408775 PMID:25622337

  8. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.

    PubMed

    Futrega, Kathryn; Atkinson, Kerry; Lott, William B; Doran, Michael R

    2017-04-01

    While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25-400 MSCs and 10 umbilical cord blood (CB)-derived CD34 + progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34 + cell expansion outcomes. By contrast, a substantial increase in CD34 + CD38 - cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34 + CD38 - cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34 + CD38 - cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34 + cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications.

  9. Toxcast and the Use of Human Relevant In Vitro Exposures ...

    EPA Pesticide Factsheets

    The path for incorporating new approach methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. These challenges include sufficient coverage of toxicological mechanisms to meaningfully interpret negative test results, development of increasingly relevant test systems, computational modeling to integrate experimental data, putting results in a dose and exposure context, characterizing uncertainty, and efficient validation of the test systems and computational models. The presentation will cover progress at the U.S. EPA in systematically addressing each of these challenges and delivering more human-relevant risk-based assessments. This abstract does not necessarily reflect U.S. EPA policy. Presentation at the British Toxicological Society Annual Congress on ToxCast and the Use of Human Relevant In Vitro Exposures: Incorporating high-throughput exposure and toxicity testing data for 21st century risk assessments .

  10. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  11. Integrating Aggregate Exposure Pathway (AEP) and Adverse ...

    EPA Pesticide Factsheets

    High throughput toxicity testing (HTT) holds the promise of providing data for tens of thousands of chemicals that currently have no data due to the cost and time required for animal testing. Interpretation of these results require information linking the perturbations seen in vitro with adverse outcomes in vivo and requires knowledge of how estimated exposure to the chemicals compare to the in vitro concentrations that show an effect. This abstract discusses how Adverse Outcome Pathways (AOPs) can be used to link HTT with adverse outcomes of regulatory significance and how Aggregate Exposure Pathways (AEPs) can connect concentrations of environment stressors at a source with an expected target site concentration designed to provide exposure estimates that are comparable to concentrations identified in HTT. Presentation at the ICCA-LRI and JRC Workshop: Fit-For-Purpose Exposure Assessment For Risk-Based Decision Making

  12. Analytical challenges for conducting rapid metabolism characterization for QIVIVE.

    PubMed

    Tolonen, Ari; Pelkonen, Olavi

    2015-06-05

    For quantitative in vitro-in vivo extrapolation (QIVIVE) of metabolism for the purposes of toxicokinetics prediction, a precise and robust analytical technique for identifying and measuring a chemical and its metabolites is an absolute prerequisite. Currently, high-resolution mass spectrometry (HR-MS) is a tool of choice for a majority of organic relatively lipophilic molecules, linked with a LC separation tool and simultaneous UV-detection. However, additional techniques such as gas chromatography, radiometric measurements and NMR, are required to cover the whole spectrum of chemical structures. To accumulate enough reliable and robust data for the validation of QIVIVE, there are some partially opposing needs: Detailed delineation of the in vitro test system to produce a reliable toxicokinetic measure for a studied chemical, and a throughput capacity of the in vitro set-up and the analytical tool as high as possible. We discuss current analytical challenges for the identification and quantification of chemicals and their metabolites, both stable and reactive, focusing especially on LC-MS techniques, but simultaneously attempting to pinpoint factors associated with sample preparation, testing conditions and strengths and weaknesses of a particular technique available for a particular task. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Ultra-High-Throughput Screening of an In Vitro-Synthesized Horseradish Peroxidase Displayed on Microbeads Using Cell Sorter

    PubMed Central

    Zhu, Bo; Mizoguchi, Takuro; Kojima, Takaaki; Nakano, Hideo

    2015-01-01

    The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro) DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence) via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT) and inactive mutant (MUT) genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT) library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases. PMID:25993095

  14. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites.

    PubMed

    Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel

    2016-05-16

    The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions.

  15. A microfluidic cell culture array with various oxygen tensions.

    PubMed

    Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung

    2013-08-21

    Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.

  16. Three-dimensional HepaRG model as an attractive tool for toxicity testing.

    PubMed

    Leite, Sofia B; Wilk-Zasadna, Iwona; Zaldivar, Jose M; Airola, Elodie; Reis-Fernandes, Marcos A; Mennecozzi, Milena; Guguen-Guillouzo, Christiane; Chesne, Christopher; Guillou, Claude; Alves, Paula M; Coecke, Sandra

    2012-11-01

    The culture of HepaRG cells as three dimensional (3D) structures in the spinner-bioreactor may represent added value as a hepatic system for toxicological purposes. The use of a cost-effective commercially available bioreactor, which is compatible with high-throughput cell analysis, constitutes an attractive approach for routine use in the drug testing industry. In order to assess specific aspects of the biotransformation capacity of the bioreactor-based HepaRG system, the induction of CYP450 enzymes (i.e., CYP1A2, 2B6, 2C9, and 3A4) and the activity of the phase II enzyme, uridine diphosphate glucuronoltransferase (UGT), were tested. The long-term functionality of the system was demonstrated by 7-week stable profiles of albumin secretion, CYP3A4 induction, and UGT activities. Immunofluorescence-based staining showed formation of tissue-like arrangements including bile canaliculi-like structures and polar distribution of transporters. The use of in silico models to analyze the in vitro data related to hepatotoxic activity of acetaminophen (APAP) demonstrated the advantage of the integration of kinetic and dynamic aspects for a better understanding of the in vitro cell behavior. The bioactivation of APAP and its related cytotoxicity was assessed in a system compatible to high-throughput screening. The approach also proved to be a good strategy to reduce the time necessary to obtain fully differentiated cell cultures. In conclusion, HepaRG cells cultured in 3D spinner-bioreactors are an attractive tool for toxicological studies, showing a liver-like performance and demonstrating a practical applicability for toxicodynamic approaches.

  17. FAITH – Fast Assembly Inhibitor Test for HIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadravová, Romana; Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz; Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification ofmore » the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.« less

  18. Relative Impact of Incorporating Pharmacokinetics on ...

    EPA Pesticide Factsheets

    The use of high-throughput in vitro assays has been proposed to play a significant role in the future of toxicity testing. In this study, rat hepatic metabolic clearance and plasma protein binding were measured for 59 ToxCast phase I chemicals. Computational in vitro-to-in vivo extrapolation was used to estimate the daily dose in a rat, called the oral equivalent dose, which would result in steady-state in vivo blood concentrations equivalent to the AC50 or lowest effective concentration (LEC) across more than 600 ToxCast phase I in vitro assays. Statistical classification analysis was performed using either oral equivalent doses or unadjusted AC50/LEC values for the in vitro assays to predict the in vivo effects of the 59 chemicals. Adjusting the in vitro assays for pharmacokinetics did not improve the ability to predict in vivo effects as either a discrete (yes or no) response or a low effect level (LEL) on a continuous dose scale. Interestingly, a comparison of the in vitro assay with the lowest oral equivalent dose with the in vivo endpoint with the lowest LEL suggested that the lowest oral equivalent dose may provide a conservative estimate of the point of departure for a chemical in a dose-response assessment. Furthermore, comparing the oral equivalent doses for the in vitro assays with the in vivo dose range that resulted in adverse effects identified more coincident in vitro assays across chemicals than expected by chance, suggesting that the approach ma

  19. High-throughput exposure modeling to support prioritization of chemicals in personal care products.

    PubMed

    Csiszar, Susan A; Ernstoff, Alexi S; Fantke, Peter; Meyer, David E; Jolliet, Olivier

    2016-11-01

    We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or population per mass of a given chemical used in a product. We calculated use- and disposal- stage PiFs for 518 chemicals for five PCP archetypes. Across all product archetypes the use- and disposal- stage PiFs ranged from 10(-5) to 1 and 0 to 10(-3), respectively. There is a distinction between the use-stage PiF for leave-on and wash-off products which had median PiFs of 0.5 and 0.02 across the 518 chemicals, respectively. The PiF is a function of product characteristics and physico-chemical properties and is maximized when skin permeability is high and volatility is low such that there is no competition between skin and air losses from the applied product. PCP chemical contents (i.e. concentrations) were available for 325 chemicals and were combined with PCP usage characteristics and PiF yielding intakes summed across a demonstrative set of products ranging from 10(-8)-30 mg/kg/d, with a median of 0.1 mg/kg/d. The highest intakes were associated with body lotion. Bioactive doses derived from high-throughput in vitro toxicity data were combined with the estimated PiFs to demonstrate an approach to estimate bioactive equivalent chemical content and to screen chemicals for risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An Automated High-Throughput Metabolic Stability Assay Using an Integrated High-Resolution Accurate Mass Method and Automated Data Analysis Software.

    PubMed

    Shah, Pranav; Kerns, Edward; Nguyen, Dac-Trung; Obach, R Scott; Wang, Amy Q; Zakharov, Alexey; McKew, John; Simeonov, Anton; Hop, Cornelis E C A; Xu, Xin

    2016-10-01

    Advancement of in silico tools would be enabled by the availability of data for metabolic reaction rates and intrinsic clearance (CLint) of a diverse compound structure data set by specific metabolic enzymes. Our goal is to measure CLint for a large set of compounds with each major human cytochrome P450 (P450) isozyme. To achieve our goal, it is of utmost importance to develop an automated, robust, sensitive, high-throughput metabolic stability assay that can efficiently handle a large volume of compound sets. The substrate depletion method [in vitro half-life (t1/2) method] was chosen to determine CLint The assay (384-well format) consisted of three parts: 1) a robotic system for incubation and sample cleanup; 2) two different integrated, ultraperformance liquid chromatography/mass spectrometry (UPLC/MS) platforms to determine the percent remaining of parent compound, and 3) an automated data analysis system. The CYP3A4 assay was evaluated using two long t1/2 compounds, carbamazepine and antipyrine (t1/2 > 30 minutes); one moderate t1/2 compound, ketoconazole (10 < t1/2 < 30 minutes); and two short t1/2 compounds, loperamide and buspirone (t½ < 10 minutes). Interday and intraday precision and accuracy of the assay were within acceptable range (∼12%) for the linear range observed. Using this assay, CYP3A4 CLint and t1/2 values for more than 3000 compounds were measured. This high-throughput, automated, and robust assay allows for rapid metabolic stability screening of large compound sets and enables advanced computational modeling for individual human P450 isozymes. U.S. Government work not protected by U.S. copyright.

  1. Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased μ opioid receptor agonists

    PubMed Central

    Winpenny, David; Clark, Mellissa

    2016-01-01

    Background and Purpose Biased GPCR ligands are able to engage with their target receptor in a manner that preferentially activates distinct downstream signalling and offers potential for next generation therapeutics. However, accurate quantification of ligand bias in vitro is complex, and current best practice is not amenable for testing large numbers of compound. We have therefore sought to apply ligand bias theory to an industrial scale screening campaign for the identification of new biased μ receptor agonists. Experimental Approach μ receptor assays with appropriate dynamic range were developed for both Gαi‐dependent signalling and β‐arrestin2 recruitment. Δlog(Emax/EC50) analysis was validated as an alternative for the operational model of agonism in calculating pathway bias towards Gαi‐dependent signalling. The analysis was applied to a high throughput screen to characterize the prevalence and nature of pathway bias among a diverse set of compounds with μ receptor agonist activity. Key Results A high throughput screening campaign yielded 440 hits with greater than 10‐fold bias relative to DAMGO. To validate these results, we quantified pathway bias of a subset of hits using the operational model of agonism. The high degree of correlation across these biased hits confirmed that Δlog(Emax/EC50) was a suitable method for identifying genuine biased ligands within a large collection of diverse compounds. Conclusions and Implications This work demonstrates that using Δlog(Emax/EC50), drug discovery can apply the concept of biased ligand quantification on a large scale and accelerate the deliberate discovery of novel therapeutics acting via this complex pharmacology. PMID:26791140

  2. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.

    PubMed

    Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald

    2014-11-01

    Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  4. Strategic and Operational Plan for Integrating Transcriptomics ...

    EPA Pesticide Factsheets

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  5. High-Throughput Experimental Approach Capabilities | Materials Science |

    Science.gov Websites

    NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non

  6. New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants.

    PubMed

    Yang, Xiaofei; Yang, Minglei; Deng, Hongjing; Ding, Yiliang

    2018-01-01

    The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.

  7. Advances in In Vitro and In Silico Tools for Toxicokinetic Dose ...

    EPA Pesticide Factsheets

    Recent advances in vitro assays, in silico tools, and systems biology approaches provide opportunities for refined mechanistic understanding for chemical safety assessment that will ultimately lead to reduced reliance on animal-based methods. With the U.S. commercial chemical landscape encompassing thousands of chemicals with limited data, safety assessment strategies that reliably predict in vivo systemic exposures and subsequent in vivo effects efficiently are a priority. Quantitative in vitro-in vivo extrapolation (QIVIVE) is a methodology that facilitates the explicit and quantitative application of in vitro experimental data and in silico modeling to predict in vivo system behaviors and can be applied to predict chemical toxicokinetics, toxicodynamics and also population variability. Tiered strategies that incorporate sufficient information to reliably inform the relevant decision context will facilitate acceptance of these alternative data streams for safety assessments. This abstract does not necessarily reflect U.S. EPA policy. This talk will provide an update to an international audience on the state of science being conducted within the EPA’s Office of Research and Development to develop and refine approaches that estimate internal chemical concentrations following a given exposure, known as toxicokinetics. Toxicokinetic approaches hold great potential in their ability to link in vitro activities or toxicities identified during high-throughput screen

  8. Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes Regardless of Developmental Stage

    DOE PAGES

    Croken, Matthew; Ma, Yan Fen; Markillie, Lye Meng; ...

    2014-11-13

    Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identify 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observe close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysismore » (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identify 1,526 genes that are differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identify ribosomal proteins as being expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage.« less

  9. 20170312 - Computer Simulation of Developmental ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  10. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  11. Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application.

    PubMed

    Takayama, Naoya; Eto, Koji

    2012-10-01

    Human pluripotent stem cells [PSCs; including human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] can infinitely proliferate in vitro and are easily accessible for gene manipulation. Megakaryocytes (MKs) and platelets can be created from human ESCs and iPSCs in vitro and represent a potential source of blood cells for transfusion and a promising tool for studying the human thrombopoiesis. Moreover, disease-specific iPSCs are a powerful tool for elucidating the pathogenesis of hematological diseases and for drug screening. In that context, we and other groups have developed in vitro MK and platelet differentiation systems from human pluripotent stem cells (PSCs). Combining this co-culture system with a drug-inducible gene expression system enabled us to clarify the novel role played by c-MYC during human thrombopoiesis. In the next decade, technical advances (e.g., high-throughput genomic sequencing) will likely enable the identification of numerous gene mutations associated with abnormal thrombopoiesis. Combined with such technology, an in vitro system for differentiating human PSCs into MKs and platelets could provide a novel platform for studying human gene function associated with thrombopoiesis.

  12. Bi-compartmental elderly or adult dynamic digestion models applied to interrogate protein digestibility.

    PubMed

    Levi, Carmit Shani; Lesmes, Uri

    2014-10-01

    The world's population is inevitably ageing thanks to modern progress; however, the development of food and oral formulations tailored to the needs of the elderly is still in its infancy. In vitro digestion models offer high throughput, robust and practically ethics free evaluation of the digestive fate of ingested products. To date, no data have been made publicly available to facilitate the development or application of an in vitro model mirroring the physicochemical conditions of the elderly gastrointestinal system. This study reports the development of a novel and highly bio-relevant in vitro model based on two serially connected bioreactors recreating the dynamic conditions of the adult or elderly alimentary canal. This report and its supplementary material describe in detail the set-up of the system, the applied physicochemical parameters and the development of the controlling software. These are intended to openly depict a versatile platform, which could assist future efforts to develop age-tailored oral formulations. SDS-PAGE analyses of samples collected from the in vitro digestion of β-lactoglobulin, α-lactalbumin and lactoferrin suggest the bioaccessibility of "slow digesting" and "fast digesting" proteins identified in adult models do not necessarily maintain this trait under elderly gastro-intestinal conditions. Overall, this study brings forward a new generic yet advanced model that could facilitate age-tailoring the digestive fate of liquid formulations.

  13. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.

    PubMed

    Liu, Yunbao; Nair, Muraleedharan G

    2010-07-23

    Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.

  14. High-Content, High-Throughput Screening for the Identification of Cytotoxic Compounds Based on Cell Morphology and Cell Proliferation Markers

    PubMed Central

    Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.

    2014-01-01

    Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478

  15. Insights and Perspectives on Emerging Inputs to Weight of Evidence Determinations for Food Safety: Workshop Proceedings

    PubMed Central

    Bialk, Heidi; Llewellyn, Craig; Kretser, Alison; Canady, Richard; Lane, Richard; Barach, Jeffrey

    2013-01-01

    This workshop aimed to elucidate the contribution of computational and emerging in vitro methods to the weight of evidence used by risk assessors in food safety assessments. The following issues were discussed: using in silico and high-throughput screening (HTS) data to confirm the safety of approved food ingredients, applying in silico and HTS data in the process of assessing the safety of a new food ingredient, and utilizing in silico and HTS data in communicating the safety of food ingredients while enhancing the public’s trust in the food supply. Perspectives on integrating computational modeling and HTS assays as well as recommendations for optimizing predictive methods for risk assessment were also provided. Given the need to act quickly or proceed cautiously as new data emerge, this workshop also focused on effectively identifying a path forward in communicating in silico and in vitro data. PMID:24296863

  16. Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy.

    PubMed

    Rietz, Anne; Li, Hongxia; Quist, Kevin M; Cherry, Jonathan J; Lorson, Christian L; Burnett, Barrington G; Kern, Nicholas L; Calder, Alyssa N; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A; Cuny, Gregory D; Androphy, Elliot J; Hodgetts, Kevin J

    2017-06-08

    Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.

  17. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    PubMed

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An in vitro FRET-based assay for the analysis of SUMO conjugation and isopeptidase cleavage.

    PubMed

    Stankovic-Valentin, Nicolas; Kozaczkiewicz, Lukasz; Curth, Katja; Melchior, Frauke

    2009-01-01

    To measure rates of sumoylation and isopeptidase cleavage in vitro, we developed an enzyme assay that is based on fluorescence resonance energy transfer (FRET). FRET is a process by which the excited state energy of a fluorescent donor molecule is transferred to an acceptor molecule. Efficient energy transfer requires very close proximity, and can therefore be used as a read-out for covalent and non-covalent protein interactions. The assay described here uses bacterially expressed and purified YFP-SUMO-1 and CFP-RanGAP1 as model substrates that are covalently coupled in the presence of recombinant SUMO E1 and E2 enzymes and ATP. Reactions of 25 microl volume, set up in 384-wells plates, give sufficient signal for analysis. Consequently, this assay requires very low amounts of recombinant proteins and allows measurement of time courses in high-throughput format.

  19. Comparison of Points of Departure for Health Risk Assessment Based on High-Throughput Screening Data

    PubMed Central

    Sand, Salomon; Parham, Fred; Portier, Christopher J.; Tice, Raymond R.; Krewski, Daniel

    2016-01-01

    Background: The National Research Council’s vision for toxicity testing in the 21st century anticipates that points of departure (PODs) for establishing human exposure guidelines in future risk assessments will increasingly be based on in vitro high-throughput screening (HTS) data. Objectives: The aim of this study was to compare different PODs for HTS data. Specifically, benchmark doses (BMDs) were compared to the signal-to-noise crossover dose (SNCD), which has been suggested as the lowest dose applicable as a POD. Methods: Hill models were fit to > 10,000 in vitro concentration–response curves, obtained for > 1,400 chemicals tested as part of the U.S. Tox21 Phase I effort. BMDs and lower confidence limits on the BMDs (BMDLs) corresponding to extra effects (i.e., changes in response relative to the maximum response) of 5%, 10%, 20%, 30%, and 40% were estimated for > 8,000 curves, along with BMDs and BMDLs corresponding to additional effects (i.e., absolute changes in response) of 5%, 10%, 15%, 20%, and 25%. The SNCD, defined as the dose where the ratio between the additional effect and the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute effect was 1, 0.67, and 0.5, respectively, was also calculated and compared with the BMDLs. Results: The BMDL40, BMDL25, and BMDL18, defined in terms of extra effect, corresponded to the SNCD1.0, SNCD0.67, and SNCD0.5, respectively, at the median. Similarly, the BMDL25, BMDL17, and BMDL13, defined in terms of additional effect, corresponded to the SNCD1.0, SNCD0.67, and SNCD0.5, respectively, at the median. Conclusions: The SNCD may serve as a reference level that guides the determination of standardized BMDs for risk assessment based on HTS concentration–response data. The SNCD may also have application as a POD for low-dose extrapolation. Citation: Sand S, Parham F, Portier CJ, Tice RR, Krewski D. 2017. Comparison of points of departure for health risk assessment based on high-throughput screening data. Environ Health Perspect 125:623–633; http://dx.doi.org/10.1289/EHP408 PMID:27384688

  20. Physiologically Based Pharmacokinetic Models: Integration of In Silico Approaches with Micro Cell Culture Analogues

    PubMed Central

    Chen, A.; Yarmush, M.L.; Maguire, T.

    2014-01-01

    There is a large emphasis within the pharmaceutical industry to provide tools that will allow early research and development groups to better predict dose ranges for and metabolic responses of candidate molecules in a high throughput manner, prior to entering clinical trials. These tools incorporate approaches ranging from PBPK, QSAR, and molecular dynamics simulations in the in silico realm, to micro cell culture analogue (CCAs)s in the in vitro realm. This paper will serve to review these areas of high throughput predictive research, and highlight hurdles and potential solutions. In particular we will focus on CCAs, as their incorporation with PBPK modeling has the potential to replace animal testing, with a more predictive assay that can combine multiple organ analogs on one microfluidic platform in physiologically correct volume ratios. While several advantages arise from the current embodiments of CCAS in a microfluidic format that can be exploited for realistic simulations of drug absorption, metabolism and action, we explore some of the concerns with these systems, and provide a potential path forward to realizing animal-free solutions. Furthermore we envision that, together with theoretical modeling, CCAs may produce reliable predictions of the efficacy of newly developed drugs. PMID:22571482

  1. Transfer, Imaging, and Analysis Plate for Facile Handling of 384 Hanging Drop 3D Tissue Spheroids

    PubMed Central

    Cavnar, Stephen P.; Salomonsson, Emma; Luker, Kathryn E.; Luker, Gary D.; Takayama, Shuichi

    2014-01-01

    Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated highfidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type–dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging. PMID:24051516

  2. Biologically Relevant Heterogeneity: Metrics and Practical Insights.

    PubMed

    Gough, Albert; Stern, Andrew M; Maier, John; Lezon, Timothy; Shun, Tong-Ying; Chennubhotla, Chakra; Schurdak, Mark E; Haney, Steven A; Taylor, D Lansing

    2017-03-01

    Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.

  3. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

    PubMed Central

    House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.

    2017-01-01

    Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636

  4. Microarrays for the evaluation of cell-biomaterial surface interactions

    NASA Astrophysics Data System (ADS)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  5. Discovery of CREBBP Bromodomain Inhibitors by High-Throughput Docking and Hit Optimization Guided by Molecular Dynamics.

    PubMed

    Xu, Min; Unzue, Andrea; Dong, Jing; Spiliotopoulos, Dimitrios; Nevado, Cristina; Caflisch, Amedeo

    2016-02-25

    We have identified two chemotypes of CREBBP bromodomain ligands by fragment-based high-throughput docking. Only 17 molecules from the original library of two-million compounds were tested in vitro. Optimization of the two low-micromolar hits, the 4-acylpyrrole 1 and acylbenzene 9, was driven by molecular dynamics results which suggested improvement of the polar interactions with the Arg1173 side chain at the rim of the binding site. The synthesis of only two derivatives of 1 yielded the 4-acylpyrrole 6 which shows a single-digit micromolar affinity for the CREBBP bromodomain and a ligand efficiency of 0.34 kcal/mol per non-hydrogen atom. Optimization of the acylbenzene hit 9 resulted in a series of derivatives with nanomolar potencies, good ligand efficiency and selectivity (see Unzue, A.; Xu, M.; Dong, J.; Wiedmer, L.; Spiliotopoulos, D.; Caflisch, A.; Nevado, C.Fragment-Based Design of Selective Nanomolar Ligands of the CREBBP Bromodomain. J. Med. Chem. 2015, DOI: 10.1021/acs.jmedchem.5b00172). The in silico predicted binding mode of the acylbenzene derivative 10 was validated by solving the structure of the complex with the CREBBP bromodomain.

  6. Schizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening.

    PubMed

    Calcaterra, Nicholas E; Hoeppner, Daniel J; Wei, Huijun; Jaffe, Andrew E; Maher, Brady J; Barrow, James C

    2016-02-16

    The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K(+)channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor trafficking via the lack of an intact channel-stabilizing Per-Ant-Sim (PAS) domain. Here we characterize Kv11.1-3.1 cellular localization and show decreased channel expression and cell surface trafficking relative to the PAS-domain containing major isoform, Kv11.1-1A. Using small molecule inhibition of proteasome degradation, cellular expression and plasma membrane trafficking are rescued. These findings implicate the importance of the unfolded-protein response and endoplasmic reticulum associated degradation pathways in the expression and regulation of this schizophrenia risk factor. Utilizing this identified phenomenon, an electrophysiological and high throughput in-vitro fluorescent assay platform has been developed for drug discovery in order to explore a potentially new class of cognitive therapeutics.

  7. High-Throughput Effect-Directed Analysis Using Downscaled in Vitro Reporter Gene Assays To Identify Endocrine Disruptors in Surface Water

    PubMed Central

    2018-01-01

    Effect-directed analysis (EDA) is a commonly used approach for effect-based identification of endocrine disruptive chemicals in complex (environmental) mixtures. However, for routine toxicity assessment of, for example, water samples, current EDA approaches are considered time-consuming and laborious. We achieved faster EDA and identification by downscaling of sensitive cell-based hormone reporter gene assays and increasing fractionation resolution to allow testing of smaller fractions with reduced complexity. The high-resolution EDA approach is demonstrated by analysis of four environmental passive sampler extracts. Downscaling of the assays to a 384-well format allowed analysis of 64 fractions in triplicate (or 192 fractions without technical replicates) without affecting sensitivity compared to the standard 96-well format. Through a parallel exposure method, agonistic and antagonistic androgen and estrogen receptor activity could be measured in a single experiment following a single fractionation. From 16 selected candidate compounds, identified through nontargeted analysis, 13 could be confirmed chemically and 10 were found to be biologically active, of which the most potent nonsteroidal estrogens were identified as oxybenzone and piperine. The increased fractionation resolution and the higher throughput that downscaling provides allow for future application in routine high-resolution screening of large numbers of samples in order to accelerate identification of (emerging) endocrine disruptors. PMID:29547277

  8. Establishment and antitumor effects of dasatinib and PKI-587 in BD-138T, a patient-derived muscle invasive bladder cancer preclinical platform with concomitant EGFR amplification and PTEN deletion

    PubMed Central

    Lim, Joung Eun; Jeong, Da Eun; Song, Hye Jin; Kim, Sudong; Nam, Do-Hyun; Sung, Hyun Hwan; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2016-01-01

    Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion. PMID:27438149

  9. High-throughput literature mining to support read-across ...

    EPA Pesticide Factsheets

    Building scientific confidence in the development and evaluation of read-across remains an ongoing challenge. Approaches include establishing systematic frameworks to identify sources of uncertainty and ways to address them. One source of uncertainty is related to characterizing biological similarity. Many research efforts are underway such as structuring mechanistic data in adverse outcome pathways and investigating the utility of high throughput (HT)/high content (HC) screening data. A largely untapped resource for read-across to date is the biomedical literature. This information has the potential to support read-across by facilitating the identification of valid source analogues with similar biological and toxicological profiles as well as providing the mechanistic understanding for any prediction made. A key challenge in using biomedical literature is to convert and translate its unstructured form into a computable format that can be linked to chemical structure. We developed a novel text-mining strategy to represent literature information for read across. Keywords were used to organize literature into toxicity signatures at the chemical level. These signatures were integrated with HT in vitro data and curated chemical structures. A rule-based algorithm assessed the strength of the literature relationship, providing a mechanism to rank and visualize the signature as literature ToxPIs (LitToxPIs). LitToxPIs were developed for over 6,000 chemicals for a varie

  10. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy.

    PubMed

    Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Kobayashi, Hirofumi; Aisaka, Yuri; Ito, Takuro; Guo, Baoshan; Nitta, Nao; Kutsuna, Natsumaro; Ozeki, Yasuyuki; Nakagawa, Atsuhiro; Yatomi, Yutaka; Goda, Keisuke

    2017-07-11

    According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.

  11. Establishment and antitumor effects of dasatinib and PKI-587 in BD-138T, a patient-derived muscle invasive bladder cancer preclinical platform with concomitant EGFR amplification and PTEN deletion.

    PubMed

    Chang, Nakho; Lee, Hye Won; Lim, Joung Eun; Jeong, Da Eun; Song, Hye Jin; Kim, Sudong; Nam, Do-Hyun; Sung, Hyun Hwan; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2016-08-09

    Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion.

  12. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning

    PubMed Central

    Langhans, Sigrid A.

    2018-01-01

    Drug development is a lengthy and costly process that proceeds through several stages from target identification to lead discovery and optimization, preclinical validation and clinical trials culminating in approval for clinical use. An important step in this process is high-throughput screening (HTS) of small compound libraries for lead identification. Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery. Here we will review common approaches to 3D culture, discuss the significance of 3D cultures in drug resistance and drug repositioning and address some of the challenges of applying 3D cell cultures to high-throughput drug discovery. PMID:29410625

  13. Deriving an explicit hepatic clearance equation accounting for plasma protein binding and hepatocellular uptake.

    PubMed

    Yoon, Miyoung; Clewell, Harvey J; Andersen, Melvin E

    2013-02-01

    High throughput in vitro biochemical and cell-based assays have the promise to provide more mechanism-based assessments of the adverse effects of large numbers of chemicals. One of the most challenging hurdles for interpreting in vitro toxicity findings is the need for reverse dosimetry tools that estimate the exposures that will give concentrations in vivo similar to the active concentrations in vitro. Recent experience using IVIVE approaches to estimate in vivo pharmacokinetics (Wetmore et al., 2012) identified the need to develop a hepatic clearance equation that explicitly accounted for a broader set of protein binding and membrane transport processes and did not depend on a well-mixed description of the liver compartment. Here we derive an explicit steady-state hepatic clearance equation that includes these factors. In addition to the derivation, we provide simple computer code to calculate steady-state extraction for any combination of blood flow, membrane transport processes and plasma protein-chemical binding rates. This expanded equation provides a tool to estimate hepatic clearance for a more diverse array of compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays.

    PubMed

    Wischhusen, Jennifer; Padilla, Frederic

    2017-07-01

    Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. A novel high-throughput format assay for HIV-1 integrase strand transfer reaction using magnetic beads.

    PubMed

    He, Hong-qiu; Ma, Xiao-hui; Liu, Bin; Chen, Wei-zu; Wang, Cun-xin; Cheng, Shao-hui

    2008-03-01

    To develop a novel high-throughput format assay to monitor the integrase (IN) strand transfer (ST) reaction in vitro and apply it to a reaction character study and the identification of antiviral drugs. The donor DNA duplex, with a sequence identical to the U5 end of HIV-1 long terminal repeats, is labeled at its 5' end with biotin (BIO). The target DNA duplex is labeled at its 3' end with digoxin (DIG). IN mediates the integration of donor DNA into target DNA and results in a 5' BIO and 3' DIG-labeled duplex DNA product. Streptavidin-coated magnetic beads were used to capture the product, and the amount of DIG was measured as the ST reaction product. The assay was optimized in 96-well microplate format for high-throughput screening purpose. Moreover, the assay was applied in a ST reaction character study, and the efficiency of the assay in the identification of antiviral compounds was tested. The end-point values, measured as absorbance at 405 nm was approximately 1.5 for the IN-mediated ST reaction as compared with no more than 0.05 of background readings. The ST reaction character and the half maximal inhibitory concentration (IC50) values of 2 known IN inhibitors obtained in our assay were similar to previously reported results using other assays. The evaluation parameter Z' factor for this assay ranged from 0.6 to 0.9. The assay presented here has been proven to be rapid, sensitive, and specific for the detection of IN ST activity, the reaction character study, as well as for the identification of antiviral drugs targeting IN.

  16. Using high throughput sequencing to explore the biodiversity in oral bacterial communities.

    PubMed

    Diaz, P I; Dupuy, A K; Abusleme, L; Reese, B; Obergfell, C; Choquette, L; Dongari-Bagtzoglou, A; Peterson, D E; Terzi, E; Strausbaugh, L D

    2012-06-01

    High throughput sequencing of 16S ribosomal RNA gene amplicons is a cost-effective method for characterization of oral bacterial communities. However, before undertaking large-scale studies, it is necessary to understand the technique-associated limitations and intrinsic variability of the oral ecosystem. In this work we evaluated bias in species representation using an in vitro-assembled mock community of oral bacteria. We then characterized the bacterial communities in saliva and buccal mucosa of five healthy subjects to investigate the power of high throughput sequencing in revealing their diversity and biogeography patterns. Mock community analysis showed primer and DNA isolation biases and an overestimation of diversity that was reduced after eliminating singleton operational taxonomic units (OTUs). Sequencing of salivary and mucosal communities found a total of 455 OTUs (0.3% dissimilarity) with only 78 of these present in all subjects. We demonstrate that this variability was partly the result of incomplete richness coverage even at great sequencing depths, and so comparing communities by their structure was more effective than comparisons based solely on membership. With respect to oral biogeography, we found inter-subject variability in community structure was lower than site differences between salivary and mucosal communities within subjects. These differences were evident at very low sequencing depths and were mostly caused by the abundance of Streptococcus mitis and Gemella haemolysans in mucosa. In summary, we present an experimental and data analysis framework that will facilitate design and interpretation of pyrosequencing-based studies. Despite challenges associated with this technique, we demonstrate its power for evaluation of oral diversity and biogeography patterns. © 2012 John Wiley & Sons A/S.

  17. [HTRF-based high-throughput PGE2 release prohibition model and application in discovering traditional Chinese medicine active ingredients].

    PubMed

    Bai, Zhi-Ru; Fei, Hong-Qiang; Li, Na; Cao, Liang; Zhang, Chen-Feng; Wang, Tuan-Jie; Ding, Gang; Wang, Zhen-Zhong; Xiao, Wei

    2016-02-01

    Prostaglandin (PG) E2 is an active substance in pathological and physiological mechanisms, such as inflammation and pain. The in vitro high-throughput assay for screening the inhibitors of reducing PEG2 production is a useful method for finding out antiphlogistic and analgesic candidates. The assay was based on LPS-induced PGE2 production model using a homogeneous time-resolved fluorescence(HTRF) PGE2 testing kit combined with liquid handling automation and detection instruments. The critical steps, including the cell density optimization and IC50 values determination of a positive compound, were taken to verify the stability and sensibility of the assay. Low intra-plate, inter-plate and day-to-day variability were observed in this 384-well, high-throughput format assay. Totally 5 121 samples were selected from the company's traditional Chinese medicine(TCM) material base library and used to screen PGE2 inhibitors. In this model, the cell plating density was 2 000 cells for each well; the average IC₅₀ value for positive compounds was (7.3±0.1) μmol; the Z' factor for test plates was more than 0.5 and averaged at 0.7. Among the 5 121 samples, 228 components exhibited a PGE2 production prohibition rate of more than 50%, and 23 components exhibited more than 80%. This model reached the expected standards in data stability and accuracy, indicating the reliability and authenticity of the screening results. The automated screening system was introduced to make the model fast and efficient, with a average daily screening amount exceeding 14 000 data points and provide a new model for discovering new anti-inflammatory and analgesic drug and quickly screening effective constituents of TCM in the early stage. Copyright© by the Chinese Pharmaceutical Association.

  18. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

    PubMed Central

    Ryan, Natalia; Chorley, Brian; Tice, Raymond R.; Judson, Richard; Corton, J. Christopher

    2016-01-01

    Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. PMID:26865669

  19. In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration.

    PubMed

    Gothard, David; Tare, Rahul S; Mitchell, Peter D; Dawson, Jonathan I; Oreffo, Richard O C

    2011-04-07

    Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.

  20. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs.

    PubMed

    Eltahan, Rana; Guo, Fengguang; Zhang, Haili; Xiang, Lixin; Zhu, Guan

    2018-04-01

    Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (K m  = 0.309 mM, V max  = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC 50  = 8.33 μM; K i  = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC 50  = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC 50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. In Vitro and In Vivo Single Myosin Step-Sizes in Striated Muscle a

    PubMed Central

    Burghardt, Thomas P.; Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin

    2016-01-01

    Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a “second characterization” is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover “bottom-up” and “top-down” assaying of myosin characteristics. PMID:26728749

  2. EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface.

    PubMed

    Parzel, Cheryl A; Pepper, Matthew E; Burg, Timothy; Groff, Richard E; Burg, Karen J L

    2009-06-01

    Tissue-engineering strategies may be employed in the development of in vitro breast tissue models for use in testing regimens of drug therapies and vaccines. The physical and chemical interactions that occur among cells and extracellular matrix components can also be elucidated with these models to gain an understanding of the progression of transformed epithelial cells into tumours and the ultimate metastases of tumour cells. The modified inkjet printer may be a useful tool for creating three-dimensional (3D) in vitro models, because it offers an inexpensive and high-throughput solution to microfabrication, and because the printer can be easily manipulated to produce varying tissue attributes. We hypothesized, however, that when ink is replaced with a biologically based fluid (i.e. a 'bio-ink'), specifically a serum-free cell culture medium, printer nozzle failure can result from salt scale build-up as fluid evaporates on the printhead surface. In this study, ethylene diamine tetra-acetic acid (EDTA) was used as a culture medium additive to prevent salt scaling and cell aggregation during the bioprinting process. The results showed that EDTA, at a concentration typically found in commercially available trypsin solutions (0.53 mM), prevented nozzle failure when a serum-free culture medium was printed from a nozzle at 1000 drops/s. Furthermore, increasing concentrations of EDTA appeared to mildly decrease aggregation of 4T07 cells. Cell viability studies were performed to demonstrate that addition of EDTA did not result in significant cell death. In conclusion, it is recommended that EDTA be incorporated into bio-ink solutions containing salts that could lead to nozzle failure.

  3. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Benjamin D.; Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA; Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA

    Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF,more » IFN{gamma}, IL-1{alpha}, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1{alpha}, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.« less

  4. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    PubMed

    Allevato, Michael; Bolotin, Eugene; Grossman, Mark; Mane-Padros, Daniel; Sladek, Frances M; Martinez, Ernest

    2017-01-01

    The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX) bind Enhancer box (E-box) DNA elements (CANNTG) and have the greatest affinity for the canonical MYC E-box (CME) CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87%) of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  5. Effects of Achyrocline satureioides Inflorescence Extracts against Pathogenic Intestinal Bacteria: Chemical Characterization, In Vitro Tests, and In Vivo Evaluation

    PubMed Central

    Silveira, Alexandre Kleber; Correa, Ana Paula Folmer; Oliveria, Rafael R.; Borges, Adriana Giongo; Grun, Lucas; Barbé-Tuana, Florencia; Zmozinski, Ariane; Brandelli, Adriano; Vale, Maria Goretti Rodrigues; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2017-01-01

    Three Achyrocline satureioides (AS) inflorescences extracts were characterized: (i) a freeze-dried extract prepared from the aqueous extractive solution and (ii) a freeze-dried and (iii) a spray-dried extract prepared from hydroethanol extractive solution (80% ethanol). The chemical profile, antioxidant potential, and antimicrobial activity against intestinal pathogenic bacteria of AS extracts were evaluated. In vitro antioxidant activity was determined by the total reactive antioxidant potential (TRAP) assay. In vivo analysis and characterization of intestinal microbiota were performed in male Wistar rats (saline versus treated animals with AS dried extracts) by high-throughput sequencing analysis: metabarcoding. Antimicrobial activity was tested in vitro by the disc diffusion tests. Moisture content of the extracts ranged from 10 to 15% and 5.7 to 17 mg kg−1 of fluorine. AS exhibited antioxidant activity, especially in its freeze-dried form which also exhibited a wide spectrum of antimicrobial activity against intestinal pathogenic bacteria greater than those observed by the antibiotic, amoxicillin, when tested against Bacillus cereus and Staphylococcus aureus. Antioxidant and antimicrobial activities of AS extracts seemed to be positively correlated with the present amount of flavonoids. These findings suggest a potential use of AS as a coadjuvant agent for treating bacterial-induced intestinal diseases with high rates of antibiotic resistance. PMID:29853943

  6. Effects of Achyrocline satureioides Inflorescence Extracts against Pathogenic Intestinal Bacteria: Chemical Characterization, In Vitro Tests, and In Vivo Evaluation.

    PubMed

    Moresco, Karla Suzana; Silveira, Alexandre Kleber; Zeidán-Chuliá, Fares; Correa, Ana Paula Folmer; Oliveria, Rafael R; Borges, Adriana Giongo; Grun, Lucas; Barbé-Tuana, Florencia; Zmozinski, Ariane; Brandelli, Adriano; Vale, Maria Goretti Rodrigues; Gelain, Daniel Pens; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2017-01-01

    Three Achyrocline satureioides (AS) inflorescences extracts were characterized: (i) a freeze-dried extract prepared from the aqueous extractive solution and (ii) a freeze-dried and (iii) a spray-dried extract prepared from hydroethanol extractive solution (80% ethanol). The chemical profile, antioxidant potential, and antimicrobial activity against intestinal pathogenic bacteria of AS extracts were evaluated. In vitro antioxidant activity was determined by the total reactive antioxidant potential (TRAP) assay. In vivo analysis and characterization of intestinal microbiota were performed in male Wistar rats (saline versus treated animals with AS dried extracts) by high-throughput sequencing analysis: metabarcoding. Antimicrobial activity was tested in vitro by the disc diffusion tests. Moisture content of the extracts ranged from 10 to 15% and 5.7 to 17 mg kg -1 of fluorine. AS exhibited antioxidant activity, especially in its freeze-dried form which also exhibited a wide spectrum of antimicrobial activity against intestinal pathogenic bacteria greater than those observed by the antibiotic, amoxicillin, when tested against Bacillus cereus and Staphylococcus aureus . Antioxidant and antimicrobial activities of AS extracts seemed to be positively correlated with the present amount of flavonoids. These findings suggest a potential use of AS as a coadjuvant agent for treating bacterial-induced intestinal diseases with high rates of antibiotic resistance.

  7. High Throughput PBTK: Open-Source Data and Tools for ...

    EPA Pesticide Factsheets

    Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy

  8. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    PubMed

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  9. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment.

    PubMed

    Jaroch, Karol; Jaroch, Alina; Bojko, Barbara

    2018-01-05

    For ethical and cost-related reasons, use of animals for the assessment of mode of action, metabolism and/or toxicity of new drug candidates has been increasingly scrutinized in research and industrial applications. Implementation of the 3 "Rs" 1 ; rule (Reduction, Replacement, Refinement) through development of in silico or in vitro assays has become an essential element of risk assessment. Physiologically based pharmacokinetic (PBPK 2 ) modeling is the most potent in silico tool used for extrapolation of pharmacokinetic parameters to animal or human models from results obtained in vitro. Although, many types of in vitro assays are conducted during drug development, use of cell cultures is the most reliable one. Two-dimensional (2D) cell cultures have been a part of drug development for many years. Nowadays, their role is decreasing in favor of three-dimensional (3D) cell cultures and co-cultures. 3D cultures exhibit protein expression patterns and intercellular junctions that are closer to in vivo states in comparison to classical monolayer cultures. Co-cultures allow for examinations of the mutual influence of different cell lines. However, the complexity and high costs of co-cultures and 3D equipment exclude such methods from high-throughput screening (HTS). 3 In vitro absorption, distribution, metabolism, and excretion assessment, as well as drug-drug interaction (DDI), are usually performed with the use of various cell culture based assays. Progress in in silico and in vitro methods can lead to better in vitro-in vivo extrapolation (IVIVE 4 ) outcomes and have a potential to contribute towards a significant reduction in the number of laboratory animals needed for drug research. As such, concentrated efforts need to be spent towards the development of an HTS in vitro platform with satisfactory IVIVE features. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nanostructured sensors for biomedical applications--a current perspective.

    PubMed

    Krishnamoorthy, Sivashankar

    2015-08-01

    Nanostructured sensors have unique capabilities that can be tailored to advantage in advancing the diagnosis, monitoring and cure of several diseases and health conditions. This report aims at providing a current perspective on, (a) the emerging clinical needs that defines the challenges to be addressed by nanostructured sensors, with specific emphasis on early stage diagnosis, drug-diagnostic combinations, and predictive models to design therapy, (b) the emerging industry trends in in vitro diagnostics, mobile health care, high-throughput molecular and cell-based diagnostic platforms, and (c) recent instances of nanostructured biosensors, including promising sensing concepts that can be enhanced using nanostructures that carry high promise towards catering to the emerging clinical needs, as well as the market/industry trends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The FLIGHT Drosophila RNAi database

    PubMed Central

    Bursteinas, Borisas; Jain, Ekta; Gao, Qiong; Baum, Buzz; Zvelebil, Marketa

    2010-01-01

    FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila. PMID:20855970

  12. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    PubMed Central

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  13. Application of ToxCast High-Throughput Screening and ...

    EPA Pesticide Factsheets

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  14. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites

    PubMed Central

    Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses. PMID:25915529

  15. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses.

  16. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    PubMed

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  17. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    PubMed Central

    Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping

    2012-01-01

    Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708

  18. In Vivo High-Content Evaluation of Three-Dimensional Scaffolds Biocompatibility

    PubMed Central

    Oliveira, Mariana B.; Ribeiro, Maximiano P.; Miguel, Sónia P.; Neto, Ana I.; Coutinho, Paula; Correia, Ilídio J.

    2014-01-01

    While developing tissue engineering strategies, inflammatory response caused by biomaterials is an unavoidable aspect to be taken into consideration, as it may be an early limiting step of tissue regeneration approaches. We demonstrate the application of flat and flexible films exhibiting patterned high-contrast wettability regions as implantable platforms for the high-content in vivo study of inflammatory response caused by biomaterials. Screening biomaterials by using high-throughput platforms is a powerful method to detect hit spots with promising properties and to exclude uninteresting conditions for targeted applications. High-content analysis of biomaterials has been mostly restricted to in vitro tests where crucial information is lost, as in vivo environment is highly complex. Conventional biomaterials implantation requires the use of high numbers of animals, leading to ethical questions and costly experimentation. Inflammatory response of biomaterials has also been highly neglected in high-throughput studies. We designed an array of 36 combinations of biomaterials based on an initial library of four polysaccharides. Biomaterials were dispensed onto biomimetic superhydrophobic platforms with wettable regions and processed as freeze-dried three-dimensional scaffolds with a high control of the array configuration. These chips were afterward implanted subcutaneously in Wistar rats. Lymphocyte recruitment and activated macrophages were studied on-chip, by performing immunocytochemistry in the miniaturized biomaterials after 24 h and 7 days of implantation. Histological cuts of the surrounding tissue of the implants were also analyzed. Localized and independent inflammatory responses were detected. The integration of these data with control data proved that these chips are robust platforms for the rapid screening of early-stage in vivo biomaterials' response. PMID:24568682

  19. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  20. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  1. Toxicokinetic Triage for Environmental Chemicals | Science ...

    EPA Pesticide Factsheets

    Toxicokinetic (TK) models are essential for linking administered doses to blood and tissue concentrations. In vitro-to-in vivo extrapolation (IVIVE) methods have been developed to determine TK from limited in vitro measurements and chemical structure-based property predictions, providing a less resource–intensive alternative to traditional in vivo TK approaches. High throughput TK (HTTK) methods use IVIVE to estimate doses that produce steady-state plasma concentrations equivalent to those producing biological activity in in vitro screening studies (e.g., ToxCast). In this study, the domain of applicability and assumptions of HTTK approaches were evaluated using both in vivo data and simulation analysis. Based on in vivo data for 87 chemicals, specific properties (e.g., in vitro HTTK data, physico-chemical descriptors, chemical structure, and predicted transporter affinities) were identified that correlate with poor HTTK predictive ability. For 350 xenobiotics with literature HTTK data, we then differentiated those xenobiotics for which HTTK approaches are likely to be sufficient, from those that may require additional data. For 272 chemicals we also developed a HT physiologically-based TK (HTPBTK) model that requires somewhat greater information than a steady-state model, but allows non-steady state dynamics and can predict chemical concentration time-courses for a variety of exposure scenarios, tissues, and species. We used this HTPBTK model to show that the

  2. Complementing in vitro screening assays with in silico ...

    EPA Pesticide Factsheets

    High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive under assay conditions but that can generate active metabolites under in vivo conditions. To address this potential issue, a case study will be presented to demonstrate the use of in silico tools to identify inactive parents with the ability to generate active metabolites. This case study used the results from an orthogonal assay designed to improve confidence in the identification of active chemicals tested across eighteen estrogen receptor (ER)-related in vitro assays by accounting for technological limitations inherent within each individual assay. From the 1,812 chemicals tested within the orthogonal assay, 1,398 were considered inactive. These inactive chemicals were analyzed using Chemaxon Metabolizer software to predict the first and second generation metabolites. From the nearly 1,400 inactive chemicals, over 2,200 first-generation (i.e., primary) metabolites and over 5,500 second-generation (i.e., secondary) metabolites were predicted. Nearly 70% of primary metabolites were immediately detoxified or converted to other metabolites, while over 70% of secondary metabolites remained stable. Among these predicted metabolites, those that are most likely to be produced and remain

  3. A tiered approach for integrating exposure and dosimetry with ...

    EPA Pesticide Factsheets

    High-throughput (HT) risk screening approaches apply in vitro dose-response data to estimate potential health risks that arise from exposure to chemicals. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biological mechanisms that lead to apical adverse health outcomes in living organisms. The chemical-agnostic Adverse Outcome Pathway (AOP) framework addresses this uncertainty by acting as a scaffold onto which pathway-based data can be arranged to aid in the understanding of in vitro toxicity testing results. In addition, risk estimation also requires reconciling chemical concentrations sufficient to produce bioactivity in vitro with concentrations that trigger a molecular initiating event (MIE) at the relevant biological target in vivo. Such target site exposures (TSEs) can be estimated using computational models to integrate exposure information with a chemical’s absorption, distribution, metabolism, and elimination (ADME) processes. In this presentation, the utility of a tiered approach for integrating exposure, ADME, and hazard into risk-based decision making will be demonstrated using several case studies, along with the investigation of how uncertainties in exposure and ADME might impact risk estimates. These case studies involve 1) identifying and prioritizing chemicals capable of altering biological pathways based on their potential to reach an in vivo target; 2) evaluating the infl

  4. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) ...

    EPA Pesticide Factsheets

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. Adverse outcome pathways (AOPs), in this case endocrine disruption during development, provide a biologically-based framework for linking molecular initiating events triggered by chemical exposures to key events leading to adverse outcomes. The application of AOPs to human health risk assessment requires extrapolation of in vitro HTS toxicity data to in vivo exposures (IVIVE) in humans, which can be achieved through the use of a PBPK/PD model. Exposure scenarios for chemicals in the PBPK/PD model will consider both placental and lactational transfer of chemicals, with a focus on age dependent dosimetry during fetal development and after birth for a nursing infant. This talk proposes a universal life-stage computational model that incorporates changing physiological parameters to link environmental exposures to in vitro levels of HTS assays related to a developmental toxicological AOP for vascular disruption. In vitro toxicity endpoints discussed are based on two mechanisms: 1) Fetal vascular disruption, and 2) Neurodevelopmental toxicity induced by altering thyroid hormone levels in neonates via inhibition of thyroperoxidase in the thyroid gland. Application of our Life-stage computati

  5. ToxCast Phase I

    EPA Pesticide Factsheets

    Background: Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use and the thousands of environmental chemicals lacking toxicity data. EPA's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives: This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. Methods: We tested 309 mostly pesticide active chemicals in 467 assays across 9 technologies, including high-throughput cell-free assays and cell-based assays in multiple human primary cells and cell lines, plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Results: Chemicals display a broad spectrum of activity at the molecular and pathway levels. Many expected interactions are seen, including endocrine and xenobiotic metabolism enzyme activity. Chemicals range in promiscuity across pathways, from no activity to affecting dozens of pathways. We find a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also find associations between a small set in vitro ass

  6. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion

    PubMed Central

    Futrega, Kathryn; Atkinson, Kerry; Lott, William B.

    2017-01-01

    While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25–400 MSCs and 10 umbilical cord blood (CB)-derived CD34+ progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34+ cell expansion outcomes. By contrast, a substantial increase in CD34+CD38− cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34+CD38− cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34+CD38− cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34+ cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications. PMID:28406754

  7. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less

  8. Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines.

    PubMed

    Aspinall-O'Dea, Mark; Pierce, Andrew; Pellicano, Francesca; Williamson, Andrew J; Scott, Mary T; Walker, Michael J; Holyoake, Tessa L; Whetton, Anthony D

    2015-01-01

    This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.

  9. Structure-Based Optimization of Arylamides as Inhibitors of Soluble Epoxide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldrup, Anne B.; Soleymanzadeh, Fariba; Taylor, Steven J.

    2009-11-04

    Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat livermore » microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.« less

  10. 3D Cultivation Techniques for Primary Human Hepatocytes

    PubMed Central

    Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.

    2015-01-01

    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device. PMID:27600213

  11. Evaluation of a High-Throughput Peptide Reactivity Format Assay for Assessment of the Skin Sensitization Potential of Chemicals

    PubMed Central

    Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T.; Ghassabian, Sussan

    2016-01-01

    The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight the difficulty in adapting in vitro methods to high-throughput format for screening the skin sensitization potential of large numbers of chemicals whilst ensuring that the data produced are both accurate and reproducible. PMID:27014067

  12. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  13. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  14. High Throughput Experimental Materials Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy; Perkins, John; Schwarting, Marcus

    The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).

  15. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains.

    PubMed

    Pritchard, Leighton; Holden, Nicola J; Bielaszewska, Martina; Karch, Helge; Toth, Ian K

    2012-01-01

    An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact.

  16. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  17. Discovery of ((4R,5S)-5-amino-4-(2,4,5- trifluorophenyl)cyclohex-1-enyl)-(3- (trifluoromethyl)-5,6-dihydro- [1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanone (ABT-341), a highly potent, selective, orally efficacious, and safe dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; von Geldern, Thomas W; Madar, David J; Longenecker, Kenton; Yong, Hong; Lubben, Thomas H; Stewart, Kent D; Zinker, Bradley A; Backes, Bradley J; Judd, Andrew S; Mulhern, Mathew; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Reinhart, Glenn A; Fryer, Ryan M; Preusser, Lee C; Kempf-Grote, Anita J; Sham, Hing L; Trevillyan, James M

    2006-11-02

    Dipeptidyl peptidase IV (DPP4) deactivates glucose-regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition has become a useful therapy for type 2 diabetes. Optimization of the high-throughput screening lead 6 led to the discovery of 25 (ABT-341), a highly potent, selective, and orally bioavailable DPP4 inhibitor. When dosed orally, 25 dose-dependently reduced glucose excursion in ZDF rats. Amide 25 is safe in a battery of in vitro and in vivo tests and may represent a new therapeutic agent for the treatment of type 2 diabetes.

  18. Automated, high-throughput platform for protein solubility screening using a split-GFP system

    PubMed Central

    Listwan, Pawel; Terwilliger, Thomas C.

    2010-01-01

    Overproduction of soluble and stable proteins for functional and structural studies is a major bottleneck for structural genomics programs and traditional biochemistry laboratories. Many high-payoff proteins that are important in various biological processes are “difficult to handle” as protein reagents in their native form. We have recently made several advances in enabling biochemical technologies for improving protein stability (http://www.lanl.gov/projects/gfp/), allowing stratagems for efficient protein domain trapping, solubility-improving mutations, and finding protein folding partners. In particular split-GFP protein tags are a very powerful tool for detection of stable protein domains. Soluble, stable proteins tagged with the 15 amino acid GFP fragment (amino acids 216–228) can be detected in vivo and in vitro using the engineered GFP 1–10 “detector” fragment (amino acids 1–215). If the small tag is accessible, the detector fragment spontaneously binds resulting in fluorescence. Here, we describe our current and on-going efforts to move this process from the bench (manual sample manipulation) to an automated, high-throughput, liquid-handling platform. We discuss optimization and validation of bacterial culture growth, lysis protocols, protein extraction, and assays of soluble and insoluble protein in multiple 96 well plate format. The optimized liquid-handling protocol can be used for rapid determination of the optimal, compact domains from single ORFS, collections of ORFS, or cDNA libraries. PMID:19039681

  19. Rapid automation of a cell-based assay using a modular approach: case study of a flow-based Varicella Zoster Virus infectivity assay.

    PubMed

    Joelsson, Daniel; Gates, Irina V; Pacchione, Diana; Wang, Christopher J; Bennett, Philip S; Zhang, Yuhua; McMackin, Jennifer; Frey, Tina; Brodbeck, Kristin C; Baxter, Heather; Barmat, Scott L; Benetti, Luca; Bodmer, Jean-Luc

    2010-06-01

    Vaccine manufacturing requires constant analytical monitoring to ensure reliable quality and a consistent safety profile of the final product. Concentration and bioactivity of active components of the vaccine are key attributes routinely evaluated throughout the manufacturing cycle and for product release and dosage. In the case of live attenuated virus vaccines, bioactivity is traditionally measured in vitro by infection of susceptible cells with the vaccine followed by quantification of virus replication, cytopathology or expression of viral markers. These assays are typically multi-day procedures that require trained technicians and constant attention. Considering the need for high volumes of testing, automation and streamlining of these assays is highly desirable. In this study, the automation and streamlining of a complex infectivity assay for Varicella Zoster Virus (VZV) containing test articles is presented. The automation procedure was completed using existing liquid handling infrastructure in a modular fashion, limiting custom-designed elements to a minimum to facilitate transposition. In addition, cellular senescence data provided an optimal population doubling range for long term, reliable assay operation at high throughput. The results presented in this study demonstrate a successful automation paradigm resulting in an eightfold increase in throughput while maintaining assay performance characteristics comparable to the original assay. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection

    PubMed Central

    McDonough, EmilyKate; Lazinski, David W.; Camilli, Andrew

    2014-01-01

    Summary Vibrio cholerae, the causative agent of cholera, remains a threat to public health in areas with inadequate sanitation. As a waterborne pathogen, V. cholerae moves between two dissimilar environments, aquatic reservoirs and the intestinal tract of humans. Accordingly, this pathogen undergoes adaptive shifts in gene expression throughout the different stages of its lifecycle. One particular gene, xds, encodes a secreted exonuclease that was previously identified as being induced during infection. Here we sought to identify regulators responsible for the in vivo-specific induction of xds. A transcriptional fusion of xds to two consecutive antibiotic resistance genes was used to select transposon mutants that had inserted within or adjacent to regulatory genes and thereby caused increased expression of the xds fusion under non-inducing conditions. Large pools of selected insertion sites were sequenced in a high throughput manner using Tn-seq to identify potential mechanisms of xds regulation. Our selection identified the two-component system PhoB/R as the dominant activator of xds expression. In vitro validation confirmed that PhoB, a protein which is only active during phosphate limitation, was responsible for xds activation. Using xds expression as a biosensor of the extracellular phosphate level, we observed that the mouse small intestine is a phosphate-limited environment. PMID:24673931

  1. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts

    PubMed Central

    Hoffmann, Stefanie; Walter, Steffi; Blume, Anne-Kathrin; Fuchs, Stephan; Schmidt, Christiane; Scholz, Annemarie; Gerlach, Roman G.

    2018-01-01

    The quantification of bacteria in cell culture infection models is of paramount importance for the characterization of host-pathogen interactions and pathogenicity factors involved. The standard to enumerate bacteria in these assays is plating of a dilution series on solid agar and counting of the resulting colony forming units (CFU). In contrast, the virtual colony count (VCC) method is a high-throughput compatible alternative with minimized manual input. Based on the recording of quantitative growth kinetics, VCC relates the time to reach a given absorbance threshold to the initial cell count using a series of calibration curves. Here, we adapted the VCC method using the model organism Salmonella enterica sv. Typhimurium (S. Typhimurium) in combination with established cell culture-based infection models. For HeLa infections, a direct side-by-side comparison showed a good correlation of VCC with CFU counting after plating. For MDCK cells and RAW macrophages we found that VCC reproduced the expected phenotypes of different S. Typhimurium mutants. Furthermore, we demonstrated the use of VCC to test the inhibition of Salmonella invasion by the probiotic E. coli strain Nissle 1917. Taken together, VCC provides a flexible, label-free, automation-compatible methodology to quantify bacteria in in vitro infection assays. PMID:29497603

  2. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution.

    PubMed

    Tran, Nhiem; Bye, Nicole; Moffat, Bradford A; Wright, David K; Cuddihy, Andrew; Hinton, Tracey M; Hawley, Adrian M; Reynolds, Nicholas P; Waddington, Lynne J; Mulet, Xavier; Turnley, Ann M; Morganti-Kossmann, M Cristina; Muir, Benjamin W

    2017-02-01

    Engineered nanoparticles with multiple complementary imaging modalities are of great benefit to the rapid treatment and diagnosis of disease in various organs. Herein, we report the formulation of cubosomes and hexosomes that carry multiple amphiphilic imaging contrast agents in their self-assembled lipid bilayers. This is the first report of the use of both near infrared fluorescent (NIRF) imaging and gadolinium lipid based magnetic resonance (MR) imaging modalities in cubosomes and hexosomes. High-throughput screening was used to rapidly optimize formulations with desirable nano-architectures and low in vitro cytotoxicity. The dual-modal imaging nanoparticles in vivo biodistribution and organ specific contrast enhancement were then studied. The NIRF in vivo imaging results indicated accumulation of both cubosomes and hexosomes in the liver and spleen of mice up to 20h post-injection. Remarkably, the biodistribution of the nanoparticle formulations was affected by the mesophase (i.e. cubic or hexagonal), a finding of significant importance for the future use of these compounds, with hexosomes showing higher accumulation in the spleen than the liver compared to cubosomes. Furthermore, in vivo MRI data of animals injected with either type of lyotropic liquid crystal nanoparticle displayed enhanced contrast in the liver and spleen. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High-throughput screening of chemicals as functional ...

    EPA Pesticide Factsheets

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional substitutes from large libraries of chemicals using machine learning based models. We collect and analyze publicly available information on the function of chemicals in consumer products or industrial processes to identify a suite of harmonized function categories suitable for modeling. We use structural and physicochemical descriptors for these chemicals to build 41 quantitative structure–use relationship (QSUR) models for harmonized function categories using random forest classification. We apply these models to screen a library of nearly 6400 chemicals with available structure information for potential functional substitutes. Using our Functional Use database (FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a probability of 80% or greater. We demonstrate the potential application of the models to high-throughput (HT) screening for “candidate alternatives” by merging the valid functional substitute classifications with hazard metrics developed from HT screening assays for bioactivity. A descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in vitro bioactivity screening assays. By applying QSURs, we wer

  4. Analysis of Protein Expression in Cell Microarrays: A Tool for Antibody-based Proteomics

    PubMed Central

    Andersson, Ann-Catrin; Strömberg, Sara; Bäckvall, Helena; Kampf, Caroline; Uhlen, Mathias; Wester, Kenneth; Pontén, Fredrik

    2006-01-01

    Tissue microarray (TMA) technology provides a possibility to explore protein expression patterns in a multitude of normal and disease tissues in a high-throughput setting. Although TMAs have been used for analysis of tissue samples, robust methods for studying in vitro cultured cell lines and cell aspirates in a TMA format have been lacking. We have adopted a technique to homogeneously distribute cells in an agarose gel matrix, creating an artificial tissue. This enables simultaneous profiling of protein expression in suspension- and adherent-grown cell samples assembled in a microarray. In addition, the present study provides an optimized strategy for the basic laboratory steps to efficiently produce TMAs. Presented modifications resulted in an improved quality of specimens and a higher section yield compared with standard TMA production protocols. Sections from the generated cell TMAs were tested for immunohistochemical staining properties using 20 well-characterized antibodies. Comparison of immunoreactivity in cultured dispersed cells and corresponding cells in tissue samples showed congruent results for all tested antibodies. We conclude that a modified TMA technique, including cell samples, provides a valuable tool for high-throughput analysis of protein expression, and that this technique can be used for global approaches to explore the human proteome. PMID:16957166

  5. Biologically Relevant Heterogeneity: Metrics and Practical Insights

    PubMed Central

    Gough, A; Stern, AM; Maier, J; Lezon, T; Shun, T-Y; Chennubhotla, C; Schurdak, ME; Haney, SA; Taylor, DL

    2017-01-01

    Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications including basic biomedical research, drug discovery, diagnostics and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell level data, as well as the need for standard metrics of the spatial, temporal and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics and the design of optimal therapeutic strategies for individual patients. PMID:28231035

  6. Use of High Throughput Screening Data in IARC Monograph ...

    EPA Pesticide Factsheets

    Purpose: Evaluation of carcinogenic mechanisms serves a critical role in IARC monograph evaluations, and can lead to “upgrade” or “downgrade” of the carcinogenicity conclusions based on human and animal evidence alone. Three recent IARC monograph Working Groups (110, 112, and 113) pioneered analysis of high throughput in vitro screening data from the U.S. Environmental Protection Agency’s ToxCast program in evaluations of carcinogenic mechanisms. Methods: For monograph 110, ToxCast assay data across multiple nuclear receptors were used to test the hypothesis that PFOA acts exclusively through the PPAR family of receptors, with activity profiles compared to several prototypical nuclear receptor-activating compounds. For monographs 112 and 113, ToxCast assays were systematically evaluated and used as an additional data stream in the overall evaluation of the mechanistic evidence. Specifically, ToxCast assays were mapped to 10 “key characteristics of carcinogens” recently identified by an IARC expert group, and chemicals’ bioactivity profiles were evaluated both in absolute terms (number of relevant assays positive for bioactivity) and relative terms (ranking with respect to other compounds evaluated by IARC, using the ToxPi methodology). Results: PFOA activates multiple nuclear receptors in addition to the PPAR family in the ToxCast assays. ToxCast assays offered substantial coverage for 5 of the 10 “key characteristics,” with the greates

  7. Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups

    PubMed Central

    Chiu, Weihsueh A.; Guyton, Kathryn Z.; Martin, Matthew T.; Reif, David M.; Rusyn, Ivan

    2017-01-01

    Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112 -113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets peroxisome proliferator activated and other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of “induces oxidative stress” and “alters cell proliferation, cell death or nutrient supply” and filling gaps for “modulates receptor-mediated effects.” Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations. PMID:28738424

  8. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    PubMed Central

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  9. Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing.

    PubMed

    Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C

    2016-08-01

    As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.

  10. Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups.

    PubMed

    Chiu, Weihsueh A; Guyton, Kathryn Z; Martin, Matthew T; Reif, David M; Rusyn, Ivan

    2018-01-01

    Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.

  11. AOPs and Biomarkers: Bridging High Throughput Screening ...

    EPA Pesticide Factsheets

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will benefit from additional data sources that connect the magnitude of perturbation from the in vitro system to a level of concern at the organism or population level. The adverse outcome pathway (AOP) concept provides an ideal framework for combining these complementary data. Recent international efforts under the auspices of the Organization for Economic Co-operation and Development (OECD) have resulted in an AOP wiki designed to house formal descriptions of AOPs suitable for use in regulatory decision making. Recent efforts have built upon this to include an ontology describing the AOP with linkages to biological pathways, physiological terminology, and taxonomic applicability domains. Incorporation of an AOP network tool developed by the U.S. Army Corps of Engineers also allows consideration of cumulative risk from chemical and non-chemical stressors. Biomarkers are an important complement to formal AOP descriptions, particularly when dealing with susceptible subpopulations or lifestages in human health risk assessment. To address the issue of nonchemical stressors than may modify effects of criteria air pollutants, a novel method was used to integrate blood gene expression data with hema

  12. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing.

    PubMed

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-03-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.

  13. Development and Validation of a Computational Model for Androgen Receptor Activity

    PubMed Central

    2016-01-01

    Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have potential weak AR pathway activity. PMID:27933809

  14. Toxicokinetic Triage for Environmental Chemicals

    PubMed Central

    Wambaugh, John F.; Wetmore, Barbara A.; Pearce, Robert; Strope, Cory; Goldsmith, Rocky; Sluka, James P.; Sedykh, Alexander; Tropsha, Alex; Bosgra, Sieto; Shah, Imran; Judson, Richard; Thomas, Russell S.; Woodrow Setzer, R.

    2015-01-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been “reverse dosimetry,” in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day). These doses are predicted to produce steady-state plasma concentrations that are equivalent to in vitro bioactive concentrations. In this study, we evaluate the impact of the approximations and assumptions necessary for reverse dosimetry and develop methods to determine whether HTTK tools are appropriate or may lead to false conclusions for a particular chemical. Based on literature in vivo data for 87 chemicals, we identified specific properties (eg, in vitro HTTK data, physico-chemical descriptors, and predicted transporter affinities) that correlate with poor HTTK predictive ability. For 271 chemicals we developed a generic HT physiologically based TK (HTPBTK) model that predicts non-steady-state chemical concentration time-courses for a variety of exposure scenarios. We used this HTPBTK model to find that assumptions previously used for reverse dosimetry are usually appropriate, except most notably for highly bioaccumulative compounds. For the thousands of man-made chemicals in the environment that currently have no TK data, we propose a 4-element framework for chemical TK triage that can group chemicals into 7 different categories associated with varying levels of confidence in HTTK predictions. For 349 chemicals with literature HTTK data, we differentiated those chemicals for which HTTK approaches are likely to be sufficient, from those that may require additional data. PMID:26085347

  15. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    DOE PAGES

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  16. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  17. Modulating Effects of Dicaffeoylquinic Acids from Ilex kudingcha on Intestinal Microecology in Vitro.

    PubMed

    Xie, Minhao; Chen, Guijie; Wan, Peng; Dai, Zhuqing; Hu, Bing; Chen, Ligen; Ou, Shiyi; Zeng, Xiaoxiong; Sun, Yi

    2017-11-29

    Dietary polyphenols have been considered as novel prebiotics, and polyphenols could exert their functions through modulating intestinal microbiota. The diverse bioactivities of kudingcha could derive from its phenolic compounds, but the effects of dicaffeoylquinic acids (diCQAs) from Ilex kudingcha on intestinal microbiota have not been investigated. In the present study, high-throughput sequencing and anaerobic fermentation in vitro were utilized to investigate the microecology-modulating function of I. kudingcha diCQAs. As a result, diCQAs raised the diversity and exhibited a more considerable impact than a carbon source on the microbial profile. DiCQAs increased the relative abundances of Alistipes, Bacteroides, Bifidobacterium, Butyricimonas, Clostridium sensu stricto, Escherichia/Shigella, Parasutterella, Romboutsia, Oscillibacter, Veillonella, Phascolarctobacterium, Lachnospiracea incertae sedis, Gemmiger, Streptococcus, and Haemophilus and decreased the relative abundances of Ruminococcus, Anaerostipes, Dialister, Megasphaera, Megamonas, and Prevotella. DiCQAs also affected the generation of short-chain fatty acids through microbiota. The contents of acetic and lactic acids were raised, while the production of propionic and butyric acids was reduced. Conclusively, diCQAs from I. kudingcha had significant modulating effects on intestinal microbiota in vitro, which might be the fundamental of diCQAs exerting their bioactivities.

  18. Computer Simulation of Embryonic Systems: What can a ...

    EPA Pesticide Factsheets

    (1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative pr

  19. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  20. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs.

    PubMed

    Santo, Vítor E; Rebelo, Sofia P; Estrada, Marta F; Alves, Paula M; Boghaert, Erwin; Brito, Catarina

    2017-01-01

    There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top